
Interoperability Specification for ICCs
and Personal Computer Systems

Part 6. ICC Service Provider Interface Definition
Apple Computer, Inc.

Axalto

Gemplus SA

Infineon Technologies AG

Ingenico SA

Microsoft Corporation

Philips Semiconductors

Toshiba Corporation

Revision 2.01.01

September 2005

Copyright © 1996–2005 Apple, Axalto, Gemplus, Hewlett-Packard, IBM, Infineon, Ingenico, Microsoft,

Philips, Siemens, Sun Microsystems, Toshiba and VeriFone.
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.
AXALTO, BULL CP8, GEMPLUS, HEWLETT-PACKARD, IBM, MICROSOFT, SIEMENS NIXDORF, SUN
MICROSYSTEMS, TOSHIBA AND VERIFONE DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN
THIS SPECIFICATION. AXALTO, BULL CP8, GEMPLUS, HEWLETT-PACKARD, IBM, MICROSOFT,
SIEMENS NIXDORF, SUN MICROSYSTEMS, TOSHIBA AND VERIFONE DO NOT WARRANT OR
REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

Windows, Windows NT, Windows 2000 and Windows XP are trademarks and Microsoft and Win32 are
registered trademarks of Microsoft Corporation.
PS/2 is a registered trademark of IBM Corp. JAVA is a registered trademark of Sun Microsystems, Inc. All
other product names are trademarks, registered trademarks, or servicemarks of their respective owners.

Revision History

Revision Issue Date Comments
2.00.4 May 28, 2004 Spec 2.0 Final Draft
2.01.00 June 23, 2005 Final Release
2.01.01 September 29,

2005
Changed Schlumberger to Axalto

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

Contents

1 SYSTEM ARCHITECTURE 1

2 THEORY OF OPERATION 2

2.1 Functional Overview 2

2.2 Implementation Considerations 2

2.3 Installation Considerations 3

2.4 The ICC Service Provider 3

2.5 Cryptographic Service Provider 4

2.6 User Interface Elements 4

2.7 Run time Considerations 5

3 FUNCTIONAL DEFINITION 6
3.1.1 Syntax 6
3.1.2 Data types 6
3.1.3 Calling Conventions 6
3.1.4 Data structures 7

3.1.4.1 Tagged Length Value 7
3.1.4.2 File Specification 7
3.1.4.3 File Path 8

3.1.5 Defined constants 8
3.1.6 Error codes 12

3.2 Required and Optional Interfaces 14

3.3 Required Interfaces 15
3.3.1 Class SCARD 15

3.3.1.1 Properties 15
3.3.1.2 Methods 15

3.4 Optional Interfaces 17
3.4.1 Class FILEACCESS 17

3.4.1.1 Properties 18
3.4.2 Class CHVERIFICATION 24

3.4.2.1 Properties 25
3.4.3 Class CARDAUTH 26

3.4.3.1 Properties 26
3.4.4 Class CRYPTPROV 28

3.4.4.1 Properties 28
3.4.4.2 Methods 28

 1996–2005 PC/SC Workgroup. All rights reserved. Page i

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

3.4.5 Class CRYPTHASH 33
3.4.5.1 Properties 33
3.4.5.2 Methods 33

3.4.6 Class CRYPTKEY 36
3.4.6.1 Properties 36
3.4.6.2 Methods 37

4 APPENDIX A - GUID ASSIGNMENTS 43

 1996–2005 PC/SC Workgroup. All rights reserved. Page ii

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

1 System Architecture

The general architecture of the Interoperability Specification is described in detail in Part
1 of this document and is summarized following. This part deals with one specific
element of this architecture, the Service Provider (SP), indicated by the shaded area of
the figure. The SP is further subdivided into an ICC Service Provider (ICCSP) and
Cryptographic Service Provider (CSP) component. The CSP exposes cryptographic
services provided by the ICC that are accessible to external applications, while the
ICCSP exposes non-cryptographic functionality. This distinction is necessary because of
existing import/export restrictions on cryptographic functionality.

IFD Service Provider

ICC Service Provider

ICC-Aware Applications

ICC Resource Manager

 IFD
Handler

 IFD
Handler

 IFD
Handler

 IFD IFD IFD

ICC ICCICC

Figure 1-1: PC/SC Architecture

 1996–2005 PC/SC Workgroup. All rights reserved. Page 1

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

2 Theory of Operation

2.1 Functional Overview
The SP is the mechanism through which an ICC-specific set of functionalities (in the
form of an API) is made accessible to ICC-Aware Application software. For every ICC,
there will be at least one SP; it is through this SP that an application can access data or
services on that specific ICC.

The following three classes of services are widely implemented within existing ICCs:

• File services
• Authentication Services
• Cryptographic Services

These services, when present, have a high degree of functionality in common across
ICCs. Consequently, it is beneficial to standardize interfaces to these services so that
application development and maintenance are simpler. This specification defines such
interfaces as well as a standard interface for controlling basic access to an ICC.

Additional ICC services tend to reflect the needs of specific application domains (EMV,
GSM, and so on). It is believed most appropriate for groups within specific industries to
standardize interfaces in such areas. This architecture fully supports the addition of such
interfaces to the core set identified above.

The definition of the API’s exposed by a specific SP generally comes from a third-party
workgroup (EMV, GSM, PC/SC, etc.). The SP, by definition, has an intimate knowledge
of the ICC to which it provides access. The implementation of these API’s might be
expected to come from a variety of sources, including (but not limited to) the following:

• The ICC supplier who wants to enable ICC use within the PC environment. Providing
an SP makes accessing the ICC an application software development effort that can
be pursued by application developers with no specific expertise in ICC technology
(either ICCs or IFDs).

• The ICC issuer, who might layer a “personalized” SP on top of the SP provided by its
ICC supplier.

• An ICC-Aware Application supplier who wishes to define the level of functionality
required of an ICC to adequately support the application. In defining the API, the
application supplier enables one or more ICC suppliers to provide an ICC and the SP
that implements the API defined by the application supplier.

• One or more parties interested in a specific domain, who wish to enable the
development of both applications and ICCs to support those applications within a
domain of interest.

2.2 Implementation Considerations

The role of the SP is to abstract implementation details at the ICC level and expose
them in a standard way that application software can easily access. In particular, these
details eliminate the need for the application developer to have an intimate knowledge of

 1996–2005 PC/SC Workgroup. All rights reserved. Page 2

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

specific command mappings and parameter encodings associated with the ISO T=0 or
T=1 protocol. The interfaces exposed by the SP should be developed within the context
of a given platform. That is, the interfaces should be consistent with API standards within
that platform. It is possible to implement interfaces defined herein in a manner suitable
for use with procedural programming languages (C, Pascal, and so on) as well as
object-oriented languages (C++, Java, VB, and so on). This may entail some
modification of the naming conventions, parameter types, an so on. used here. As long
as the implementation is functionally equivalent, it is consistent with the intent of this
specification.

SPs are built upon the services exposed by the ICC Resource Manager. This provides
SP developers with a known set of low-level interfaces they can use to simplify
development and maintenance of their software. In addition, developers can use the
device sharing and transaction primitives exposed by the ICC Resource Manager to
insure correct operation of the ICC. SPs may also make use of existing SPs, if desired,
to further simplify development and maximize code reuse.

Another important point is that SPs can be implemented in several different ways and
still comply with the intent of this specification. Typically, SPs will be implemented as
shared libraries on the end-user system. However, this is not the only option. To meet
specific application requirements, it may be best to implement SPs as a client-server
sub-system. This could be done, for example, to incorporate application-specific secure
messaging operations within an application server’s security perimeter, while still
conforming to this architecture.

2.3 Installation Considerations

Before an SP can be used within this architecture, it must be “introduced” to the ICC
Resource Manager. Typically, this is done through an ICC setup utility that the ICC
vendor provides. This utility must provide the following pieces of information related to
the card:

• The executable code corresponding to the implementation of the SP.
• Its ATR string and a mask to use as an aid in identifying the ICC.
• An identifier for the SP(s) that support the ICC.
• A list of ICC interfaces that the ICC supports.
• A “friendly name” for the ICC, to identify the ICC to the user (in most cases,

the user will supply this name to the setup utility).

2.4 The ICC Service Provider

The ICC Service Provider (ICCSP) is one of two possible sub-components of the SP. It
is responsible for exposing high-level interfaces to non-cryptographic services. This
exposure is expected to include common interfaces, defined in this specification, for
managing connections to a specific ICC, as well as access to file and authentication
services. In addition, the ICCSP may implement interfaces that the vendor defines for
features specific to the application domain.

All ICCSPs shall implement the interface for managing connections to an ICC as defined
herein (see Section 3). This interface provides mechanisms for connecting and
disconnecting to an ICC.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 3

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

In addition, to be compliant with this specification, ICCSPs that expose file access and
authentication services shall do so using the interfaces defined herein (see Section 3.4).
These interfaces encapsulate functionality defined by ISO 7816-4, along with natural
extensions for functionality such as file creation and deletion.

The file access interface defines mechanisms for the following tasks:

• Locating files by name
• Creating or opening files
• Reading and writing file contents
• Closing a file
• Deleting files
• Managing file attributes

The authentication interface defines mechanisms for the following tasks:

• Cardholder verification
• ICC authentication
• Application authentication to the ICC

2.5 Cryptographic Service Provider

The Cryptographic Service Provider (CSP) is a sub-component of the SP. In contrast to
the ICCSP, the CSP isolates cryptographic services because existing regulations
imposed by various governments affect import and export. The CSP allows applications
to make use of cryptographic services in a manner that compartmentalizes the sensitive
elements of cryptographic support into a well-defined and independently installable
software package.

