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 Abstract - A system identification approach is applied to estimate
the time base drift introduced by a high-frequency sampling
oscilloscope. First, a new least squares estimator is proposed to
estimate the delay of a set of repeated measurements in the presence
of additive and jitter noise. Next, the effect of both additive and jitter
noise is studied in the frequency domain using simulations. Special
attention is devoted to the covariance matrix of the experiments,
which is used to construct a weighted least squares estimator that
minimizes the uncertainty of the estimated delays. Comparative
results with respect to other state-of-the-art methods are shown.
Finally, the enhanced method is applied to estimate the drift
observed in repeated impulse response measurements of an opto-
electrical converter using an Agilent 83480A sampling oscilloscope
in combination with a 83484A 50 GHz electrical plug-in.

 Keywords - large-signal network analysis, sampling oscilloscopes,
system identification, time base drift, time base jitter.

I. INTRODUCTION

In order for large-signal network analyzers [1],[2] to
accurately measure the voltage and current at both ports of a
high-frequency nonlinear device, additional calibration is
required compared to classical vector network analyzers. On
top of the relative calibration, an absolute power and phase
calibration are needed: the amplitude and phase at one
frequency must be related to those at other frequencies. The
power calibration is performed using a calibrated power
sensor. The phase calibration is performed using an harmonic
phase reference, which is essentially a pulse generator. This
one is calibrated using a high-frequency sampling
oscilloscope, which itself requires calibration because it
suffers from both time base errors and voltage resolution
errors. The non-ideal amplitude and phase characteristic of
the scope is estimated using either a nose-to-nose calibration
technique [3],[4] or by measuring the impulse response of a
photodiode which is calibrated using an electro-optic
sampling (EOS) system [5]. Both techniques require that one
properly deals with the time base errors.

One of these time base errors is referred to as time base
drift. When collecting a large number of repeated
measurement records of the impulse response of a linear time-
invariant system using a high-frequency sampling
oscilloscope, it was found that the successive measurements
slightly shift over time, within the acquisition window. As

such it is essential to compensate for this drift before
averaging.

This paper describes a system identification approach to
estimate the time base drift introduced by a high-frequency
sampling oscilloscope in the presence of additive noise and
jitter. The estimations are performed in the frequency domain.

The initial method uses the first measurement record as a
reference signal during the alignment of successive
measurements. This paper however focusses on a new least
squares estimator, which uses the aligned average as a
reference signal instead of the first measurement. The
resulting “enhanced LS” estimator clearly outperforms the
initial estimator when the additive noise is dominant.

Next, special attention is devoted to the covariance matrix
of the disturbing noise. The use of this matrix allows one to
come up with a good estimate of the uncertainty on the
estimated delays that describe the time base drift. Using the
covariance matrix, a weighted version of the “enhanced LS”
estimator is implemented that minimizes the uncertainty on
the estimated delays. Furthermore, it allows to compare the
expected value of the cost to the actual value of the cost and as
such allows to detect model errors.

Comparative results with respect to other state-of-the-art
methods are based on simulations performed in [6] and
demonstrate the potential of the proposed estimators.

Finally, the enhanced method is applied to estimate the
drift during repeated measurements performed at the National
Institute of Standards and Technology (NIST). The impulse
response of a calibrated photodiode is measured using an
Agilent 83480A sampling oscilloscope in combination with a
83484A 50 GHz electrical plug-in1. It is shown that taking the
covariance matrix into account, the uncertainty on the
estimated delays can be reduced by a factor of 2.

II. PROPOSED APPROACH

Time base drift is due to imperfections on the position of
the trigger point relative to the signal and results in a time
shift of the signal in the acquisition window. As a result,
successive measurements correspond to delayed versions of

1. Trade names are used only to adequately specify the experimental
conditions. This does not constitute an endorsement by the National Institute
of Standards and Technology. Other products may perform as well or better.
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the “exact” signal. In our approach, the delay  models this
effect and varies with respect to the realization index . The
resulting signal model is

. (1)

Herein, represents the -th measurement of the true

but unknown signal  when both additive noise 

and jitter  are added as a part of the measurement.
Both noise sources are assumed to be zero mean, normally
distributed, independent and stationary with respect to , and
as a result they are also independent with respect to realization
index . Furthermore, it is assumed that , where 

represents the sampling period. In this paper,  represents

the variance of the additive noise and  is the variance of

the jitter noise.
Let  correspond to the discrete Fourier transform

of . First, the time base drift of each acquisition is
estimated using the first acquisition as a reference signal. This
is referred to as the “naive LS” estimator, which minimizes
the cost function  via the frequency domain, taking 

spectral components into account.

