photon) focus

User Manual
Register based ASCII Protocol

MANOS50 12/2013 V1.2

All information provided in this manual is believed to be accurate and reliable. No

responsibility is assumed by Photonfocus AG for its use. Photonfocus AG reserves the right to
make changes to this information without notice.

Reproduction of this manual in whole or in part, by any means, is prohibited without prior
permission having been obtained from Photonfocus AG.

Contents

[2.3 SetPropertyvalue|.
2.4 GetPropertyvaluel
2.5 Addressof Property]
2.6 Value of Property (data Bytes) . « « « « « « o o v oo e e e

[26.17 Integer]

[2.6.2 TEEE 754 Single Precision]
[2.7 SetPropertyexample|
2.8 GetPropertyexample].

2.9 pftASCIl_PropertyList.h| e
[2.10 Camera properties]. o e e e

|A Revision History|

CONTENTS

CONTENTS

Preface

1.1 About Photonfocus

The Swiss company Photonfocus is one of the leading specialists in the development of CMOS
image sensors and corresponding industrial cameras for machine vision, security & surveillance
and automotive markets.

Photonfocus is dedicated to making the latest generation of CMOS technology commercially
available. Active Pixel Sensor (APS) and global shutter technologies enable high speed and
high dynamic range (120 dB) applications, while avoiding disadvantages like image lag,
blooming and smear.

Photonfocus has proven that the image quality of modern CMOS sensors is now appropriate
for demanding applications. Photonfocus’ product range is complemented by custom design
solutions in the area of camera electronics and CMOS image sensors.

Photonfocus is ISO 9001 certified. All products are produced with the latest techniques in order
to ensure the highest degree of quality.

1.2 Contact

Photonfocus AG, Bahnhofplatz 10, CH-8853 Lachen SZ, Switzerland

Sales Phone: +41 55 451 07 45 | Email: sales@photonfocus.com

Support | Phone: +41 55 451 01 37 | Email: support@photonfocus.com

Table 1.1: Photonfocus Contact

1.3 Sales Offices

Photonfocus products are available through an extensive international distribution network
and through our key account managers. Details of the distributor nearest you and contacts to
our key account managers can be found atwww.photonfocus.com.

1.4 Further information

Photonfocus reserves the right to make changes to its products and documenta-

(&= tion without notice. Photonfocus products are neither intended nor certified for
use in life support systems or in other critical systems. The use of Photonfocus
products in such applications is prohibited.

Photonfocus is a trademark and LinLog® is a registered trademark of Photonfo-

(& cus AG. Cameralink® and GigE Vision® are a registered mark of the Automated
Imaging Association. Product and company names mentioned herein are trade-
marks or trade names of their respective companies.

http://www.photonfocus.com

1 Preface

(@& Reproduction of this manual in whole or in part, by any means, is prohibited
without prior permission having been obtained from Photonfocus AG.

(&= Photonfocus can not be held responsible for any technical or typographical er-
rors.

1.5 Legend

In this documentation the reader’s attention is drawn to the following icons:

= Important note

@ Alerts and additional information

A Attention, critical warning

% Notification, user guide

Register based ASCII Protocol

2.1 Overview

The register based ASCIl protocol can be used to control the camera directly from a DSP, uC or
FPGA. The communication runs over a simple UART (RS-232 link) with RX/TX signals without
handshake signals.

Please refer to the camera (Board Level or OEM) manual for the description of
the logic level voltage of the UART link.

The RS-232 link is configured as 8N1 (8 data byte, no parity, one stop byte), default baud rate is
9600.

2.2 Set camera to ASCII Protocol

The camera can be switched with one simple byte between the PFRemote and the ASCII
protocol. The camera will send a ACK (see Table[2.1) if the protocol switch was successful. After
successful switching to ASCII protocol wait 200ms before sending other commands. After a
power cycles (POR - Power On Reset) the camera starts always in PFRemote protocol mode with
default baud rate 9600baud.

send byte | ACK of the camera | new protocol mode

0x01 0x45 PFRemote protocol

0x02 0x02 ASCII protocol

0x02 none PFRemote protocol (camera does not support ASCII protocol)

Table 2.1: Protocol switching

Example:
Send Command: 0x02

Receive answer: 0x02

2 Register based ASCIlI Protocol
2.3 Set Property value
To set a property with a new value 10 bytes have to send. The camera will answer with one

byte. The 10 bytes contains 1 start, 4 addr, 4 data and 1 stop byte. The camera answers with
one byte.

The MSB of address and data will be send first.

