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Preface

Although scattering S-parameters have been around longer than | have, today, some

of us still manage to incompletely and therefore incorrectly define them as’ Sij = Zz—l'
J

The other problem with S-parameters is that they got so ingrained that many people
believe that they are omnipotent when it comes to solving microwave problems. Don’t
get me wrong, S-parameter theory and the associated instrumentation has served and
still serves the RF community extremely well. Use it to its full power ... without denying
its basic assumptions: the superposition theorem, and therefore linear behaviour,
must hold. S-parameters are all around, because they are technology-independent,
because they can be measured and because they model the reflected and transmitted
waves as function of the incident waves and, as such, can be used during simulations.

Although its community is steadily growing, “Large-Signal Network Analysis” is still in
its infancy and | guess not too many people can give a sufficiently correct description
of what LSNA stands for. Without claiming to hold the ultimate knowledge, LSNA has
three major cornerstones. First, the device under test - referred to as the network - is
put in (as) realistic (as possible) Iarge-signal2 operating conditions, not only with
respect to input power levels, but also with respect to spectral content and mismatch
conditions. Next, the behaviour of that DUT is completely and accurately
characterized in order to be analyzed. Because the basic quantities (voltage and
current) are measured, there is a natural link to make this data available in simulators.
The data can be made available as is or through the use of a behavioural model.
Finally, it is technology-independent, usable from the device up to the system level.
It's the engine of a unified approach ... “beyond S-parameters”. The behaviour of the
device can be studied in the domain and in the format which is most convenient for the
user. Some people prefer the time domain, other the frequency domain. Some prefer
voltage and current, others travelling voltage waves.

This work contains humble contributions to different aspects of “Large-Signal Network
Analysis”, which started more than 10 years ago.

Accurate measurements require both reliable hardware and software. | am the last
person on earth to claim that building reliable hardware at microwave frequencies is a
piece of cake. However, the hardware doesn’t have to be perfect. That's because
there are clever persons conceiving clever calibration algorithms. The software which
is used to control the hardware and to collect the raw data however must be perfect

1. b; corresponds to the transmitted or reflected voltage wave at port i and a; represents the incident
voltage wave at port j

2. large-signal refers to the fact that the stimulus becomes significant compared to the operating range
of the device
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and must withstand the tooth of time. The chapter on “Software Architecture” shortly
describes the basic principles used when designing and implementing the hardware
abstraction layer of a Large-Signal Network Analyzer.

Hardware at RF and microwave frequencies is never perfect. Fortunately, this can be
compensated for, using a set of proper calibration elements and ditto calibration
techniques. Calibration of a Large-Signal Network Analyzer is somewhat more
complex than the calibration of a classical Vector Network Analyzer (VNA). On top of a
relative calibration, the LSNA also requires an absolute power and phase calibration.
The power calibration is performed using a power sensor, which is traceable up to
NIST. The phase calibration however requires a new calibration element, which is
referred to as the Harmonic Phase Reference (HPR). The latter is a pulse generator,
which itself must be calibrated. This is done using a high-frequency sampling
oscilloscope. Unfortunately, this one isn’t perfect either and it seems to become a
never-ending story. Luckily, the imperfections of the sampling oscilloscope can be
compensated for using a “nose-to-nose” calibration technique. The basics, the
individual imperfections, their estimation and compensation are described in detail in
another PhD. In order to be really useful, additional work is required. The chapter
‘Enhancements to the nose-to-nose calibration technique” shortly describes the
streamlined implementation of the calibration technique and the replacement of some
of the techniques by other techniques which were published and were proven to be
superior either in quality or in speed. I'm convinced that this additional work has been
essential in the adoption of the technique both by the people at NIST and by the
calibration lab of Agilent Technologies in Santa Rosa.

The nose-to-nose calibration and its application as a part of the calibration of the
Large-Signal Network Analyzer, fuelled the research at NIST related to their Electro-
Optic Sampling (EOS) system. This system allows to characterize a photodiode up to
110 GHz. By measuring the (known) impulse response of this photodiode using a
high-frequency sampling oscilloscope, an alternative method does exist to determine
both the amplitude and the phase distortion introduced by this oscilloscope. The
discrepancies that were reported by NIST are verified in the chapter “Comparison of
the nose-to-nose and EOS-based calibration technique”. It is not the ambition of the
chapter to find the reason of this discrepancy nor to eliminate it. Based on the work
described below, some of the required processing is performed in a different way, after
the initial processing. As part of this additional verification, an exact expression is
found for the variance of different realizations of a sine wave in the presence of
normally distributed jitter noise and additive noise. Implementations are realized both
in the absence and the presence of time base distortion.

The above verification has been the trigger for some recent research with respect to
jitter estimation. Existing literature demonstrates that jitter, which has a symmetrical
probability density function, does not introduce any phase distortion. As such, jitter
estimation was not given too much attention as a part of the nose-to-nose calibration
technique. Because jitter does have a low-pass effect on the amplitude, it becomes
important when verifying the discrepancy that was reported for the amplitude
characteristic. The main motivation for additional research is the observation that the
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generally accepted first order model to describe the sample variance of repeated
measurements in the presence of both jitter noise and additive noise cannot explain
some of the measurement results that are obtained during the nose-to-nose and the
EOS-based calibration. Backed up by the system identification knowledge, which is
available at the department, the existing model is extended and different estimators
are implemented. Several years earlier, | presented some of my behavioural
modelling work based on neural networks to people of the department and | was
asked if the residual error was small or large. At that time, | didn’t understand the
rationale of that question and therefore | could not answer it. Fortunately, things have
changed and | feel the urge to ask that question too, each time others tell me how well
their model works. Anyway, the power of a stochastical framework is demonstrated
once more when the excellent results that are obtained based on simulations are in
strong contrast to the results based on measurements. It is found that the problem is
caused by overlooking the effect of time base drift compensation on the sample
variance. The solution that is found for that problem also properly deals with time base
distortion. The results are more than satisfactory. The rather extended “System
identification approach applied to jitter estimation” chapter describes the work in detalil
and differs from the previous chapters by providing an avalanche of uncertainty
intervals.

During the review of the paper that describes the above research on jitter estimation,
an enhanced version of the time base drift estimation has been proposed by one of
the co-authors. This proposal and its implementation trigger new insights, especially
when jitter is present. Study of the covariance matrix of the spectral noise in the
frequency domain allows proper weighting of the contribution of the individual spectral
components to the cost function. This not only provides a relevant value for the cost
function, but it also reduces the uncertainty on the estimated drift in the presence of a
realistic quantity of additive and jitter noise by a factor of 2. This work is described in
the “System identification approach applied to drift estimation“ chapter.

The last chapter reports on one of several contributions to another aspect of Large-
Signal Network Analysis: closing the loop between measurements and simulations.
Volterra-based behavioural modelling work has been performed in the early days. The
idea of predistorting a base-band signal using an inverse Volterra model is believed to
be original at that time and still today it seems to be alive and kicking. | vividly
remember that | was asked to write a C program to generate all unique combinations

of the spectral components at the inputs of a MIMO' system, given the degrees of
nonlinearity of each output. The resulting model is referred to in literature as

VIOMAP?. After performing some magic with pointers and recursion, | proudly
presented benchmarks for an increasing number of frequency components and an

increasing maximum degree of nonlinearity. History has taught me to be less

ambitious. Nevertheless, original results are presented at the IMS 1995 conference®.

1. Multiple-Input-Multiple-Output.
2. Volterra input-output map.
3. IMS stands for International Microwave Symposium
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A revised copy of the unpublished IMS paper can be found in the “Volterra-based
behavioural modelling” chapter. It demonstrates that one must be very careful when
using a model which is extracted using one class of excitation signals and then used
to predict the output of the system for another class of excitation signals.
Unfortunately, there are still a lot of colleagues out there who need additional
education. The work also demonstrates that one should not overlook the effect of the
biasing circuitry. Other applications of the VIOMAP were targeted to bridge the gap
between this Volterra-based technique and existing techniques. It is demonstrated
that the VIOMAP can be used as an alternative to load-pull measurements. The
VIOMAP is also a natural extension of S-parameters for weakly nonlinear devices.
This statement is emphasized by extracting the VIOMAP for two different amplifiers
and by predicting the behaviour of the cascade of both amplifiers by cascading their
individual VIOMAPs.

Another application is the characterization at the fundamental frequency of the
nonlinear behaviour of a device under test in a near 50 Q environment. The combined
idea of linearizing the behavioural model with respect to the incident wave at the
output and the use of readily available components like a load, open, short, adapters
and attenuators to synthesize different loads to extract such a model results in a US
Patent Application Publication, No. US 2003/0057963 A1. This patent is filed as
employee of Agilent Technologies.

Recently, some new alternatives have been published to existing fundamental source-
pull and load-pull techniques. Also, fundamental-only measurement-based
behavioural models are introduced using either active injection in combination with a
manual load tuner or using an electro-mechanical load tuner. This work has been
performed as employee of NMDG Engineering and is referenced in the publication list.
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ADC A/D
API
ARFTG
AWG
CLR
CW

dB
dBm
DC
DCA
DLL
DUT
EOS
FFT
GUI

HP
HPR
ii.d.
IMS

IMTC

ISA

analog-to-digital (converter)

application programming interface

Automatic Radio Frequency Techniques Group
arbitrary waveform generator

common language runtime

continuous wave(form)

decibel

decibels referenced to one milliwatt

direct current

digital communication analyzer

dynamic-link library

device under test

electro-optic sampling

fast Fourier transform

graphical user interface

Hewlett - Packard

harmonic phase reference (see also REFGEN)
independent and identically distributed
International Microwave Symposium
Instrumentation and Measurement Technology Conference
in phase and quadrature phase

industry standard architecture (bus)
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VI interchangeable virtual instrument

KIS keep it simple

LF low frequency

LOST load, open, short, thru

LS least squares

LSNA Large-Signal Network Analysis or Large-Signal Network Analyzer
MIMO multiple input multiple output

MLE ML maximum likelihood (estimator)

NIST National Institute of Standards and Technology
NMDG Network Measurement and Description Group
O/E opto-electrical (converter)

PC104 (ISA-based) personal computer (bus) utilizing 104 pins
PCI peripheral component interconnect (bus)

PDF probability density function

PISPO periodic in same period out

QAM quadrature amplitude modulation

REFGEN reference generator (see also HPR)

RF radio frequency

RMS root mean square

RTTI run-time type information

SNR S/N signal to noise (ratio)

SPMT single-pole multiple throw

TBDn time base distortion

var variance
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VIOMAP
VME
VNA

VXI

WLS

Volterra input output map

versa module eurocard

vector(ial) network analyzer

VME extensions for instrumentation

weighted least squares
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Abstract

Abstract

Characterization of the large-signal behaviour of a high-frequency active component
under realistic conditions requires a measurement system, which is very versatile with
respect to both the applied excitations and mismatch conditions.

Given the disruptive character of such measurement systems, both the underlying
hardware and software must be kept as flexible as possible. A typical architecture of a
Large-Signal Network Analyzer (LSNA) is shown in figure 1-1.

The device under test is connected to the LSNA hardware. The hardware abstraction
layer allows the LSNA core software to communicate with this hardware in an abstract
way. The design goal of this layer is to be able to replace part of the hardware by other
hardware with similar capabilities, without impacting the core software. The latter
mainly takes care of the data collection and the calibration of the LSNA. The
measured data is provided in different domains and formats and can be both
uncalibrated and calibrated. A user can interact with the system through a graphical
user interface (GUI) and create applications running on top of the LSNA core
functionality, using the LSNA application programming interface (API).

© LSNAuser

Data Representation &
Application Layer

LSNA API

& Hardware Abstraction Layer

LSNA Hardware Layer

H DUT H

Figure 1-1. Typical architecture of a Large-Signal Network Analyzer.

This chapter describes the hardware abstraction layer, which must be both robust, fast
and flexible. Based on these requirements, this layer is written in C++. Furthermore,
the necessary foundations are added to provide robustness and flexibility. The initial
implementation dates from the early 90’s, before similar idioms and patterns were
described in literature [1], [2]. Almost fifteen years later, the same software has
survived the transition from VXI to both PC104 and PCI and provides the heartbeat of
the MT4463 Large-Signal Network Analyzer, commercialized by Maury Microwaves
and NMDG Engineering BVBA.
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Introduction to object-oriented programming

First, fundamental concepts of object-oriented programming, such as classes, objects
and abstraction are shortly introduced, based on an example: the LSNA test set.

The main functionality of an LSNA test set is to simplify its calibration by routing the
signal, which is applied to its input, to one of its outputs. Meanwhile other outputs are
terminated, typically into 50 Ohms.

The set of possible test set modes is defined, as described in figure 1-2.

U, U [ﬂ Ju o L

O ®
FORWARD PORT 1

FORWARD AUX 2
THRU

|j JFORLWAR[L)SVZIOngj L O | J L J L Q

FORWARD AUX 1
THRU
) e J L
. i
REFGEN AUX 1
REFGEN PORT 1 THRU

REFGEN AUX 2
THRU

A RE;GEL)L mm 5°"[j L JLREFGEN

REFGEN PORT 2

Figure 1-2. Example modes of a test set used as part of the Large-Signal Network Analyzer.

The name convention used for these modes answers the following simple question in
a consistent way: “where is the calibration element connected?” or “what is the
primary calibration port?”.

LOST refers to the connection of a Load, Open, Short or Thru calibration element.
PWM corresponds to the connection of a power sensor to allow absolute amplitude
calibration. REFGEN refers to the phase reference generator, which is in fact a pulse
generator and used as part of the phase calibration of the LSNA.

A test set is able to indicate if it supports any of these modes, to put itself into the
specified mode and to return its actual mode. How this is done is of no concern to the
users of this test set. This in fact defines the abstract interface of a test set.
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Classes describe the common characteristics and functionality of a group of similar
objects. Test sets can be realized using different hardware, typically using a set of
single-pole-multiple-throw (SPMT) switches and/or transfer switches. Each of these
realizations typically is given a model number and represents a concrete class.

Objects correspond to unique instantiations of a class. Each individual test set, its
uniqueness being represented by a unique serial number, corresponds to an object.

1-4 Contributions to Large-Signal Network Analysis



Software Architecture
Patterns for increased robustness

Patterns for increased robustness

Handles and smart pointers

In the C and C++ programming language, the programmer is responsible for the
dynamic memory management. The proper amount of memory must be allocated at
runtime, when the object is constructed. When the object is no longer needed, the
associated dynamic memory must be freed. This must be done “just in time”.

If memory is released too soon, other objects may still hold a pointer to that memory.
Such a pointer is referred to as a dangling pointer and results in undesired behaviour
of the software and even system failure.

When the object is no longer needed and the programmer forgets to free the
corresponding memory, this memory cannot be reused later on. This situation is
referred to as memory leakage. Although memory is cheap these days and plenty of it
is available, eventually the program will run out of memory and fail.

In order to avoid these problems and automate the release of memory, the C++ layer
of the LSNA uses handles instead of pointers. Handles are objects which refer to
smart pointers. The latter keep track of how many times the underlying dynamic
memory is referenced. Because handles are objects, a programmer can rely on the
C++ compiler and the correct implementation of the copy constructor, the assignment
operator and the destructor of the Handle class. The required code is implemented
once, either as a macro or as a template. If this code is properly implemented, one is
assured that the underlying dynamic memory is freed only if, and as soon as, no one
else references this memory.

Finally, the handles should be implemented such that they allow late binding. The
latter is a powerful mechanism to be used in combination with abstraction, i.e. the
actual implementation of the abstract interface is determined at run-time instead of at
compile time.

Singletons

Sometimes it is important to make sure to have one and only one instance of a class.
Typically this is the case for “manager” classes. The C++ layer of the LSNA uses two
such classes, being the class manager and the handle manager. The former keeps
track of all LSNA-related classes being available to the software, the latter doing the
same for LSNA-related handles. It is essential for the robustness to make sure that all
objects communicate with “the” class manager and “the” handle manager. According
to [1], this is referred to as the Singleton pattern. The need for both a class and handle
manager as part of the LSNA C++ software is described in the next paragraph.
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Given the disruptive nature of the Large-Signal Network Analyzer, both hardware and
software must be flexible. Over time the Large-Signal Network Analyzer has evolved
from a VXl-based instrument to a PC104-based instrument. The original calibration
module was replaced by a test set, while four one-channel VXI-based ADC cards
were replaced by one four-channel PCl-based ADC card.

Below, several patterns are shortly described, providing the required flexibility at the
hardware abstraction level, such that the same core LSNA software can be used on
all existing systems.

For the remainder of this chapter, a handle to an object will be referred to as either a
handle or an object.

Class and handle manager

Each software object, which is part of the LSNA, is referred to by a unique name. In
general, each software object represents a hardware component. The functionality of
these objects is implemented in classes and these too are referred to by a unique
name.

The mapping of unique object names onto unique handles is taken care of by the
handle manager. The same is done at the class level by the class manager.

All LSNA-related classes register themselves to the class manager. In the case of
static libraries this is done automatically by applying the appropriate pattern. In the
case of dynamic-link libraries (DLLs), one either needs to instantiate a dummy object
of each required type in the main function of the application or one can force the
necessary symbol references when linking the main application to the libraries.

Using names for both classes and objects, the actual hardware configuration can be
stored in one or more configuration files. Each line of such a configuration file starts
with the class name followed by the object name. At that moment both the class and
handle manager come into play. First the handle manager verifies if an object with that
name already exists. If this is the case and the object turns out to be of the correct
type, a handle to that object is returned by the handle manager.

If the object does not yet exist, the handle manager uses the class manager to create
an object, based on the specified class name. In fact each LSNA-related class
implements two member functions which can be invoked by the class manager. The
first function allows the interactive configuration of the object, while the other reads
the remainder of the configuration of that object from file.
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If the remainder of the configuration refers to other objects, the handle manager is
used once more. When an object with the specified name already exists and if the
object turns out to be of the correct type, the handle manager returns a handle to that
object. If the object does not yet exist and interactive configuration is allowed, a dialog
is initiated with the user through the console window to configure the missing object.

Finally, a mechanism is implemented allowing to find out class information at run-time.
This allows to verify if an object is an instantiation of a specified class or an
instantiation of a concrete subclass, in the case the specified class is an abstract
class. It also allows to find all concrete subclasses of a specified class. Again, this is a
powerful feature when correctly used in combination with abstraction. After the initial
implementation as part of the LSNA, this mechanism was added to the C++ standard
and is referred to as RTTI (Run-Time Type Information).

“Role” interface

Instrument drivers can be either very specific or rather abstract. Specific drivers have
the advantage that they allow to exploit the full power of the instrument, while abstract
drivers promote reusability and interchangeability. The hardware abstraction layer of
the Large-Signal Network Analyzer contains both. However, only the abstract version
of the driver is made available to the outside world. This interface is based upon the
functionality required by the Large-Signal Network Analyzer.

Recently, this concept is described as part of IVI (Interchangeable Virtual Instruments)
[8] and more specifically as part of the Measurement and Stimulus Subsystems
Specification. The latter describes the concept of a Role Control Module, which maps
an instrument interface on a “role” interface. This role interface corresponds to the
required functionality when the instrument or hardware is used as part of the Large-
Signal Network Analyzer.

In [1] this concept is described as the Adapter pattern.

The IVI driver architecture also specifies different operational modes. One of them is
simulation mode, which allows to write software based on the instrument driver before
the physical instrument itself is available. This concept was used as part of the
hardware abstraction layer way before it was published by the VXI Consortium.

Delegation versus inheritance

C++ promotes code reuse through inheritance. However, inheritance tends to be
overused, resulting in an explosion of the number of classes. An alternative to
inheritance is delegation.

Proper combination of inheritance, delegation and abstraction is important when
dealing with hardware which can be controlled in different ways. A good example is a
step attenuator which can be controlled using either an Agilent E1339A Digital Output/
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Relay Driver VXI interface card, an Agilent 11713A Attenuator/Switch Driver or
dedicated PC104 hardware. It is necessary to separate the functionality of a step
attenuator from the way it is controlled.

Typical functionality of a step attenuator is to realize a specified attenuation as
faithfully as possible and to return the actually realized attenuation. In case the S-
parameters are measured in a certain frequency range, the step attenuator can also
return its S-parameter values for the actual attenuation as a function of frequency.
This is a typical situation where subclassing is used: adding S-parameter capability to
the basic functionality of a step attenuator.

With respect to the control part of the step attenuator, first an abstract “role” interface
is defined. Step attenuators are typically controlled by activating and deactivating one
or more sections. Each concrete implementation of this control API is written on top of
the specific E1339A and 11713A driver and as such allows easy replacement of the
control hardware.

Finally a handle to this abstract “role” interface is defined as a part of the step
attenuator class, resulting in an orthogonal solution. The functionality of the step
attenuator itself can grow by proper subclassing. Meanwhile the control portion is
delegated through the handle. New control hardware can be added by proper
implementation of the “role” interface.

Template Method pattern

Another pattern, which can be found in the hardware abstraction layer, is the Template
Method pattern.

This design pattern is mainly used to define the skeleton of a complex algorithm in the
base class and have the subclasses implement different versions for each part of the
algorithm.

The abstract step attenuator driver base class does not know how to activate or
deactivate a step attenuator section. However it keeps track of which section is
activated, such that the concrete subclasses are relieved from this burden. As such
the abstract driver class defines a public activateSection () member function which
provides the template. This template correctly keeps track of the activated sections
and leaves the physical activation or deactivation to the concrete subclass by calling
the appropriate private virtual doActivateSection () member function. Defining a
member function as private, makes sure that this function cannot be invoked from
outside the abstract base class. Virtual functions are used in C++ to support the late
binding, as explained on page 1-5.
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We conclude with two well-known principles [4] in the object-oriented design world,
which help to create more scalable, robust and reusable applications.

The open/close principle

Bertrand Meyer stated in 1996 that: “Software entities (classes, modules, etc.) should
be open for extension, but closed for modification.”

In plain English this means that software modules should be designed such that their
behaviour can be modified (open) without making source code modifications (closed),
but by adding new code.

The Liskov substitution principle

Barbara Liskov stated 8 years earlier that: “Derived classes must be usable through
the base class interface without the need for the user to know the difference.”

Both principles emphasis the proper usage of abstraction. Given the fact that the
LSNA hardware abstraction layer software was conceived in the early nineties and is
successfully used today in both legacy (VXl-based) and new (PC104/PCl-based)
LSNA systems, without causing any frustration to both conceiver and users, it can be
claimed that the used approach “simply works”.
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Abstract

A Large-Signal Network Analyzer is conceived to analyze the behaviour of nonlinear
devices. This implies that the superposition principle no longer holds for these
devices. Even when applying a pure sine wave at the input of such a device and
terminating it into 50 Ohm, the reflected and transmitted voltage wave will no longer
be a pure sine wave. As such, in order to accurately measure incident and scattered
voltage waves, not only a relative calibration like Short - Open - Load - Thru is
required, but also a power and phase calibration. The power calibration is performed
using a calibrated power sensor, while phase calibration is performed using a
calibrated harmonic phase reference. The latter is a pulse generator which has a
sufficiently rich harmonic content for a sufficiently broad range of fundamental
frequencies. In order to use this pulse generator as an additional calibration standard,
one needs to know the exact phase relationship between the different spectral

components of the pulse at each fundamental frequency’.

Therefore the harmonic phase reference is measured using a high-frequency
sampling oscilloscope. Unfortunately this sampling oscilloscope also introduces
distortions. These are mainly caused by the non-ideal time base and the non-ideal
impulse response of the sampling oscilloscope, resulting in both amplitude and phase
distortion. Nonlinear distortions are avoided by limiting the amplitude of the measured
signals, while offset and gain errors are removed by performing a vertical calibration.

The list of distortions introduced by a high-frequency sampling oscilloscope were first
studied and described separately in [1]. The characterization and compensation of
these distortions are referred to as the “nose-to-nose” calibration technique. In order
to be really useful, the problems and solutions described in [1] needed additional
effort. The first contribution to the enhancement of the nose-to-nose calibration
technique is the implementation of a streamlined process, such that the calibration
can be performed in a repetitive way and, if necessary, by a technician. Furthermore,
it allowed to share this procedure in detail with people from NIST for thorough
crossverification. As a result, numerous articles were published by NIST related to the
“nose-to-nose” calibration technique [2]-[7]. Finally, the procedure was transferred into
the calibration lab of Agilent Technologies at Santa Rosa in order to allow the phase
calibration of the Agilent 86030A 50 GHz Lightwave Component Analyzer, which gave
it a unique competitive advantage and contributed significantly to its success. The
second contribution is the replacement of techniques described in [1] by other
techniques, which are superior either in quality or in speed.

Starting from a nose-to-nose calibrated oscilloscope, one can characterize either the
harmonic phase reference to be used as part of the Large-Signal Network Analyzer or
the opto-electrical subsystem of the Lightwave Component Analyzer.

1. This fundamental frequency corresponds to the repetition frequency of the pulse.
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Streamlined implementation

In order to be able to perform nose-to-nose calibrations on a regular basis and in
order to allow a trained technician to perform these calibrations, a streamlined
process is implemented in VEEtest™ from Agilent Technologies. The full calibration
process typically takes 4 hours.

First, a time base distortion measurement of the scope is performed. This requires the
measurement of sine waves at two or more non-harmonically related frequencies. At
each frequency, the sine wave must be measured twice, where ideally the second
measurement has a phase shift of 90 ° with respect to the first measurement. Typically,
this is taken care of by using two channels and adding a delay line in the second
channel, resulting in a phase shift of approximately 90° at discrete frequencies. The
usage of different frequencies allows the estimation method [8] to discriminate
between a harmonic due to nonlinear behaviour and due to time base distortion. The
detection of the time base distortion is insensitive when the slope of the applied signal
is small. Using a sine wave, the slope is minimal in the extrema and maximal in the
zero crossings. Applying a 90° phase shift, the delayed sine wave has a maximal
slope whenever the original sine wave has a minimal slope and vice versa. Once
these measurements are performed, an estimate for the time base distortion and its
uncertainty is obtained. Figure 2-1 shows the estimated time base distortion, defined

as TBDnli] = t,—i- At, the non-equidistant time stamps being represented by ¢;;

i corresponds to the time sample index and At represents the assumed constant
equivalent-time sample rate. For an ideal time base, all values TBDn[i] equal zero.

estimated
TBDn (ps)

time (ns)

Figure 2-1. Estimated time base distortion as part of the nose-to-nose calibration.

Acquiring 128 dual-channel traces of 2048 points at 12.4, 13.6 and 14.8 GHz, using
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[8], the 95% confidence interval on the estimated time base distortion is approximately
0.075 ps.

sampling scope A | sampling scope B
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Figure 2-2. The “nose-to-nose” setup.

