

SUNSTONE CIRCUITS, INC.

PCB123 PRODUCT DIVISION

PCB123 Plugin

SDK

P C B 1 2 3 – A D I V I S I O N O F S U N S T O N E . I N C .

PCB123 Plugin

Software Development Kit

SDK Version 3.0.0.1

 2006, Sunstone Circuits, Inc.
Freeman Road
Mulino, OR

Phone 503-829-9108 • Fax 503.555.1212

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.. WE ARE NOT LIABLE FOR ANYTHING HORRABLE YOU MAY CREATE, NOR WILL WE TAKE
CREDIT FOR ANYTHING WONDERFUL YOU MAY CREATE.

Table of Contents

INTRODUCTION ... 4

PCB123 Plugin in a nutshell .. 5
Intended audience ... 5
Community ... 6
Sidebar: A little history on restricted accessError! Bookmark not defined.
A note about the SDK deployment .. 6

ANATOMY OF A PLUGIN.. 8

Overview .. 8
The XML Plugin Configuration File .. 8
Event Model ... 15
Sequence of events .. 15
The Plugin DLL .. 17
The I/O Parameter Block ... 19

PLUGIN SDK ...24

The Plugin SDK .. 24
SDK directory structure... 24

CORELIB ...27
CoreDefs.h – Simple types and common definitions .. 27
Debug.h – Assert and trace macros, CoreTimer ... 28
Heap.h – Efficient memory management ... 28
Templ.h – Templated collection classes ... 30
CoreString.h – General purpose wide string class... 31
StringTable.h – Global string pool ... 32
Filename.h – Filename parsing, directory scanning, file testing .. 32
System.h – App settings, PE versioning, Busy Cursor, StatusBar 33
MRU.h – Generic most-recently-used class ... 34
XML.h – CXmlDomParser abstraction .. 34
CoreLUT.h – Lookup tables, Color macros, Very random numbers 35
ProgressDlg.h –General purpose progress indicator ... 36
CoreDialog.h – Base class for PCB123 dialogs. Standardizes help 36
LogFile.h –Accumulates messages and formats them into a report. 37

2DLIB ..38
2dDefs.h – Declares ANGLE and UNIT type. Angle macros, etc. 39
2dBase.h – Base class for 2D primitives .. 40
Pnt.h – Declares CPnt class ... 40
Seg.h – Declares CSeg class .. 44
Arc.h – Declares CArc class .. 47
Rct.h – Declares CRct class ... 51
Gon.h – Declares CGon (Polygon) class .. 54
Fnt.h – Declares a stroked font .. 59
PolyTri.h – Triangulates a CGon object ... 59

DRAWLIB ..61
Viewport.h – Virtual viewport ... 61
DrawCache.h – Graphics resource manager ... 62
Cookie.h – Primitive shape drawing functions ... 62

 3

BASEDBLIB ...64
BaseDbLib.h – Basic definitions and master include for BaseDbLib 66
Prop.h – Properties .. 68
TransactionManager.h – Transaction interface ... 69
Base.h – Base class declaration ... 72

PCBDBLIB ...78
PcbBase.h – Base class declaration for PCB objects ... 80
PcbProp.h – Base class for objects with Properties ... 83
PcbError.h – DRC error marker class... 85
PcbPoly.h – Polygon Class Declaration ... 87
PcbText.h – Stroked Text Class Declaration .. 92
PcbPin.h – Pin Class Declaration ... 95
PcbComp.h – Component Class Declaration .. 101
PcbPackage.h – Footprint Class Declaration .. 105
PcbTrack.h – Track/Route Class Declaration ... 107
PcbNet.h – Net Class Declaration .. 111

A RELAXING TUTORIAL ... 117

Tutorial: Creating a Plugin .. 117

 4

Introduction

Recenty, Sunstone wrote the Gerber import facility in a way that

generalized the backend to accept a stream of primitives from anywhere.

This of course set off a clamor for a DXF importer and such, all of which

would push release dates and new development schedules back.

Besides new development, the Gerber importer opened up another can of

worms: of the hundreds of sample Gerber files used durning test, a good

deal of them exhibited different formatting and several were radically

different – even to the point of being non-conforming to the RS-274X

specification. This means we pretty much know somebody is going to call

us with a problem and we will have to provide a fix and an update.

This is not a new problem but it promises to become more significant as

we roll more features and data translators out to our customers. Data

translators tend to be moving targets on both ends, so when one format

changes or new capabilities are added, we have to schedule a new

release.

Our user base has grown to the point where rolling out a new release has

is a little bit scary. Any misteak and we have a lot of upset customers. We

would rather not have to roll a new release just to fix a translator or two,

and you probably agree.

About the only solution to this problem is to decouple the translators from

the core system. Before we were willing to remove the translators and re-

write them as stand-alone applications we figured we would take a look at

the feasibility of writing a private Plugin facility and implement the netlisters

and translators as Plugin modules that can be individually updated and

distributed with minimal impact to everyone.

 5

After writing the Plugin socket and a couple of test Plugins we became

very excited about what had been created. The interface was extremely

simple, the protocol concise, and the environment unrestrictive. We liked it

so much that we decided to share it with you.

PCB123 Plugin in a nutshell

A PCB123 Plugin is an executable module in the form of a DLL that can

interact with a PCB123 database, or even create a new one. The Plugin

will also have access to events that occur in the PCB123 host application.

Events can be system events such as mouse moves and events can be

database events such as a component or route modification.

The Plugin will be handed a top-level database object that represents the

board as a whole. It can then navigate through the object hierarchy or

iterate through all objects in a direct manor. The Plugin will also be handed

an object called the Transaction Manager that it can use to perform

modifications to the database. If done through the Transaction Manager,

modifications will be recorded for Undo/Redo and will synchronize the

display to reflect the changes made.

What the Plugin will not have access to the host application user interface

other than specifying menu items to be added under the PCB123 menu.

The Plugin can, however, create its own user interface, be it a simple

dialog box or a web browser hosting Flash. It is only limited by your

imagination.

Here is your chance to create the PCB wiz-bangs you always wanted.

Intended audience

It must be said right up front that if you are a C/C++ developer you will love

the Plugin API. However if you are a VB developer or are used to scripting

 6

applications through an automation server then you may find this API a bit

of a challenge. Sunstone still reserves the right to move the Plugin API to

an automation server in the future.

For the initial release there is an additional restriction on which

development environments are supported by the Plugin SDK. Currently

only Microsoft Visual Studio 2005 is supported and sample projects for

these environments have been included.

In theory, any development environment that can create a regular Win32

DLL (or MFC extension DLL) should be able to produce a valid PCB123

Plugin. Sunstone would be very interested in hearing from you if you either

get the SDK working in a different environment or need assistance in doing

so.

Community

PCB123 has a new Developer’s Exchange on the website. Here, you will

have the opportunity to download Plugins developed by Sunstone and

others or make your own Plugin available.

If you develop a Plugin, we do not expect you to give it away. That

decision is up to you. We can either host the Plugin on our site if it is free,

or host a link to your metered site if it is not.

If you do decide to charge money for your Plugin, you will have to provide

your own security mechanism. The PCB123 host will always attempt to

load a Plugin. It is up to the Plugin whether or not to run.

A note about the SDK deployment

The Plugin SDK is included as part of the standard installation. You do not

need to get if from Sunstone.

Whenever PCB123 is compiled, the Plugin SDK directory structure is

rebuilt from the same source and libraries that the PCB123 application was

 7

built from. This is to ensure that any Plugin developed on any given

machine with PCB123 installed on it will safely share the same DLL’s as

PCB123. It is for that reason a new version of the SDK will only be

distributed with a full installation of PCB123.

The Plugin SDK will reside in a directory named PluginSDK underneath the

install directory. All sample Plugin projects will be located underneath the

PluginSDK directory. The sample projects all point their output DLL’s to the

Plugins directory underneath the install directory. That is where PCB123

looks for them when the program is started.

As mentioned before, the PCB123 product group now maintains a

Developer’s Exchange area on its website. If you wish to share or sell a

Plugin on this site then you will be asked to register as a Plugin developer

if you have not already done so. Registered Plugin developers will get

information on any new version of PCB123 in advance of the general

public release. This will allow the Plugin developer time to make any

changes that may be required for the new version and to re-submit the

Plugin so it can be available to the public when they receive the PCB123

update.

One additional resource Sunstone has created is a custom Application

Wizard for Visual Studio. This App Wizard will do most of the leg work in

creating a Plugin. The App Wizard will not be part of the standard install.

You will have to get it from our website along with instructions on how to

install it into Visual Studio.

8

Overview

A PCB123 Plugin is a Windows DLL that adheres to a particular

protocol to gain full access to a PCB123 board database, footprint

database, or application events. Access to a database is

accompanied by a transaction manager that can be used to modify

the PCB objects is such a way that all graphics are synchronized with

the changes and those changes are recorded for Undo/Redo.

The Plugin can specify menu items to be added to the PCB123

application and which functions inside the DLL that should get called

when those menu items are clicked. An XML-based Plugin

Configuration File is used to configure the Plugin into the system.

Because of how narrow the interface channel is, you will see how

easy it is to create tightly focused tools without having to interact

with, nor manage an entire application framework.

Many code snippets are provided throughout this manual and there is

a complete, functional Plugin tutorial at the end.

The XML Plugin Configuration File

The Plugin Configuration File is a small XML file that configures

various aspects of a Plugin. This file, along with any Plugin DLL file,

must reside in the Plugins subdirectory under the PCB123

installation.

Anatomy of a Plugin

Chapter

1

9

The configuration file can actually configure more than one Plugin. If

you have developed several Plugins that you would like to treat as a

unit, then you may want to package them all in one configuration file.

Each Plugin must be described inside its own “Plugin” element. Do

not worry if you are not familiar with XML. The configuration file is

quite simple and is documented here.

Like all of Sunstone’s XML formats, the Plugin Configuration File has

a matching schema named PluginSchema.xsd in the XML

subdirectory that you can use to validate against. The schema

diagram for the Plugin Configuration File format is shown here.

The schema diagram for the Plugin Configuration File format

Just so you know what this section is talking about, here is a sample

configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<PCB123_PLUGIN ConfigurationVersion="1.0">

 <Plugin PluginVersion="1.0" Name="Density Graph"

 ModuleFileName="Density.dll" Copyright="(C) Copyright 2006,

 Sunstone Circuits, Inc." Author="Keith Ackermann"

 NoDocEnabled="false" FootprintDocEnabled="false"

 PcbDocEnabled="true">

 <EventProc ProcName="DensityEventProc"/>

 <MenuItem ProcName="DensityGraph" ItemString="Density Graph"/>

 </Plugin>

</PCB123_PLUGIN>

The file begins with a PCB123_PLUGIN element which has one

required attribute named ConfigurationVersion. The value of

ConfigurationVersion currently must be 1.0. This attribute is not the

version of the Plugin but rather the File Format version in case the

10

format of configuration files is revised in the future. The

PCB123_PLUGIN element must have al least one “Plugin” sub-

element. The Plugin sub-element is the only kind of child element

allowed.

Here is a schematic representation of the PCB123_PLUGIN element:

The next element is the Plugin element. This element begins the

actual definition of a Plugin. It declares several attributes which are

required and a couple that are optional. Below is a description of

each attribute.

11

Name is just a unique label for the Plugin. You cannot have more

than one Plugin element with the same name so try and use

something descriptive.

The Version attribute is the version number of the Plugin. Currently,

no checking is done on this number but eventually the Plugin

12

Manager may perform version checking. Regardless, it is always a

good idea to version your software creations.

The ModuleFileName attribute must be present. This is the attribute

that points to the name of the DLL that implements this plugin. The

name is assumed to be relative to the Plugins directory.

Author and Copyright are optional attributes. Nothing is currently

done with them. They just establish a minimal form of ownership and

protection for you.

The last three attributes are all related to each other and are

significant only if your Plugin adds menu items to the PCB123 host.

PCB123 currently has three different menu states: one if there are no

documents open, one when a board is the active document, and one

when a PCB footprint editor is the active document.

The three attributes NoDocEnabled, BoardDocEnabled, and

FootprintDocEnabled control which menu bars will get menus for this

Plugin.

At first glance it may not make sense to activate a Plugin if there are

no documents open, but it is precisely this state that a Plugin may

want to create a new document, such as a translator (more on this

later).

The Plugin element may contain two sub-elements. The first is called

EventProc is used to specify the function name of the main event

handler inside the Plugin DLL (described later). The last element is

the MenuItem element. Each PCB123 Plugin can only specify one

menu item but that single menu item can be a popup or sub-menu. In

13

this way the MenuItem element is a recursive element that allows

you to specify any number of menu items and submenus in a

cascading fashion.

There is no explicit difference between a menu item and a popup

menu. It is simply implied by the presence of child MenuItems inside

the top-level MenuItem.

The MenuItem element has two attributes. The first is ItemString and

is the string that appears in the PCB123 host application. If

ItemString == SEPARATOR, then a horizontal bar will be inserted in

place of a menu string

The other MenuItem attribute is ProcName. This attribute names the

exported function in the DLL to call when the menu is clicked.

Neither SEPARATOR items nor popup menu items can have

ProcNames attached to them.

14

The visual states for the menu items such as checked, grayed, etc.

can be controlled by the Plugin itself.

Below is the actual Plugin Configuration File for the density graph

Plugin we ship. There are many XML editing tools that will guide you

through hand-editting XML files. The one below is XmlSpy from

Altova.

And here is what the raw XML data looks like for the same file:

<?xml version="1.0" encoding="UTF-8"?>

<PCB123_PLUGIN ConfigurationVersion="1.0">

 <Plugin PluginVersion="1.0" Name="Density Graph"

ModuleFileName="Density.dll" Copyright="(C) Copyright 2006, Sunstone

Circuits, Inc." Author="Keith Ackermann" NoDocEnabled="false"

FootprintDocEnabled="false" PcbDocEnabled="true">

 <EventProc ProcName="DensityEventProc"/>

 <MenuItem ProcName="DensityGraph" ItemString="Density Graph"/>

 </Plugin>

</PCB123_PLUGIN>

15

Event Model

When the PCB123 application starts up, it scans the Plugins

subdirectory looking for Plugin modules to load and interface with.

The interface model is purely event driven, with events always being

initiated by the PCB123 host application.

The Plugin must export a function to catch these events. This

function is known as the main event handler. The main event handler

is specified in the EventProc element inside the Plugin Configuration

File as described above.

The other type of function that a Plugin might export is a menu

handler. A menu handler is exactly like the main event handler but is

only called when the user invokes it through a Plugin menu item.

When the PCB123 host initiates an event for a Plugin, it fills out a

record called an IOB (input/Output Block) that gets passed as the

only parameter to the EventProc. This is a synchronous call into the

Plugin. In other words, PCB123 execution is blocked until the Plugin

returns with a pass/fail return value.

Sequence of events

So what are the events and when does the PCB123 host call the

Plugin? It depends on what happens the first time it calls the Plugin.

The all-important file named IPlugin.h in the PluginSDK root contains

all the definitions used by the Plugin interface. IPlugin.h defines an

enumeration called PCB123EventType, which lists five different

types of events. They are:

16

Event Name Description

InitialEvent Issued to a Plugin when it is first loaded at

system startup. When the Plugin returns

from processing this event, it should set the

m_ReturnResult member of the parameter

block to any combination of the following

flags:

NO_123_EVENTS – Plugin is not interested

in any PCB123 events (other than menu

items it installed)

DB_EVENTS – Plugin wants to be notified

about database modifications everty time

one occurs.

WIN_EVENTS – Plugin wants to listen to all

Windows events such as mouse move, etc.

UpdateMenuUIEvent Issued to the Plugin before a menu item

owned by the Plugin is displayed. The Plugin

should respond by setting the

m_ReturnResult member of the IO

parameter block to any combination of the

following flags:

MENU_DISABLE – Grey the menu item

MENU_CHECK – Place a check mark next

to menu item.

MessageEvent If the Plugin requested Windows events

(WIN_EVENTS) during InitialEvent, then

PCB123 will issue this event to the Plugin

before every Windows message is

17

processed. The Plugin cannot alter the event

or prevent the message from being

processed by PCB123.

The Plugin should not perform lengthy

processing when handling this event type

because it will drag down the whole system.

NotifiyEvent If the Plugin requested these messages

during InitialEvent, then PCB123 will issue

this event to the Plugin every time a

database object is modified, added, or

deleted.

FinalEvent Issued just before PCB123 terminates. It

allows the Plugin to perform any cleanup it

may need.

So you can see that the Plugin response to the InitialEvent event

establishes the frequency and nature of subsequent events that are

sent to the Plugin.

If your Plugin is a data translator or a utility that is invoked in

response to the user selecting a Plugin menu item, then the Plugin

will not listen to Windows events or database notifications and should

return NO_123_EVENTS in response the the InitialEvent.

The Plugin DLL

The executable code for the Plugin will reside in a Windows DLL. It

can be a standard DLL or an MFC extension DLL. Besides the

DllMain entry point that Windows requires (usually automatically

generated), the Plugin will export one or more functions that will be

18

called by the PCB123 host when certain events occur. The exported

functions have to be declared as extern and use the C language

calling convention. In a Microsoft environment this is usually

accomplished by declaring the function prototypes like so:

extern “C” {

 functionPrototype ();

}

Exported functions that the host calls all share a common signature.

Namely that of

PluginResult PluginProc (PluginIO& iob);

Where:

PluginResult – Enumeration of valid Plugin responses. The only two

currently defined are PluginFailure and PluginSuccess.