Send Command: <StartWrite> <Addr_3 (MSB)> <Addr_2> <Addr_1> <Addr_0 (LSB)> <Data_3
(MSB)> <Data_2> <Data_1> <Data_0 (LSB)> <EndWrite>

Receive answer: <ACKWrite>

Write command byte | Hex value (ASCII value)
StartWrite 0x57 ('W')
EndWrite 0x77 ('w")
ACKWrite 0x77 ('w")

Table 2.2: Send commands

Example: Addr = 0x0e, Value = 0x0400:
Send Command: 0x57 0x00 0x00 0x00 0x0Oe 0x00 0x00 0x04 0x00 Ox77.

Receive answer: 0x77.
2.4 Get Property value
To get a property value 6 bytes have to send. The camera will answer 6 bytes too. The 6 bytes

contains: 1 start, 4 addr and 1 stop byte. The camera answers with: 1 start, 4 data and 1 stop
byte.

The MSB of address and data will be send first.
Send Command: <StartRead> <Addr_3 (MSB)> <Addr_2> <Addr_1> <Addr_0 (LSB)> <EndRead>

Receive answer: <ACKRead> <Data_3 (MSB)> <Data_2> <Data_1> <Data_0 (LSB)> <ACKRead>

Read command byte | Hex value (ASCIl value)
StartRead 0x52 ('R")
EndRead 0x72 ('r")
ACKRead 0x72('r")

Table 2.3: Receive commands

Example: Addr = 0x0e.
Send Command: 0x52 0x00 0x00 0x00 0x0e 0x72.
Receive answer: 0x72 0x00 0x00 0x04 0x00 0x72. -> Value: 0x00000400 = 0x400 = 1024.

2.5 Address of Property

All camera properties have a register address. This address is fix over all camera types from
Photonfocus. Please check the pfASCII_PropertylList.h file and Section

Addr Property name | Type
0x00000001 | ExposureTime | PF_FLOAT
0x0000000c | Window.X PF_INT
0x0000000e | Window.W PF_INT

Table 2.4: Details of the pfASCII_PropertylList.h file

2.6 Value of Property (data bytes)

The 4 bytes data can be interpreted as Integer or IEEE 754 float. Properties with types PF_INT,
PF_BOOL and PF_MODE interpret the data bytes as Integer. PF_FLOAT as IEEE 754.

Data bytes | PF_INT, PF_BOOL and PF_MODE | PF_FLOAT
0x00000000 | O 0.0
0x0000000c | 12 1.7E-44
0x3F800000 | 1065353216 1.0
0x40000000 | 1073741824 2.0
0x414B26E9 | 1095444201 12.697

2.5 Address of Property

Table 2.5: Interpretation of data bytes

2 Register based ASCIlI Protocol

2.6.1 Integer

For interger properties (PF_INT, PF_BOOL and PF_MODE) the 4byte value needs to interpret as
32bit signed integer.

2.6.2 |IEEE 754 Single Precision

PF_FLOAT properties need to interpret the 4 byte data as IEEE 754. |IEEE floating point numbers
have three basic components: the sign, the exponent, and the mantissa. Table[2.6|and Fig.
shows the layout for single (32-bit) precision floating-point values. The number of bits for each
field are shown (bit ranges are in square brackets).

Sign Exponent | Mantissa
Single Precision | 1[31] | 8 [30-23] | 23 [22-00]

Table 2.6: Storage Layout

31 2423 16[15 8|7 0

S|EJE[E[E|E]E] E] E[m[m]Mm]M]M[M[m[Mm]M]M][M[Mm[Mm]M]M]M[M[Mm]M]M]M][M[m
Exponent Mantissa

Sign

Figure 2.1: Storage Layout (bits)
IEEE 754 float: value = Sign * 2Fxponent % ©Mantissa

For more information, please check the IEEE 754 standard.

10

2.7 Set Property example

Set property Window.W to 1024. (Address of Window.W is 0x0e)

unsigned Tong propertyAddr;
Tong propertyValue;
unsigned char buf[16];

//set camera to ASCII mode

buf[0] = 0x02;

WriteRS232(buf, 1);

buf[0] = 0x00;

ReadRS232(buf, 1);

if(buf[0] != 0x02){
//camera does not support ASCII protocol
return -1;

}

//wait 200ms
STeep(200);

