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 Abstract - The goal of this paper is to estimate the amplitude of a
sine wave in the presence of time base jitter, time base drift, time
base distortion and additive noise. This work is motivated by a
comparative study of the amplitude distortion estimated using a
nose-to-nose and electro-optic sampling based calibration of a high-
frequency sampling oscilloscope. It uses the exact expression of the
variance of a sine wave in the presence of normally distributed
additive and jitter noise, instead of a Taylor approximation of this
expression.

 Keywords - system identification, time base jitter, time base drift,
time base distortion, high-frequency sampling oscilloscopes.

I. INTRODUCTION

The electro-optic sampling (EOS) system [1]-[4] at the
National Institute of Standards and Technology (NIST) allows
to calibrate the impulse response of an opto-electrical (O/E)
converter up to 110 GHz. Using a high-frequency sampling
oscilloscope, the measured impulse response corresponds to
the convolution of the (known) impulse response of the O/E
and that of the sampling oscilloscope. In fact, the reality is
more complex because the time base drift, time base
distortion and time base jitter of the oscilloscope still has to be
estimated and compensated for. Also the mismatch of the O/E
and the oscilloscope and the S-parameters of the adapter have
to be taken into account in order to obtain the amplitude and
phase distortion of the oscilloscope [5]. Having done so, it
becomes possible to compare the amplitude and phase
distortion of a high-frequency sampling oscilloscope plug-in,
based on the nose-to-nose calibration technique [6], to the one
obtained using a calibrated O/E.

A discrepancy was reported with respect to the phase
distortion obtained by both calibration methods [7]. The
difference starts around 20 GHz and increases as a function of
the frequency. Earlier, a discrepancy was reported between the
nose-to-nose based amplitude distortion and the amplitude
distortion that is obtained using a stepped sine measurement
[6]. The latter uses the sampling oscilloscope in freerun mode
and performs a vertical histogram measurement.

This technique has some disadvantages. In freerun mode,
the power measured by the scope can be derived from the
standard deviation of the histogram measurement. However,
the latter assumes that in freerun mode, the time axis is
randomly sampled using a uniform probability density
function. Also, this method does not allow to verify the

presence of both harmonics and subharmonics as part of the
measurement. Finally, the noise added by the sampling scope
is measured without any signal being applied. Thus, it is
assumed that this noise level is independent of the signal
level.

As part of the verification of the reported discrepancies
[6],[7], an additional method is implemented to estimate the
amplitude distortion of the sampling scope using a stepped
sine measurement. This method gets around the above
hypotheses by using the sampling oscilloscope in triggered
mode. The penalty of this method is that one has to estimate
and compensate all time base errors.

This paper focuses on the required time base jitter
compensation when measuring a sine wave using a high-
frequency sampling oscilloscope, which also adds time base
drift, time base distortion and additive noise.

In [8] it is shown that the use of a straightforward time base
drift compensation incorrectly shapes the sample variance.
The study also proposes higher-order models for the sample
variance in the presence of both additive and jitter noise.
Correct time base drift compensation in combination with a
higher-order model gives very good results in the case of an
impulse response measurement for realistic values of the
standard deviation of both jitter and additive noise and in the
case there are no model errors. Applying this technique to sine
wave measurements, yields estimates of the variance of the
additive noise, which strongly vary as a function of the
selected model order [8] and even can become negative.

Fortunately, the exact expression for both the expected
value and the variance of a pure sine wave in the presence of
normally distributed jitter noise and additive noise can be
derived [9],[10]. In fact, these expressions can be obtained for
any distribution as long as its characteristic function is known.

II. PROPOSED APPROACH

Consider

 (1)

 represents the observation of the pure sine wave, that is
contaminated by both additive noise and jitter. The noise
sources are considered to be part of the observation. Both

 and  are assumed to be zero mean, normally
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distributed with a variance of respectively  and ,

independent and stationary with respect to . Both  and 
are assumed to be known exactly.

Using the characteristic function of a normal distribution, it
can be shown [9] that the expected value of  equals

(2)

Now the variance can also be calculated [10]:

(3)

A. Case without time base distortion
In the absence of time base distortion, the values of , ,

 and  are easily retrieved using the Fourier transform

of (2) and (3).

B. Case including time base distortion
When time base distortion is present, as it is the case

during our measurements, an estimate for , ,  and 

can be obtained by minimizing the following cost function
with respect to these unknowns:

, (4)

where  and  respectively represent the measured sample

mean and sample variance at time instant , while  and

 represent the corresponding models given by (2) and

(3). The optional factors  and  allow for a weighting.

 can be based on the sample variance of , if available,

or can be evaluated using the variance of the - distribution

of ;  itself can be used for .

C. Classical approach

Recent work with respect to jitter estimation [11],[12] is
based on a first-order Taylor approximation

(5)
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of .

