

PCIe-BaseLab

Evaluation board for the

PCI Express Bus

Version 1.02

July 2016

Notes on scope of delivery, installation, hardware properties

and extendibility and on programming using API functions

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 2

Contents

1. Introduction ... 3

General properties ... 3
Scope of delivery ... 3

2. Installation ... 4
Software .. 4

Hardware ... 4
Assigning the Windows driver ... 4

3. Hardware properties and extendibility .. 5
PCIe endpoint controller PEX8311.. 5
PCIe bus interface ... 5
Local bus interface... 5

Serial configuration EEPROM ... 6
Programmable logic device (PLD), ispXPLD5768 .. 6
In-system programmable (ISP) ... 6
Pin header block (User Interface) .. 6

4. The sample applications ... 7

Synchronous RAM.. 7
FIFO .. 7

16 bit I/O register ... 7

5. The PCIe-BaseLab programming interface .. 8
Using the Header files .. 8
Loading the drivers API-DLL.. 8
API Function and error code format ... 8
Memory configuration .. 8
Methods for accessing memory ... 8

6. API Functions - reference .. 10
Querying the number of active PCIe-BaseLab cards .. 11
Opening a PCIe-BaseLab card .. 11
Closing a PCIe-BaseLab card .. 11
Querying the Windows driver version .. 11
Querying information about PCIe card slots ... 12

Resetting a PCIe-BaseLab card ... 12
Reading from the PCI configuration registers ... 13
Writing to the PCI configuration registers .. 13
Reading the PEX8311 controller registers .. 13
Writing the PEX8311 controller registers ... 13
Reading data from the serial EEPROM ... 14
Writing data to the serial EEPROM .. 14

Reading the memory area ... 14
Writing to the memory area ... 14
'Showing' a memory area in the application address space .. 15
'Hiding' a memory area from the application address space 15
Querying the physical address of user regions .. 15
Allocating a continuous memory area .. 16
Releasing a continuous memory area .. 16

7. The sample programs (C++) ... 17

8. The monitor program PPLABMON.EXE ... 18
Editing the EEPROM registers ... 19
Reading and writing to the RAM ... 20
Setting and querying the 16-Bit-I/O register pins ... 21

Appendix ... 22

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 3

1. Introduction

General properties

PCIe-BaseLab is an indispensible aid to the development of add-on cards for PCs and other computer
systems equipped with the PCI Express bus (PCIe). The card allows rapid and uncomplicated testing of

newly developed electronic circuits on the PCIe bus.

PCIe-BaseLab works with the universal PCI Express endpoint controller PEX8311 from PLX Technology,
Inc., its peripherals and a high-performance programmable logic device (PLD), manufacturer Lattice
Semiconductor. With the PEX8311 controller, PCIe-BaseLab is compatible with the requirements of the
PCI Express specification, Revision 1.0. The card is fully populated, tested and ready for use.

System designers can mount their hardware directly onto the perforated grid of the removable
daughterboard and begin testing. Time spent dealing with signal interchanges and the technical

properties of the PCIe bus system can be reduced to a minimum.

The PLD includes various pre-installed sample applications:

 a synchronous RAM,
 a FIFO,

 a 16 bit input/output register.

The source code for the sample applications is provided and can be modified by the user.

Particularly useful for hardware developers and measurement engineers:
All of the controller's local connector pins are pre-connected to the PLD and executed as shrouded
headers from which they are easily accessible. 106 of the PLD's 193 I/O pins are also laid out on
shrouded headers and are freely accessible.

Various types of daughterboard are available for the PCIe-BaseLab. Currently these have 0.1 inch
perforated grids, future versions will have universal SMD footprints and custom formats can also be
produced. The latter offers the option of using PCIe-BaseLab as a finished module together with

application-specific hardware in small and mid-sized production series.

Use of PCIe-BaseLab does not require payment of licensing fees for a core and does not require
membership of PCISIG. Sub-vendor and subsystem IDs for explicitly labeling vendor hardware can be
obtained free of charge from the PCIe controller vendor.

The documentation for PCIe-BaseLab is rounded off by circuit diagrams, population and connection

plans and PLD source code.

Scope of delivery

The product as supplied consists of the following components:

 PCI Express Bus Evaluation Board with attached daughterboard (0.1 inch land grid),
 adaptor cable for supplying power to the daughterboard via a SATA power supply connector,
 CD-ROM: Windows driver, monitor program, sample applications including source text and

developer files (Header, Lib, DLL), circuit diagrams, data sheets, VHDL-source code and this
technical manual.

javascript:%20var%20fenster%20=%20window.open('http://www.pcisig.com','PCISIG','height=600,width=800,scrollbars=yes,toolbar=yes,resizable=yes,location=yes')

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 4

2. Installation

Software

The PCIe-BaseLab software can be used under Windows 2000, Windows XP, Windows Vista and
Windows 7. The Windows driver is a WDM driver. 32-bit and 64-bit operating systems are supported.

WARNING: You must have administrator privileges to install the software!

To install the software, select one of the following procedures (depending on version supplied):

 Copy the entire directory structure from the CD to the destination directory on your PC.
 Unzip the file by executing the self-extracting program ‘pplab_v1005.exe’.
 Start the installation by running 'setup.exe'.

The following sub-folders will be present in the PCIe-BaseLab software folder:

 bin: the driver API DLL ‘PPLABAPI.DLL’ (section 5) and

 binary files for the sample applications (section 8),
 dev: the two C header files ‘PPLABAPI.H’ and ‘PPLABERR.H’ (section 5),

 doc: the manual ‘PPLAB-v10_Manual.PDF’,
 drv: the Windows driver ‘PPLAB_E.SYS’ and two associated INF files (following section),

 lib: the import library ‘PPLABAPI.LIB’ (section 5),
 mon: the monitor program ‘PPLABMON.EXE’ and associated files (section 7),
 smp: the source code files for the sample applications (section 8).

Tip: We recommend installing the software before installing the PCIe-BaseLab card in the PC. This
allows the Windows driver to be assigned immediately after restarting the system.

Hardware

The hardware is installed by inserting the card into a 1x, 4x, 8x or 16x PCI Express slot in a PC or
other computer with PCIe slots. Regulations relating to ESD safety and protection from contact with
parts which may carry hazardous electrical voltages should be observed.