The CSP encapsulates access to cryptographic functionality provided by a specific ICC
through high level programming interfaces, Its purpose is to expose available
cryptographic functions to applications running on a PC. All other functionality should be
implemented in the ICCSP.

Interfaces are defined in this specification for the following general-purpose
cryptographic services:

• Key generation
• Key management
• Digital signatures
• Hashing (or message digests)
• Bulk encryption services
• Key import and export

See Section 3.4 for a functional definition of this interface.

2.6 User Interface Elements

The ICC and Cryptographic Service Providers are not required to provide any user
interface (UI) elements. However, certain recommended UI elements should be

 1996–2005 PC/SC Workgroup. All rights reserved. Page 4

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

implemented. These should follow published guidelines for the UI within the target
environment.

In particular, the SP should implement the UI for managing CHV when supported. The
SP is the best place to implement CHV management, because the SP encapsulates
knowledge about authentication requirements, password and PIN lengths, administrative
commands, and so on. This UI should provide the following mechanisms:

• Cardholder authentication to the ICC
• Password and PIN management
• Administrative access to reset or disable CHV functionality

2.7 Run-time Considerations

The SP is intended to be developed as a user-mode application module that runs on
behalf of the current user. The SP will typically exist as a shared library or DLL, though it
could be implemented as a system service, depending on guidelines that the operating
system vendor establishes.

It is recommended that the SP run with the same privileges as the application(s) making
use of it, though this is platform-dependent. Also, SPs should be designed to not
consume processing resources unless an active application is using them.

An ICC-Aware Application that uses the services exposed by a specific SP can either
directly connect to the SP, or use the services of the ICC Resource Manager to
determine which SPs are available to provide the desired services.

The precise mechanisms by which an application can “connect” to an SP are likely to
differ depending on the operating environment and programming language being used.
As noted in Part 5, the RESOURCEQUERY object provides methods for retrieving a
“Provider ID.” This object must encode sufficient information to acquire the context for a
specific SP. This information could take the form of a reference to a specific shared
library, a COM interface, a URL, and so on. The intent is that based on this knowledge,
they can instantiate an SCARD object (see Section 3.3.1) implementation associated
with the desired SP.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 5

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

3 Functional Definition

This section describes the functional interface of the SP. The interface is described in
terms of object classes, and methods on object instances, along with required
parameters and expected return values. Implementations may alter the naming
conventions and parameters as required to adapt to specific environments, but shall
conform to the functional interfaces defined herein.

3.1.1 Syntax

The syntax used in describing the SP is based on common procedural language
constructs. Data types are described in terms of common C-language due to its
widespread use. The following table lists specific conventions and pre-defined values
used in this document.

3.1.2 Data types
Type Characteristic

BYTE unsigned char, a 8-bit value
USHORT unsigned short, a 16-bit value
BOOL short, a 16-bit value
DWORD unsigned long, a 32-bit value
STR char array (string)
GUID unsigned char[16], a 128-bit unique identifier
RESPONSECODE long, signed 32-bit value
HANDLE unsigned long, a 32-bit quantity
VOID unspecified data type whose interpretation is context-specific.
REFTYPE enumeration type. Authorized values are defined in « Defined constant »

section.
FILETYPE enumeration type. Authorized values are defined in « Defined constant »

section.

Arrays of these basic data types are indicated by []. For example BYTE[] indicates an
array of BYTE values of unspecified length. BYTE[4] indicates an array of BYTE values
with four elements.

Data structures are indicated using C-language “struct” type definitions. The following
example defines a data structure consisting of a BYTE and DWORD value that is
referenced using the SAMPLE_STRUCT identifier.

typedef struct {
 BYTE ByteValue
 DWORD DwordValue
} SAMPLE_STRUCT ;

3.1.3 Calling Conventions

The interface to the ICCSP is defined in terms of methods associated with one-high level
object. Methods are invoked by referencing a named method within the context of an

 1996–2005 PC/SC Workgroup. All rights reserved. Page 6

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

object instance. How the object is referenced is not specified, because this may vary by
implementation. Methods require zero or more parameters and return information using
a simple data type and optional output parameters.

For example,

RESPONSECODE MethodA(
 IN DWORD DwordValue
 IN OUT BYTE ByteValue
 OUT BYTE OutValue
}

defines a method with 3 parameters which returns a RESPONSECODE value. It has two
input parameters (DwordValue and ByteValue) and returns additional information in two
output parameters (ByteValue and OutValue).

3.1.4 Data structures

3.1.4.1 Tagged Length Value

Tagged Length Value (TLV) encoding is used to encode certain parameter information
within this specification and is also used extensively within ISO/IEC 7816 for
standardized data encoding. The TLV structure definition is provided following and is
compatible with all relevant TLV types including tag values consisting of either 1 or 2
bytes.

Length could be one or two
typedef struct {
 DWORD Tag ;
 DWORD Length ;
 BYTE[] Value ;
 BOOL Valid; // used to differentiate between
 // TLV with valid, zero-length data,

// and an unknown value
} TLV ;

3.1.4.2 File Specification

The purpose of this structure is to handle the name associated with an ICC-based file.
All ICC files are required to have a 2-byte FileID. DF’s may optionally have a name.

A name is a string value less than or equal to MAX_NAME_LEN in size. For ISO/IEC
7816 compliant ICCs, MAX_NAME_LENGTH is equal to 16.

typedef struct {
 WORD FileID ;
 BYTE FileShortID ;
 BYTE[MAX_NAME_LEN] FileName ;
 BYTE FileType ;
} FILESPEC ;

 1996–2005 PC/SC Workgroup. All rights reserved. Page 7

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

3.1.4.3 File Path

ICC files are referenced by a FILESPEC structure as described in the previous section
(3.1.4.2). To uniquely identify an ICC file, however, it may be necessary to refer to it by a
fully qualified path specification. This reflects common conventions within the PC
environment and is mappable onto common file conventions within the ICC environment.

Within a file path specification, we define the following special symbols :
• / or \ represents the root directory or MF within the ICC
• . represents the current directory
• .. represents the parent directory

A file path specification may be absolute (that is, it explicitly includes the ‘root’ or MF) or
relative. If DF names are supported, the path may optionally use either Names or FileID
values for the DFs. If the path includes a final EF, it will always be encoded as a FileID.
Flags are provided in the appropriate interfaces to specify whether an application is
using Names or FileIDs.

Examples of legal file paths include:
• \File ID1\File ID2..\File IDn - absolute path to the file identified by “File IDn”
• ..\File IDx - relative path to the file identified by “File IDx”
• ..\name1 - relative path to EF identified by “name1”

A legal file path may be up to MAX_PATH_LEN in size. By default, this length will be
256 characters. This may be redefined to meet the needs of specific target
environments.

3.1.5 Defined constants
Non-cryptographic defined constants and symbols: The TAG that can be used as
follows:

Parameter Symbol Comments
REFTYPE
 SC_TYPE_BY_NAME An EF or DF is referenced by a

name.
 SC_TYPE_BY_ID An EF or DF is referenced by an

ID.
 SC_TYPE_BY_SHORT_ID An EF or DF is referenced by a

short ID.

FILETYPE
 SC_TYPE_DIRECTORIES Reference DF only.
 SC_TYPE_FILES Reference EF only.
 SC_TYPE_ALL_FILES Reference both EF and DF.
 SC_TYPE_DIRECTORY_FILE Directory file (DF).
 SC_TYPE_TRANSPARENT_EF Transparent elementary file.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 8

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

Parameter Symbol Comments
 SC_TYPE_FIXED_EF Linear fixed elementary file.
 SC_TYPE_CYCLIC_EF Cyclic fixed elementary file.
 SC_TYPE_VARIABLE_EF Linear variable elementary file.
 SC_FILETYPES_SUPPORTED Value is the OR of :

SC_
TRANSPARENT_SUPPORTED
SC_FIXED_SUPPORTED
SC_ CIRCULAR_SUPPORTED
SC_VARIABLE_SUPPORTED

 SC_SHORTID_SUPPORTED

Path
specification

 MAX_PATH_LEN 256
 MAX_NAME_LEN 16

TLV validity
 SC_TLV_VALID TLV is valid.
 SC_TLV_NOT_VALID TLV is not valid.

Flags
 SC_FL_REPLACE Replace data with input data.
 SC_FL_ERASE Erase data.
 SC_FL_OR Or data with input data.
 SC_FL_AND And data with input data.
 SC_FL_RECURSIVE Recursive delete.
 SC_FL_NON_RECURSIVE Non-recursive delete.
 SC_FL_IHV_GLOBAL Global ICC holder verification.
 SC_FL_IHV_LOCAL Local ICC holder verification.
 SC_FL_IHV_ENABLE Enable ICC holder verification.
 SC_FL_IHV_DISABLE Disable ICC holder verification.
 SC_FL_IHV_CHANGE Change ICC holder code (PIN).
 SC_FL_PREALLOCATE Pre-allocate file during creation

process.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 9

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

Parameter Symbol Comments
 SC_FL_GET_ALL_PROPERTIES Reference to all properties of a

file.
 SC_

TRANSPARENT_SUPPORTED

 SC_FIXED_SUPPORTED
 SC_ CIRCULAR_SUPPORTED
 SC_VARIABLE_SUPPORTED
Seek type
 SC_SEEK_FROM_BEGINNING Search forward from the

beginning.
 SC_SEEK_FROM_END Search backward from the end.
 SC_SEEK_RELATIVE Search in relative mode.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 10

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

Cryptographic defined constants and symbols:

Parameter Symbol Comments
PARAMTYPE
 HP_ALGID Hash algorithm.
 HP_HASHSIZE The hash value size.
 HP_HASHVAL The hash value.
 KP_ALGID Key algorithm.
 KP_BLOCKLEN Block length of cipher or

decipher data.
 KP_SALT The salt value.
 KP_PERMISSIONS Key permissions.
 KP_IV The initialization vector.
 KP_PADDING The padding mode.
 KP_MODE The cipher mode.
 KP_MODE_BITS The number of bits to feed back.
 PP_CLIENT_HWND A window handle is contained in

the blob.
 PP_KEYEXCHANGE_KEYSIZE A new exchange key size is

contained in the blob.
 PP_SIGNATURE_KEYSIZE A new signature key size is

contained in the blob.

