A Network Analyzer For Active Components

© Copyright 2005 NMDG Engineering

DSW RestSystems

Version 2

Outline

- Review of S-parameters
- Theory of Large-Signal Network Analysis
- The Large-Signal Network Analyzer
- The Calibration
- Active Component Characterization
 - under CW stimulus
 - under modulation stimulus
 - in non-50 Ohm environment
- Modeling
 - Model verification
 - Measurement-based behavioral model
- Conclusions

Definition of S-parameters

As function of frequency f_0

$$b_1(f_0) = S_{11}(f_0) a_1(f_0) + S_{12}(f_0) a_2(f_0)$$

$$b_2(f_0) = S_{21}(f_0) a_1(f_0) + S_{22}(f_0) a_2(f_0)$$

- S-parameters are a behavioral model
- S-parameters describe completely the linear behavior
- S-parameters cannot be determined properly with one measurement

Measuring S-parameters

Example: Packaged FET

S-parameter Measurement

NMDG Engineering Leading beyond S-parameters © Copyright 2005 NMDG Engineering 6 Certain slides are with permission from Agilent Technologies

NMDG Engineering Leading beyond S-parameters © Copyright 2005 NMDG Engineering 7 Certain slides are with permission from Agilent Technologies

Outline

- Review of S-parameters
- Theory of Large-Signal Network Analysis
- The Large-Signal Network Analyzer
- The Calibration
- Active Component Characterization
 - under CW stimulus
 - under modulation stimulus
 - in non-50 Ohm environment
- Modeling
 - Model verification
 - Measurement-based behavioral model
- Conclusions

Nonlinear Behavior - Harmonic Generation

 $a_1 = 0 \ dBm$

What happens at the input?

Vector Signal Analyzer Display What is the meaning of this measurement?

Complete Characterization of Active Components

Small-Signal Network Analysis: S-parameters

Large-Signal Network Analysis

Large-Signal Network Analysis in a nutshell

Outline

- Review of S-parameters
- Theory of Large-Signal Network Analysis
- The Large-Signal Network Analyzer
- The Calibration
- Active Component Characterization
 - under CW stimulus
 - under modulation stimulus
 - in non-50 Ohm environment
- Modeling
 - Model verification
 - Measurement-based behavioral model
- Conclusions

Vector Network Analyzer

Large-Signal Network Analyzer

Acquisition in LSNA

Capturing broadband HF signals (harmonics and modulation) using low-frequency data - acquisition requires samplers

Representation Domain: Continuos Wave Signal

NMDG Engineering

Representation Domain: Amplitude and Phase Modulation of Continuos Wave Signal

NMDG Engineering Leading beyond S-parameters

Certain slides are with permission from Agilent Technologies

Representation Domain: Periodic Modulated Signals

With proper processing the class of signal is extendable to any type of multi-tone signal

Practical Limitations of LSNA

- Large-Signal Network analysis will be performed using periodic stimuli
 - one tone and harmonics
 - periodic modulation and harmonics
 - other types of multi tones are possible
- The devices under test maintain periodicity in their response

Outline

- Review of S-parameters
- Theory of Large-Signal Network Analysis
- The Large-Signal Network Analyzer
- The Calibration
- Active Component Characterization
 - under CW stimulus
 - under modulation stimulus
 - in non-50 Ohm environment
- Modeling
 - Model verification
 - Measurement-based behavioral model
- Conclusions

LSNA Calibration

Measurement Traceability

(*) Licensed to Maury and NMDG

Outline

- Review of S-parameters
- Theory of Large-Signal Network Analysis
- The Large-Signal Network Analyzer
- The Calibration
- Active Component Characterization
 - under CW stimulus
 - under modulation stimulus
 - in non-50 Ohm environment
- Modeling
 - Model verification
 - Measurement-based behavioral model
- Conclusions

Available Large-Signal Network Analyzers

MT4463B - 50 GHz

© Copyright 2005 NMDG Engineering 27 Certain slides are with permission from Agilent Technologies

Active HF Component Characterization Requirements

DC IV Characterization

MT4463A/B

Modulation Characterization

Adding ... DC Capability

Adding ... Modulation Capability

Adding ... Tuners © Copyright 2005 NMDG Engineering 28 Certain slides are with permission from Agilent Technologies

Adding ... Pre-match Tuner MDG Engineering Leading beyond S-parameters

© Copyright 2005 NMDG Engineering 29 Certain slides are with permission from Agilent Technologies

Large-Signal Measurements - CW - Voltage/Current

NMDG Engineering Leading beyond S-parameters **Time domain**

© Copyright 2005 NMDG Engineering 30 Certain slides are with permission from Agilent Technologies

Large-Signal Measurements - CW - Voltage/Current

Frequency domain

© Copyright 2005 NMDG Engineering 31 Certain slides are with permission from Agilent Technologies

