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 Abstract - A system identification approach is applied to estimate
the jitter introduced by a high-frequency sampling oscilloscope. An
extended model is proposed to describe the sample variance of a set
of repeated (impulse response) measurements in the presence of
additive and jitter noise. Then, the (weighted) least-squares and
maximum likelihood estimator are introduced to estimate the
standard deviation of this additive and jitter noise. First, results are
shown based on simulations. These allow to test both the correctness
of the implementations, to verify the ability to detect model errors
and to study the effect of uncertainties on the input signal. Next, the
jitter and additive noise standard deviation are estimated on real
measurements by performing impulse response measurements using
an Agilent 83480A sampling oscilloscope in combination with
83484A 50 GHz electrical plug-ins. Additional challenges, such as
the conjugated effect of time base drift and time base distortion, are
described and correctly taken care of, demonstrating the real power
of a solid stochastical framework.

 Keywords - time base jitter, system identification, sampling oscillo-
scopes, time base distortion, time base drift.

I. INTRODUCTION

Sampling oscilloscopes suffer from time base distortion,
time base drift and time base jitter. Here we focus on the
impact of jitter effects. Given a symmetrical probability
density function, jitter does not introduce phase distortion.
However, it has a low-pass effect on the amplitude
characteristic [1]. As such correct jitter estimation is
important, for instance, during the crossverification of the
amplitude distortion of a 50 GHz sampling oscilloscope based
on the nose-to-nose calibration technique [2] and the electro-
optic sampling (EOS) system [3].

High-frequency sampling oscilloscopes often use an
equivalent-time sampling principle and suffer from both
additive measurement noise  and timing jitter noise

 at the sampling time instance .
(1)

 represents the measurement of the exact signal 
when both additive noise and jitter are added as part of the
measurement. Both  and  are assumed to be zero
mean, normally distributed, independent and stationary with
respect to .

Recent work with respect to jitter estimation [4], [5] is
based on a first order Taylor approximation of :
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Given zero mean additive and jitter noise, the expected value
of  equals . Thus, this first order approximation
cannot explain the low-pass effect introduced by jitter.
Furthermore, the variance of  equals

(3)

 and  represent the standard deviation of the additive
and jitter noise. Both are estimated by performing  repeated
measurements ,  of the unknown exact
signal . Notice that according to (3),  must equal

 whenever . Measurements show that
the latter is not true, neither for nose-to-nose nor for other
high-frequency impulse response measurements, such as the
impulse response of the opto-electrical (O/E) converter which
was calibrated using the EOS system.

Moreover, it was found that both time base drift and time
base distortion compensation shape the sample variance

 and must properly be dealt with in order to obtain a
good estimate for the standard deviation of both the jitter and
the additive noise. Failing to do so, measurements show that a
bias of more than 10% is introduced on the estimated variance
of the additive noise.

II. EXTENDED MODEL

Based on the observation that  does not equal 
whenever the derivative of the unknown exact signal 
equals zero, it is decided to extend the series approximation to
include also the second and third order contributions:

(4)

Calculating the expected value of , one finds

(5)
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A bias now becomes apparent and approximates the low-pass
effect introduced by jitter. Let , then

.

Calculating the variance of  gives

(6)
Based on (6),  is now larger than  when

equals zero, unless the second and third
derivatives are also both zero.

III. ESTIMATORS

The goal is to estimate  and .

A. Linear and nonlinear least squares
Starting from  independent and identically distributed

(i.i.d.) measurements, one minimizes the following cost with
respect to the unknown variances  and :

, (7)

. (8)

 corresponds to the measured sample variance for ,

while  represents the model of the noise variance

with and  is the optional weighting.

For the unweighted least squares (LS),  is set to 1, while
the square root of the sample variance of  is used for the
weighted least squares (WLS).

Using the first order model (3) for the noise variance, the
error  is linear in the unknowns  and . However,
if the model is expanded towards a higher order Taylor
approximation (6), the problem is no longer linear in .

B. Maximum Likelihood (ML) estimator
In [4] it is shown that the ML estimator of model (3)

produces statistically more efficient estimates for  and
 than a linear least squares estimator.

