

Nonlinear Starter Kit for R&S Network Analysers Make your first steps in the nonlinear world

Contents

Introduction	7
General block diagram	8
Connectivity	
NM201 Comb Generator	
SMA Connection Kit	
ICE software requirements	13
Specifics for ICE software installed on ZVx	13
Specifications	
Hardware specifications	15
ZVA24 Vector Network Analyser	
Overall Specifications for ZVxPlus	
Reflectometers	
Port bias	
Receivers	
Receiver step attenuators (B3x)	
Maximum power level versus receiver attenuation	
ZVT8 Vector Network Analyser	19
Overall Specifications for ZVxPlus	
Reflectometers	
Port bias	
Receivers	
Maximum power level versus receiver attenuation	
ZVA40 Vector Network Analyser	
Overall Specifications for ZVxPlus	
Reflectometers	
Port bias	
Receivers	
Receiver step attenuators (B3x)	
Maximum power level versus receiver attenuation	
ZVA50 Vector Network Analyser	
Overall Specifications for ZVxPlus	
ReflectometersPort bias	
Receivers	
Receiver step attenuators (B3x)	
Maximum power level versus receiver attenuation	
ZVA67 Vector Network Analyser	
Overall Specifications for ZVxPlus	
Reflectometers	
Port bias	
Receivers	
Receiver step attenuators (B3x)	30
Maximum power level versus receiver attenuation	30
NM201 Comb Generator	31

Additional Hardware	33
Supported equipments	
DC Sources (including DC Voltage and Current Meters)	
DC Voltage and Current Meters	
RF Sources	
Pulsed IV Systems	34
Power Meters	
Calibration Units	35
Tuners	35
Customization	35
Instrument drivers	35
External Test sets	35
Order Information	37
Trademark Information	39
Contact Information	
~ ~ · · · · · · · · · · · · · · · · · ·	

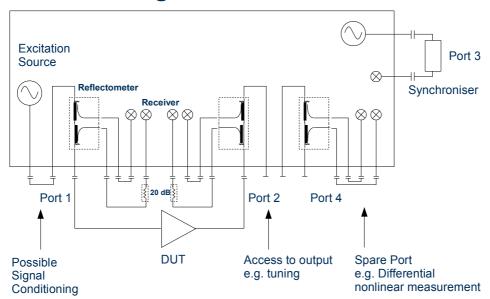
Introduction

The NM310S is a cost-efficient nonlinear starter kit, allowing you to make your first steps in the nonlinear world with your vector network analyser. It combines hardware and software that runs on top of a selection of vector network analysers (VNA) from Rohde&Schwarz. The combination of the ZVx and the NM310S starter kit is referred to as "ZVxPlus".

On top of the standard measurement capabilities of the R&S VNA, the ZVxPlus provides calibrated measurement capability of the time waveforms of the incident and reflected waves or voltages and currents at the ports of a component under test. The time waveforms are periodic with a minimal frequency of 20 MHz and with spectral components up to 3 GHz.

The NM310S starter kit consists of:

- 1x NM201 double-output comb generator (20MHz-3GHz) used as synchronizer and Harmonic Phase Reference
- 1x NM311S Connection Kit
- 1x USB stick containing the NMDG's ICE software installer, a ICE 30 day demo license¹, a quick start guide and several tutorials.


This starter kit runs on top of the 4-port R&S®ZVA8/24/40/50/67 and on top of the R&S®ZVT8/20 (at least 3 ports), with the following options:

- Direct generator/receiver Access option (R&S®ZVAxx-B16 or R&S®ZVTxx-B16)
- Frequency conversion option (R&S®ZVA-K4)
- Optional: step attenuator option for measurement receivers at Port 1 and Port 2, allowing automatic range adaptation (R&S®ZVAxx-B31 and -B32 or R&S®ZVTxx-B31 and -B32)

When the step attenuator option on Port 1 (option B31) and/or Port 2 (option B32) is missing, one needs to put external attenuators in front of the corresponding measurement receiver.

¹ The ICE 30 day demo license will allow you to begin immediately your first steps in the nonlinear world. A final license is delivered for your system on demand.

