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Fiber Optic Sensors
• Advantage of fiber optic sensors

– Electrically insulating materials (no electric cables are required) 
— high voltage environments

– Chemically passive, not subject e.g. to corrosion
– Immune to electromagnetic interference (EMI)
– Wide operation temperature range

• Fiber Bragg Grating Sensor
– Strain resolution and accuracy: < 1 με
– Non-distinguishable between strain and temperature
– Point sensor

• Distributed Fiber Optic Sensors
– Raman scattering based — only temperature
– Brillouin scattering based — both temperature and strain
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Working Principle — BOTDA
(Brillouin Optical Time Domain Analyzer)
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Working Principle — BOTDA (cont’d)
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Numerical model of P/P-based Brillouin Fiber Sensor

Three coupled differential equations:

* Two Maxwell’s equations describing the 
propagation of the Stokes and pump laser beams

* A simplified Navier-Stokes equation describing 
the density wave 

α  = fiber absorption
Ep = pump field
Es = Stokes field
Q = acoustic field
vg = c/n
Γ = Γ1 + iΓ2
Γ1 = 1/2τ
damping rate
Γ2 = ω − ωB
detuning frequency
g1, g2: coupling
constants
gB = 2g1g2/Γ1
Brillouin gain

Working Principle — Coherent interaction of 
pulse and pump lights
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Numerical simulations
Pulse: 1.5 ns

Linewidth: 46, 58, and 952 MHz 
for ER=15 dB, 20 dB, and infinite

Experimental results
Pulse: 1.5 ns

Linewidth: 46 and 56 MHz 
for ER=15 dB and  20 dB

Working Principle — Coherent interaction of 
pulse and pump lights (cont’d)
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Applications

Dam MonitoringOil and Gas Pipeline Monitoring Oil and Gas Well Monitoring

Bridge and Building Monitoring Border Security MonitoringPower Line Monitoring

Crack 
Detection
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Optical fiber layouts & sizes of depleted regions
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Spectrum Shape

• The spectrum in the 
perfect region exhibits 
higher intensity 

• Fiber experiences higher 
bending loss in defective 
region

• Coherent interaction of 
probe and pump lights 
produces complex 
spectrum

• These differences can be 
used to identify defective 
regions
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Axial strain distribution
— along the pipe under 200 psi internal pressure

• Maximum strain (46 με) occurs 
in the middle of defect A.

• Minimum strain (14 με) 
happens in the middle of 
unperturbed region B.

• The support points, end-caps, 
asymmetric defect distribution 
affect axial strain distribution in 
both end of pipe. 
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Axial strain-pressure slopes
— along the pipe

• Maximum 0.48 με/psi near 
the middle decreases 
toward the edges of 
defect A.

• Slope remains constant at 
0.16 με/psi near the 
middle of unperturbed 
region B. 

• Local stress concentration 
and overlapping 13 cm 
pulse lead to ripple from 
70 to 100 cm.
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Comparison of axial strain
— Defects A (60%) & C (50%) & region B (0%)
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Hoop strain distribution
Hoop strain distributions around one pipe circumference 

encompassing defective region A (60% depleted wall, 5.3 
cm wide and 61 cm long). Two maximal strains, 
corresponding to one complete loop, are observed. 
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Comparison of hoop strain
— around defects C  (50%) & D  (60%)
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Pipeline erosion monitoring by DSTS
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Conclusions
• A fiber optic distributed strain and temperature

sensor (DSTS) has been used to identify several
inner wall cutouts in an end-capped steel pipe
successfully.

• Larger strains are observed in the big defective 
region.

• Between the small defective regions, the 60% 
depleted wall experienced larger strains than the 
50% depleted wall.

• DSTS has been used to identify wall thickness
change of steel pipe caused by oil sand erosion
successfully.
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Thanks for your attention.

Questions?