The computer must be switched off and disconnected from the mains power supply before
installing / removing the PCIe-BaseLab card.

The integrated LED (LED 1) on the PCIe-BaseLab card indicates that the physical PCIe interface

connection has been established after switching on the computer. If it lights up, this may be taken as

an initial indication that the hardware has been correctly installed.

PCIe-BaseLab can also be run via a PCIe bus extender. This allows the card to be inserted and
removed while the PC is running (Hot-Swapping) without resulting in loss of configuration data. (PCIe-
Bus-Extender with PCFaceSwitch-Software, manufacture: HK Meßsysteme GmbH)

Assigning the Windows driver

After restarting the computer, the operating system finds the new hardware and requests assignment

of a suitable driver. Note that the controller used is made up of two components:

 a 'PCI-PCI bridge' (PCI8111) and
 a 'PCI device' (PCI9056).

WARNING: A suitable driver must be assigned to each component!

In order to carry out driver assignment, do not use the 'Automatic installation' option recommended by
Windows. In the 'Add Hardware Wizard' select the 'drv' sub-folder in the PCIe-BaseLab software folder

when requested to select the driver location. The following two files in this folder:

 PLXBRIDGE.INF and
 PPLAB_E.INF

ensure that the correct drivers are assigned. These are

 PCI.SYS – the standard Microsoft driver for the PCI bus, in this case as a driver for the 'PCI-PCI
bridge',

 PPLAB_ESYS – the specific Windows driver for the 'PCI device' PCIe-BaseLab.

If another Windows driver (e.g. the generic PLX driver PCI9056.SYS) is assigned to the 'PCI device',
reassign the correct driver by selecting 'Update driver' in Device Manager and selecting 'PPLAB_E.INF'
in the 'drv' folder. If driver installation has been performed correctly, a device class 'PCIe-BaseLab' and
the installed 'PCIe-BaseLab' devices will be displayed in Device Manager.

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 5

3. Hardware properties and extendibility

The block diagram (see appendix) provides an introductory description. The hardware can be
functionally divided into five components:

 PCIe Endpoint Controller PEX8311,

 Serial Configuration EEPROM,
 Programmable Logic Device (PLD), ispXPLD5768,
 'In-System Programmable' Interface (ISP),
 Pin Header Block (User Interface)

PCIe endpoint controller PEX8311

The PEX8311 is a universal PCIe Endpoint controller for the serial PCIe bus equipped with a 1x link. It
functions as a bridge between the PCIe-bus and specific user systems on the local bus. The PEX8311

processes all typical signals and access mechanisms on the bus. It translates these signals into a
universal control, address and data interface to which user specific memory and I/O units can be
connected. It has two interfaces which are designated as follows:

 this PCIe Bus Interface
 this Local Bus Interface

The PEX8311 controller interfaces are of differing significance to PCIe-BaseLab card users and are
described below.

PCIe bus interface

This PCIe-BaseLab interface is used to couple the controller to the PCI Express bus. It is fully wired
on the PCB, no further action on the part of the user is required.

Local bus interface

This Local Bus interface is important for the user, as this is where he will connect his system
application. It is designed as a universal bus and allows the operation of hardware peripherals with
data bus sizes of 8, 16 or 32 bits and a maximum address bus size of 32 bits.

User-specific components control data exchange via this Local Bus interface using classical signals
/LHOLD, /HOLDA, /WAIT, /READY or /LW/R.

The connected peripheral can itself consist of a microprocessor system or - the simplest case - be
designed as a data latch.

The PCIe Endpoint controller architecture also supports the integration of memory. Up to 4 Gbytes
can be addressed per address region; two local address regions are permissible.

The PEX8311 has an internal register set for saving initialization data, configuring, activating and
deactivating operating modes and exchanging data. The register set can be accessed both via the
interface and via the bus interface. The PCI controller functions are therefore transparent to and
can be used by both sides.

Two independent DMA channels are provided for rapid data transfer with no Host-CPU (Bus Master
Transfer Mode) involvement. The start addresses and transfer counters of these channels are
configured using registers.

ROMs with parallel interfaces can be connected to the PEX8311 for BIOS extension.

The PEX8311 controller also allows user-specific generation of interrupts, which can originate from
either the local or PCI side.

A complete technical description of the PEX8311 can be found in the technical manual, which is

published and maintained by the manufacturer of the controller. This can be downloaded from the
website PLX Technology, Inc. and is included on the CD-ROM supplied with this product.

Warning: We cannot guarantee that data sheets produced by other vendors and supplied with this
product are up-to-date. They should be used as provisional information only. It is advisable to obtain
current data sheets and manuals from the relevant manufacturer and to use these as the basis for
your work with these components. Relevant addresses can be found in the appendix to this manual.

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 6

Serial configuration

PCIe-BaseLab works with a 2 Kbyte serial EEPROM inserted into a slot on the PCB. It contains essential
configuration data which initializes the controller specifically for the PCIe-BaseLab. The EEPROM can be

edited and overwritten. The program PPLABMON.EXE, included in the software package supplied with

this product, is a practical editor for the serial EEPROM code.

Programmable logic device (PLD), ispXPLD5768

The PLD used on this PCIe-BaseLab card is a member of the ispXPLD 5000MX family from Lattice
Semiconductor, distinguished by its high performance and flexibility. As well as extensive logic, it is

also possible to implement single or dual ported RAM or FIFO memory in the PLD's multi function
blocks. The inputs and outputs can operate according to various interface standards (TTL, CMOS,
LVCMOS, LVDS, HSTL or SSTL). Integrated PLL systems allow easy clock management. The PLD series
has integrated Flash memory for configuration, which makes the PLD ready to use immediately after
connecting the supply voltage. The PLD used on the PCIe-BaseLab card has 768 macro cells (Flip-
flops), a maximum of 384 Kbits of configurable RAM and can be clocked at a maximum system clock

frequency of 250 MHz. Its outputs deliver 3.3V. The inputs are 5V compatible. The PLD can be
programmed via the integrated interface on the PCIe-BaseLab card. No external programming device
is required. Further information on the PLD is available from the Lattice Semiconductor website. (Web
addresses can be found in the appendix to this manual.)

