РАСПРЕДЕЛЕННЫЙ ВОЛОКОННО-ОПТИЧЕСКИЙ ДАТЧИК ТЕМПЕРАТУРЫ И МЕХАНИЧЕСКОЙ ДЕФОРМАЦИИ ДЛЯ МОНИТОРИНГА КОРРОЗИИ ТРУБОПРОВОДА (DSTS)

Lufan Zou and Omur Sezerman OZ Optics Limited 219 Westbrook Road, Ottawa, Ontario, Canada KOA 1LO www.ozoptics.com

Winston Revie

CANMET Materials Technology Laboratory, Natural Resources Canada

Ottawa, ON, Canada

Волоконно-оптические датчики

- Преимущества волоконно-оптических датчиков
 - Электроизоляционные материалы (не требуются электрических кабели)
 - Можно использовать при высоком напряжении
 - Химически пассивный, не подлежит например коррозии
 - Не поддается электромагнитным помехам (EMI)
 - Широкий диапазон используемых температур
- Датчики на основе волоконных Брэговских решеток
 - Разрешающая способность и точность: < 1 με
 - Нет отличия между деформацией и температурой
 - Точечный датчик
- Распределенные Волоконно-оптические датчики
 - На основе комбинированного рассеяния света только температура
 - Бриллюэновский принцип как температура так и деформация

Принцип работы - BOTDA (Бриллюэновский оптический Анализатор)

Принцип работы - ВОТДА (продолжение)

4

Принцип работы- Когерентное взаимодействие импульса и накачивания света

Числовая модель П/П на основе оптоволоконного датчика Бриллюэна

Три соединенные дифференциальные уравнения:

* Два уравнения Максвелла, описывающие распространение Стокса и накачки лазерных пучков

* Упрощенное уравнение Навье-Стокса, описывающее плотность волны

 α = fiber absorption $E_p = pump$ field $\vec{E_s}$ = Stokes field Q = acoustic field $v_g = c/n$ $\Gamma = \Gamma_1 + i\Gamma_2$ $\Gamma_1 = 1/2\tau$ damping rate $\Gamma_2 = \omega - \omega_R$ detuning frequency g_1, g_2 : coupling constants $g_{B} = 2g_{1}g_{2}/\Gamma_{1}$ Brillouin gain

Принцип работы- Когерентное взаимодействие импульса и накачивания света (продолжение)

Числовое моделирование Пульс: 1.5 ns Ширина полосы: 46, 58 и 952 МГц для ER = 15 дБ, 20 дБ, и бесконечное Экспериментальные Результаты Пульс: 1.5 ns Ширина полосы : 46 and 56 МГц для ER = 15 дБ и 20 дБ

ОБЛАСТИ ПРИМЕНЕНИЯ

Мониторинг нефтегазовых трубопроводов

Мониторинг мостов и зданий

Мониторинг плотин

Мониторинг линий электропередач

Мониторинг нефтегазовых скважин

Мониторинг безопасности границ

Нахождение трещин

Распределение оптического волокна и размеры соединенных частей

Форма Спектра

- Спектр в идеальной области демонстрирует более высокую интенсивность
- Волокно испытывает более высокие потери на изгибах в дефектной области
- Когерентное взаимодействие зонда и накачки света создает более сложный спектр
- Эти различия могут быть использованы для выявления дефектных областей

Осевое распределение деформации - Вдоль трубы под внутренним давлением 200 psi

- Максимальная деформация (46 με) происходит в середине дефекта А.
- Минимальное напряжение (14 με) происходит в середине не затронутой области В
- Точки поддержки, торцевые заглушки, асимметричное распределение дефектов влияет на осевое распределение деформаций в обоих концах трубы.

Осевое напряжение- давление от наклона - Вдоль трубы

- Максимальное 0.48 µɛ/psi ближе к середине уменьшается по направлению к краям дефекта А.
- Наклон остается постоянным 0.16 µɛ/psi вблизи середины не затронутой области В.

 Локальная концентрация напряжений и импульса с перекрыванием в 13 см приводит к пульсации от 70 до 100 см.

Сравнение осевой деформации- Дефекты А (60%) и С (50%) и область В (0%)

Круговое распределение деформации

Круговое распределение деформации распределения деформаций обруча вокруг одной окружности трубы охватывающей дефектную область А (60% данной стены, 5,3 см в ширину и 61см в длину). Два максимальных напряжения, соответствующие одному полному витку, наблюдаются.

Сравнение круговой деформации-Дефекты вокруг С (50%) и D (60%)

14

Мониторинг эрозии трубопровода <u>системой DSTS</u>

 $\varepsilon \propto \frac{P}{T}$

Выводы/Заключение

- Распределенный волоконно-оптический датчик температуры и деформации (DSTS) был успешно применен для идентификации нескольких вырезов внутренних стенок в закрытой стальной трубе.
- Большие деформации наблюдаются в зонах больших дефектов
- Между зонами малых дефектов, 60% изношенные стенки испытывали большие деформации, чем 50% изношенные стенки.
- Система DSTS была успешно использована для идентификации изменения толщины стенок стальных труб, вызванного эрозией песка и нефти.

Выражение признательности

Dr. Gordon P. Gu Mr. A. Doiron Dr. S. Papavinasam CANMET Materials Technology Laboratory Ottawa, Ontario, Canada

Спасибо за внимание.

Вопросы?