The variance of  equals

. (6)

Applying this first-order approximation to (1) where
, the approximated variance equals

. (7)

Using  for , and only retaining first-order

contributions of , (3) becomes

(8)

which equals (7), because .
Consistency with respect to the exact expression of the

sample variance of a sine wave can also be shown for higher-
order approximations used in [8].

D. Maximum likelihood estimator
Finally, a maximum likelihood (ML) estimator is proposed

based on (5), which is a good approximation whenever
. In that case, the sample mean of  is normally

distributed, i.e. . Here,  corresponds to

the number of repeated measurements at time instant . A

model for  is provided by (2), while (3) can be used to

model . Furthermore, the sample variance of  is

known to be - distributed with  number of degrees
of freedom. Finally, the sample mean and sample variance is
known to be independent, such that the log-likelihood
function results in the following cost:

(9)

 and  respectively represent the measured sample mean

and sample variance at time instant . The corresponding

models  and  are given by (2) and (3).
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III. SIMULATIONS

First the correctness of the implementation is verified
using realistic simulations.

A. Conditions
Noisy realizations of a sine wave are generated according

to (1), where

• = 48 GHz is known

•

• = 1.25 ps, , = 4000.

 sets of  realizations of this sine wave are generated, with
a true amplitude  of 75 mV, a true phase  of  radians,
zero mean normally distributed jitter noise with a standard
deviation  of 1 ps and ditto additive noise with a standard

deviation  of 0.5 mV. The noise sources are chosen to be

independent and stationary as function of the time index  and
the realization index . For each set of  realizations, the
sample mean and sample variance is calculated. Using 
such sets, it is also possible to calculate the sample variance of
the sample variance.
In fact, simulations were performed for other levels of
additive noise (1 mV and 5 mV) and are found to give similar
results as the ones shown here.

B. Different estimators
Results are shown for different values of  (25, 100, 500),

using a least squares estimator and two weighted least squares
estimators based on (4) and a ML estimator based on (9). The
first WLS estimator uses the sample variance of the sample

variance as weighting  and is referred to as WLS1 in the

tables below. The weighting  of the second WLS

estimator is based on the - distribution of the actual sample

variance  and the fact that a - distributed stochastic

variable with  number of degrees of freedom has a

mean value of  and a variance of . Therefore

. This estimator is referred to as WLS2.

C. Results
For each of these estimators, the tables below show the

sample mean and the 95% confidence interval based on the
sample variance of the estimated amplitude, phase, jitter
variance and variance of additive noise for different data set
sizes. The situations where the true value does not lie within
the 95% confidence interval of the estimates are indicated in
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It can be noticed that the LS estimator does a very good job
for all considered data set sizes. However, it is outperformed
by the ML estimator with respect to the uncertainty on the
estimated parameters, and more specifically on the estimated
amplitude and the estimated variance of the additive noise. In
fact, the ML estimator outperforms all other estimators.

For both WLS estimators, a bias becomes apparent, which
decreases for increasing data set sizes. For the WLS1
estimator (using the sample variance of the sample variance),
the bias is clearly visible on the estimated amplitude. For
small data sets, also a bias is present on the estimated variance
of the jitter. For the WLS2 estimator (based on the -
distribution of the sample variance), both the estimated
variance of the jitter and the additive noise are biased.

Table 1. Simulation results for 25 sets of 25 realizations.

units
true 
value LS WLS1 WLS2 ML

mV 75.00
75.00
± 0.14

75.55
± 0.11

74.97
± 0.12

75.00
± 0.08

rad 1.5708
1.5709
± 0.0024

1.5705
± 0.0025

1.5702
± 0.0057

1.5706
± 0.0025

(ps)2 1.000
1.001
± 0.016

0.980
± 0.010

0.810
± 0.019

1.001
± 0.012

(mV)2 0.250
0.321
± 3.260

-0.584
± 1.189

-7.640
± 2.068

0.199
± 1.312

Table 2. Simulation results for 100 sets of 100 realizations.

units
true 
value LS WLS1 WLS2 ML

mV 75.00
75.00
± 0.06

75.14
± 0.04

75.01
± 0.04

75.00
± 0.04

rad 1.5708
1.5708
± 0.0012

1.5707
± 0.0012

1.5708
± 0.0015

1.5707
± 0.0014

(ps)2 1.000
1.000
± 0.009

0.996
± 0.006

0.960
± 0.008

1.000
± 0.006

(mV)2 0.250
0.299
± 1.561

0.264
± 0.763

-3.303
± 0.855

0.236
± 0.800

Table 3. Simulation results for 500 sets of 500 realizations.

units
true 
value LS WLS1 WLS2 ML

mV 75.00
75.00
± 0.02

75.03
± 0.02

75.01
± 0.02

75.00
± 0.02

rad 1.5708
1.5708
± 0.0005

1.5708
± 0.0005

1.5708
± 0.0006

1.5708
± 0.0006

(ps)2 1.000
1.000
± 0.004

0.999
± 0.003

0.992
± 0.003

1.000
± 0.003

(mV)2 0.250
0.241
± 0.667

0.260
± 0.383

-0.600
± 0.422

0.241
± 0.420
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It is also clear that for all estimators, the uncertainty (95%
confidence interval) on the estimated variance of the additive
noise is larger than the value itself, even when based on 500
realizations.