In-system programmable (ISP)

This ISP interface (X1, JEDEC Support) allows PLD firmware to be downloaded without the need to edit
the PLD on an external programming device. It is able to remain integrated within the system

(Therefore ‘in system programmable’, ISP). The required software ispVMSystem can be downloaded
free of charge from the Lattice Semiconductor website. A parallel port or USB programming adapter
can be ordered from your local Lattice component dealer.

Pin header block (User Interface)

The pin header block consists of dual row shrouded headers in a 2 mm grid (2 headers with 2x50 pins
each, 1 header with 2x20 pins). These are placed at the outer edges of the card and constitute the
interface to user-specific hardware the User Interface.

This interface provides access to all the PEX8311 controller's local address, data and control lines and
to 106 of the installed PLD's 193 I/O pins. Further connections allow external clock signals to be picked

up or fed in. Earth pins are included at regular intervals.

The daughterboard supplied is designed to be able to be inserted onto the shrouded pin header block
on the PCIe-BaseLab card and screwed to the card. All pins are translated onto the daughterboard and
are available for connecting user-specific hardware to the daughterboard. Warning: Power supply and

earth connections are not automatically connected to the daughterboard's power supply layers. The
additional cable provided is required. This can be connected to a SATA power supply connector from
the host computer or to prepared solder connectors on the PCIe-BaseLab card as required. All voltage
feeds (with the exception of the earth connections) on the daughterboard include replaceable fuses,
intended to protect user electronics and the host computer power supply module from overvoltages.
Colored LEDs signal that the power supply voltages on the daughterboard are on.

The daughterboard can be separated from the PCIe-BaseLab card, but due to the force required to do

so should be removed with care and with the aid of a tool (please lever off in parallel using a suitable
screwdriver).

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 7

4. The PLD sample applications

The sample applications are in all cases accommodated on the PLD as 'glue logic'. They are intended to
illustrate sample hardware applications with which the PCIe-BaseLab can be equipped without

requiring the installation of additional components on the daughterboard.

Users can adapt the pre-installed sample applications to their requirements (within the realms of the
technically possible) and/or implement their own logic on the PLD.

The source code for the sample applications is included with the product. Software for editing and
compiling this code can be downloaded from the Lattice Semiconductor website.

The monitor program supplied with this product can be used for communication with the sample
applications for test purposes. Further information can be found in section 8.

Further information on the hardware architecture of the pre-installed sample applications is given

below.

Synchronous RAM

The RAM has a capacity of 24 Kbytes and is organized as 6k x 4 bytes. The hardware is laid out for
byte, word or dword read and write access. Burst transfers are supported. See section 5 for

information on the address range of the RAM.

The integrated RAM can also be written to and read from using the monitor program PPLABMON.EXE

supplied. For more information see section 8.

FIFO

The FIFO buffer sample application is currently not yet included with the PCIe-BaseLab as supplied. It
will be made available to our customers in the near future.

16 bit I/O register

This sample application consists of a 16 bit data register for outputting static (latched) data and a
separate input data path which can be used to query the current logical state of 16 input lines. The 16

bit I/O register sample application uses a total of 32 pins (16 input pins and 16 output pins) of the
available I/Os at the pin header block. These are arranged on the header block such that they can be
easily bridged bit-by-bit using a short-circuit plug. This allows the data word output via the output
latch to be re-read.

The 16 bit I/O latch is accessible via a read/write address in the card's memory address range (see
section 5).

The 16 bit I/O register can also be written to and read from using the monitor program

PPLABMON.EXE supplied (see section 8).

A table showing the positions of the 16 bit register's I/O pins on the header block is given in the
appendix.

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 8

5. The programming interface

The PCIe-BaseLab programming interface provides a range of functions which can be utilized by C/C++
programs to communicate with the PCIe-BaseLab card. The following files are provided for using these

functions:

 PPLABAPI.H: C header file - defines the API functions,
 PPLABERR.H: C header file - defines the error constants,
 PPLABAPI.DLL: dynamic link library - implementation of API functions
 PPLABAPI.LIB: import library for implicitly loading the DLL from VC applications.

In order to be able to use these API functions, the header file 'PPLABAPI.H' `included’ and the API-DLL
drivers 'PPLABAPI.DLL' must be loaded.

Using the files

The file must be loaded using a statement in the source code in order to be able to call these
functions.

The file can be used to look up error codes and does not usually need to be included.

Loading the drivers API-DLL

Drivers API-DLL 'PPLABAPI.DLL' can be loaded either

 explicitly using the Win32 functions 'LoadLibrary' and 'GetProcAddress' or

 implicitly using the import library supplied.

The sample program 'LoadDLL' demonstrates explicit loading of the DLL.

Where Microsoft development environments (VC6, Visual Studio xx) are used, the import library
supplied can be used to implicitly load the DLL. Implicit loading is used in all of the sample programs
with the exception of 'LoadDLL'.

Function and error code format

All interface functions conform to a similar schema. The name of the functions always starts with the

prefix 'PPLAB_'.

The return value of the functions is always of type 'DWORD' and indicates whether the function was

successful. A return value of '0' indicates that no errors occurred when executing the function. A value

other than '0' indicates an error and represents an error code which provides information on the
source of the error. Possible error codes are defined in the file and utilize values between 0x20010000

and 0x20FF0000. In addition, operating system error codes are sometimes added. These make use of

bits 0 to 11.

If a function returns data, this is made available via reference parameters (address pointers). This

allows multiple pieces of information to be returned simultaneously.

Memory configuration

By default the card has 32 Kbytes of memory. This memory is used to demonstrate potential
applications. These applications include:

 writing and reading many Kbytes of data
 setting and querying I/O pins

 starting continuous data transfer via DMA

Information on the appropriate card configuration can be found in the accompanying documentation.

Sample configuration 1:

0x0000..0x5FFF: RAM (24 kBytes)
0x6000..0x6001: I/O-REGISTER (16 Bits)
0x6002..0x7FFF: unused

Methods for accessing memory

Three methods for accessing PCIe-BaseLab card memory are available:

 KERNEL
 MAPPED
 DMA

The KERNEL method is the standard method for accessing memory areas on an external expansion
card. Memory is accessed via the card driver at the kernel level. The driver deals with synchronization

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 9

of simultaneous memory access. The relevant API functions are PPLAB_ReadMemory and

PPLAB_WriteMemory.