Next, the combined impulse response of two sampling oscilloscopes is measured
using a “nose-to-nose” setup (figure 2-2). To do so, the inputs of two sampling
oscilloscopes are connected to each other. A DC offset is applied to one oscilloscope.
Whenever its samplers are closed, a pulse is fired from the internal samplers towards
the input connector of the oscilloscope. This pulse is referred to as the kickout pulse.
The nose-to-nose calibration technique is based on the assumption that the kickout
pulse is proportional to the impulse response of the sampling oscilloscope and is
described in detail in [1]. This kickout is then measured by the second sampling
oscilloscope. The measured pulse is the convolution of the impulse response of both
oscilloscopes. By measuring 3 sampling oscilloscope combinations, it is possible to
retrieve the impulse response of each contributing sampling oscilloscope (Eq. 2-1).
These combinations are referred to as M; measurements, where i represents the

kickout-receiving oscilloscope and j represents the kickout-generating oscilloscope.

M ,+H,-H = — = Eq. 2-1
1371713 M, 1
In order to estimate and reduce the uncertainty on each M; measurement, proper

averaging is required. Since it is possible that the time base drifts, this phenomenon
must be estimated and compensated before averaging. The drift is mainly caused by
temperature variations in combination with air flow. During this step of the procedure,
the time base drift is estimated and compensated before averaging. Also, based on
the mean value and the variance of the pulse in the time domain, an estimate is given
for the jitter standard deviation. More recent work on jitter estimation is described in a
separate chapter: “System identification approach applied to jitter estimation”.

A portion of the strobe pulse, which fires the samplers, leaks through towards the
output (the input connector). In order to eliminate this common mode portion of the
kickout, two measurements are performed. First a positive DC offset and then a
negative DC offset is applied to the kickout-generating sampling oscilloscope. The
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inversion of polarity will cause a polarity reverse for the kickout pulse, while it will
leave the strobe contribution untouched. Hence, after averaging both the positive and
negative kickout and after proper alignment, one can subtract both kickouts to remove
the common mode contribution of the strobe pulse.

After these three M; measurements, a second time base distortion measurement is
performed to verify if the time base distortion has not changed during these M;
measurements.

Finally, postprocessing is performed to correct the M;; data, based on the estimated

time base distortion [9]. In order to provide the amplitude and phase distortion of the
sampling oscilloscope on a specified frequency grid, a chirp-z transform [10] is
applied. Using a proper combination of the corrected and interpolated M;; data, by

taking the mismatch of each oscilloscope and the required adapter into account and
after correcting for the low-pass effect of the jitter on the amplitude characteristic, one
ends up with an estimate of the amplitude and phase characteristic of the three
oscilloscope plug-ins separately.

This procedure and its implementation was shared with - and explained to - people
from the Optoelectronics Division, the Statistical Engineering Division and the Radio-
Frequency Technology Division within NIST. The procedure was re-implemented
independently at NIST. No anomalies were found and the above procedure was
described in detail [2].
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Enhancement of the different parts

The implementation was performed using an Agilent 83480 Digital Communications
Analyzer (DCA) and three dual-channel 50 GHz 83484A plug-ins. Later, the code was
adapted to support also the Agilent 86100 DCA Oscilloscope. Both instruments use
equivalent-time sampling.

Time base drift estimation

The best way to get rid of the time base drift is not to have it at all. Hence, one should
always try to minimize sudden temperature variations and uncontrolled air flow when
performing measurements using a high-frequency sampling oscilloscope.

The logarithmic averaging of the spectral data proposed and described in [1] has the
disadvantage that a bias on the amplitude estimation is introduced which becomes

significant when the S/N ratio approximates 0 dB'. Also, logarithmic averaging does
not decrease the noise floor. This turned out to be a limitation during the measurement
of the impulse response of the opto-electrical subsystem of the Lightwave Component
Analyzer, given its very poor S/N ratio (< 0 dB). As such, it was decided to replace the
logarithmic averaging by regular averaging after estimating and compensating for the
time drift.

The time base drift is estimated by minimizing
M
_jme 2
V = Z ‘Xref((om)_e -X(w,) Eq. 2-2

m=1

with respect to T, within the bandwidth® of the signal. Xref((‘)m) represents the

measured spectral data of the reference signal at @, = 21tfm, while X(a)m)
represents the corresponding measured spectral data of the signal to be aligned with
. 2T
respect to the reference signal. ®, 6 =m-0,=m: T where TO represents the

0

width of the time window, used to capture the impulse response. A starting value for T
is obtained, either based on a crosscorrelation test or by calculating the value of the

cost function for a limited range of T values on a sufficiently dense grid.

1. Based on equation (3.6-6) of [1] the bias on the amplitude estimation for a S/N ratio of 0 dB equals
0.9 dB.

2. In the case of impulse responses, measured using the 50 GHz sampling oscilloscopes, frequencies
up to the first transmission zero (70 GHz) of the sampling oscilloscope are taken into account.
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In the actual implementation, the first measurement is taken as a reference and all
successive measurements are aligned with respect to that reference. In [6], it is shown
that a better alignment is possible when estimating the relative shifts of each
measurement with respect to all other measurements or by using an adaptive
reference. Because these methods require that one keeps track of all the realizations,
these methods are not implemented as part of the streamlined implementation.
Furthermore, a comparison of the estimated drifts under realistic conditions (figure 2-
3, figure 2-4), shows a good correspondence between the actual implementation and
the optimal implementation referred to in [6]. Furthermore, in the “System identification
approach applied to jitter estimation” chapter, it is explained that time base jitter is
interpreted as time base drift and smoothing of the estimated time base drift is
proposed.
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Figure 2-3. Estimated time base drift (x: actual implementation, dots: implementation
proposed by NIST [6]) based on 500 impulse response measurements performed at NIST.

Due to the presence of the feedthrough of the strobe pulse, one must measure a
positive and negative kickout to eliminate this unwanted response. To minimize the
elapsed time between the measurement of a positive and a negative kickout, the
measurement of a positive kickout is followed immediately by the measurement of a
negative kickout. Using the above method, all positive kickouts can be aligned and
averaged. The same is done for the negative kickouts.

Finally the mean value of the positive kickout and the mean value of the negative
pulse must be aligned with respect to each other before they can be subtracted. Let
’CZ be the estimated time base drift of the k" measurement of the positive kickout
with respect to the first measurement, while ’c;( is the equivalent for the negative

, , - +
kickout. It is observed that the overall shape of T, closely resembles that of T, as
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Figure 2-4. Difference between estimated time base drift based on the actual
implementation and the implementation proposed by NIST [6].

function of k (figure 2-5), while the variation between ‘CZ and ‘c}c can be large for

each individual value of k (figure 2-6).

All positive kickouts are aligned with respect to the first positive kickout. All negative
kickouts are aligned with respect to the first negative kickout. Based on the above, the

mean drift of the positive kickout should equal the mean drift of the negative kickout'.
Therefore, the actual difference between the mean drift of the positive kickouts and
that of the negative kickouts can be used to align both averaged kickouts (figure 2-6).

Positioning and width of time window

The Agilent 83480 sampling oscilloscope has a limited data memory. When
measuring an impulse response, one has to meet two boundary conditions. On one
hand, one wants to keep the time window for the measurement as small as possible to
allow high time resolution and reasonable S/N ratio. On the other hand, one must
keep the window long enough to make sure that the impulse response is not
truncated.

In the case of a nose-to-nose measurement, a kickout pulse is generated by one
oscilloscope and measured by a second oscilloscope. However, due to the imperfect
internal match of both oscilloscopes, some of the pulse is reflected back and forth
between both sampling oscilloscopes. After averaging the kickout pulses, a first

1. This statement neglects the fact that the measurement of the negative kickouts is slightly offsetted in
time with respect to the measurement of the positive kickouts.
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Figure 2-5. Estimated time base drift (x: positive kickout, dots: negative kickout) based on
1000 M;; measurements. To ease comparison, the estimated time base drift of the positive

kickout is shifted by 1 ps and that of the negative kickout by -1 ps.

|‘ !
'l \ \I\

m,,!l!‘,." :';'i|;|||||r!|‘\l||! fitas

||| \V\

diff . est. drift (ps)

I\.

I ‘u
|. .‘ \I
,.I\I"\I|| I

I"‘ mﬂl\l. 3 l"lr‘

Whl.l..

\IH i,

I!

e ”'IH il i ol ] lm‘ Sl W L Aty I'ill

e L .||‘ | e ['|| ’|I,I I ||’ ll\ o il ” ‘ i l'll‘ uﬂ' [

"”F"I" 'lm“ "“ !.llli 'ii‘m Il llﬂ “Llni!n !III""!!'!IF.‘!« “1|‘Im \"I‘ imll'x!f..‘f..’:lluii.. |...‘¢I"IVIH i&ﬂ index
it ||| ||| llll ik el | oy i Iilllu 00

-0.5

Figure 2-6. Difference of the estimated time base drift of the positive and negative kickout
(white line: mean difference, used to align the averaged positive and negative kickout pulse).

reflection is clearly visible at approx. 1 ns delay with respect to the main pulse. By
comparing the spectrum after averaging for different time window lengths, it was found
experimentally that one can measure up to the third reflection. The time window for
the measurement was therefore set to approx. 4 ns.
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It was found that the actual distortion of certain portions of the time base of the
50 GHz sampling oscilloscopes varies both with the trigger frequency and the
selected time step. This means that the time base distortion measurement must be
performed using the same trigger and time step settings as the ones that are used
during the actual measurement. Due to practical limitations of the sampling
oscilloscope, the trigger frequency during nose-to-nose can not be increased above
2.5 kHz. Due to other trigger hardware limitations, the smallest achievable trigger
frequency during the measurement of the time base distortion is approx. 5 kHz. It was
found experimentally that the impacted regions of the time base are located at the
beginning of the time window and after each discontinuity of the time base. For the
Agilent 83480A Digital Communication Analyzer, the position of these discontinuities
is known to be located at 22 ns + k.4 ns, k € N. The discontinuity of the time base is
due to the usage of a 250 MHz restartable oscillator in combination with a fine ramp of
4 ns to create the time base. The impacted regions were found to span up to several
tenths of nanoseconds and the spans seem to increase with temperature. Figure 2-7
up to figure 2-10 show the impact of changing the trigger repetition rate on the time
base distortion.

est. TBDn (ps)
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Figure 2-7. Estimated time base distortion (trigger rep. rate of 4.7 kHz and 27 kHz). To ease
comparison, the estimated time base distortion using the 4.7 kHz trigger is shifted by 1 ps
(upper curve) and that of the 27 kHz trigger is shifted by -1 ps (lower curve).

As such, it is important that the main pulse and its main reflections are not located in
this region. Therefore the time window is set to start at 63 ns (1 ns after the 62 ns
discontinuity) and the main pulse is located at 0.5 ns delay with respect to the left
edge of the time window.

The shape of the difference of the estimated time base distortion (figure 2-10)
deserves some additional attention. Because of the equivalent-time sampling, the
physical time between two successive sampling instants does not correspond to the
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Figure 2-8. Difference of estimated time base distortion (trigger rep. rate of 4.7 kHz versus
27 kHz).
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Figure 2-9. Difference of estimated time base distortion (trigger rep. rate of 4.7 kHz versus
27 kHz). Zooming in to the start of the window.

specified time step, but is determined by the trigger period1. As such, using a trigger
repetition rate of 27 kHz and using an equivalent-time step of 1 ps, a time window of
0.17 ns corresponds to 170 samples and a physical time of 6.3 ms. Using a trigger
repetition rate of 4.7 kHz, the same physical time of 6.3 ms corresponds to

1. For the 83480 DCA, the internal sample frequency equals the trigger repetition rate, if this one is
smaller than or equal to 40 kHz. Otherwise the internal sample frequency is limited to 40 kHz.
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Figure 2-10. Difference of estimated time base distortion (trigger rep. rate of 4.7 kHz versus
27 kHz). Zooming in to the portion of the time base at the discontinuity of 66 ns.

30 samples and an equivalent-time of 0.03 ns. This means that a phenomenon with a
given physical duration will manifest itself differently, depending on the applied trigger
repetition rate. Figure 2-11 shows a time base distortion step of 2.2 ps, which linearly
decreases as function of the physical time. As explained above, the impacted
equivalent-time is different for a trigger repetition rate of 27 kHz and 4.7 kHz.
Subtracting this effect results in a difference which is very similar to the one shown in
figure 2-10.

diff. est. TBDn (ps)
251

: WMWWM time (ns)
66.2 .25 66.3

Figure 2-11. Simple model for the difference of the estimated time base distortion,
corresponding to different trigger repetition rates. (long dashed line: 4.7 kHz trigger, short
dashed line: 27 kHz trigger, thick line: difference of short and long dashed line).
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Enhanced time base distortion estimation and faster correction

The original time base distortion estimation is replaced by a better technique, while
the compensation is replaced by a faster technique. The latter allows to choose a
simple local interpolator such that the systematic interpolation error remains below the
noise floor of the reconstructed signal.

The original time base distortion estimation, as described in [1], basically performs a
phase demodulation to extract the time base distortion. Systematic errors are
introduced because of two reasons. First, the method assumes that the time base
distortion can be represented by a band limited signal. This explains the modelling
errors around the discontinuities of the time base. Also, the windowing which is
performed in the time domain to reduce leakage, introduces large systematic errors at
the boundaries of the time window.

The estimation is replaced by the maximum likelihood estimator (MLE), described in
[8]. It combines the advantages of a non-parametric time base and the efficiency and
robustness provided by the use of a statistical framework. In practice, the comparison
of the actual value of the cost function and its expected value allows to verify for the
presence of model errors. For instance, the method requires measurements at two or
more non-harmonically related frequencies to distinguish between harmonics due to
time base distortion and due to the (vertical) nonlinear behaviour of the oscilloscope.
Harmonics can also be produced by the source. It was found that using certain
combinations of frequencies, the actual cost was significantly larger than the expected
one. It turned out that this was caused by the fact that the actual time base distortion
varied with the applied frequency, while the method assumes that the time base
distortion is independent of the applied frequency. The second advantage of the
statistical framework is that uncertainty bounds are provided, which can be used to
provide uncertainty bounds for the overall nose-to-nose method.

Once the time base distortion has been estimated, the next step is to compensate the
M; measurements for this distortion. Although this may seem to be simple, the original

time base distortion compensation, as described in [1], is very time consuming. The
compensation is based on the construction of a least-squares estimator and requires

the solution of a set of linear equations y = A - x in a least-square sense. A is a
NX((2C+1) real matrix, C represents the assumed number of spectral
components and N corresponds to the number of non-equidistant measured time
points. A typical value for N is 2048 while C is approx. 300 to 600. Using singular
value decomposition1 to calculate the solution, it was found that the calculation is too

. 2 .
time consuming. Indeed, a typical solver requires O(N - (2C + 1)) operations to
solve this set of equations. As such, it does not allow a Monte Carlo analysis to study

1. based on the implementation in C++ of a commercially available mathematical library M++.
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the uncertainty after time base distortion correction, taking both the uncertainty on the
estimated time base distortion and the uncertainty on the sample values into account.

To speed up the compensation, the solution of the set of equations is replaced by a
KIS (“Keep It Simple”) approach as described in [9]. The cubic interpolation method is

very fast and requires only O(N) operations. The error introduced by this

interpolation increases with the relative bandwidth! of the signal to be interpolated.
Fortunately, based on the inherent high oversampling rate of an equivalent-time
sampling oscilloscope, the bandwidth of the measured signal relative to the sampling
frequency is low: given a signal bandwidth of approx. 50 GHz, a 4 ns time window and
2000 points, the relative bandwidth is 0.1. In worst case, the systematic deviation from

the equidistant time grid® equals 0.5A¢ : the sampling instance based on the distorted
time base is located right in between the ideal equidistant sampling instances. For this
relative bandwidth and systematic deviation, based on the simulations performed in
[9], the mean squared error is approx. -40 dB relative to the root-mean-square (RMS)
value of the signal.

A typical value for the jitter standard deviation is approx. 1 ps, which corresponds to
0.5Atr. Applying an offset of 0.1V to the kickout generator, an M;; measurement

typically has a signal-to-noise ratio (SNR) of approx. 20 dB. Given the above and
based on the interpolator selection table in [9], it makes sense to use a simple cubic
interpolation if time base distortion compensation is required before averaging. If one
can increase the SNR first by averaging, it makes sense to consider cubic spline
interpolation instead. Figure 2-12 shows that the reconstruction error using the fast
KIS approach remains well below the measurement noise, even after averaging.

The actual nose-to-nose implementation uses cubic interpolation to allow time base
distortion compensation before averaging. This was based on the consideration that
within the actual time window, the time base distortion is fixed for all Mj realizations.
As such, it makes sense to compensate first for time base distortion, before estimating
the time base drift. As described earlier, the latter is necessary to allow regular
averaging. It was found however that compensating for time base distortion first had
no noticeable effect. As such, one may choose to apply averaging first to increase the
SNR and to decrease the equivalent time jitter such that one can use cubic spline
interpolation instead of cubic interpolation. Due to time constraints, this alternative
approach is not implemented or tested.

Frequency domain interpolation using the chirp-z transform

In general, an estimate of the phase distortion of the sampling oscilloscope is required
at a frequency grid which does not correspond to the original 250 MHz frequency grid,

1. relative bandwidth being defined in [9] as the signal bandwidth divided by half the sampling fre-
quency.

2. this systematic deviation from an equidistant time grid is referred to as ‘jitter deviation’ in [9]
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Figure 2-12. Example M;; spectrum up to 200 GHz, based on 1000 averages and after TBDn

compensation based on [1] (solid line). Dashed line: complex difference (in dB) between the
TBDn-compensated Mj;, based on the time-consuming approach proposed by [1] and based

on the fast KIS-alternative [9].

based on the initial 4 ns time window. For instance, for the calibration of the harmonic
phase reference a frequency grid of 2 MHz is required. Because M;; corresponds to an

impulse response, one can use the fact that the signal is zero at both edges. As such
it is possible to append zero values. The naive implementation is to do so in the time
domain, but then one cannot obtain an arbitrary frequency grid. An arbitrary frequency
grid can be obtained using a chirp-z transform [8].

Another option, which is not implemented or tested, is to use a linear time-invariant
model.
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Conclusions

The implementation of a streamlined process allowed to transfer the nose-to-nose
calibration technique to the calibration lab of the Lightwave division within Agilent
Technologies. It contributed significantly to the success of the Agilent 86030A 50 GHz
Lightwave Component Analyzer.

Based on the demonstration and explanation of the process, the nose-to-nose
calibration technique was evaluated and implemented successfully by people at NIST.

Over time, some of the original algorithms, described in [1], were replaced by new
algorithms, which are superior either in speed or in quality.
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Abstract

Only recently, the electro-optic sampling (EOS) system [1]-[4] at NIST allows to
calibrate the impulse response of an opto-electrical (O/E) converter up to 110 GHz. If
one then measures this impulse response using a high-speed sampling oscilloscope,
one effectively measures the convolution of the (known) impulse response of the O/E
and that of the sampling oscilloscope. In fact, the reality is more complex because one
still needs to estimate and compensate for the time base drift, time base distortion and
time base jitter of the oscilloscope. One also has to take into account the mismatch of
the O/E and the oscilloscope and the S-parameters of the adapter to obtain the
amplitude and phase distortion of the oscilloscope. Having done so, it becomes
possible to compare the amplitude and phase distortion of a 50 GHz sampling
oscilloscope plug-in, based on the nose-to-nose calibration technique, to the one
obtained using a calibrated O/E.

A discrepancy was reported with respect to the phase distortion obtained by both
calibration methods [5]. The difference starts around 20 GHz and increases as a
function of the frequency. Earlier, a discrepancy was reported between the nose-to-
nose based amplitude distortion and the amplitude distortion that is obtained using a
stepped sine measurement [6].

The goal of this chapter is to verify the reported discrepancies. Therefore, an Agilent
83484A 50 GHz electrical plug-in was shipped to NIST, to measure the impulse
response of an O/E converter, which has been calibrated using the EOS system.
Based on these measurements, it is possible to verify the presence and the
magnitude of the phase discrepancy reported in [5]. At the same time, the presence of
the amplitude discrepancy is verified using two methods: one method that is similar to
the one described in [6] and another new method.

As a consequence of this verification, the jitter estimation was given additional
attention. This was the motivation for additional research and original work aimed at
the estimation of drift in the presence of both additive and jitter noise. This work is
presented in separate chapters.
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Overview

The amplitude characteristic of one channel of an Agilent 83484A 50 GHz electrical
plug-in, inserted in a 83480A sampling oscilloscope mainframe, is obtained using four
different methods (see figure 3-1 and figure 3-2). The first two approaches are based
on stepped sine measurements, where a sine wave of fixed amplitude is stepped over
the frequency band of interest in a number of steps, and the magnitude is measured
separately at each frequency. The other two methods obtain the amplitude
characteristic of the plug-in starting from impulse response measurements.
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Figure 3-1. Estimated amplitude characteristic of a 50 GHz plug-in. (x: power meas. and
histogram mode, +: power meas. and normal mode, -x-: nose-to-nose, dots: EOS).

The first (stepped sine) technique is similar to the one described in [6], except that the
power of the incident voltage wave is measured using a one-port calibrated" Large-
Signal Network Analyzer (LSNA) instead of using two power sensors. The sampling
oscilloscope is used in freerun mode and a vertical histogram measurement is
performed.

This technique has some disadvantages. In freerun mode, the one-step-ahead
predictor used in the sampler of the scope is disabled [7], while it is enabled in

1. Short, Open, Load and power calibration (no phase calibration).
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triggered mode. The power measured by the scope can be derived from the standard
deviation of the histogram measurement. However, the latter assumes that in freerun
mode, the time axis is randomly sampled using a uniform probability density function.
Finally, the noise added by the sampling scope is measured without any signal being
applied. Thus, it is assumed that this noise level is independent of the signal level. To
get around these hypotheses, a second method that is similar to the first technique,
uses the sampling oscilloscope in triggered mode. The disadvantage of this method is
that one has to estimate and compensate all time base errors.

The third type of method uses the amplitude characteristic resulting from the nose-to-
nose calibration technique. In the fourth method, the characteristic is obtained using
the impulse response measurement of a transfer standard, an opto-electrical
converter, which is calibrated using the EOS setup at NIST.

amp diff (dB)

X X

X
V. X
08 1 20660865 " K X X

XX

X
X SO <X
Rt sixx X 55000 58 = ° .

-0.2 | e

Figure 3-2. Difference of the estimated amplitude characteristic of a 50 GHz plug-in relative
to method 2 (power meas. and normal mode). (x: power meas. and histogram mode, -x-:
nose-to-nose, dots: EOS).

Method #1: LSNA power measurement and scope in histogram
mode

Figure 3-3 shows a simplified version of the used measurement setup.

Because of its availability, the Large-Signal Network Analyzer is used to measure the
incident voltage wave at the input connector of the sample scope. First a one-port
short-open-load calibration and a power calibration are performed at the plane where
the sample scope plug-in will be connected. No extra phase calibration is performed.
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LSNA o calibration

elements
@ & &H scope

Figure 3-3. Measurement setup involving a Large-Signal Network Analyzer and a scope
used in histogram mode.

Due to present limitations of the LSNA software, the measurement is performed on a
600 MHz grid from 600 MHz up to 50 GHz.

Due to the requirement for measurements up to 50 GHz, the cabling is kept as short
as possible to minimize the losses. The source power is adapted to obtain an incident
power of -10 dBm at the calibration plane. This corresponds to 100 mVp, and is
sufficient in order to guarantee a linear operation of the sample scope. It is also
verified that the harmonics that are generated by the source are sufficiently small
(more than 40 dB down).

At each frequency, the amplitude of the incident voltage wave is measured by the
LSNA. The scope is used in freerun triggering mode. The vertical histogram
measurement reveals the probability density function (PDF) of a sine wave corrupted
by additive Gaussian noise. In order to obtain the additive noise generated by the
sampling oscilloscope as a result of the measurement, an additional vertical
histogram measurement is performed without any external signal applied and with the
input of the scope terminated in a 50 Q load. This allows to correct the RMS value of

. . 2 2
the measured voltage for the noise of the scope using ,/6, -G, , where G

corresponds to the measured standard deviation of the sine wave. A value
G, = 0.57 mV is measured for the standard deviation when no signal is applied to

the scope.

As a sanity check, the measured fraction of samples which lie within £& of the mean
value is compared to the expected value of 50%, which is the theoretical value for a
sine wave that is randomly sampled based on a uniform probability density function.

O corresponds to the measured standard deviation.

Method #2: LSNA power measurement and scope in hormal mode

The second method is similar to the first method, except that the scope is used in
triggered mode instead of freerun mode. As such, all time base corrections must be
applied to the sample scope measurement.
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First, a time base distortion measurement is performed. Subtle effects like the thermal

tail' must be properly dealt with. Therefore, both the trigger rate and the time base
resolution are selected to be identical during the measurements that are used to
estimate the time base distortion and during the actual measurements. In order to
avoid leakage after time base distortion correction, the width of the selected
acquisition window must equal an integer number of periods. All applied frequencies
are an integer multiple of 600 MHz and therefore an acquisition window width of 5 ns
is selected.
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Figure 3-4. Measured averaged spectrum before time base distortion correction (48 GHz).

The time base drift estimation and the time base distortion correction are based on the
methods described in the “Enhancements to the nose-to-nose calibration technique”
chapter. Figure 3-4 shows the spectrum before time base distortion correction, based
on the sample mean of 500 measured records of 4000 points each. The mean is
calculated after time base drift estimation and compensation. The amplitude at
48 GHz is found to be -14.57 dBm. Figure 3-5 shows the spectrum after time base
distortion correction. The amplitude at 48 GHz is now found to be -13.05 dBm. This
demonstrates that a bias of 1.5 dB is introduced when one neglects the time base
distortion. Figure 3-5 reveals a strange residual shaping of the spectrum around
48 GHz. Comparing the time signal to the pure sine wave based on the amplitude and
phase at 48 GHz (figure 3-6) clearly shows some small residual “thermal tail” effect,
which is assumed to be caused by small temperature variations in between the time
base distortion measurements and the measurements at 48 GHz.

1. described in the “Enhancements to the nose-to-nose calibration technique” chapter.
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Figure 3-5. Measured averaged spectrum after time base distortion correction (48 GHz).
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Figure 3-6. Residual “thermal tail” effect at the start of the acquisition window (48 GHz).
Solid line: spectral component at 48 GHz only. Dots: all spectral components.
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The removal of the minimal number of points (500) at the start of the acquisition
window which allows to maintain an integer number of periods, results in figure 3-7.
The amplitude at 48 GHz is now -13.08 dBm. Thus, the impact on the measured
amplitude is 0.02 dB and therefore negligible. The remaining shaping of the spectrum
around 48 GHz is believed to be caused by the phase noise of the 50 GHz

Agilent 83650 source. Also, both the subharmonic at /2 and the second harmonic
are visible.
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Figure 3-7. Measured averaged spectrum after time base distortion correction and after the
removal of the samples impacted by the residual thermal tail (48 GHz).

