

S-functions - Measure, Model, Simulate -

An application in ICE

Outline

- Key benefits
- Key capabilities
- Why S-functions?
- What are S-functions?
- Harmonic-related S-functions as an example application in ICE^(*)

^(*) Integrated Component <u>Characterisation Environment</u>

Key Benefits

S-functions are for nonlinear components what S-parameters are for linear components

- Improve and speed up the design process
 - Measure and directly simulate RF systems under large-signal conditions
- Simplify and increase RF component sales
 - Provide more complete system-level models for RF components, instead of limited data sheets
 - Reduce the need for evaluation boards to prove proper operation of component
- S-functions are easy because they are a natural extension of S-parameters

Key Capabilities

- Natural extension of S-parameters
 - Reduce to S-parameters for small-signal excitation
 - S-parameters are cascadable, S-functions are cascadable too
- Predict harmonic behaviour of components under different impedances
- Predict modulation behaviour of components under different impedances
 - Under pseudo-static assumption
- Predict component behaviour under arbitrary small-signal spurious signals in different impedances
- Valid for multi-ports, applicable to differential components

Why S-functions?

- S-parameters are valid for linear mode of operation only.
- The success of S-parameters is based on its **uniform** approach for linear RF and microwave problems.
- Unfortunately there is **no uniform** approach yet to deal with nonlinear RF and microwave problems.
- In the scientific world, different approaches are proposed to describe different phenomena.
- S-functions deal with a subset of these phenomena in a **uniform way** as a natural extension of S-parameters.

From S-parameters to S-functions

S-parameters measured at fixed DC bias point

From S-parameters to S-functions

 $^{(*)}$ to have linear contribution at output of f only

From S-parameters to S-functions

Increase the amplitude of tone at **f**

^(*) theoretically expressed through the Volterra theory

S-functions, limited to Harmonic Behaviour

(*) theoretically expressed through the Volterra theory

S-functions, focused on Harmonic Behaviour

 $b_p(h.f_0)$ can be expressed as function of DC, f_0 and $|a_1(f_0)|$

The complete model is based on three contributions:

Linear
$$\longrightarrow S(V_{DC}, f_0, |a_1(f_0)|; h f_0)$$

 $S^{c}(V_{DC}, f_0, |a_1(f_0)|; h f_0)$

Nonlinear $\longrightarrow b_i(hf_0) = Mapping_{ih}^l(V_{DC}, f_0, a_1(f_0))$

S-functions in ICE^(*)

- S-functions focussed on harmonic and modulation^(**) behaviour
- Sweepable Large-Signal Operating Point (LSOP)
- Auto or user-defined tickle signal level
- From simple push-the-button solution to access to expert-level details
- Visualization of component behaviour during data collection
- Easy model verification (no EDA tool required)
- Sufficient sanity checks included
- Easy export to and integration in Agilent[™] ADS
- Support for mismatched environments
- Harmonics generated by RF sources don't cause any problem
- Simple output prediction does not require EDA tool
- Support for both sampler-, mixer- and scope-based Large-Signal Analysers
- Runs both on PC and on supported instruments
- Export to and integration in other EDA tools on request
- Possible to extend the LSOP variables, e.g. temperature

^(*) Integrated Component Characterisation Environment

^(**) Pseudo-static behaviour

Model Extraction Process – Data Collection

^(*) LSOP = Large-Signal Operating Point

Expert Details If Desired @ Data Collection

Model Extraction Process – Model Extraction & Visualization

Model verification process

- 1st sanity check: data collection for model extraction
 - model extraction assumes data collection at constant LSOP
 - flexible control loops to adjust LSOP-related sources (if necessary)
 - summary of variation based on mean, stdev, min/max
 - zoom in if necessary (visual inspection)
 - model assumes sufficient variation of tickle signal
 - condition number for each LSOP setting
 - zoom in if necessary (visual inspection)
 - model assumes linear contribution of tickle signal
 - user-defined or automatic tickle power level
 - user-defined or automatic characteristic impedance
- 2nd sanity check: verify quality of model (incl. linearization)
 - compare model prediction to measurements used for model extraction
 - look at amplitude of complex error for all measurements in one plot
 - zoom in if complex error too large for certain measurements
 - compare to uncertainty on measurements
- 3rd sanity check: verify interpolatibility of model
 - compare model prediction to 2nd set of measurements
 - independent set of measurements at in-between values of LSOP (e.g. |a11)

Model Prediction – Data Used for Model Extraction

amplitude of complex error for b,

Model Prediction – Data Used for Model Verification

verify interpolation of b_2 with respect to $|a_{11}|$

S-functions in Agilent ADS

Model Verification in ADS - Schematic

- Example: Harmonic Balance simulation with measured a1 and a2 spectra
- Excitation: CW RF signal at 2 GHz, Input Power sweep
- DC Bias: VDC1= -0.3 V, VDC2= +1.5 V

Model Verification in ADS

20

&'NMDG

Frequency = 2 GHz, VDC1= -0.3 V, VDC2= +1.5 V

Model Verification in ADS – Time Domain

Frequency = 2 GHz, VDC1= -0.3 V, VDC2= +1.5 V, Pa1 = +4.5 dBm

circles – measurements solid lines - simulations

References

- F. Verbeyst and M. Vanden Bossche, "VIOMAP, the S-parameter equivalent for weakly nonlinear RF and microwave devices", published in the *Microwave Symposium Digest of IEEE 1994 MTT-S International* and published in the *1994 Special Symposium Issue of the MTT Transactions*, vol. 42, no. 12, pp. 2531 – 2535.
- F. Verbeyst and M. Vanden Bossche, "VIOMAP, 16QAM and Spectral Regrowth: Enhanced Prediction and Predistortion based on Two-Tone Black-Box Model Extraction", published in the *Proceedings of the 45th ARFTG Conference*, Orlando, June 1995 and winner of the "Best Conference Paper Award".
- J. Verspecht and P. Van Esch, "Accurately characterizating of hard nonlinear behaviour of microwave components by the Nonlinear Network Measurement System: introducing the nonlinear scattering function," *Proc. International Workshop on Integrated Nonlinear Microwave and Millimiterwave Circuits* (INMMiC), October 1998, pp.17-26.
- J. Verspecht, "Scattering functions for nonlinear behavioral modeling in the frequency domain," *IEEE MTT-S Int. Microwave Symp. Workshop*, June 2003.
- J. Verspecht and D.E. Root "Polyharmonic Distortion Modeling," *IEEE Microwave Magazine*, vol.7 no.3, June 2006, pp.44-57.
- D.E. Root, J. Horn, L. Betts, C. Gillease, and J. Verspecht, "X-Parameters: The new paradigm for measurement, modeling, and design of nonlinear RF and microwave components," *Microwave Engineering Europe*, December 2008, pp. 16-21.

Conclusion

- S-functions are a natural extension to S-parameters
- S-functions aren't much more complex than S-parameters
- S-function extraction is supported on R&S network analysers
- S-function extraction can be offered for other sampler-, mixer- and scopebased Large-Signal Analysers on customer demand

For more information

info@nmdg.be www.nmdg.be