Cipher mode
values

 CRYPT_MODE_ECB Electronic codebook.
 CRYPT_MODE_CBC Cipher block chaining.
 CRYPT_MODE_OFB Output feedback mode.
 CRYPT_MODE_CFB Cipher feedback mode.

Permissions
values

 CRYPT_ENCRYPT Allow encryption.
 CRYPT_DECRYPT Allow decryption.
 CRYPT_EXPORT Allow key to be exported.
 CRYPT_READ Allow parameters to be read.
 CRYPT_WRITE Allow parameters to be set.
 CRYPT_MAC Allow MACs to be used with a

 1996–2005 PC/SC Workgroup. All rights reserved. Page 11

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

Parameter Symbol Comments
key.

KEYSPEC
 AT_KEYEXCHANGE Exchange private key.
 AT_SIGNATURE Signature private key.

FLAGS
 CRYPT_USERDATA Prompt for user data.
 CRYPT_EXPORTABLE Exportable key.
 CRYPT_CREATE_SALT Assign a salt value.
 CRYPT_USER_PROTECTED Notification to the user

requested.
 CRYPT_UPDATE_KEY Multiple calls to the same key

function.

BLOBTYPE
 SIMPLEBLOB Simple type blob.
 PUBLICKEYBLOB Public holder.
 PRIVATEKEYBLOB Private key holder.

3.1.6 Error codes

Error, Warning, and Failure codes.

Symbol Meaning
SCARD_S_SUCCESS No error was encountered.

SCARD_E_CANCELLED The action was cancelled by an SCardCancel
request.

SCARD_E_CANT_DISPOSE The system could not dispose of the media in the
requested manner.

SCARD_E_INSUFFICIENT_BUFFER The data buffer to receive returned data is too small
for the returned data.

SCARD_E_INVALID_ATR An ATR obtained from the configuration store is not a
valid ATR string.

SCARD_E_INVALID_HANDLE The supplied handle was invalid.

SCARD_E_INVALID_PARAMETER One or more of the supplied parameters’ could not
be properly interpreted.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 12

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

Symbol Meaning
SCARD_E_INVALID_TARGET Configuration startup information is missing or

invalid.

SCARD_E_INVALID_VALUE One or more of the supplied parameters’ values is
not valid.

SCARD_E_NO_MEMORY Not enough memory available to complete this
command.

SCARD_E_NO_SMARTCARD The operation requires an ICC, but no ICC is
currently in the device.

SCARD_E_NOT_TRANSACTED An attempt was made to end a non-existent
transaction.

SCARD_E_READER_UNAVAILABLE The specified IFD is not currently available for use.

SCARD_E_SHARING_VIOLATION The ICC cannot be accessed because of other
connections outstanding.

SCARD_E_SYSTEM_CANCELLED The action was cancelled by the system, presumably
to log off or shut down.

SCARD_E_TIMEOUT The user-specified timeout value has expired.

SCARD_E_UNKNOWN_CARD The specified ICC name is not recognized.

SCARD_E_UNKNOWN_READER The specified IFD name is not recognized.

SCARD_F_COMM_ERROR An internal communications error has been detected.

SCARD_F_INTERNAL_ERROR An internal consistency check failed.

SCARD_F_UNKNOWN_ERROR An internal error has been detected, but the source is
unknown.

SCARD_F_WAITED_TOO_LONG An internal consistency timer has expired. You'll
probably have to restart the Resource Manager.

SCARD_W_REMOVED_CARD The card has been removed, so further
communication is not possible. This error may be
cleared by the SCardReconnect service.

SCARD_W_RESET_CARD The card has been reset, so any shared state
information is invalid. This error may be cleared by
the SCardReconnect service.

SCARD_W_UNPOWERED_CARD Power has been removed from the card, so further
communication is not possible. This error may be
cleared by the ScardReconnect service.

SCARD_W_UNRESPONSIVE_CARD The card is not responding to a reset. This error may
be cleared by the SCardReconnect service.

SCARD_W_UNSUPPORTED_CARD The reader cannot communicate with the card, due
to ATR configuration conflicts. This error may be
cleared by the SCardReconnect service.

SCARD_W_SECURITY_VIOLATION Access was denied because of a security violation.

SCARD_W_WRONG_CHV A Verify failed because the wrong PIN was
presented.

SCARD_W_CHV_BLOCKED A Verify is blocked because the maximum number of
PIN submission attempts has been reached.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 13

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

Symbol Meaning
SCARD_E_UNEXPECTED Unexpected ICC error

SCARD_E_ICC_INSTALLATION No Primary Provider entry of the current ICCSSP
found for any ICC.

SCARD_E_ICC_CREATEORDER Wrong order of creating the Scard objects.

SCARD_E_UNSUPPORTED_FEATURE Feature not supported by this card.

SCARD_E_DIR_NOT_FOUND The supplied directory does not exist in the ICC.

SCARD_E_FILE_NOT_FOUND The supplied file does not exist in the ICC.

SCARD_E_NO_DIR The supplied path does not represent a directory.

SCARD_E_NO_FILE The supplied path does not represent a file.

SCARD_E_NO_ACCESS Access is denied to this file.

SCARD_E_WRITE_TOO_MANY The data of a write operation exceeds the object’s
size.

SCARD_E_BAD_SEEK There was an error trying to set the object pointer.

SCARD_E_INVALID_CHV A Verify failed because the PIN was invalid.

SCARD_E_UNKNOWN_RES_MNG The ICC Resource Manager returned an error code
not defined at its interface.

SCARD_W_WRONG_CHV A Verify failed because the wrong PIN was
presented.

SCARD_W_EOF The end of the file has been reached.

SCARD_W_CANCELLED_BY_USER An action was cancelled by the user.

E_NOTIMPL Function not implemented.

3.2 Required and Optional Interfaces

The SCARD class is required. The FILEACCESS, CHVERIFICATION, CARDAUTH,
CRYPTPROV, CRYPTHASH, and CRYPTKEY classes are optional. It is recommended
that objects of the optional classes be created through methods exposed by an object of
the SCARD class.

SCARD
Object

CRYPTPROV
Object

FILEACCESS
Object

CHVERIFICATIO
Object

CRYPTKEY
Object

CRYPTHASH
Object

CARDAUTH
Object

CreatedBy

Figure 3-1 Object Creation

 1996–2005 PC/SC Workgroup. All rights reserved. Page 14

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

3.3 Required Interfaces

The following is a generic description of the standard interfaces that must be supported
by compliant ICCs. This description is suitable for implementation in a variety of
languages on a variety of systems.

A reference design, created by Microsoft Corporation for the Windows operating system,
is provided in Appendix A. This design makes specific assumptions that are consistent
with existing Win32 APIs and COM interfaces. For other environments, implementers
may use this reference design, or create a functionally equivalent alternative for their
specific needs.

3.3.1 Class SCARD

The SCARD class defines methods to support application interfaces to the ICC. It is also
responsible for maintaining a well-defined context within which an application may
communicate with a supported ICC.

In general, this class is expected to be implemented as part of an ICCSP. An associated
CSP may then take advantage of the context information maintained by an application
instantiation of the SCARD object to communicate with the desired card. The way this
context is passed is system-specific and may be implemented by the developer in any
convenient manner. If vendors choose to implement only a CSP, they should implement
this class as part of that provider.

3.3.1.1 Properties
HANDLE hContext // Handle to an ICC communication context. This is

equivalent to a context available through the ICC Resource
Manager SCARDCOMM.hCard property. Set to NULL at
object creation.

3.3.1.2 Methods

SCARD()

The SCARD() method creates an instance of the SCARD class and returns a
reference to the calling application. The type of this object reference is
implementation-specific.

~SCARD()

The ~SCARD() method deletes an instance of the SCARD object. If hContext is
valid, this method calls the Detach() method before destroying the object.

RESPONSECODE CreateFileAccess(
OUT FileAccess aFileAccess
)

RESPONSECODE CreateCHVerification(

 1996–2005 PC/SC Workgroup. All rights reserved. Page 15

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

OUT CHVerification aCHVerification
)

RESPONSECODE CreateCardAuth(
OUT CardAuth aCardAuth
)

RESPONSECODE CreateCryptProv(
OUT CryptProv aCryptProv
)

These four methods either return a SCARD_S_SUCCESS, meaning that the
requested object was successfully created or a
SCARD_E_UNSUPPORTED_INTERFACE, meaning that the requested interface
is not supported by that Service Provider.

RESPONSECODE AttachByHandle(

IN HANDLE hCard
)

The AttachByHandle() method allows an application to pass in a handle to an
existing communication context retrieved from the ICC Resource Manager
SCARDCOMM.hCard property. This allows an application to make use of the
ICC Resource Manager to locate an ICC of interest and open a connection
before invoking the associated SP.

In using this method, the calling application is effectively passing control of this
context to the SP. The application should never pass a valid context to more than
one SP and should use the SCARD::Detach() method to release the context.