General block diagram

Block diagram of ZVxPlus for the different R&S VNAs

Connectivity

NM201 Comb Generator

Input port connector	SMA, female
Output port 1 connector	SMA, female
Output port 2 connector	SMA, female
Trigger port 1 connector	SMA, female
Trigger port 2 connector	SMA, female
USB control port	USB Type B
DC Power Connector	2.1 mm DC Jack

NM311S Connection Kit

2x semi-rigid cables (Synchroniser)	
Input port connector	3.5 mm, male
Output port connector	3.5 mm, male
1x flexible cable (Harmonic Phase Reference)	
Input port connector	SMA, male
Output port connector	SMA, male
1 x adapter	
Input port connector	3.5 mm, female
Output port connector	3.5 mm, female

ICE software requirements

Please refer to the <u>NMDG Software Requirements</u> document, for general information about the requirements.

Specifics for ICE software installed on ZVx

External equipments control	
Required ZVx accessories	R&S®ZVAB-B44 Option
Installed software	
.NET Framework	.NET Framework 2.0 SP2*
Recommended accessories	
External display	Minimal resolution 1024 x 768 Recommended resolution 1280 x 1024

^{*} The ICE software installer will automatically install this in case it is missing otherwise.

Specifications

Hardware specifications

ZVA24 Vector Network Analyser

Overall Specifications for ZVxPlus

Frequency range	20 MHz – 3 GHz	limited by NM201
Minimal frequency grid spacing	20 MHz	

Reflectometers

Insertion loss	<7 dB, typ. 5dB	
Return loss	>8 dB, typ. 15 dB	
Coupling factor		
in Reference channel	typ. 14 dB	18dB @ 600MHz
in Measurement channel	typ. 12 dB	15dB @ 600MHz
Directivity	>40dB	
Damage power level	+27 dBm	
Damage DC voltage	30 V	

Port bias

Maximum nominal input voltage	30 V	
Maximum nominal input current	200 mA	
Damage voltage	30 V	
Damage current	500 mA	

Receivers

Noise floor			@ Test port
Reference receive	er channel		
IF BW:	100 kHz 10 kHz 1 kHz 100 Hz 10 Hz	-61 dBm -71 dBm -81 dBm -91 dBm -101 dBm	
Measurement* re	ceiver channel		
IF BW:	100 kHz 10 kHz 1 kHz 100 Hz 10 Hz	-68 dBm -78 dBm -88 dBm -98 dBm -108 dBm	
Compression			@ Test port
Reference receiv Odd harmo All harmon	onics only ics	+26 dBm +6 dBm	60 dBc SFDR** 60 dBc SFDR**
Measurement* red Odd harmo All harmon	nics only	+27 dBm +12.5 dBm	60 dBc SFDR** 60 dBc SFDR**
Cross talk			
from Reference to Measurement rec		None	
from Measuremer Reference receive		-80 dB	
Damage power level		+20 dBm	
Damage DC voltage		0V	

^{*} Including 25 dB Attenuator
** Spurious Free Dynamic Range including harmonics

Receiver step attenuators (B3x)

Attenuation	0 dB to 35 dB	
Attenuation steps	5 dB	
Attenuation accuracy	<2 dB	
Systematic amplitude error	typ. 0.5 dB	
Systematic phase error*	5°	

^{*} After nominal delay compensation

Maximum power level versus receiver attenuation

	Reference receiver	Measurem	ent receiver
Attenuation	Maximum power @ Source Input (Odd harm. Only/All harm.)	Maximum power @ Test Port (Odd harm. Only/All harm.)	
	External attenuator	External attenuator (25 dB included)	Internal step attenuator (B3x)
0 dB	+26 / +6 dBm	+27 / +12.5 dBm	+4.5 / -12.5 dBm
5 dB	+27 / +11 dBm	+27 / +17.5 dBm	+9.5 / -7.5 dBm
10 dB	+27 / +16 dBm	+27 / +22.5 dBm	+13.5 / -2.5 dBm
15 dB	+27 / +21 dBm	+27 / +27 dBm	+18.5 / +2.5 dBm
20 dB	+27 / +26 dBm	+27 / +27 dBm	+23.5 / +7.5 dBm
25 dB	+27 / +27 dBm	+27 / +27 dBm	+27 / +12.5 dBm
30 dB	+27 / +27 dBm	+27 / +27 dBm	+27 / +17.5 dBm
35 dB	+27 / +27 dBm	+27 / +27 dBm	+27 / +22.5 dBm

ZVT8 Vector Network Analyser

Overall Specifications for ZVxPlus

Frequency range	20 MHz – 3 GHz	limited by NM201
Minimal frequency grid spacing	20 MHz	