The MAPPED method makes use of the API functions PPLAB_MapMemory and PPLAB_UnmapMemory. The

corresponding memory area on the PCIe-BaseLab card is 'shown' in the relevant application's address

space. It is then possible to access this memory area directly, bypassing the kernel level. Explicit
synchronization is required to prevent simultaneous memory access. The sample program illustrates
this method.

The DMA method is used to transfer large quantities of data using the PLX controller's DMA channels.
It utilizes the API functions PPLAB_ReadPlxRegister and PPLAB_WritePlxRegister. The sample

program demonstrates the required procedure.

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 10

6. API Functions - reference

The programming interface encompasses the following API functions:

 Querying the number of active PCIe-BaseLab cards
PPLAB_GetNumberOfDevices

 Opening and closing a PCIe-BaseLab card
PPLAB_OpenDevice

 PPLAB_CloseDevice

 Querying the driver version
PPLAB_GetDriverVersion

 Querying information on the PCIe-BaseLab card PCI slot
PPLAB_GetDeviceProperties

 Resetting a PCIe-BaseLab card
PPLAB_ResetDevice

 Reading and writing to a PCIe-BaseLab card's configuration registers
PPLAB_ReadPciRegister

 PPLAB_WritePciRegister

 Reading and writing to a PCIe-BaseLab card's PLX controller registers
PPLAB_ReadPlxRegister

 PPLAB_WritePlxRegister

 Reading and writing a EEPROM PCIe-BaseLab card's content
PPLAB_ReadEEPROM

 PPLAB_WriteEEPROM

 Reading and writing to a PCIe-BaseLab card's memory area
PPLAB_ReadMemory

 PPLAB_WriteMemory

 'Showing' and 'hiding' a memory area on a PCIe-BaseLab card
PPLAB_MapMemory

 PPLAB_UnmapMemory

 Querying the physical address of a PCIe-BaseLab card's memory areas
PPLAB_GetPhysicalAddressOfUserRegion

 Allocating and releasing continuous memory areas
PPLAB_AllocateContMemory

 PPLAB_FreeContMemory

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 11

Querying the number of active PCIe-BaseLab cards

DWORD PPLAB_GetNumberOfDevices (DWORD* pNumberOfDevices);

This function is used to query the number of PCIe-BaseLab cards currently active in the host
computer. A DWORD variable address should be passed to the function. After the function has

successfully executed, this variable pNumberOfDevices is set to the number of active cards.

The driver supports up to 16 PCIe-BaseLab cards per PC.

This function is usually the first API function called after starting a program in order to determine
whether any PCIe-BaseLab cards are active in the host computer.

Example:

DWORD error, deviceNumber;
error = PPLAB_GetNumberOfDevices(&deviceNumber);
if (error)
… // error handling
else
printf ("Active BaseLab-Cards found: %d\n", deviceNumber);

Opening a PCIe-BaseLab card

DWORD PPLAB_OpenDevice (HANDLE* pHDevice, DWORD deviceId);

This function is used to start using a PCIe-BaseLab card – the device with the parameter deviceId

is opened. deviceId can take any value between 1 and 16. If only one card is active, its ID will be

1, if 2 cards are active their IDs will be 1 and 2, etc. If the function executes successfully, it

returns a handle for the relevant device. A HANDLE variable address should be passed to the

function pHDevice for this purpose.

Since deviceHandle is required as a parameter for all other API functions (except

PPLAB_GetNumberOfDevices), one PCIe-BaseLab card must always be opened using this function

before other functions can be called.

Opened PCIe-BaseLab cards should be closed using the PPLAB_CloseDevice function before exiting

the program.

Example:

DWORD error, deviceId;
HANDLE deviceHandle;
deviceId = 1;
error = PPLAB_OpenDevive (&deviceHandle, deviceId);
if (error);
… // error handling
else
printf ("BaseLab-Card %d opened! (handle=%d)\n", deviceId, deviceHandle);

Closing a PCIe-BaseLab card

DWORD PPLAB_CloseDevice (HANDLE hDevice);

This function is used to close a PCIe-BaseLab card. The deviceHandle parameter generated using

PPLAB_OpenDevice must be passed to this function. deviceHandle is no longer valid after

executing this function. It is therefore not possible to call further API functions for the card in
question after calling PPLAB_CloseDevice.

Example:

…
error = PPLAB_CloseDriver (deviceHandle);
if (error)
… // error handling

Querying the Windows driver version

DWORD PPLAB_GetDriverVersion (HANDLE hDevice, DWORD* pDriverVersion);

This function is used to query the version number of the currently installed Windows driver. As well
as deviceHandle, the address of a DWORD variable which will then contain the version number of

the Windows driver must be passed to this function.

Example:

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 12

…
DWORD driverVersion;
error = PPLAB_GetDriverVersion (deviceHandle, &driverVersion);
if (error)
… // error handling
else
printf ("Current driver version: %x\n", driverVersion);

Querying information about PCIe card slots

DWORD PPLAB_GetDeviceProperties (HANDLE hDevice, DWORD* pSlotNum, DWORD* pBusNum,
 DWORD* pDeviceNum, DWORD* pFunctionNum);

This function is used to query information about the PCIe card slot in which the relevant PCIe-

BaseLab card is inserted. Four DWORD variable addresses must be passed to this function. After the

function has executed these variables will return the values for slot, bus, device and function

number. Where more than one PCIe-BaseLab card is active, this information can be used for
identification.

Example:

…
DWORD slotNum, busNum, devNum, funNum;
error = PPLAB_GetDeviceProperties (deviceHandle, &slotNum, &busNum, &devNum,

&funNum);
if (error)
… // error handling
else
printf ("Device properties: slot=%d, bus=%d, dev=%d, fun=%d\n",
 slotNum, busNum, devNum, funNum);

Resetting a PCIe-BaseLab card

DWORD PPLAB_ResetDevice (HANDLE hDevice, DWORD resetFlags);

Calling this function resets the relevant PCIe-BaseLab card. No values have been defined for the
parameter resetFlags at present and a value of 0 should therefore be passed to this function.

