

IMS 2010 MicroApps Workshop Anaheim, 23-28 May

S-Functions

"The S-parameters for nonlinear components"

Outline

• Beyond S-parameters ???

S-Functions, the "S-parameters" for nonlinear components

- S-Functions in a Nutshell
- Measure, Model, Verify, Simulate

Real and Virtual Components / Circuits

- Assumptions of S-Functions
- Key Benefits and Capabilities

Beyond S-parameters???

- **S-parameters**, the behavioral model for linear components
 - Components in linear mode of operation only
 - Their success is based on its **uniform** approach for **linear** RF and microwave problems both to measure and to simulate
- What about components in nonlinear mode of operation?
 - No **uniform** approach for nonlinear RF and microwave problems
 - However, one can deal with a *subset* of nonlinear RF and microwave phenomena in a **uniform way...**

S-Functions, the "S-parameters" for nonlinear components

- **S-Functions**, the NMDG behavioral model for nonlinear components
 - Deal with a subset of nonlinear RF and microwave phenomena in a **uniform way** as a natural extension of S-parameters
 - S-Functions can be "measured" and used in simulators

S-Functions^(*) in a Nutshell

^(*): For simplicity, limited to harmonic behavior ^(**): Large-Signal Operating Point

Independent variables: a_1 , a_2 and v_3 Dependent variables : b_1 , b_2 and i_3

Nonlinear behaviour caused by LSOP^(**): $a_1(f_0), a_2(f_0) \text{ and } v_{dc}$ \downarrow \downarrow Linear perturbation caused by: $a_1(k f_0), a_2(l f_0) \text{ with } l, k \neq 0, 1$ \downarrow

S-Functions

 $I_{dc} = F(a_{1}(f_{0}), a_{2}(f_{0}), v_{dc}) + G_{k}(a_{1}(f_{0}), a_{2}(f_{0}), v_{dc})A(kf_{0})$ $B = H(a_{1}(f_{0}), a_{2}(f_{0}), v_{dc}) + S_{k}(a_{1}(f_{0}), a_{2}(f_{0}), v_{dc})A(kf_{0})$ and something special: $+G_{k}^{c}(a_{1}(f_{0}), a_{2}(f_{0}), v_{dc})A^{*}(kf_{0})$ $+S_{k}^{c}(a_{1}(f_{0}), a_{2}(f_{0}), v_{dc})A^{*}(kf_{0})$

S-Functions for Real and Virtual Components / Circuits

ICE: NMDG Integrated Component Characterization Environment Software

Advanced Design System (ADS) is a trademark of Agilent Technologies Microwave Office (MWO) is a registered trademark of AWR

ROHDE&SCHWARZ

"Measure" S-Functions – An application in ICE

- Repeat the following for all LSOPs of interest
 - Select tickle tones
 - Large enough to be detectable
 - Small enough not to violate linearity assumption
- <u>Measure</u> incident and reflected waves for different tickle tones

detailed feedback of LSOP for actual measurement

"Measure" S-Functions – An application in ICE

• Model by solving for F, G, G^c, H, S and S^c

- Constantness of LSOP
 - F, G, H, S, G^c and S^c are assumed to be extracted at given LSOP
 - e.g. variation in DC drain voltage due to changing current violates this assumption
- Interpolation capability of F, G, H, S, G^c and S^c
 - LSOP interleaving verification measurements
- Linearity assumption of tickle tones
 - Model verification for different amplitude and phases of tickle tones

S-Functions Verification – Interpolation Capability

verify interpolation of b, using independent set of measurements

ROHDE&SCHWARZ

NMDG

IMS 2010 - MicroApps Workshop

Coupling in CAE Tools

circles – measurements solid lines - simulations

Applicability of S-Functions

Components

- Transistors
- Amplifiers
- Dividers
- Multipliers

Prediction

- Harmonic distortion
- AM AM and AM PM
- Source-pull
- Load-pull
- Modulation behavior (*)
- Intermodulation

^(*): The component is assumed to be pseudo-static

TOHDE&SCHWARZ

IMS 2010 - MicroApps Workshop

Assumptions of S-Functions

Large-Signal Operating Point (LSOP) $a_1(f_0)$, $a_2(f_0)$ and v_{dc}

NMDG

Tickle or probing tones $a_1(k f_0)$, $a_2(l f_0)$ with l, $k \neq 0, 1$

IMS 2010 - MicroApps Workshop

S-Functions – Key Benefits

S-Functions are for nonlinear components what S-parameters are for linear components

- Simplify the use of HF components and circuits
 - Complement limited data sheets with more complete system-level models
 - Complement evaluation boards, enabling upfront more realistic simulations
- Improve and speed up the design process
 - Adequate replacement when the circuit model fails or is not trusted
 - Simulate with a behavioral model, optimized for your design problem
 - Similar to S-parameters: measure, model, verify and simulate

S-Functions - Key Capabilities

- Natural extension of S-parameters
 - Reduce to S-parameters for small-signal excitation
 - S-parameters are cascadeable, S-Functions are cascadeable too
- Predict harmonic behavior of components under different impedances
 - Source Pull
 - Load Pull
 - Waveforms
- Predict modulation behavior of components under different impedances
 - Under pseudo-static assumption
- Predict component behavior under arbitrary small-signal spurious signals in different impedances
- Valid for multi-ports, applicable to differential components

Rohde&Schwarz Booth 2519:

> NM600 Fast Source- & Load-pull with a R&S VNA only

- Fundamental S-Functions
- NM300 ZVxPlus @ R&S Network Analyser
 - S-Functions in non-50 Ohm conditions

Contact information

Rohde&Schwarz

Mühldorfstraße 15 81671 München (Munich) Germany www.rohde-schwarz.com

NMDG NV

Fountain Business Center - Building 5 Cesar van Kerckhovenstraat 110 B-2880 Bornem Belgium – Europe info@nmdg.be www.nmdg.be

Want to try? Request a Free Trial ICE copy here:

http://www.nmdg.be/register_freeICEsoftware.php