PluginProc – The name of the exported Plugin function. This will

either be the Main Event Handler or a Plugin Menu Handler.

iob – A reference to a PluginIO structure. This structure contains the

calling context data from the host. It also contains a single member

(called m_ReturnValue) where the Plugin can pass results back to

the host. This structure is described in detail below.

A couple of points worth mentioning here deal with exception

handling and context switching.

The PCB123 system contains a top-level exception handler that

eventually catches everything. The handler’s job is to save away all

open documents, generate a report that gets fired off to Sunstone,

and gracefully shut the system down while at the same time firing up

19

another copy of the application that automatically loads the last

active document. Any internally trapped error performs a bunch of

duties and ultimately throws an exception of type

CSoftCoreException. If you employ exception handing in your Plugin

and your Plugin modifies a PCB123 database then be sure to re-

throw any exceptions you may trap to ensure proper system

behavior.

The other issue is more of a reminder that if you use MFC to develop

your Plugin and the Plugin manages resources then make sure you

add AFX_MANAGE_STATE(AfxGetStaticModuleState()) to the very beginning

of every entry point into your DLL or you will be chasing very strange

problems whenever the DLL accesses a resource. See TN058: MFC

Module State Implementation in the Microsoft Knowledge Base.

The I/O Block

As mentioned before, exported handlers (both event handlers and

menu handlers) in the Plugin share the common signature:

PluginResult PluginProc (PluginIO& iob);

When we look at the PluginIO structure in the file IPlugin.h, we see

the following:

struct PluginIO {

 struct { // Common to all Plugin Procs

 CDbBase* m_pRootObj; // The root object.

 CTransactionManager* m_pTm; // The tm to use for changes

 HWND m_MDIFrame; // The Frame window

 HWND m_hCurrentView; // Current MDI child window

 ULONG m_ReturnValue; // Place return values here

 };

 Struct { // Used only in EventProc

 PluginEventType m_EventType; // Type of event this is

 union { // If m_EventType is…

 PluginProc m_UpdateMenuEvent; // UpdateMenuUIEvent

 MSG m_MsgEvent; // MessageEvent

 NOTIFY_EVENT m_NotifyEvent; // NotifyEvent

 };

 };

20

};

You can see that the structure is broken into two sections: a section

common to all Plugin procedures and a section only used in the main

event handler. The common members are in play for the main event

proc and for any menu item handler. The common members are:

m_pRootObj: This is a pointer to the outer-most object of the

currently active document and will be in one of three states:

1. It will be NULL, if no document is open. Plugins are still called

even when no document is opened because maybe the Plugin

will create a document , such as a translator.

2. It will be a Board object. This can be determined by calling

m_pRootObj->GetClass (). If it returns BOARD_CLASS, then

it’s a CPcbBoard object.

3. It will be a Footprint object. This can be determined by calling

m_pRootObj->GetClass(). If it return PACKAGE_CLASS, then

it is a footprint.

m_pTm: This is a pointer to the Transaction Manager for the current

document. If there is no document, then it will be set to NULL.

m_MDIFrame: This is a handle to the PCB123 host application

window. The intended use for it is to provide a parent window handle

for any dialogs or other windows that the Plugin may create. This

handle has great potential for abuse and should not be used, but

since you are an engineer See Advanced Concepts at the end of this

section.

21

m_hCurrentView: This is a handle to the active MDI child window and

may be NULL. Its intent is same as above and carries the same

potential for abuse.

m_ReturnValue: This is where the Plugin communicates information

back to the host. It is context sensitive, with the host examining this

value only under the following conditions:

 Upon returning from a call to the main Plugin event hander

with an event type of InitialEvent. m_ReturnValue will contain

flags indicating what further events it wants to receive.

 Upon returning from a call to the main Plugin event hander

with an event type of UpdateMenuUIEvent. m_ReturnValue

will contain flags indicating any state changes to be made to

the menu item.

 Upon returning from a menu handler. If the host finds any

value other than 0 in this member after calling a Plugin menu

handler, the value is assumed to be a pointer to a newly

created root object that is either a board (CPcbBoard) or a

footprint (CPcbPackage). The host will then create a new

document of the appropriate type that is rooted at the newly

created object.

The other members of PluginIO are only used in the main event

procedure and not in menu handlers. There is an event type and a

union of members whose use depends on the event type. The event

types are:

InitialEvent: This is the one-time initial event. It uses no other data.

22

UpdateMenuUIEvent: Called whenever the PCB123 host is about to

show a menu item. This allows the menu display state to be changed

at the last second based on context. This event type uses the

m_UpdateMenuEvent member to identify the menu item to update. It

will be set to the address of the menu handler for that menu item.

MessageEvent: If the Plugin indicated it wants to listen in on

everything the host does, then it will be called with this event type

quite often. This event type uses the m_MsgEvent member for the

message parameters. This is a standard Windows structure.

NotifyEvent: If the Plugin indicated it wants these events, then

whenever one is received it should examine the m_NotifyEvent

member for the notification parameters. The m_NotifyType member

of m_NotifyEvent can be one of the following:

 DocChangedNotice: The active document has changed.

 PrefChangedNotice: A change in the user preferences has

occurred.

 ZoomChangedNotice: A pan or zoom has occurred.

 LayerChangedNotice: The active layer has changed.

 GridChangedNotice: The working grid has changed.

 SelectNotice: An object has been selected (if m_lParam == 1)

or deselected (if m_lParam == 0)

 ObjectChangingNotice: A database object is about to be

changed. m_lParam points to the object.

 ObjectChangedNotice: A database object has been changed.

m_lParam points to the object.

 ObjectAddedNotice: A database object has been added.

m_lParam points to the object.

23

 ObjectDeletedNotice: A database object has been deleted.

m_lParam points to the object.

 IdleTimeNotice: This notification is sent when the system is in

an idle state (doing nothing).

Advanced Concepts

It is possible to violate the synchronous event model with the

m_MDIFrame and the m_hCurrentView members of iob. As stated

before, these members are primarily provided as parent window

handles for dialog boxes.

However, it is possible to drive the host application by calling

SendMessage or PostMessage using these window handles.

Because it is inevitable that someone will try it, we provide a file in

the Plugin SDK root directory called HostCommandIds.h. This file

contains the WM_COMMAND id’s for most of the commands in

PCB123. If you elect to use them, we strongly recommend that they

are invoked with PostMessage and not SendMessage. The

command id’s are not documented but can be figured out by the

determined individual.

24

The Plugin SDK

In this section we will examine the structure of the Plugin SDK and

discuss the PCB123 services and structures exposed to you. But first

a brief disclaimer.

The current version of the Plugin SDK has been created with the

assumption that it will be used in a Microsoft Visual C++

development environment. In fact, the only tested development

environment is Microsoft Visual Studio 2005. The project files for the

Plugin samples are in this format. With that said, if there is anyone

who has managed to get the SDK working in a different environment

or needs assistance moving to a different environment then we would

love to hear from you.

SDK directory structure

There are two new directories under the PCB123 install path called

Plugins and PluginSDK. The Plugins directory is where PCB123

looks to install Plugins during system startup. The PluginSDK

directory is where the development of new Plugins takes place. The

PluginSDK directory contains IPlugin.h (the main include file) and the

following subdirectories:

Plugin SDK

Chapter

2

25

Directory Comment

2dLib Public interface for 2dLib.dll

BaseDbLib Public interface for BaseDbLib.dll

ContextHelper Sample Plugin project showcasing event

monitoring

CoreLib Public interface for CoreLib.dll

Density Sample Plugin project that shows a density graph

of a PCB

DrawLib Public interface for DrawLib.dll

GridCtrlLib Public interface for GridCtrlLib.dll

Lib Supplied libraries to link with

PcbDbLib Public interface for PcbDbLib.dll

RelaxRouting Sample Plugin that minimizes angles on all

routing

The IPlugin.h header file contains all the Plugin-specific definitions

and also starts the chain of includes for the PCB123 system

interfaces.

The dependency graph for the PCB123 directories is as follows:

26

CoreLib.h (included by 2dLib.h)

includes all the header files in the

CoreLib directory.

2dLib.h (included by DrawLib.h)

includes all the header files in the

2dLib directory.

DrawLib.h (included by

DbBaseLib.h) includes all the

header files in the DrawLib

directory.

DbBaseLib.h (included by

PcbDbLib.h) includes all the

header files in the DbBaseLib

directory

PcbDbLib.h (included by

IPlugin.h) includes all the header

files in the PcbDbLib directory

CoreLib
Core Services

and Classes

2dLib
2D-Geometry

DrawLib
Draw Abstraction

Custom Controls

PcbDbLib

PCB Objects
Db Services

DbBaseLib

CDbBase Class
Atomic Interface

27

CoreLib

The CoreLib directory contains the public interfaces into CoreLib.dll.

The act of implicitly or explicitly linking CoreLib into a process will

consume about 2mb of memory due to the Heap Manger and String

Table services it offers up. No special initialization or cleanup has to

be performed to use or stop using the library.

Below is a brief description of what each file in CoreLib contains.

CoreDefs.h – Simple types and common definitions

CoreDef.h contains the most primitive declarations in the system. It

abstracts primitive types with declarations such as INT8, INT16,

INT32, FLOAT, DOUBLE, etc. It declares CHAR as a _TCHAR for

multi-byte compatibility. STR’s are of type CHAR* and CSTR is a

const STR. CoreDef.h also defines the usual macros and constants

such as SWAP, PI and SQRT2.

Something worth mentioning is the

DECLARE_CORE_CLASS(clsName,baseName) and

DECLARE_CORE_BASE_CLASS(clsName) macros. If you add one

of these macros anywhere (usually at the start) of a class declaration

then that class will automatically use the CoreHeap for memory

management because these macros overload all variations of

operator new and operator delete. See CoreHeap below for details.

28

Debug.h – Assert and trace macros, CoreTimer

Debug.h defines the following macros for error trapping: ASSUME,

which is evaluates an expression for truthfulness; RANGE, which

tests a value to be within a range; and CRASH, which is an

unconditional error assertion. These three error traps declare their

first parameter to be an integer which is expected to be unique

across the entire system (expected, but not enforced). This presents

no problem for development in the main PCB123 system because

there is a tool that automatically runs through all the source code and

automatically generates unique id’s for these macros. It does,

however, make them a little awkward for use in Plugins. Even more

awkward is the fact that when one of these macros assert they

generate a crash report that is automatically sent to the Sunstone

server. That means we, not you will be getting the diagnostics. For

these reasons you may find it easier to roll your own error trapping.

Debug.h also defines a macro called STRACE that is just a wrapper

for a stream that is directed to the Windows OutputDebugString

facility.

Example:

ASSUME (9999, pComp != NULL);

CPnt loc = pComp->GetLoc ();

STRACE (“Component location is “ << loc);

Heap.h – Efficient memory management

Heap.h defines a class that is used to manage a dynamic block of

memory very efficiently. A CHeap object allocates memory “pages” of

a certain granularity (typically 1mb) as it needs them and doles out

29

“slices” of the pages as requested from the Allocate member

function. If a request is larger than the granularity then a new page of

the requested size is allocated.

The CHeap object knows about every block of memory it has served

up. As allocated memory is returned back to the heap using the Free

member function, it is first verified that it came from the CHeap object

and that it has not already been freed. It then places that freed chunk

of memory onto a stack of chunks for its particular size. When a new

request for memory is made, instead of just slicing off a new chunk, it

first attempts to pop a freed chunk off of the stack for the requested

size. In this way the CHeap object will reuse chunks of memory over

and over.

Where this becomes really beneficial is when there is a class or

structure that is dynamically created and destroyed many times. If

you add DECLARE_CORE_CLASS to this class declaration then that

class will have its operator new and delete overridden to use the

CHeap object. Which CHeap object? Well the global one of course.

Heap.h also defines several global functions to manage memory –

namely CoreAllocate and CoreFree. These global functions interact

with a static CHeap object that is created when CoreLib.dll is loaded.

The main difference between using the global CHeap object and one

created dynamically is that all global requests must be freed before

the application terminates or memory leaks will be reported. A

dynamically created (private) CHeap on the other hand may have

allocated memory in a very complex way but the application code

30

can release the entire CHeap object in one swoop without having to

bother running through a possibly very complex deallocation process.

Templ.h – Templated collection classes

Templ.h defines the collection class templates used throughout

thePCB123 system. These classes are much leaner and meaner

than the STL equivalents. The defined classes are:

TSimpleList<T> This list only burns 4 bytes. Use when item order

is not important.

TOrderedList<T> This list burns 8 bytes. Maintains insertion order.

TQueue<T> Same as an ordered list but with Queue

semantics.

TStack<T> Same as a simple list but with stack semantics.

TIter<T> List iterator for all above classes.

TIntMap<K,V> Map an integer Key to a Value (a pointer works as

an integer).

TStrMap<K,V> Map a string to a value.

TArray<T> General purpose array class.

When interfacing with a PCB123 database the list iterator class TIter

will be the only one of these classes you will use. You will not have

access to an object’s list members directly. The PCB123 database

object base class defines a virtual GetFirstChild() method which

returns and iterator pointing to the first item in a list. The base class

also defines AddChild, DeleteChild, and GetParent to complete the

traversal and update operations.

31

The TArray class is limited to a 32-bit index. The TArray class is fine

for storing a collection of objects that have to be indexed but do not

expect to use it and get the same performance as a native C++

array. The payload at two consecutive indexes of a TArray most

likely are not at contiguous memory locations, and hence the benefits

of the processor cache are lost when doing a sequential access of

the array.

Example:

// Declare a list that carries CMyClass objects as payload

// Also, declare an iterator for this list type

typedef TOrderedList<CMyClass*> CMyClassList;

typedef TIter<CMyClass*> CMyClassIter;

CMayClassList theList; // Declare a list

// Create some CMyClass objects and add them to the list

For (int count = 0; count < maxCount; ++count) {

 CMyClass* pMyClass = new CMyClass;

 theList.Add (pMyClass);

}

// Access the objects in the list

// List operator () is overridden to return an iterator

CMyClassIter iter = theList ();

for (; iter(); ++iter) {

 CMyClass* pMyClass = iter.Get ();

 // Do something with the object

}

CoreString.h – General purpose wide string class

The CoreString class is yet another general purpose string class. It

does pretty much everything a CString object does and then some.

It’s a little more efficient memory wise too.

32

StringTable.h – Global string pool

StringTable.h defines the CStringTable class which manages a

collection of const strings. Any PCB123 object whose class member

is a string declares that member as being of type STRID. You can

obtain a STRID from a string by calling the global function

StrId(string) and you can convert a STRID to a string by calling the

global function StrPtr (STRID). These global functions actually

access a global (but private) instance of a CStringTable object. You

can declare private CStringTable objects to manage your own

collection of strings but usually the global table suffices.

Example:

STRID netName = StrId(“NET_1”);

CPcbNet* pNet = new CPcbNet (netName);

CoreString string = StrPtr (pNet->GetName());

Filename.h – Filename parsing, directory scanning, file testing

Filename.h declares functions that deal with filenames and

collections of files.

GetDriveName, GetPathName, GetFileName, GetExtName, crack a

filename.

StripDriveName, StripPathName, StripExtName remove pieces of a

filename.

BuildFilename will safely construct a filename from pieces.

33

NormalizeFilename will make sure all the path separators are the ‘/’

character and optionally change it to upper case.

FileExists and DirectoryExists are tests. MakeRelativePath will

attempt to make one path relative to another.

FindFiles and FindSubdirectories will return a list of all files matching

the filter criteria. These functions can work recursively.

System.h – App settings, PE versioning, Busy Cursor, StatusBar

System.h defines functions and services that are fairly dependent on

the Windows operating system.

GetAppPath and GetAppName return names from the currently

running application.

The GetAppValue and SetAppValue functions read and write entries

in a private configuration file. If a config file does not exist then one

will be created that is the same name as the application with a .ini

extension.

The CoreVersion class and associated functions all deal with the PE

(Portable Executable) versioning resources. The class also overloads

the comparison operators so you can detect if a version is less than,

greater than, or equal to another version.

ShowBusyCursor displays or hides the hourglass cursor.

34

SetStatusMessage displays a string in the status bar.

WaitForKeypress will halt the execution of a program until a key is

pressed or the timeout interval has been reached. A message asking

for a keypress will flash in the status bar.

CheckEscapeKeyPressed will report if the escape key has been

pressed since the last time it has been asked.

ExecProgram will execute a command line.

MRU.h – Generic most-recently-used class

The CMRUManager maintains a list of Most-Recently-Used items

based on a given key in the application settings. This is very handy

for populating drop lists, etc.

XML.h – CXmlDomParser abstraction

The CXmlDomParser is a very handy abstraction of Microsoft’s XML

DOM Parser. If you point it at an XML file it will parse the entire

document into a tree of elements that can be navigated.

You can iterate over the elements in a tree or search for an element.

35

In an element, you can iterate through its attributes or search for an

attribute.

The whole thing works in reverse.You can build up a tree of elements

and attributes and save the document as a well-formed XML

document.