The initial time base jitter estimation is performed using a first order approximation
(Eq. 3-1) of the sample variance in the presence of both additive and jitter noise, as is
described in more detail in the “System identification approach applied to jitter
estimation“ chapter.

~ 2
02 (t.) = 02 + dyo -62 Eq. 3-1
yioil T Un dt n- Q-

A simple linear regression technique is used to estimate both the variance of the
additive noise 62 and the variance of the jitter noise 62 , using the measured
sample variance and the squared derivative'! of the measured sample mean. The
resulting jitter standard deviation is 0.95 ps, while the standard deviation of the
additive noise is found to be 7.8 mV. The latter is much larger than expected.
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Assuming a normal probability density function, a jitter standard deviation of 0.95 ps at
48 GHz corresponds in an attenuation of the amplitude of 0.36 dB. The final amplitude
at 48 GHz after all compensations becomes -12.67 dBm.

An additional study, which is described in detail in the “System identification approach
applied to jitter estimation“ chapter, shows that the use of a straightforward time base
drift compensation incorrectly shapes the sample variance. The study also proposes
higher-order models for the sample variance in the presence of both additive and jitter
noise. Correct time base drift compensation in combination with a higher-order model
gives very good results in the case of an impulse response measurement for realistic
values of the standard deviation of both jitter and additive noise and in the case there
are no model errors. Applying this technique to sine wave measurements, yields

. 2 . .
estimates of G, , which strongly vary as a function of the selected model order and
y

even can become negative.

Fortunately, one can derive the exact expression for both the expected value and the
variance of a pure sine wave in the presence of normally distributed jitter noise and
additive noise. Consider

y(t;) = Asin{o(z; +n,(1,)) + 0} + ny(tl.) Eq. 3-2

y(tl.) represents the observation of the pure sine wave, that is contaminated by both

additive noise and jitter. The noise sources are considered to be part of the
observation. Both ny(tl.) and nt(tl.) are assumed to be zero mean, normally

distributed, independent and stationary with respect to #;. ® and ¢, are assumed to

be known exactly.

Using the characteristic function of a normal distribution, it can be shown [8] that

W= E{y()} =A-ec - sin(of,+0) Eq. 3-3

Now one can also calculate the variance

o = E{[y(t,-)—E{y(r,-)}]z} . E{[y(r,-)]z}—[E{y(z,-)}]2 Eq. 3-4

1. using the standard function implemented in VEEtest™ from Agilent Technologies and based on a
sliding fourth-order (five-point) polynomial.
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The first term in this expression is found to be:

E{[A sin{o(1,+n,(1,)) + 0} + ny(tl.)]z}

= AzE{[sin{(o(ti +n,(1;)) + ¢}]2} + Gi,

Y

2 2
A° A 2
20)’- o,
2 2
A° A 2 2
=S -5e -cos[2(00tl-+¢)]+5ny

Eq. 3-5

Combining equations Eq. 3-3 up to Eq. 3-5, one obtains the value of the variance:

) ) A2 —o o, —o o,
¢ =0, + ?{1 —e tHl +e " cos[2(wr; + ¢)]} Eq. 3-6
y

, , . , , 2
In the absence of time base distortion, one can easily retrieve the values of A, 0, G,
y

2
and ¢, using the Fourier transform of Eq. 3-3 and Eq. 3-6.
t

When time base distortion is present, as is the case during our measurements, one

, . 2 2 C ,
can obtain an estimate for A, ¢, 6, and G, by minimizing the following cost

y t
function with respect to these unknowns:

N 2 2 2 ) 2
1 2 2 A - -Gnt - 'G"t
ViwyLs = Z ;2 =0, ~% l—e l+e - cos(2mt;)
i = !
N wz'Git 2 Eq. 3-7
1 o2
+ Zw—'z n,—A-e - sin (07, + ¢)
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2 . :
C; and W ; respectively represent the measured sample variance and sample mean
o . Vl% 2 N 2
at time instant ¢;. The optional factors W, and Wi allow for a weighting. Wi can be
: 2 , .
based on the sample variance of G, if available, or can be evaluated using the

. 2 2 2. 2
variance of the )~ - distribution of G, ; G, itself can be used for W, .

First, the correctness of the implementation of this estimator (Eq. 3-7) is verified using
simulations.

Next, the estimator is applied to the sine wave measurement at 48 GHz. First, a time
base drift compensation is applied, as is explained in the “System identification
approach applied to jitter estimation” chapter. This yields the sample variance and the

sample mean data on a non-equidistant time grid ;. The latter is estimated based on

a time base distortion measurement, which was performed up front.

Figure 3-8 and figure 3-9 show the sample mean and sample variance of the first two
periods of the sine wave measurement obtained at an excitation frequency at 48 GHz

. , , , 2
for the LS estimator. Although the estimator also provides estimates for ¢, G, and
y

2 . . . .
G, the main parameter of interest here is A . It corresponds to the amplitude of the
t

sine wave “before” the low-pass effect of the jitter. The LS estimator yields an
amplitude of 74.19 mV, while its WLS equivalent provides a value of 74.14 mV =
0.02 mV (95% confidence interval).

Starting from an initial value of -14.57 dBm, the amplitude of the sine wave at 48 GHz
after compensation for the time base drift, the time base distortion and the time base
jitter increases up to -12.59 dBm. This is only 0.1 dB larger than the -12.67 dB based
on the initial, less correct, approach (see page 3-9).

A similar verification is performed for the sine wave measurement at 43.2 GHz and
yields an amplitude of -11.58 dBm, which is only 0.05 dB larger than the value
obtained using the initial approach.

As such, it is concluded that the initial approach (used for all other frequencies) is
sufficiently accurate to be used during the comparison. It is represented by the ‘+’
symbols in figure 3-1 on page 3-3.
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Figure 3-8. First two periods of the measured sample mean at 48 GHz (black dots), its 95%
confidence interval (vertical black lines) and the estimated mean (red solid line).
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Figure 3-9. Corresponding measured sample variance at 48 GHz (black dots), its 95%
confidence interval (vertical black lines) and the estimated variance (red solid line).
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Method #3: amplitude characteristic based on nose-to-nose

The nose-to-nose calibration procedure used here is briefly explained in the
“‘Enhancements to the nose-to-nose calibration technique” chapter.

The amplitude characteristic resulting from a nose-to-nose calibration is shown in
figure 3-1 on page 3-3. The nose-to-nose calibration is used as the reference for the
phase calibration of the Large-Signal Network Analyzer. Given a symmetrical jitter
probability density function, it is shown [8] that jitter does not introduce any phase
distortion. Therefore, although the jitter estimation and compensation was included as
part of the amplitude correction, it was not given as much attention as the time base
drift, the time base distortion and the mismatch compensation.

As part of the comparison of the amplitude characteristic obtained using different
techniques, the initial jitter estimation and its compensation is, once more, compared
to the enhanced method, which is explained in detail in the “System identification
approach applied to jitter estimation“ chapter.

The jitter is estimated for both the positive and negative kickout pulses. Given
identical trigger conditions for both kickouts, the result is expected to be identical
within the uncertainty on the estimate. Figure 3-10 and figure 3-11 show the measured
and modelled variance, including the boundaries of their 95% confidence interval,
corresponding to the main pulse and to the first reflection. Figure 3-11 also indicates

var (x1073 V3
0.14 |

0.12 |

, il
0.1 q ||§f\‘

0.08 ' 1'%
0.06 | ' 4
0.04 + | ) i !

0.02 |

0.4 0.41 0.42 0.43 0.44

'~ time (ns)
45

Figure 3-10. Measured (black dots, vertical black lines: 95% confidence interval) and
modelled variance (solid red curves, boundaries of the 95% confidence interval) of the
positive kickout pulse. Zooming into the variance corresponding to the main portion of the
kickout pulse.
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Figure 3-11. Measured (black dots, vertical black lines: 95% confidence interval) and
modelled variance (solid red curves, boundaries of the 95% confidence interval) of the
positive kickout pulse. Zooming into the variance corresponding to the first reflection of the
kickout pulse.

that the model is also capable to model the variance of the additive noise. A least
square estimator is used in combination with a third order model because the jitter
standard deviation exceeds 1 ps. The rationale of this decision and the details of the
jitter estimation are explained in the “System identification approach applied to jitter
estimation“ chapter.

The estimate of the jitter standard deviation for the positive kickout pulse is found to
be 1.383 ps = 21 fs (95% confidence interval). The estimate of the jitter standard
deviation for the negative kickout pulse is found to be 1.385 ps + 19 fs and equals that
of the positive kickout within the 95% confidence interval.

Figure 3-12 shows the relative difference (in dB) of the amplitude characteristic of the
M;, measurement' after time base drift and time base jitter estimation and ditto

compensation, based on the original and the new approach. The new approach gives
a slightly larger amplitude at 50 GHz.

Given a difference of 80 mdB at 50 GHz, it can be concluded that the original
approach is sufficiently accurate to be used during the actual comparison of the
amplitude characteristic of the 50 GHz plug-in.

1. the My> measurement uses plug-in 2 as kickout generator and plug-in 1 as kickout receiver.
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Figure 3-12. Relative difference between the estimated plug-in amplitude characteristic
based on the new time base drift and jitter compensation and the original implementation.

Method #4: amplitude characteristic based on EOS

The last method uses an opto-electrical (O/E) converter which is calibrated up to
110 GHz using the electro-optical sampling system [1]-[4] at NIST as a reference
element. This O/E converter is then used in the setup described in figure 3-13. The
calibrated O/E converter is excited by an optical impulse. After compensating for all
time base effects and mismatch effects, the impulse response measured by the
sampling scope equals the convolution of the (known) impulse response of the O/E
and the (unknown) impulse response of the sampling oscilloscope plug-in. As the
impulse response of the O/E is known, the latter can be obtained. The second O/E in
the trigger path is solely used to convert the optical pulse into an electrical pulse that
can be used to trigger the sampling oscilloscope.

ond O/E trigger
j sampling
impulse calibrated cnig| Oscilloscope

laser O/E

Figure 3-13. Block diagram of the setup used during the sampling oscilloscope calibration
using a EOS-calibrated O/E converter.
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Again, special attention is given to the time base jitter estimation and compensation.

Figure 3-14 compares the measured and modelled variance, focusing on the main
portion of the impulse response. Some discrepancies between measurement and
model are visible around 0.395 ns (relative to the start of the acquisition window). In
the case of a least squares estimator and a third order model, the estimated jitter
standard deviation turns out to be 1.601 ps + 41 fs. This is significantly larger than the
typical jitter standard deviation of about 1 ps which is obtained during other impulse
response measurements, based on the same setup. Therefore, it may be possible
that there was an issue during the measurement. One possible explanation is the
selection of a less optimal setting of the trigger level of the sample scope.
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Figure 3-14. Measured (black dots, vertical black lines: 95% confidence interval) and
modelled variance (LS estimator, 3rd order model) (solid red curves, boundaries of the 95%
confidence interval) corresponding to the main portion of the impulse response of the O/E.

Figure 3-15 shows the modelled variance based on a WLS estimator and a third order
model. The corresponding estimated jitter standard deviation is 1.477 ps £ 9 fs.

The LS estimate (figure 3-14) appears to do a better job for the larger values of the
variance, while the WLS estimate (figure 3-15) performs better for smaller values of
the variance. Taking into account the lower limit of the smallest estimate (1.468 ps)
and the upper limit of the largest estimate (1.642 ps) of the jitter standard deviation
yields a difference after jitter compensation of £ 0.12 dB at 50 GHz. The time base

jitter compensation based on the initial' implementation falls within this uncertainty.
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Figure 3-15. Measured (black dots, vertical black lines: 95% confidence interval) and
modelled variance (WLS estimator, 3rd order model) (solid red curves, boundaries of the 95%
confidence interval) corresponding to the main portion of the impulse response of the O/E.

Summary

Although the comparison does not include any confidence intervals, figure 3-1 on
page 3-3 shows good correspondence between all methods, except for the nose-to-
nose which seems too yield an amplitude characteristic which is consistently too
large. A possible explanation can be found in [9]. The difference between the nose-to-
nose and the other methods (see figure 3-2 on page 3-4) is very similar to the
discrepancy reported by NIST [6], both in shape and in order of magnitude. The
difference is larger than can be contributed to differences in time base drift and time
base jitter correction.

1. less correct with respect to time base jitter estimation as explained in the “System identification
approach applied to jitter estimation” chapter.
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Phase comparison

Presently, the phase characteristic of the sampling oscilloscope plug-in can only be
estimated either using the nose-to-nose calibration technique or by measuring the
impulse response of a photodiode (O/E), which itself was calibrated using the EOS
system at NIST.

The nose-to-nose calibration procedure is briefly explained in the “Enhancements to
the nose-to-nose calibration technique” chapter. The setup and postprocessing
required for the second technique is briefly described on page 3-15.

Figure 3-16 shows the discrepancy between the phase characteristics up to 50 GHz,
obtained by both techniques for the Agilent 83484A 50 GHz electrical plug-in which
was shipped to NIST. A delay is applied such that the phase difference from DC up to
20 GHz falls within the 95% confidence interval’ provided by NIST [10] for the phase
response of the photodiode itself.

phase diff (deg)

R 0 a0 s MO
_5}
10
)
0!
=25t

Figure 3-16. Difference (in degrees) between the estimated phase characteristic of the
Agilent 83484A 50 GHz electrical plug-in based on the nose-to-nose calibration technique
and using the photodiode which was calibrated using the EOS system at NIST.

Although the comparison does not include any confidence intervals, it confirms the
discrepancy, which was recently reported [5].

1. £ 1.5 degrees
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Conclusions

The performed comparisons confirm the discrepancies which were reported, both with
respect to the amplitude characteristic and the phase characteristic of a 50 GHz
electrical plug-in, obtained after a nose-to-nose calibration.

Finding an explanation for this discrepancy is left as topic for future research. Fitting a
parametric model on the amplitude and phase discrepancy may provide some insight.
Also, it makes sense to mention that [11] reports a much better correspondence for
the amplitude characteristic of a sampler up to 120 GHz, based on a nose-to-nose
calibration and a power measurement.

Eq. 3-6 gives the exact expression of the variance for a sine wave which is disturbed
by both additive and jitter noise, in the case the latter has a normal probability density
function. It is a rather small effort to provide the exact expression for other
distributions, based on [8].
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Abstract

Abstract

Given a symmetrical probability density function, jitter does not introduce phase
distortion [1]. However, it has a low-pass effect on the amplitude characteristic.
Because the nose-to-nose calibration procedure was mainly used to provide phase
information, initially jitter estimation was of less importance.

However, the crossverification of the amplitude distortion of a 50 GHz sampling
oscilloscope based on the nose-to-nose calibration technique and the electro-optic
sampling system of NIST, justifies additional research with respect to jitter estimation.

A system identification’ approach is applied to estimate the jitter introduced by a high-
frequency sampling oscilloscope.

First, an extended model is proposed to describe the sample variance of a set of
repeated (impulse response) measurements in the presence of additive and jitter
noise. It is important to remember that the primary goal in this work is to estimate the
jitter and as such not the deterministic part of the system, i.e. the impulse response.

Next, the (weighted) least-squares and maximum likelihood estimator are introduced.

Results are shown based on simulations. First, the simulated variance is based on a
known model, involving both jitter and additive noise. This allows to test both the
correctness of the implementations and to verify the ability to detect model errors.
Next, more realistic simulations are performed using “real” jitter. The simulations also
allow to study the effect of uncertainties on the input signal. More specifically, first the
exact derivatives of the exact signal are used, while in a next step, these derivatives
are calculated from the sample mean of the signal.

Finally, the jitter and additive noise standard deviation are estimated on real
measurements by performing impulse response measurements using an Agilent
83480A sampling oscilloscope in combination with 83484A 50 GHz electrical plug-ins.
Additional challenges, such as the conjugated effect of time base drift and time base
distortion, are described and correctly taken care of, demonstrating the real power of a
solid stochastical framework.

1. “The aim of identification theory is to provide a systematic approach to fit a mathematical model, as
well as possible, to the deterministic part of the system, eliminating the noise distortions as much as
possible.” (extracted from “An Introduction to System Identification”, Prof. J. Schoukens, published
by the Vrije Universiteit Brussel)
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Modeling variance in the presence of additive
and jitter noise

High-frequency sampling oscilloscopes often use an equivalent-time sampling
principle and suffer from both additive measurement noise ny(tl.) and timing jitter

noise n (¢;) at the sampling time instance 7, .
y(t;) = yo(t; +n,(1)) + ny(tl.) Eq. 4-1

y(tl.) represents the measurement of the exact signal yo(tl.) when both additive
noise and jitter are added as part of the measurement. Both ny(tl.) and ”t(ti) are

assumed to be zero mean, normally distributed’, independent and stationary with
respect to ¢.

In general it is assumed that the time jitter is small compared to the characteristic time
constant? of the exact signal yo(tl.). In that case yo(tl. + nt(tl.)) is approximated by

its first order Taylor series approximation:

dy

N 0
yq(1) = yO(ti)"'E -nt(tl.)+ny(tl.) Eq. 4-2

i

Given zero mean additive and jitter noise, the expected value of yl(tl.) equals yo(tl.)

and it makes sense to note that this first order approximation cannot explain the low-
pass effect introduced by jitter.

Furthermore, the variance of y, (tl.) equals

1. Extract of a private communication with Bernie Hovden, Technical Support Engineer Digital Signal
Analysis of Agilent Technologies in Santa Rosa to support the assumption of a normal distribution of
the jitter in the case of the Agilent 83480A sampling oscilloscope from a hardware point of view:
“The inherent trigger jitter in the 83480A basically comes from the translation of amplitude noise
(which is typically Gaussian) on the finite rise time trigger source to time in the trigger and time base
circuits from the recognition of a trigger event to the firing of the sampler. The decision circuit
typically operates over a linear part of the transition so the converted noise should remain Gaussian.
Both the trigger and time base circuits have multiple independent stages where the threshold
detection takes place sequentially, with no synchronization between the stages. An educated guess
is that there are at least 14 separate translations of amplitude to time. The central limit theorem says
that a large number of independent events with uncertainties will tend to a Gaussian PDF.”

2. defined as 1/w_;,; in case of an impulse response or 1/®,,,, in case of a multi-tone

X
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~ dy
2 0 2

= : . Eq. 4-
G (t) G, +[dt} (6] g. 4-3

1

Recent work with respect to jitter estimation [2],[3] is based on this first order

approximation. Here, it is worthwhile to notice that according to Eq. 4-3, Gy(tl-) must

dy

2
be equal to 6 whenever 0

" T = (. Based on the observation that the latter is
y

r=t
not true neither for nose-to-nose nor for other high-frequency impulse response

measurements, it is decided to extend the Taylor series approximation to include also
the second and third order contributions. As such

k
- d
1 4o k
y3(tl.) = yo(tl.) + E X -—dtk : nt(tl.) + ny(tl.) Eq. 4-4

tr=t.

1

Calculating the expected value of y~3(tl.), one finds

2
Efv a 1 4y 2

=1

1

A bias now becomes apparent and approximates the low-pass effect introduced by
2 2

- W -C
jitter. Let y, (1) = A - sinz, then E{y;(t)} = A- (1 S ntj - Sinf.

~

~ ~ 2
Calculating the variance Gi(tl.) using E{(y3(ti) —E{y;5(1,)}) } and based on the

fact that all odd order moments of a normal distribution equal zero, while the fourth

4
order moment equals 36 and the sixth order moment equals 15(5 [4] gives
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~ 2
Gz(t)—G +dy0 (52
Y3 it T Ty dt n,
t=t,
2 \2 3 3 N2
1 |dyo| o dYg 4 5 |4y 6
+=| — — . +—=|— c
n n
2 dtz d[ df3 t 12 df3 t
_ t=t
P=l Eq. 4-6
2 2 dyg
Based on Eq. 4-6, Gyg(ti) is now larger than 6, when T equals zero, unless
3 y

the second and third order derivatives are also both zero.

Remark

The study that follows, refers to different models based on the order of approximation

. . I 2
of the Taylor series (Eq. 4-4) instead of the order of contributions of G, to Eq. 4-6. It
t

should be noticed that for a second order approximation of the Taylor series, the

: 4 I~ :
second term in the G, contribution of Eq. 4-6 is not present.

t
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Estimators

Linear and nonlinear least squares

Starting from N independent and identically distributed (i.i.d.) measurements, one

o . . . 2 2
minimizes the following cost with respect to the unknown variances c, and c,:
y t

N
2
i=1
. k
2 2 dYy
th - G tl, Gny, Gnla —k
dt

2 .
c, corresponds to the measured sample variance for ¢ = t.
1

) k
of 2 2 dyy
cvn k
Yl de

Eqg. 4-6) and Wi is the optional weighting. For the unweighted least squares (LS), Wi

represents the model of the noise variance (see Eq. 4-3 and

is set to 1, while the square root of the sample variance of the sample variance at time
instance ; is used for the weighted least squares (WLS).

Using the first order model (Eq. 4-3) for the noise variance, the error e(tl.) is linear in

2 2
the unknowns G, and G, . However, if the model (Eq. 4-6) is expanded towards a
y t

second or third order Taylor approximation (Eq. 4-4), the problem is no longer linear in

2
G”z'
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Maximum Likelihood (ML) estimator

In [2] it is shown that the ML estimator produces statistically more efficient estimates

2 2 . , .
for 6, (¢;) and o, (z,) than a linear least squares estimator, assuming that the
y t

model equals
- d
2 2 0 2
Gyl(tl-) = Gny+(— j -0, Eq. 4-9

and corresponds to the exact model.

This estimator uses the knowledge that if each stochastical variable X i has a

,
2
N(O, 1) normal distribution with unity variance and zero mean, then Z X, hasa
i=1
xf chi-squared distribution with r degrees of freedom. If the mean value of Xi is

unknown, the (sample) mean has to be calculated and the number of degrees of
freedom has to be decreased by 1.

The model described by Eq. 4-6 is now used to extend the ML estimator described in
[2].

First, we derive the ML estimator in more detail based on a first order model,

- dyo
yl(ti) = }’()(tl') + ai

t=1t;

1

Then the distribution of the modelled output y~1(tl.) is derived, based on the
observation that for nt(tl.)~ N(O’Gn,) and ny(tl.) ~N(O, Gny),

2
- AL
yl(ti)~N yo(ti), Gny+ 7 -Gnt : Eq. 4-11

r=1;

1

The distribution can then be normalized as follows:
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V(1) = yo(t)
yy(t) = > ~N(0, 1) Eq. 4-12

(52 + dyo . 62
ny dt n,

tr=t.

1

Acquiring K realizationsof y att = 7, k representing the realization index, it follows
that

: -y (1))
2 y(t;, k)=yolt; 2
> otk =% ’ 20 ] Eq. 4-13
dy
k=1 k=1 <2 0 2
Gy+(dtj Gnt

Eqg. 4-13 assumes that yo(tl.) is known.

. . 2
Using the sample mean and sample variance G, of y(tl.)

K K 2
2 1 1
O, = T Z ; _I_{ Zy(ti, Dt o, Eq. 4-14

Eq. 4-13 becomes
2 (K_l)'Gf 2
62 + @O -62
ny \dt n;
r=t

Let n = K—1 to simplify the notation.

In order to derive the log likelihood function, one starts from the chi-squared
probability distribution function with n degrees of freedom
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n_ =
) X2 1 (2 1) D)
F(x") =j _— X e dx. Eq. 4-16
0 2n/2 . F(@
2
n-o,
Here x = ’ i
2
62 + Yo 62
ny "\ dt n
t=t
First the integrand of Eq. 4-16 is evaluated.
2
- 2 2 (D 2
Substitution of x' = 6, and @ = 6, +|— -G, O representing the
t; n, dt n,

model, leads to

When maximizing the log likelihood function with respect to the model parameters, the
constant terms can be omitted. As such, the log likelihood function to be maximized
equals

n n-x n X'
1nf_—(2—1)-lnoc— o —lnoc——z-(lnoc+0(). Eq. 4-17

Based on N i.i.d. measurements, the following cost needs to be minimized with

2 2
respectto 6, and G, :
y t
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Vur =
N J 2 62
n Y0 2 t
- Inlo. +|— c |+ -
2 Z ny [dt} n d
i=1 t=1, 52 4|20 52
n, dt n,
t=t

Eqg. 4-18

N 2

: . n Gti

As such, the MLE cost in case of a third order model becomes 5 Z Inp + F
i=1

where B must be substituted using Eq. 4-6.

Also, it is straightforward to extend Eq. 4-18 to deal with situations where the number

of degrees of freedom varies with i. The relevance of this extension will become clear
in “Step 4: influence of time base drift” on page 4-44. Eq. 4-18 becomes

Vur =
N 2 2
it Injo, + Do o |+ il
Z 1y dt 1 d 2
i1 t=t, 52 4|20 52
1, dt n
L t=t .

, Eqg.4-19

where n; corresponds to the number of degrees of freedom for ¢ = t.

Curiosity

During simulations it was found that the second term contributing to the MLE cost in

case of a first order model (Eq. 4-18) always equals N . At first, this was believed to be
a programming error. However, it is proven here that in the solution, this contribution

always equals N.

4-10 Contributions to Large-Signal Network Analysis



System identification approach applied to jitter estimation.

Estimators
2
dyg 2 2
Letx; = | — , while a and b are estimates of 6_ and ¢ by minimizing
dt n, n,
t=t,
the cost (Eq. 4-18).
N 2
G,
Then Eg. 4-18 becomes Z In(a+b-x.)+ —————} to be minimized with
' a+b- X;
i=1
respectto a and b.
N 62
0o 1 t;
Ry SN _ ’ =0 Eq. 4-20
da Z a+b-x a
_ i (a+b-x))
i=1 l
N 62
2] X t i
—=0 : =0 Eq. 4-21
b 2 a

a+b-xl. (Cl+b-xl.)2

Multiplying Eq. 4-20 by a and Eq. 4-21 by b and adding both equations, the sum is
zero in the solution.

N 2 N 2
c, G,
] —-— + = 0, which proves that : = N.
Z a+b-x. P Z 2
iy : =152 dy .
ny dt n,
t=t

This is exactly the second term in the cost function (Eq. 4-18).
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System identification approach applied to jitter estimation.
Generation of simulation data

Generation of simulation data

First the different models and estimators are tested using simulation data.

This data should be kept as realistic as possible. Therefore, the combined impulse
response of a real-world opto-electrical converter (O/E) and a 50 GHz sampling
oscilloscope is used as a starting point. Figure 4-1 shows the block diagram of the
required setup. The second O/E in the trigger path is solely used to convert the optical
pulse into an electrical pulse that can be used to trigger the sampling oscilloscope.

ond O/E trigger
sampling
impulse calibrated chi| OScilloscope
laser O/E

Figure 4-1. Block diagram of the setup used during the impulse measurement.