If hCard is an invalid context, this method returns an error.

RESPONSECODE AttachByIFD(

IN STR ReaderName,
IN DWORD Flags // desired access mode

)

The AttachByIFD() method allows an application to create a communication
context to an ICC based on the friendly name of a specific reader device. The
Flags value can be either SCARD_SHARE_SHARED or
SCARD_SHARE_EXCLUSIVE as defined in Part 5 of this specification. It is
assumed the ICC SP will set the other connection options to optimize
communications with the card.

If the ReaderName isn’t known to the ICC Resource Manager, an error will be
returned.

RESPONSECODE Detach() ;

 1996–2005 PC/SC Workgroup. All rights reserved. Page 16

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

The Detach() method releases the communication context associated with the
hContext property and resets hContext to NULL.

RESPONSECODE Reconnect(

IN DWORD Flags // desired access mode
)

The Reconnect() method reopens a connection to the card associated with a
valid context referenced by the hContext property, which must have been created
by calling one of the Attach methods. If hContext is invalid, then an error is
returned. The Flags value may be either SCARD_SHARE_SHARED or
SCARD_SHARE_EXCLUSIVE.

This method calls the ICC Resource Manager SCARDCOMM::Reconnect()
method. See Part 5 of this specification for additional information.

RESPONSECODE Lock();

RESPONSECODE Unlock();

These methods provide a mechanism through which an ICC SSP can issue an
uninterrupted sequence of accesses to SCARD methods without fear of being
interrupted by other applications.

3.4 Optional Interfaces

The following is a generic description of the optional interfaces defined for compliant
SPs. If an ICC exposes file access services, authentication services, or cryptographic
services, they shall be exposed through these interfaces. If they do not support this
functionality, then these interfaces need not be supported.

3.4.1 Class FILEACCESS

The FILEACCESS class implements a high level interface to a card-based file system
and should be implemented as part of a compliant ICCSP when access to file-like
entities is provided. It is assumed that the underlying card file system is based on the
structure defined in ISO/IEC 7816-4. Other implementations are possible, but this is
expected to continue to be the most common.

This interface exposes file system entities in a manner very familiar to application
developers in the PC environment. It provides mechanisms for locating specific files and
performing common operations such as selecting, reading, writing, creating and deleting.
It encapsulates and masks much of the low level detail involved in performing these
operations at the card level.

In describing this interface, we use the term “file” to denote either an EF or DF within the
card. DFs are analogous to directories in a typical PC-based file system, the MF is
analogous to a root directory, and EFs are analogous to data files.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 17

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

Note that three of the methods in the FILEACCESS class are mandatory:

• FILEACCESS ::Directory()
• FILEACCESS ::ChangeDirectory()
• FILEACCESS ::GetCurrentDirectory()

They are mandatory because they are required by the CHVERIFICATION class. It
should also be noted that only one instance of this class can be instantiated from each
instance of the SCARD object; otherwise, the CHVERIFICATION class won’t work
correctly.

3.4.1.1 Properties
private SCARD scard // References to an SCARD object.
private STR CurrentPath // Maintains the path for the selected DF for this

// instantiation of the FILEACCESS class.

In addition, the following private information should be maintained for each open
EF. This information is private to the SP, and no specific implementation
requirements are imposed.

• File Reference. Mapping between a file handle (hFile) and a specific file on

the card
• File Type. Type of the file such as transparent, or linear with fixed record

length
• Seek Position. Current position in the file to use for the next read or write

operation
• Security State. Security state associated with the file to track whether

authentication is required before invoking specific operations

FILEACCESS(

IN SCARD scard
)

This creates an instance of the FILEACCESS class and returns a reference to
the calling application. The type of this object reference is implementation-
spedific. An object instance will be created only if a valid reference to an SCARD
object is supplied.

~FILEACCESS()

This deletes an instance of the FILEACCESS object. The object referenced by
the scard property is unaffected.

RESPONSECODE ChangeDir(

IN REFTYPE Ref, // type of references in PathSpec
IN STR PathSpec // relative or absolute path

 1996–2005 PC/SC Workgroup. All rights reserved. Page 18

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

)

Mandatory.

Changes the currently selected ICC DF to that specified by the PathSpec.

The references in the PathSpec are specified in the ref parameter and may be
any of the following:

• SC_TYPE_BY_NAME
• SC_TYPE_BY_ID

RESPONSECODE GetCurrentDir(

 OUT STR PathSpec // absolute path
)

Mandatory.

This method returns the absolute path specification to the currently selected DF
as maintained by this instance of the FILEACCESS object. Note that it is possible
that this is not the currently selected DF within the ICC.

RESPONSECODE Directory (

 IN FILETYPE Type, // type of files
 OUT FILESPEC[] FileList, // list of FilesSpecs
 OUT WORD Length // number of FileList entries
)

Mandatory.

This method returns a list of FileSpecs, of the type specified by the Type
parameter, which are the immediate children of the currently selected DF as
maintained by this instance of the FILEACCESS object.

At object creation, the current DF is set to the root or the MF of the card.

The type of files to be listed shall be one of the following values:
• SC_TYPE_DIRECTORIES
• SC_TYPE_FILES
• SC_TYPE_ALL_FILES.

RESPONSECODE GetProperties(

 IN REFTYPE Ref, // type of references
 IN STR PathSpec, // relative or an absolute path
 IN OUT TLV[] Properties, // list of TLV_TABLE structures
 IN OUT WORD Length, // number entries in Properties list
 IN DWORD Flags
)

 1996–2005 PC/SC Workgroup. All rights reserved. Page 19

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

This method may be used to retrieve primitive TLV data objects for the file (DF or
EF) specified by the PathSpec parameter. The PathSpec parameter can contain
file references by name or IDs based on the value of the Ref parameter. Ref can
include one of the following values:

• SC_TYPE_BY_NAME
• SC_TYPE_BY_ID
• SC_TYPE_BY_SHORT_ID

The data objects to be retrieved are indicated by a list of TLV structures that
contain the tag-values of the objects desired. The tag values need not be set if
the Flag includes the value SC_FL_GET_ALL_PROPERTIES. On return, these
structures will contain the requested data, if available. Primitive data that is not
defined, or cannot be retrieved, is marked SC_TLV_NOT_VALID. Defined TLVs
are marked SC_TLV_VALID. Note that a valid TLV may have data of length zero.

RESPONSECODE SetProperties(

 IN REFTYPE Ref, // type of the references
 IN STR PathSpec, // relative or absolute path
 IN TLV[] Properties, // list of TLV_TABLE structures
 IN WORD Length, // number of entries in Properties list
 IN DWORD Flags
)

This method can be used to set primitive TLV data objects for the file (DF or EF)
specified by the PathSpec parameter. The values to be set are provided in a list
of TLV structures. The remaining parameters are identical to those in the
GetProperties() method.

RESPONSECODE GetFileCapabilities(

IN HANDLE hFile, // handle to a file
 IN OUT TLV[] Properties, // list of TLV_TABLE structures
 IN OUT WORD Length, // number entries in Properties list
 IN DWORD Flags
)

The data objects to be retrieved are indicated by a list of TLV structures which
contain the tag-values of the objects desired. The tag values need not be set if
the Flag includes the value SC_FL_GET_ALL_PROPERTIES. On return, these
structures will contain the requested data, if available. Primitive data that are not
defined, or cannot be retrieved, are marked SC_TLV_NOT_VALID. Defined
TLVs are marked SC_TLV_VALID. Note that a valid TLV may have data of
length zero. It should be further noted that this method works with the file
referenced by the arameter hFile..

RESPONSECODE Open(

 IN REFTYPE Ref, // type of the references
 IN STR PathSpec, // relative or absolute path

 1996–2005 PC/SC Workgroup. All rights reserved. Page 20

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

 OUT HANDLE hFile // handle to a file
)

This method opens the specified EF for further use. If successful a non null
HANDLE is returned to the caller. This handle is to be used to access the file in
subsequent operations. If the PathSpec paremeter references a non-existent file
or a DF, an error is returned.

File references are of the following types:

• SC_TYPE_BY_NAME
• SC_TYPE_BY_ID
• SC_TYPE_BY_SHORT_ID

RESPONSECODE Close (

 IN HANDLE hFile // handle to a file
)

This method closes the specified EF. After being closed, any further attempts to
use the file handle (hFile) will result in an error.

RESPONSECODE Seek(

 IN HANDLE hFile, // handle to a file
 IN OUT DWORD Offset, // relative offset value
 IN DWORD SeekType // starting location
)

This method selects the object from which Read or Write access will be done. A
valid hFile file handle must be supplied to this function. The type of data object
and the meaning of the Offset parameter depend on the type of file, as described
in the table.

Open methods set the current position (for the Seek method) to the beginning of
the file.

The following seek modes are allowed:

• SC_SEEK_FROM_BEGINNING. Offset is relative to the beginning of
the file. The first data object of the file is the reference object for the
Offset parameter.

• SC_SEEK_FROM_END. Offset is relative to the end of the file. The
last data object of the file is the reference object for the Offset
parameter.

• SC_SEEK_RELATIVE. Offset is relative to the current position. The
current reference data object of the file is the reference object for the
Offset parameter.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 21

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

Interpretation of the Offset parameter depends on the type of the file, as
indicated in the following table.

File type Offset Data
Transparent EF Byte # from beginning

of the file
BYTE[]

Linear or cyclic fixed EF Record number Fixed-length
data structure

Linear variable EF Record number Variable-length
data structure

RESPONSECODE Write(

 IN HANDLE hFile, // handle to a file
 IN DWORD Length, // length of the data object to write
 IN BYTE[] Buffer, // data object to be written
 IN DWORD Flags
)

This method writes data, provided in the Buffer parameter, to the specified file.
This method can also be used to erase data from a file by specifying the
SC_FL_ERASE value in the Flags parameter. A valid hFile file handle must be
supplied or an error results.

