

Surface Finishes Overview:

The PCB surface finish forms a critical interface between the component to be assembled and the bare printed circuit board.

The surface finish has two essential functions:

- To protect the exposed copper circuitry.
- To provide a solderable surface when assembling (soldering) the components to the board.

Most surface finishes are considered SMOBC (Solder Mask Over Bare Copper).

Factors when choosing surface finish:

- Cost
- Reliability
- RoHS \ ELV \ WEEE
- Assembly method (Reflow, IR, Wave, etc...)
- Components used (BGA, QFP, DIP, SOIC, etc...)
- Durability
- Environment
- Shelf life
- Testability
- Productivity
- Failures (Black Pad, Tin Whiskers, etc...)

Surface Finishes available from PCB Solutions:

- HASL
- Lead Free HASL
- Immersion Tin
- Immersion Silver
- OSP / Entek
- Gold
 - ENIG
 - Full Body Flash Gold
 - Hard Gold (Tabs)
 - Hard Gold (Selective)
 - Wire Bondable Gold

Typical Process Flow:

Clean

Micro-etch

Flux Apply

Solder Dip

Air Knife Leveling

Rinsing

HASL / Lead Free HASL

Typical thickness: 70 micro inch – 200 micro inch. IPC spec calls for only complete coverage of copper pads.

Advantages:

- Low cost
- Widely available
- Re-workable

Disadvantages:

- Uneven surfaces
- Not good for fine pitch
- Pb (With non-lead free HASL)
- Thermal shock
- Solder Bridging
- Plugged or reduced PTH's

Typical Process Flow:

Pre-Dip

Apply Tin

Post-Dip

Immersion Tin

Typical thickness: 20 micro inch – 50 micro inch.

Advantages:

- Flat surface
- No Pb
- Will not tarnish
- Re-workable

Disadvantages:

- Easy to cause handling damage
- Process uses a carcinogen (Thiourea)
- Exposed tin on final assembly can corrode
- Tin Whiskers
- Not good for multiple reflow/assembly processes
- Difficult to measure thickness

the TECHZone

Typical Process Flow:

Micro-etch

Pre-Dip

Apply Silver

Post-Dip

Immersion Silver

Typical thickness: 4 micro inch – 12 micro inch

Advantages:

- Flat surface
- Simple process
- No Pb
- Re-workable
- Easy to measure

Disadvantages:

- Handling sensitive
- Exposed silver on final assembly may corrode
- Tarnishing

Apply Resist/Tape

Clean

Micro-etch

Electrolytic Nickel

Electrolytic Gold

Hard Gold (Tabs and Selective)

Typical thickness: Nickel: 125 micro inch – 150 micro inch

Gold: 25 micro inch – 40 micro inch

Advantages:

- Hard, durable surface
- No Pb

Strip

Resist/Tape

Long shelf life

Disadvantages:

- Very Expensive
- Extra processing / Labor intensive
- Use of resist/tape
- Plating/bus bars
- Demarcation
- Difficulty with other surface finishes

http://www.pcb-solutions.com

The PCB Solution That's Right For Your Supply Chain

Clean

the TECHZone

Micro-etch

Catalyst

Dinas

Immersion Gold

Gold (ENIG)

Typical thickness: Nickel: 100 micro inch – 200 micro inch

Gold: 2 micro inch – 4 micro inch

Advantages:

- Flat surface
- No Pb
- Also good for PTH
- Long shelf life

Disadvantages:

- Expensive
- Not re-workable
- Black Pad/ Black Nickel
- Damage from ET
- Signal loss (RF)
- Complicated process

http://www.pcb-solutions.com

Clean

Typical Process Flow:

/Clean

OSP/Entek

Typical thickness: 4 micro inch – 24 micro inch. Not usually specified.

Advantages:

- Flat surface
- No Pb
- Simple process
- Re-workable

Disadvantages:

- No way to measure thickness
- Not good for PTH
- Very short shelf life
- Can cause ICT issues
- Exposed Cu on final assembly
- Handling sensitive

Summary:

	Cost	RoHS
HASL	\$	No
Lead Free HASL	\$	Yes
Immersion Tin	\$	Yes
Immersion Silver	\$\$	Yes
OSP/Entek	\$\$	Yes
Immersion Gold	\$\$\$	Yes
Hard (Tab/Selective) Gold	\$\$\$\$	Yes