Example:

CCoreXmlDom xmlDom;

if (! xmlDom.LoadDocument (filename)) {

 return false;

}

CCoreXmlDomElement* pRoot = xmlDom.FindElement ("PCB123_NLF");

if (! pRoot) {

 AfxMessageBox ("Not a valid NLF file.");

 return false;

}

CoreString desc = pRoot->GetAttributeValue ("Description");

CCoreXmlDomElementIter iter = pRoot->GetFirstChild ();

for (; iter(); ++iter) {

 CCoreXmlDomElement* pElem = iter.Get ();

}

CoreLUT.h – Lookup tables, Color macros, Very random numbers

The most likely reason you will refer to this file is for the color

macros. PCB123 encodes an INVISIBLE bit into a Windows

COLORREF object. IS_INVIS and MAKE_COLOR(color,invis) are

handy macros.

CoreLUT has both look-up and computed prime number functions. It

contains a look-up table that covers 32 bits worth of prime numbers

distributed roughly logarithmic through the interval. In this way you

can ask to return a prime nearest some given number and get an

answer back very quickly. Very useful for getting hash keys, etc.

36

CoreRand returns a very random number that falls within a given

range. It uses the Windows Cryptography API to get the values which

are supposedly of extremely high quality. It is not recommended that

you use this for generating large numbers of random values because

the PCB123 implementation performs some trickery on reusing a

generated sequence. If you need, you can contact us to get a source

code snippet for the general case which is suspected to run slow.

ProgressDlg.h –General purpose progress indicator

This file declares the CProgressDlg class which displays a modeless

dialog box with a message area and a progress bar indicator. You

can set its range and control the progress explicitly or simply call Tick

increment the indicator.

CoreDialog.h – Base class for PCB123 dialogs. Standardizes help

The CCoreDialog class adds context help to dialogs and will

automatically supply a Help Topic with the name of the dialog class.

To derive a dialog box from CCoreDialog you will have to check Help

ID’s for all the controls and override the following virtual functions:

 DWORD* GetContextIdMap ();

 ToolText* GetToolTextMap () const;

In the dialog cpp file, add the following:

static DWORD helpIds[] = {

 { IDC_SOME_CONTROL_ID, HIDC_SOME_CONTROL_ID, },

 { IDC_SOME_CONTROL2_ID, HIDC_SOME_CONTROL2_ID, },

 { 0, 0, },

37

};

static ToolText toolText[] = {

 {IDC_SOME_CONTROL_ID, "Help text for this control" },

 {IDC_SOME_CONTROL2_ID, "Help text for this control" },

 { 0, "" },

};

DWORD* CMyDialog::GetContextIdMap ()

{

 return helpIds;

}

ToolText* CMyDialog::GetToolTextMap () const

{

 return toolText;

}

LogFile.h –Accumulates messages and formats them into a report.

This file declares the CErrorLog class which allows you to

accumulate error and warning strings that may be generated during

some operation. It also provides support for filename, line and

column numbers for such things are file parsers. The

CErrorLog::ShowLog member creates a formatted HTML file and

displays it.

38

2dLib

The 2dLib directory contains the public interfaces into 2dLib.dll. In a

word, the 2D library serves up 2D geometry. It contains a fairly small

set of classes but a rich set of operations.

The act of implicitly or explicitly linking 2dLib requires no special

consideration. It will automatically link in CoreLib.Dll which it is

dependent on. The library does not consume any memory other than

creating an instance of a stroked font (about 10k).

All the geometry objects define their data members as type UNIT. A

UNIT can be any kind of integer but for PCB123 database objects a

unit is defined as being one-ten-millionth-of-an-inch (there are 10,000

units per mil). The reason for this fine grain is that while providing a

reasonable world size in 32 bits (+/- 200 inches) it is small enough to

make round off errors between metric and imperial coordinates

insignificant.

All angle values use an integer data type named ANGLE and is

defined as one-ten-thousandth-of-a-degree.

The basic 2D shape classes are:

CPnt – Point class. Defined by public x,y UNIT members.

CSeg – Closed interval line segment. Defined by public p1, p2 CPnt

members.

CArc – Arc class. Chords of a perfect circle. Defined by public c, p1,

p2 CPnts.

39

CRct – Rectangle class. Defined by public x1, y1, x2, y2 UNIT

members.

CGon – Polygon class. Private data members. Has codes for circle,

arc, closed, etc.

All of the above classes overload the following operators

Operator Operand Meaning

+, - CPnt l-value = r-value offset by CPnt

+=, -= CPnt Offset self in the x,y.

*, / Scalar l-value = r-value scaled by amount.

*=,/= Scalar Scale self.

~ None Mirror self (about the y-axis)

^ Any shape Distance from shape to self. Returns a

UNIT.

<<.>> ANGLE l-value = r-value rotated by ANGLE.

<<=.>>= ANGLE Rotate self by ANGLE.

==,!= Any Test for equality. Incorporates an epsilon of

2 UNIT’s.

Below is a brief description of what each file in 2dLib contains.

2dDefs.h – Declares ANGLE and UNIT type. Angle macros, etc.

2dDefs.h defines the UNIT and ANGLE data types. It defines some

handy ANGLE macros and some conversions.

It defines direction codes for quick box testing for clipping.

40

This file also defines a class called a GeoTransform. This class

simply stores a 2D translation, rotation and mirror flag.

GeoTransforms can be accumulated, transforming the transform.

Finally the GeoTransform provides an Apply function for each of the

geometric primitive types. Apply transforms that primitive by

whatever its translation, rotation and mirror settings are.

It also declares two functions that provide the basis for several import

computational geometry operations. The function TriArea returns a

signed area of a triangle. Besides calculating area, it can be used to

test if a point lies to the ‘left’ or ‘right’ of a line by looking at the sign of

the area. This requires consistency in it use: the line segment start in

point A, the line segment end in point B, and the point under test in

point C. The other function, PntsInLine can be used to test for the

only degenerate condition to the area test above.

2dBase.h – Base class for 2D primitives

The C2dBase class exists simply to abstract the distance functions

used by the DRC engine. It contains no data members.

Pnt.h – Declares CPnt class

The CPnt class provides a rich set of operations for manipulating 2-D

points. It is one of the few classes that allow public access to its data

members.

41

Data members

UNIT x X-coordinate

UNIT y Y-coordinate

Constructors

CPnt (); Default constructor

CPnt (const CPnt& src); Copy constructor

CPnt (const CCir& src); Contruct from circle

CPnt (UNIT ix, UNIT iy); Explicit initialization

Operators

CPnt operator~ () const; Mirror

CPnt operator- () const; Negate x and y

CPnt operator+ (const CPnt& p) const; Add

CPnt operator- (const CPnt& p) const; Subtract

CPnt operator* (DOUBLE m) const; Scale

CPnt operator/ (DOUBLE d) const; Scale

CPnt operator<< (ANGLE a) const; Rotate ccw

CPnt operator>> (ANGLE a) const; Rotate cw

CPnt operator% (const CPnt& grid) const; Off-grid by...

UNIT operator^ (const CPnt& p) const; Distance

UNIT operator^ (const CSeg& s) const; Distance

UNIT operator^ (const CArc& a) const; Distance

UNIT operator^ (const CRct& r) const; Distance

UNIT operator^ (const CGon& g) const; Distance

CPnt& operator= (const CPnt& p); Assignment

CPnt& operator+= (const CPnt& p); Offset

CPnt& operator-= (const CPnt& p); Offset

CPnt& operator*= (DOUBLE mul); Scale

CPnt& operator/= (DOUBLE div); Scale

CPnt& operator<<= (ANGLE a); Rotate ccw

CPnt& operator>>= (ANGLE a); Rotate cw

42

bool operator== (const CPnt& src) const; Same

bool operator!= (const CPnt& src) const; Not same

Manipulators

CPnt& Reset (); Set to 0,0

CPnt& Add (const CPnt& d); Vector translation

CPnt& Subtract (const CPnt& d); Vector translation

CPnt& Rotate (ANGLE a); Absolute rotation

CPnt& RotateAt (const CPnt& org, ANGLE a); Rotate about org

CPnt& Scale (DOUBLE mx, DOUBLE my); Anisotropic scale

CPnt& Mirror (UNIT xOrg = 0); Reflect the x-axis

CPnt& MirrorY (UNIT yOrg = 0); Reflect the y-axis

CPnt& Transpose (); Diagonal reflection

CPnt& Round (UNIT xGrid, UNIT yGrid); Round to nearest

CPnt& RoundDown (UNIT xGrid, UNIT yGrid); Round down

CPnt& RoundUp (UNIT xGrid, UNIT yGrid); Round up

Operations

OUTCODE BoxOut (const CRct& box) const;

Void UpdateExtent (CRct& ext) const;

UNIT Magnitude () const;

UNIT Dot (const CPnt& p2);

ANGLE Angle () const;

ANGLE AngleFrom (const CPnt& org) const;

UNIT DistVertSeg (const CSeg& s) const;

UNIT DistHorzSeg (const CSeg& s) const;

UNIT Distance (const CPnt& p) const;

UNIT Distance (const CCir& c) const;

UNIT Distance (const CSeg& s) const;

UNIT Distance (const CArc& a) const;

UNIT Distance (const CRct& r) const;

UNIT Distance (const CGon& g) const;

43

UNIT Distance (const CPnt& p, CSeg& connector) const;

UNIT Distance (const CCir& c, CSeg& connector) const;

UNIT Distance (const CSeg& s, CSeg& connector) const;

UNIT Distance (const CArc& a, CSeg& connector) const;

UNIT Distance (const CRct& r, bool filled, CSeg& connector) const;

UNIT Distance (const CGon& g, bool filled, CSeg& connector) const;

UNIT ManhattenLength (const CPnt& p) const;

CPnt ClosestPoint(const CPnt& p) const;

CPnt ClosestPoint(const CSeg& s) const;

CPnt ClosestPoint(const CArc& a) const;

CPnt ClosestPoint(const CRct& r) const;

CPnt ClosestPoint(const CGon& g) const;

CPnt ClosestPointOnSeg(const CSeg& s) const;

CPnt AngleSnap (const CPnt& endPt, ANGLE inc) const;

void SetInvalid ();

Tests

bool IsEqual (const CPnt& p) const;

bool IsCollinear (const CPnt& p1, const CPnt& p2) const;

bool IsCollinear (const CSeg& s) const;

bool IsOn (const CSeg& s) const;

bool IsOn (const CArc& a) const;

bool IsOn (const CGon& g) const;

bool IsIn (const CRct& r) const;

bool IsIn (const CGon& g) const;

bool IsClipped (const CRct& box) const;

bool IsInvalid () const;

44

Seg.h – Declares CSeg class

The CSeg class provides a rich set of operations for manipulating 2-

D line segments. It is one of the few classes that allow public access

to its data members.

Data members

CPnt p1 Line start

CPnt p2 Line end

Constructors

CSeg (); Default constructor

CSeg (const CSeg& src); Copy constructor

CSeg (const CPnt& pt1, const CPnt& pt2); Point constructor

CSeg (UNIT x1, UNIT y1, UNIT x2, UNIT y2); Explicit constructor

Operators

CSeg operator~ () const; Mirror

CSeg operator- () const; Negate x and y

CSeg operator+ (const CPnt& p) const; Add

CSeg operator- (const CPnt& p) const; Subtract

CSeg operator* (DOUBLE m) const; Scale

CSeg operator/ (DOUBLE d) const; Scale

CSeg operator<< (ANGLE a) const; Rotate ccw

CSeg operator>> (ANGLE a) const; Rotate cw

CSeg operator% (const CPnt& grid) const; Off-grid by...

UNIT operator^ (const CPnt& p) const; Distance

UNIT operator^ (const CSeg& s) const; Distance

UNIT operator^ (const CArc& a) const; Distance

UNIT operator^ (const CRct& r) const; Distance

UNIT operator^ (const CGon& g) const; Distance

CSeg& operator= (const CSeg& p); Assignment

45

CSeg& operator+= (const CPnt& p); Offset

CSeg& operator-= (const CPnt& p); Offset

CSeg& operator*= (DOUBLE mul); Scale

CSeg& operator/= (DOUBLE div); Scale

CSeg& operator<<= (ANGLE a); Rotate ccw

CSeg& operator>>= (ANGLE a); Rotate cw

bool operator== (const CSeg& src) const; Same

bool operator!= (const CSeg& src) const; Not same

Manipulators

CSeg& Reset (); Set to 0,0

CSeg& Add (const CPnt& d); Vector translation

CSeg& Subtract (const CPnt& d); Vector translation

CSeg& Rotate (ANGLE a); Absolute rotation

CSeg& Scale (DOUBLE mx, DOUBLE my); Anisotropic scale

CSeg& Mirror (UNIT xOrg = 0); Reflect the x-axis

CSeg& Transpose (); Diagonal reflection

CSeg& Round (UNIT xGrid, UNIT yGrid); Round to nearest

CSeg& RoundDown (UNIT xGrid, UNIT

yGrid);

Round toward 0,0

CSeg& RoundUp (UNIT xGrid, UNIT yGrid); Round away 0,0

CSeg& Reverse (); Swap endpoints

Operations

void UpdateExtent (CRct& ext) const;

void Sillouette (CGon& gon, UNIT segWidth, UNIT oversize = 0);

ANGLE AngleFrom (const CPnt& org) const;

ANGLE AngleFrom2 (const CPnt& org) const;

ANGLE AngleBetween (const CSeg& seg2) const;

ANGLE Slope () const;

ANGLE Slope2 () const;

ANGLE PerpSlope () const;

46

DOUBLE AngularCoef () const;

UNIT Length () const;

UNIT ManhattenLength () const;

UNIT Distance (const CPnt& p) const;

UNIT Distance (const CCir& c) const;

UNIT Distance (const CSeg& s) const;

UNIT Distance (const CArc& a) const;

UNIT Distance (const CRct& r) const;

UNIT Distance (const CGon& g) const;

UNIT Distance (const CPnt& p, CSeg& connector) const;

UNIT Distance (const CCir& c, CSeg& connector) const;

UNIT Distance (const CSeg& s, CSeg& connector) const;

UNIT Distance (const CArc& a, CSeg& connector) const;

UNIT Distance (const CRct& r, bool filled, CSeg& connector) const;

UNIT Distance (const CGon& g, bool filled, CSeg& connector) const;

CPnt ClosestPoint (const CPnt& p) const;

CPnt ClosestPoint (const CSeg& s) const;

CPnt ClosestPoint (const CArc& a) const;

CPnt ClosestPoint (const CRct& r) const;

CPnt ClosestPoint (const CGon& g) const;

Bool ClipIn (const CRct& r, CSeg& res) const;

ISECT Intersect (const CSeg& s, CPnt& res) const;

ISECT ProjIntersectVert (const CSeg& s, CPnt& result) const;

ISECT ProjIntersect (const CSeg& s, CPnt& result) const;

INT32 Intersect (const CRct& r, CPnt& res1, CPnt& res2) const;

INT32 ClipIn (const CGon& g, CSimpleSegList& res) const;

INT32 ClipOut (const CRct& r, CSimpleSegList& res) const;

INT32 ClipOut (const CGon& g, CSimpleSegList& res) const;

void MakePerp ();

Tests

47

bool IsVert () const;

bool IsHorz () const;

bool Is45 () const;

bool IsEqual (const CSeg& p) const;

bool IsCollinear (const CPnt& p) const;

bool IsCollinear (const CGon& g) const;

bool IsOn (const CSeg& s) const;

bool IsIn (const CRct& r) const;

bool IsIn (const CGon& g) const;

bool IsClipped (const CRct& box) const;

bool IsJoined (const CSeg& s) const;

bool IsJoined (const CArc& s) const;

bool IsBelow (const CPnt& p) const;

bool IsLeft (const CPnt& p) const;

bool IsParallel (const CSeg& seg2) const;

Arc.h – Declares CArc class

The CArc class provides a rich set of operations for manipulating 2-D

arcs. It is one of the few classes that allow public access to its data

members.