For the measurement of the impulse response, a time record of 5 ns is used starting at
143 ns and 500 records of 4096 points are acquired. The data are corrected for time
base drift and time base distortion. The resulting averaged impulse response is shown
in figure 4-2. Figure 4-3 shows the same information on a logarithmic scale.

mean(V)
0.08 |
0.06 |
004

002 |

rssmn—ssrsanp ‘ ‘ : — time(ns)
5

—0.02 |

Figure 4-2. Averaged impulse response.

Figure 4-4 zooms in to the main portion of the averaged pulse and its corresponding
sample variance. It is clearly shown that at the time instants where the averaged pulse
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System identification approach applied to jitter estimation.
Generation of simulation data
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Figure 4-3. Averaged impulse response (logarithmic scale).

has a zero slope, the variance is larger than the constant level at both sides of the
pulse, which corresponds to the variance of the additive noise. This means that Eq. 4-
9 does not correspond to the exact model for the measured jittered signal.

To further increase the S/N ratio of the test signal, a rectangular window is first applied
in the frequency domain. All frequency components up to the first transmission zero
(located at about 70 GHz) are kept. The other lines are set to zero. In order to remove
the small ringing at the edges in the time domain, an ad hoc window is applied there
too.

The corresponding analytical expression for the time signal is then given by its Fourier
series

w1
i27tm - Af - t
x(t) = re Z X(m)-e] mm: Af Eq. 4-22
m=0

and allows to calculate the exact derivatives. re(x) represents the real part of the
complex value x. If the number of relevant spectral lines M becomes too large, the
calculation of x(#) using Eq. 4-22 becomes very time consuming and a fast
implementation of the inverse Fourier transform is used instead. However, when

simulating jitter noise, the time samples are no longer on an equidistant grid. In order
to avoid the calculation using Eq. 4-22, a two step approach is used. First, the

equidistant x(z) is evaluated on a sufficiently oversampled time grid and then cubic
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System identification approach applied to jitter estimation.
Generation of simulation data
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Figure 4-4. Zooming into the main portion of the averaged impulse response and its

variance.

interpolation is used to obtain the value at x(z+ nt(t)). Given the above impulse

response, it was found that oversampling by a factor of 128 in combination with cubic
interpolation leads to an RMS value for the difference between the exact and
interpolated signal that is about 200 dB down with respect to the RMS value of the

signal.
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System identification approach applied to jitter estimation.
Generation of simulation data

Random number generator

Another critical element during simulation is the random number generator that is
used to generate the noisy simulations. It was found that it makes sense to verify the
fitness of the generator before questioning the correctness of the implementation of
the model extraction. The latter is implemented in C in order to keep the simulation
time reasonable. For performance reasons, the Vector Statistical Library [5] included

in the Intel® Math Kernel Library is used.

Initially, the sample variance of the variance of the additive noise, estimated using
both the MLE and WLS for different values of the variance of the jitter noise,
consistently turned out to be approximately 50% smaller than the variance predicted
by the corresponding element of the parameter covariance matrix.

It was found that this artifact was caused by a poor selection of the underlying basic

random number generator. Replacing the 31-bit multiplicative congruential generator1
(MCG31m1) by a combined multiple recursive generator with two components of
order 3 (MRG32k3a) [5], this problem was solved. The main problem with the original
basic random number generator is its relatively small period length with respect to the
relatively large sampling.

The fitness of the random number generator is tested by calculating the sample mean
and sample variance of N . realizations of the following cost

N, — N)z
< . —
N,,j K
V = = Eq. 4-23
2. 2 g
j=1 Nw’j

2 :
where z, j and SN j respectively represent the sample mean and sample
NS
, s 2 :
variance of N, realizations of z; = inj with xl.j~N(O, 1),i=1.N_ and
i=1

Jj = 1. N, Assuch Zj~X12vS and its expected value E{zj} = N,.

1. According to Intel MKL support, “MCG31 has a rather short period (~232) and is not recommended
for applications demanding a large volume of random numbers.”
The number of samples used during step 1 of the simulations (see page 4-21) is

100 x 4096 x 200 x 250 ~= 2x 10'? while 232 ~= 4x 10°.
The MRG32k3a pseudo-random generator has a period of ~21°1 (~3x 10%7).
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System identification approach applied to jitter estimation.
Generation of simulation data

If N is chosen large enough, then Z;~ N(N, J2N,), its sample mean and sample

variance are known to be independent and [6] can be used to verify the properties of
the sample mean and sample variance based on Eq. 4-23.

N, -1
= = . Eq. 4-24

) N, -1)
6, = E{(V-E{V})?} = -2N, Eq. 4-25

(N, ~3)"- (N, - 5)

Eq. 4-24 and Eq. 4-25 represent the increase of the expected value and variance of
the cost when replacing the exact variance of Z by its sample variance based on N W

real (non-complex) data sets.

If N, is chosen sufficiently large, then

N, -1 N, —1)°
3 N .2N, Eq. 4-26

V~N .
w (N,-3)" - (N, -5

and one can calculate the 95% confidence intervals of its sample mean and sample

. 2 T N
variance using the Student-t and XN - 1) distribution for NV, realizations [7].

It was found that using the Box-Mdiller transformation [5] in combination with the 31-bit
multiplicative congruential generator (MCG31m1) of the Intel® Math Kernel Library did
not pass the 95% confidence interval test for N = 100, N, = 200, N, = 400
and N, = 500, while the combined multiple recursive generator with two
components of order 3 (MRG32k3a) did. As such the latter is used during simulation.
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System identification approach applied to jitter estimation.
Step 1: third order approximation of variance, known derivatives

Step 1: third order approximation of variance,
known derivatives

In order to test the correctness of the model parameter extraction software, simulation
data is generated using EqQ. 4-6. The required derivatives are based on Eq. 4-22 and
are assumed to be known exactly. In step 2, the variance is based on additive noise
and “real” jitter noise, starting from Eq. 4-1. In step 3, the derivatives are no longer
assumed to be known, but will be estimated based on the sample mean of the pulse
and the estimated jitter standard deviation.

Based on measurements using the Agilent 83480A Digital Communications Analyzer,
the standard deviation of the additive noise during the simulations was set to 0.6 mV,
while the jitter standard deviation was stepped from 0 to 2 ps in 0.2 ps steps.

Model parameters are extracted for a maximum likelihood estimator, a least squares
and a weighted least squares estimator. The model is based on portions of Eq. 4-6
corresponding to a first, second and third order approximation of Eq. 4-4.

Simulation data for the sample variance is obtained from a xz - distributed random
variable with a number of degrees of freedom of 100. Each trace contains 4096 time
points. This process is repeated 200 times to estimate the sample variance of the
sample variance. The set of 200 repeated simulations is used to estimate the variance
of the additive and jitter noise simultaneously. In turn, this estimation is repeated 250
times.

Estimated jitter standard deviation

Figure 4-5 up to figure 4-7 show the sample mean of the absolute error of the
estimated jitter standard deviation. The absolute error e n is defined as the estimated

t
jitter standard deviation minus the exact jitter standard deviation and can be both
positive and negative.

2
e, =0, -G, Eq. 4-27

Based on the fact that the simulation data are generated using Eq. 4-6, corresponding
to the third order Taylor approximation of Eq. 4-4, within the uncertainty of the
parameters, one expects to find the exact values using a third order approximation.
Lower order approximations are expected to perform well for small jitter values and to
show deviations for larger jitter values.
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System identification approach applied to jitter estimation.
Step 1: third order approximation of variance, known derivatives

mean abs. error
est. jitter stdev
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Figure 4-5. Mean absolute error of the estimated standard deviation of the jitter noise using

the ML estimator. (15t order: long dashed line, 2" order: short dashed line, 3™ order: solid
line)
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Figure 4-6. Mean absolute error of the estimated standard deviation of the jitter noise using

the LS estimator. (15t order: long dashed line, 2" order: short dashed line, 3" order: solid
line)

Estimated additive noise standard deviation

Figure 4-8 on page 4-19 up to figure 4-10 show the estimated standard deviation of
the additive noise. The exact value is 0.6 mV. It makes sense to notice the small bias
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System identification approach applied to jitter estimation.
Step 1: third order approximation of variance, known derivatives
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Figure 4-7. Mean absolute error of the estimated standard deviation of the jitter noise using
the WLS estimator. (15t order: long dashed line, 2" order: short dashed line, 3™ order: solid

line)
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Figure 4-8. Mean estimated standard deviation of the additive noise using the ML estimator.
(15t order: long dashed line, 2" order: short dashed line, 3" order: solid line)

present in the WLS estimate. This bias turns out to be independent of the jitter value.

The relative error of the estimated variance is empirically found to equal

NS . NW

2 L
where NS equals the number of degrees of freedom of the sampled % - distribution,
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System identification approach applied to jitter estimation.
Step 1: third order approximation of variance, known derivatives
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Figure 4-9. Mean estimated standard deviation of the additive noise using the LS estimator.
(15t order: long dashed line, 2"9 order: short dashed line, 3™ order: solid line)
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Figure 4-10. Mean estimated standard deviation of the additive noise using the WLS
estimator. (15t order: long dashed line, 2" order: short dashed line, 3" order: solid line)

and N is the number of repeated realizations. As such N_- N, equals the overall
number of degrees of freedom of the averaged data used to estimate both
parameters. During this simulation N, = 100 and N, = 200. The corresponding

) ) —4 . . .
relative error is 2-10 , the estimated standard deviation s
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System identification approach applied to jitter estimation.
Step 1: third order approximation of variance, known derivatives

0.6-A1-2- 10_4 = 0.59994 mV. This value corresponds to the small offset
visible for the third order model in figure 4-10.

Value of the cost function

The value of the cost function in case of a weighted least-squares deserves special
attention, because one can calculate the expected value of the cost and its 95%
confidence interval. Figure 4-11 shows the cost for the first, second and third order
model. It clearly demonstrates the sensitivity of the cost with respect to model errors.
Figure 4-12 and figure 4-13 on page 4-23 zoom into the sample mean and sample
variance of the cost when there are no model errors.

cost (x10%)
175 |
150 |
125 |
100 |
75
5 - ,

25 | .
i .+ o RS — jitter stdev
0.5 1 1.5 2 (ps)

Figure 4-11. Mean value of the cost using the WLS estimator. (15t order: long dashed line,
2"d order: short dashed line, 3" order: solid line)

In order to obtain the expected value and the variance of the cost, one can reuse the
explanation found under “Random number generator” on page 4-15, taking into
account that the number of degrees of freedom is decreased by the number of

parameters (p = 2). During the simulation, the following values were used:
N, = 100, N, = 4096, N, = 200 and N, = 250. Replacing N, by N,—p in

Eq. 4-26, the expected value of the cost L, is found to be 4136. The variance of the
2 L
cost Gy, equals 8526. Based on Ne realizations of the cost, one can calculate the

: : : — : 2 :
95% confidence intervals of its sample mean V, and sample variance S N Using the
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System identification approach applied to jitter estimation.
Step 1: third order approximation of variance, known derivatives

Student-t and x(zN 1y distribution:

2 2
(N,—1)Sy ) (N,—1)Sy
£ <L < ¢ = — -
sz <oy < Xz I-a Eq. 4-28
o o
N=1,1-3 N.~1.35
S S
N N,
P(V ——t <uy<Vy +—t¢ =1-a Eg. 429
N, o \% N, o
N, N-1,1-7 IN, N.-1,1-

For the actual simulation parameters, the 95% confidence intervals become:

2 2 2
0.8455 <0, < 12025y Eq. 4-30
_ Sy _ sy
Vy - 1970 | Le<p, <V +1.970 |- Eq. 431
¢ Ne ¢ e

The 95% confidence intervals are shown in figure 4-12 and figure 4-13.

Based on the simulation results it can be concluded that the estimated parameters
converge to the exact parameters when there are no model errors. A small bias
becomes apparent for the estimated standard deviation of the additive noise in case of
the weighted least-squares estimator. This bias decreases as function of an

increasing number of averages1 used while estimating the standard deviation of the
additive noise.

In case of a WLS estimator, it is demonstrated that both the sample mean and sample
variance of the cost match their expected value within their 95% confidence intervals
when there are no model errors, while there is a significant difference when there are
model errors. This clearly shows the capability of a WLS estimator with respect to
model selection.

1. Corresponding to a xz - distribution with an increasing number of degrees of freedom, as such
converging to a normal distribution.
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System identification approach applied to jitter estimation.
Step 1: third order approximation of variance, known derivatives
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Figure 4-12. Expected value (dashed line) of the cost of the 3" order model using the WLS
estimator, compared to its sample mean value (250 realizations) and its 95% confidence
interval.
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Figure 4-13. Expected variance (dashed line) of the cost of the 3" order model using the
WLS estimator, compared to its sample variance value (250 realizations) and its 95%
confidence interval.
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System identification approach applied to jitter estimation.
Step 1: third order approximation of variance, known derivatives

Using the covariance matrix of the parameters

Finally it is verified that the uncertainty on the parameters, indicated by the parameter
covariance matrix, corresponds to the sample variance of the parameters based on

N . repeated estimations.

In order not to clutter the figures, the 95% confidence interval of the sample variance
of the estimated variances ¢ is not shown.

For N, = 250 estimations, 0.845 S5 <G~ < 1.202 5% .

var est. var add. noise
(x10721 V3
4
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Figure 4-14. Variance of the estimated variance of the additive noise (solid line: based on
the parameter covariance matrix, dashed line: sample variance based on 250 estimations),

3 order model using the WLS estimator.

Figure 4-14 shows the comparison of the estimated variance of the additive noise for
a third order model in combination with the WLS estimator. Figure 4-15 repeats this
comparison for the estimated variance of the jitter noise for the same model and
estimator. Finally, figure 4-16 shows that the uncertainty on the estimated jitter
variance is indeed smaller using a WLS estimator instead of a (unweighted) LS
estimator.

It can be concluded that the parameter covariance matrix can be used to obtain an
estimate of the uncertainty on the estimated parameters. As such, one does not have
to perform repeated estimations in order to get an idea of the uncertainty on the
estimated parameters.

An overview of the simulation results can be found in Table 4-1 and Table 4-2.

4-24 Contributions to Large-Signal Network Analysis



System identification approach applied to jitter estimation.
Step 1: third order approximation of variance, known derivatives
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Figure 4-15. Variance of the estimated variance of the jitter noise (solid line: based on the

parameter covariance matrix, dashed line: sample variance based on 250 estimations), 3rd
order model using the WLS estimator.
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Figure 4-16. Variance of the estimated variance of the jitter noise (solid line: based on the

parameter covariance matrix, dashed line: sample variance based on 250 estimations), 3rd
order model using the LS estimator.
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System identification approach applied to jitter estimation.
Step 1: third order approximation of variance, known derivatives

meanabs.err. | onesigmaunc. | mean abs. err. | one sigmaunc.
orderof ofest. O n, on est. Gnt of est. Gny onest. G,
estimator | model (ps) (fs) (mV) (uV)
LS 1 -0.027 1.645 0.008 0.486
2 -0.032 1.589 0.001 0.504
3 0.000 1.801 0.000 0.501
WLS 1 -0.007 0.765 0.000 0.047
2 -0.031 0.636 0.000 0.047
3 0.000 0.699 0.000 0.047
MLE 1 0.065 0.843 0.000 0.048
2 -0.026 0.633 0.000 0.048
3 0.000 0.703 0.000 0.048

Table 4-1. Summary of the simulation results in case of a 3™ order approximation of the
variance and in case of known derivatives. Case of known standard deviation of additive noise

G, of 0.6 mV and known standard deviation of jitter noise G, of 1 ps.
t

Y

meanabs.err. | onesigmaunc. | mean abs. err. | one sigmaunc.
orderof ofest. O n, on est. Gnt of est. Gny onest. G,
estimator | model (ps) (fs) (mV) (uV)
LS 1 -0.203 2.727 0.127 1.673
2 -0.223 2.400 0.043 1.748
3 0.000 3.364 0.000 1.509
WLS 1 -0.253 0.985 0.001 0.048
2 -0.244 0.760 0.000 0.048
3 0.000 0.917 0.000 0.048
MLE 1 0.388 1.414 0.000 0.049
2 -0.128 0.739 -0.001 0.049
3 0.000 0.922 0.000 0.048

Table 4-2. Summary of the simulation results in case of a 3™ order approximation of the
variance and in case of known derivatives. Case of known standard deviation of additive noise

G, of 0.6 mV and known standard deviation of jitter noise G, of 2 ps.
t

Y
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System identification approach applied to jitter estimation.
Step 2: realistic variance, known derivatives

Step 2: realistic variance,
known derivatives

Here, the simulated sample variance is obtained based on
y(t;) = yolt;+n,(1)) + ny(tl.). Eq. 4-32

The standard deviation of the additive noise ny(tl.) is fixed to 0.6 mV, while the

standard deviation of the jitter noise nt(tl.) is stepped from 0 to 2 ps in 0.2 ps steps.

The required derivatives of the pulse are assumed to be known. In step 3, the
derivatives will be calculated starting from the sample mean of the pulse and the
estimated variance of the jitter noise. This allows to verify the impact of uncertainties
on the required derivatives.

Simulation data for the sample mean and sample variance of the pulse is obtained
using a normal distribution for both ny(tl.) and nt(ti), i = 1. 4096 and based on

100 realizations of the pulse. The sample variance of the sample variance is based on
100 repeated realizations. Finally, the variance of the additive and jitter noise is
estimated and this process is repeated 50 times.

Estimated jitter standard deviation

Figure 4-17 up to figure 4-19 show the sample mean of the absolute error of the
estimated jitter standard deviation. It is clear that the third order model in combination
with an unweighted LS estimator provides the best estimate for the jitter standard
deviation. The mean relative error is 0.03% for a jitter standard deviation of 1 ps, while
it is 0.3% using the WLS estimator.

Estimated additive noise standard deviation

Figure 4-20 on page 4-29 up to figure 4-22 show the estimated standard deviation of
the additive noise. The exact value is 0.6 mV. Note that the mean relative error of a
first order model in combination with an unweighted LS estimator is 1.25% for a jitter
standard deviation of 1 ps. Using a third order model, this relative error is reduced to
0.11% and using a WLS estimator this error is further reduced to 0.02%.

Value of the cost function

Again, the value of the cost function in case of a weighted least-squares deserves
special attention. Figure 4-23 shows the cost for the first, second and third order
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System identification approach applied to jitter estimation.
Step 2: realistic variance, known derivatives
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Figure 4-17. Mean absolute error of the estimated standard deviation of the jitter noise using

the ML estimator. (15t order: long dashed line, 2" order: short dashed line, 3™ order: solid
line)
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Figure 4-18. Mean absolute error of the estimated standard deviation of the jitter noise using

the LS estimator. (15t order: long dashed line, 2" order: short dashed line, 3" order: solid
line)

models and demonstrates the sensitivity of the cost with respect to model errors.

Figure 4-24 and figure 4-25 on page 4-32 zoom into the sample mean and sample
variance of the cost for the third order model.

In order to obtain the expected value and the variance of the cost, one can reuse the
explanation found under “Random number generator” on page 4-15, taken into
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System identification approach applied to jitter estimation.
Step 2: realistic variance, known derivatives
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Figure 4-19. Mean absolute error of the estimated standard deviation of the jitter noise using

the WLS estimator. (15! order: long dashed line, 2" order: short dashed line, 3™ order: solid
line)
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Figure 4-20. Mean estimated standard deviation of the additive noise using the ML
estimator. (15! order: long dashed line, 24 order: short dashed line, 3™ order: solid line)

account that the number of degrees of freedom is decreased by the number of
parameters (p = 2). During this simulation, the following values were used:
N, = 100, N, = 4096, N, = 100 and N, = 50. Replacing N,by N,-p inEq.

4-26, the expected value of the cost Ly, is found to be 4178. The variance of the cost
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System identification approach applied to jitter estimation.
Step 2: realistic variance, known derivatives
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Figure 4-21. Mean estimated standard deviation of the additive noise using the LS estimator.
(15t order: long dashed line, 2" order: short dashed line, 3™ order: solid line)
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Figure 4-22. Mean estimated standard deviation of the additive noise using the WLS
estimator. (15t order: long dashed line, 2" order: short dashed line, 3" order: solid line)

2 . :
Gy, equals 8888. Using Eq. 4-28 and Eq. 4-29, one can calculate the 95% confidence

intervals for the expected value of the cost and its variance. These are shown in
figure 4-24 and figure 4-25. For jitter standard deviations of more than 1 ps, the
realized costs clearly deviate from the expected value of the cost. The asymmetry of
the 95% confidence interval of the sample variance of the cost is due to the
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Figure 4-23. Mean value of the cost using the WLS estimator. (15! order: long dashed line,
2"d order: short dashed line, 3" order: solid line)
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Figure 4-24. Expected value (dashed line) of the cost of the 3'd order model using the WLS
estimator, compared to its sample mean value (50 realizations) and its 95% confidence
interval. The mean cost for jitter standard deviations of more than 1.2 ps fall outside the

selected vertical range.

asymmetric probability density function of a % - distribution for a relatively small
number of degrees of freedom (49).
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Figure 4-25. Expected variance (dashed line) of the cost of the 3" order model using the
WLS estimator, compared to its sample variance value (50 realizations) and its 95%
confidence interval. The sample variance of the cost for a jitter standard deviation of 1.8 ps
and 2 ps falls outside the selected vertical range.

It can be concluded that the unweighted LS estimator provides better estimates for the
jitter standard deviation, while the WLS estimator outperforms the LS when estimating
the standard deviation of the additive noise.

Using a third order model in combination with the WLS estimator, figure 4-24 clearly
shows that the sample mean of the cost and its 95% confidence interval include the
expected value of the cost for jitter standard deviation values up to 1 ps. For higher
jitter values, the sample mean of the cost clearly starts to deviate from the expected
values indicating the presence of model errors.

Using the covariance matrix of the parameters

Again it is verified that the uncertainty on the parameters, indicated by the parameter
covariance matrix, corresponds to the sample variance of the parameters based on

N . repeated estimations.

Figure 4-26 shows the comparison for the estimated variance of the additive noise for
a third order model in combination with the WLS estimator based on 50 estimations.
Figure 4-27 repeats this comparison for the estimated variance of the jitter noise for
the same model and estimator. Good correspondence is found, especially when
taking the 95% confidence interval of the sample variance into account, based on a

2
X - distribution with 49 degrees of freedom:
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Figure 4-26. Variance of the estimated variance of the additive noise (solid line: based on

the parameter covariance matrix, dashed line: sample variance based on 50 estimations), 3rd
order model using the WLS estimator.

2 2 2
0.698 Sy < o7, < 1.553 5y Eq. 4-33

Finally, figure 4-28 shows that the uncertainty on the estimated jitter variance is
indeed smaller when using a WLS estimator instead of a (unweighted) LS estimator.
However, the uncertainty on the estimated jitter standard deviation is sufficiently small
to prefer the LS estimator over the WLS. Indeed, starting from the sample variance of
the sample variance, one can calculate the standard deviation on the standard
deviation:

o= [— Eq. 4-34
ﬁ q

As such, the variance of the estimated variance of 2.5 10723 boils down to a 95%
confidence interval on the estimated jitter standard deviation of £+ 5 fs in case of a
known jitter standard deviation of 1 ps.

It should be noticed that the number of pulse realizations used for one estimate of the

parameters, is 10%. Decreasing this number will increase the uncertainty on the
parameters. Given a specified tolerance on the estimated parameters, using a smaller
number of realizations, the larger uncertainty of the LS-based estimates may become
an argument to prefer the WLS estimator over the LS estimator. Finally, one should
recall that the WLS estimator has the additional advantage of providing a cost which
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Figure 4-27. Variance of the estimated variance of the jitter noise (solid line: based on the

parameter covariance matrix, dashed line: sample variance based on 50 estimations), 3rd
order model using the WLS estimator.
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Figure 4-28. Variance of the estimated variance of the jitter noise (solid line: based on the

parameter covariance matrix, dashed line: sample variance based on 50 estimations), 3rd
order model using the LS estimator.

can be compared to the expected value of the cost and allows to detect model errors
or other anomalies.

An overview of the simulation results can be found in Table 4-3 and Table 4-4.
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System identification approach applied to jitter estimation.
Step 2: realistic variance, known derivatives

meanabs.err. | onesigmaunc. | mean abs. err. | one sigmaunc.
orderof ofest. O n, on est. Gnt of est. Gny onest. G,
estimator | model (ps) (fs) (mV) (uV)
LS 1 -0.027 2.249 0.008 0.683
2 -0.032 2.175 0.000 0.701
3 0.000 2.468 -0.001 0.696
WLS 1 -0.026 1.128 0.000 0.067
2 -0.041 1.028 0.000 0.067
3 -0.003 1.183 0.000 0.067
MLE 1 0.058 1.180 0.000 0.067
2 -0.031 0.890 0.000 0.067
3 -0.005 0.987 0.000 0.067

Table 4-3. Summary of the simulation results in case of a realistic variance and in case of
known derivatives. Case of known standard deviation of additive noise G n of 0.6 mV and

known standard deviation of jitter noise G, of 1 ps.
t

meanabs.err. | onesigmaunc. | mean abs. err. | one sigmaunc.
orderof ofest. G n, on est. G"t of est. Gny onest. G, ‘
estimator | model (ps) (fs) (mV) (uV)
LS 1 -0.200 3417 0.093 2.361
2 -0.227 3.064 0.014 2.286
3 -0.016 4.457 -0.017 1.957
WLS 1 -0.305 1.305 0.000 0.068
2 -0.337 1.095 0.000 0.068
3 -0.108 1.607 0.000 0.068
MLE 1 0.236 1.811 0.000 0.068
2 -0.211 0.987 -0.001 0.068
3 -0.097 1.223 0.000 0.068

Table 4-4. Summary of the simulation results in case of a realistic variance and in case of
known derivatives. Case of known standard deviation of additive noise © n of 0.6 mV and

known standard deviation of jitter noise G, of 2 ps.
t
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System identification approach applied to jitter estimation.
Step 3: realistic variance, derivatives based on sample mean

Step 3: realistic variance,
derivatives based on sample mean

In this step, it is no longer assumed that the derivatives are known. Instead, the
derivatives are calculated starting from the sample mean of the pulse. Due to the low-
pass effect of the jitter, the sample mean of the pulse is a filtered version of the true
pulse and must be corrected first, based on the estimated variance of the jitter noise.

Therefore, during iteration i of the estimation process, the sample mean is corrected

using the jitter variance estimated during iteration i — 1. The derivatives of this
corrected pulse are calculated via the frequency domain.

Using the same random seed, the simulation data is identical to the one used in step 2
for easy comparison. The results below don’t show any negative consequences of the
fact that the derivatives must be calculated.