Reflectometers

Insertion loss	<9.5 dB, typ. 8.75 dB	8.5 dB @ 1.2GHz
Return loss	<19 dB, typ. 26 dB	
Coupling factor		
in Reference channel	typ. 41 dB	
in Measurement channel	typ. 20 dB	
Directivity	>7 dB	
Damage power level	+27 dBm	
Damage DC voltage	30 V	

Port bias

Maximum nominal input voltage	30 V	
Maximum nominal input current	200 mA	
Damage voltage	30 V	
Damage current	500 mA	

Receivers

Noise floor			@ Test port
Reference receiver	channel		
IF BW:	100 kHz 10 kHz 1 kHz 100 Hz 10 Hz	-100 dBm -110 dBm -120 dBm -130 dBm -140 dBm	
Measurement* rec	eiver channel		
IF BW:	100 kHz 10 kHz 1 kHz 100 Hz 10 Hz	-108 dBm -118 dBm -128 dBm -138 dBm -148 dBm	
Compression			@ Test port, @ 600MHz
Reference receiver		+27 dBm	60 dBc SFDR**
Measurement* rece All harmonic		+23 dBm	60 dBc SFDR**
Cross talk			
from Reference to Measurement* rece	eiver	- 88 dB	
from Measurement ^a Reference receiver		None	
Damage power level		+20 dBm	
Damage DC voltage		0 V	

^{*} Including 20 dB Attenuator
** Spurious Free Dynamic Range including harmonics

Maximum power level versus receiver attenuation

	Reference receiver	Measurement receiver	
Attenuation	Maximum power @ Source Input	Maximum power @ Test Port	
External attenuator		External attenuator (20 dB included)	
0 dB	+27 dBm	+23 dBm	
5 dB	+27 dBm	+27 dBm	

ZVA40 Vector Network Analyser

Overall Specifications for ZVxPlus

Frequency range	20 MHz – 3 GHz	limited by NM201
Minimal frequency grid spacing	20 MHz	

Reflectometers

Coupling factor		
in Reference channel	typ. 21 dB	17dB @ 600MHz
in Measurement channel	typ. 10 dB	17dB @ 600MHz
Damage power level	+27 dBm	
Damage DC voltage	30 V	

Port bias

Maximum nominal input voltage	30 V	
Maximum nominal input current	200 mA	
Damage voltage	30 V	
Damage current	500 mA	

Receivers

Compression		@ Test port
Reference receiver channel Odd harmonics only All harmonics	+27 dBm +9 dBm	60 dBc SFDR** 60 dBc SFDR**
Measurement* receiver channel Odd harmonics only All harmonics	+27 dBm +10 dBm	60 dBc SFDR** 60 dBc SFDR**
Cross talk		
from Reference to Measurement* receiver	None	
from Measurement* to Reference receiver	None	
Damage power level	+20 dBm	
Damage DC voltage	0 V	

Receiver step attenuators (B3x)

Attenuation	0 dB to 35 dB	
Attenuation steps	5 dB	
Attenuation accuracy	<2 dB	
Systematic amplitude error	typ. 0.4 dB	
Systematic phase error*	7°	

^{*} After nominal delay compensation

^{*} Including 35 dB Attenuator
** Spurious Free Dynamic Range including harmonics

Maximum power level versus receiver attenuation

	Reference receiver	Measurement receiver	
Attenuation	Maximum power @ Source Input (Odd harm. Only/All harm.)	Maximum power @ Test Port (Odd harm. Only/All harm.)	
External attenuator		External attenuator (35 dB included)	Internal step attenuator (B3x)
0 dB	+27 / +9 dBm	+27 / +10 dBm	-1.5 / -25 dBm
5 dB	+27 / +14 dBm	+27 / +15 dBm	+3.5 / -20 dBm
10 dB	+27 / +19 dBm	+27 / +20 dBm	+8.5 / -15 dBm
15 dB	+27 / +24 dBm	+27 / +25 dBm	+13.5 / -10 dBm
20 dB	+27 / +27 dBm	+27 / +27 dBm	+18.5 / -5 dBm
25 dB	+27 / +27 dBm	+27 / +27 dBm	+23.5 / 0 dBm
30 dB	+27 / +27 dBm	+27 / +27 dBm	+27 / +5 dBm
35 dB	+27 / +27 dBm	+27 / +27 dBm	+27 / +10 dBm

