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Fiber Optic Sensors

« Advantage of fiber optic sensors

— Electrically insulating materials (no electric cables are required)
— high voltage environments

— Chemically passive, not subject e.g. to corrosion
— Immune to electromagnetic interference (EMI)
— Wide operation temperature range

* Fiber Bragg Grating Sensor
— Strain resolution and accuracy: <1 ue

— Non-distinguishable between strain and temperature
— Point sensor

 Distributed Fiber Optic Sensors

— Raman scattering based — only temperature
— Brillouin scattering based — both temperature and strain




Working Principle — BOTDA

(Brillouin Optical Time Domain Analyzer)
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When the beat frequency v
matches intrinsic Brillouin
frequency of thefiber v, ,
we will get maximum of
Brillouin spectrum.
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Working Principle — BOTDA (cont'd)
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Working Principle — Coherent interaction of
pulse and pump lights

Numerical model of P/P-based Brillouin Fiber Sensor

) 1 o = fiber absorption
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* Two Maxwell’s equations describing the constants
propagation of the Stokes and pump laser beams  g_ = 2g,g/T;,

Brillouin gain
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Three coupled differential equations:

* A simplified Navier-Stokes equation describing
the density wave



Working Principle — Coherent interaction of
pulse and pump lights (contd)
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Applications
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Optical fiber layouts & sizes of depleted regions

Parameters of cutouts (defects) Cross sectionalimage
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Spectrum Shape

The spectrum in the
perfect region exhibits
higher intensity

Fiber experiences higher
bending loss in defective
region

Coherent interaction of
probe and pump lights
produces complex
spectrum

These differences can be
used to identify defective
regions
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Axial strain distribution

— along the pipe under 200 psi internal pressure

e Maximum strain (46 ue) occurs
In the middle of defect A.

e Minimum strain (14 ue)
happens in the middle of
unperturbed region B.

e The support points, end-caps,
asymmetric defect distribution
affect axial strain distribution in
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Axial strain-pressure slopes

— along the pipe

e Maximum 0.48 ue/psi near
the middle decreases
toward the edges of
defect A.

« Slope remains constant at
0.16 pe/psi near the
middle of unperturbed
region B.

e Local stress concentration

80 100 120 140 160 150 and Overlapping 13 cm
o pulse lead to ripple from
/0 to 100 cm.
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Comparison of axial strain

— Defects A (60%) & C (50%) & region B (0%)
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Hoop strain distribution

Hoop strain distributions around one pipe circumference
encompassing defective region A (60% depleted wall, 5.3
cm wide and 61 cm long). Two maximal strains,
corresponding to one complete loop, are observed.
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Comparison of hoop strain
— around defects C (50%) & D (60%)
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Pipeline erosion monitoring by DSTS
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Conclusions

« A fiber optic distributed strain and temperature
sensor (DSTS) has been used to identify several
iInner wall cutouts Iin an end-capped steel pipe
successfully.

e Larger strains are observed in the big defective
region.
« Between the small defective regions, the 60%

depleted wall experienced larger strains than the
50% depleted wall.

« DSTS has been used to identify wall thickness

change of steel pipe caused by oil sand erosion
successftully.
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Thanks for your attention.

Questions?