This estimator uses the knowledge that, if each stochastic
variable  has a  normal distribution with unity
variance and zero mean, then  has a  chi-squared
distribution with  degrees of freedom. If the mean value of

 is unknown, the (sample) mean has to be calculated and
the number of degrees of freedom has to be decreased by 1.
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It can be shown that, based on  i.i.d. measurements, the
ML estimator minimizes the cost

(9)

with respect to  and , where  represents the number
of degrees of freedom. Performing  repeated measurements

,  of the unknown exact signal  and
using both sample mean and sample variance,  equals

.
Also, it is straightforward to extend the above ML cost to deal
with situations where the number of degrees of freedom varies
with . The relevance of this extension will become clear
below, when dealing with time base drift.

IV. SIMULATION RESULTS

First the different models and estimators are tested using
simulation data.

A. Generation of simulation data
This data is kept as realistic as possible. Therefore, the

combined impulse response of a real-world opto-electrical
converter (O/E) and a 50 GHz sampling oscilloscope is used
as a starting point. Fig. 1 shows the block diagram of the
required setup. The second O/E in the trigger path is solely
used to convert the optical pulse into an electrical pulse that
can be used to trigger the sampling oscilloscope. 

During the measurement of the impulse response, 500 time
records of 5 ns (4096 points each) are acquired. The data is
corrected for time base drift and time base distortion.

Fig. 2 zooms in to the main portion of the averaged pulse
and its corresponding sample variance. It is clearly shown that
at the time instants where the averaged pulse has a zero slope,
the variance is larger than the constant level at both sides of
the pulse, which corresponds to the variance of the additive
noise. This means that (3) does not correspond to the exact
model for the measured jittered signal.

After applying a window in both the frequency and the
time domain, the resulting analytical expression for the time
signal is given by its Fourier series

(10)

and allows to calculate the exact derivatives. 
represents the real part of the complex value . If the number
of relevant spectral lines  becomes too large, the calculation

Fig. 1. Block diagram of the setup used during the impulse measurement.
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of  using (10) becomes very time consuming and a fast
inverse Fourier transform is used instead. However, when
simulating jitter noise, the time samples are no longer on an
equidistant grid. In order to avoid the calculation using (10), a
two step approach is used. First,  is evaluated on a
sufficiently oversampled equidistant time grid. Then, cubic
interpolation is used to obtain the value at  [8].
Given the above impulse response, it was found that
oversampling by a factor of 128 in combination with cubic
interpolation leads to an RMS value for the difference
between the exact and interpolated signal that is about 200 dB
down with respect to the RMS value of the signal.

B. Third order approx. of variance, known derivatives
In order to test the correctness of the model parameter

extraction software, simulation data is generated using (6).
The required derivatives are based on (10) and are assumed to
be known exactly. Based on measurements using the Agilent
83480A Digital Communications Analyzer, the standard
deviation of the additive noise during the simulations was set
to 0.6 mV, while the jitter standard deviation was stepped
from 0 to 2 ps in 0.2 ps steps.

The simulation results show that the estimated parameters
converge to the exact parameters when no model errors are
present. It is also verified that the uncertainty on the
parameters, indicated by the parameter covariance matrix,
corresponds to the sample variance of the parameters based on
repeated estimations.

In case of the WLS estimator, it is found that both the
sample mean and sample variance of the cost match their
expected value within their 95% confidence intervals when
there are no model errors (3rd order model), while there is a

Fig. 2. Zooming into the main portion of the averaged impulse response and 
its variance.
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significant difference when there are model errors (1st and 2nd

order model) for increasing values of the jitter standard
deviation (Fig. 3). This clearly shows the capability of the
WLS estimator with respect to model selection.

C. Realistic variance, known and unknown derivatives
Next, more realistic simulations are performed using “real”

jitter, starting from (1). The simulations also allow to study
the effect of uncertainties on the input signal. More
specifically, first the exact derivatives of the exact signal are
used, while in a next step, these derivatives are calculated
from the measured data using the sample mean of the signal.
It was found that the effect of not knowing the exact
derivatives is negligible.

The simulation results show that the unweighted LS
estimator provides the best estimates for the jitter standard
deviation, while the WLS estimator outperforms the LS when
estimating the standard deviation of the additive noise. This is
due to the presence of model errors and the fact that the jitter
has a larger contribution to the LS cost than to the WLS cost.

Using a third order model in combination with the WLS
estimator, Fig. 4 clearly shows that the sample mean of the
cost and its 95% confidence interval include the expected
value of the cost for jitter standard deviation values up to 1 ps.
For higher jitter values, the sample mean of the cost clearly
starts to deviate from the expected value indicating the
presence of model errors.