The data is written into the file at the current file position location (see Seek()).
The data can be written in one of several modes as encoded in the Flags
parameter. These values can be one of the following:

• SC_FL_REPLACE : Replaces the current data with the specified
data

• SC_FL_ERASE : Erase the specified field of data (Buffer shall be
ignored)

• SC_FL_OR : The specified buffer is ORed with the current
data

• SC_FL_AND : The specified buffer is ANDed with the current
data

RESPONSECODE Read(

 IN HANDLE hFile, // handle to a file
 IN OUT DWORD Length, // length of the data object
 OUT BYTE[] Buffer, // data read
 IN DWORD Flags
)

This method reads the data from the specified file and returns it in Buffer. Data is
read starting at the current file position (see Seek()). A valid hFile must be
supplied to this function. The type of data object depends upon the type of file as
described in the table given for the Seek method.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 22

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

RESPONSECODE Create(

 IN REFTYPE Ref, // type of reference in PathSpec
 IN STR PathSpec, // path specification for new file
 IN OUT TLV[] TLVs, // list of TLV_TABLE structures,

// includes file properties

 IN OUT WORD Length, // number entries in TLVs list
 IN WORD Flags,
 IN VOID DataBuffer // data to be pre-allocated
)

This method creates a file, of the type specified by the Ref parameter, at the
location specified by the PathSpec parametet; i.e. in the currently specified
directory.

The following file types are allowed for creation :

• SC_TYPE_DIRECTORY_FILE Creates a DF.
• SC_TYPE_TRANSPARENT_EF Creates a binary EF.
• SC_TYPE_FIXED_EF Creates a record oriented EF with a fixed

record size.
• SC_TYPE_CIRCULAR_EF Creates a record oriented, circular, EF.
• SC_TYPE_VARIABLE_EF Creates a record oriented EF with a variable

record size.

It is the responsibility of the calling application to know which file types the card
supports.

The following flag values are allowed :
• SC_FL_PREALLOCATE - Indicates that EF data space should be pre-

allocated within the card.

RESPONSECODE Delete (

IN REFTYPE Ref,
 IN STR PathSpec, // relative path
 IN WORD Flags
)

This method deletes the specified file. The file and its contents are no longer
accessible after a successful execution of the command. If there are any open
handles to the file, they are invalidated as a result of this command and
subsequent attempts to use them will return an error.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 23

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

The Flags parameter allows the calling application to request a recursive or non-
recursive deletion. This is ignored unless the PathSpec parameter references a
DF. The following values are allowable:

• SC_FL_RECURSIVE - All children of the specified DF are deleted
• SC_FL_NON_RECURSIVE - The specified DF will be deleted only if it

has no children, otherwise an error will be returned.

Attempts to delete a DF that has children will fail unless the “recursive” delete
flag is specified.

Deleting a file can affect the CurrentPath property. If the DF associated with the
current path is deleted, then the current path will be set to the parent of the
deleted DF. Note that attempts to delete the root (corresponding to the MF) will
always fail and return and error.

RESPONSECODE Invalidate(

IN REFTYPE Ref, // type of references
 IN STR PathSpec, // relative path
 IN WORD Flag
)

This method will mark the file (EF or DF) as invalid. An invalidated file can be
selected for use only within a PathSpec parameter, or deleted. All other attempts
to access the file will fail. An invalidated file can be restored to full access using
the Rehabilitate command.

RESPONSECODE Rehabilitate(

IN REFTYPE Ref, // type of references
 IN STR PathSpec, // relative path
 IN WORD Flag
)

This method restores full access to a file (EF or DF), which has been previously
invalidated using Invalidate(). A Rehabilitate call on an already valid file (EF or
DF) returns an error indicating that the file is already valid.

3.4.2 Class CHVERIFICATION

This class is defined for those applications that have detailed knowledge of the ICC’s
internal implementation and that implement application-specific CHV policy. This class
provides an application with the ability to force a CHV verification or allow the user to
change a CHV code. This class should be implemented as part of ICCSPs that expose
CHV functionality.

It is expected that applications will allow the SP to determine when CHV is required and
prompt the user. Similarly, it is expected that CHV administration will be under user
control and will be performed using an SP-implemented user interface.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 24

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

3.4.2.1 Properties
private SCARD scard // Reference to an SCARD object.

CHVERIFICATION(

IN SCARD scard
)

This creates an instance of the CHVERIFICATION class and returns a reference
to the calling application. The type of this object reference is implementation-
specific. An object instance will be created only if a valid reference to an SCARD
object is supplied.

~CHVERIFICATION()

This deletes an instance of the CHVERIFICATION object. The object referenced
by the scard property is unaffected.

RESPONSECODE Verify(
IN BYTE[] Code, // CHV code, may be NULL
IN DWORD Flags,
IN OUT DWORD Ref // ICC specific reference.
)

This method forces a CHV verification against the card. If a code is supplied,
then it is used to verify to the card. If Code is NULL, then the SP will prompt the
user for a code. Note that if the CHV requirements for the currently selected path
are satisfied (by a prior CHV) then the SP may simply return success.

The Flags parameter is used to indicate whether the CHV is to be made against
a local (SC_FL_IHV_LOCAL) or global (SC_FL_IHV_GLOBAL) code. The Ref
parameter is provided to allow specification of a specific code value within a
specified CHV file. Its use is ICC implementation-specific. The value
SC_FL_IHV_CHECKONLY is used to indicate to the ICCSP that it should not
pop up a dialogue requesting input of CHV information; rather, only the CHV
state should be returned.

RESPONSECODE ChangeCode(

IN BYTE[] OldCode, // old CHV code, may be NULL
IN BYTE[] NewCode, // new CHV code, may be NULL
IN DWORD Flags,
IN DWORD Ref // ICC specific reference
)

This method forces a CHV code change. This is done by setting the
SC_FL_IHV_LOCAL, SC_FL_IHV_ENABLE, or SC_FL_IHV_DISABLE flags. If
an application supplys either the current CHV code, a new CHV code, or both,
the SP will attempt to do the UI to prompt the user for any data not supplied and
request confirmation for the change. If neither the current CHV code or a new
CHV code are supplied, the UI will be done by the CSP.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 25

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

The Flags and Ref parameters of theVerify() method are also used.

RESPONSECODE Unblock(

IN VOID Data, //vendor-specified data to be used for unblocking
IN DWORD Flags,
IN DWORD Ref // ICC specific reference
)

This method enables the application to unblock a blocked CHV. This is a
security-critical operation and the mechanisms for doing this are vendor defined.
The Flags and Ref parameters are as defined for the Verify() method.

RESPONSECODE ResetSecurityState(
IN DWORD Flags,
)

This method requests that either the global or the local security state of the card
be reset, depending on the value of the Flags parameter; SC_FL_IHV_GLOBAL
or SC_FL_IHV_LOCAL. Implementation is vendor-specific.

3.4.3 Class CARDAUTH

This class exposes the interfaces to the authentication services that may be supported
by an ICC. This class should be implemented by compliant ICCSPs if these services are
supported.

3.4.3.1 Properties
private SCARD scard // Reference to an SCARD object

CARDAUTH (

IN SCARD scard
)

This creates an instance of the CARDAUTH class and returns a reference to the
calling application. The type of this object reference is implementation-specific.
An object instance will be created only if a valid reference to an SCARD object is
supplied.

~CARDAUTH ()

This deletes an instance of the CARDAUTH object. The object referenced by the
scard property is unaffected.

RESPONSECODE GetChallenge(

IN DWORD AlgID, // algorithm identifier that challenge is used
 // with.
 // may be NULL

 1996–2005 PC/SC Workgroup. All rights reserved. Page 26

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

VOID Param, // vendor-specific parameters
IN OUT DWORD Length, // length of the challenge

OUT BYTE[] Buffer // challenge data
)

This method returns random challenge data from the ICC to be used in
subsequent authentication of an entity external to the card. The AlgID parameter
is optional, but if it is supplied it can be used to verify the length of the challenge
required or to provide hints for the challenge generation. The Param parameter
provides a way to input arbitrary vendor defined parameters and may be NULL.
On input, the Length parameter indicates the length of the challenge data
request, and on output it indicates the length of the challenge data actually
returned in Buffer.

RESPONSECODE ICC_Auth(

IN LONG AlgID, // algorithm identifier
VOID Param, // vendor-specific parameters
IN OUT DWORD Length, // length of data in Buffer
IN OUT BYTE[] Buffer // challenge data on input, authentication
data on output
)

This method provides a means for an application to authenticate the ICC. The
supported authentication method(s) are vendor-specific but will typically map
onto the ISO/IEC 7816-4 Internal Authenticate command.

The calling application indicates the desired algorithm to use with the AlgID
parameter and supplies any vendor-defined data in Param. On input, a challenge
of length Length is provided in Buffer. On output, a response is returned in
Buffer, and its length is indicated by Length.

RESPONSECODE APP_Auth(

IN LONG AlgID, // algorithm identifier
VOID Param, // vendor-specific parameters
IN BYTE[] Buffer // authentication data
)

This method provides a means for an application to authenticate to the ICC. The
authentication method(s) supported are vendor-specific but will typically map
onto the ISO/IEC 7816-4 External Authenticate command.

The calling application indicates the algorithm in use with the AlgID parameter
and supplies any vendor-defined data in Param. The Buffer contains the
authentication data, typically a cryptogram that includes card-originated data
retrieved using the GetChallenge() method. The length of the valid
authentication data is assumed to be available from the Buffer object.

