

Condenser Tubes in Thermal Power Plants Issues and Solutions

ICCI 2014 April 24, 2014

Presented by Dan Janikowski +1 262 642 8365

E-Mail: djanikowski@plymouth.com

Tube Problems Recently Erupted

- Copper failures for several reasons
- Microbiological influenced corrosion (MIC)
- Hydrogen embrittlement
- New titanium fatigue mechanism
- Cleaning related problems
- New tubes are not made like they used to be

Copper Alloy Failures

- Pitting and crevice corrosion
- Dealloying
- Ammonia grooving and stress corrosion cracking
- Galvanic corrosion
- MIC
- Many above are combinations
- Erosion-Corrosion (this is actually one that is mechanically based)

Copper Failures

Pitting and crevice corrosion

Dealloying

Ammonia Grooving & SCC

Add a Bit of H₂S

Copper Failures

Galvanic Corrosion

Galvanic Attack

- In area of graphitic char, the Cu/Ni becomes the sacrificial anode!
- It's crucial to make sure that Cu alloy is clean

MIC Attack

Copper Alloys

300 Series

Type 439

Bacteria Groups

Organism	Action	Problem	
Thiobacillus	Sulfate	Produces	
	Reducer	H_2SO_4	
Desulfovibrio	Sulfate	Produces H ₂ S	
	Reducer		
Gallionella	Mn/Fe Fixer	Precipitates	
		MnO_2 , Fe_2O_3	
Crenothrix	Mn/Fe Fixer	Precipitates	
		MnO_2 , Fe_2O_3	
Spaerotilus	Mn/Fe Fixer	Precipitates	
		MnO_2 , Fe_2O_3	
Nitrobacter	Nitrate	Produces HNO ₃	
	Reducer		

Bad For Copper Alloys

Bad for 300 Series SS

Bad for Cu & Steel

Hydrogen Embrittlement

- Has become very common on superferritic stainless steels and titanium
- Source or hydrogen is often cathodic protection systems
- These high performance alloys are often considered problem-free!

Hydrogen Embrittlement – Super-Ferritic Stainless

- Can occur quite suddenly under shock condition
- Occurs near H₂ source which is usually at end of tube at rolled transition joint.
- Usually at outer tubesheet edge near anode

Hydrogen Embrittlement – Titanium

- Growth in Ti is gradual
- Located mostly near source but area is more extended
- If cathodically induced, usually tubesheets are damaged at same time

Hydrogen Embrittlement

- In most cases easy to prevent!
 - Keep impressed current system voltage less negative than -750 mv.
 - Don't use Mg based sacrificial anodes
- Super-ferritic embrittlement is reversible
 - Once discovered, eliminate source and ductility will return
- Ti embrittlement is not reversible
 - 8 entire condensers have been replaced.

New Vibration Failure Mode

- Has been identified in 4 nuclear plants
- Random locations in the bundle
- Always associated with a longitudinal groove such as a scratch or weld depression

New Vibration Mode Failure

- Believed to be high cycle fatigue from "whirling" motion
 - Tube may be "ovaling" during whirl
- So far has only occurred to Ti
 - Ti has a low modulus and fatigue limit
 - May be accentuated by anisotropy precaution in ASME Section II Part D para. A454

Cleaning Challenges

Cleaning Challenges

- How to avoid?
 - Turn off wand before exiting and don't turn on until it's into tube!
 - Use other cleaning methods

Cleaning Challenges

Source: W. Wiltsey EPRI BOP/NDE Conf; Aug 6-8, 2012

 Two Ti tubed plants now having failures from ID grooves

"Tubes Are Not Made Like They Use To Be" Summary of 300 Series Critical Pitting Potential

Source	Ident	Anneal	Corr mV	Alloy	Comment
PTWM	D	Good furnace bright anneal	>1200	304L	
Α	Α		783	316L	
PTWM	L	Tinted furnace bright anneal	519	304L	
PTWM	Е	Poor furnace bright anneal	472	304L	Less shiny
Trent	G	Good in-line anneal	453	316L	
В	В		432	316L	
Trent	F	In-line too low of temp	423	316L	Spec min
Trent	Н	In-line with poor purge	364	316L	No tint
В	K		253	316L	Looks OK
C	С		248	316L	Dull

E. Blessman; EPRI Condenser Conf, Chicago 2011

Failures Happen Quicker!

- Copper Alloys
 - Years ago Arsenic was standard addition
 - Today's manufacturing is focused on price
- 300 Series Stainless
 - Today alloy shaving has alloys at bottom of ASTM specification
 - Furnace annealing almost non-existent today
- Specifications rarely require corrosion resistance test

Summary

- No alloy is immune to everything! Even the expensive ones...
- The old "proven" alloys are no longer proven.
- Almost every failure is avoidable provided homework and planning is done.

Questions

Oznur Celikkol MAP Construction & Trading +90.212.349 19 77

oznur.celikkol@mapinsaat.com

Dan Janikowski
Plymouth Tube
+1 262-642-8365
djanikowski@plymouth.com