Large-Signal Measurements - CW - Voltage Waves

NMDG Engineering Leading beyond S-parameters **Time domain**

© Copyright 2005 NMDG Engineering 32 Certain slides are with permission from Agilent Technologies DC-IV curve and RF Load Line (1)

50 Ohm Termination

Large-signal - 50 Ohm Termination

Open Termination

Large-signal - non-50 Ohm Termination

Outline

- Review of S-parameters
- Theory of Large-Signal Network Analysis
- The Large-Signal Network Analyzer
- The Calibration
- Active Component Characterization
 - under CW stimulus
 - under modulation stimulus
 - in non-50 Ohm environment
- Modeling
 - Model verification
 - Measurement-based behavioral model
- Conclusions

Generation of Multi-tone

Large-Signal Measurements - Modulation - Voltage/Current

NMDG Engineering

Frequency domain

© Copyright 2005 NMDG Engineering 37 Certain slides are with permission from Agilent Technologies

Large-Signal Measurements - Modulation - Voltage/Current

Zoom into one of the spectral components (fundamental frequency)

Frequency domain

Large-Signal Measurements - Modulation - Voltage/Current

NMDG Engineering Leading beyond S-parameters Frequency - Time domain

© Copyright 2005 NMDG Engineering 39 Certain slides are with permission from Agilent Technologies

Dynamic AM/AM and AM/PM (two-tone 10kHz spacing)

Dynamic HDA (two-tone 10kHz spacing)

NMDG Engineering

Outline

- Review of S-parameters
- Theory of Large-Signal Network Analysis
- The Large-Signal Network Analyzer
- The Calibration
- Active Component Characterization
 - under CW stimulus
 - under modulation stimulus
 - in non-50 Ohm environment
- Modeling
 - Model verification
 - Measurement-based behavioral model
- Conclusions

Component Characterization with Passive Tuners

Input and Load Impedance under CW

DC-IV curve and RF Load Line with "Short"

"Short" Terminated

Input and Load Impedance under CW

DC-IV curve and RF Load Line with "Towards Open"

"Towards Open" Terminated

Integration with Load-Pull Software

LSNA Power Block Diagram

The waveforms contain _____ all aspects of the component behavior

Real-Time Component Characterization - Setup Circulator Vector Synthesis Signal Generator of Load Impedances Manual $2f_0$ at f_0 Tuner (optional) Triplexer Offset + f_0 DUT f_0 smart signal V, $3f_0$ to scan amplitude and phase (optional)

Real-Time Component Characterization

Impedances

Outline

- Review of S-parameters
- Theory of Large-Signal Network Analysis
- The Large-Signal Network Analyzer
- The Calibration
- Active Component Characterization
 - under CW stimulus
 - under modulation stimulus
 - in non-50 Ohm environment
- Modeling
 - Model verification
 - Measurement-based behavioral model
- Conclusions

Transistor Model Verification in ADS

- The model is brought into the same state as the real component
- The simulated response should be equal to the measured response for a good model
- The comparison is done at **the essential data**, common to both: Voltage and Currents

Outline

- Review of S-parameters
- Theory of Large-Signal Network Analysis
- The Large-Signal Network Analyzer
- The Calibration
- Active Component Characterization
 - under CW stimulus
 - under modulation stimulus
 - in non-50 Ohm environment
- Modeling
 - Model verification
 - Measurement-based behavioral model
- Conclusions

Measurement-based Behavioral Modeling

 $b_1(f_0) = f(a_1(f_0), a_2(f_0))$ $b_2(f_0) = g(a_1(f_0), a_2(f_0))$

Valid for

- Range of a1
- Closed area on Smith Chart at output

NMDG Engineering Leading beyond S-parameters © Copyright 2005 NMDG Engineering 54 Certain slides are with permission from Agilent Technologies

Measurement-based Behavioral Model in ADS

Third-Order Intercept Point

Outline

- Review of S-parameters
- Theory of Large-Signal Network Analysis
- The Large-Signal Network Analyzer
- The Calibration
- Active Component Characterization
 - under CW stimulus
 - under modulation stimulus
 - in non-50 Ohm environment
- Modeling
 - Model verification
 - Measurement-based behavioral model
- Conclusions

Conclusion

- A Network Analyzer for active component characterization has been presented
- It measures the essential information (voltage and currents at component ports) to characterize the nonlinear behavior
 - accurately and completely
 - in a unified way from transistor to system
 - under realistic conditions
- The Network Analyzer is ideal to study the behavior from small-signal to large-signal with one connection using simple and complex signals
- The Network Analyzer is ideal to certify models
- The Network Analyzer is ideal to create behavioral models

Technical information

Sales information

http://www.nmdg.be/