RESPONSECODE User_Auth(

IN LONG AlgID, // algorithm identifier
VOID Param, // vendor-specific parameters

 1996–2005 PC/SC Workgroup. All rights reserved. Page 27

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

IN OUT DWORD Length, // length of data in Buffer
IN OUT BYTE[] Buffer // challenge data on input, authentication

// data on output
)

This method provides an interface to user authentication algorithms implemented
with an ICC. This is intended to allow a card to be used as part of the
authentication process to a remote entity, typically based on shared secret
information. Some possible algorithms are described in Part 8 of this
specification. The specific algorithms available are vendor-specific.

The calling application indicates the algorithm to use and provides any vendor-
defined parameters. Buffer will contain challenge data on input and
authentication data on output. The length of the valid data is provided in Length.

3.4.4 Class CRYPTPROV

The CRYPTPROV class exposes the primary methods for accessing cryptographic
services and provides mechanisms to create the related objects of the CRYPTKEY and
CRYPTHASH class. All CSPs shall implement this class.

3.4.4.1 Properties
(none exposed).

3.4.4.2 Methods

CRYPTPROV (

IN SCARD scard
)

This creates an instance of the CRYPTPROV class and returns a reference to
the calling application. The type of this object reference is implementation-
dependent. An object instance will be created only if a valid reference to an
SCARD object is supplied.

~CRYPTPROV ()

This deletes an instance of the CRYPTPROV object. The object referenced by
the scard property is unaffected.

RESPONSECODE CreateHash(

IN DWORD AlgId, // algorithm identifier of the hash algorithm
IN CRYPTKEY CryptKey, // key object, if keyed hash is used, else

// NULL
IN DWORD Flags, // flag values
OUT CRYPTHASH CryptHash // CRYPTHASH object reference
)

 1996–2005 PC/SC Workgroup. All rights reserved. Page 28

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

The CreateHash method is used to instantiate a CRYPTHASH object and
initialize the hash. The returned object can be used in subsequent calls to
HashData and HashSessionKey (both in the CRYPTHASH object) to hash
streams of data and session keys.

The computation of the actual hash is done with the HashData and
HashSessionKey methods (both in the CRYPTHASH object). After all the data
has been added to the object, exactly one of the following operations can be
performed:

• The hash value can be retrieved using the GetParam method in the
CRYPTHASH object.

• A session key can be derived using DeriveKey.
• The hash can be signed using the SignHash method in the

CRYPTHASH object.
• A signature can be verified using VerifySignature in the CRYPTHASH

object.

After one of the methods from this list has been called, no other hashing method
can be used on this object instance.

The Flags parameter is not defined in this version of the specification and should
be NULL.

RESPONSECODE DeriveKey(
IN DWORD AlgId, // algorithm identifier
IN CRYPTHASH CryptHash, // reference to a CRYPTHASH object
IN DWORD Flags, // flags specifying the type of key generated
OUT CRYPTKEY CryptKey // CryptKey object references
)

The DeriveKey method generates cryptographic keys derived from base data
contained in the CRYPTHASH object. This method guarantees that all keys
generated from the same base data will be identical, provided the same CSP and
algorithms are used. The base data can be a password or any other user data.

This method is the same as GenKey, except that the generated session keys are
derived from base data instead of being random. DeriveKey cannot be used to
generate public/private key pairs.

When keys are generated for symmetric block ciphers, the key by default will be
set up in cipher block chaining (CBC) mode with an initialization vector of zero.
This cipher mode provides a good default method for bulk encryption of data. To
change these parameters, use the SetParam() method in the CryptKey object.

After the DeriveKey method has been called, no more data can be added to the
hash object.

The Flags parameter can be zero, or you can specify one or more of the
following flags, using the binary OR operator to combine them:
• CRYPT_EXPORTABLE: If this flag is set, then the session key can be

 1996–2005 PC/SC Workgroup. All rights reserved. Page 29

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

transferred out of the CSP into a key blob through the Export method of
CryptKey object. Because keys generally must be exportable, this flag should
usually be set.

If this flag is not set, then the session key will not be exportable. This means
the key will be available only within the current session and only the
application that created it will be able to use it.

This flag does not apply to public/private key pairs.

• CRYPT_CREATE_SALT: Typically, when a session key is made from a hash

value, there are a number of leftover bits. For example, if the hash value is
128 bits and the session key is 40 bits, there will be 88 bits left over.

If this flag is set, then the key will be assigned a salt value based on the
unused hash value bits. You can retrieve this salt value using the GetParam
method of CryptKey object with the ParamType parameter set to KP_SALT.

If this flag is not set, then the key will be given a salt value of zero.
When keys with nonzero salt values are exported (using Export method of
CryptKey object), the salt value must also be obtained and kept with the key
blob.

• CRYPT_USER_PROTECTED: If this flag is set, then the user will be notified

through a dialog box or another method when certain actions are attempted
using this key. The precise behavior is specified by the CSP being used.

• CRYPT_UPDATE_KEY: Some CSPs use session keys that are derived from

multiple hash values. When this is the case, DeriveKey must be called
multiple times.

RESPONSECODE GenKey(

IN DWORD AlgId, // algorithm identifier
IN DWORD Flags, // flags
OUT CRYPTKEY CryptKey // CryptKey object reference
)

The GenKey method generates random cryptographic keys for use with the CSP
module.
The calling application is required to specify the algorithm when calling this
method. Because this algorithm type is kept bundled with the key, the application
does not need to specify the algorithm later when the actual cryptographic
operations are performed.

When keys are generated for symmetric block ciphers, the key by default will be
set up in cipher block chaining (CBC) mode with an initialization vector of zero.
This cipher mode provides a good default method for bulk encrypting data. To
change these parameters, use the SetParam method in the CryptKey object.

In addition to generating keys for symmetric algorithms, the GenKey method can
also generate keys for public-key algorithms. The use of public-key algorithms is

 1996–2005 PC/SC Workgroup. All rights reserved. Page 30

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

restricted to key exchange and digital signatures. To generate one of these key
pairs, set the AlgId parameter to one of the following values:

• AT_KEYEXCHANGE Exchange public key.
• AT_SIGNATURE Signature public key.

The Flags parameter can be zero, or you can specify one or more of the
following flags, using the binary OR operator to combine them:

• CRYPT_EXPORTABLE : If this flag is set, the key can be transferred out of

the CSP into a key blob using the Export method. Because session keys
generally must be exportable, this flag should usually be set when they are
created.

If this flag is not set, then the key will not be exportable. For a session key,
this means that the key will be available only within the current session and
only the application that created it will be able to use it. For a public/private
key pair, this means that the private key cannot be transported or backed up.

This flag only applies to session key and private key blobs. It does not apply
to public keys, which are always exportable.

• CRYPT_CREATE_SALT: If this flag is set, then the key will be assigned a

random salt value automatically. You can retrieve this salt value using the
GetParam method in the CryptKey object with the ParamType parameter set
to KP_SALT.

If this flag is not set, then the key will be given a salt value of zero.

When keys with non zero salt values are exported (through Export), then the
salt value must also be obtained and kept with the key blob.

• CRYPT_USER_PROTECTED: If this flag is set, then the user will be notified

through a dialog box or another method when certain actions are attempted
using this key. The precise behavior is specified by the CSP being used.

RESPONSECODE GenRandom(

IN DWORD Length, // number of bytes of random data generated
OUT BYTE[] DataBlob // random data, of length Length.
)

The GenRandom method returns a buffer with random bytes.

The data produced by this method shall be “cryptographically random.” It must
meet more stringent requirements than generally provided by typical random
number generator such as the ones shipped with common PC industry
compilers.

This method is often used to generate random initialization vectors and salt
values.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 31

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

RESPONSECODE GetParam(

IN DWORD ParamType, // parameter number
IN DWORD Flags, // flag values
OUT BYTE[] DataBlob, // retrieved parameter
OUT DWORD Length // length of DataBlob
)

The GetParam method retrieves parameters that govern the operations of a
CSP.

The Flags parameter is not defined in this version of the specification and should
be NULL.

RESPONSECODE GetUserKey(

IN DWORD KeySpec, // the specification of the key to retrieve
OUT CRYPTKEY CryptKey // the CryptKey object
)

The GetUserKey() method creates a CryptKey object for user-specific key pairs,
such as the user’s signature key pair.

The following values are allowed for the KeySpec parameter:
• AT_KEYEXCHANGE Exchange public key.
• AT_SIGNATURE Signature public key.

RESPONSECODE ImportKey(

IN BYTE[] DataBlob, // key blob
IN DWORD Length, // length of DataBlob
IN CRYPTKEY CryptKeyPub, // key object reference
IN DWORD Flags, // flag values
OUT CRYPTKEY CryptKey // the CryptKey object
)

The ImportKey method is used to transfer a cryptographic key from a key blob to
the CSP.

The CryptKeyPub parameter indicates the following:

• If the key blob is not encrypted (for example, a PUBLICKEYBLOB) or if the

key blob is encrypted with the key exchange key pair (for example, a
SIMPLEBLOB), then this parameter is not used, and must be NULL.

• If a signed key blob is being imported, this key is used to validate the
signature of the key blob. In this case, this parameter should contain a
reference to the CryptKey object of the process that created the key blob.

• If the key blob is encrypted with a session key (for example, an encrypted
PRIVATEKEYBLOB), then this parameter should contain a reference to the
CryptKey object for this session key.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 32

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

The Flags parameter is used only when a public/private key pair is being
imported into the CSP (in the form of a PRIVATEKEYBLOB). In this case, if the
CRYPT_EXPORTABLE flag is set then subsequent applications will be permitted
to export the private key back out of the CSP.