ZVA50 Vector Network Analyser

Overall Specifications for ZVxPlus

Frequency range	20 MHz – 3 GHz	limited by NM201
Minimal frequency grid spacing	20 MHz	

Reflectometers

Coupling factor		
in Reference channel	typ. 22 dB	
in Measurement channel	typ. 10 dB	
Damage power level	+27 dBm	
Damage DC voltage	30 V	

Port bias

Maximum nominal input voltage	30 V	
Maximum nominal input current	200 mA	
Damage voltage	30 V	
Damage current	500 mA	

Receivers

Compression		@ Test port
Reference receiver channel Odd harmonics only All harmonics	+27 dBm +12 dBm	60 dBc SFDR** 60 dBc SFDR**
Measurement* receiver channel Odd harmonics only All harmonics	+23 dBm +10 dBm	60 dBc SFDR** 60 dBc SFDR**
Cross talk		
from Reference to Measurement* receiver	None	
from Measurement* to Reference receiver	None	
Damage power level	+20 dBm	
Damage DC voltage	0 V	

^{*} Including 25 dB Attenuator
** Spurious Free Dynamic Range including harmonics

Receiver step attenuators (B3x)

Attenuation	0 dB to 35 dB	
Attenuation steps	5 dB	

Maximum power level versus receiver attenuation

	Reference receiver	Measurem	ent receiver
Attenuation	Maximum power @ Source Input (Odd harm. Only/All harm.)	Maximum power @ Test Port (Odd harm. Only/All harm.)	
	External attenuator	External attenuator (25 dB included)	Internal step attenuator (B3x)
0 dB	+27 / +12 dBm	+23 / +10 dBm	-2 / -15 dBm
5 dB	+27 / +17 dBm	+27 / +15 dBm	+3 / -10 dBm
10 dB	+27 / +22 dBm	+27 / +20 dBm	+8 / -5 dBm
15 dB	+27 / +27 dBm	+27 / +25 dBm	+13 / +0 dBm
20 dB	+27 / +27 dBm	+27 / +27 dBm	+18 / +5 dBm
25 dB	+27 / +27 dBm	+27 / +27 dBm	+23 / +10 dBm
30 dB	+27 / +27 dBm	+27 / +27 dBm	+27 / +15 dBm
35 dB	+27 / +27 dBm	+27 / +27 dBm	+27 / +20 dBm

ZVA67 Vector Network Analyser

Overall Specifications for ZVxPlus

Frequency range	20 MHz – 3 GHz	limited by NM201
Minimal frequency grid spacing	20 MHz	

Reflectometers

Coupling factor		
in Reference channel	typ. 22 dB	
in Measurement channel	typ. 10 dB	
Damage power level	+27 dBm	
Damage DC voltage	30 V	

Port bias

Maximum nominal input voltage	30 V	
Maximum nominal input current	200 mA	
Damage voltage	30 V	
Damage current	500 mA	

Receivers

Compression		@ Test port
Reference receiver channel Odd harmonics only All harmonics	+27 dBm +12 dBm	60 dBc SFDR** 60 dBc SFDR**
Measurement* receiver channel Odd harmonics only All harmonics	+27 dBm +11 dBm	60 dBc SFDR** 60 dBc SFDR**
Cross talk		
from Reference to Measurement* receiver	None	
from Measurement* to Reference receiver	None	
Damage power level	+20 dBm	
Damage DC voltage	0 V	

^{*} Including 35 dB Attenuator
** Spurious Free Dynamic Range including harmonics

Receiver step attenuators (B3x)

Attenuation	0 dB to 35 dB	
Attenuation steps	5 dB	

Maximum power level versus receiver attenuation

	Reference receiver	Measurem	ent receiver
Attenuation	Maximum power @ Source Input (Odd harm. Only/All harm.)	Maximum power @ Test Port (Odd harm. Only/All harm.)	
	External attenuator	External attenuator (35 dB included)	Internal step attenuator (B3x)
0 dB	+27 / +12 dBm	+27 / +11 dBm	+0 / -24 dBm
5 dB	+27 / +17 dBm	+27 / +16 dBm	+5 / -19 dBm
10 dB	+27 / +22 dBm	+27 / +21 dBm	+10 / -14 dBm
15 dB	+27 / +27 dBm	+27 / +26 dBm	+15 / -9 dBm
20 dB	+27 / +27 dBm	+27 / +27 dBm	+20 / -4 dBm
25 dB	+27 / +27 dBm	+27 / +27 dBm	+25 / +1 dBm
30 dB	+27 / +27 dBm	+27 / +27 dBm	+27 / +6 dBm
35 dB	+27 / +27 dBm	+27 / +27 dBm	+27 / +11 dBm