Example:

error = PPLAB_ResetDevice (deviceHandle, 0);
if (error)
… // error handling
else
printf ("Device reset done!\n");

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 13

Reading from the PCI configuration registers

DWORD PPLAB_ReadPciRegister (HANDLE hDevice, DWORD offset, DWORD* pValue);

This function is used to read the PCIe-BaseLab card's 256 byte PCI configuration register. The

parameter offset to be passed to this function is the offset in bytes (0, 4, 8 up to 252). A DWORD

variable address must be passed to this pValue function.

Example:

DWORD value;
DWORD offset = 0;
error = PPLAB_ ReadPciRegister (deviceHandle, offset, &value);
if (error)
… // error handling
else
printf ("Vendor_Device_ID: 0x%X", value);

Writing to the PCI configuration registers

DWORD PPLAB_WritePciRegister (HANDLE hDevice, DWORD offset, DWORD value);

This function is used to write to the PCI configuration registers. The offset in bytes (0,4,8..252)

must be passed to this function as a value parameter.

Please note: Only individual PCI configuration registers are writeable. Ensure that you assign
meaningful values to these registers!

Example:

DWORD subSystemId_subVendorId = 0x12345678;
DWORD offset = 0x2c;
error = PPLAB_ WritePciRegister (deviceHandle, offset,
subSystemId_subVendorId);
if (error)
… // error handling

Reading the PEX8311controller registers

DWORD PPLAB_ReadPlxRegister (HANDLE hDevice, DWORD offset, DWORD* pValue);

This function can be used to read the PEX8311 controller registers. These registers include the

local configuration register and runtime and DMA registers (see PLX controller documentation). The
parameter offset to be passed to this function is the offset in bytes. A DWORD variable address

must be passed to this pValue function.

Example:

DWORD intCSR;
DWORD offset = 0x68;
error = PPLAB_ ReadPlxRegister (deviceHandle, offset, &intCSR);
if (error)
… // error handling
else
printf ("Interrupt_Control_Status: 0x%X", intCSR);

Reading the PEX8311 controller registers

DWORD PPLAB_WritePlxRegister (HANDLE hDevice, DWORD offset, DWORD value);

This function is used to write to the PEX83111 controller registers. The offset in bytes must be

passed to this function as a value parameter.

Ensure that only meaningful values are assigned to these PEX8311 registers!

Example:

DWORD p2lDoorbell = 0x00000001;
DWORD offset = 0x60;
error = PPLAB_ WritePlxRegister (deviceHandle, offset, p2lDoorbell);
if (error)
… // error handling

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 14

Reading data from the serial EEPROM

DWORD PPLAB_ReadEeprom (HANDLE hDevice, DWORD offset, DWORD* pValue);

This function is used to read data from the PCIe-BaseLab card's EEPROM. The parameter offset to

be passed to this function is the offset in bytes (0,4,8..0x60). A pValue variable address must be

passed to this function.

Example:

DWORD lat_gnt_pin_line;
DWORD offset = 0x0B;
error = PPLAB_ ReadEeprom (deviceHandle, offset, &lat_gnt_pin_line);
if (error)
… // error handling
else
printf ("MaxLat_MinGnt_IntPin_IntLine: 0x%X", lat_gnt_pin_line);

Writing data to the serial EEPROM

DWORD PPLAB_WriteEeprom (HANDLE hDevice, DWORD offset, DWORD value);

This function is used to write data to the EEPROM. The offset in bytes (0,4,8..0x60) must be

passed to this function as a value parameter.

IMPORTANT:

Before changing this data, you should back-up the original EEPROM data. This can be done using
the monitor program PPLABMON. Ensure that you assign meaningful values to these EEPROM
registers! Incorrect EEPROM content may lead to PCIe-BaseLab card and system errors.

Example:

DWORD lat_gnt_pin_line = 0x00000100;
DWORD offset = 0x0B;
error = PPLAB_ WriteEeprom (deviceHandle, offset, lat_gnt_pin_line);
if (error)
… // error handling

Reading the memory area

DWORD PPLAB_ReadMemory (HANDLE hDevice, DWORD offset, DWORD* pValue);

This function is used to read from the PCIe-BaseLab card memory. The parameter offset to be

passed to this function is the offset in bytes (0,4,8..). A pValue variable address must be passed

to this function.

Example:

DWORD ioRegister;
DWORD offset = 0x6000;
error = PPLAB_ ReadMemory (deviceHandle, offset, &ioRegister);
if (error)
… // error handling
else
printf ("IORegister: 0x%X", ioRegister);

Writing to the memory area

DWORD PPLAB_WriteMemory (HANDLE hDevice, DWORD offset, DWORD value);

This function is used to write to the PCIe-BaseLab memory. The offset in bytes (0,4,8..) must be

passed to this function as a value parameter.

See also the section 'Memory configuration'.

Example:

DWORD ioRegister = 0x0000FFFF;
DWORD offset = 0x6000;
error = PPLAB_ WriteMemory (deviceHandle, offset, ioRegister);
if (error)
… // error handling

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 15

'Showing' a memory area in the application address space

DWORD PPLAB_MapMemory (HANDLE hDevice, USER_REGION userRegion, DWORD*

pVirtAddress);

This function is used to 'show' a memory area on the PCIe-BaseLab card in the application's
address space. The parameter userRegion selects either USER_REGION_0 or USER_REGION_1. The

function sets a DWORD variable, the address of which is passed to the function pVirtAddress, to

the virtual address of this memory area. This address can then be used to write to or read from
the memory area on the card from the application directly.

WARNING: As currently configured, the PCIe-BaseLab card has only one memory area. The
user_region parameter should therefore always take the value USER_REGION_0!

Example:

DWORD virtAddress;
error = PPLAB_ MapMemory (deviceHandle, USER_REGION_0, &virtAddress);
if (error)
… // error handling
else
{
DWORD* pMem = (DWORD*)(virtAddress + 4); // set address to offset 4
value = *pMem; // direct read DWORDs
pMem++; // set address to offset 8
*pMem = 0x12345678; // direct write DWORDs
}

'Hiding' a memory area from the application address space

DWORD PPLAB_UnmapMemory (HANDLE hDevice, USER_REGION userRegion, DWORD

virtAddress);

This function reverses the effect of 'showing' a memory area using the PPLAB_MapMemory function.

The parameters to be passed to this function are the userRegion and the virtual address returned

by PPLAB_ MapMemory.

After this function has been called, it is no longer possible to access the memory area directly.