//write Window.W to 1024
propertyAddr = 0x@e;
propertyValue = 1024;

buf[@] = "W';

buf[1] = propAddr >> 24;
buf[2] = propAddr >> 16;
buf[3] = propAddr >> 8;
buf[4] = propAddr;

buf[5] = propertyValue >> 24;
buf[6] = propertyValue >> 16;
buf[7] = propertyValue >> 8;
buf[8] = propertyValue;
buf[9] = "w';

error = WriteRS232(buf, 10);

//read ACK, must be 0x77 = 'w' (1 byte)
ReadRS232(buf, 1);
if(buf[@] != 0x77){

//camera ACK error

return -1;

2.7 Set Property example

1

2 Register based ASCIlI Protocol
2.8 Get Property example

Get value of property ExposureTime. (Address of ExposureTime is 0x01)

unsigned Tong propertyAddr;
float propertyValue;
unsigned char buf[16];
unsigned char data[4];

//set camera to ASCII mode

buf[0] = 0x02;

WriteRS232(buf, 1);

buf[@] = 0x00;

ReadRS232(buf, 1);

if(buf[0] != 0x02){
//camera does not support ASCII protocol
return -1;

}
//wait 200ms
Sleep(200);

//read ExposureTime
propertyAddr = 0x01;

buf[@] = 'R";

buf[1] = propAddr >> 24;
buf[2] = propAddr >> 16;
buf[3] = propAddr >> 8;
buf[4] = propAddr;
buf[5] = "r';

error = WriteRS232(buf, 6);

//read value (6 bytes)
ReadRS232(buf, 6);

//check if first byte is 'r'

if(buff0] != 0x72){
//camera ACK error
return -1;

}

//1ittle endian <-> big endian
datal[@] = buf[4];

data[l] = buf[3];
data[2] = buf[2];
data[3] = buf[1];

propertyValue = ((float+)data)[0];

12

2.9 pfASCIl_PropertylList.h

All camera properties have a register address. These addresses are the same for all camera
types from Photonfocus. The pfASCII_PropertylList.h shows the address of the properties over
all cameras, not all properties are supported from a camera type. The header file
pfASCII_PropertylList.h could be found in the PFRemote/SDK/incTude folder

fdefine INVALID_ADDR Oxffffffff

typedef enum{

PF_INT, //32bit signed integer
PF_FLOAT, //1EEE 754 32bit float, single precision
PF_BOOL, //boolean value (1: true, @: false), handled as PF_INT
PF_MODE, //mode value, handled as PF_INT
PF_COMMAND, //command, handled as PF_INT
PF_STRING, //not yet supported
PF_BUFFER, //not yet supported
}pfASCII_PropertyType;
char #pfASCII_PropertyTypes[] = {
(chars)"Integer",
(char=)"Float",
(char=)"Boolean",
(char=)"Mode",
(charx)"Command",
(char#)"String",
(charx)"Buffer",
¥
typedef struct{
unsigned Tong addr;
char kname;

pfASCII_PropertyType type;
}pfASCII_Propertylist_t;

pfASCII_PropertylList_t pfASCII_PropertylList[] = {
/% 0, addr=0001 =/ { 0x00000001, "ExposureTime", PF_FLOAT },

[1, addr=0003 =/ { 0x00000003, "FrameTime", PF_FLOAT },

/# 2, addr=0012 =/ { 0x0000000c, "Window.X", PF_INT },

/# 3, addr=0013 %/ { 0x0000000d, "Window.Y", PF_INT },

[4, addr=0014 =/ { 0x0000000e, "Window.W", PF_INT },

/# 5, addr=0015 =/ { 0x0000000f, "Window.H", PF_INT },

[6, addr=0016 =/ { 0x00000010, "Window.Max", PF_COMMAND },
e { INVALID_ADDR , NULL, 0}

¥

2.9 pfASCIl_PropertylList.h 13

2 Register based ASCIlI Protocol
2.10 Camera properties
A camera type does not support all properties of the pfASCII_PropertylList.h. Each camera type

has his own property list file in the following folder: PFRemote/doc/CameraProperties. These files
show which properties are supported at the given camera type.

14

Revision History

Revision | Date Changes

1.0 October 2011 First release

1.1 February 2013 Add chapter "Camera properties"

1.2 December 2013 | Hex value of StartWrite command corrected

	Preface
	About Photonfocus
	Contact
	Sales Offices
	Further information
	Legend

	Register based ASCII Protocol
	Overview
	Set camera to ASCII Protocol
	Set Property value
	Get Property value
	Address of Property
	Value of Property (data bytes)
	Integer
	IEEE 754 Single Precision

	Set Property example
	Get Property example
	pfASCII_PropertyList.h
	Camera properties

	Revision History