, (2)

Next, the true but unknown signal is used as the reference
signal. The resulting “enhanced LS” cost function then
becomes

. (3)

Since the spectrum  appears linearly in the
equation error, it is possible to eliminate it from the cost.
Thus, the cost function becomes a function of the unknown

delays  only and is estimated via the

frequency domain:

(4)

It is possible to introduce an arbitrary delay  as follows

, , (5)
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without influencing . If  is
considered to be the new reference, it is clear that there is a
degeneracy: (only) one delay can be freely chosen. One
possibility is to select one delay to be zero. Here,  is set to
zero.

The derivatives of (4) with respect to  up to  yield the
gradient while the second derivatives yield the Hessian of the
cost. The Newton-Raphson iteration scheme is then used to
find the estimates  which minimize (4), given that

. Starting values are readily available from the naive
LS estimator (2).

Although these starting values reduce the number of
iterations that are needed to converge to the solution, it was
found that zero starting values also do the job. Even starting
values where the sign of the delay is incorrect still lead to
convergence to the same solution. This shows the robustness
of the method to poor starting values.

III. ANALYSIS OF THE NOISE SOURCES

The assumption of circular complex noise in the frequency
domain is only valid in the case of additive noise. As soon as
jitter is present, this assumption is no longer valid. The
impacted frequency range depends on the actual signal being
measured.

This is demonstrated based on simulations which are kept
as realistic as possible, using the analytical expression which
can be found in [7]. The jitter noise  is assumed to be
zero mean, normally distributed, independent and stationary
with respect to . Its standard deviation is assumed to be
known and is set equal to 1 ps. The additive noise is set to
zero.

Calculating the sample variance of the real and imaginary
part of the spectral data corresponding to 5000 realizations of

Figure 1. Correlation coefficient of the real and the imaginary part 
of the Fourier transform of the 5000 realizations of the impulse 
response.

VLS θ( ) Y0̃ ω( ) Y0 ω( ) ejωτ⋅=

τ1

τ2 τK

τ2 .. τK, ,

τ1 0=

ny k ti,( )

t

10 20 30 40 50 60 70 80
freq HGHz L

-0.4

-0.2

0.2

0.4

ρ Hre,imL



the simulation data, it becomes clear that although the sum of
the variances of the real and imaginary part is constant as a
function of frequency, this is not the case for the real part and
the imaginary part. Figure 1 shows the correlation coefficient
of the real and imaginary part of the spectral data, indicating
correlation up to 65 GHz.

Furthermore, one can take a look at the correlation between
spectral contributions originating from different frequencies
(real, real), (real, imag), (imag, real) and (imag, imag).
Correlation is observed up to about 130 GHz.

IV. CALCULATION OF THE NOISE COVARIANCE 
MATRIX

Next, it is shown that it is possible to calculate the
covariance matrix in the frequency domain, if one has an
estimate of the sample variance in the time domain [7].

Because the noise is not circular complex as soon as jitter
is present, the frequency covariance matrix must take into
account the real and the imaginary parts of the spectrum
separately. Given the noisy measurement  and its Fourier
transform , the covariance matrix in the frequency
domain can then be calculated using (6), provided that the real
and the imaginary parts are separated.

(6)

In (6),  represents the transpose of the Jacobian matrix

, which is the matrix notation of the discrete
Fourier transform where the odd rows correspond to the real
part and the even rows to the imaginary part of the Fourier
coefficient.  represents the number of frequency
components of interest and  is the number of time points of
one measurement of the impulse response. The covariance

matrix in the time domain  reduces to a
diagonal matrix in case the jitter is independently distributed
over time. The values on this diagonal correspond to the
variance as a function of time.

Figure 2 is the equivalent of figure 1, but is now calculated
using (6) where the variance is known as a function of time.
Both show excellent correspondence.

Now it is possible to construct a weighted least squares
estimator which minimizes the uncertainty on the estimated
delays and, at the same time, has a known expected value of
the cost function, such that the obtained cost function can be
compared to its expected value. This criterion can then be
used to detect model errors.

, (7)
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The advantages of this method will become apparent when
it will be applied to both simulations and measurements.

Using the Gauss-Newton method to minimize (7) is
somewhat challenging because it requires the Jacobian

. (10)

Typical values for both  and  in an experimental
environment are 500. This results in a large Jacobian matrix of
size  and a covariance matrix of .
Fortunately, there is some structure in the Jacobian matrix
derived from (9), such that the problem can be solved in
blocks of size .