Estimated jitter standard deviation

Figure 4-29 up to figure 4-31 show the sample mean of the absolute error of the
estimated jitter standard deviation. Here too, it is clear that the third order model in
combination with an unweighted LS estimator provides a better estimate for the jitter
standard deviation. The mean relative error is 0.04% for a jitter standard deviation of
1 ps, while it is 0.3% using the WLS estimator. As such, for the estimation of the jitter

mean abs. error
est. jitter stdev

(ps)
0.15 |
01!

0.05 -
. itter stdev
o *15 2 (ps)

0,05 | e
i Y

-0.1 | LN

-0.15

Figure 4-29. Mean absolute error of the estimated standard deviation of the jitter noise using

the ML estimator. (15! order: long dashed line, 2" order: short dashed line, 3" order: solid
line)

standard deviation, the unweighted LS estimator does a better job than the WLS.
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Step 3: realistic variance, derivatives based on sample mean
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Figure 4-30. Mean absolute error of the estimated standard deviation of the jitter noise using

the LS estimator. (15! order: long dashed line, 2" order: short dashed line, 3" order: solid
line)
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Figure 4-31. Mean absolute error of the estimated standard deviation of the jitter noise using

the WLS estimator. (15! order: long dashed line, 2™ order: short dashed line, 3" order: solid
line)

Estimated additive noise standard deviation

Figure 4-32 up to figure 4-34 show the estimated standard deviation of the additive
noise. The exact value is 0.6 mV. Note that the mean relative error of a first order
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System identification approach applied to jitter estimation.
Step 3: realistic variance, derivatives based on sample mean

model in combination with an unweighted LS estimator is 1.24% for a jitter standard
deviation of 1 ps. Using a third order model, this relative error is reduced to 0.12% and
using a WLS estimator this error is further reduced to 0.02%. As such, for the

mean est. stdev
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Figure 4-32. Mean estimated standard deviation of the additive noise using the ML
estimator. (15t order: long dashed line, 2"9 order: short dashed line, 3™ order: solid line)
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Figure 4-33. Mean estimated standard deviation of the additive noise using the LS estimator.
(15t order: long dashed line, 2" order: short dashed line, 3" order: solid line)

estimation of the standard deviation of the additive noise, one should prefer the WLS
estimator over the unweighted LS.
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System identification approach applied to jitter estimation.
Step 3: realistic variance, derivatives based on sample mean
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Figure 4-34. Mean estimated standard deviation of the additive noise using the WLS
estimator. (15t order: long dashed line, 2" order: short dashed line, 3" order: solid line)

Value of the cost function
Figure 4-35 shows the mean cost for the first, second and third order model in

combination with a WLS estimator. Figure 4-36 and figure 4-37 zoom into the sample
mean and sample variance of the cost for the third order model.

cost (x10%)

25 |
20 -
15 -
10 | ,
. -®" .-
i , - (/f ~ . Jitter stdev
L s B e 2 (s

Figure 4-35. Mean value of the cost using the WLS estimator. (15! order: long dashed line,
2nd order: short dashed line, 3 order: solid line)

Contributions to Large-Signal Network Analysis 4-39
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Step 3: realistic variance, derivatives based on sample mean
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Figure 4-36. Expected value (dashed line) of the cost of the 3" order model using the WLS
estimator, compared to its sample mean value (50 realizations) and its 95% confidence
interval. The mean cost for jitter standard deviations of more than 1.2 ps fall outside the
selected vertical range.
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Figure 4-37. Expected variance (dashed line) of the cost of the 3 order model using the
WLS estimator, compared to its sample variance value (50 realizations) and its 95%
confidence interval. The sample variance of the cost for a jitter standard deviation of 1.8 ps
and 2 ps falls outside the selected vertical range.

2 . ,
The expected value of the cost, Wy, its variance G, and their 95% confidence
interval equal those of step 2. These are shown in figure 4-36 and figure 4-37.
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System identification approach applied to jitter estimation.
Step 3: realistic variance, derivatives based on sample mean

Comparing figure 4-24 to figure 4-36 and figure 4-25 to figure 4-37, it is clear that the
effect of not knowing the exact derivatives is negligible. As was the case in step 2, the
cost starts deviating from the expected cost for jitter values larger than 1 ps, implying
the presence of model errors.

Using the covariance matrix of the parameters

Again, the uncertainty on the parameters obtained from theory and simulation are
compared. It is verified if the uncertainty on the parameters, indicated by the
parameter covariance matrix, corresponds to the sample variance of the parameters

based on N . repeated estimations.

var est. var add. noise
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Figure 4-38. Variance of the estimated variance of the additive noise (solid line: based on

the parameter covariance matrix, dashed line: sample variance based on 50 estimations), 3rd
order model using the WLS estimator.

Figure 4-38 shows the comparison for the estimated variance of the additive noise for
a third order model in combination with the WLS estimator based on 50 estimations.
Again, good correspondence is found after taking the 95% confidence interval of the

sample variance into account, based on a x2 - distribution with 49 degrees of
freedom (Eq. 4-33). Figure 4-39 repeats this comparison for the estimated variance of
the jitter noise for the same model and estimator. Finally, figure 4-40 shows that once
more the uncertainty on the estimated jitter variance is smaller using a WLS estimator
instead of a (unweighted) LS estimator. Again, the uncertainty on the estimated jitter
standard deviation is similar to that of step 2 and as such sufficiently small to prefer
the LS estimator over the WLS for the estimation of the jitter standard deviation, while
the WLS is preferred over the LS estimator when estimating the standard deviation of
the additive noise.
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Figure 4-39. Variance of the estimated variance of the jitter noise (solid line: based on the

parameter covariance matrix, dashed line: sample variance based on 50 estimations), 3rd
order model using the WLS estimator.
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Figure 4-40. Variance of the estimated variance of the jitter noise (solid line: based on the

parameter covariance matrix, dashed line: sample variance based on 50 estimations), 3rd
order model using the LS estimator.

An overview of the simulation results can be found in Table 4-5 and Table 4-6.
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System identification approach applied to jitter estimation.
Step 3: realistic variance, derivatives based on sample mean

meanabs.err. | onesigmaunc. | mean abs. err. | one sigmaunc.
orderof ofest. O n, on est. Gnt of est. Gny onest. G,
estimator | model (ps) (fs) (mV) (uV)
LS 1 -0.025 2.257 0.007 0.682
2 -0.030 2.184 0.000 0.701
3 0.000 2.468 -0.001 0.696
WLS 1 -0.024 1.133 0.000 0.067
2 -0.038 1.034 0.000 0.067
3 -0.003 1.184 0.000 0.067
MLE 1 0.053 1.173 0.000 0.068
2 -0.029 0.898 0.000 0.068
3 -0.005 0.993 0.000 0.068

Table 4-5. Summary of the simulation results in case of a realistic variance and in case of
derivatives based on the sample mean. Case of known standard deviation of additive noise

G, of 0.6 mV and known standard deviation of jitter noise G, of 1 ps.
y t

meanabs.err. | onesigmaunc. | mean abs. err. | one sigmaunc.
orderof ofest. n, on est. Gnt of est. Gny onest. G,
estimator | model (ps) (fs) (mV) (uV)
LS 1 -0.161 3.564 0.093 2.351
2 -0.185 3.199 0.011 2.270
3 -0.012 4474 -0.018 1.954
WLS 1 -0.219 1.435 0.000 0.068
2 -0.250 1.195 0.000 0.068
3 -0.082 1.646 0.000 0.068
MLE 1 0.170 1.700 0.000 0.069
2 -0.173 1.047 -0.001 0.069
3 -0.080 1.257 0.000 0.069

Table 4-6. Summary of the simulation results in case of a realistic variance and in case of
derivatives based on the sample mean. Case of known standard deviation of additive noise

G, of 0.6 mV and known standard deviation of jitter noise G, of 2 ps.
y t
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Step 4: influence of time base drift

Step 4: influence of time base drift

The above simulations show that all estimators perform reasonably well for the used
time signal (Eq. 4-22) when the jitter standard deviation is limited to 1 ps. Applying
them to measured data, large discrepancies were found between the measured and
estimated variance, even though the estimated jitter standard deviation also turns out
to be approximately 1 ps. The sampling oscilloscope measurements add extra
challenges due to time base drift and time base distortion that are present in the
measurements and absent in the simulations. It is decided to study the effect of time
base drift and its compensation on the estimated parameters.

Let x(7) be a band-limited signal. X, = x(n - At) represents the sampled version of
x(1).
It is possible to reconstruct x(7) :

“+oo

B o - ) _ sin(9) ]
x(1) = Z X, - sinc {R(At k)},where sinc (0) = 0 Eq. 4-35
k = —oo

Applying a delay T to x(¢):
“+ oo
xX'(t) = x(t—7) = X, - sinc (I—_—I—k) Eq. 4-36
k = —co
The sampled version of this delayed signal then becomes
“+ oo

x'n = x'(n-At) = Z X sinc {n(n—k—é)} Eq. 4-37
k = —oo

Eq. 4-37 clearly shows that for an arbitrary delay T, x'n depends on all Xy - However,

if the applied delay equals a multiple of the sampling period, i.e. T = m - At, all

contributions to Eq. 4-37 are zero, except for k = n—m. As such, x'n =X, _
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System identification approach applied to jitter estimation.
Step 4: influence of time base drift

Based on the above, it is clear that, starting from a time sequence x, , n = 1..N,of

: . . . , 2 ,
independent stochastical variables with known variance G, , the variance of the

N
sampled version of the arbitrarily delayed signal x'n = Z a, - x; equals

k=1
N
2 2 . . .
o = Z a; - 6, . Moreover, x' is no longer independent with respect to 7.
k=1
N

. - . 2 =2 2
Applying the same delay to the original variance G, , G,, = Z a,-G.

: 2 =2
Obviously ¢’ # G,, for a general sequence q, .

If the applied delay is an integer multiple of the sampling period, i.e. T = m - At, then

2 _ 72
x, =x,_..Inthatcase 6, = o,.

The analytical pulse (Eq. 4-22) is used to study the shaping of the variance as function

At 5 ns .
of At First a known delay T = k- 0 k=1.5,At = 1096 is applied to the

analytical expression. The sample variance of this delayed pulse is obtained based on
1000 realizations using a standard deviation of 0.6 mV of the additive noise and a
standard deviation of 1 ps of the jitter noise. Next the inverse delay is applied to this
sample variance and compared to the sample variance of the original pulse

(At = 0).

Figure 4-41 clearly indicates that the shaping of the sample variance is very limited
when the delay is limited to 0.1Az.

However, when a delay is applied of 0.5A¢, the effect is significant.

Especially the increased level of the minima of the sample variance, corresponding to
a zero slope of the average pulse, incorrectly amplifies the observation that the first
order approximation of the model equation (Eq. 4-3) no longer holds.
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Step 4: influence of time base drift
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Figure 4-41. Minimal shaping of the sample variance (solid line: original variance, dashed
line: variance after delay compensation of 0.1At)
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Figure 4-42. Clear shaping of the sample variance (solid line: original variance, dashed line:
variance after delay compensation of 0.5At)

Starting from the information shown in figure 4-41 and figure 4-42, figure 4-43 shows
the difference between the original variance and the variance after delay

compensation of 0.1Ar and 0.5A¢.

The above implies that one cannot apply an arbitrary delay to a signal before
averaging without introducing errors in the sample variance, which is assumed to be

based on stochastically independent variables, with respect to ¢.

4-46 Contributions to Large-Signal Network Analysis



System identification approach applied to jitter estimation.
Step 4: influence of time base drift
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Figure 4-43. Difference between the original variance and the one after delay compensation
(solid line: delay of 0.1At, dashed line: delay of 0.5At)

According to figure 4-4 on page 4-14, which shows the sample variance of impulse
response measurements after time base drift compensation, the measurement indeed
suffers from the above error. Using this sample variance, the estimated time base jitter
is incorrect.

A similar problem becomes apparent when compensating for the time base distortion.
Any interpolation combines two or more values of the non-equidistant time grid to
obtain an estimate of the value at the equidistant time grid points. This again shapes
the variance and introduces correlation between successive time points.

The error introduced by time base drift compensation before averaging can be limited
based on the observations that

« applying a delay which is an integer multiple of the sampling period At
introduces no error,

« for the impulse response of interest, the shaping of the variance and as such the
error is very small’ when the delay is limited to 0.1A¢.

Therefore, the different realizations of the pulse are first delayed by integer multiples
of At such that all realizations are aligned within £0.5A¢.

Then all realizations are divided into time buckets which are £0.1 At wide, resulting in
a 5-times oversampled signal as compared to the original signal.

1. The RMS value of the difference is 1.6% of the RMS value of the original variance, while the
maximum value of the difference is 2.1% of the maximum value of the original variance.
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Step 4: influence of time base drift

Depending on the shape of the time base drift, in general the buckets will not be
equally filled. As such, the uncertainty on the sample variance will vary as function of
the bucket index. This is not an issue when using a weighted least squares to extract
the model parameters.

Time base jitter interpretable as time base drift

In case of measurements, the time base drift of each acquisition with respect to the
first one is estimated by minimizing

N
_j(l)[T 2
V = Z ‘Xref(ool.)—e - X(w,) Eq. 4-38
i=1

within the bandwidth of the signal X((Di) .

It is impossible to fully separate time base drift and time base jitter, because the latter
can be interpreted as time base drift as shown by the following simulation. The
analytical pulse is distorted by additive noise (0.6 mV standard deviation) and jitter
noise (1 ps standard deviation). 500 realizations of 4096 points each are generated.

First the drift - which is known to be zero - is estimated using the first realization as
reference signal. Next, the drift of each realization with respect to any other one is
estimated in order to obtain an enhanced drift estimate with respect to the first
realization, as advised in [8]. Figure 4-44 shows no noticeable difference between
both approaches.

The sample standard deviation of the estimated drift, in the case of a jitter standard
deviation of 1 ps and based on the 500 realizations, equals 0.26 ps (0.25 ps for the
enhanced estimate).

Given the above and based on reasonable time constants' corresponding to thermal
effects, it makes sense to apply smoothing to the estimated time base drift. This will
average out the effect of the fast jitter, while it will leave the slow drift mainly
unaffected. Additional motivation for this smoothing can be found in the chapter on
drift estimation in the presence of both jitter and additive noise.

1. Assumptions with respect to time constants are explained in step 5.
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Step 4: influence of time base drift
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Figure 4-44. Time base jitter interpreted as time base drift (full line: “naive” estimate, dots:
enhanced estimate).
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Step 5: measurements

The measurement data correspond to the combined impulse response of an opto-
electrical converter and a 50 GHz sampling oscilloscope (see figure 4-1 on page 4-
12). The impulse response measurement and the required time base distortion
measurements were performed by Tracy Clement at NIST. This contribution is
gratefully acknowledged.

A time record of 5ns was used starting at 143 ns delay and 5000 records of
4096 points were acquired.

Time base drift estimation

The drift is estimated, using the first measurement as reference. Based on the fact
that simulations confirmed that time base jitter may incorrectly be interpreted as time
base drift (see above) and based on reasonable time constants corresponding to
thermal effects, the estimated drift is smoothed.

The thermal time constant of the sampling oscilloscope is assumed to be of the order
of minutes. The collection and storage of 5000 records of 4096 points is found to take
32 minutes. As such, approximately 150 records are collected per minute. Also,
practical experience shows that the shape of the time base drift strongly depends on
the environment, both with respect to temperature variations and airflow.

The smoothing can either be done using a global model such as a low-order
polynomial or by applying a local model such as a moving average window. The latter
has the disadvantage that some realizations at both edges cannot be used, because
no moving average exists for these realizations.

Figure 4-45 shows the estimated time base drift and its smoothed version using a
4™ order polynomial. The residue (figure 4-46) has a standard deviation of 0.30 ps

and as such approximates the 0.26 ps found earlier' based on a jitter standard
deviation of 1 ps.

Figure 4-47 shows the equivalent when using a moving average window, which is
101 realizations wide. The standard deviation of the residue (figure 4-48) is slightly
smaller: 0.28 ps.

It is unclear which smoothing method is to be preferred. It looks like the
measurements at NIST were performed under very good conditions with respect to
temperature variations and airflow. Given the disadvantage of the moving average

with respect to the loss of measurements, the smoothing based on the 4" order

1. see end of step 4 on page 4-48.
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Figure 4-45. Estimated time base drift (white line: smoothed using 4™ order polynomial)
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Figure 4-46. Residue (estimated drift minus smoothed drift (4" order polynomial)).

polynomial is preferred. As a verification, the complete processing of the data was
repeated using the moving average window. It was found that the resulting estimates
of the standard variation of both jitter and additive noise matched within their 95%
confidence intervals. As such, for the measurements performed at NIST, the selection
of the smoothing method is found not to be critical.
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Figure 4-47. Estimated time base drift (white line: smoothed using moving average)
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Figure 4-48. Residue (estimated drift minus smoothed drift (moving average)).

Time base drift compensation

The smoothing, based on the 4™ order polynomial, is used to align the different

realizations. First all realizations are aligned within £0.5A¢, as shown in figure 4-49.
This does not introduce any shaping of the variance, as only shifts over an integer
number of samples are used.
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Figure 4-49. Drift compensated within + 0.5 At.

Next, the realizations are divided in 5 buckets, each being *£0.1Az wide. All
realizations within each bucket are aligned with respect to the center of that bucket.

Given a maximum delay of 0.1Af¢, the resulting shaping of the variance that is

introduced by the alignment can be neglected.

Figure 4-50 shows the unequal distribution of the 5000 realizations over the different

buckets.

# realizations
per bucket

2000 f

2000
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1000 | 879

500 |
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—-0.488 -0.244 0. 0.244 0.488

Figure 4-50. Distribution of the 5000 realizations over the different buckets.
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In order to obtain variance information, required by the WLS estimator, the realizations
per bucket must be divided into different data sets. The effect of using the sample
variance, instead of the exact variance, on the expected value and variance of the
cost and on the uncertainty of the parameters as function of the number of the data
sets, is studied in [6].

In order to minimize the increase of these parameters, the number of the data sets
should be sufficiently large. On the other hand, the number of realizations within each

2 e
data set should be sufficiently large too, because of the XN -1 - distribution of the

sample variance, N representing the number of realizations of the pulse used to

calculate the sample variance. This distribution approaches a normal distribution
(assumed by [6]), only if N is sufficiently large.

A possible compromise is to use a square root law. Based on the smallest number of
realizations per bucket, as indicated in figure 4-50, both the number of data sets and

the number of realizations per data set is setto /169 = 13.

Another possible criterion is the allowed increase of the uncertainty of the parameters.

In order to limit this increase to 10%, the number of data sets NW must at least be 25
: N, - 1

NW—S
also smaller than 10%, while the uncertainty on the cost increases by less than 20%.

< 1.1). The corresponding increase of the expected value of the cost is

The jitter was estimated using two different number of data sets, i.e. 13 and 25, based
on the above mentioned criteria.

Figure 4-51 shows the sample mean of both the sample mean and sample variance of
the 5 times oversampled pulse, each based on 25 data sets. Depending on the bucket
index, the number of realizations per data set varies from 6 to 80. As such the
uncertainty on the sample variance becomes a function of the bucket index.

Time base distortion estimation and compensation

Due to the time base distortion of the Agilent 83480A Digital Communication Analyzer,
the sample mean and the sample variance are specified on a non-equidistant time
grid.

The actual time jitter estimation algorithm does not require the sample mean and
sample variance to be specified on an equidistant time grid. However, in order to
efficiently calculate the derivatives of the mean pulse via the frequency domain using
an FFT, cubic interpolation is used to obtain the values of the sample mean on an
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Figure 4-51. Sample mean of sample mean and sample variance of the oversampled pulse,
each based on 25 data sets.

equidistant grid, as proposed in [9]. Finally, the derivatives are obtained at the original
non-equidistant grid, again by applying the “inverse” cubic interpolation. As a result,
some of the points at both edges of the time record may be lost when extrapolation is

not allowed.

The time base distortion is estimated first, using [10], after collecting the required data
and making sure that both the trigger rate and time base settings are identical to those
used during the combined impulse response measurement of the opto-electrical

converter and the sampling oscilloscope.
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Figure 4-52. Estimated time base distortion (lower plot = zoom into main portion of pulse +
95% confidence interval).

Figure 4-52 shows the estimated time base distortion, defined as
TBDnli] = t;—i- At, the non-equidistant time stamps being represented by ..

For an ideal time base, all values TBDn|[i] equal zero. The lower plot zooms into the
portion of the time base where the main portion of the pulse is located. All points,
contributing to the main pulse, are approximately shifted 0.6 ps to the left with respect
to the ideal time base. Therefore their relative distance with respect to each other is

very close to At. As such it can be concluded that in this case the influence of the
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time base distortion is minimal, because the main portion of the pulse does not suffer
from any significant time base distortion, it is only shifted over a constant delay.

: . , , 2 .
Applying cubic interpolation to both sample mean y, and sample variance G, , is

statistically incorrect. Indeed, the implemented cubic interpolation uses a linear
combination of the four surrounding non-equidistant points to calculate the value at
the equidistant grid:

4
Yiar = Z a-y; Eq. 4-39
i=1
The correct corresponding variance equals
4

4

2 2 2 2

Orp; = Zai 10, # Zai'cti Eq. 4-40
i=1

i=1

. . . 2 .
Using the first order approximation to describe the variance G, (EqQ. 4-3), the variance

on the equidistant grid becomes
4 2

4

dy

2 2 2 2 0

Gy(k-At) = Z a; -Gny+ Z a; (E ] G, . Eq. 4-41
i=1 i=1 =1

1

[\

This still requires to calculate the derivatives at the non-equidistant grid. As such it is
easier to remain on the non-equidistant grid.

Time base jitter estimation

Finally, the time base jitter can be estimated using the proposed model (Eq. 4-6) and a
weighted least squares estimator, taking the varying variance of the sample variance
as function of the bucket index into account, in order to minimize the uncertainty on
the estimated parameters.

Another advantage of the weighted least squares is the fact that one is able to
calculate the expected value of the cost and its 95% confidence interval as a mean to
verify the presence of model errors or other anomalies.
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Figure 4-53 shows the correctly aligned “measured” variance on a logarithmic vertical
scale. It clearly shows the increased variance due to jitter corresponding to the main
pulse and to the reflection about 0.8 ps after the main pulse.
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Figure 4-53. Correctly aligned “measured” variance (logarithmic vertical scale).

Given 25 data sets, 4096 time points1 and 2 parameters, the expected value of the
cost and its 95% confidence interval equals 22324 + 474. The actual value of the cost
function for a third order model is found to be 23582. Its value is less than 6% larger
than the expected value of the cost and slightly outside the 95% confidence interval.
With respect to the first order model, the cost is decreased by more than 13%.

The estimated variance of the additive noise equals (0.258 106 +0.163 109 V2 and

that of the jitter noise is (0.923 1072* + 4.99 10727) s2. The uncertainties correspond to
the 95% confidence interval.

The corresponding standard deviation values for the additive and jitter noise and their
95% confidence intervals are 0.508 mV = 0.16 uV and 0.961 ps + 2.6 fs.

It is time to compare the modelled variance to the measured variance and its 95%
confidence interval based on the sample variance of the measured variance. While
figure 4-54 zooms into the main pulse, figure 4-55 demonstrates an equally excellent
fit for the first reflection. Figure 4-56 and figure 4-57 show the variance at both edges
of the record and demonstrate that also the additive noise portion fits exceptionally
well. Finally, figure 4-58 zooms into the maximum value of the variance to show the

1. The actual number of time points turns out to be 20466, based on the oversampling by a factor 5 and
the loss of 14 points at both edges based on the cubic interpolation followed by an inverse cubic
interpolation to obtain the derivatives.
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Figure 4-54. Comparing (the boundaries of the 95% confidence interval of) the (3“’ order
model, WLS estimator) modelled variance (red lines) and the correctly aligned “measured”
variance at the main pulse (black dots and vertical black lines, boundaries of the 95%
confidence intervals based on the sample variance of the sample variance).

uncertainty of the estimated variance as a result of the uncertainty on the estimated
parameters.
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Figure 4-55. Comparing (the boundaries of the 95% confidence interval of) the (3™ order
model, WLS estimator) modelled variance (red lines) and the correctly aligned “measured”
variance at the first reflection (black dots and vertical black lines, boundaries of the 95%
confidence intervals based on the sample variance of the sample variance).
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Figure 4-56. Comparing (the boundaries of the 95% confidence interval of) the (3rOI order
model, WLS estimator) modelled variance (red lines) and the correctly aligned “measured”
variance (black dots and vertical black lines, boundaries of the 95% confidence intervals
based on the sample variance of the sample variance), zooming into the pedestal
corresponding to the variance of the additive noise at the left edge of the record.
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Figure 4-57. Comparing (the boundaries of the 95% confidence interval of) the (3™ order
model, WLS estimator) modelled variance (red lines) and the correctly aligned “measured”
variance (black dots and vertical black lines, boundaries of the 95% confidence intervals
based on the sample variance of the sample variance), zooming into the pedestal
corresponding to the variance of the additive noise at the right edge of the record.
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Figure 4-58. Comparing the boundaries of the 95% confidence interval of the (3" order
model, WLS estimator) modelled variance (red lines) and the correctly aligned “measured”
variance (black dots and vertical black lines, boundaries of the 95% confidence intervals
based on the sample variance of the sample variance), zooming into the maximum value.

The correlation coefficient between the estimated variance of additive and jitter noise
turns out to be -0.12. As such there is no statistical evidence of a significant
correlation between both estimated parameters.

Repeating the estimation based on 13 data sets, the standard deviation of the additive
and jitter noise and their 95% confidence intervals are 0.508 mV £0.15uV and
0.962 ps * 2.5 fs. As such, selecting a different number of data sets has no effect on
the final estimate. The expected and realized value of the cost and its variance
however did change, according to [6]. The realized cost turns out to be 25597, 4%
above the expected value of the cost and slightly outside the 95% interval:
24557 + 5883.

The power of a solid stochastical framework

It is shown that, using a solid stochastical framework, one is able to detect anomalies
like overlooking the shaping of the variance due to drift compensation. This is similar
to the power demonstrated by [10] to capture anomalies with respect to the time base
distortion: due to the fact that the realized cost was significantly larger than the
expected value of the cost, it was found that, for that particular setup, the time base
distortion varied with the applied calibration frequency, while the model assumes that
this time base distortion is identical for all applied calibration frequencies.

Suppose the shaping of the variance due to time base drift compensation is
overlooked. Repeating the above estimation procedure, using 70 data sets according
to the “square root” rule starting from 5000 realizations, but not using any
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oversampling to limit the drift compensation to 0.1 Az, the expected value of the cost
and its 95% confidence interval equals 4212 + 188. The realized cost using a third
order model turns out to be 14764, which is 3.5 times the expected value of the cost.
As can be seen in figure 4-59, this is confirmed by a poor correspondence between
the model and the variance based on incorrectly processed measurements.
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Figure 4-59. Comparing the (3™ order model, WLS estimator) modelled variance (connected
red dots) and the incorrectly shaped “measured” variance (black dots and vertical black lines,
boundaries of the 95% confidence intervals based on the sample variance of the sample
variance).