Data members

CPnt c; Arc center

CPnt p1; Start of arc

CPnt p2; End of arc

Constructors

CArc ();

48

CArc (const CArc& src);

CArc (const CPnt& c, const CPnt& p1, const CPnt& p2);

CArc (const CPnt& center, UNIT rad, ANGLE start, ANGLE end);

CArc (UNIT xc, UNIT yc, UNIT x1, UNIT y1, UNIT x2, UNIT y2);

Operators

CArc operator~ () const; Mirror

CArc operator- () const; Negate

CArc operator+ (const CPnt& p) const; Add

CArc operator- (const CPnt& p) const; Subtract

CArc operator* (DOUBLE m) const; Scale

CArc operator/ (DOUBLE d) const; Scale

CArc operator<< (ANGLE a) const; Rotate ccw

CArc operator>> (ANGLE a) const; Rotate cw

UNIT operator^ (const CPnt& p) const; Distance

UNIT operator^ (const CSeg& s) const; Distance

UNIT operator^ (const CArc& a) const; Distance

UNIT operator^ (const CRct& r) const; Distance

UNIT operator^ (const CGon& g) const; Distance

CArc& operator= (const CArc& a); Assignment

CArc& operator+= (const CPnt& p); Offset

CArc& operator-= (const CPnt& p); Offset

CArc& operator*= (DOUBLE mul); Scale

CArc& operator/= (DOUBLE div); Scale

CArc& operator<<= (ANGLE a); Rotate ccw

CArc& operator>>= (ANGLE a); Rotate cw

bool operator== (const CArc& src) const; Same

bool operator!=(const CArc& src) const; Not same

Manipulators

CArc& Reset ();

CArc& Add (const CPnt& d);

49

CArc& Subtract (const CPnt& d);

CArc& Rotate (ANGLE a);

CArc& Scale (DOUBLE mx, DOUBLE my);

CArc& Mirror (UNIT xOrg = 0);

CArc& Transpose ();

CArc& Round (UNIT xGrid, UNIT yGrid);

CArc& RoundDown (UNIT xGrid, UNIT yGrid);

CArc& RoundUp (UNIT xGrid, UNIT yGrid);

CArc& Reverse ();

Operations

void UpdateExtent (CRct& ext) const;

UNIT Radius () const;

ANGLE StartAngle () const;

ANGLE EndAngle () const;

ANGLE Sweep () const;

ANGLE Bisect () const;

CPnt Apex () const;

CRct Box () const;

UNIT Distance (const CPnt& p) const;

UNIT Distance (const CCir& c) const;

UNIT Distance (const CSeg& s) const;

UNIT Distance (const CArc& a) const;

UNIT Distance (const CRct& r) const;

UNIT Distance (const CGon& g) const;

UNIT Distance (const CPnt& p, CSeg& connector) const;

UNIT Distance (const CCir& c, CSeg& connector) const;

UNIT Distance (const CSeg& s, CSeg& connector) const;

UNIT Distance (const CArc& a, CSeg& connector) const;

UNIT Distance (const CRct& r, bool filled, CSeg& connector) const;

UNIT Distance (const CGon& g, bool filled, CSeg& connector)

50

const;

ISECT Intersect (const CSeg& s, CPnt& r1, CPnt& r2) const;

ISECT Intersect (const CArc& a, CPnt& r1, CPnt& r2) const;

INT32 ClipIn (const CRct& r, CSimpleArcList& res) const;

INT32 ClipIn (const CGon& g, CSimpleArcList& res) const;

INT32 ClipOut (const CRct& r, CSimpleArcList& res) const;

INT32 ClipOut (const CGon& g, CSimpleArcList& res) const;

CPnt ClosestPoint (const CPnt& p) const;

CPnt ClosestPoint (const CSeg& s) const;

CPnt ClosestPoint(const CArc& a) const;

CPnt ClosestPoint(const CRct& r) const;

CPnt ClosestPoint(const CGon& g) const;

Tests

bool IsEqual (const CArc& p) const;

bool IsOn (const CArc& a) const;

bool IsIn (const CRct& r) const;

bool IsIn (const CGon& g) const;

bool IsClipped (const CRct& box) const;

bool CommonEnds (const CSeg& s) const;

bool CommonEnds (const CArc& a) const;

bool PntInChord (const CPnt& p) const;

bool AngleInChord (ANGLE a) const;

bool PntInRadius (const CPnt& p) const;

51

Rct.h – Declares CRct class

The CRct class provides a rich set of operations for manipulating 2-D

rectangles. It is one of the few classes that allow public access to its

data members.

Constructors

CRct ();

CRct (const CRct& src);

CRct (const CPnt& ll, const CPnt& ur);

CRct (UNIT w, UNIT h);

CRct (const CPnt& org, UNIT w, UNIT h);

CRct (const CPnt& org, UNIT radius);

CRct (const CCir& c);

CRct (const CSeg& s);

CRct (const CArc& a);

CRct (const CGon& g);

CRct (UNIT l, UNIT b, UNIT r, UNIT t);

Operators

CRct operator~ () const; Mirror

CRct operator+ (const CPnt& p) const; Add

CRct operator- (const CPnt& p) const; Subtract

CRct operator* (DOUBLE m) const; Scale

CRct operator/ (DOUBLE d) const; Scale

CRct operator<< (ANGLE a) const; Rotate ccw

CRct operator>> (ANGLE a) const; Rotate cw

UNIT operator^ (const CPnt& p) const; Distance

UNIT operator^ (const CSeg& s) const; Distance

UNIT operator^ (const CArc& a) const; Distance

UNIT operator^ (const CRct& r) const; Distance

52

UNIT operator^ (const CGon& g) const; Distance

CRct& operator= (const CRct& r); Assignment

CRct& operator+= (const CPnt& p); Offset

CRct& operator-= (const CPnt& p); Offset

CRct& operator*= (DOUBLE mul); Scale

CRct& operator/= (DOUBLE div); Scale

CRct& operator<<= (ANGLE a); Rotate ccw

CRct& operator>>= (ANGLE a); Rotate cw

CRct& operator|= (const CPnt& pt); Union

CRct& operator|= (const CRct& r); Union

bool operator== (const CRct& src) const; Same

bool operator!= (const CRct& src) const; Not same

Manipulators

CRct& Reset (); Set to 0,0

CRct& Invalidate (); Inverse world extent

CRct& Sanitize (); Correct order

CRct& Add (const CPnt& d); Vector translation

CRct& Subtract (const CPnt& d); Vector translation

CRct& Scale (DOUBLE mx, DOUBLE my); Anisotropic scale

CRct& Mirror (UNIT xOrg = 0); Reflect the x-axis

CRct& Transpose (); Diagonal reflection

CRct& Rotate (ANGLE a); Absolute rotation

CRct& Round (UNIT xGrid, UNIT

yGrid);

Round to nearest

CRct& RoundDown (UNIT xGrid, UNIT

yGrid);

Round toward 0,0

CRct& RoundUp (UNIT xGrid, UNIT

yGrid);

Round away 0,0

CRct& Expand (UNIT radius); Add radius

CRct& Expand (UNIT rx, UNIT ry); Add radii

53

CRct& Contract (UNIT radius); Subtract radius

CRct& Contract (UNIT rx, UNIT ry); Subtract radii

Operations

UNIT Width () const;

UNIT Height () const;

UNIT LargeAxis () const;

UNIT SmallAxis () const;

DOUBLE Area () const;

CPnt Center () const;

CPnt Corner (RctCrnId crn) const;

void Edge (RctEdgeId edge, CSeg& seg) const;

CRct Overlap (const CRct& r) const;

void UpdateExtent (CRct& ext) const;

UNIT Distance (const CPnt& p) const;

UNIT Distance (const CCir& c) const;

UNIT Distance (const CSeg& s) const;

UNIT Distance (const CArc& a) const;

UNIT Distance (const CRct& r) const;

UNIT Distance (const CGon& g) const;

UNIT Distance (const CPnt& p, CSeg& connector) const;

UNIT Distance (const CCir& c, CSeg& connector) const;

UNIT Distance (const CSeg& s, CSeg& connector) const;

UNIT Distance (const CArc& a, CSeg& connector) const;

UNIT Distance (const CRct& r, bool filled, CSeg& connector) const;

UNIT Distance (const CGon& g, bool filled, CSeg& connector)

const;

CPnt ClosestPoint (const CPnt& p) const;

CPnt ClosestPoint (const CSeg& s) const;

CPnt ClosestPoint (const CArc& a) const;

CPnt ClosestPoint (const CRct& r) const;

54

CPnt ClosestPoint (const CGon& g) const;

Tests

bool IsEmpty () const;

bool IsInvalidated () const;

bool IsEqual (const CRct& p) const;

bool IsIn (const CRct& r) const;

bool IsIn (const CGon& g) const;

bool IsClipped (const CRct& box) const;

bool PntInRct (const CPnt& p) const;

Gon.h – Declares CGon (Polygon) class

The CGon class provides a rich set of operations for manipulating 2-

D polygons.

Though unified with the other 2D primitives, the CGon class deserves

a bit of extra attention. First, all of its data members are private

because the array of vertices needs to be managed. There are

operators that hide this private nature such as the array subscript

operator []. CGon’s have to be declared with a known number of

vertices or have to grown with AddVertex/InsertVertex. You cannot

arbitrarily access a vertex whose index is greater than that reported

by GetVertexCount.

CGon’s can take on a definite shape by designating then as Circles

or Arcs with SetCircle and SetArc. A circular CGon has only two

vertices. Vertex 0 is the circle center and the X member of vertex 1 is

the circle radius. Arcs contain 3 vertices: Vertex 0 is the arc center,

vertex 1 is the start of the arc, and vertex 2 is the end of the arc. The

55

arc is always assumed to travel counter-clockwise. There is a

convenient function called MakeArc which returns a CArc object from

arc polygon. You can then perform all the normal arc operations.

Besides a CPnt specifying the location of a vertex, the vertices of a

CGon also contain an extra DWORD data member that is managed

but not defined in the CGon itself. For instance, a route object in the

PCB123 database uses this extra DWORD to encode per-segment

width and layer information.

CGons can also be defined as Filled and not Filled. A filled CGon

implies a closed polygon and the SetFilled function will ensure this.

All the distance functions take the filled attribute into account. The

distance from an object to a filled polygon is zero if the object is

inside the polygon.

Constructors

CGon (); Default constructor

CGon (const CGon& src); Copy constructor

CGon (const CSeg& seg); Construct from seg

CGon (const CArc& arc); Construct from arc

CGon (const CRct& rct, bool filled = false); Construct from rect

CGon (INT32 vertices, bool filled = false); Init corner count

Attributes

bool GetFilled () const Is it filled?

void SetFilled (bool filled) Set to filled

bool GetArc () const Is it an arc?

void SetArc (bool arc) Set to arc

bool GetCircle () const Is it a circle?

void SetCircle (bool circ) Set to circle

56

Operators

CGon operator~ () const; Mirror

CGon operator- () const; Negate x and y

CGon operator+ (const CPnt& p) const; Add

CGon operator- (const CPnt& p) const; Subtract

CGon operator* (DOUBLE m) const; Scale

CGon operator/ (DOUBLE d) const; Scale

CGon operator<< (ANGLE a) const; Rotate ccw

CGon operator>> (ANGLE a) const; Rotate cw

UNIT operator^ (const CPnt& p) const; Distance

UNIT operator^ (const CSeg& s) const; Distance

UNIT operator^ (const CArc& a) const; Distance

UNIT operator^ (const CRct& r) const; Distance

UNIT operator^ (const CGon& g) const; Distance

CGon& operator= (const CGon& g); Assignment

CGon& operator+= (const CPnt& p); Offset

CGon& operator-= (const CPnt& p); Offset

CGon& operator*= (DOUBLE mul); Scale

CGon& operator/= (DOUBLE div); Scale

CGon& operator<<= (ANGLE a); Rotate ccw

CGon& operator>>= (ANGLE a); Rotate cw

bool operator== (const CGon& src) const; Same

bool operator!= (const CGon& src) const; Not same

CPnt operator[] (INT32 idx); Subscript operator

Manipulators

void Reset (INT32 vertices = 0);

void Add (const CPnt& d);

void Subtract (const CPnt& d);

void Rotate (ANGLE a);

void Scale (DOUBLE mx, DOUBLE my);

57

void Mirror (UNIT xOrg = 0);

void MirrorY (UNIT yOrg = 0);

void Transpose ();

void AddVertex (const CPnt& pt, DWORD data = 0);

void InsertVertex (INT32 at, const CPnt& pt, DWORD data = 0);

void AddVertex (const CCrn& crn);

void InsertVertex (INT32 at, const CCrn& crn);

void DeleteVertex (INT32 at);

void GetAt (INT32 at, CPnt& pt);

void SetAt (INT32 at, const CPnt& pt);

void GetAt (INT32 at, DWORD& data);

void SetAt (INT32 at, DWORD data);

void GetAt (INT32 at, CCrn& crn);

void SetAt (INT32 at, const CCrn& crn);

Void GetSegmentAt (INT32 at, CSeg& s) const;

void Reverse ();

void Close ();

void ApproxCircle (const CPnt& center, UNIT radius, INT32 verts);

void ApproxArc (const CArc& arc, INT32 verts);

Operations

INT32 GetVertexCount () const;

CPnt GetAt (INT32 at) const;

CCrn GetCrnAt (INT32 at) const;

DWORD GetDataAt (INT32 at) const;

CSeg GetSegmentAt (INT32 at) const;

CRct GetExtent () const;

CArc MakeArc () const;

void UpdateExtent (CRct& ext) const;

UNIT Distance (const CPnt& p) const;

UNIT Distance (const CCir& c) const;

58

UNIT Distance (const CSeg& s) const;

UNIT Distance (const CArc& a) const;

UNIT Distance (const CRct& r) const;

UNIT Distance (const CGon& g) const;

UNIT Distance (const CPnt& p, CSeg& connector) const;

UNIT Distance (const CCir& c, CSeg& connector) const;

UNIT Distance (const CSeg& s, CSeg& connector) const;

UNIT Distance (const CArc& a, CSeg& connector) const;

UNIT Distance (const CRct& r, bool filled, CSeg& connector);

UNIT Distance (const CGon& g, bool filled, CSeg& connector);

CPnt ClosestPoint (const CPnt& p) const;

CPnt ClosestPoint (const CSeg& s) const;

CPnt ClosestPoint (const CArc& a) const;

CPnt ClosestPoint (const CRct& r) const;

CPnt ClosestPoint (const CGon& g) const;

bool Intersect (const CSeg& seg, TOrderedList<CSeg>&

results);

void Sanitize ();

INT32 Reduce (INT32 startCrn, INT32 endCrn, INT32 trackCrn);

INT32 Unwind (INT32 trackCrn);

INT32 Reverse (INT32 trackingCorner);

void ClipIn (const CRct& r, CGon& out) const;

DOUBLE Area () const;

ANGLE TurningAngle (INT32 idx) const;

INT32 ShiftCorners (INT32 trackingCrn);

bool GetTurn (INT32 crn, CPnt& pa, CPnt& pb, CPnt& pc);

Tests

bool Inside (const CPnt& p) const;

bool IsEqual (const CGon& g) const;

bool IsIn (const CRct& r) const;

59

bool IsIn (const CGon& g) const;

bool IsClipped (const CRct& box) const;

bool IsClosed () const;

bool IsFilled () const;

bool IsCCW () const;

bool IsLeftTurn (INT32 crnIdx) const;

bool PntOnSeg (const CPnt& pnt, CSeg& seg) const;

bool PntOnSeg (const CPnt& pnt, INT32& crnIdx) const;

bool PntOnCrn (const CPnt& pnt, INT32& crnIdx) const;

bool IsCrnOnSimulatedArc (INT32 idx, INT32& firstArcCrn, INT32&

 lastArcCrn, CArc& resultArc, UNIT

epsilon) const;

Fnt.h – Declares a stroked font

Fnt.h declares a stroked font. A stroked font defines each character

using line segments. The font is described using an arbitrary but

consistent character cell. Rendering a text string involves calling

GetStrokeSegs and specifying the desired font height, string location,

and rotation. The string can contain embedded line breaks for multi-

line text.

PolyTri.h – Triangulates a CGon object

The CPolygonTriangulation class take a CGon object for input and

produces a list of Triangle objects. Detecting if a point is inside a

60

triangle is an extremely fast operation and is not plagued by round-off

errors and special cases. It is therefore advantageous to decompose

a polygon into triangles to perform a Point-In-Poly test which is what

the CGon’s Inside operation does.

61

DrawLib

The DrawLib directory contains the public interfaces into DrawLib.dll.

This library started life primarily as a virtual viewport but has since

become a repository for several custom controls. Only the viewport

and supporting classes are documented here.

The act of implicitly or explicitly linking to DrawLib requires no special

consideration. It will automatically link in 2dLib.dll and CoreLib.Dll

which it is dependent on. This library may consume a small amount

of memory in the form of cached pens and brushes.

Viewport.h – Virtual viewport

The CDrawViewport class provides a virtual viewport manager that

maps 32-bit world coordinates to 16-bit screen coordinates. To use

this class you first call SetWindow or, in the case of printing, SetPage

and supply the x,y window or page size in pixels. You can then call

ZoomTo and supply the view center and view radius in world

coordinates. This class provides functions that map various

structures between world and screen coordinates.

62

DrawCache.h – Graphics resource manager

The CDrawCache class is derived from CDrawViewport and adds to

it the ability to manage pens and brushes. It declares a new data

type called an HDRAW which is a handle to a brush/pen pair. The

brush and pen are obtained by a call to GetBrush or GetPen and

specifying the color, width, etc. These functions will quickly return the

brush or pen, even if it has to create a new one. If one is created, it is

remembered for future use. The HDRAW handle is used by the next

class, described below.

Cookie.h – Primitive shape drawing functions

The CDrawCookie class, which is derived from the CDrawCache

class retains drawing state information and provides functions to

draw the various 2D primitives in their world coordinates.

The state information retained is drawing mode such as dragging

(XOR) erasing, (draw in background color), and translucency. The

other important state data is a Windows HDC (actually an MFC

CDC*). This is usually supplied with a call to

CDrawCookie::BeginTransaction and is return with a call to

CDrawCookie::EndTransaction.

The various Draw functions take a 2D primitive and an HDRAW for

arguments. The program will assert if a drawing frame has not been

set up with a call to BeginTransaction first.

63

64

BaseDbLib

The BaseDbLib directory contains the public interfaces into

BaseDbLib.dll. BaseDbLib contains the database classes that are

fundamental to PCB database objects and any future databases

such as a new schematics program.

The act of implicitly or explicitly linking to BaseDbLib requires no

special consideration. It will automatically link in DrawLib.dll, 2dLib.dll

and CoreLib.Dll which it is dependent on. This library initially

consumes no memory but classes such as the Transaction Manager

which is responsible for managing the Undo/Redo lists can consume

quite a bit of memory.

This library defines the CDbBase object, which is the base class for

all database objects in the PCB123 system. CDbBase mainly defines

interfaces for derived classes. In fact, CDbBase contains only one

data member and that is a reference to a parent (owner) object. All

objects in a PCB123 database are expected to be owned by other

objects unless it is the one and only root object. For instance, a pin

might be owned by a component which might be owned by a board.

The board would be root.