V. SIMULATIONS

A first set of simulations is used to verify the correctness of
the implementations and the performance of each estimator.
The simulations are based on the same analytical expression
of the impulse response as the one used in [7]. The drift is
estimated in the presence of both additive and jitter noise,
where both are set to have realistic values: both are Gaussian,
zero mean with a standard deviation of respectively 0.6 mV
and 1 ps. The exact signal is assumed to be known and [7] can
be used to calculate the variance as a function of time. As
such (6) can be used to calculate .

Each simulation consists of 500 realizations of the signal.
Hence, . Each realization contains 4096 time
samples of the impulse response, which spans an acquisition
window of 5 ns. If spectral components are taken into account

Figure 2. Correlation coefficient of the real and the imaginary part 
using (6).
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up to 100 GHz, then .
Comparative results are shown for two situations.

A. Zero drift
During the first simulation, the drift is set to be exactly

zero. Due to the jitter noise and the additive noise, the
estimated drift becomes a stochastical variable, which is not
exactly zero. Because of the degeneracy (5), only the standard
deviation is shown in Table 1.

Table 1 clearly shows that the naive LS estimator (2)
performs equally well as the enhanced LS estimator (4), while
the enhanced WLS estimator (7) reduces the uncertainty on
the estimated delay by as much as a factor 2.

Furthermore, when overlooking the fact that, in the
presence of jitter, the noise in the frequency domain is no
longer circular complex, the uncertainty on the estimated
delay for the enhanced LS estimator is underestimated by a
factor of more than 10 when extracted from the parameter
covariance matrix. Using the full covariance matrix (6), the
estimated uncertainty on the delay turns out to be 0.242 ps and
falls within the 95% confidence interval of the obtained
uncertainty.

Finally, it is important to notice that in the case of the
enhanced WLS estimator, the expected value of the cost is
499500 ± 1999. The realized cost turns out to be 497250 and
falls just outside the 95% confidence interval of the expected
value of the cost, indicating that no significant model errors
can be detected, given the noise level used during simulation.

B. Linear drift
Similar results and ditto conclusions can be drawn when

the drift is known to be a linear function of the realization
index. Applying a delay of 0.01 ps per realization, the drift of
the first realization is zero, while that of the 500th realization
is known to be 4.99 ps.

This time the actual value of the cost of the WLS estimator
turns out to be 498240 and is well within the 95% confidence
interval of the expected value of the cost.

The general conclusion of these simulations is that in
realistic situations, corresponding to the nose-to-nose and
EOS-based measurements, the effect of using the aligned
average instead of the first realization as a reference signal is
expected to be minimal. However, using proper weigthing
based on the full covariance matrix of the measurements has
significant impact.

Table 1. Uncertainty of the estimated drift  (case where the exact 
drift is zero).

Estimator Uncertainty  (ps)
95% confidence 
interval (ps) of 

naive LS 0.260 0.245 .. 0.277

enhanced LS 0.253 0.238 .. 0.270

enhanced WLS 0.132 0.124 .. 0.141

M 500=

τ

στ στ

VI. COMPARISON TO OTHER STATE-OF-THE-ART 
METHODS

Next the performance of the implemented estimators is
compared to the two most relevant estimators described in [6].
The comparison is based on the simulated signal that is
described in Appendix I of [6].

Figure 3 shows the noise-free signal, where both the time
and amplitude are given in arbitrary units. In fact, the time
scale is expressed in integer multiples of the sampling period

.

The “naive cross-correlation” method described by [6] can
be compared to the naive LS estimator (2) described in this
paper, because both use the first realization as a reference
signal. However, the method described in [6] is based on a
cross-correlation technique performed in the time domain and
as such restricted to a grid corresponding to integer multiples
of . In order to overcome this limitation, [6] searches for
the global minimum about the grid value which maximizes
the cross-correlation based on a “golden search and parabolic
interpolation”.

The “complete cross-correlation” method proposed by [6]
calculates the relative drift between any combination of the 
realizations to come up with an averaged drift of all
realizations with respect to the first realization. As such, this
method is similar to the enhanced LS estimator (3) described
in this paper.

Comparisons are performed for different relevant
situations, which are summarized in Table 2.

For each of the above situations, a set of 100 misaligned
signals are generated. The standard deviation of the random
drift associated with each signal is set to 2.5. In fact the value
of  should be compared to a peak-to-peak value of about

4.2, while both  and the random drift are expressed as

multiples of .
In order to get an idea of what is meant by “moderate”

Figure 3. Noise-free simulated signal as described in [6] (both axes 
in arbitrary units).
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jitter  and “moderate” additive noise ,

figure 4 shows one realization of such a noisy signal while
zooming in to the main portion of the pulse.

The simulations show that the naive LS method clearly
outperforms the naive cross-correlation method described in
[6]. It is believed that this is due to the fact that the latter
suffers from interpolation problems. Indeed, an interpolation
technique is required to increase the time resolution to a value
that is smaller than , and this may cause problems in the
presence of noise.

