

Spurious and Stability Analysis under Large-Signal Conditions

using your Vector Network Analyser

An application of ICE

Outline

- Why combining Large-Signal and Small-Signal Measurements
- Block Diagram
- Practical Setup
- S-parameters
- Stability Criteria
- Large-Signal Measurements
- References and Acknowledgements
- Conclusions

Why combining Large-Signal and Small-Signal Measurements

S-parameters, usually measured under small-signal conditions, provide

- good insight in the linear behaviour of a amplifiers
- provide insight in the stability of the amplifier

S-parameters, measured under large-signal conditions, provide

• good insight in what happens with spurious signals and interference signals

Why combining Large-Signal and Small-Signal Measurements

Under different large signal conditions ... what about ... ?

STABILITY

S-parameters, usually measured under small-signal conditions, provide

- good insight in the linear behaviour of a amplifiers
- provide insight in the stability of the amplifier

S-parameters, measured under large-signal conditions, provide

• provide insight in the stability of the amplifier as conditions change

Block Diagram

Measure

at large-signal frequency grid and at small-signal frequency grid, sweeping source 2

— Absolute Calibration Planes

(*) Other configurations possible, e.g. position couplers, use of splitters, depending on power requirements

Practical Setup

FET Gate bias: -1.2 V (class A)

Drain bias: 4 V

Increasing input power and different terminations

"Channel" capability of the ZVA 24

Using Rohde&Schwarz ZVA capability to configure different "channels"

Each channel has

his own specific hardware configuration

measured data

The Rohde&Schwarz ZVA switches fast from channel to channel

ZVA24 Display

Large-Signal Measurements

Small-Signal Measurements

S-parameters under different large-signal conditions

Stability K-Factor and Determinant

Stability Conditions

$$|K| > 1$$
 and $|\Delta| < 1$

NO RF signal
0 dBm (load)
5 dBm (load)
5 dBm (open)

Input and Output Stability Circles

Frequency: 4.2 GHz

Large-Signal Conditions while measuring S-parameters

References and Acknowledgements

• "A New Characterization Technique of "Four Hot S-parameters" for the Study of Nonlinear Parametric Behaviors of Microwave Devices", T. Gasseling, D. Barataud, et alii, 2003 IEEE MTT-S Digest, p. 1663

- Thanks to Rohde & Schwarz for providing the R&S ZVA network analyzer equipment and the support around the network analyzer
- Thanks to Focus Microwaves for providing the tuners and the good cooperation

Conclusions

- It is straightforward with a Rohde & Schwarz network analyzer to measure the small-signal behaviour while applying and measuring the large-signal conditions
- With the S-parameters it is possible to get better insight when spurious signals are applied to the component or interference signals are picked up, e.g. RF front-end picking up signals
- The S-parameters result in different stability criteria. This is evenly important as the large-signal performance, designing active circuits, like amplifiers

For more information info@nmdg.be

www.nmdg.be