There are two distinctly different methods of interfacing with a

PCB123 database object. The first is the traditional way of using the

different get/set methods of an object to access and update its data

members. The other method is not so traditional and is referred to as

the Atomic interface. It is this interface which you will primarily want

to use when manipulating an object.

65

When we write a program much effort is spent organizing the

program into logical and functional ‘blocks’. We create classes and

structures which are intrinsic features of a language especially

designed to facilitate the functional and logical partitioning of a

program. We do all this only to have it torn away from us by the

compiler. At run time, we can only ask of an object, ‘where are you in

memory’ (address-of operator ‘&’) and how big are you (sizeof

operator). We cannot ask, for instance, “What are your data

members and what type are they”. This was the kind of question

COM tries to answer. A COM object is basically a pure virtual object

whose members have to be “discovered” at run time (gross

simplification). PCB123 decided it too wanted answers to this

question but it didn’t want nor could afford the baggage associated

with COM. The solution was the Atomic interface and it goes

something like this:

Every class has a unique numerical identifier.

Every class data member has a unique numerical identifier.

The class id and the member id are combined to form a unique

atomic id.

The type of every class data member is a type known to the atomic

interface.

Given this, I can ask any object “what are your members and what

type are they”. This has some very interesting implications. For

instance, when a PCB123 database is written to disk, a very tight

loop simply iterates each field of each object and writes out the

atomic id and the value associated with it. It does not know nor cares

66

what kind of object it is. When reading the database from disk, the

reverse holds true.

The one very strict requirement for this to work is that the id’s or their

types never change. There are several internal tables that coordinate

the atomic interface and they are all automatically created by defining

the macros DB_CLASS_ENTRY and DB_FIELD_ENTRY in various

way and #including the file DbClasses.inl. This file contains the

master definitions of all database classes and their members.

Why is all this being mentioned? Because any changes you make to

the PCB123 database want to be done through the Transaction

Manager and the Transaction Manager works with the Atomic

Interface.

For now, lets take a look at the header files in BaseDbLib.

BaseDbLib.h – Basic definitions and master include for BaseDbLib

One of the first things this file does is enumerate the various PCB123

database classes. When you iterate through a database you will get

pointers-to-objects. Not until you call GetClass on that object will you

know its type. The database classes are:

Class Enumeration Description

BOARD_CLASS Top-level container object of type

CPcbBoard.

COMP_CLASS Component. Type CPcbComp.

PIN_CLASS Pin. Type CPcbPin.

67

POLY_CLASS Polygon. Type CPcbPoly.

TEXT_CLASS Text string. Type CPcbText.

NET_CLASS Net. Type CPcbNet.

TRACK_CLASS Track or route. Type CPcbTrack.

USERPREF_CLASS User preferences. Type CPcbUserPref.

LAYERPREF_CLASS Preferences by layer. Type CPcbLayerPref.

ERROR_CLASS DRC marker. Type CPcbError.

DEVICE_CLASS Device info. Type CPcbDevice.

PACKAGE_CLASS Package or footprint. Type CPcbPackage.

The next set of definitions are DbUnits. The recognized unit types

are:

InchUnits – Imperial inches. Abbreviation of In.

MilUnits – Imperial thousandths of an inch. Abbreviation of Mil.

CmUnits – Metric Centimeter units. Abbreviation of Cm.

MmUnits – Metric Millimeter units. Abbreviation of Mm.

There are two global functions that convert between numerical UNIT

values and a string representation. They are:

CoreString UnitToString (UNIT value, DbUnits unitsType = InchUnits)

– Convert from UNIT value to string representation in given units. If

no units specifier is given then the default is inches.

UNIT StringToUnit (CSTR strVal, DbUnits unitType) – Convert from a

string to a numerical UNIT. If the string has a units suffix such as

0.254cm it will take precedence over the units specifier.

68

If your Plugin has a dialog box that asks for a value that will be

converted to a UNIT you may want to qualify the input string with

ValidateUnit first because StringToUnit will assert on invalid input.

There are a host of conversion macro supplied that allow you to

convert between database UNIT’s and physical values. Remember,

db units are in ten-millionths of an inch. The conversion macros are:

Macro Name Description

INCHES_TO_UNITS(i) Convert from inches to UNITs

MILS_TO_UNITS(m) Convert from mils to UNITs

CM_TO_UNITS(cm) Convert from centimeters to UNITs

MM_TO_UNITS(mm) Convert from millimeters to UNITs

UNITS_TO_INCHES(u) Convert from UNITs to inches

UNITS_TO_MM(u) Convert from UNITs to millimeters

UNITS_TO_MILS(u) Convert from UNITs to mils

UNITS_TO_CM(u) Convert from UNITs to centimeters

Prop.h – Properties

Most PCB123 database objects allow an arbitrarily long list of

properties to be attached to them. A Property is a simple name/value

pair.

The names of properties are not case sensitive. There is no

restriction on the length of a property name. It is recommended that

property names do not begin with a digit and it is recommended that

they contain no embedded white-space.

69

Property values can be any length except zero. Setting a property to

empty deletes the property. If a property value is a binary string, then

it wants to use base64 encoding for safe transport when expressed

as XML data.

There are currently two machine-generated properties that PCB123

uses. The first one is OrigName and is generated when a component

is renamed for the first time. The other one is AutoGenMech and is

attached to polygon and text objects during the creation of the fab

and drill drawings.

TransactionManager.h – Transaction interface

The CTransactionManager class provides a mechanism where

PCB123 objects can be modified and those modifications recorded

for possible Undo and Redo. In addition, the transaction manager will

notify any registered event handlers about the changes. In the case

of a Plugin, it is not necessary to register an event handler because

the PCB123 document, which is a handler, passes along these

events to the Plugin anyway.

A modification done through the Transaction Manager is performed

at the Atomic level. This means only that Atomic field is changed and

recorded, and as a consequence the undo buffer consumes very little

memory. So little memory, in fact, that PCB123 imposes no

restrictions on the size of the undo buffer.

Before discussing how to make a change to the database we should

talk briefly about what a change is. You can look at a change as

70

anything that modifies the database but in most cases it is advisable

to view a change as a collection of modifications initiated by some

user request. Viewed this way, many changes will occur in sets and

want to be undone or redone as a set. There is a mechanism in place

for that and it is to bracket the changes with calls to StartFrame and

EndFrame. If you perform a database modification without doing so,

a frame will automatically be created for you every time a

modification is done. The Undo/Redo buffer always works on a frame

and not bracketing sets of changes will result in the user having to

perform an Undo many more times than they expect. The tutorial at

the end of this document brackets the entire set of changes in a

single frame. Though hundreds of routes may be modified a single

undo will roll back the effect of the Plugin.

The Transaction Manager has four main object access functions but

only three are typically used in hand-generated code. The three main

functions are:

void AddChild (CDbBase* pParent, INT32 fieldId, CDbBase* pChild);

void DeleteChild (CDbBase* pParent, INT32 fieldId, CDbBase*

pChild);

void Set (CDbBase* pObj, INT32 fld, someType val);

The other function is a complimentary Get function but there is no

reason to use the Transaction Manager to get the value of some

object’s data member. This is because any modification to an object

is immediately applied to that object and not shadowed in any way.

The only reason to use the Get function is if you are writing code that

exploits the Atomic interface to iterate over all fields in an object.

71

In support of object properties the Transaction Manager provides

AddProp and DeleteProp. There is no SetProp because AddProp will

perform the same function by simply replacing any property value

that already exists under the same name.

In reality, there are several Get and Set functions. One for each data

type the Atomic Interface supports. The current list of datatypes

allowed by the Atomic Interface is:

Data Type Description

bool Boolena value. Pass by value.

INT32 32-bit integer. Pass by value.

STRID String Id. Pass by value.

CDbBase* Pointer to PCB123 object. Pass by value.

CPnt Point object. Pass by reference.

CSeg Line segment. Pass by reference.

CArc Arc. Pass by reference.

CRct Rectangle. Pass by reference.

CGon Polygon. Pass by reference.

It also supports the CDbBaseList (list of CDbBase* objects) but this

type is only manipulated through AddChild/DeleteChild.

Use INT32 for enumerations and typedefs such as UNIT.

NOTE: If you set a field that is of type CDbBase* to literal NULL, you

will have to cast it to a CDbBase* first because NULL looks like an

INT32. You can use the synonym for CDbBase* which is ObjPtr.

72

If you do not supply the correct argument type to the Get and Set

functions the program will assert.

Base.h – Base class declaration

For all intents, the CDbBase class is the base class of all PCB123

database objects. Examining Base.h you will see this is not

technically true. CDbBase is actually derived from a class named

CFlagBits. This is a purely transient class. It is not persisted nor is

there any Atomic interface for it. It is simply a collection of flags that

are never to be trusted beyond some local task. There are cases

where it makes sense for the sake of efficiency to be able to set a

temporary bit for some calculation. For instance, a function that

wants to make sure every pin has been visited once would use a

temporary bit on the pin object in place of creating some mapping

data structure. If you encounter a situation like this, it is permissible

to use the m_bSignaled bit, accessed thorugh GetSignaled() and

SetSignaled(). It is considered good form to not only initialize the

signaled state before entering your procedure but to also clear the bit

when your procedure finishes.

As mentioned before, the file DbClasses.inl drives the creation of

several tables and structures used by the system. It also drives the

creation some commonly used type definitions declared in Base.h

but it does so in a nasty way because it uses token-pasting to build

up the identifiers. Even though you will not find them in the file,

Base.h foreward declares the following classes:

class CDbBase

73

class CPcbBase

class CPcbPropBase

class CPcbLayerPref

class CPcbUserPref

class CPcbPin

class CPcbComp

class CPcbNet

class CPcbTrack

class CPcbPoly

class CPcbText

class CPcbError

class CPcbBoard

class CPcbDevice

class CPcbPackage

It also declares lists and list iterators for the above classes (partial list

shown):

typedef TOrderedList<CDbBase*> CDbBaseList

typedef TIter<CDbBase*> CDbBaseIter;

typedef TOrderedList<CPcbBase*> CPcbBaseList

typedef TIter<CPcbBase*> CPcbBaseIter;

typedef TOrderedList<CPcbPin*> CPcbPinList

typedef TIter<CPcbPin*> CPcbPinIter;

typedef TOrderedList<CPcbComp*> CPcbCompList

typedef TIter<CPcbComp*> CPcbCompIter;

74

typedef TOrderedList<CPcbNet*> CPcbNetList

typedef TIter<CPcbNet*> CPcbNetIter;

typedef TOrderedList<CPcbTrack*> CPcbTrackList

typedef TIter<CPcbTrack*> CPcbTrackIter;

typedef TOrderedList<CPcbPoly*> CPcbPolyList

typedef TIter<CPcbPoly*> CPcbPolyIter;

typedef TOrderedList<CPcbText*> CPcbTextList

typedef TIter<CPcbText*> CPcbTextIter;

A PCB123 database is composed of a hierarchical collection of

objects. There is always one root object that contains the entire

collection of objects in the database. An example of this relationship

is depicted below:

Because all objects except the root object are contained by another

object, a pointer to the parent object is defined and implemented right

in the CDbBase class. This is the only data member of a CDbBase

class.

CPcbBoard class

CPcbComp class

CPcbPin class

75

In theory, all PCB123 database objects can be containers for other

objects but in practice this is not true. It happens that any renderable

object in PCB123 are terminal objects that do not contain children.

The table below shows the allowed relationships among the main

database classes:

Class Can be owned by Can contain

CPcbBoard Nothing

CPcbPin

CPcbComp

CPcbPoly

CPcbText

CPcbNet

CPcbComp CPcbBoard

CPcbPin

CPcbPoly

CPcbText

CPcbPin

CPcbBoard

CPcbComp

Nothing

CPcbPoly
CPcbBoard

CPcbComp
Nothing

CPcbText
CPcbBoard

CPcbComp
Nothing

CPcbNet CPcbBoard CPcbTrack

CPcbUserPref CPcbBoard CPcbLayerPref

The CDbBase class defines a virtual interface for dealing with child

lists. Classes that allow children will provide a CDbBaseList data

member and override this virtual interface.

The CDbBase class parent/child interface is as follows:

76

 CDbBase* GetParent () const

 CDbBase* GetParentRef () const

 Void SetParent (CDbBase* pParent)

 virtual void AddChild (CDbBase* pChild)

 virtual void DeleteChild (CDbBaseIter& iter)

 virtual CDbBaseIter GetFirstChild () const

 virtual INT32 GetChildCount () const

The CDbBase class defines and implements an object name

interface. The interface is as follows:

 virtual STRID GetName () const

 virtual void SetName (STRID name)

 virtual void GetQualifiedName (CoreString& name)

The GetQualifiedName function walks up the object hierarchy pre-

pending the parent name to the object name separated by a dot ‘.’

There are a couple of pure virtual functions that are always

overridden in derived classes. They are:

 virtual DbClass GetClass () const // Return the class id

 virtual CDbBase* Copy () const // Deep copy this object

The last interface CDbBase declares has to do with some

fundamental geometric operations. They are:

77

 virtual CRct GetExtent () const

 virtual CRct GetRawExtent () const

 virtual void GetTransform (GeoTransform& trans) const

The GetTransform function will ascend the object hierarchy

accumulating object transforms as it goes. When it returns trans

contains the final transformation the object must undergo for

rendering.

The GetRawExtent returns the relative extent of the object without

considering any transforms.

The GetExtent function returns the final bounding rectangle of this

object after undergoing all transformations.

78

PcbDbLib

The PcbDbLib directory contains the public interfaces into

PcbDbLib.dll. PcbDbLib contains all the PCB database classes and

database services.

Here is what the class graph looks like for PcbDbLib

CPcbBase

CPcbError

CPcbTrack

CPcbPropBase

CPcbPackage

CPcbDevice

CPcbComp

CPcbPin

CPcbPoly

CPcbText

CPcbNet

CPcbUserPref

CPcbLayerPref

CPcbComp

CBoardBase

CSpacialDb

CSpacialDb

CPcbDRC

CPcbBoard

79

Notice there is no Layer class even though a layer is a physical

entity. A layer is just an attribute of certain objects and there are sets

of rules (or preferences) on a per-layer basis.

In PCB123 the internal layer designations are fixed and can be found

in the file Layers.inl.

Each of the following database classes will be described in five parts.

They are:

Data Graph: This is derived from the actual schema for our XML-

based NLF format. It shows the parent-child relationship for the

objects and describes the expected or allowed attributes for the

object. XML attributes are the mechanism used to store object data

members. There is not always a one-to-one mapping between

attributes and data members because the values of some data

members are inferred from the object relationships.

Data Members: This table lists each data member of an object. The

Field column is the name of the data member. You can add “Get” or

“Set” to the beginning of any field and it will map to a valid function.

The next column is the data type. The Get-functions all return this

type, and the Set-functions all accept a single argument of this type.

The next column is the AtomicId of the field to use when using the

transaction manager to update an object. The last column is a brief

description of the data member.

Base Class Overrides: This table lists all the base class interfaces

that the class implements. It just lists the function names along with a

80

brief description. You will have to look at the header for the function

arguments.

Operations: This table lists the unique operations that the class

provides. Again, it only lists the function name and a description. You

will have to look at the header for the function arguments.

Class description: Explains salient features of the class.

PcbBase.h – Base class declaration for PCB objects

BASE CLASS OVERRIDES

Override Description

GetQualifiedName Return name of object lineage

diagram

type extension of CDbBase

properties base CDbBase

used by complexTypes CPcbPropBase CPcbTrack

attributes Name Type Use Default Fixed Annotation
Nm xs:string optional

annotation documentation Base class for all PCB Objects

DATA MEM BERS

Field Type Atomic Id Description

Name STRID Base_Name Name of object

file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CDbBase_Link0261E060%23complexType_CDbBase_Link0261E060
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CPcbPropBase_Link0261FE68%23complexType_CPcbPropBase_Link0261FE68
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CPcbTrack_Link02635238%23complexType_CPcbTrack_Link02635238

81

GetName Returns unqualified name

SetName Sets object name

OPERATIONS

Name Virtual Description

IsNameLegal Yes Check is name would be allowed

for object

AddProp Yes Add a property to an object

DeleteProp Yes Delete a property from an object

GetFirstProp Yes Return property iterator for an

object

GetPropertyCount Yes Returns number of properties

object has

GetPropertyValue Yes Return value of named property

FindProp Yes Attempt to find a named property

GetLayer Yes Return layer an object is on

IsOnLayer Yes Test if object is on a layer

GetNetRef Yes Return a const reference to

object’s net

GetSillouette Yes Return convex outline of object

GetHotSpot Yes Returns closest snap-point to given

point

GetPrimitives Yes Return list of shapes that make up

object

GetDistance Yes Get distance and closest point to

other object

CPcbBase Description

82

The CPcbBase class, like the CDbBase class, has only one data

member but defines several interfaces. The data member is a

concrete instantiation of the Name interface declared in CDbBase

with one exception: it also declares a virtual function called

IsNameLegal which allows each PCB class to implement its own

rules with regards to names. Some name rules can be fairly complex.

For instance, a board-level pin can have any name at all, whereas a

component pin cannot be duplicated within the component with the

exception of unnamed pins. Multiple unnamed pins in a component

are acceptable.

The abstract interfaces that CPcbBase defines are as follows:

Property interface: The CPcbBase class does not contain a property

list but does define the interface for those classes who do. The base

class property functions, if not overridden will store nothing and

return empty results.