RESPONSECODE SetParam(

IN DWORD ParamType, // parameter number
IN DWORD Flags, // flag values
IN BYTE[] DataBlob, // parameter data
IN DWORD Length // length of DataBlob
)

The SetParam method customizes the operations of a CSP.

The currently defined ParamType values are as follows:

• PP_CLIENT_HWND: Specifies that a window handle is contained in

DataBlob.
• PP_KEYEXCHANGE_KEYSIZE: Specifies that a new exchange key size is

contained in DataBlob.
• PP_SIGNATURE_KEYSIZE: Specifies that a new signature key size is

contained in DataBlob.

The Flags parameter is not defined in this version of the specification and should
be NULL.

3.4.5 Class CRYPTHASH

The CRYPTHASH class exposes methods associated with hashing (or message
digests) used as part of numerous cryptographic protocols, such as digital signatures. If
these services are exposed, they shall be implemented within a CSP.

A CRYPTHASH object should only be instantiated by calling
CRYPTPROV::CreateHash().

3.4.5.1 Properties
(none defined)

3.4.5.2 Methods

protected CRYPTHASH ()

This creates an instance of the CRYPTHASH class and returns a reference to
the calling application. The type of this object reference is implementation-
dependent.

~CRYPTHASH ()

This deletes an instance of the CRYPTHASH object.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 33

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

RESPONSECODE GetParam(
IN DWORD ParamType, // The parameter number
IN DWORD Flags, // The flag values
OUT BYTE[] DataBlob, // The retrieved parameter
OUT DWORD Length // length of DataBlob
)

The GetParam method retrieves data that governs the operations of a hash
object. The actual hash value can also be retrieved using this method.

The ParamType value can be set to one of the following hash parameter types:

• HP_ALGID: The hash algorithm identifier. The returned DataBlob will contain

a long value indicating the algorithm that was specified when the hash object
was created. See the CreateHash method of the CRYPTPROV class for a list
of hash algorithms.

• HP_HASHSIZE: The hash value size. The returned DataBlob will contain a
long value indicating the number of bytes in the hash value. This value will
usually be 16 or 20, depending on the hash algorithm. Applications should
retrieve this parameter just before the HP_HASHVAL parameter so the
correct amount of memory can be allocated.

• HP_HASHVAL: The hash value. The returned DataBlob will contain the hash
value or message digest. This value is generated based on the data supplied
earlier through the HashData and HashSessionKey methods from CrypHash
object. After this parameter has been retrieved, this object is marked
“finished” and no more data can be added to it.

The Flags parameter is not defined in this version of the specification and should
be NULL.

RESPONSECODE HashData(
IN BYTE[] DataBlob, // data to be hashed
OUT DWORD Length, // length of DataBlob
IN DWORD Flags // the flag values
)

The HashData() method is used to compute the cryptographic hash on a stream
of data. This method, and HashSessionKey(), can be called multiple times to
compute the hash on long streams or on discontinuous streams.

The Flags value currently defined is:

• CRYPT_USERDATA: When this flag is set, the CSP should prompt the user

to input some data directly. This is then added to the hash. The calling
application is not allowed access to the data. For example, this flag can be
used to allow the user to enter a PIN into the system.

RESPONSECODE HashSessionKey(

IN CRYPTKEY CryptKey, // CRYPTKEY object to be hashed
IN DWORD Flags // the flag values
)

 1996–2005 PC/SC Workgroup. All rights reserved. Page 34

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

The HashSessionKey() method is used to compute the cryptographic hash on a
CRYPTKEY object. This method can be called multiple times to compute the
hash on multiple keys. Calls to HashData() and HashSessionKey() may be
interspersed.

The Flags parameter is not defined in this version of the specification and should
be NULL.

RESPONSECODE SetParam(

IN DWORD ParamType, // parameter number
IN DWORD Flags, // flag values
IN BYTE[] DataBlob, // parameter data.
IN DWORD Length // length of DataBlob
)

This method is provided to allow customization of the hash object. Currently, only
a single parameter is defined for this method:

• HP_HASHVAL: Hash value. The DataBlob contains a byte array containing a

hash value to place directly into the hash object. Before setting this
parameter, the size of the hash value should be determined by reading the
HP_HASHSIZE parameter with the GetParam() method.

Normal applications should never set this parameter and compliant
implementations may simply return an error if they choose not to support this
capability.

The Flags parameter is not defined in this version of the specification and should
be NULL.

RESPONSECODE SignHash(

IN DWORD KeySpec, // key pair used to sign the hash
IN STR Description, // string describing the data to sign
IN DWORD Flags, // flag values
OUT DWORD Length, // length of Signature Buffer
OUT BYTE[] Signature // signature data
)

The SignHash method is used to sign data. Because all signature algorithms are
asymmetric, and computationally expensive, you generally hash the data to be
signed and then use SignHash to sign the hash value.

The following keys can be specified for the KeySpec parameter:

• AT_KEYEXCHANGE Exchange private key
• AT_SIGNATURE Signature private key

The signature algorithm used is implied by the key pair and is set when the keys
are created.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 35

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

The Flags parameter is not defined in this version of the specification and should
be NULL.

The description string (generally human-readable text) specified in the
Description parameter is added to the hash object before the signature is
generated. Whenever the signature is authenticated (with VerifySignature), the
exact same description string must be supplied. This ensures that both the signer
and the authenticator agree on what is being signed or authenticated.

CSPs may display this description string to the user. This lets the user confirm
what they are signing. This gives some protection to the user from ill behaved or
malicious applications.

The description parameter can be NULL if no description string is to be included
in the signature. Usually, this is the case only when the signature is performed
using a signature key that is not legally bound to the user. For example, when a
signature operation is performed with the key exchange private key as part of a
key exchange protocol, no description string is typically specified.

RESPONSECODE VerifySignature(

OUT DWORD Length, // length of Signature Buffer
IN BYTE[] Signature, // signature data to be verified
IN CRYPTKEY CryptKeyPub, // CRYPTKEY object for the verification
 // public key
IN DWORD Flags // the flag values
)

The VerifySignature method is used to verify a signature against a hash object.
Before calling this method, the HashData and/or HashSessionKey methods are
called to add the data and/or session keys to the hash.

After this method has been completed, attempts to add additional data to the
current hash will fail.

The Flags parameter is not defined in this version of the specification and should
be NULL.

3.4.6 Class CRYPTKEY

The CRYPTKEY class exposes methods for using and managing encryption keys used
in the encryption/decryption process. If these services are exposed, they shall be
implemented within a CSP.

A CRYPTKEY object should only be instantiated by calling one of the CRYPTPROV key
generation methods.

3.4.6.1 Properties
(none exposed).

 1996–2005 PC/SC Workgroup. All rights reserved. Page 36

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

3.4.6.2 Methods

protected CRYPTKEY ()

This create an instance of the CRYPTKEY class and returns a reference to the
calling application. The type of this object reference is implementation-
dependent.

~CRYPTKEY()

This deletes an instance of the CRYPTKEY object.

RESPONSECODE Decrypt(

IN CRYPTHASH CryptHash, // references to a CRYPTHASH object,
 // may be NULL
IN BOOL Final, // true if last block to decrypt
IN DWORD Flags, // the flag values
IN BYTE[] Dencrypted, // data to be decrypted
 IN DWORD DecryptLength, // length of Buffer to be decrypted
OUT BYTE[] DataBlob // plain-text after decryption
OUT DWORD BlobLength, // length of DataBlob Buffer
)

The Decrypt method is used to decrypt data that was previously encrypted via
the Encrypt() method.

If data is to be decrypted and hashed simultaneously, a CRYPTHASH object can
be passed in the CryptHash parameter. The hash value will be updated with the
decrypted plain-text. This option is useful when simultaneously decrypting and
verifying a signature. Prior to calling Decrypt(), the application should obtain a
CRYPTHASH object by calling CRYTPROV::CreatHash(). After the decryption is
complete, the hash value can be:

• Obtained (through the GetParam method in the CRYPTHASH object)
• Signed (through the SignHash method in the CRYPTHASH object)
• Used to verify a digital signature (through the VerifySignature method in the

CRYPTHASH object)

When a large amount of data needs to be decrypted, it can be done in sections.
This is done by calling Decrypt multiple times. The Final parameter should be set
to True only on the last invocation of Decrypt, so the decryption engine can
properly finish the decryption process. The following extra actions are performed
when Final is True:

• If the key is a block cipher key, the data will be padded to a multiple of
the block size of the cipher. To find the block size of a cipher, use
GetParam to get the KP_BLOCKLEN parameter of the key.

• If the cipher is operating in a chaining mode, the next Decrypt
operation will reset the cipher’s feedback register to the KP_IV value
of the key.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 37

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

• If the cipher is a stream cipher, the next Decrypt call will reset the
cipher to its initial state.

The Flags parameter is not defined in this version of the specification and should
be NULL.

RESPONSECODE Encrypt(
IN CRYPTHASH CryptHash, // reference to a CRYPTHASH object,
 // may be NULL
IN BOOL Final, // true if last block to encrypt
IN DWORD Flags, // flag values
IN BYTE[] DataBlob, // data to be encrypted.
IN DWORD BlobLength, // length of DataBlob Buffer
OUT DWORD EncLength, // length of Encrypted Buffer
OUT BYTE[] Encrypted // encrypted data
)

The Encrypt method is used to encrypt data. The algorithm used to encrypt the
data is the one designated when this CryptKey object was created.

