

72nd ARFTG Conference

Dec.9th-12th, 2008-Portland

Simultaneous measurement of high and low frequency response of non-linear microwave devices

G. Avolio¹, G. Pailloncy², D. Schreurs¹, M. Vanden Bossche², B. Nauwelaers¹

¹K.U.Leuven, Div. ESAT-TELEMIC (Belgium)
²NMDG NV, Bornem (Belgium)

Aim

- □ Characterization of Microwave
- **Power Devices**
- □Two-tone test

...and issues

- □Spectral re-growth
- □Variation and asymmetry of IM3
- □Long Term Memory Effects (LTMs)

RF response depends on input frequency offset

Case Study

- Two-Tone Measurement
- GaAs transistor
- f_c = 950 MHz
- P_{in} = 0 dBm (for each tone)
- V_{DDC} = 3 V
- I_{DDC} = 430 mA
- 50 Ohm termination @RF
- · Short termination @LF

Measurement Set-Up

DYNAMIC BIAS

- ☐ Four additional ADC channels to sample Low Frequency Voltage/Current
- ☐ LF Test Set
- ☐ LF Bias-Tees to separate DC&LF terminations
- □ LF Sensing Board to 'probe' Low Frequency Components

'3-STEPS' CALIBRATION

- ✓RF SOLT+POWER&PHASE
- ✓LF SOLT+POWER&PHASE
- ✓ PHASE ALIGNMENT

 Correction for mismatch
 between RF and LF path

