

ZVxPlus Application:
Transistor Characterization,
Reliability and
Model Verification

Outline

- The Device Under Test (DUT): EPA120B-100P
- Measurement Setup
- "Fire and Go..."
- Calibration and Deembedding Process
- DC IV Application
- DC+RF Measurement
 - Frequency Domain
 - Time Domain
 - Terminating Impedances
- Advanced Display: Dynamic lines
- Model Verification
- Conclusions

EPA120B-100P

- EPA120B-100P
 - high efficiency heterojunction power FET
 - power output: + 29.0dBm typ.
 - power gain: 11.5dB typ. @ 12 GHz

NMDG

Measurement Setup

4 NMDG

"Fire and Go..."

DUT properly working? (1)

DUT properly working? (2)

Next Step?

Calibration

DC Calibration

RF Calibration

DUT in pinch off?

Some words about deembedding

The DUT is placed on a PCB

- → using calibration plane A1 and A2 we measure the behaviour of the DUT AND PCB
- → using Multiline TRL (thru-reflect-line) we move the calibration plane to the DUT we measure the behaviour **ONLY** of the DUT

NMDG

Some words about deembedding

Include package

Using the FET Model, provided by the manufacturer the package can be included

PACKAGED FET MODEL

DUT in pinch off (with deembedding)

ICE DC IV Application

Capability to force the control variables in the calibration plane

DC Sweep Limits

Defining limits at DC source and in calibration plane

ZVxPlus: Frequency Domain Characterisation - Phase

 $V_{gs} = -0.6V, V_{ds} = 5V f_0 = 1GHz$

Pin=-25dBm

amplitude phase

Pin=0dBm

ZVxPlus: Time Domain Characterisation

$$V_{gs}$$
=-0.6V, V_{ds} =5V f_{0} =1GHz

ZVxPlus: Time Domain Characterisation – Pinch Off

 $V_{gs} = -1.3V$, $V_{ds} = 5V$ $f_0 = 1$ GHz

ZVxPlus: Terminating Impedances

Output Impedance with 50 Ohm termination at fundamental and 2 harmonics

Output Impedance with Open termination at fundamental and 2 harmonics

ZVxPlus: Dynamic Loadline

 V_{gs} =-0.6V, V_{ds} =4V f_0 =1GHz Pin = 0 dBm

Compare the static V_{gate} with the dynamic V_{gate} through color Z-axis

ZVxPlus: Dynamic Gm and Input Capacitance

Dynamic Gm

"Dynamic Input Capacitance"

Exporting Measurements

Model Verification in ADS

Measurement vs Simulation

Conclusions

- Prepare measurement setup and ICE
- Calibration steps
- Deembedding capability
- DC and RF Transistor Characterization
- Basic Displays
- Advanced Displays: Dynamic Lines
- Model Verification