If data is to be hashed and encrypted simultaneously, a CRYPTHASH object can
be passed in the CryptHash parameter. The hash value will be updated with the
plain-text passed in. This option is useful when generating signed and encrypted
text. Prior to calling Encrypt, the application should obtain a CRYPTHASH object
by calling the CreateHash method in the CRYPTPROV object. After the
encryption is complete, the hash value can be obtained through the GetParam
method or the hash can be signed using the SignHash method in the
CRYPTHASH object.

When a large amount of data needs to be encrypted, it can be done in sections.
This is done by calling Encrypt multiple times. The Final parameter should be set
to True only on the last invocation of Encrypt, so the encryption engine can
properly finish the encryption process. The following extra actions are performed
when Final is True:

• If the key is a block cipher key, the data will be padded to a multiple of
the block size of the cipher. To find the block size of a cipher, use
GetParam to get the KP_BLOCKLEN parameter of the key.

• If the cipher is operating in a chaining mode, the next Encrypt
operation will reset the cipher’s feedback register to the KP_IV value
of the key.

• If the cipher is a stream cipher, the next Encrypt will reset the cipher
to its initial state.

The Flags parameter is not defined in this version of the specification and should
be NULL.

RESPONSECODE Export(

IN CRYPTKEY CryptKeyExp, // references to another CryptKey object
IN DWORD BlobType, // key blob type to be exported
IN DWORD Flags, // flag values

 1996–2005 PC/SC Workgroup. All rights reserved. Page 38

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

OUT BYTE[] DataBlob, // exported key blob
OUT DWORD BlobLength // length of DataBlob Buffer
)

The Export method is used to export cryptographic keys out of a CSP in a secure
manner.

The key blob associated with this CryptKey object is returned to the caller. This
key blob can be sent over a non secure transport or stored in non-secure
storage. The key blob is useless until the intended recipient uses the ImportKey
method from CryptKey object on it, which will import the key into the recipient’s
CSP.

Most often, CryptKeyExp will be the key exchange public key of the destination
user. However, certain protocols require that a session key belonging to the
destination user be used for this purpose.

If the key blob type specified by BlobType is PUBLICKEYBLOB, then this
parameter is unused and should be set to NULL. If the key blob specified by
BlobType is PRIVATEKEYBLOB, then this is typically a CryptKey object for a
session key that is to be used to encrypt the key blob.

BlobType must currently be one of the following constants:

• SIMPLEBLOB
• PUBLICKEYBLOB
• PRIVATEKEYBLOB

The Flags parameter is not defined in this version of the specification and should
be NULL.

RESPONSECODE GetParam(

IN DWORD ParamType, // parameter number
IN DWORD Flags, // flag values
OUT BYTE[] DataBlob, // retrieved parameter
OUT DWORD BlobLength // length of DataBlob Buffer
)

The GetParam() method retrieves data that governs the operations of a key.
Note that the base keying material is not obtainable by this method or any other
method.

For all key types, the ParamType value can be set to one of the following key
parameter types:

• KP_ALGID: Key algorithm identifier. The returned BLOB will contain a long

value indicating what algorithm was specified when the key was created.

• KP_BLOCKLEN: If a session key was specified for this CryptKey object, this
parameter returns the block length, in bits, of the cipher. The returned BLOB
contains a long value indicating the block length. For stream ciphers, this

 1996–2005 PC/SC Workgroup. All rights reserved. Page 39

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

value will always be zero.

If a public/private key pair was specified for this CryptKey object, this
parameter returns the key pair’s encryption granularity in bits. For example,
the Microsoft RSA Base Provider generates 512-bit RSA key pairs, so a
value of 512 is returned for these keys. If the public-key algorithm does not
support encryption, the value returned by this parameter is undefined.

• KP_SALT: The salt value. The returned BLOB will contain a BYTE array

indicating the current salt value. The size of the salt value will vary depending
on the CSP and algorithm being used.

Salt values do not apply to public/private key pairs.

• KP_PERMISSIONS: Key permissions. The returned BLOB will contain a long

value with zero or more permission flags set. Refer to the table at the end of
this section for a description of each of these flags.

If a block cipher session key was specified for this CryptKey object, the
ParamType value can also be set to one of the following parameter types :

• KP_IV: The initialization vector. The returned DataBlob will contain a BYTE

array indicating the current initialization vector. This array contains
block_length/8 elements. For example, if the block length is 64 bits, the
initialization vector will consist of eight bytes.

• KP_PADDING: The padding mode. The returned DataBlob will contain a long
value indicating the padding method used by the cipher. Following are the
padding modes currently defined:

• PKCS5_PADDING—PKCS 5 (sec 6.2) padding method.
• KP_MODE: The cipher mode. The returned DataBlob will contain a long

value indicating the mode of the cipher. Refer to the following table for a list
of valid cipher modes.

• KP_MODE_BITS: The number of bits to feed back. The returned DataBlob
will contain a long value indicating the number of bits that are processed per
cycle when the OFB or CFB cipher modes are used.

The following table lists the possible cipher mode values that can be returned
when ParamType is KP_MODE.

KP_MODE cipher mode values
CRYPT_MODE_ECB Electronic codebook
CRYPT_MODE_CBC Cipher block chaining
CRYPT_MODE_OFB Output feedback mode
CRYPT_MODE_CFB Cipher feedback mode

The following table lists the flags in the bit field that is returned when ParamType
is KP_PERMISSIONS. Custom CSPs can use these flags to restrict operations
on keys.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 40

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

KP_PERMISSIONS flags
CRYPT_ENCRYPT Allow encryption.
CRYPT_DECRYPT Allow decryption.
CRYPT_EXPORT Allow key to be exported.
CRYPT_READ Allow parameters to be read.
CRYPT_WRITE Allow parameters to be set.
CRYPT_MAC Allow MACs to be used with key.

The Flags parameter is not defined in this version of the specification and should
be NULL.

RESPONSECODE SetParam(

IN DWORD ParamType, // parameter number
IN DWORD Flags, // flag values
IN BYTE[] DataBlob, // parameter data
IN DWORD BlobLength // length of DataBlob Buffer
)

The SetParam method customizes various aspects of a key’s operations.
Generally, this method is used to set session-specific parameters on symmetric
keys. Note that the base keying material is not accessible by this method. CSP
developers may define parameters that can be set on these keys.

For all session key types, the ParamType value can be set to one of the following
key parameter types:

• KP_SALT: The salt value. The DataBlob should contain a BYTE array

specifying a new salt value. This value is made part of the session key. The
size of the salt value will vary depending on the CSP being used, so before
setting this parameter, it should be read using GetParam method of CryptKey
object in order to determine its size.

When it is suspected that the base data used for derived keys is less than
ideal, salt values are often used to make the session keys more random. This
makes dictionary attacks more difficult.

• KP_PERMISSIONS: The key permissions flags. The DataBlob should contain

a long value specifying zero or more permission flags. Refer to the GetParam
method of CryptKey object for a description of these flags.

If a block cipher session key is specified for this CryptKey object, the ParamType
value can also be set to one of the following parameter types:

• KP_IV: The initialization vector. The DataBlob should contain a BYTE array

specifying the initialization vector. This array should contain block_length/8
elements. For example, if the block length is 64 bits, the initialization vector
will consist of eight bytes.

• KP_PADDING: The padding mode. The DataBlob should contain a long

 1996–2005 PC/SC Workgroup. All rights reserved. Page 41

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

value specifying the padding method to be used by the cipher. Following are
the padding modes currently defined:

• PKCS5_PADDING—PKCS 5 (sec 6.2) padding method.
• KP_MODE: The cipher mode. The DataBlob should contain a long value

specifying the cipher mode to be used. Refer to the GetParam method of
CryptKey object for a list of the defined cipher modes.

• KP_MODE_BITS: The number of bits to feed back. The DataBlob contains a
long value indicating the number of bits that are processed per cycle when
the OFB or CFB cipher mode is used.

The Flags parameter is not defined in this version of the specification and should
be NULL.

 1996–2005 PC/SC Workgroup. All rights reserved. Page 42

Interoperability Specification for ICCs and Personal Computer Systems
Part 6. ICC Service Provider Interface Definition

4 Appendix A - GUID Assignments

Defined GUIDs

Parameter Symbol Comments
ISCardManage 5E586211-5A09-11D0-B84C-

00C04FD424B9
This interface used for
Management methods (i.e.
AttachByHandle,
AttachByIFD, etc.)

ISCardFileAccess 4029DD8A-5902-11D0-B84C-
00C04FD424B9

File Access methods

ISCardVerify 4029DD85-5902-11D0-B84C-
00C04FD424B9

Verification methods

ISCardAuth 7B063D61-6E40-11D0-B858-
00C04FD424B9

Authentication methods

 1996–2005 PC/SC Workgroup. All rights reserved. Page 43

	System Architecture
	Theory of Operation
	Functional Overview
	Implementation Considerations
	Installation Considerations
	The ICC Service Provider
	Cryptographic Service Provider
	User Interface Elements
	Run-time Considerations

	Functional Definition
	
	Syntax
	Data types
	Calling Conventions
	Data structures
	Tagged Length Value
	File Specification
	File Path

	Defined constants
	3.1.6Error codes

	Required and Optional Interfaces
	Required Interfaces
	Class SCARD
	Properties
	Methods

	Optional Interfaces
	Class FILEACCESS
	Properties

	Class CHVERIFICATION
	Properties

	Class CARDAUTH
	Properties

	Class CRYPTPROV
	Properties
	Methods

	Class CRYPTHASH
	Properties
	Methods

	Class CRYPTKEY
	Properties
	Methods

	Appendix A - GUID Assignments