The property functions are:

 virtual void AddProp (const CDbProp& prop)

 virtual void AddProp (CSTR name, CSTR value)

 virtual void AddProp (CSTR name, STRID value)

 virtual void AddProp (CSTR name, INT32 value)

 virtual void AddProp (CSTR name, DOUBLE value)

 virtual void DeleteProp (CDbPropIter iter)

 virtual void DeleteProp (CSTR name)

 virtual CDbPropIter GetFirstProp () const

 virtual INT32 GetPropCount () const

 virtual STRID GetPropValue (CSTR name)

 virtual bool FindProp (CSTR name)

83

Common attributes interface: Many objects reside on a layer, and

many objects belong to a net. The base class functions, if called, will

return PcbLayerNull for a layer and NULL for a net.

 virtual PcbLayer GetLayer () const

 virtual bool IsOnLayer (PcbLayer layer) const

 virtual const CPcbNet* GetNetRef () const

PcbProp.h – Base class for objects with Properties

diagra

m

type extension of CPcbBase

properti
es

base CPcbBase

childre
n

Property

used
by

complexTypes CPcbBoard CPcbComp CPcbDevice CPcbNet CPcbPackage CPcbPin CPcbText
PcbShape

Attribut

es
Name Type Use Default Fixed Annotation
Nm xs:string optional

annotat
ion

documentation PCB object with properties

diagra
m

type CDbProp

properti

es

isRef 0

minOcc 0

maxOcc 1

content complex

attribut

es

Name Type Use Default Fixed Annotation

Name xs:string required

Value xs:string required

file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CPcbBase_Link0261F9A8%23complexType_CPcbBase_Link0261F9A8
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Property_Link02620EC8%23element_Property_Link02620EC8
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CPcbBoard_Link02622CB8%23complexType_CPcbBoard_Link02622CB8
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CPcbComp_Link0262ECE0%23complexType_CPcbComp_Link0262ECE0
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CPcbDevice_Link0262BE60%23complexType_CPcbDevice_Link0262BE60
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CPcbNet_Link02632500%23complexType_CPcbNet_Link02632500
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CPcbPackage_Link02629160%23complexType_CPcbPackage_Link02629160
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CPcbPin_Link0262CE58%23complexType_CPcbPin_Link0262CE58
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CPcbText_Link02625B70%23complexType_CPcbText_Link02625B70
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_PcbShape_Link02620168%23complexType_PcbShape_Link02620168
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CDbProp_Link0261E1F8%23complexType_CDbProp_Link0261E1F8

84

DATA MEMBERS

Field Type Atomic Id Description

PropList CPropList Prop_List List of properties

BASE CLASS OVERRIDES

Override Description

AddProp Add a property to the list

DeleteProp Delete a property from the list

GetFirstProp Return property list iterator

GetPropCount Return number of properties in list

GetPropValue Get value of named property

FindProp Find a property with the given name

CPcbPropBase Description

The CPcbPropBase class simply adds a list of CDbProp objects to

the CPcbBase class. The name of a CDbProp is case insensitive.

Only one property with any given name can be stored in a property

list. Any attempt to add a second property with the same name will

simply replace the value of the original.

There are no built-in properties though there are two system-

generated properties that use the following name and value:

OrigName – This property will be added to component objects if they

are renamed for the first time. The property value is, as implied, the

original component name (reference designator). If this property

already exists for a component, it is not updated. The intent here is

85

that they will only get reset when it is known that the component

rename list has been back-annotated to a schematic. (future use).

AutoGenMech – Text and Polygon objects that are automatically

generated when creating the Drill drawing and Fab drawing will

obtain this property. The value is unimportant, the simple presence of

this property signals the drawing generators that the object should be

destructed to make way for new ones.

Other than those two, you are free to hang any amount of properties,

whose names are virtually anything, and whose values are

unrestricted. If you want to hang binary data off an object, then it is

highly recommended that you perform a base64 encoding on the

data for safe transport in an XML stream.

PcbError.h – DRC error marker class

DATA MEMBERS

Field Type Atomic Id Description

Reason Reason Error_Reason What went wrong

Layer PcbLayer Error_Layer Layer for DRC

marker

Loc CPnt Error_Loc Location of marker

Obj1 CPcbBase* Error_pObj1 First object in

conflict

Obj2 CPcbBase* Error_pObj2 Second object in

conflict

Message STRID Error_AdditionalMsg Extra information

86

about error

BASE CLASS OVERRIDES

Override Description

Copy Makes a deep copy of object

GetExtent Get object bounds in world coords

GetRawExtent Get object bounds in local coords

GetTransform Get transform to world cords

GetLayer Returns layer object is on

OPERATIONS

Name Description

GetErrorString Returns a computed string with marker

details

GetShortErrorString Returns a simplified marker string

GetSeverity Returns the severity code of the marker

CPcbError Description

The CPcbErrorMarker class is somewhat of an oddity in that the

entire class is not persisted to disk. DRC error markers are highly

transient in nature and can be generated or removed dynamically as

the board is modified. Due to some setup requirements we have not

exposed the full DRC engine directly to the Plugins. The only DRC

API you have direct access to is CheckConn, which will DRC all or

part of a single CPcbTrack object and return a PASS/FAIL status. It

will not actually generate a DRC marker. You can, however, post-

back a request for the system to run a DRC as though the user

clicked it from the menu.

87

Errors severity is classified as Informational, Warning, Severe, and

FabError. There is another class called ShowStopper but has not

been used yet.

A CPcbError object contains a Reason for existing. It also contains

up to two CPcbBase* objects that are in conflict, possibly a Layer

that the DRC marker resides on, a location to display the DRC

marker at, and optionally a custom message to display when queried.

If you are writing a Plugin that performs a custom DRC-like check

and would like to use the DRC marker interface then we have

created a special Reason named PluginReason that you should use

along with a custom error message describing the marker.

There are a host of methods to interrogate the CPcbError marker

with.

You should not alter any DRC marker that you did not create. It can

have unintended consequences.

PcbPoly.h – Polygon Class Declaration

diagram

88

type extension of PcbShape

properties isRef 0
content complex

children Property Crn

attributes Name Type Use Default Fixed Annotation
Nm xs:string optional

Typ derived

by: xs:NMTO
KEN

optional

Lyr derived
by: xs:NMTO
KEN

required

Wid derived
by: xs:NMTO
KEN

required

Net xs:string optional

diagram

properties isRef 0
minOcc 0
maxOcc unbounded
content complex

attributes Name Type Use Default Fixed Annotation
Idx xs:nonNegati

veInteger
required

x UNIT required

y UNIT required

DATA MEMBERS

Field Type Atomic Id Description

Net CPcbNet* Poly_pNet Net reference

Layer PcbLayer Poly_Layer Layer poly is on

Type PolyType Poly_Type Type of polygon

Arc Bool Poly_bArc Poly is an arc

Width UNIT Poly_Width Width of poly

Pts CGon Poly_Pts The poly corners

BASE CLASS OVERRIDES

Override Description

file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_PcbShape_Link02620168%23complexType_PcbShape_Link02620168
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Property_Link02620EC8%23element_Property_Link02620EC8
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Crn_Link026248E8%23element_Crn_Link026248E8
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23simpleType_UNIT_Link0261BE58%23simpleType_UNIT_Link0261BE58
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23simpleType_UNIT_Link0261BE58%23simpleType_UNIT_Link0261BE58

89

Copy Makes a deep copy of object

GetExtent Get object bounds in world coords

GetRawExtent Get object bounds in local coords

GetTransform Get transform to world cords

GetQualifiedName Return name of object lineage

GetLayer Returns layer object is on

IsOnLayer Check if object resides on a layer

GetNetRef Get a const pointer to object’s net

GetInfoString Get info about object

GetHotSpot Snap point to major feature of object

GetPrimitives Get list of shapes for whole object

GetDistance Get distance from another object

OPERATIONS

Name Description

MakeArc If arc poly, returns a CArc object

HitTest Returns where on poly given point is

Triangulate Decompose poly into triangles (internal list)

GetFirstTriangle Returns iterator for triangle list

PntInPolyTri Test if point is in a poly triangle

GetVertexCount Returns number of poly corners

AddCrn Add a corner to poly

DeleteCrn Delete a corner from poly

GetRawLayer Returns layer poly was defined on

CPcbPoly Description

A CPcbPoly object is a renderable shape object. It is used to define

the board outline, copper pour regions, component silk screen

outlines, and other entities.

90

The CPcbPoly object encapsulates a CGon primitive object and

augments it with additional physical characteristics. Besides a

general polygonal shape, the CPcbPoly class can represent a circle

or an arc. The number of corners (vertices) a CPcbPoly object can

have is basically unlimited but circles will always have 2 vertices and

arcs 3. You can check if a CPcbPoly object is a circle by calling the

GetCircle member function. Likewise, the GetArc member function is

used to check for an arc. Corner 0 if a circle contains the x,y

coordinates of the circle center, and the x-member of corner 1

contains the circle radius. Corner 0 of an arc is the arc center,

corner1 is the beginning of the arc, and corner 2 is the end of the arc.

Arcs are always assumed to travel counter-clockwise from start to

end. Because circles (and indirectly arcs) store a radius, one with an

odd diameter cannot be created. This is usually not a problem

because of the extremely fine grain of database units (one 10-

millionth of an inch).

A CPcbPoly object is planar and resides on one layer. The only

exception to this is a board outline object which is a special case and

assumed to be uniformly defined on all layers. The GetLayer member

function for CPcbPoly objects will return a “cooked” value that may

not reflect the layer the polygon was created on. Calling

GetRawLayer will return the original layer. Cooking may change the

layer if, for instance, the polygon was created on the top silkscreen

layer of a component and that component was placed on the bottom

of the board. In that instance the polygon is now effectively on the

bottom silkscreen layer.

CPcbPoly objects do not define specific closed or filled attributes but

instead are assigned a type whose attributes are implied. This type

91

(or useage) enumeration is called a PcbPolyType. The current types

are:

BoardType – Signals that the polygon is the board outline. This type

of CPcbPoly object is assumed to be a closed, hollow polygon or

circle. The line width for board outlines is hard-coded to 26 mils to

ensure a mandatory 13-mil clearance from the board edge.

FilledType – A solid-filled polygon. It is assumed to be closed and

have zero width. Copper pour areas are FilledType CPcbPoly objects

that have been assigned to a net. A lot of special processing is done

on copper pour polygons whose results are not accessible to a

Plugin. Only the border of a copper pour area is stored in a CPcbPoly

copper pour. The interior cutouts that you see on the screen are

calculated on-the-fly and not cached.

OutlineType – A polyline that may or may not be closed and has

definite width. Currently arcs and circles are always set to this type.

CPcbPoly objects may be net attributed. A pointer to the net can be

acquired by using the GetNet() or GetNetRef() base class member

functions. GetNetRef() returns a const pointer. If a CPcbPoly is not

assigned to a net then its net reference will be set to NULL.

The number of vertices in a polygon is obtained by calling the

GetVertexCount member. You can get any point or segment of a

CPcbPoly by calling the GetCrn and GetSeg members. You can get

a copy of the underlying CGon polygon object by calling the GetGon

member.

A CPcbPoly object is either a board-level polygon owned by the

CPcbBoard object or it is attached to a component. The coordinates

92

of the polygon points are in the coordinate system of the parent

object. You can call the GetTransform override to transform the

polygon to world coordinates.

PcbText.h – Stroked Text Class Declaration

diagra
m

type CPcbText

properti
es

isRef 0
content complex

children Property

attribut
es

Name Type Use Default Annotation
Nm xs:string optional

String xs:string required

Lyr derived by: xs:NMTOKEN required

Wid derived by: xs:NMTOKEN required

Hgt derived by: xs:NMTOKEN required

X derived by: xs:NMTOKEN required

Y derived by: xs:NMTOKEN required

Rot derived by: xs:NMTOKEN optional

Mir xs:boolean optional

DATA MEMBERS

Field Type Atomic Id Description

TextString STRID Text_TextString The string to render

Rot ANGLE Text_Rot Text rotation

Layer PcbLayer Poly_Layer Layer poly is on

Loc CPnt Text_Loc Text location

file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CPcbText_Link02625B70%23complexType_CPcbText_Link02625B70
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Property_Link02620EC8%23element_Property_Link02620EC8

93

Mirrored Bool Text_bMirrored Text is mirrored

Height UNIT Text_Height Height of character cell

LineWidth UNIT Text_LineWidth Width of stroked segs

BASE CLASS OVERRIDES

Override Description

Copy Makes a deep copy of object

GetExtent Get object bounds in world coords

GetTransform Get transform to world cords

GetQualifiedName Return name of object lineage

GetLayer Returns layer object is on

IsOnLayer Check if object resides on a layer

GetInfoString Get info about object

GetHotSpot Snap point to major feature of object

GetPrimitives Get list of shapes for whole object

GetDistance Get distance from another object

Copy Makes a deep copy of object

GetExtent Get object bounds in world coords

OPERATIONS

Name Description

GetExpandedString If text is a macro, returns expanded string

IsRefDes Returns true if object is a placed reference

designator

GetPreciseExtent Measures every stroke in extent calculation

CPcbText Description

A CPcbText object is a renderable text string. The string is drawn

from a built-in font composed of line segments.

94

The text string to render will accept Unicode characters but will only

render the ANSI character set as strokes. Character values greater

than 126 behave like spaces in the rendered string. The rendered

text string can now contain embedded newlines for multi-line text.

Text is always left-justified.

If the text object is a child of a component and its string is set to

$RefDes then the actual text rendered is the component reference

designator. If you need to reproduce this substitution behavior, then

use GetExpandedString in place of GetTextString.

Text objects have a text height value associated with them. This

height is in database units and not points. The height value is the

character cell height. It can be interpreted as the height of the tallest

possible character, but in reality many characters only use about

80% of the cell height.

Text objects also have a line width value that is expressed in

database units. The line width is the width of the pen used to stroke

the font segments. Care should be taken to ensure the text height to

line width ratio stays somewhere between 8:1 and 10:1 or

unreadable text may result from the line width overwhelming the

stroke lengths causing a loss of information.

A text object resides on a layer. If it is on a routing layer, the text will

be etched in copper. If text it is on a plane layer, the strokes will

result in an absence of copper. Silkscreen layers result in silkscreen

text, etc.

The GetLayer member function for CPcbText objects will return a

“cooked” value that may not reflect the layer the text was created on.

95

Calling GetRawLayer will return the original layer. Cooking may

change the layer if, for instance, the text was created on the top

silkscreen layer of a component and that component was placed on

the bottom of the board. In that instance the text is now effectively on

the bottom silkscreen layer.

If text is to appear on the bottom layer or bottom silkscreen then it

must be mirrored to read correctly when the board is flipped over.

GetMirrored and SetMirrored get and set this value, but if the text is

attached to a component that is placed on the back of the board then

it will be implicitly mirrored by the component transformation. As with

all rendered objects, the GetTransform function should be used for

acquire the correct world transform for an object.

Besides mirroring, A CPcbText object contains a translation and

rotation transformation. The text origin it the lower-left corner of the

first character in the string. The text location is relative to the parent

object of the text. Again, use GetTransform to get the world values.

PcbPin.h – Pin Class Declaration

diagram

type extension of CPcbPropBase

properties base CPcbPropBase

children Property

used by elements CPcbBoard/Pin CPcbPackage/Pin CPcbComp/Pin

file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CPcbPropBase_Link0261FE68%23complexType_CPcbPropBase_Link0261FE68
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Property_Link02620EC8%23element_Property_Link02620EC8
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Pin_Link02625608%23element_Pin_Link02625608
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Pin_Link0262B838%23element_Pin_Link0262B838
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Pin_Link02631378%23element_Pin_Link02631378

96

attributes Name Type Use Annotation
Nm xs:string optional

SizX derived

by: xs:NMTOKEN
required

SizY derived

by: xs:NMTOKEN
required

Shp derived

by: xs:NMTOKEN
required

Drl derived

by: xs:NMTOKEN
required

X derived

by: xs:NMTOKEN
required

Y derived

by: xs:NMTOKEN
required

Rot derived

by: xs:NMTOKEN
optional

NP xs:boolean optional

annotation documentation Pin object for board, comps, and footprints

DATA MEMBERS

Field Type Atomic Id Description

Net CPcbNet* Pin_Net Net reference

Loc CPnt Pin_Loc Pin location

Rot ANGLE Pin_Rot Pin rotation

Drill UNIT Pin_Drill Pin drill size

PadSize CPnt Pin_PadSize x,y size of pad

PadShape PadShape Pin_PadShape Shape of pad

NonPlated Bool Pin_bNonPlated Non-plated flag

BASE CLASS OVERRIDES

Override Description

Copy Makes a deep copy of object

GetExtent Get object bounds in world coords

GetRawExtent Get object bounds in local coords

GetTransform Get transform to world cords

Distance Get distance from some shape

GetQualifiedName Return name of object lineage

97

GetLayer Returns layer object is on

IsOnLayer Check if object resides on a layer

GetNetRef Get a const pointer to object’s net

GetSillouette Get outline of object

GetInfoString Get info about object

GetHotSpot Snap point to major feature of object

GetPrimitives Get list of shapes for whole object

GetDistance Get distance from another object

OPERATIONS

Name Description

GetOblongSeg Get CSeg that of oblong pad

PadDefined Check if pad is defined on a given layer

IsPntInPad Check if point is inside pad on given layer

IsCompPin Check if pin belongs to a component

Pin Description

A CPcbPin object represents either a component pin or a board-level

pin. The only distinction between the two is whether the CPcbPin

object is a child object of a CPcbComp or a CPcbBoard. There is a

small semantic difference between the two in that a component pin

must be uniquely named in the scope of a component (unless the pin

has no name at all.) In most cases, the terms ‘Pin’ and ‘Pad’ are

interchangeable.