Fig. 3. Mean value of the cost using the WLSLS estimator. (1st order model: 
long dashed line, 2nd order model: short dashed line, 3rd order model: solid 

line, expected value of cost: 4136)

Fig. 4. Expected value (dashed line) of the cost of the 3rd order model using 
the WLS estimator, compared to its sample mean value (50 realizations) and 
its 95% confidence interval. The mean cost for jitter standard deviations of 

more than 1.2 ps fall outside the selected vertical range.
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D. Conclusions and guidelines
The WLS estimator provides model selection capability. In

the absence of model errors, both the ML and WLS estimator
are preferred because they provide more efficient estimates
than the LS estimator. In the case of model errors ( ),
the LS estimator provides better estimates for the jitter
standard deviation, while the ML and WLS estimator do a
better job in estimating the standard deviation of the additive
noise.

V. INFLUENCE OF TIME BASE DRIFT

The above simulations show that all estimators perform
reasonably well when the jitter standard deviation is limited to
1 ps. Applying them to measured data, large discrepancies
were found between the measured and estimated variance,
even though the estimated jitter standard deviation also turns
out to be about 1 ps. The sampling oscilloscope measurements
add extra challenges due to time base drift and time base
distortion, which were not included in the simulations. As
such, it is decided to study the effect of time base drift and its
compensation on the estimated parameters.

A. Theory
Let  represent the sampled version of a

band limited signal . It is possible to write the sampled
version of the delayed signal  as

(11)

(11) clearly shows that for an arbitrary delay ,  depends
on all  and is no longer independent with respect to .
However, if , all contributions are zero, except for

. Thus, . As such, unless the applied
delay is an integer multiple of the sampling period, the
variance of the delayed signal does not equal the delayed
variance of the original signal. In this article, this effect is
referred to as the shaping of the variance due to time base drift
compensation.

B. Simulation
The analytical pulse (10) is used to study the shaping of the

variance as function of . First a known delay
, ,  is applied to

the analytical pulse. The sample variance of this delayed pulse
is obtained based on 1000 realizations using a standard
deviation of 0.6 mV of the additive noise and a standard
deviation of 1 ps of the jitter noise. Next the inverse delay is
applied to this sample variance and compared to the sample
variance of the original pulse. Fig. 5 shows the difference
between the original variance and the variance after delay
compensation of . If the delay is limited to , it is
found that the resulting shaping is negligible.

C. Reducing the shaping of the variance
In order to limit the error introduced by time base drift
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compensation before averaging, the different realizations of
the pulse are first delayed by integer multiples of  such that
all realizations are aligned within . Then all
realizations are divided into time buckets which are 
wide, resulting in a 5-times oversampled signal compared to
the original signal. Further processing of this oversampled
signal is explained in the following section.

VI. MEASUREMENT RESULTS

The measurement data correspond to the combined
impulse response of an opto-electrical converter and a 50 GHz
sampling oscilloscope (see Fig. 1). A time record of 5 ns was
used starting at 143 ns delay and 5000 records of 4096 points
were acquired. Each measurement takes about 0.45 seconds.

A. Time base drift estimation
The drift is estimated, using the first measurement as

reference and by minimizing

 (12)

within the bandwidth of the signal . Based on the fact
that simulations confirmed that time base jitter may
incorrectly be interpreted as time base drift and based on
reasonable time constants corresponding to thermal effects,
which are assumed to cause the time base drift, the estimated
drift is smoothed.

B. Time base drift compensation
The smoothed version of the estimated time base drift,

based on a 4th order polynomial, is used to align the different

Fig. 5. Clear shaping of the sample variance (solid black line: original 
variance, dashed gray line: variance after delay compensation of 0.5∆t)

Fig. 6. Estimated time base drift (gray: smoothed using 4th order polynomial)
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realizations. First all realizations are aligned within .
This does not introduce any shaping of the variance, as only
shifts over an integer number of samples are used.
Next, the realizations are divided in 5 buckets, each being

 wide. All realizations within each bucket are aligned
with respect to the center of that bucket. Given a maximum
delay of , the resulting shaping of the variance that is
introduced by this alignment can be neglected. Fig. 7 shows
the unequal distribution of the 5000 realizations over the
different buckets.

In order to obtain variance information, required by the WLS
estimator, different approaches are possible. First, one can
divide the realizations into different data sets. The effect of
using the sample variance, instead of the exact variance, on
the expected value and variance of the cost and on the
uncertainty of the parameters as function of the number of the
data sets, is studied in [6]. Another option is to use the
knowledge that, for a sufficiently large number of realizations,
the variance of the sample variance of the pulse is -
distributed. Both approaches result in estimates for the

standard deviation of the additive and jitter noise which match
within their 95% confidence intervals.

