

Integrated Component Characterization Environment "ICE"

"Do now with instruments what you could do for years with your nonlinear simulator"

Outline

- Introduction
- Receivers and Analyzers
- Absolute Calibration Techniques
- Deembedding
- Ranging
- Configurable test-sets
- Tuners
- Record a replay measurements
- Pseudo real-time displays
- Build your own measurement setup
- Remote connection to test environments
- On-line help
- Architecture
- Driver support and applications
- Conclusion
- Want to try?

Integrated Component Characterization Environment

Integrated Component Characterization Environment

- Pseudo real-time active component characterization and tuning
 - Allows to use different stimuli in pseudo real-time
 - Measures accurately the voltage and current behaviour (V/I) at the ports of a device under test
 - Visualises in pseudo real-time the V/I measurements and derived specifications in different formats to gain insight in component behaviour
- Base platform for applications, solving specific customer problems
 - DC IV Characterization
 - Harmonic Distortion Analysis
 - S-functions
 - ...

ICE supports different receivers / analyzers

Rohde&Schwarz ZVA/T

Maury MT4463,Tektronix HF Oscilloscope (*) powered by NMDG

Agilent PNA-L (*) Courtesy of On Semiconductor © Copyright 2009 - 2010

Agilent PNA-X

More to come...

ICE supports absolute calibration techniques

- Absolute Calibration Techniques (connectorized, in-fixture and on-wafer)
 - Relative VNA calibration techniques
 - Power calibration
 - Phase calibration
- ICE complements the calibration capabilities of the given receiver / analyser to provide absolute calibration techniques, adapted to the type of measured signals
- When not available with receiver / analyser, NMDG sells a phase calibration kit

ICE supports deembedding

• Standard two-port deembedding

🧻 outputdeembedding - Front	: Panel	_□×	
Load Deembedding File	Edit Deemb	edding	
Active Deembedding Info: C:\home\demo\EPA_Fixture\cal\Launch			
	🔊 Reset	Local	

Edit Deembeddin

	centreading		
Dee	mbedding Matrix Info:	C:\home\demo\EPA_Fixture\cal\LauncherPort2AndPackage.citi	
	Frequency (Hz)	ABCD Matrix	1
►	0	1, 0, 0, 1	1
	50M	1.15129049445555 - 0.0391694731152241i, -0.714030497	
	100M	1.07852239446678 - 0.012685617753871i, -0.7538002410	
	150M	1.01445944946118 - 0.0172746600506451i, -0.757575057	
	200M	0.944638576924828 - 0.0155877197341054i, -0.64401286	
	250M	0.852590898138823 - 0.0113772359830731i, -0.49195151	
	300M	0.741703286022563 - 0.00864269823216979i, -0.4205649	
	350M	0.619112607387066 - 0.00683915062674018i, -0.2249392	
	400M	0.488342745014364 - 0.00247176140185978i0.0555619	1
		OK Cancel	

Four-port deembedding supports parasitics to ground

ICE supports ranging for best measurements

- Characterization of power devices requires proper attenuation
 - Protecting test-set
 - Limiting power going into receiver to avoid receiver compressing, causing measurement errors (nonlinearity of receiver instead of device under test)

ICE supports and configures different power test - sets

- External test-sets are required when power exceeds the damage level of the standard network analyzer
- ICE allows to configure your own network analyzer, combining a receiver, possibly part of a standard network analyzer, with an external test-set

i/NMDG

9

ICE supports different tuners

• Focus Microwaves - CCMT and MPT

oadtuner – Front	r Panel				
ntrol Corrections	S-parameters				
Calibration					
Active Calibration:	#81: 2GHz /	0 harm / 0	pts		Disable Interpolation
Control					
	Gamma	-		Tune Now	1
	Reflection F	actor —	· · ·		
	Tuning Mod	e: HMPT	_HiDef	•	
	Input Forma	it: F , <f< td=""><td>•</td><td></td><td></td></f<>	•		
	Γ(f0) :	0.125	< Г(f0) :	180	
	Γ(2f0) :	0.99	< Г(2f0) :	180	
	Γ(3f0) :	0.99	< Г(3f0) :	180	
			Initialize Tune	er 🔊	Reset Local

ICE allows recording and replay of measurements

ICE supports pseudo real-time displays

Workspace Viow Tools Windows Help

NMDG

12

Build your own measurement setup with ICE

+

X

Measurement Plane

Meas Plane 1

Meas Plane 2

Help

OK

inputdeembed

outputdeembed

4142 - Source1
4142 - Source2

b---- 1 4142 - Analyzer

© Copyright 2009 - 2010

Cal Planes

Schematic

4142 - Analyzer

ZVA24_4P_VI - RF Analyzer

ICE integrates smoothly with your test-environment

Test Environments:

Matlab LabView Mathematica

•••

Example: Setting deembedding matrix (Mathematica)