NM201 Comb Generator

Frequency range	20 MHz – 3 GHz	
Drive frequency range	1 GHz – 2 GHz	
Nominal input power	+4 dBm	
Input damage level	+6 dBm	
Output peak voltage	-0.55 Vp	

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all products *must* be sent to a WEEE recycling center. For more information about WEEE recycling centers, National Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on Waste Electrical and Electronic Equipment, visit <u>ni.com/environment/weee</u>.

Additional Hardware

Supported equipments

DC Sources (including DC Voltage and Current Meters)

R&S®NGMO series	controlled via its IEC/IEEE-bus interface
Hameg HMP series	controlled via its USB interface
Agilent 66xxA/B/C series	controlled via its IEC/IEEE-bus interface
Agilent 662x series	controlled via its IEC/IEEE-bus interface
Agilent DC4142	controlled via its IEC/IEEE-bus interface
Agilent E363xA series	controlled via its IEC/IEEE-bus interface
Keithley 24xx series	controlled via its IEC/IEEE-bus interface
Yokogawa GS610	controlled via its IEC/IEEE-bus interface

DC Voltage and Current Meters

Hameg HM8112-3	controlled via its USB interface
Agilent 34401A	controlled via its IEC/IEEE-bus interface
R&S® RTO scope series as DC Meters	controlled via its IEC/IEEE-bus interface

RF Sources

Remark: A 10 MHz clock needs to be shared between the RF source and the ZVx, and the ZVx is set as the master clock.

Internal R&S®ZVx sources	
R&S® SMx100A series*,**	controlled via its IEC/IEEE-bus interface
R&S® SMBV100A source*,**	controlled via its IEC/IEEE-bus interface
R&S® SMIQ source*,**	controlled via its IEC/IEEE-bus interface
R&S® SML0x series*,**	controlled via its IEC/IEEE-bus interface
Agilent 836x series*	controlled via its IEC/IEEE-bus interface
Agilent ESG series*,**	controlled via its IEC/IEEE-bus interface
Agilent PSG series*,**	controlled via its IEC/IEEE-bus interface
Anritsu MG369x series*,**	controlled via its IEC/IEEE-bus interface
SCPI-compliant RF source*	controlled via its IEC/IEEE-bus interface

Not supported for calibrationIncluding phase control

Pulsed IV Systems

Auriga AU4750 system	controlled via its Ethernet interface
Focus PIV system	controlled via its Ethernet interface

Power Meters

R&S®NRVD	connected to ZVx, requires: - R&S®ZVAB-B44 Option
R&S®NRP-Z series power sensors	connected to ZVx via: R&S®NRP-Z3 (active) USB adapter or R&S®NRP-Z4 (passive) USB adapter
Agilent E4418A	connected to ZVx, requires: - R&S®ZVAB-B44 Option
Agilent N1911A	connected to ZVx, requires: - R&S®ZVAB-B44 Option
Anritsu ML2437A	connected to ZVx, requires: - R&S®ZVAB-B44 Option

Calibration Units

R&S ZV-Z5x series*	connected to ZVx

^{*} Not supported for on wafer calibration

Tuners

Please refer to the <u>NMDG Software Requirements</u> document, for general information about the supported tuner models, and the required software.

Customization

Instrument drivers

Drivers for other equipments can be added on customer request.

External Test sets

External test sets for high power measurement applications (such as high power amplifier measurements) can be added on customer request, with the proper calibration routines.

Order Information

Designation	Туре	Order number
20MHz-3GHz Nonlinear Starter Kit for R&S VNA	NMDG NM310S	NM310S-Z

Trademark Information

Microsoft .NET is a brand associated with Microsoft technology.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contact Information

Rohde&Schwarz VNA

www.rohde-schwarz.com

ZVxPlus, NM310S and other products and services, focusing on nonlinear RF and HF characterisation, behavioural modelling and test:

Phone: +32 3 890 46 13 Email: <u>info@nmdg.be</u> <u>www.nmdg.be</u>

January 2013 - Product description and specification are subject to change without notice.