In the case of the WLS estimates, it is possible to calculate
the expected value of the cost, taking into account the data set
size [13] and to compare it to the actual cost. Table 4 shows
that the sample mean of the actual cost of the WLS1 estimator
equals the expected value within its 95% confidence interval,
while the sample mean of the actual WLS2 cost is about 50%
too large. As such, unfortunately it looks like the value of the
WLS1 cost cannot be used to detect any anomalies, not even
for small data sets.

Finally, after comparing the uncertainty on the estimates
for = 500, respectively based on their sample variance
and on the corresponding element in the parameter covariance
matrix, good correspondence is found for both the LS and
WLS1 estimators. However, for both the WLS2 and ML
estimator, using the parameter covariance matrix, the
uncertainty on the estimated variance of the additive noise is
underestimated by a factor of 2. Also, the sample standard
deviation of the phase is 50% larger than the one indicated by
the parameter covariance matrix. In the case of the estimated
variance of the jitter noise, this difference reduces to 25%. 

D. Possible explanation of the bias of the WLS estimates
For the WLS estimates, and especially with respect to

WLS1, one should remember that the sample mean and the
sample variance of a normally distributed stochastic variable
are independent, but not for a - distributed variable.
Therefore, the expected value of the cost is not minimal in the
true value of the parameters. The decreasing bias for larger
data sets is consistent with the fact that a - distribution
converges to a normal distribution for an increasing number
of degrees of freedom.

IV. MEASUREMENTS

Next, the ML and LS estimators are applied to 500
repeated measurements of a sine wave at 48 GHz, using an
Agilent 83480A sampling oscilloscope in combination with a
83484A 50 GHz electrical plug-in. First, a time base drift
compensation is applied, as is explained in [8]. This yields the
sample variance and the sample mean data on an oversampled
non-equidistant time grid . The latter is estimated based on a
time base distortion measurement, which was performed up

Table 4. Comparison of expected and actual cost for WLS estimates.

expected 
value

actual cost 
WLS1

actual cost 
WLS2

25 8723 151 8614 170 12622 430

100 8161 132 8133 150 12278 314

500 8028 127 8030 147 12292 297

K σ σ σ

K
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χ2

ti

front. Also, due to the time base drift compensation [8], the
number of repeated realizations  varies as a function of the

time grid index .

Figure 1 and figure 2 show the sample mean and sample
variance of the first two periods of the sine wave
measurement obtained at an excitation frequency of 48 GHz
for the ML estimator. The subharmonic at 24 GHz and the
second harmonic at 96 GHz, which are neglected by the
model, are found to be more than 45 dB down with respect to
the fundamental.

The estimated mean and variance based on the LS
estimator cannot be distinguished from those based on the ML
estimator.

Although the estimator also provides estimates for , 

and , the main parameter of interest here is . It

corresponds to the amplitude of the sine wave “before” the
low-pass effect of the jitter. The LS estimator yields an
amplitude of 74.16 mV ± 0.03 mV (95% confidence interval),

Figure 1. First two periods of the measured sample mean at 48 GHz 
(black dots), its 95% confidence interval (vertical black lines) and 
the estimated mean (red solid line).

Figure 2. Corresponding measured sample variance at 48 GHz 
(black dots), its 95% confidence interval (vertical black lines) and 
the estimated variance (red solid line).
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while its ML equivalent provides a value of
74.12 mV ± 0.02 mV (95% confidence interval). Both
estimates match within their 95% confidence interval, while
the uncertainty of the ML estimate is about 50% smaller than
that of the LS estimate.

Table 5 allows to compare the other estimated parameters
in more detail. All estimates match within their 95%
confidence intervals, which are based on the parameter
covariance matrix. One should keep in mind that the
simulations showed that the parameter covariance matrix of
the ML estimator underestimates the uncertainty, mainly on
the estimated variance of the additive noise and on the phase.

V. CONCLUSIONS

This article estimates the amplitude of a sine wave in the
presence of time base jitter, time base drift, time base
distortion and additive noise. It uses the exact expression of
both the expected value and the variance of a sine wave in the
presence of normally distributed additive and jitter noise.
Realistic simulations show that the LS estimator does a very
good job for different data set sizes. The simulations also
show that the ML estimator is to be preferred due to its
efficiency, especially for limited data sets. For these data set
sizes, the WLS estimators should be used with care. Finally,
the estimators are applied to measurements, which were
performed to verify the discrepancies reported by [6] and [7].
The 95% confidence interval for the estimated amplitude at
48 GHz is well within the 0.1 dB required by the additional
method, which was implemented to estimate the amplitude
distortion of a high-frequency sampling oscilloscope using a
stepped sine measurement.
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