🗱 Untitled-1 *	
Making connection with ICE via IPC] ^
iceURL = "ipc://icelink/ICE.rem"; iceServer =	٦
CastNETObject[ClientServices`OpenConnection[iceURL],	
"NMDG.ICE.RemotingLibrary.IRemoteServer"];	
Getting access to the "outputdeembed" object]
myoutputdeembed =	Р
iceServer@GetActiveSchematic["outputdeembed"];	
Setting S-par as function of frequency]
s11 =, s12 =, etc	٦
deembed = Transpose[{{s11, s12}, {s21, s22}}, {2, 3, 1}];	
Creating a .NET matrix]
deembeddotNET2 = MakeNETObject[deembed,	Ρ
"Extreme.Mathematics.DoubleComplex[,][]"]	
Setting the "outputdeembed" object]
myoutputdeembed@SetDeembeddingABCDMatrix[freqlist,	٩
deembeddotNET2, ZcdotNET]	
100% 🔺 🔇 📖	>

📱 Global Preference	es	×
General	Actual Channel	
Cogging Logging	Channel: Protocol=IPC;PortName=icelink	
🛃 Setup	Activate Deactivate	a
Calibration	URL: ipc://icelink/ICE.rem	
Objects	Default Channel Channel: Protocol=IPC PortName=icelink	
Connection	Activate default connection on ICE startup	
IPC or 1	TCP .NET connection in ICE	
	OK Cancel Rese	ət

On-line help and Tutorial

💕 ICE 2010A ñ-鸏 ⇔ 4 5 Hide Locate Back Forward Print Options ICE 2010A Send comments on this topic. Contents Index Search Fa **Calibration Kits** Introduction Calibration Basics > Calibration Kits 🗄 🌨 License and Copyright 🖃 🚺 Tutorials To perform calibrations, a calibration kit (a.k.a. calkit) is typically needed. This is 🕐 Tutorial - Creating a ZV where the Calibration Kit Manager comes in, to assist you with the configuration 😨 Tutorial - Measuring a D of such calkits. 🗉 🤝 ICE User Interface Calibration Kit Manager 🖃 🚺 Workspace Basics ? Overview The Calibration Kit Manager can be opened, by clicking [Tools] - [CalKit 😨 Workspace Wizard Manager...] in the main menu of ICE. A dialog will pop up, similar to the one in \overline ? Creating a new worksp the following screenshot: Open an existing works <u>?</u> Workspace Preference 🗄 🌭 Setup Basics 🖃 🔟 Calibration Basics ? Calibration Kits Perform an RF calibratic 🔞 Perform a DC calibration 🖃 🔟 Product Support + X ? Contact Prror Dialog OK 🎤 <u>Click to Enlarge</u> \overline PAQ ICE About Window On the left side, a list will show the calkits which are already configured, as part ? ICE License File of your workspace. A calkit can be expanded to view its list of calibration elements. When such an element is selected, access to the characteristics of that 🕐 Plugins element is provided using the tabs: <table-cell> Privacy ? Tools Web Site (Company) B Aphen Provi Matchan Matchan Asnatichus Asnatichus Maticas Frequency Parage 0 28:30 • . 🎤 Click to Enlarge > © 2003-2010 NMDG NV. All Rights Reserved.

Table of content

>

Introduction	9
Tutorial 1 - Raw measurements	11
Overview	
Prerequisites	
Measurement setup	
Creating a new workspace	
Perform a raw measurement.	14
Conclusion	15
Tutorial 2 - Basic RF absolute calibration	17
Overview	17
Prerequisites	17
Create the workspace	
Configuration of the calibration	
The calibration	
Perform a calibrated RF measurement.	
Quit ICE	
Conclusion	
Tutorial 3 - Measure a diode	
Overview	
Prerequisites	
Create the workspace	
Perform a RF calibration	
Frequency grid	
The Diode PCB board	
Measure the diode PCB board	
Voltage and current waveforms	
Conclusion	
Tutorial 4 - RF + DC Calibration	35
Overview	35
Prerequisites	35
Create the workspace	
Calibration kit.	
RF Calibration	
DC Calibration	
Conclusion.	
Tutorial 5 - Measure a FET	43
Overview	
Prerequisites	
The DC source: polarity, mode and limits	
The FET PCB board	45
Measure the FET	
Conclusion	
Tutorial 6 - DC IV	49
Overview	
Prerequisites	

ZVxPlus - NM300 Tutorial

5

ICE Architecture

Driver support

- DC Sources
 - R&S, Agilent, ...
- DC Voltmeters, Currentmeters
 - Agilent, ...
- DC Force / Sense
 - Keithley, ...
- RF Source CW and Modulation
 - R&S, Agilent, Anritsu, ...
- RF Power Meters
 - R&S, Agilent, Anritsu, ...
- Tuners
 - Focus Microwaves, Maury Microwave
- Receivers
 - R&S, Agilent, Tektronix, ...
- Drivers for different instruments are developed on customer demand

Application Plug-ins

DC IV Characterization

Harmonic Distortion Analysis

More to come ...

Conclusion

- ICE is your "real-life simulator"
 - Tune your different stimuli
 - Observe in pseudo real-time
 - Gain insight in the behaviour of your active RF components
 - Optimize the specifications with strong guidance
- ICE is the base platform for applications, solving customer problems
- ICE is made to incorporate the latest advancements in HF measurement science
- ICE is based on the latest software technologies to realize a fast development cycle focusing on the measurement problems

For more information info@nmdg.be

www.nmdg.be

Want to try? Request a Free Trial ICE copy here:

http://www.nmdg.be/register_freeICEsoftware.php