Table 3 shows the results of the simulations in the case of
dominant jitter noise. Both the naive LS method (2), the
enhanced LS method (3) and the complete cross-correlation
method [6] perform equally well. The enhanced WLS method
(7) reduces the RMS prediction error by as much as a factor
of 2 and clearly outperforms all other methods altogether.

The most important improvement of the WLS method is
that it allows to compare the expected value of the cost to the
realized value of the cost and as such allows to detect model
errors or anomalies in the measurements. Based on
100 realizations and 500 spectral component, the expected
value of the cost is 99900 ± 894. The realized cost turns out to
be 99525 and falls within the 95% confidence interval. Hence,
it can be concluded that there are no detectable model errors,
given the noise levels used during simulation. The other
methods provide no information to the user to draw such

Table 2. Selected values of  and  (in arbitrary units).

Situation

no jitter, small additive noise 0 0.02

no jitter, moderate additive noise 0 0.1

significant jitter, moderate additive noise 3 0.1

moderate jitter, small additive noise 1 0.02

moderate jitter, moderate additive noise 1 0.1

Figure 4. Zoomed version of the simulated signal in the case of 
moderate jitter and moderate additive noise (both axes in arbitrary 
units).
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conclusions.
Table 4 shows the results of the simulations in the case of

both moderate jitter and moderate additive noise. In this case,
the performance of the naive LS method equals that of the
complete cross-correlation method and is significantly better
than the naive cross-correlation method. Again, the enhanced
WLS method has the best performance. However, the
improvement with respect to the enhanced LS method is
rather limited. This is due to the fact that the jitter noise is no
longer dominant, as it was the case for the simulations
corresponding to Table 3. The enhanced LS method in its turn
shows a limited improvement over the naive LS method.

VII. MEASUREMENT RESULTS

The 500 repeated impulse response measurements of a
calibrated photodiode were performed at NIST using an
Agilent 83480A sampling oscilloscope in combination with a
83484A 50 GHz electrical plug-in. The block diagram of the
required measurement setup is shown in figure 5.

Figure 6 zooms into the main portion of one impulse
response measurement. Figure 7 plots all 500 measurements
on top of each other, clearly demonstrating the drift.

Table 3. RMS prediction error for the simulation where
 and .

Estimator
RMS 
prediction error

95% confidence
interval

naive cross-correlation ~0.25

complete cross-correlation ~0.15

naive LS 0.16 0.14 .. 0.19

enhanced LS 0.16 0.14 .. 0.19

enhanced WLS 0.08 0.07 .. 0.09

Table 4. RMS prediction error for the simulation where
 and .

Estimator
RMS 
prediction error

95% confidence
interval

naive cross-correlation ~0.60

complete cross-correlation ~0.22

naive LS 0.21 0.18 .. 0.24

enhanced LS 0.18 0.16 .. 0.21

enhanced WLS 0.16 0.14 .. 0.19

Figure 5. Setup used during the impulse response measurement.
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The drift is estimated using the naive LS method (2) and
the enhanced LS method (3). Although there is some
difference, the difference is rather limited.

When the full covariance matrix based on the estimated
jitter and additive noise standard deviation is used to construct
the WLS estimator (7), figure 8 shows a significantly
smoother characteristic, resulting from a decreased
uncertainty on the estimated drift. This is an expected
property of the WLS, and is due to the use of a proper
weighting of the frequency components in the cost function.

These results are consistent with those of the simulations
above, where both the additive noise and the jitter noise are
moderate, but where the latter is dominant.

This also motivates the smoothing of the estimated time
base drift during the estimation of the time base jitter [7].

VIII. CONCLUSIONS

Using system identification techniques, it is possible to
derive an estimate of time base drift in the presence of both
additive and jitter noise. Due to the identification framework,
the properties of this estimator are well understood, and this
can be used to verify the quality of the measurements. To the
knowledge of the authors, the proposed method performs

Figure 6. Main portion of the first impulse response measurement.

Figure 7. Main portion of all impulse response measurements.
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better than any other published technique.

The use of a proper weighting of the contribution of the
individual spectral components to the cost function not only
provides a relevant value for the cost function. It also reduces
the uncertainty on the estimated drifts in the presence of a
realistic quantity of additive and jitter noise by as much as a
factor of 2. The weighting is based on the full covariance
matrix, where the contributions of the real and the imaginary
part are separately taken into account.
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Figure 8. Comparison of the estimated drift by use of the enhanced 
LS method (connected gray dots) and the enhanced WLS method 
(connected black dots) for the 500 realizations.
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