Using the knowledge of the x2 - distribution of the variance of the sample variance of
the pulse, one can avoid the calculation of the sample variance of the sample variance
and as such reduce the number of required measurements. Figure 4-60 compares the
modelled variance to the measured variance and its 95% confidence interval based

ona x2 - distribution. The value of the cost function turns out to be 7% larger than the
expected value of the cost and is located slightly outside the 95% confidence interval
of the expected value of the cost. The standard deviation of the estimated additive and
jitter noise and their 95% confidence intervals are 0.508 mV +0.16 uV and
0.965 ps + 2.3 fs and these match the values, obtained by using the sample variance
of the sample variance.

ML estimation

Based on Eq. 4-19, the MLE implementation can take care of the unequal distribution
of the 5000 realizations over the different buckets. The corresponding varying
uncertainty is taken into account by using the appropriate number of degrees of
freedom as function of the bucket index.
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Figure 4-60. Comparing (the boundaries of the 95% confidence interval of) the (3™ order
model, WLS estimator) modelled variance (red lines) and the correctly aligned “measured”
variance (black dots and vertical black lines, boundaries of the 95% confidence intervals

based on the x? - distribution of the sample variance (known number of degrees of
freedom)).

Based on a third order model, the estimated jitter standard deviation is found to be
0.970 ps + 2.3 fs, while the estimated standard deviation of the additive noise is found
to be 0.509mV +0.16 uV. Compared to the result of the WLS estimator
(0.508 mV £0.16 uV and 0.965ps +2.3fs), it is clear that the 95% confidence
intervals almost overlap. Furthermore, the uncertainty of the parameters for the
maximum likelihood estimator is found to equal that of the WLS estimates. Also, the
crosscorrelation between both parameters turns out to be -0.11 as was the case for
the WLS estimator.

As such, excellent correspondence can be claimed between the estimated standard
variation of both jitter and additive noise, based on the WLS estimator and the ML
estimator. The WLS estimator is to be preferred because the actual value of the cost
can be used to detect model errors by comparing it to its expected value. Interpreting
the value of the cost based on the ML estimator is found to be less obvious.

LS estimation

In step 2 and 3 of the simulation, the LS estimator provided the best predictions for the
jitter standard deviation. Used in combination with the third order model and based on
the correctly aligned measured variance, the estimated jitter standard deviation turns
out to be 0.955 ps + 10.5 fs, while the estimated standard deviation of the additive
noise is found to be 0.514 mV = 4 uV. Compared to the result of the WLS estimator
(0.508 mV £0.16 uV and 0.965ps +2.3fs), it is clear that the 95% confidence
intervals overlap for the jitter estimation and almost overlap for the additive noise
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estimation. Furthermore, as expected, the uncertainty of the parameters is obviously
larger for the LS estimate than for the WLS estimate. Finally, the crosscorrelation
between both parameters turns out to be -0.82, which is significantly larger than -0.11
using the WLS estimator.

Again, excellent correspondence can be claimed between the estimated standard
variation of both jitter and additive noise, based on the WLS estimator and the LS
estimator. The WLS estimator is to be preferred because the value of the cost can be
used to detect model errors, while this is impossible for the LS estimator. Furthermore,
the uncertainty on both estimated parameters is significantly smaller using the WLS
estimator.

Figure 4-61 and figure 4-62 clearly show the increased uncertainty of the modelled
variance with respect to the WLS estimator.
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Figure 4-61. Comparing the boundaries of the 95% confidence interval of the (3 order
model, LS estimator) modelled variance (red lines) and the correctly aligned “measured”
variance (black dots and vertical black lines, boundaries of the 95% confidence intervals

based on the x - distribution of the sample variance (known number of degrees of
freedom)).

Bias in estimation of variance of additive noise

Finally, it is mentioned that overlooking the shaping of the variance, due to time base
drift compensation, in combination with a first order model and a (unweighted) least-
squares estimator, introduces a bias of more than 10% on the estimate of the variance
of the additive noise (figure 4-63). This may explain why in [3] the additive noise is
estimated separately.
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Figure 4-62. Comparing the boundaries of the 95% confidence interval of the (3" order

model, LS estimator) modelled variance (red lines) and the correctly aligned “measured”

variance (95% confidence interval of the “measured” variance based on the %2 - distribution
of the sample variance (known number of degrees of freedom), zooming into the maximum.
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Figure 4-63. Zooming into the additive noise portion contribution, showing a bias on the

estimated variance (red line) for a 15! order model, LS estimator and incorrectly aligned
“measured” variance.

It is found that this offset is removed by properly aligning the pulses, as is done in the
methods proposed here.
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Conclusions

The system identification approach described in this chapter and applied to jitter
estimation of the combined impulse response of an opto-electrical converter and a
high-speed sampling oscilloscope is a major extension of [2], which can be applied to
“real” problems. Indeed, the simulation results presented in [2] are based on the rather
unrealistic assumption that Eq. 4-9 is the exact representation of the sample variance,
while in reality it is only a first order approximation.

The underlying stochastical framework allows to detect model errors and anomalies
like the shaping of the variance due to time base drift compensation. Error bounds are
provided on both the estimated parameters and the modelled variance. Finally the
method allows the simultaneous estimation of the variance of the additive noise and
the jitter noise, where other methods [3] fail to do so.

Future research

The described method first aligns all realizations by applying a delay which is an
integer multiple of Az. In order to obtain a more uniform distribution of the realizations
over the different buckets, one can shift this time window between (-At, 0) and (0,

At), instead of selecting the default (-%t, +A§Z).

Furthermore, based on its support for non-equidistant time grids, the method can
easily be extended to handle situations where one or more buckets have no or an
insufficient number of realizations.
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Abstract

When collecting a large number of repeated measurement records of the impulse
response of a linear time-invariant system using a high-frequency sampling
oscilloscope, it was found that the successive measurements of this impulse response
slightly shift over time, within the acquisition window. This phenomenon is referred to
as time base drift.

Time base drift and its estimation in the presence of both additive and jitter noise has
already been mentioned in this work as part of the “Enhancements to the nose-to-
nose calibration technique” and during the “System identification approach applied to
jitter estimation”. In this initial approach, the first measurement record is used as a
reference signal during the alignment of successive measurements. This gives
estimates, which are comparable to the ones based on the method proposed in [1].
Here, an enhanced version of the initial approach is proposed. In this method, the
aligned average is used as a reference signal instead of the first measurement.

A system identification approach is applied to estimate the time base drift introduced
by a high-frequency sampling oscilloscope. First, a new least squares estimator is
proposed to estimate the delay of a set of repeated measurements in the presence of
additive and jitter noise. Next, the effect of both additive and jitter noise is studied in
the frequency domain using simulations.

Special attention is devoted to the covariance matrix of the experiments. The use of
this matrix allows to come up with a good estimate of the uncertainty on the estimated
delays. Using the covariance matrix, a weighted least squares estimator is
implemented to minimize the uncertainty on the estimated delays. Comparative
results are shown based on simulations proposed by [1].

Finally, the enhanced method is applied to estimate the drift using the same
measurements as those that were used during the jitter estimation. The impulse
response of an opto-electrical converter is measured using an Agilent 83480A
sampling oscilloscope in combination with a 83484A 50 GHz electrical plug-in.
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Modelling and estimating drift in the presence
of additive and jitter noise

High-frequency sampling oscilloscopes often use an equivalent-time sampling
principle to diminish the needed conversion rate. They suffer from both additive

measurement noise ny(tl.) and timing jitter noise nt(tl.) at the sampling time instant
t,. Furthermore, it is observed that these oscilloscopes also suffer from time base

drift. Time base drift is due to imperfections on the position of the trigger point relative
to the signal and results in a movement of the signal in the acquisition window. As a
result, successive measurements correspond to delayed versions of the “exact”

signal. The delay Ty models this effect and varies with respect to the realization index

k . The resulting signal model is
Yi(t:) = yolt; +n,(1;) +7,) + ny(tl.) Eq. 5-1

Herein, y,(7;) represents the k-th measurement of the exact signal y,(7;) when
both additive noise and jitter are added as a part of the measurement. Both ny(tl.)
and ”t(ti) are assumed to be zero mean, normally distributed, independent and
stationary with respect to 7, and as a result they are also independent with respect to

realization index k. Furthermore, it is assumed that 1, = iAt. At represents the

sampling period.

Let Y, (®, ) correspond to the discrete Fourier transform of y, (z,). As part of the

enhancements to the nose-to-nose calibration technique and the system identification
approach applied to jitter estimation, the time base drift of each acquisition was
estimated using the first acquisition as a reference signal. In the approach proposed
here, the (unknown) exact signal is used as the reference signal. The LS cost function
then becomes

Vis = 3 Y(@,) - Yoo, Eq. 5:2

k, m

Eqg. 5-2 must be minimized with respect to both the unknown delays T, and the

Fourier coefficients of the unknown exact signal Yo(oam) . Since the spectra YO((om)

appear linearly in the equation error, it is possible to eliminate them from the cost.

Therefore, the symbolic derivative of Eq. 5-2 with respect to Y;(®, ) is set to zero'.
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oV
LS
— =0 Eq. 5-3
8Y0((om)
& Y V(0,) -7 Y(@,)]" - (-7 =0 Eq. 5-4

k
Here Y* corresponds to the complex conjugate of Y. YO((om) can now be calculated
as follows:
K
Yo(@,) = £ 3 V(@,) Eq. 5-5
k=1

K represents the number of repeated realizations of delayed versions of YO((Dm) .

Substituting Eqg. 5-5 in Eqg. 5-2 and using the fact that ’e‘je’ = 1, results in a cost
function which is only a function of the unknown delays 7, :

K 2

Vg (T), . Tp) = Z Y (o ) ef‘”mfk—l—{z Yy(@, ) e/OnT Eq. 5-6
k, m I=1

It is possible to introduce an arbitrary delay T as follows

Y (0) = e?%. ¥ (0) = 7N F Y [y (@) &9,k = 1..K, Eq.57

without influencing V; . If I;O((x)) = YO(OJ) . e/®T is considered to be the new

reference, it is clear that there is a degeneracy: (only) one delay can be freely chosen.
One possibility is to select one delay to be zero. For example, here it is assumed that

1'1=0.

1. Since the function V| g is not an analytical form in Y, due to the presence of the complex conjugate,
this deserves some additional explanation (see page 5-5).
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The derivatives of Eq. 5-6 with respect to T, up to T vyield the gradient while the
second derivatives yield the Hessian of the cost. The Newton-Raphson iteration
scheme is then used to find the estimates 7,, .., T which minimize Eq. 5-6, given

’[hatr1 = 0.

Starting values are readily available from the initial implementation (also imposing
T, = 0) which uses the first realization Yl((x)) as reference signal, instead of the

average signal, as is obtained after the alignment of the records.

Although these starting values reduce the number of iterations that are needed to
converge to the solution, it was found that zero starting values also do the job. Even
starting values where the sign of the delay is incorrect still lead to convergence to the
same solution. This shows the robustness of the method to poor starting values.

Symbolic derivation

To justify the use of symbolic derivatives [2] with respect to Eq. 5-2, consider
f(x, x*) € IR as an alternative for f(xp, x;), where x* represents the complex
conjugate of x = Xp +jx1.

af — af . ax + af . Qﬁ f f Eq. 5-8

dxp ~ Ox Oxg 9x* Oxp  Ox @ oxk
of _Of Ox Of ot _ (Of Of _
ﬁ 8_ 8—1+§ axl J(ﬁ ﬁ) Eq. 5-9
Based on Eqg. 5-8 and Eq. 5-9, and glven - ( Q it is clear that
o _f _ of U _pes & _ -
G- =00 ok e|5-| =1 [axJ =0 L0 Eq. 510

1. As described as part of the “Enhancements to the nose-to-nose calibration technique” and during the
“System identification approach applied to jitter estimation”.
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Analysis of the noise sources:
additive white noise

Is the noise circular complex distributed?

For personal educational purposes, first it is verified that the assumption of circular
complex noise in the frequency domain holds in the case of additive noise, which is
stationary with respect to time. To this end, realistic simulations will be used. The
covariance matrix of the noise in the frequency domain is obtained as a by-product,
and is based on covariance information in the time domain.

In order to keep the simulation as realistic as possible, the analytical expression of the
impulse response that has been used during the system identification approach
applied to jitter estimation is reused here.

500 realizations of this impulse response are generated in the presence of additive
noise, which is chosen to be zero mean, is normally distributed and is stationary with
respect to time. The standard deviation is chosen to be 3 mV. The delay is set to zero.

A scaling factor of JN is used during the calculation of the discrete Fourier transform
(N represents the number of time points within each realization of the simulation).

. . 2 o o
Starting from a variance 6~ = 9x10°® V2 at each time instant, it is found that 9x10®
falls inside the 95% confidence interval of the resulting sample variance at each
frequency.

As can be expected, the additive noise shows up as circular complex white noise in

. . 2 2 (o) 2 . .
the frequency domain, with 6, = 6, = 5 and Gp;, = 0, i.e. the variance of the

real part of the spectrum equals that of the imaginary part, while there is no
stochastically significant correlation between the real and the imaginary part.
Furthermore, the variance does not vary and is uncorrelated as a function of the
frequency.

The calculation of the covariance in the frequency domain is based on the linear
relationship between the Fourier coefficients and the time samples. Therefore

Cov[¥(@)] = J- Covly(n]- 7", Eq. 5-11

Y(®, )
ay(t;)

where J H represents the hermitian transpose of J, with J,_ . =
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_2njn__1_i
2Ttm ="1—€ N,j:/\/_—l-

N-Ar Imi JN

In the case where 1, = i- At and ®, =

Using Eq. 5-11 in the special case Cov[y(t)] = 62 -1, where I representsa N X N

2 H 2
identity matrix, one finds the known result: Cov[Y(®w)] = ¢ -J-J = o -1.

Weighted version of V| g

In the case of only additive white noise, Cov[Y(®)] = 62 . 1. Itis then simple to
obtain the expected value of the cost function, which is easy to interpret if Eq. 5-2 is

2 . . .
divided by ¢ . A scale factor of JTV is consistently used during the calculation of the

FFT. This allows simple validation of the model by comparison of the value of the cost
function taken in the estimates to the expected cost.

Given K the number of realizations of the measurement and M the number of

frequency components used to estimate the K delays, the expected value of the cost
equals the number of measurement data minus the number of parameters, i.e.

E{V,;¢} = K- (M-1).

As a quick sanity check, three sets of 500 realizations (all T, = 0) of the impulse

response are generated, one with ¢ = 0.6 mV and two with ¢ =3 mV. The same

signal is used as during the preceding tests. If one takes frequency components up to
100 GHz into account, 500 frequency components are used in the case of a frequency
resolution of 200 MHz. The expected value of the cost is 249500 while the 95%

2
confidence interval for the %~ - distributed cost equals 2./2K - (M —1) = 1413. All
three realized cost functions (248899, 248900 and 249757) fall inside the 95%
confidence interval of the expected cost.

Verification of the uncertainty on the estimated delays

Again, only additive noise with Cov[Y(®)] = 62 .1 is considered to be present.
One obtains an estimate of the parameter covariance matrix [3]:

Covitl = 12re7 DT 2re Hoovivon 1) - 12re7 DT Eq. 512

Contributions to Large-Signal Network Analysis 5-7



System identification approach applied to drift estimation.
Analysis of the noise sources: additive white noise

~ -1
Cov[t] = [2re(J )] - 62 Eq. 5-13

de(T)
ot

Here J corresponds to the Jacobian J = of the complex error vector ¢(7);

Vig (1) = eH(‘c) - e(7T) is the vector equivalent of Eq. 5-6.

If one considers 500 realizations of the impulse response and 500 frequency
components per experiment, the Jacobian is a 250,000 by 499 complex matrix.
Therefore, initially the calculation of the Jacobian is avoided. In the absence of model
errors and, when evaluated in the solution, Eqg. 5-13 can be approximated by

A
Cov[tl=H o2, Eq. 5-14

where H represents the Hessian, i.e. the second derivative of the cost function (Eq.
5-2) with respect to the estimated parameters 7,, .., Tg. The inverse Hessian is
readily available as a part of the Newton-Raphson algorithm.

The same sanity check as was mentioned above shows that for the two realizations of

the impulse response with ¢ = 3 mV, the uncertainty on the estimated delays based
on the inverse Hessian is found to be 70.9 fs. It lies once within and once just outside

. 2
the 95% confidence interval of the observed uncertainties (based on a Y5, -
distribution, resp. 61.3 fs .. 69.6 fs and 63.5 fs .. 72.1 fs).

A more detailed inspection of the parameter covariance matrix shows a correlation

coefficient between any two delays which approximates 0.5 for all estimated delays.
Although initially this might come as a surprise, a correlation coefficient of 0.5 can

easily be explained. Indeed, because of the constraint that T, was set to 0, the
remaining estimates T,, .., T, in fact correspond to estimates of Tp — Ty, .., Tx — T}

where :ck, k =1, .., K are assumed to be identically distributed and uncorrelated.

As such, for k # [

o = El(t - E{y )t E{T )

LG - E{5 )T = o

(¢

Eq. 5-15
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while for k = [

2

(¢

v, = El(y~E{5 )]

= E[(t; -1, —E{%k—%l})z]

~ - ~ -2
E[(7 —E{Tl})z] +E[(t - E{t}) 1=20

Eq. 5-16
(52
. - T o 1
The correlation coefficient therefore equals to p = > T 3q -2
Tk
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Analysis of the noise sources:
jitter noise

The next logical step is to study the influence of jitter noise on the measurements in
the frequency domain. The additive noise is set to zero.

The jitter noise nt(tl.) is assumed to be zero mean, normally distributed, independent

and stationary with respect to 7. Its standard deviation is assumed to be known and is
set equal to 1 ps.

First, the study is performed based on simulations using the sample variance of the
real and the imaginary part of the spectral data corresponding to the realizations of the

same known signal1 as before that is disturbed by jitter noise only.

Next, the covariance matrix in the frequency domain is calculated based on the
covariance matrix in the time domain. For the considered jitter noise, the latter
reduces to a diagonal matrix. The values on the diagonal correspond to the variance

and their value depends on the derivatives of the underlying signal with respect to ¢.

In order to minimize the variation of the phase spectrum of the considered impulse
response as a function of the frequency, the analytical expression of the impulse

response is adapted such that its peak value is located at t+ = 0. This way, the

deterministic portion of the variation of the real and the imaginary part of the spectrum,
when taken as a function of the frequency, is minimized.

Simulation results

Figure 5-1 shows the sample mean of 5000 realizations of the considered impulse
response. Figure 5-2 zooms in on the left edge of the time window and clearly shows

that the peak value of the impulse response is located at t = 0.

Figure 5-3 and figure 5-4 show the corresponding sample variance of the signals
shown in figure 5-1 and figure 5-2.

Although it has no physical meaning, it is useful to take a look at the discrete Fourier
transform of the sample variance. Later, it will become apparent that there is a
relationship between this Fourier transform and the sample variance of the real and
the imaginary part of the spectrum of the 5000 realizations. Figure 5-5 and figure 5-6
respectively show the real and the imaginary part of the Fourier transform of the

1. Again, the same analytical expression of the impulse response is used as during the system identifi-
cation approach applied to jitter estimation.

5-10 Contributions to Large-Signal Network Analysis



System identification approach applied to drift estimation.
Analysis of the noise sources: jitter noise
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Figure 5-1. Sample average of the impulse response disturbed by jitter noise.
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Figure 5-2. Sample average of the impulse response disturbed by jitter noise
(zoomed in around t = 0).

sample variance (figure 5-3).

Figure 5-7 and figure 5-8 show the sample variance of the real and the imaginary part
of the spectrum for the 5000 realizations of the impulse response.
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Figure 5-3. Sample variance of the impulse response disturbed by jitter noise.
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Figure 5-4. Sample variance of the impulse response disturbed by jitter noise
(zoomed in around t = 0).

Visual comparison of figure 5-5 and figure 5-7 suggests that there is a relationship
between the Fourier transform of the sample variance of the signal and the sample
variance of the Fourier transform of the signal, especially when taking the folding of
the frequency axis by a factor of 2 into account. This is explained in more detail on
page 5-20.
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Figure 5-5. Real part of the Fourier transform of the sample variance (figure 5-3).
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Figure 5-6. Imaginary part of the Fourier transform of the sample variance (figure 5-3).

: : 2 N
Calculating the sample variance 6, of K realizations x(k) of a complex number x

1 K
K-14Lik=1
sum of the sample variance of the real and the imaginary part of that number.

1 <K 2 2
x(k) - I_{Zl ) 1x(l)‘ , it is clear that ¢ ;- equals the

2 —
as G\ p =
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Figure 5-7. Sample variance of the real part of the Fourier transform of the 5000 realizations
of the impulse response.
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Figure 5-8. Sample variance of the imaginary part of the Fourier transform of the 5000

realizations of the impulse response.

Figure 5-9 shows this sample variance for the spectrum of the 5000 realizations of the
impulse response. Taking into account the width of the 95% confidence interval, it is
acceptable to consider that this value is a constant as a function of the frequency.

Using the 95% confidence interval of a xz distribution, this was verified for the
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frequency band where there is no apparent correlation between the noise on the real
and the imaginary part. Correct calculation of the 95% confidence interval in case a
correlation is present, requires the use of the Wishart distribution [4] and is not dealt
with at this moment.

var (x1078 V2
05 ;
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Figure 5-9. Sample variance of the Fourier transform of the 5000 realizations of the impulse
response.

Another important verification is to check whether the correlation between the real and
the imaginary part of the spectrum is not significant and the result is shown in figure 5-

10. The correlation coefficient p of two stochastical quantities x and y is defined as

p= —2— Eq. 5-17

Figure 5-11 zooms in to the lower frequency band and shows the correlation between
the noise on the real and the imaginary part of the spectrum up to about 65 GHz.
Correct calculation of the 95% confidence interval requires additional work and is not

provided1 .

Next it makes sense to look at the 5000 realizations of the real and the imaginary
value of the spectrum at some frequencies of interest:

« at4 GHz: the correlation has its largest negative value

1. However, visual comparison of figure 5-11 and figure 5-18 shows good correspondence, the latter
being calculated starting from the variance in the time domain.
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Figure 5-10. Correlation coefficient of the real and the imaginary part of the Fourier
transform of the 5000 realizations of the impulse response.
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Figure 5-11. Correlation coefficient of the real and the imaginary part of the Fourier
transform of the 5000 realizations of the impulse response (DC up to 80 GHz).

» at 38 GHz: the correlation changes from a negative to a positive value

» at 50 GHz: the correlation has its largest positive value

» at 70 GHz: no correlation is present between the real and the imaginary part
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Figure 5-12. 5000 realizations of the real and the imaginary value of the spectrum at 4 GHz
(maximum negative correlation = —0.4).

Figure 5-13. 5000 realizations of the real and the imaginary value
of the spectrum at 38 GHz (zero correlation, but clearly not circular).

Figure 5-12 up to figure 5-15 show the results using a 1:1 aspect ratio for all plots.
Clearly the assumption that the spectral noise is circular complex is not valid,

especially at lower frequencies. The bandwidth where the correlation is significant
depends on the measured signal itself.
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Figure 5-14. 5000 realizations of the real and the imaginary value
of the spectrum at 50 GHz (maximum positive correlation = 0.2).

In the presence of jitter noise, the covariance matrix in the frequency domain must
take into account the contributions of the real and the imaginary part of the spectrum
separately.

Furthermore, one can take a look at the correlation between spectral contributions
originating from different frequencies (real, real), (real, imag), (imag, real) and (imag,
imag). Correlation is observed up to about 130 GHz.

Calculation of the covariance matrix of the spectral noise in the
frequency domain

It is shown that it is possible to calculate the covariance matrix in the frequency
domain, if one has an estimate of the variance in the time domain. The time domain
variance has been obtained in the chapter on jitter estimation. There, it is
demonstrated that it is indeed possible to estimate the standard deviation of both the
additive and the jitter noise, hence also the variance as a function of time. This
information can be used to come up with an estimate of the covariance matrix in the
frequency domain. This allows to obtain an optimal scaling of each frequency
contribution of the cost function in the sense that it becomes possible to know the
expected value of the cost in advance and to minimize and estimate the uncertainty
on the estimated delays.
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Figure 5-15. 5000 realizations of the real and the imaginary value of the spectrum at 70 GHz
(no correlation, circular complex noise).

Because the above simulations show that the noise is not circular complex, the
frequency covariance matrix must take the real and the imaginary part of the spectrum
into account separately. The covariance matrix in the frequency domain can then be
calculated similar to Eq. 5-11, provided that the real and the imaginary part are
separated.

Cov[Y(®)] = J- Cov [y(D)]-J " Eq. 5-18

In Eq. 5-18, J T represents the transpose of the Jacobian matrix J € |F{2M>< N,which

is the matrix notation of the discrete Fourier transform where the odd rows correspond
to the real part and the even rows to the imaginary part of the Fourier coefficient. M

represents the number of frequency components of interest and N is the number of
time points of one realization of the impulse response. The covariance matrix in the

time domain Cov[y(?)] € |RNXN reduces to a diagonal matrix in case the jitter is
not correlated as a function of time. The values on this diagonal correspond to the
variance as function of time. Based on the analytical expression of the impulse
response and the standard deviation of the jitter, it is possible to calculate the required
derivatives of the signal with respect to time and hence to obtain the variance as a
function of time.
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. 2
& (1) = dy o2
vzl T E n,
t=t
2 2 3 3 \2
2 g dr 43 o120 P K
t=t r=1

' Eq. 5-19

In the chapter on jitter estimation, for the considered impulse response, Eq. 5-19 was
found to provide a very good approximation for the variance in the case of Gaussian
jitter that has a standard deviation less than or equal to 1 ps.

The rows 2k, 2k + 1 of the Jacobian matrix J contain the coefficients of the discrete
Fourier transform that yield the real and the imaginary part of the k" frequency

2
component. In the case Cov[y(?)] is a diagonal matrix with Gy3(tl-) on the diagonal,

the sum of each row of J- Cov[y(t)] corresponds to the real, resp. the imaginary
part of the Fourier transform of the variance as function of time.

N-1

2 1 2
Eyg(m) = f\f Z Gy3(l) e
i=0

—j2mmi/N
JEMN = 0. N—=1 Eq. 5-20

T
For the diagonal terms of Cov[Y(®)], the matrix product J - Cov[y(?)]-J  yields
N-1 N-1

1 2. 2 1 2 . 2
N Z Gy3(l) - cos (2mki/N) for the even rows, N Z Gy3(l) - sin (27ki/N)

i=0 i=0
for the odd rows.