Example:

error = PPLAB_ UnmapMemory (deviceHandle, USER_REGION_0, virtAddress);
if (error)
… // error handling

Querying the physical address of user regions

DWORD PPLAB_GetPhysicalAddressOfUserRegion (HANDLE hDevice, USER_REGION userRegion
 DWORD* pPhysAddress);

In order to use a PCIe-BaseLab card's DMA channels, the physical addresses of the memory areas
involved must be available.

This function is used to query the physical address for each user region. The parameter

userRegion selects either USER_REGION_0 or USER_REGION_1. The function sets a DWORD variable,

the address of which is passed to the function, to the physical address of this memory area. This

address can then be used as a 'local' address when initializing a DMA transfer.

WARNING: As currently configured, the PCIe-BaseLab card has only one memory area. The
user_region parameter should therefore always take the value USER_REGION_0.

Example:

DWORD physLocalAddr;
error = PPLAB_GetPhysicalAddressOfUserRegion (hDevice, USER_REGION_0,

&physLpcalAddr);
if (error)
… // error handling
else
printf ("psysical address of region0: 0x%08X \n", physLocalAddr);

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 16

Allocating a continuous memory area

DWORD PPLAB_AllocateContMemory (HANDLE hDevice, DWORD size, DWORD* pVirtAddress,
 DWORD* pPhysAddress);

For DMA transfers, it is useful to be able to use a memory area which is physically continuous. This
removes the need to determine the physical addresses of all of the pages of memory involved.

This function requests a physically continuous memory area. The parameter size passed to this

function is the amount of memory required in bytes – multiples of 4096 (the size of one page of
memory) are recommended. The function sets a DWORD variable, the address of which is passed to

the function pVirtAddress, to the virtual address of this memory. This address can then be used

to write to or read from this memory area from the application directly. The DWORD variable passed

to this function pPhysAddress contains the physical address of this memory area. This address

can then be used as the PCI address when initializing a DMA transfer.

The size of the memory area should not exceed 0x7FFFFF (decimal: 8388607, 8 MB-1) – this is the
largest permissible number of bytes for a DMA transfer (Bits 0..22 DMASIZx-Register).

The current version of the Windows driver allows 32 continuous memory areas to be requested.

Example:

DWORD memSize, virtPCIAddr, physPCIAddr;
memSize = 1024*1024*2; // request off 2 MBytes
error = PPLAB_AllocateContMemory (hDevice, memSize, &virtPCIAddr,

&physPCIAddr);
if (error)
… // error handling
else
printf ("virtual: 0x%08X, physical: 0x%08X \n", virtPCIAddr, physPCIAddr);

Releasing a continuous memory area

DWORD PPLAB_FreeContMemory (HANDLE hDevice, DWORD virtAddress);

This function releases the memory area requested using PPLAB_AllocateContMemory. The

parameter virtAddress passed to the function is the virtual address.

Example:

error = PPLAB_FreeContMemory (hDevice, virtAddr);
if (error)
… // error handling

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 17

7. The sample programs (C++)

The sample programs demonstrate the procedure for using the various API functions provided by the PCIe-

BaseLab programming interface. These are C++ console applications the coding for which has been
deliberately kept simple. Each sample program is associated with a file of the same cpp name.

Programming can be carried out using any C++ compiler. The import library can be used for Microsoft
tools.

As well as the file, the folders also contain the project files used to generate the programs. (MS Visual
C++ 6.0)

The following examples are available:

 ApiTest - calls the basic API functions

 LoadDLL - explicitly loads the API DLL drivers

 MapMem - directly reads from and writes to 'shown' memory areas

 RdWrRAM - reads and writes to memory using the KERNEL method

 ReadDMARegs - reading DMA register

 ReadLocalCfg - reading ‘local config register’

 ReadPCICfg - reading ‘PCI config register’

 ReadRuntimeRegs - reading ‘runtime register’

 Reset - resets the PCIe-BaseLab card

 TestEEPROM - reading and writing EEPROM register

 UseDMA - initializes and starts DMA transfers

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 18

8. The monitor program PPLABMON.EXE

The monitor program 'PPLABMON.EXE' is a graphical Windows application which provides a comprehensive

view of all areas of the PCIe-BaseLab card.

The following options are available:

 PCI Config - reading 'PCI config register'
 Local Config - reading 'local config register'
 RuntimeRegs - reading 'runtime register'
 DMARegs - reading 'DMA register'
 EEPROMRegs - edits the registers
 RAM R/W - reading and writing RAM
 I/O Register - sets and queries the 16 bit I/O register pins

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 19

Editing the EEPROM registers

The following options are available on the EEPROM register page:

 Read register - reads the current EEPROM content (‘Refresh’)
 Amend register - amends and downloads an EEPROM register (double-click)
 Save to file - saves all registers to a file in ASCII format – editable (‘Save’)

 Load from file - loads all register content from a file (‘Load’)

 Download all - downloads all registers to the EEPROM (‘Download’)

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 20

Reading and writing to the RAM

The following options are available on this page:

 Change offset - defines the start address

 Change size - sets the displayed size
 Read - reads the current content
 Refresh automatically - the content is read and updated automatically
 Write to RAM - fills the RAM with various values

 Change individual bytes - edits individual bytes

Write RAM

The following options for writing to the RAM are
available:

 fill RAM with a pattern (‘pattern’)

 fill RAM incrementally (‘increment’)
 fill RAM with random values (‘random values’)

All the fields in this window can be edited.

Change individual bytes

The edit window displays 256 bytes starting at the
previously selected offset. To make changes:

 select the byte you wish to edit
 start mode - double-click or ‘Enter’

 enter the new value and press 'Enter'
 Click on 'Write' to write the changed value 256

Byte HEX Dumps to the RAM

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 21

Setting and querying the register pins

The following options are available on this page:

 Set the 16 Bit I/O register - The pins can be set using the hex value or bit-by-bit. Click on
'Write' to transfer the settings to the register.