Many PCB CAD packages employ a pad-stack structure to define the

physical size and shape of pins on different layers of the board.

PCB123 opted for a simpler description because in the vast majority

of cases, the difference in pad geometry between layers is due to

process considerations such as over-sizing for plane layers and

98

soldermask. By uncoupling these considerations from the design

process it allows Sunstone to make the optimal process adjustments

for any given board depending on how it is constructed. It also allows

for greater flexibility as Sunstone brings new fab capabilities online. It

also has the added benefit of simplifying pad specifications when

creating new footprints.

Pins can be broadly classified as being surface-mount pins or

through-hole pins. The only distinction between the two in PCB123 is

the size of the drill assigned to the pin. If the drill is zero then the pin

is considered a surface-mount pin. Any other size signifies a through-

hole pin. If a pin is surface-mount, then its geometry is only used on

the Top layer. When a component is placed on the bottom of the

board, then any surface-mount pins it may have are implied to mean

Bottom of the board. You can call the GetDrill() member function on a

CPcbPin object to get the drill size. The drill size returned will be in

database UNIT’s. There is a complimentary SetDrill(UNIT size)

member function should be used with care. It only checks that the

drill size is between 0 and Sunstone’s largest drill. In practice it

should be set to one of the standard sizes used by Sunstone. A list of

the most current drill sizes can be found on the Sunstone website.

A through-hole pin can be plated or non-plated. Drill sizes are always

represented as finished hole size but in reality the drill bit used is

internally transcoded to account for plating. Specifying a non-plated

hole overrides this transcoding and masks the hole from the plating

process. Plating can be accessed with the GetNonPlated() and

SetNonPlated members of a CPcbPin object.

99

The shape of a pad is of type PadShape and can be one of the

following: RoundShape, RectShape, OblongShape, and NoShape.

Do not use any of the other enumerations. You can use the

GetPadShape() and SetPadShape(PadShape shape) members of a

CPcbPin to access the shape information. The shape of a pad is the

same on all layers.

The size of a pad can be accessed through the GetPadSize and

SetPadSize members of a CPcbPin object. A pad size is defined as a

CPnt object to contain both the x and y sizes. If the pad shape is

RoundShape, then only the x member is used but for completeness

the y is typically set to the same as x. For RectShape and

OblongShape both the x and y values must be set with neither one

being zero. Neither the x or y size can be smaller than the drill size.

Pin name rules are enforced by the parent object. If you create a new

board-level pin without a name and add that pin to the CPcbBoard

object, CPcbBoard is going to set the pin name to some unique

name that begins with the ‘$’ character. Object names that start with

the ‘$’ character are basically suppressed. They will show up as

blank fields in the UI and are considered unnamed objects. If you

create a new pin and add it to a component the component will check

the name for uniqueness and will generate a soft crash if there is a

conflict. You can access the pin name through its base class

GetName and SetName member functions. Object names are of type

STRID.

Pins may be assigned to a net. A pointer to the net can be acquired

by using the GetNet() or GetNetRef() base class member functions.

GetNetRef() returns a const pointer. If a pin is not assigned to a net

100

then its net reference will be set to NULL. Be advised that assigning

a pin to a net is not as simple as setting the pin’s net reference using

the SetNet member. The net reference for a pin is for quick lookup

but it is the CPcbNet object that defines the contents of a net as a

whole. The following example reassigns pThisPin from pOldNet to

pNewNet using the transaction manager so the operation can be

undone:

// First remove pin from old net

transManager.DeleteChild (pOldNet, Net_CompPinList, pThisPin);

// Set the pin’s new net reference

transManager.Set (pThisPin, Pin_Net, pNewNet);

// Add pin to new net

transManager.AddChild (pNewNet, Net_CompPinList, pThisPin);

Finally, a pin has location and rotation properties. Pin location and

rotation are defined in the local coordinate system of the pin’s parent

object. For board-level pins, the location and rotation are basically

final world coordinates but for component pins the location and

rotation will be transformed by the location, rotation, and mirroring of

the parent component. If you call the GetLoc() member function on a

pin, it will return the location in local coordinates. To get the world

coordinates for a pin you can call its GetTransform member to fill in a

GeoTransform object. You can then use the GeoTransform object to

apply transformations on different kinds of objects. There is a helper

member function called GetTransformedPnt() if you only need the

center of the pin in world coordinates.

The CPcbPin class overrides the GetSillouette member function. This

function will create a closed CGon polygon object that is the exact

size and shape as the pin, and optionally will apply an oversize to the

pad. The generated polygon will be in the pin’s local coordinate

101

system I.E. centered around 0,0. You can apply a transformation to

this polygon into whatever coordinate system you need.

PcbComp.h – Component Class Declaration

diagra
m

type CPcbComp

properti
es

isRef 0
content complex

children Property Arc Circle Poly Text Pin

attribut
es

Name Type Use Default Fixed Annotation
Nm xs:string optional

X derived

by: xs:NMTOKEN
required

Y derived

by: xs:NMTOKEN
required

Rot derived

by: xs:NMTOKEN
optional

Prt xs:string optional

file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CPcbComp_Link0262ECE0%23complexType_CPcbComp_Link0262ECE0
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Property_Link02620EC8%23element_Property_Link02620EC8
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Arc_Link0262F0F0%23element_Arc_Link0262F0F0
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Circle_Link0262FAE8%23element_Circle_Link0262FAE8
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Poly_Link02630268%23element_Poly_Link02630268
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Text_Link02631290%23element_Text_Link02631290
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Pin_Link02631378%23element_Pin_Link02631378

102

Fpr xs:string optional

Mir xs:boolean optional

DATA MEMBERS

Field Type Atomic Id Description

Device STRID Comp_Device Part type

Package STRID Comp_Package Footprint derive from

Loc CPnt Comp_Loc Component location

Rot ANGLE Comp_Rot Component rotation

Mirrored Bool Comp_bMirrored True = Mirror comp

PadSize CPnt Pin_PadSize x,y size of pad

PadShape PadShape Pin_PadShape Shape of pad

NonPlated Bool Pin_bNonPlated Non-plated flag

BASE CLASS OVERRIDES

Override Description

Copy Makes a deep copy of object

GetFirstChild Returns iterator for child list

GetExtent Get object bounds in world coords

GetRawExtent Get object bounds in local coords

GetTransform Get transform to world cords

Distance Get distance from extents

GetQualifiedName Return name of object lineage

GetLayer Only top, or bottom for comps

GetInfoString Get info about object

OPERATIONS

Name Description

GetRefDesObject Returns a the CPcbText object used to

103

present the reference designator. Creates it

in needed.

CenterRefDes Places the ref des in the center of the comp

GetRowsCols Returns a structure that contains all the rows

and columns of pins sorted by location.

Useful for calculating pin pitch and classifying

package type.

MakePackage Create a generic footprint object from a

specific component.

CPcbComp Description

A CPcbComp object represents a component instance on the board.

A component is always a child of the CPcbBoard object. Calling

GetFirstComp on the board object will return an iterator that walks

the list of components. This does not prevent the use of the more

generic GetFirstChild iterator, it is simply more convenient and faster

too.

A CPcbComp object acts as a container for a collection of pins,

polygons, and text, and is not directly rendered itself. The renderable

child objects are accessed with the GetFirstChild member of the

CPcbComp object.

There is no restriction on the number of child objects a component

can have, but there is a restriction on pin names within a component

in that they must be uniquely named or not named at all.

Components have translation, rotation, and mirroring transform

information. They establish a local coordinate system for all children.

104

The mirror transform also implies a change in layer. A mirrored

component is on the back of the board and its child objects will reflect

that when queried.

A CPcbComp object contains the name of the footprint, and possibly

the part type that it was created from. A component is completely

encapsulated. It contains not dependencies on external data. The

GetFootprint and GetPartType members simply return strings, they

do not point to any actual data.

A CPcbComp object’s reference designator must be unique among

all component instances in the CPcbBoard object. If it is not, then a

soft-error will be generated. The reference designator is just the

Name field and is accessed through GetName/SetName.

A component should never be moved by simply setting one of the

transformation values. Instead, perform the following call sequence:

CMoveCompHelper* pHelper = ::BeginMoveComp ();

MoveComp (transactionManager, pHelper, pComp, loc, rot, mirrored);

EndMoveComp (transactionManager, pHelper);

This sequence ensures that connections and tracks that at attached

to the component pins will be modified appropriately to maintain

continuity.

105

PcbPackage.h – Footprint Class Declaration

diagram

type extension of CPcbPropBase

used by element CPcbBoard/Footprint

attributes Name Type Use Default Fixed Annotation
Nm xs:string optional

Desc xs:string optional

Hgt xs:string optional

CentroidX xs:string optional

CentroidY xs:string optional

DATA MEMBERS

Field Type Atomic Id Description

PackageType PackageType Package_PackageType Type of

package

Centroid CPnt Package_Centroid Center of

package

Height UNIT Package_Height Height

file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CPcbPropBase_Link0261FE68%23complexType_CPcbPropBase_Link0261FE68
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Footprint_Link02625438%23element_Footprint_Link02625438

106

Desc STRID Package_Desc Description

of pack

BASE CLASS OVERRIDES

Override Description

Copy Makes a deep copy of object

GetFirstChild Returns iterator for list of children

GetExtent Get object bounds in world coords

GetQualifiedName Return name of object lineage

IsNameLegal Check if a name is acceptable

GetLayer Only top, or bottom for comps

GetInfoString Get info about object

OPERATIONS

Name Description

GetNextLogicalPinName Return next pin name that is valid

CountRowCols Get the number of rows and cols of pins

GetPinPitch Get spacing between row and cols of pins

FindPin Return named pin

CPcbPackage Description

A CPcbPackage object is essentially a component template whose

child objects are on library layers that get mapped to physical layers

when instantiated as components.

Plugins will have very limited access to CPcbPackages because they

are typically flushed from the database. Only if a package has been

loaded from a library during the current session will a package be

available.

107

PcbTrack.h – Track/Route Class Declaration

diagra
m

type CPcbTrack

properti
es

isRef 0
minOcc 0
maxOcc unbounded
content complex

children Crn

attribut

es
Name Type Use Default Fixed Annotation
Nm xs:string optional

Crns xs:positiveInt

eger
required

diagra

m

properti
es

isRef 0
content complex

attribut

es
Name Type Use Default Fixed Annotation
Idx xs:integer required

X derived

by: xs:NMTOK
EN

required

Y derived
by: xs:NMTOK
EN

required

Wid derived
by: xs:NMTOK
EN

optional

Lyr derived
by: xs:NMTOK
EN

optional

Fan xs:boolean optional

DATA MEMBERS

Field Type Atomic Id Description

Crns CGon Track_Crns Vertices of route

StartObj CPcbBase* Track_pStart Track start object

EndObj CPcbBase* Track_pEnd Track end object

file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CPcbTrack_Link02635238%23complexType_CPcbTrack_Link02635238
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Crn_Link026356C0%23element_Crn_Link026356C0

108

BASE CLASS OVERRIDES

Override Description

Copy Makes a deep copy of object

GetNet Get the net object this track belongs to

GetExtent Get object bounds in world coords

GetRawExtent Get object bounds in local coords

GetTransform Get transform to world cords

GetQualifiedName Return name of object lineage

GetLayer Returns PcbLayerNull.

IsOnLayer Test if object is on a layer

GetInfoString Get info about object

GetHotSpot Snap point to major feature of object

GetPrimitives Get list of shapes for whole object

GetDistance Get distance from another object

GetSillouette Get outline of object

OPERATIONS

Name Description

GetRoutedLength Return length of all segments on routing

layers

GetUnroutedLength Return length of all segs on PcbLayerNull

IsFullyRouted Tests if copper goes from start to end

GetViaCount Returns number of vias and fanouts in

route

HitTest Classifies where on the track the given

point is

IsUnrouteConnected Checks if unroute is connected through

other copper

-- Corner Operations --

GetLayer Returns layer the corner (next segment) is

109

on

SetLayer Set the layer the corner is on

GetWidth Get width of next segment

SetWidth Set width of next segment

GetFanout Check if corner is a fanout via

SetFanout Set corner to fanout. Corner must be

unrouted

IsVia Checks if corner is an implied via

GetLoc Get the corner location

SetLoc Set the corner location

GetCorner Get a packed corner struct

SetCorner Set a packed corner struct

GetVia If corner is a via, returns pad and drill size

GetSeg Returns the CSeg starting at given corner

GetCornerCount Get number of corners in route

CPcbTrack Description

A CPcbTrack object is a moderately complex object. There are

certain assumptions and implied characteristics that go along with a

track, or route, as it is sometimes called.

A CPcbTrack object is always contained by a net. It can be created

outside a net but ultimately has to be added to the database as a

child of a net object.

ACPcbTrack contains an array of corners in the form of a CGon and

two end objects which are pin references (possibly the same pin).

The route corners do not necessarily have to coincide with the pin

objects as the pin objects primary use is as an aid in the graph

connectivity.

110

ACPcbTrack encodes layer, width, and Fanout Via info into the extra

DWORD data member of a CGon vertex. There are member

functions that access this data and there are also macros the

extract/build the bit fields directly.

When traversing a CPcbTrack from corner 0 to corner n-1, the layer

and width fields specify the layer and width for the segment between

crn i, and crn i+1.

A CPcbTrack is not automatically assumed to be a electrically

connected from start to finish. If a corner is assigned to layer

PcbLayerNull then that corner begins an unrouted segment (also

called a rat). There are situations where a route may contain a rat or

even several rat segments but still be electrically complete. This is

the case if both ends of the rat are either directly or indirectly tied to a

plane layer or touch other electrical objects that make a circuit

between the two ends of the rat.

There should never be two rat segments in a row. This condition is

usually optimized out but could accidentally be created by a Plugin.

The program most likely will assert if detected.

A Change in layer from one corner to the next generally implies a via

location. The rules for this are not totally straightforward and that is

why a call to IsVia or GetVia on a corner should be used to deal with

vias. These functions encapsulate all the via logic.

If a via is implied, its geometry is obtained from the containing net

object. There is not enough bits in the extra DWORD of the CCrn to

111

encode custom via geometry for each via. In fact, the segment width

is limited to 23 bits of data (actually clamped to ½ inch).

PcbNet.h – Net Class Declaration

diagra
m

type extension of CPcbPropBase

properti

es
base CPcbPropBase

children Property Node Track

used by element CPcbBoard/Net

attribut

es
Name Type Use Default Fixed Annotation
Nm xs:string optional

Pln xs:integer optional

Wid derived

by: xs:NMTOK
EN

optional

Spc derived
by: xs:NMTOK
EN

optional

Via derived
by: xs:NMTOK
EN

optional

Drl derived
by: xs:NMTOK
EN

optional

Pri xs:integer optional

Reconn derived
by: xs:NMTOK
EN

optional

Clr xs:integer optional

file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23complexType_CPcbPropBase_Link0261FE68%23complexType_CPcbPropBase_Link0261FE68
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Property_Link02620EC8%23element_Property_Link02620EC8
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Node_Link026327A8%23element_Node_Link026327A8
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Track_Link02632A30%23element_Track_Link02632A30
file:///C:\Documents%20and%20Settings\Compaq_Administrator\My%20Documents\PCB123Suite.html%23element_Net_Link02625910%23element_Net_Link02625910

112

annotati
on

documentation Connected graph

DATA MEMBERS

Field Type Atomic Id Description

Color INT32 Net_Color Color of net

Width UNIT Net_Width Default width of

net

PlaneLayers INT32 Net_PlaneLayers Planes net is on

Priority INT32 Net_Priority Autorouter priority

ReconnType INT32 Net_Reconn Type of reconnect

Spacing UNIT Net_Spacing Required spacing

ViaSize UNIT Net_ViaSize Size of vias for net

ViaDrill UNIT Net_ViaDrill Drill size for vias

DoNotAutoroute Bool Net_DoNotAutoroute Manual route only

BASE CLASS OVERRIDES

Override Description

Copy Makes a deep copy of object

GetFirstChild Returns iterator for child list

GetChildCount Rerturns number of child objects

AddChild Add a child to the net

DeleteChild Remove a child from the list

GetQualifiedName Return name of object lineage

GetLayer Returns PcbLayerAll

OPERATIONS

Name Description

FindCompPin Check if comp.pin name is in pin list

IsPinInNet Given a pin, check if it is in net

EmptyChildList Delete all children in net

113

GetRoutedLength Returns routed length of all tracks in net

GetUnroutedLength Returns unrouted length of all tracks in net

GetViaCount Returns count of all vias in net

MergeNet Merge given net into this one

FindTracks Returns list of tracks tied to pin

GetUnrouteList Returns list of segments that are unrouted

CPcbNet Description

A CPcbNet object is a logical container for the nodes and edges of a

graph that represents one net. The net object is a bit of an anomaly

with regards to the other database classes in that the only true

containment is does is with CPcbTrack objects (edges), and not the

CPcbPin (nodes) objects. What it actually stores for nodes is list of

references to CPcbPin objects. The reason for this is simple: a pin

cannot be owned by two objects and they are physically part of a

component or board so those are the objects that own pins. Because

of this, accessing the pins of a net involve iterating over a different

list than the normal child list as is done with GetFirstChild. Instead,

pins live in a separate pin list which is accessed using

GetFirstCompPin.