N-1

P _jAmki/N

- . : 1 2 .
This is not equal to the real and the imaginary part of N Z Gyg(l) e The

i=0
latter corresponds to a scaled version of Eq. 5-20, except for the fact that the complex

—j2mtkn/N —j2ntkn/N'

exponential e is now replaced by e with N' = %] It looks as if

N is divided by a factor of 2 and therefore the frequency axis appears to be folded by
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a factor of 2. This explains both the apparent similarity and the difference (see
figure 5-5 up to figure 5-8) between the sample variance of the spectral data and the
spectral data corresponding to the sample variance.
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Figure 5-16. Variance as a function of the frequency using Eq. 5-18 and Eq. 5-19 (even
FOWS).
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Figure 5-17. Variance as a function of the frequency using Eq. 5-18 and Eq. 5-19 (odd rows).
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Figure 5-16 and figure 5-17 show the variance as function of frequency, based on Eq.

T
5-18 and Eq. 5-19 for the even and odd rows of the diagonal of J - Cov[y(?)] - J .

The sum of both turns out to be 0.422 10% V2, is constant as a function of the
frequency and corresponds to the mean value of the sample variance shown in
figure 5-9. When comparing figure 5-16 and figure 5-17 to figure 5-7 and figure 5-8, it
should be noted that, due to memory limitations, the number of time points was
reduced from 4096 to 2048. This explains the decrease of the sampling frequency
with respect to figure 5-7 and figure 5-8.

Figure 5-18 is the equivalent of figure 5-11, but is now calculated based on the
covariance matrix, obtained using Eq. 5-18.

P (re,im
04 ;
0.2
: : : /\ : - freq (GHz)
10 20 30 40 50 60 70 80
-0.2
-04

Figure 5-18. Correlation coefficient of the real and the imaginary part using Eqg. 5-18 and
Eq. 5-19.

Finally, the artwork resulting from the contour plots of each portion ((re,re), (re,im),
(im,re) and (im,im)) of the frequency covariance matrix is shown in figure 5-19 up to
figure 5-22. White is mapped onto the largest value and black to the smallest value.

Covariance min. value (V2) | max. value (V?)
(re,re) -0.183 u 0422 u
(im,im) -0.303 n 0.303 n
(re,im) and (im,re) 0117 0.117

Table 5-1. Min. and max. values of the different portions of the frequency covariance matrix.

It can be concluded that an estimate of the variance in the time domain (Eq. 5-19)
allows to construct the full covariance matrix in the frequency domain.
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Figure 5-19. Contour plot of the (re, re) portion of the frequency covariance matrix (both
axes correspond to the DFT index (N = 2048)).
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Figure 5-20. Contour plot of the (im, im) portion of the frequency covariance matrix (both
axes correspond to the DFT index (N = 2048)).
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Figure 5-21. Contour plot of the (re, im) portion of the frequency covariance matrix (both
axes correspond to the DFT index (N = 2048)).
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Figure 5-22. Contour plot of the (im, re) portion of the frequency covariance matrix (both
axes correspond to the DFT index (N = 2048)).
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The added value of the covariance matrix
for the WLS

The knowledge of the covariance matrix and a clever implementation of the Jacobian-
based Gauss-Newton method allow to obtain several additional improvements.

LS parameter covariance matrix

First, it is possible to estimate the uncertainty of the estimated delays in the case of a
least squares estimator. Taking into account the fact that the noise on the real and the
imaginary part of the spectral components must be treated separately, Eq. 5-6 can be
rewritten as

2 . 2 .
Vig = Z{[re(ek,m)] + [lm(ek,m)] }, with Eq. 5-21
k, m
K
erm = Vi(®,) 023 Y (@) O Eq. 5-22
[=1

T
Let e = [el . eKJ , e = re(ek,l) im(ek,l) . re(ek’M) im(ek,M)

. . T
In matrix notation, Eq. 5-21 becomes V;o =e (t)-e(t), where

K-2Mx 1 o
e(t)e IR . Here, K corresponds to the number of realizations of the

unknown signal and M corresponds to the number of frequency components taken
into account to estimate the K delays, that are grouped in the vector

T
’C=|:’Cl..‘CKi| .

An estimate of the uncertainty on the LS estimates of the delays is given by

covmy =0Ty T covyo)n 70y Eq. 5-23
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where J represents the Jacobian and equals aea(:). Based on the degeneracy
mentioned earlier (Eq. 5-7), Ty is again fixed equal to zero and the Jacobian matrix

2Mx(K-1) 2M x2M

K .
looses one column: J € |R , while Cov(Y(w)) € |R
Typical values for both K and M in an experimental environment are 500. This
results in a large Jacobian matrix of size 500,000 x 499 and a covariance matrix of
1000 x 1000. Fortunately, there is some structure in the Jacobian matrix derived from

Eq. 5-22, such that the problem can be solved in blocks of size 2M X (K- 1).

WLS estimator

Secondly, it is possible to construct a weighted least squares estimator which
minimizes the uncertainty on the estimated delays and, at the same time, has a known
expected value of the cost function, such that the obtained cost function can be
compared to its expected value. This criterion can then be used to detect model
errors.

Vi g = € (%) [Cov(Y(@)] - e(t) Eq. 5-24

The advantages of this method will become apparent when it will be applied to both
simulations and measurements.
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Simulations

A first set of simulations is based on the same analytical expression of the impulse
response as the one that is used during the simulations of the jitter estimation. The
drift is estimated in the presence of both additive and jitter noise. The jitter noise and
the additive noise are set to have realistic values: both are Gaussian, zero mean with
a standard deviation of respectively 1 ps and 0.6 mV. The exact signal is assumed to

be known. Therefore, using Eq. 5-18 and Eqg. 5-19, one can calculate Cov(Y(®)).

Each simulation consists of 500 realizations of the signal. Hence, K = 500. Each
realization contains 4096 time samples of the impulse response, which spans an
acquisition window of 5 ns. If the spectral components are taken into account up to

100 GHz, then M = 500.

Estimators

Different estimators are compared:

» based on Eq. 5-2, using the first realization as a reference instead of the aligned
sample average. Inspired by the terminology used in [1], this estimator will be
referred to as the “naive” LS estimator.

» the “enhanced” LS estimator, corresponding to Eq. 5-6, uses the aligned sample
average as reference.

 the “enhanced” WLS estimator, based on Eq. 5-24, also uses the aligned sample
average as reference and adds weighting based on the inverse full covariance
matrix. This takes the uncertainty on the real and the imaginary part into account
separately.

Zero drift

During the first simulation, the drift is set to be exactly zero. Due to the jitter noise and
the additive noise, the estimated drift is not exactly zero, however, but rather becomes
a stochastical variable. Because of the degeneracy, demonstrated by Eq. 5-7, only its
standard deviation is shown in Table 5-2.

Estimator Uncertainty G. of estimated T (ps) | 95% confidence interval (ps) of o,
naive LS 0.260 0.245..0.277
enhanced LS 0.253 0.238..0.270
enhanced WLS | 0.132 0.124 .. 0.141

Table 5-2. Uncertainty of the estimated drift (case where the exact drift is zero).
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Table 5-2 clearly shows that the naive and the enhanced LS estimator obtain the
same performance. Their uncertainties lie inside their respective confidence intervals.
The enhanced WLS estimator reduces the uncertainty on the estimated delay by
about a factor 2.

If, in the presence of jitter, the noise in the frequency domain is assumed to be circular
complex noise, the uncertainty on the estimated delay for the enhanced LS estimator
based on the parameter covariance matrix (Eq. 5-14) equals 0.021 ps. Hence, it
underestimates the obtained uncertainty by a factor of more than 10. Using the full
covariance matrix (Eq. 5-23), the estimated uncertainty on the delay turns out to be
0.242 ps and this value falls within the 95% confidence interval of the obtained
uncertainty.

In the case of the enhanced WLS estimator, the expected value of the cost is
499500 + 1999. The realized cost turns out to be 497250 and falls within the 95%

confidence interval of the expected value of the cost. It can thus be concluded that

there are no detectable model errors’.

Linear drift

During the second simulation, the drift is known to be a linear function of the
realization index. Applying a delay of 0.01 ps per realization, the drift of the first
realization is zero, while that of the 500th realization is known to be 4.99 ps.
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Figure 5-23. Using the enhanced LS estimator (case of linear drift).

1. relative to the variance of the measurements.
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Figure 5-23 shows the results for the enhanced LS estimator, which turns out to be
visibly indistinguishable from that of the naive LS estimator. Figure 5-24 clearly shows
the reduced uncertainty for the enhanced WLS estimator.

estimated
TBDt (ps)

5 L

L redlization
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Figure 5-24. Using the enhanced WLS estimator (case of linear drift).

The residuals for each estimator are found by fitting a best linear approximation with
slope 0.01 ps per realization through the estimated delay and subtracting the
corresponding value from the estimated delay for each realization.

Estimator Uncertainty G. of estimated T (ps) | 95% confidence interval (ps) of G.
naive LS 0.264 0.249 .. 0.281
enhanced LS 0.257 0.242 ..0.274
enhanced WLS | 0.123 0.116..0.131

Table 5-3. Uncertainty on the estimated drift (case of linear drift).

The same conclusions can be drawn as for the zero drift. In this case the realized
value of the cost for the enhanced WLS estimator turns out to be 498240 and again
falls inside the 95% confidence interval of the expected value of the cost.

The general conclusion is that in realistic situations, corresponding to nose-to-nose
and EOS-based measurements, the effect of using the aligned average instead of the
first realization as a reference signal is minimal. However, use of proper weighting
based on the full covariance matrix of the measurements has significant impact.
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Comparison to state-of-the-art methods

Here the performance of the implemented estimators is compared to two of the
estimators described in [1]. The comparison is based on the simulated signal that is

described in Appendix I of [1]. Figure 5-25 shows this noise-free signal, where both
the time and amplitude are given in arbitrary units. In fact, the time scale is expressed

in integer multiples of the sampling period At.

0 1000 2000 3000 4000

Figure 5-25. Noise-free simulated signal as described in [1] (both axes in arbitrary units).

The paper mainly compares four estimators. Two of them are described below.

The “naive cross-correlation” method can be compared to the naive LS estimator
described in this work, because both use the first realization as a reference signal.
However, the naive method described in [1] is based on a cross-correlation technique
performed in the time domain and as such restricted to a grid corresponding to integer
multiples of Af. In order to overcome this limitation, [1] searches for the global

minimum about the grid value which maximizes the cross-correlation based on a
golden search and parabolic interpolation (sic).

The “complete cross-correlation” method calculates the relative drift between any

combination of the K realizations to come up with an averaged drift of all realizations

with respect to the first realization. As such, this method is similar to the enhanced LS
estimator described in this chapter.

The comparison is based on the simulations proposed in [1]. The complete cross-
correlation method performs best and the naive cross-correlation in general performs
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worst for these simulations and are therefore selected as reference methods to
compare them to the estimators proposed in this work.

For different values of the standard deviation of the jitter noise ¢, and the standard

t

deviation of the additive noise G, , that are both expressed in arbitrary units', a set of
y

100 misaligned signals are realized. The standard deviation of the random drift

associated with each signal is 2.5. In fact the value of G, should be compared to a
y

peak-to-peak value of about 4.2, while both © n and the random drift are expressed

t

as multiples of Ar.

The simulation results are summarized in figure 4 of [1]. The RMS prediction error is
used as performance criterion and is defined in Appendix IT of [1]. For selected

values of 6, and G, , the RMS prediction errors are retrieved as well as possible
1 y

from figure 4 of [1] and are used in this comparison.

The RMS prediction error as defined? in [1] is shown in Eq. 5-25.

_ A~ 202
RMS = szzl[(sk—&—(dk—d)] Eq. 525

Here Sk represents the true absolute drift and d k the estimated drift. Both values are

. . = ] <K
compared to their respective sample mean O = KZkzlsk and
2 1wk ¢
d = = d,.
KZk:l k

The limited selection of values for G, and G, is motivated in Table 5-4. One value is
! y

taken for each kind of behaviour.

In order to get an idea of what is meant by “moderate” jitter G, = 1 and “moderate”
t

additive noise 6, = 0.1, figure 5-26 shows the noise-free signal, while figure 5-27
y

1. This allows easy comparison to [1]. In that paper c;;, represents the standard deviation of the jitter
noise and c,,, represents the standard deviation of the additive noise.

2. Normally the summation under the root sign should be divided by K.
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Situation G”t Gny
no jitter, small additive noise 0 0.02
no jitter, moderate additive noise 0 0.1
significant jitter, moderate additive noise 3 0.1
moderate jitter, small additive noise 1 0.02
moderate jitter, moderate additive noise 1 0.1

Table 5-4. Selected values of G, and G, (in arbitrary units).
t y

shows one realization of such a noisy signal while zooming in to the main portion of
the pulse to show the jitter.

o [

400 500 600 700 800 900 1000
Figure 5-26. Zoomed version of the noise-free simulated signal (both axes are labelled in
arbitrary units).

The RMS prediction error as defined by Eq. 5-25 is also expressed in arbitrary units.
In fact, to obtain an absolute measure, its value has to be multiplied by At.

The values filled in below for the naive and complete cross-correlation method are
retrieved from figure 4 of [1] and therefore are approximate values. Given the fact that
the RMS value is based on 100 realizations and the corresponding 95% confidence

interval (0.8770 .. 1.1630), the retrieved values are sufficiently accurate to allow
comparison.
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400 500 600 700 800 900 1000
Figure 5-27. Zoomed version of the simulated signal in case of moderate jitter and moderate
additive noise (both axes are labelled in arbitrary units).

The enhanced WLS estimator is only added for the case of moderate jitter. In order for
this estimator to yield better results, jitter must be present and it must not be excessive
in order for the third order model (Eq. 5-19) to remain valid.

All values below are given in arbitrary units, unless stated otherwise.

Comparison #1: no jitter, small additive noise

Estimator RMS prediction error 95% confidence interval
naive cross-correlation ~0.03

complete cross-correlation ~0.02

naive LS 0.0164 0.0144 ..0.0191
enhanced LS 0.0161 0.0141 ..0.0187

Table 5-5. RMS prediction error for a simulation where G, = 0 and G, = 0.02.
t y

It is clear that in the case of zero jitter and small additive noise, the naive LS method
performs equally well as both the complete cross-correlation method and the
enhanced LS method. The performance of the naive cross-correlation method is

worse.
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Comparison #2: no jitter, moderate additive noise

In the case of zero jitter and moderate additive noise, the naive LS method is not
much worse than the complete cross-correlation method and performs significantly
better than the naive cross-correlation method. It is believed that this is due to the fact
that the latter suffers from interpolation problems. Indeed, an interpolation technique is
required to increase the time resolution to a value that is smaller than At, and this
may cause problems in the presence of noise.

In this case, using the aligned average as reference signal instead of the first
realization reduces the RMS prediction error by a factor 1.75.

Estimator RMS prediction error 95% confidence interval
naive cross-correlation ~0.55

complete cross-correlation ~0.10

naive LS 0.14 0.12..0.16
enhanced LS 0.08 0.07 ..0.09

Table 5-6. RMS prediction error for a simulation where G, = 0 and G, = 0.1.
t y

Comparison #3: significant jitter, moderate additive noise

Estimator RMS prediction error 95% confidence interval
naive cross-correlation ~1.10
complete cross-correlation ~0.60
naive LS 0.60 0.53..0.70
enhanced LS 0.50 0.44..0.58
Table 5-7. RMS prediction error for a simulation where 6, = 3 ando, = 0.1.

t y

One can question the experimental relevance of a jitter process, whose standard
deviation 6, = 3, relative to Az. This means that the jitter may mix up the position

t
of the samples over a range of 6 samples with a probability of 67%. Clearly, this is the
kind of performance one wants to avoid in a practical setup. The comparison is added
for completeness only.

Again, it is clear that the naive LS method outperforms the naive cross-correlation
method. The naive LS and the complete cross-correlation method perform equally
well. Although the improvement of the enhanced LS method is measurable, it remains
limited.
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Comparison #4: moderate jitter, small additive noise

Both the naive, the enhanced LS method and the complete cross-correlation method
perform equally well. They outperform the naive cross-correlation method.

The enhanced WLS method reduces the RMS prediction error by a factor of 2 and
clearly outperforms all other methods altogether.

The most important improvement of the WLS method is that it allows to compare the
expected value of the cost to the realized value of the cost. Based on 100 realizations
and 500 spectral component, the expected value of the cost is 99900 + 894. The
realized cost turns out to be 99525 and falls within the 95% confidence interval.
Hence, it can be concluded that there are no detectable model errors, given the levels
of noise of the simulation. The other methods provide no information to the user to

draw such conclusions.

Estimator RMS prediction error 95% confidence interval
naive cross-correlation ~0.25

complete cross-correlation ~0.15

naive LS 0.16 0.14..0.19

enhanced LS 0.16 0.14..0.19

enhanced WLS 0.08 0.07..0.09

Table 5-8. RMS prediction error for a simulation where G, = 1 and G, = 0.02.

y

Comparison #5: moderate jitter, moderate additive noise

Estimator RMS prediction error 95% confidence interval
naive cross-correlation ~0.60
complete cross-correlation ~0.22
naive LS 0.21 0.18..0.24
enhanced LS 0.18 0.16..0.21
enhanced WLS 0.16 0.14..0.19
Table 5-9. RMS prediction error for a simulation where 6, = 1 ando, = 0.1.

t y

In this case, the performance of the naive LS method equals that of the complete
cross-correlation method and is significantly better than the naive cross-correlation
method.

Again, the enhanced WLS method has the best performance. However, the
improvement with respect to the enhanced LS method is rather limited. The enhanced
LS method in its turn shows a limited improvement over the naive LS method.
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The realized cost of the WLS method turns out to be 99562 and lies within the 95%
confidence interval of the expected value of the cost (99900 * 894).

Conclusions

During all comparisons, the naive LS method clearly outperforms the naive cross-
correlation method in estimating the drift in the presence of noise. It is believed that
this is due to the fact that the latter suffers from interpolation problems. An
interpolation technique is required to increase the time resolution to a value that is

smaller than At, and this may cause problems in the presence of noise.

In the case of small additive noise or whenever the jitter contribution is dominant, the
naive LS method and the complete cross-correlation method have the same
performance.

In the case of moderate but dominant additive noise (comparison #2), the
performance of the naive LS method is slightly worse than that of the complete cross-
correlation method. At the same time, the performance gain of the enhanced LS
method is meaningful.

In the case of moderate but dominant jitter noise (comparison #4), the performance
gain of the WLS method with respect to the complete cross-correlation method and
both the naive and enhance LS method is significant. This could be expected, as this
is the case where the noise is maximally non-circular distributed.

In the presence of both moderate jitter and additive noise, where neither of both is
dominant, some limited improvement can be observed of the enhanced WLS method
over the enhanced LS method. In its turn, the latter is slightly better than both the
naive LS and complete cross-correlation method.

5-36 Contributions to Large-Signal Network Analysis



System identification approach applied to drift estimation.
Measurements

Measurements

The same set of impulse response measurements is processed as in the chapter on
jitter estimation.

estimated
drift (ps)
2 [l %
oo. . ....O:.....~:° . ro
I $ ¢ .o.~ o o ‘o |9 : o I .o... gost o .(.
15 [ .. . . ° " .’. “.‘:.' .0:'..‘0;.%:'.0. : o:
.2 2 See® ° o' .?.”*t:f.o'o o.: ‘: .°'o.‘ 0 ... 3..‘.“ ‘:
S eee .‘.. L4 ..‘.. :"l '. ... .? e ° ’...'.." °
1 :‘.’ : Mat & .‘. | O ..: .o Oo' o® ‘...$ o ®
;:.0 o0 ....f:.:..::..‘. < .r’. :..: ¢ . ¢ = .o'..
. sttty .
0.5 ;?o I :.. : .o : ° ]
C ‘ ‘ ‘ ~ realization
100 200 300 400 500 index

Figure 5-28. Comparison of the estimated drift using the naive LS method (connected gray
dots) and using the enhanced LS method (black dots) for the first 500 measured realizations.
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Figure 5-29. Difference of the estimated drift using the naive LS method and using the
enhanced LS method for the first 500 measured realizations.
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The data corresponds to the impulse response of an O/E converter, which was
measured by Tracy Clement at NIST using an Agilent 83480A sampling oscilloscope
in combination with a 83484A 50 GHz electrical plug-in.

The jitter standard deviation was estimated to be about 1 ps and the standard
deviation of the additive noise was estimated to be about 0.5 mV. This information can
be used to calculate the signal variance as a function of time. Using Eq. 5-18, it is then
possible to construct the full covariance matrix in the frequency domain, where the
real and the imaginary spectral contributions are considered separately.
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Figure 5-30. Comparison of the estimated drift using the enhanced LS method (connected
gray dots) and using the enhanced WLS method (black dots) for the first 500 realizations.

Figure 5-28 compares the drift estimated by the naive LS method and the enhanced
LS method. Although there is some difference, the difference is rather limited as is
shown by figure 5-29.

However, when the full covariance matrix based on the estimated jitter and additive
noise standard deviation is used to construct the WLS estimator, figure 5-30 shows a
significantly smoother characteristic, resulting from a decreased uncertainty on the
estimated drift. This is an expected property of the WLS, and is due to the use of a
proper weighting of the frequency components in the cost function.

These results are consistent with those of simulation #4, where both the additive noise
and jitter noise are moderate, but where the latter is dominant.

Finally, it makes sense to compare the standard deviation of the residual after
applying a moving average window, to the uncertainty on the estimated drift. The latter
is obtained using the values found on the diagonal of the parameter covariance
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matrix. The latter is found to be 0.234 ps in the case of the enhanced LS estimator.
Figure 5-31 and figure 5-32 show the smoothing based on a moving average window,
which is 51 points wide.
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Figure 5-31. Estimated time base drift, using the enhanced LS method (white line: smoothed
version using moving average window of width 51 samples).
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Figure 5-32. Residual of the estimated time base drift, using the enhanced LS method, after
applying a moving average window of width 51 samples.
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The residual has a standard deviation of 0.265 ps, which is only 13% larger than the
uncertainty indicated by the parameter covariance matrix.

Using the enhanced WLS method, the residue is found to have a standard deviation of
0.128 ps, which confirms the reduction of the uncertainty by a factor 2 as was found
based on simulation #4.

The above justifies the smoothing applied to the estimated drift in the chapter on jitter
estimation.
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Conclusions

Using proper system identification techniques, it is possible to come up with an
estimate of time base drift in the presence of both additive and jitter noise. To the
knowledge of the author, this method performs better than any other published
technique.

The use of a proper weighting of the contribution of the individual spectral components
to the cost function not only provides a relevant value for the cost function. It also
reduces the uncertainty on the estimated drifts in the presence of a realistic quantity of
additive and jitter noise by a factor of 2. The weighting is based on the full covariance
matrix, where the contributions of the real and the imaginary part are separately taken
into account.

Future research

The uncertainty on the estimated drift based on the parameter covariance matrix in
case of the WLS estimator is about 0.6 times the realized uncertainty. For the time
being, it is not understood why this discrepancy exists.

It is also possible to estimate a parametric model for T, named T(0), instead of a
non-parametric one as above. The cost function is then minimized with respect to 0

instead of with respect to T, using the fact tha’[i = ia—Tk
PECHID Ty HEI 90 ~ 91, 96

This approach is expected to work fine in a very stable measurement environment,
resulting in a smooth drift characteristic as observed for the impulse response
measurements performed at NIST.
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Abstract

Abstract

The behaviour of a class of nonlinear devices, the PISPO’ systems, can be described
by the Volterra theory [1] [2] [3]. During the initial phase of the research, a black-box
model for this type of devices was developed in the frequency domain: the Volterra
input-output map, a.k.a. “VIOMAP”. The name refers to the fact that the model maps
products of spectral components at one or more inputs onto the resulting spectral
components at one or more outputs using a set of complex valued kernel values.

Initially, an optimized C program was written to generate all kernels of the model. It
was able to deal with a large number of input frequencies applied to one or more
inputs and to generate all the unique contributions for all the resulting output
frequencies at one or more outputs for a given degree of nonlinearity in a very efficient
way. It quickly became apparent that the effort required to generate these
contributions was nothing compared to the determination of their values.

Nevertheless, it was possible to show the usability of the method for some
applications, based on the fact that the VIOMAP is a natural extension of S-
parameters for weakly nonlinear RF and microwave devices. The VIOMAP was used
as alternative for load-pull measurements [4]. It was demonstrated that one is able to
predict the overall behaviour of cascaded nonlinear RF and microwave devices [5].

The VIOMAP that was extracted using a CW? experiment was also used to predict the
output of a nonlinear system excited by narrowband input signals [6]. Modelling a
nonlinear device, based on measurements at one carrier frequency only, it is possible
to predict its response to narrowband signals like 16QAM.

The next logical step is to try to compensate for the nonlinear behaviour of
components like mixers and amplifiers, based on that model. Using an inverse of this
model to predistort the 1Q signal may result in poor reduction of spectral regrowth due
to unmodelled subtle side effects. An extension of the experiment to use two-tone
excitations, allows to extract a better model. The linearity of the overall compensated
system is then significantly enhanced.

This work was presented at the International Microwave Symposium (IMS) in Orlando
in 1995. A less theoretical version of the paper [7] received the “best conference
paper award” at the 45th Automatic RF Techniques Group (ARFTG) conference,
which was held in conjunction with IMS. A revised copy of the unpublished IMS paper
is added here, as the method and its application are still up-to-date, even after
11 years.

1. A PISPO system is a system that, when excited with a periodic waveform, outputs a periodic wave-
form with the same periodicity.

2. continuous wave
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Introduction

Mixers and amplifiers are indispensable components in telecommunication links, but
are also the cause of potential waste of frequency spectrum through their nonlinear
behaviour. On the other hand, being unable to use a power amplifier beyond its region
of linear operation results in an inefficient use of the available DC power. An increased
back-off from the 1 dB compression point results in a lower power efficiency.

In this work, it is shown that one can compensate for the nonlinear behaviour of a
power amplifier operated under a narrowband excitation. First, the behaviour of the
amplifier is measured at the carrier frequency using a one-tone experiment. Next, a
VIOMAP model is extracted based on this experiment and the inverse model is
calculated. This inverse model is then used to predistort the modulated data.
Measurement of the response of the compensated system show that both the
distortion of the constellation diagram and the pollution of out-of-band frequencies
(spectral regrowth) are reduced when predistortion is applied to the base-band signal.
On the other hand, it turns out that the inverse VIOMAP based on a one-tone
measurement results in an overcompensation of the base-band signal. A more
detailed study reveals a variation of the nonlinear behaviour of the amplifier in the
immediate neighbourhood of the carrier frequency. This behaviour becomes apparent
when exciting the amplifier with a two-tone and by varying the frequency spacing
between the tones. This additional effect fully explains the overcompensation, which is
visualized by integrating the VIOMAP model in an existing harmonic balance
simulator. It provides an enhanced inverse VIOMAP resulting in a more efficient
reduction of the distortion of the constellation diagram and the corresponding spectral
regrowth.