 Query 16 Bit I/O register - queries the pins (‘Read’)
 Periodic write/read - The slider can be used to set a variety of periods. Click on

'Start' to activate periodic write/read (‘Periodically’)
 Signal tone - a beep will be emitted to signal a read/write process (‘Beep’)

 Bit-by-bit negation - toggles the logical state of individual bits (‘Toggle’)

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 22

Appendix

Block diagram

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 23

Pin configuration

Pin Name Function Pin Name Function

01 GND GND 02 GND GND

03 LCLK_JP local clock output 04 GCLK1 pld clock 1 input

05 GCLK2 pld clock 2 input 06 GCLK3 pld clock 3 input

07 P30/D1 pld GPI/O 08 P28/E1 pld GPI/O

09 P26/F4 pld GPI/O 10 P24/F5 pld GPI/O

11 P22/E2 pld GPI/O 12 P20/CLK_OUT0/F2 pld GPI/O / pll0 CTL

13 P18/F1 pld GPI/O 14 P16/G1 pld GPI/O

15 P14/F3 pld GPI/O 16 P12/G5 pld GPI/O

17 P10/H5 pld GPI/O 18 P8/PLL_RST0/G4 pld GPI/O / pll0 CTL

19 P6/G3 pld GPI/O 20 P4/PLL_FBK0/H3 pld GPI/O / pll0 CTL

21 GND GND 22 GND GND

23 P2/G2 pld GPI/O 24 P0/H1 pld GPI/O

25 O30/C4 pld GPI/O 26 O28/E4 pld GPI/O

27 O26/B1 pld GPI/O 28 O24/C1 pld GPI/O

29 O22/D3 pld GPI/O 30 O20/C2 pld GPI/O

31 O18/E3 pld GPI/O 32 O16/D2 pld GPI/O

33 N5/A2 pld GPI/O 34 N4/B2 pld GPI/O

35 K30/D12 pld GPI/O 36 K28/B14 pld GPI/O

37 K26/C13 pld GPI/O 38 K24/A14 pld GPI/O

39 K22/A13 pld GPI/O 40 K21/B13 pld GPI/O

41 GND GND 42 GND GND

43 K20/D11 pld GPI/O 44 K18/B12 pld GPI/O

45 K16/C12 pld GPI/O 46 K14/E11 pld GPI/O

47 K4/E10 pld GPI/O 48 K2/A12 pld GPI/O

49 K0/A11 pld GPI/O 50 J14/C16 pld GPI/O

51 J12/B16 pld GPI/O 52 J10/C15 pld GPI/O

53 J8/B15 pld GPI/O 54 J6/E14 pld GPI/O

55 J4/D14 pld GPI/O 56 J2/E13 pld GPI/O

57 J0/A15 pld GPI/O 58 G8/M13 pld GPI/O

59 LD1/ PEX8311/Data 60 LD0 PEX8311/Data

61 GND GND 62 GND GND

63 LD3 PEX8311/Data 64 LD2 PEX8311/Data

65 LD5 PEX8311/Data 66 LD4 PEX8311/Data

67 LD7 PEX8311/Data 68 LD6 PEX8311/Data

69 LD9 PEX8311/Data 70 LD8 PEX8311/Data

71 LD11 PEX8311/Data 72 LD10 PEX8311/Data

73 LD13 PEX8311/Data 74 LD12 PEX8311/Data

75 LD15 PEX8311/Data 76 LD14 PEX8311/Data

77 LD17 PEX8311/Data 78 LD16 PEX8311/Data

79 LD19 PEX8311/Data 80 LD18 PEX8311/Data

81 GND GND 82 GND GND

83 LD21 PEX8311/Data 84 LD20 PEX8311/Data

85 LD23 PEX8311/Data 86 LD22 PEX8311/Data

87 LD25 PEX8311/Data 88 LD24 PEX8311/Data

89 LD27 PEX8311/Data 90 LD26 PEX8311/Data

91 LD29 PEX8311/Data 92 LD28 PEX8311/Data

93 LD31 PEX8311/Data 94 LD30 PEX8311/Data

95 DP2 PEX8311/Parity 96 DP3 PEX8311/Parity

97 DP0 PEX8311/Parity 98 DP1 PEX8311/Parity

99 GND GND 100 GND GND

Pin-side pin configuration JP4

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 24

Pin Name Function Pin Name Function

01 GND GND 02 GND GND

03 M30/B7 pld GPI/O 04 M28/A7 pld GPI/O

05 M26/D7 pld GPI/O 06 M24/C7 pld GPI/O

07 M22/B6 pld GPI/O 08 M21/E7 pld GPI/O

09 M20/E6 pld GPI/O 10 M18/A6 pld GPI/O

11 M12/B5 pld GPI/O 12 M14/A4 pld GPI/O

13 M8/B4 pld GPI/O 14 M10/A3 pld GPI/O

15 M5/C5 pld GPI/O 16 M6/B3 pld GPI/O

17 M2/D5 pld GPI/O 18 M4/C6 pld GPI/O

19 L30/B11 pld GPI/O 20 M0/D6 pld GPI/O

21 GND GND 22 GND GND

23 L26/B10 pld GPI/O 24 L28/C11 pld GPI/O

25 L22/C10 pld GPI/O 26 L24/A10 pld GPI/O

27 L20/C9 pld GPI/O 28 L21/D10 pld GPI/O

29 L12/A9 pld GPI/O 30 L18/E9 pld GPI/O

31 L8/E8 pld GPI/O 32 L14/F9 pld GPI/O

33 L5/B9 pld GPI/O 34 L10/F8 pld GPI/O

35 L2/B8 pld GPI/O 36 L6/A8 pld GPI/O

37 I30/H14 pld GPI/O 38 L4/D8 pld GPI/O

39 I26/G15 pld GPI/O 40 L0/C8 pld GPI/O

41 GND GND 42 GND GND

43 I22/PLL_RST1/H12 pld GPI/O / pll1 CTL 44 I28/G16 pld GPI/O

45 I18/F16 pld GPI/O 46 I24/PLL_FBK1/F15 pld GPI/O / pll1 CTL

47 I14/G13 pld GPI/O 48 I20/G14 pld GPI/O

49 I10/F14 pld GPI/O 50 I16/E16 pld GPI/O

51 M16/VREF0/A5 pld GPI/O / VREF0 Input 52 I12/G12 pld GPI/O

53 D10/VREF1/L9 pld GPI/O / VREF1 Input 54 I8/CLK_OUT1/E15 pld GPI/O / pll1 CTL

55 E20/VREV2/T14 pld GPI/O / VREF2 Input 56 EECS# PEX8311/SPI_EPROM

57 L16/VREF3/D9 pld GPI/O / VREF3 Input 58 EECLK PEX8311/SPI_EPROM

59 LRESET# PEX8311/local rst output 60 EEWRDATA PEX8311/SPI_EPROM