CPcbTrack objects are owned by the net and are accessed with

GetFirstChild.

Besides object state information, the CPcbNet object also stores

various default parameters that get applied to routes as routing

progresses. These are:

Width: This is the default width for routes in this net. This can be

overridden down to segment granularity on the actual CPcbTrack

objects.

114

ViaSize: The pad size of any vias in the net. Vias are not explicit

objects, instead they are implied by a layer change when traversing

the corners of a CPcbTrack object.

ViaDrill: The drill size to use for vias in the net.

A distinction must be made when talking about connectivity on the

board and connectivity in graph theory. There will always be enough

child track objects to connect all the pins in the pin list, so the graph

is always connected. There may even be more than enough track

objects, resulting in cycles in the graph. A connected graph, even

one with cycles does not, however, mean that the net is connected in

a physical sense. If any corner of a track object other than the last

corner is on layer PcbLayerNull, then the segment starting with that

corner is unrouted and does not complete a path by itself. This is a

trivial condition to check for but unfortunately is not sufficient for

detecting connectivity or lack thereof. It is possible that both ends of

that unrouted segment are indirectly connected in the following ways:

Implicitly through a plane layer: if the net is a plane net and both

ends of the unrouted segment eventually reach a plated through

hole, then the plane layer completes the connection.

Indirectly connected through copper regions or copper polylines that

have been assigned to the same net.

Indirectly by another routed track object, or series of track objects

that both ends eventually touch.

115

Any combination or series of the above three conditions.

To account for this condition, net objects provide a function called

IsUnrouteConnected that takes the corner index of an unrouted track

object and returns a yes/no status for the unroute.

To determine if a net is a plane net, or to set a net to a plane layer,

you first have to call GetPlaneLayers on the net to get an encoded

value that is then passed to the member functions

IsNetAssignedToPlane and AssignNetToPlane. A net can be set to

multiple planes this way. There is also a matching member function

named RemoveNetFromPlane.

While placing the components on the board, while all nets are

unrouted, PCB123 will perform length optimizations on the net

topology as the components are moved. Length optimization is

depicted below:

This behavior can be detected or controlled using the

GetReconnType and SetReconnType member functions.

Lastly, the order in which nets are autorouted are computed by the

autorouter using a variety of tests and parameters. One of the

This This

Becomes

116

parameters is the Priority of a net, which can be read and updated

with GetPriority and SetPriority. Elevating the priority of a net will

make the autorouter attempt to route it early when in has a good

chance of being completed in a direct manor.

117

Tutorial: Creating a Plugin

In this tutorial we will create a Plugin called Relax Routing that will

minimize the angular bending of all the routing on the board.

Create a new MFC DLL project in App Wizard. For a project name

choose RelaxRouting and for Location choose the Plugin SDK root.

For the application settings choose Regular DLL Using Shared MFC

DLL.

The first thing we’ll do is edit the stdafx.h file in the new project to

include the main header file and to define the Debug and Release

libraries that we will need to link with. At the end of the file add:

#include "RelaxRouting.h"

#ifdef _DEBUG

pragma comment(lib, "../Lib/CoreLibD.lib")

pragma comment(lib, "../Lib/2dLibD.lib")

pragma comment(lib, "../Lib/DrawLibD.lib")

pragma comment(lib, "../Lib/GridCtrlLibD.lib")

pragma comment(lib, "../Lib/BaseDbLibD.lib")

pragma comment(lib, "../Lib/PcbDbLibD.lib")

#else

pragma comment(lib, "../Lib/CoreLib.lib")

pragma comment(lib, "../Lib/2dLib.lib")

pragma comment(lib, "../Lib/DrawLib.lib")

pragma comment(lib, "../Lib/GridCtrlLib.lib")

pragma comment(lib, "../Lib/BaseDbLib.lib")

pragma comment(lib, "../Lib/PcbDbLib.lib")

#endif

The next step will be to right click on the RelaxRouting project folder

and select Properties. The changes we will make are for all

configurations so select All Configurations. In the C++/General

settings, make sure Detect 64-Bit Portability is off (set to No). In the

A Relaxing Tutorial

Relax Routing: An iterative routine for minimizing angular deflection

of all routes

Chapter

3

118

Linker/General settings, set the output file to

“../../Plugins/RelaxRouting.dll”. Select the Ok button.

We will now declare our two exported functions. The main Event

Proc and the one menu item handler this Plugin will have. Open the

RelaxRouting.def file and at the end of the file add the following:

 EventProc @1

 Relax @2

We will now declare the prototypes for the two functions. Open the

RelaxRouting.h file and add to the end of it the following:

extern "C" {

 PluginResponse EventProc (PluginIO& iob);

 PluginResponse Relax (PluginIO& iob);

}

Before we close RelaxRouting.h, we want it to add #include

“../IPlugin.h” right under the #include “Resource.h”. This will include

all the Plugin definitions that we will use.

We will now create the main event procedure for the Plugin. For this

Plugin the event procedure is not really interested in anything but

setting the state of the menu item to gray if there is no active board

document open. Open RelaxRouting.cpp and to the bottom of the file

add the following:

PluginResponse EventProc (PluginIO& iob)

{

 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 iob.m_ReturnValue = 0;

 if (iob.m_EventType == UpdateMenuUIEvent

 && iob.m_UpdateMenuEvent == Relax) {

 if (iob.m_pRootObj == NULL) {

 iob.m_ReturnValue = MENU_DISABLE;

 }

 }

 return PluginSuccess;

}

119

Below this, we will add the menu item handler. When the user selects

Relax Routing from the menu, the following code will be executed:

PluginResponse Relax (PluginIO& iob)

{

 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 if (! iob.m_pRootObj) {

 // No object

 return PluginSuccess;

 }

 if (iob.m_pRootObj->GetClass() != BOARD_CLASS) {

 AfxMessageBox ("Error! Expecting a BOARD object.");

 return PluginFailure;

 }

 CoreString str = "Relax was called for board ";

 str += StrPtr(iob.m_pRootObj->GetName());

 AfxMessageBox ((CSTR) str);

 return PluginSuccess;

}

At this point let’s compile the code and test it by running PCB123.

Before you load a PCB board you should see a new Plugin entry

named Relax Routing that is grayed. Now go ahead and load a board

and look at the menu item again. It should be enabled. When you

select the Relax Routing menu item you should see a simple

message that echo’s the name of the currently active PCB board

document. Not a very exciting Plugin, yet. Let’s change that now. We

are going create a new class that is going to perform all the work of

route relaxation.

Create a new file called RelaxClass.h and add it to the project’s Head

Files folder. The contents of RelaxClass.h are as follows:

///

// RelaxClass.h - Declaration of CRelaxClass.

// CRelaxClass encapsulates the route relaxation

// logic. It expects a PcbBoard and a transaction

// manager to use for making changes to the board.

//

#pragma once

#include "RelaxRouting.h"

#include "../PcbDbLib/PcbDbLib.h"

class CRelaxClass

120

{

private:

 CPcbBoard* m_pBoard;

 CTransactionManager* m_pTm;

 bool m_bMoveVias;

 bool RelaxOneCorner (CPcbTrack* pTrack, INT32 crnIdx);

 bool RelaxOneTrack (CPcbTrack* pTrack);

 bool RelaxOneNet (CPcbNet* pNet);

public:

 CRelaxClass (CPcbBoard* pBoard, CTransactionManager* pTm);

 virtual ~CRelaxClass ();

 bool RelaxAll ();

};

This is a simple class that contains a public constructor and a public

member named RelaxAll. The constructor’s parameters are directly

obtained from the iob parameter of the menu event procedure. Given

this header file, let’s update the RelaxRouting.cpp file to incorporate

this new class.

Directly under the #include “RelaxRouting.h” statement in

RelaxRouting.cpp, add #include “RelaxClass.h”

In the Relax menu event procedure we are going to do a very

important thing and that is remove the AFX_MANAGE_STATE

statement at the very beginning of the procedure. At this point you

are probably wondering what gives! “Gee, first you tell me not to

forget adding this statement to the beginning of my event procs and

now you are telling me to remove it.” That’s right. The reason for this

is because the CRelaxClass is not going to be accessing any

resources from this Plugin so there is no need for a module context

switch. In fact, the CRelaxClass is going to modify route information

through the transaction manager, and one of the jobs of the

transaction manager is to synchronously notify anyone who cares

about a change to the database and this includes the graphic

windows in PCB123! It is for this reason that the module state for the

121

host application wants to be the active one before making any calls

that will modify the database.

Let’s finish the Relax menu event procedure by removing the three

lines of test code…

 …

 CoreString str = "Relax was called for board ";

 str += StrPtr(iob.m_pRootObj->GetName());

 AfxMessageBox ((CSTR) str);

 …

And replacing them with:

 CRelaxClass rc ((CPcbBoard*) iob.m_pRootObj, iob.m_pTm);

 rc.RelaxAll ();

Now the entire Relax menu event procedure looks like:

PluginResponse Relax (PluginIO& iob)

{

 ASSERT (iob.m_pRootObj != NULL);

 ASSERT (iob.m_pRootObj->GetClass() == BOARD_CLASS);

 CRelaxClass rc ((CPcbBoard*) iob.m_pRootObj, iob.m_pTm);

 rc.RelaxAll ();

 return PluginSuccess;

}

We are done with RelaxRouting.cpp leaving only RelaxClass.cpp to

be filled in. RelaxClass.cpp is pure application code and is shown

below:

122

///

// RelaxClass.cpp : Relaxation Class Definition

//

#include "stdafx.h"

#include "RelaxClass.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#endif

///

// Constructor - Validate parameters and setup any states.

//

CRelaxClass::CRelaxClass (CPcbBoard* pBoard, CTransactionManager* pTm)

{

 ASSERT (pBoard);

 ASSERT (pTm);

 m_pBoard = pBoard;

 m_pTm = pTm;

 m_bMoveVias = true; // You can change this (or ask user)

}

///

// Destructor - Currently does nothing.

//

CRelaxClass::~CRelaxClass ()

{

}

//

/

// RelaxOneCorner - Move corner toward prior corner.

//

bool CRelaxClass::RelaxOneCorner (CPcbTrack* pTrack, INT32 crnIdx)

{

 bool result = false;

 // Get location of corner and previous corner

 CPnt srcPnt = pTrack->GetLoc (crnIdx);

 CPnt destPnt = pTrack->GetLoc (crnIdx-1);

 // Get the distance between the two points

 // (uses 2D distance operator ^)

 UNIT len = srcPnt ^ destPnt;

 if (len <= MILS_TO_UNITS(5)) {

 // Not worth it

 return false;

 }

 // Get the angle from corner to previous corner

 ANGLE a = destPnt.AngleFrom (srcPnt);

 // Start walking toward dest by 5 mils.

 UNIT dist = MILS_TO_UNITS(5);

 for (;;) {

 if (dist > len) {

 // Do not overshoot dest

 dist = len;

 }

 // Create a point at this distance attempt

 CPnt p (dist, 0);

 // Rotate it toward dest

 p <<= a;

 // Add start point

 p += srcPnt;

123

 // Remember last good location

 CPnt lastGood = pTrack->GetLoc (crnIdx);

 // Move the track corner

 pTrack->SetLoc (crnIdx, p);

 // Check if it caused a spacing violation

 if (! m_pBoard->CheckConn (pTrack, crnIdx-1, crnIdx+1)) {

 // It did. We've gone as far as we can toward dest

 // Put it back the way we found it

 pTrack->SetLoc (crnIdx, srcPnt);

 // Get the track polygon

 CGon crns = pTrack->GetCorners ();

 // Set the corner to the last valid location

 crns.SetAt (crnIdx, lastGood);

 // Formally update the track and return

 m_pTm->Set (pTrack, Track_Crns, crns);

 return result;

 } else {

 // It passed spacing. Try and walk some more

 dist += MILS_TO_UNITS(5);

 if (dist > len) {

 // Reached dest. All done

 // Put corner back the way we found it

 pTrack->SetLoc (crnIdx, srcPnt);

 // Get the track polygon

 CGon crns = pTrack->GetCorners ();

 // Set the corner to the last move

 crns.SetAt (crnIdx, p);

 // Formally update the track and return

 m_pTm->Set (pTrack, Track_Crns, crns);

 return result;

 }

 // If we got here we moved more than 5 mils successfully

 result = true;

 }

 }

 return false;

}

///

// RelaxOneTrack - Relax track one corner at a time.

//

bool CRelaxClass::RelaxOneTrack (CPcbTrack* pTrack)

{

 bool result = false;

 // We do not want to move the first or last corner in a track

 for (int idx = 1; idx < pTrack->GetCornerCount()-1; ++idx) {

 PcbLayer prevLayer = pTrack->GetLayer (idx-1);

 PcbLayer nextLayer = pTrack->GetLayer (idx);

 if (prevLayer == PcbLayerNull || nextLayer == PcbLayerNull) {

 // Don't move rat lines

 continue;

 }

 if ((prevLayer != nextLayer) && m_bMoveVias == false) {

 // This corner is a via and we can't move them

 continue;

 }

 if (RelaxOneCorner (pTrack, idx)) {

 result = true;

 }

 }

 return result;

}

124

///

// RelaxOneNet - Relax each track in the supplied net.

//

bool CRelaxClass::RelaxOneNet (CPcbNet* pNet)

{

 bool result = false;

 CDbBaseIter iter = pNet->GetFirstChild ();

 for (; iter(); ++iter) {

 // Get each child in net

 CPcbBase* pObj = (CPcbBase*) iter.Get ();

 if (pObj->GetClass() == TRACK_CLASS) {

 // Only concerned about tracks

 CPcbTrack* pTrack = (CPcbTrack*) pObj;

 if (RelaxOneTrack (pTrack)) {

 result = true;

 } else {

 // Try the other way

 pTrack->Reverse (0);

 if (RelaxOneTrack (pTrack)) {

 result = true;

 }

 pTrack->Reverse (0);

 }

 }

 }

 return result;

}

///

// RelaxAll - Iterate over the each net in the board and perform relax.

//

bool CRelaxClass::RelaxAll ()

{

 // Start a transaction frame so user can undo entire operation

 m_pTm->StartFrame ();

 bool result = true;

 // Seed to known state

 CheckEscapeKeyPressed ();

 // Indicate we are busy and how to stop this

 SetStatusMessage ("Press Esc to cancel...");

 ShowBusyCursor (true);

 // Loop up to 5 times (as long as a change was made)

 int count = 0;

 while (result == true && count++ <= 5) {

 result = false;

 CPcbNetIter iter = m_pBoard->GetFirstPcbNet ();

 for (; iter(); ++iter) {

 if (CheckEscapeKeyPressed ()) {

 // User pressed the escape key. We can stop here

 m_pTm->EndFrame ();

 return false;

 }

 // Get the net and relax it

 CPcbNet* pNet = iter.Get ();

 if (RelaxOneNet (pNet)) {

 result = true;

 }

 }

 }

 ShowBusyCursor (false);

125

 // Close the transaction frame

 m_pTm->EndFrame ();

 return result;

}

	Introduction
	PCB123 Plugin in a nutshell
	Intended audience
	Community
	A note about the SDK deployment
	Overview
	The XML Plugin Configuration File
	Event Model
	Sequence of events
	The Plugin DLL
	The I/O Block
	Advanced Concepts
	The Plugin SDK
	SDK directory structure
	CoreLib
	CoreDefs.h – Simple types and common definitions
	Debug.h – Assert and trace macros, CoreTimer
	Heap.h – Efficient memory management
	Templ.h – Templated collection classes
	CoreString.h – General purpose wide string class
	StringTable.h – Global string pool
	Filename.h – Filename parsing, directory scanning, file testing
	System.h – App settings, PE versioning, Busy Cursor, StatusBar
	MRU.h – Generic most-recently-used class
	XML.h – CXmlDomParser abstraction
	CoreLUT.h – Lookup tables, Color macros, Very random numbers
	ProgressDlg.h –General purpose progress indicator
	CoreDialog.h – Base class for PCB123 dialogs. Standardizes help
	LogFile.h –Accumulates messages and formats them into a report.

	2dLib
	2dDefs.h – Declares ANGLE and UNIT type. Angle macros, etc.
	2dBase.h – Base class for 2D primitives
	Pnt.h – Declares CPnt class
	Seg.h – Declares CSeg class
	Arc.h – Declares CArc class
	Rct.h – Declares CRct class
	Gon.h – Declares CGon (Polygon) class
	Fnt.h – Declares a stroked font
	PolyTri.h – Triangulates a CGon object

	DrawLib
	Viewport.h – Virtual viewport
	DrawCache.h – Graphics resource manager
	Cookie.h – Primitive shape drawing functions

	BaseDbLib
	BaseDbLib.h – Basic definitions and master include for BaseDbLib
	Prop.h – Properties
	TransactionManager.h – Transaction interface
	Base.h – Base class declaration

	PcbDbLib
	PcbBase.h – Base class declaration for PCB objects
	PcbProp.h – Base class for objects with Properties
	PcbError.h – DRC error marker class
	PcbPoly.h – Polygon Class Declaration
	PcbText.h – Stroked Text Class Declaration
	PcbPin.h – Pin Class Declaration
	PcbComp.h – Component Class Declaration
	PcbPackage.h – Footprint Class Declaration
	PcbTrack.h – Track/Route Class Declaration
	PcbNet.h – Net Class Declaration
	Tutorial: Creating a Plugin