C. Time base distortion estimation and compensation
Due to the time base distortion of the Agilent 83480A

Digital Communication Analyzer, the sample mean and the
sample variance are specified on a non-equidistant time grid.
The time jitter estimation algorithm used in this article does
not require the sample mean and sample variance to be
specified on an equidistant time grid. However, in order to
efficiently calculate the derivatives of the mean pulse via the
frequency domain using an FFT, cubic interpolation is used to
obtain the values of the sample mean on an equidistant grid,
as proposed in [8]. The derivatives are obtained at the original
non-equidistant grid by applying the “inverse” cubic
interpolation. The time base distortion is estimated using [7],
after collecting the required data.

D. Time base jitter estimation
Finally, the time base jitter can be estimated using the

proposed model (6) and the weighted least squares estimator,
taking the varying variance of the sample variance as function
of the bucket index into account, in order to minimize the

Fig. 7. Distribution of the 5000 realizations over the different buckets.
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uncertainty on the estimated parameters. Fig. 8 shows the
measured variance on a logarithmic scale, after proper
compensation of the time base drift. Fig. 9 horizontally zooms
into the jitter portion and compares the modelled variance (6)
to the measured variance and its 95% confidence interval
based on a -distribution. Fig. 10 vertically zooms into the
additive noise portion.

The value of the WLS cost function turns out to be 7%
larger than the expected value of the cost and is located
slightly outside the 95% confidence interval of the expected
value of the cost. The standard deviation of the estimated
additive and jitter noise and their 95% confidence intervals
are 0.508 mV ± 0.16 µV and 0.965 ps ± 2.3 fs.

Excellent correspondence was found between the

Fig. 8. Correctly aligned “measured” variance (logarithmic vertical scale).

Fig. 9. Comparing the modelled (gray) and correctly aligned “measured” 
variance (black dots and vertical lines corresponding to 95% confidence 

intervals based on the χ2-distribution of its sample variance).
Zooming horizontally into the jitter portion of the variance.

Fig. 10. Comparing the modelled (gray) and correctly aligned “measured” 
variance (black dots and vertical lines corresponding to 95% confidence 

intervals based on the χ2-distribution of its sample variance).
Zooming vertically into the additive noise portion of the variance.
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estimated standard variation of both jitter and additive noise,
based on the LS estimator, the WLS estimator and the ML
estimator. The WLS estimator is to be preferred because the
actual value of the cost can be used to detect model errors by
comparing it to its expected value, while this is impossible for
the LS estimator. Furthermore, the uncertainty on both
estimated parameters is significantly smaller using the WLS
and ML estimator. Interpreting the value of the cost based on
the ML estimator is found to be less obvious. Also the

distribution used for the MLE is only 100% valid for the
first order model.

E. The power of a stochastical framework
Suppose the shaping of the variance due to time base drift

compensation is overlooked. Repeating the estimation
procedure, the expected value of the cost and its 95%
confidence interval equals 4212 ± 188. The realized cost
using a third order model turns out to be 14764, which is 3.5
times the expected value of the cost. As can be seen in Fig. 11,
this is confirmed by a poor fit when the variance to be
modelled is based on incorrectly processed measurements.

F. Bias in estimation of variance of additive noise
Finally, it is mentioned that overlooking the shaping of the

variance, due to time base drift compensation, in combination
with the first order model and the LS estimator, introduces a
bias of more than 10% on the estimated variance of the
additive noise. This may explain why in [5] the additive noise
is estimated separately. It is found that this offset is removed
by properly aligning the pulses, as proposed in this article.

VII. CONCLUSIONS

The system identification approach described in this article
and applied to jitter estimation of the combined impulse
response of an opto-electrical converter and a high-speed
sampling oscilloscope is a major extension of [4], which can
be applied to “real” problems. Indeed, the simulation results
presented in [4] are based on the rather unrealistic assumption
that (3) is the exact representation of the sample variance,
while in reality it is only a first order approximation.

The underlying stochastical framework allows to detect

Fig. 11. Comparing modelled (gray) and incorrectly shaped “measured” 
variance (black dots and vertical lines corresponding to 95% conf. interval).
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model errors and anomalies like the shaping of the variance
due to time base drift compensation. Error bounds are
provided on both the estimated parameters and the modelled
variance. Finally, the method allows the simultaneous
estimation of the variance of the additive noise and the jitter
noise, where other methods [5] fail to do so.
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