In order to prevent confusion, the model extrapolation referred to in this work, is
related to the covered range of input frequency components and not to the covered
input power range, unless explicitly mentioned otherwise.
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The one-tone VIOMAP and its inverse

Although the VIOMAP has a solid theoretical basis [1] [2] [3], it is not the aim of this
work to stress its mathematical derivation but rather to show one of its applications.
The VIOMAP has been developed for n-port devices [5], but in this work only the
single input - single output case will be considered. This is possible because of the
chosen frequency range and the fixed 50 Q impedance.

First consider a nonlinear device which is excited by a one-tone signal at frequency fc

and for which one is only interested in the response at that frequency. Based on the
Volterra theory, one can write that

V(o) = H(o,) X(o.)
N (21+1)! Eq. 6-1
)
F G H2i+1(°°c~-- ,—wc,---)-|X(wc>| i X(0,)
%f_/
=1 i+l i

where ®, = 21 - f ..

Based on a measured set of {X((Dc), Y((Dc)}’ covering the input power range of
interest, one can calculate the complex kernel values of the VIOMAP. Hl((‘)c)

1((’%’ = ® ,...), i =1.N,

represents the small-signal gain and H c

2i +
represents the nonlinear behaviour of the device.

A VIOMAP which is extracted based on one-tone measurements only, will be referred
to in the remaining of this chapter as a “one-tone VIOMAP”.

Y(o,)
Hl(wc) inverse X((DC) Y((Dc)
— ™ viomap | ™ VIOMAP —»

Figure 6-1. Generation of the inverse VIOMAP.

Predistorting the input signal X((oc), it is possible to compensate the nonlinear

behaviour of the device at that frequency, as is illustrated by figure 6-1. The system
will have an overall gain that is equal to the small-signal gain H,(®_) of the device
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under test, if for each measured output Y((’Dc) the corresponding input equals

Y((oc)
Hl(“)c)

Y(o)

Cc

Hl((oc)

. One can now generate a second data set { , X((DC)} starting from

the measured data set {X((Dc), Y((Dc)} and use it to calculate the complex kernel

values of the “inverse VIOMAP”. It is important to notice that using this approach the
behaviour of the overall system will only be linearized for input powers in the power

Y((oc)
H(o,)

range covered by , and not for the powers in the original range covered by

X((oc).
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Predistortion of narrowband signals based on
an inverse VIOMAP

The one-tone VIOMAP, extracted based on measurements at the center frequency,
can be extended to describe the response of weakly nonlinear systems to narrowband
signals [6]. The verification of the validity of this “extrapolation” is one of the main
topics of this work and will be discussed in detail further on.

A narrowband band-pass signal x(¢f) can always be written as
a(t) - cos((oct + 0(¢)). The function a(t) is called the envelope of x(¢) and ¢(¢) is
referred to as the phase modulation function. The corresponding output
y(t) = b(1) - cos(w_ 1+ y(r)) can be predicted based on the VIOMAP, measured

at f.., as is shown below. Using the complex notation, one finds

X(@,1) = 5-a(- "
Y, 1) = 560" = Hi@,) X0, £q. 62

(2i+ D! 9

+ Z AL Hy, (0, .,-0, ..)-‘X(oac, t)‘ " X(w,, 1)
i=1

In the case of IQ modulation, x(¢) = i(?) - cos((oct) —q(t)- sin((oct), such that

i(t) corresponds to a(t)-cos[0(r)] = 2-re(X((x)c, t)) and g¢g(t) to

a(t) - sin[¢(1)] = 2- im(X((oc, t)). This way, it is easy to understand how to
predistort i(¢) and g(t): if X((oc, 1) = % - [i(t) +j - g(¢)] is changed to become
X(o,1) = HinV[X((Dc, Nl = %-[i’(r)+jq'(t)], then the response of the

system to the modulation i'(#) + jg'(t) is the desired modulated signal. Here, HnY
represents the inverse VIOMAP, i'(t) and ¢'(t) represent the predistorted versions

of i(t) and g(t),and j = A/—_1
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One-tone and two-tone VIOMAP: some theory

Consider a one-tone excitation experiment at a frequency fc that is applied to a

smooth! device. Next, consider a two-tone excitation experiment, centered around
that frequency. The first tone is located at f.— Af, the second one at f,.+ Af

(figure 6-2). For the sake of simplicity, it is assumed that the nonlinear behaviour of
the device can be described by a third degree nonlinearity. The VIOMAP will be
generated for the one-tone and the two-tone case in order to find out when the
VIOMAP extracted based on one-tone experiments, can be used to predict the
outcome of two-tone experiments. Of course, the total power in both experiments is
normalized to the same value.

X’((oc) X(wC—S) X((oc+8)
A A/ZT TA/Z
o, ®.-0 ®.+90

Figure 6-2. One-tone and two-tone experiments.

@ ®=5) e
® -9
¢ ) ©)
)
. (0, 0, -.)
®
(DC @ 3 1
symmetrical kernels
.+ 9 D=3 @
H, H

Figure 6-3. Visualization of VIOMAP kernels (numbering of kernels based on Eq. 6-4).
For the one-tone excitation, one obtains:
Y ((oc) = Hl((oc) - X ((oc)

+3H;(0, 0,-0.) X(0,) X (o) X*(o.) Eq. 6-3

1. The derivatives of a smooth system never become neither discontinuous, neither infinite.
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Let 8 = 2wAf, ®, = @, +d and ®_ = ®,—J, then the response for the two-

tone experiment is:
@ Y((oc—36) = 3H;(0, 0,-0,) X(0 ) X(o) X*(o,)
Y(0,-98) = H(®,-38)  X(w,~-0)
+ 3H3((o_, 0,-0) X(o0) X(o) X*(o)
+6H (0, 0,,-0,) X(0) - X(o,)- X*(0,)
Y((oc+8) = Hl((oc+8)-X(oac+6)
+3H3(0,, 0, -0, ) X(o, ) X(o, ) X*(0,) Eq. 6-4
+0H3(00,, 0, -0) - X(0,)  X(0_ ) X*(o_)

@ W®

Y(o, + 30) = 3H;(0,0,,-0) X(o,) X(0,) X*(0)
- 2(6 —0)

Y(o,) = 2H|(®_) - X(®,)

+24H;3(0,, 0., -0.) - X(0,.)- X(0,) -X*((oc)

Now let X’((oc) =2 X((oc) to normalize the power for both experiments. One then

obtains:
Y(o,) = Hi(o,) X'(®,)

+3H3(0, 0, -0,) X' (o) X' (0) X*(0,) Eq. 6-5

which is equal to Eq. 6-3.

Eq. 6-4 and figure 6-3 show under which conditions it becomes possible to use the
kernels of the one-tone VIOMAP at a given center frequency fc to predict the output

in the case of two-tone measurements at the frequencies f,.— Af and f,. + Af. This

requires the monitoring of the variation of the complex kernels around

H,,; | 1((yoc, ey —O ...) in the (2i+ 1)th-dimensional space. Here (2i+ 1)

represents the degree of nonlinearity. The more constant these kernels remain in the
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neighbourhood of the point at coordinates ((DC, o O, ...), the better the prediction

of the spectral components at the output will be. Hence, this results in a quasi-static
hypothesis.

Due to the ill-conditioned nature of power series approximations, verification based on
constant values of the VIOMAP kernels may turn out not to be a practically usable
solution. A much simpler and more practical approach is to take a look at the variation
of the generated spectral components at the output, both in amplitude and in phase,
based on two-tone measurements with constant input power and varying frequency
spacing. A concrete example of this approach can be found further on in this work.
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Measurement setup and results

Measurement setup

Figure 6-4 shows a simple communication link consisting of an 1Q modulator, an
amplifier and an 1Q demodulator [8]. The distortion introduced by mixers will not be
considered in this work, although it can be characterized using the VIOMAP model
too.

i(_t)> , [ Costas i;t)
cos27tf .1 Loop
)\ (=D
—909 yo)\ | -90°

q(0) & g

Figure 6-4. A simple communication link.

X x(1)
i(t) A f)
cos27f t ¥

\

-90°

o i;,(0)
q(?) 90 cos2nf 1
e1445a Gin(0)
40 MHz e1430a channel 1
10 MHz
VX] reference clock: 40 MHz / 4

Figure 6-5. The VXI-based measurement setup.

To demonstrate the use of the VIOMAP for narrowband signals, a measurement setup
(figure 6-5) is realized where the modulator and demodulator are implemented in
software and converted to real-word signals using an “arbitrary waveform generator”
VXI card (HP/Agilent E1445A) and two “analog-to-digital convertor” VXI cards (HP/
Agilent E1430A). A calibration process using a stepped sine wave is performed to
eliminate the effect of the 10 MHz reconstruction filter of the arbitrary waveform
generator (AWG) and the characteristics of the anti-aliasing filters at the inputs of the
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A/D convertors on the frequency grid of interest. The AWG runs at a sampling
frequency of 40 MHz and generates the 10 MHz master clock of the acquisition cards
putting a ‘0011° marker sequence on the VXI backplane. The sequence which is
downloaded into the AWG is repeated continuously. At the end of each sequence a
25 ns pulse is generated via the ‘Marker Out’ front panel connector and is used to
trigger the acquisition cards, allowing repeated triggered measurements.

First the one-tone VIOMAP of the broadband (20 kHz - 2 GHz) Sonoma amplifier is
determined using a sine wave excitation at the carrier frequency fc =1.25 MHz. The

input power is swept from -26 dBm to -7 dBm. The linear (small-signal) gain of this
amplifier is found to be 20.75 dB. At an input power of -7 dBm this gain drops to
19.15 dB, resulting in a gain compression of 1.6 dB. The corresponding phase shift of
179.6 degrees is not sensitive to a change of the input power. In fact this is to be
regretted, because the phase distortion is also described by the VIOMAP and
therefore can be corrected for by the inverse VIOMAP.

As will be explained later, also two-tone signals are generated in the close vicinity of
the carrier frequency. Fixing the input power and sweeping the frequency spacing
reveals subtle side effects.

‘) optional 1) _vas
random N
sequence = 16QAM 1 “C ™™ predistortion RF,,;
of 256 di ~ based on 1.25 MHz
encoding|_p S|
4-bit symbols o 9 T > inverse —,> -
g(t)| VIOMAP g’ (9

raised cosine filter
a=0.5

Figure 6-6. The generation of a (predistorted) 16QAM signal.

A random sequence of 256 4-bit words is generated in software (figure 6-6). The
symbol rate in set at 10 MHz /256 = 39 kHz and 16QAM encoding is selected.
Choosing powers of 2 for the record length allows the use of Fast Fourier Transforms
to transform waveforms between the time domain and the frequency domain. In order
to keep the signals bandlimited, a raised-cosine filter [8] is used with a roll-off factor

o = 0.5. This way, the bandwidth of the signal is limited to (1 + o) times the signal

rate, which results in 58.6 kHz. The filtered i(¢) and g(¢) are optionally predistorted
by the inverse VIOMAP to compensate the nonlinear behaviour of the Sonoma
amplifier. Finally these signals are modulated with a carrier frequency of 10 MHz /
8 = 1.25 MHz. The resulting sequence is downloaded into the arbitrary waveform
generator and is continuously repeated. The 38.75 MHz alias component of the
carrier frequency is suppressed by the 10 MHz reconstruction filter. This is very
important when dealing with nonlinear devices. The maximum levels of the baseband
signals are scaled to correspond to an input power of -8.1 dBm, driving the amplifier

Contributions to Large-Signal Network Analysis 6-11



Volterra-based behavioural modelling.
Measurement setup and results

1.1 dB in compression. This input power must be covered by the VIOMAP in order to
prevent extrapolation of the series approximation.

Model extraction.

A VIOMAP is extracted based on one-tone measurements at the carrier frequency,
that cover an input power range of -26 dBm to -7 dBm. This one-tone VIOMAP

contains 6 complex parameters (Hl’ Hs, ..., Hll) and describes the power of the
fundamental spectral component at the output as a function of the input power within
0.01 dB. The maximum phase deviation is smaller than the measurement noise.
Predistortion based on the corresponding inverse VIOMAP reduces the distortion of
the constellation diagram and the corresponding spectral regrowth, but the

improvement is not as drastic as could be expected. Measurement of the constellation
diagram at the output reveals the presence of overcompensation.

four (1)
1.0

vo 11\
| [

Lout () PR

2:‘21 / \ .93 s / \\ = \\

0.0 92 / \ :
0.2 91 -
i 90 —7 AN i}
06 / \ 09 10 A1
-0.8 / \ t(ms)
10 A 2 t(ms)
i;, (1) = q;, (1) = A.cos 2T.Af1)
A=.1V
Af=5kHz
fo=1.25MHz

measurement —_

prediction based on one-tone VIOMAP —

prediction based on static two-tone VIOMAP (+ 5 kHz)

prediction based on static two-tone VIOMAP (+ 30 kHz) —

Figure 6-7. Measurement and prediction of i, () in the case of a simple 1Q signal.

To investigate the effect in more detail, a simple 1Q signal is generated resulting in a
two-tone excitation of the amplifier. Choosing an appropriate baseband signal

i(t) = q(t) = A-cos(2nAf-t) the corresponding modulated signal x(t)
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J2 T T .
becomes —2—-A- cos[(wc—ﬁ)-t+£—J+cos[(mc+6)-t+é—J , with

0 = 2mAf. The Af of 5 kHz falls within the bandwidth covered by the 16QAM signal
and the amplitude of 0.1 V corresponds to an input power of the modulated signal of
-7 dBm and falls within the input power range covered by the one-tone VIOMAP.
Figure 6-7 shows the corresponding baseband signals at the output. Clearly the one-
tone VIOMAP predicts more compression than the actual measurement shows.

First the level of the output of the one-tone measurement is verified around the carrier
frequency by sweeping the input frequency, meanwhile keeping the input power fixed
at -7 dBm. This experiment does not reveal any variation, neither in amplitude nor in
phase, of the response in the neighbourhood of the carrier. Clearly, the deviations
between measurement and prediction in the case of the simple IQ signal cannot be
explained by such variations.

Pout (dBm)
7
fet A .

. —— |
6.5
-18 —

—.\_\ fci3Ajt‘
-19
-20
12 5 1 2 5 10 20 50 Af (kHz)

two-tone experiment (f. £ Af)
P;,=-13 dBm each, in phase

Figure 6-8. Variation of the nonlinear behaviour (in amplitude) of the amplifier as a function
of the frequency spacing (logarithmic frequency scale).

Based on the fact that the above simple 1Q signal corresponds to a two-tone excitation
at the level of the device under test, it is decided to repeat the above experiment for a

two-tone input signal. The first tone is located at f. — Af, the second one at f,. + Af.
The input power of each tone is fixed to -13 dBm, which is 6 dB below the input power

of the one-tone (A becomes % + % ). Af is swept over the frequency range covered
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by the modulated 16QAM signal. This experiment clearly shows a variation of the

nonlinear behaviour of the amplifier as a function of Af, as indicated by the variation
of both amplitude (figure 6-8) and phase of the fundamental tones and their closest

side lobes. Repeating the experiment at a carrier frequency fc of 1.23 MHz, which

corresponds to a Af of 20 kHz when using a carrier at 1.25 MHz, results in identical
plots. This way it is proven that the phenomenon is independent of small variations of
the carrier frequency itself. The measurement of the linear gain of the amplifier at low
frequencies (figure 6-9) reveals the presence of a transition zone starting at 10 kHz.

This corresponds to twice the transition at a Af of 5 kHz in the case of the two-tone
experiment (figure 6-8). At that moment the frequency spacing of the two-tone equals
10 kHz. Assuming that the low-pass characteristic of the DC bias circuit has a
comparable bandwidth and that its cut-off frequency is larger than that of the AC
coupling of the Sonoma amplifier, the variation of the nonlinear behaviour can be
explained by the self-biasing effect of the amplifier which is mirrored around the carrier
frequency.

Under a one-tone excitation, the power of the RF input signal will determine the shift of
the bias point, but it will only induce a shift in the DC bias settings. As soon as one
modulates the one-tone signal, the DC bias will try to track the modulation. Because a
DC bias network is a low-pass circuit, it can’t always track the modulation immediately.
Therefore, low-frequency voltages and currents are induced which reflect the low-
frequent (LF) characteristics of the bias circuitry. This is referred to as (one possible
source of) memory effects. Unfortunately, these effects get multiplied back to the RF
signal such that one can observe the LF behaviour in the modulation of the RF signal.
This leads to different input-output characteristics depending on the test signal.

gain (dB)
20

10 /

o/
-10 /
-20 /

-30

-50

-60

|
-40 I
|
|

10 20 30 40  f(kHz)

Figure 6-9. Linear gain of the broadband amplifier (P;, = -35 dBm).
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Static two-tone VIOMAP and its inverse.

125

14.0

— Pout
(dBm)

10.0

_-10.0E+00 Pin(dBm)  -7.0E+00,’

Pout o /

(dBm) //
/

/

i
e

4

/

-30.0E+00 Pin (dBm) -5.0E+00
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— one-tone measurement
— prediction based on static two-tone VIOMAP (£ 30 kHz)

Figure 6-10. Compression characteristic of the amplifier at 1.25 MHz (one-tone vs. two-tone).

Based on the two-tone measurement that reveals the variation of the nonlinear

behaviour of the amplifier as a function of the frequency spacing 2Af of the two-tone,
a better model can be extracted to predict the response of the amplifier in the case of
the 16QAM signal. Because the 16QAM signal uniformly covers a frequency range up

o . 293-5
to a Af of 29.3 kHz, 83% (= 03

measurement with a Af higher than 5 kHz. Therefore, a static VIOMAP is extracted

) of the signal is well described by a two-tone

based on two-tone measurements with a Af of 30 kHz. The input power of each tone

is raised from -32 dBm to -13 dBm. The individual input powers of each tone are
combined such that an equidistant two-dimensional grid is covered, each axis
corresponding to the input power of each tone, expressed in dBm. The VIOMAP is

chosen to be static in order to map its kernels (Hl’ H3, Hll) on the ones found
based on one-tone measurements at the carrier frequency. As such, these new kernel
values are able to predict the outcome Ypred ((DC) of the set of one-tone

experiments, which were used to generate the one-tone VIOMAP, thus creating a set
of {X(m,), Ypred((")c)} pairs. As expected, the resulting compression characteristic
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(figure 6-10), which is generated by implementing the VIOMAP model in an harmonic
balance simulator, shows a lower level of compression than the actual one-tone

Ypred(wc)

TO)C),X((DC)} a new

measurements. Based on the corresponding set of {

inverse VIOMAP can be calculated. This model needs only 5 complex parameters to
match the expansion characteristic (figure 6-11) within 0.01 dB. The phase deviation
is again below the measurement noise.

Pout (dBm)

-8

4
14 //
-18 /
-20 /
-22 /
/

-24 /
/|

-26
/ P,y (dBm)
-25 -20 -15 -10

Figure 6-11. Predistortion characteristic based on the inverse (static two-tone) VIOMAP.

Predistortion based on static two-tone VIOMAP vs. one-tone
VIOMAP.

In order to show the enhanced predistortion that is obtained when using the static two-
tone VIOMAP instead of the one-tone VIOMAP, the 16QAM signal first is applied to
the amplifier without predistortion. Figure 6-12 shows the spectrum of the modulated
16QAM signal at the input and at the output of the amplifier. Due to the nonlinear
operation of the amplifier, the corresponding spectrum at its output spreads into the
adjacent frequency bands. This phenomenon is referred to as “spectral regrowth”.

After demodulation, the compression of i(¢) as a result of the nonlinear behaviour of
the amplifier is clearly visible on the generated eye diagram (figure 6-13). The outer
levels do not reach a value of 0.78 V (based on the small-signal gain). Instead, two

distinct levels appear due to crosstalk: if the simultaneous value of g(t) at the input of
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Figure 6-12. Original 16QAM input (thin) and output (thick) spectrum.

the amplifier correspond to one of both outer levels too, the amplifier will be driven
more into compression and the resulting i(¢) at the output will be smaller than in the

case the value of ¢g(¢) at the input of the amplifier correspond to one of both inner

levels. This is clear when looking at the corresponding constellation diagram (figure 6-
14).

It should be noted that figure 6-13 and figure 6-14 correspond to measurements
performed as part of [6]. In that case, the outer levels should reach a value of 1.2V
(based on the small-signal gain). During the predistortion experiment, the maximum

levels of i(#) and g(t) have been reduced.

The effect of predistortion on the spectrum at the input of the amplifier is shown for
both the one-tone and two-tone VIOMAP (upper portion of figure 6-15) and the
resulting spectrum at the output clearly shows the enhancement when the
predistortion is based on a static two-tone VIOMAP instead of a one-tone VIOMAP
(lower portion of figure 6-15). The spectral regrowth is reduced an extra 10 dB,
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Figure 6-13. Measured eye diagram of i(¢) at the output of the amplifier (no predistortion) for

maximum levels of i(7) and g(t) at the input, which result in 2 dB compression. Two distinct
levels become apparent at the indicated outer levels (circles) and even at the inner levels.
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Figure 6-14. Measured constellation diagram at the output of the amplifier (no predistortion)
for maximum levels of i() and g(¢) at the input, which result in 2 dB compression.
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resulting in an overall reduction of more than 16 dB. The corresponding i(#) no longer
shows the nonlinear effects which were clearly visible without predistortion.
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Figure 6-15. Original and predistorted 16QAM input and output spectrum.
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Conclusions

It is shown that using an inverse VIOMAP, it is possible to enhance the linearity of
digital communication channels. It is also demonstrated that one should be very
careful when extrapolating a nonlinear model that has been extracted at the carrier
frequency, to predict the response of the system to narrowband signals. Based on
swept two-tone measurements one was able to explain the overcompensation which
showed up during the 16QAM experiment when predistorting the baseband signals
using an inverse VIOMAP based on measurements at the carrier frequency only. At
the same time these measurements allowed the extraction of a better model resulting
in an overall reduction of the spectral regrowth of more than 16 dB.
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Conclusions and ideas for
further research

“Large-Signal Network Analysis” is still in its infancy. The work presented here are
humble contributions. Nevertheless it is believed that they represent a meaningful
contribution to a growing community in a world where nonlinearities can no longer be
ignored.

The LSNA hardware abstraction layer was conceived more than 10 years ago and
survived the replacement of several major hardware components without causing any
frustration neither to the conceiver nor to its users. It is still used today at different

locations worldwide. A few years ago, Microsoft launched its .NET' initiative. The
promise is that each of us can select the programming language we feel most

comfortable with, as long as it targets the CLR?. It resulted in a new language called

C#3. It is an attempt to take the best of C++ and Java. | believe languages like C, C++
and even Fortran remain key to the scientific community. Nevertheless, researchers
should keep an eye on this new evolution, especially when they have the ambition to
allow as many people as possible to use their work “as is”. I'm convinced that new
versions of the LSNA hardware abstraction layer should be “NET aware”, either by
directly targeting the .NET platform or by using the interoperability provided by
Microsoft between .NET managed code and native unmanaged code. Another
evolution is driven by the multiple-core processors which were recently released by
companies like Intel. Microsoft is working on concepts which should alleviate the pain
for those who want to take advantage of multi-threaded programming.

The streamlined and enhanced implementation of the nose-to-nose calibration
technique and its application as a part of the calibration of the Large-Signal Network
Analyzer and the Lightwave Component Analyzer have served the community well
and still does. The involvement of institutes like NIST was and remains essential to
show to the community that good calibration techniques are key components to obtain
good measurements. Furthermore, it fuelled the research at NIST related to the
electro-optic sampling system to become an alternative to the nose-to-nose
calibration technique. It also pushes the upper frequency limit at which calibrated
LSNA measurements are possible. I'm convinced that it remains crucial to have
independent techniques and as such | welcome further efforts, both with respect to
nose-to-nose and EOS-based calibration techniques. Work has been performed at
NIST (Technical Note 1528 by K. Remley) explaining the impact of the internal
sampling circuitry on the phase error of the nose-to-nose calibration. This work and
the work reported by J. Scott, as referenced in the “Comparison of the nose-to-nose
and EOS-based calibration technique® chapter can serve as a starting point to
improve the actual nose-to-nose calibration further. To convince the sceptics amongst

1. pronounced as “dot NET”
2. Common Language Runtime
3. pronounced as “C sharp”
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us, it may help to set up a comparison between the results obtained at NIST and those
based on other electro-optic sampling systems. Clever researchers may come up with
a third method that allows broad-band calibration. One challenge is to push the upper
frequency limit, increasing the frequency resolution of the phase calibration is another,
as it is a key component to accurate large-signal measurements under modulated
excitation. Therefore, | warmly welcome the recent efforts at the department and look
forward to the fruits of this work.

Many high-frequency sampling oscilloscopes still suffer from time base imperfections,
namely distortion, drift and jitter. To my knowledge, the system identification
techniques which are applied to enhance both jitter and drift estimation embody the
first work which tackles the effects of both jitter and drift simultaneously. Although the
results can stand the comparison with other state-of-the-art techniques, it is expected
that even better results can be obtained by combining the results of the chapter on
jitter and drift estimation. Ideally, all time base effects should be considered
simultaneously and correctly dealt with. Researchers, who feel challenged, may learn

from a method' which was recently reported by people at NIST and the
implementation is made available to others. A drawback of this approach is that it
requires the measurement of two quadrature sinusoids performed simultaneously with
the waveform of interest.

Simulations and designs rely on good models. The potential of Volterra-based models
has been demonstrated through several applications. It is essential for practising
engineers to understand that omnipotent models which truthfully describe the
nonlinear behaviour of their components under all possible large-signal conditions
simply don’t exist. One of the major goals of the early work on predistortion is to show
the potential pitfalls when using a model which is extracted using one class of
excitation signals to predict the output of the system when applying another class of
excitation signals. Predistortion based on such a model has the effect of a magnifying-
glass. There is a strong need for additional research on measurement-based
behavioural models. Researchers should “sell” new contributions by demonstrating
their potential, without being tempted to “oversell” their models. | strongly believe that
the use of random multi-sines will provide new insights in the analysis and modelling
of large-signal behaviour. The major challenge there is to build a strong case to
defend it in front of a potentially biased jury.

| believe that the research community has the difficult but challenging mission to push
“Large-Signal Network Analysis” forward, without forgetting the poor souls out there,
doing their best based on their present knowledge and experience. A balanced mix of
fundamental research, education and carefully chosen applications which “speak the
language” of the practising community is key to make “Large-Signal Network
Analysis” a success for all of us.

1. “Compensation of Random and Systematic Timing Errors in Sampling Oscilloscopes”, submitted for
publication in the IEEE Transactions on Instrumentation and Measurement.
A copy of the revised version which was submitted to IEEE and the software can be downloaded
from http://www.boulder.nist.gov/div815/HSM_Project/Software.htm
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