61 GND GND 62 GND GND

63 M_RST# pld reset input 64 EERDDATA PEX8311/SPI_EPROM

65 LHOLD PEX8311/Control 66 DMPAF/EOT# PEX8311/Control

67 LHOLDA# PEX8311/Control 68 BIGEND# PEX8311/Control

69 ADS# PEX8311/Control 70 USERO/LLOCK0# PEX8311/Control

71 BLAST# PEX8311/Control 72 USERI/LLOCK1# PEX8311/Control

73 READY# PEX8311/Control 74 DREQ0# PEX8311/Control

75 WAIT# PEX8311/Control 76 DREQ1# PEX8311/Control

77 LW/R# PEX8311/Control 78 DACK0# PEX8311/Control

79 BTERM# PEX8311/Control 80 DACK1# PEX8311/Control

81 GND GND 82 GND GND

83 CCS# PEX8311/Control 84 MODE0 PEX8311/Control

85 LINTO# PEX8311/Control 86 MODE1 PEX8311/Control

87 LINTI# PEX8311/Control 88 I0/D15 pld GPI/O

89 LSERR# PEX8311/Control 90 I2/D16 pld GPI/O

91 BREQI PEX8311/Control 92 I4/F13 pld GPI/O

93 BREQO PEX8311/Control 94 I6/F12 pld GPI/O

95 A6/J4 pld GPI/O 96 PMEIN# PEX8311/Control

97 not connected - 98 not connected -

99 GND GND 100 GND GND

Pin-side pin configuration JP5

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 25

Pin Name Function Pin Name Function

01 GND GND 02 GND GND

03 LA31 PEX8311/Address 04 LA30 PEX8311/Address

05 LA29 PEX8311/Address 06 LA28 PEX8311/Address

07 LA27 PEX8311/Address 08 LA26 PEX8311/Address

09 LA25 PEX8311/Address 10 LA24 PEX8311/Address

11 LA23 PEX8311/Address 12 LA22 PEX8311/Address

13 LA21 PEX8311/Address 14 LA20 PEX8311/Address

15 LA19 PEX8311/Address 16 LA18 PEX8311/Address

17 LA17 PEX8311/Address 18 LA16 PEX8311/Address

19 LA15 PEX8311/Address 20 LA14 PEX8311/Address

21 LA13 PEX8311/Address 22 LA12 PEX8311/Address

23 LA11 PEX8311/Address 24 LA10 PEX8311/Address

25 LA9 PEX8311/Address 26 LA8 PEX8311/Address

27 LA7 PEX8311/Address 28 LA6 PEX8311/Address

29 LA5 PEX8311/Address 30 LA4 PEX8311/Address

31 LA3 PEX8311/Address 32 LA2 PEX8311/Address

33 GPIO0 PEX8311/GPI/O 34 LBE0# PEX8311/Control

35 GPIO1 PEX8311/GPI/O 36 LBE1# PEX8311/Control

37 GPIO2 PEX8311/GPI/O 38 LBE2# PEX8311/Control

39 GPIO3 PEX8311/GPI/O 40 LBE3# PEX8311/Control

Pin-side pin configuration JP6

Pin configuration ISP-Interface (X1)

Pin Name

01 GND

02 TDO

03 TDI

04 TMS

05 TCK

06 TOE

07 Not connected

Pin configuration JTAG Support PEX8311 (JP2)

Pin Name

01 TDO

02 TRST#

03 TDI

04 TMS

05 TCK

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 26

Position of shrouded headers / connectors

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 27

Sample application, position of connecting pins JP5

Pin Name Function Pin Name Function

01 GND GND 02 GND GND

03 M30/B7 Out P0 04 M28/A7 In P0

05 M26/D7 Out P1 06 M24/C7 In P1

07 M22/B6 Out P2 08 M21/E7 In P2

09 M20/E6 Out P3 10 M18/A6 In P3

11 M12/B5 Out P4 12 M14/A4 In P4

13 M8/B4 Out P5 14 M10/A3 In P5

15 M5/C5 Out P6 16 M6/B3 In P6

17 M2/D5 Out P7 18 M4/C6 In P7

19 L30/B11 Out P8 20 M0/D6 In P8

21 GND GND 22 GND GND

23 L26/B10 Out P9 24 L28/C11 In P9

25 L22/C10 Out P10 26 L24/A10 In P10

27 L20/C9 Out P11 28 L21/D10 In P11

29 L12/A9 Out P12 30 L18/E9 In P12

31 L8/E8 Out P13 32 L14/F9 In P13

33 L5/B9 Out P14 34 L10/F8 In P14

35 L2/B8 Out P15 36 L6/A8 In P15

Pin-side pin configuration JP5

HK Meßsysteme GmbH & DriverFactory PCIe-BaseLab v1.02 28

Our Hotline:

HK Meßsysteme GmbH Telephone: ++49/30/633 75 114

Straße am Heizhaus 1 Fax: ++49/30/633 75 116
D-10318 Berlin /Germany E-Mail: support@pci-tools.de
 Web: http://www.pci-tools.com
 http://www.pci-tools.de

DriverFactory Telephone: ++49/30/5304 2020
Ostendstr. 25 Fax: ++49/30/5304 2021
D-10318 Berlin /Germany E-Mail: info@driverfactory.de
 Web: http://www.driverfactory.de

Manufacturer PEX8311:

Broadcom Limited Company Phone: ++1-877-673-9442
1320 Ridder Park Drive Web: http://www.broadcom.com
San Jose, CA 95131

U.S.A.

Manufacturer xpld5768:

Lattice Semiconductor Corporation Phone: ++1-503-268-8000
5555 N.E. Moore Court Fax: ++1-503-268-8347
Hillsboro, Oregon 97124-6421 Web: http://www.latticesemi.com
U.S.A.

Web addresses

http://www.pci-tools.com

http://www.pci-tools.de

http://www.driverfactory.de

http://www. broadcom.com

http://www.latticesemi.com

http ://www.pcisig.com

mailto:info@driverfactory.de

