
Redpaper

Front cover

IBM HTTP Server on z/OS
Migrating from Domino-powered
to Apache-powered

Edward McCarthy

International Technical Support Organization

IBM HTTP Server on z/OS: Migrating from
Domino-powered to Apache-powered

October 2016

REDP-4987-02

© Copyright International Business Machines Corporation 2013, 2016. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Third Edition (October 2016)

This edition applies to Version 9 of IBM HTTP Server powered by Apache (product number xxx-xxx).

This document was created or updated on December 12, 2016.

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks .x

IBM Redbooks promotions . xi

Preface . xiii
Authors. xiii
Now you can become a published author, too! . xiv
Comments welcome. xiv
Stay connected to IBM Redbooks . xiv

Summary of changes .xv
October 2016, Third Edition .xv

Chapter 1. Introduction to IBM HTTP Server for z/OS . 1
1.1 Why you should migrate . 2

1.1.1 HTTP Server terminology . 3
1.1.2 IBM statement of support . 3
1.1.3 Documentation . 3

1.2 New features in V8.5.5 . 4
1.2.1 Updates to this IBM Redpaper publication . 4

1.3 New features in V9.0.0 . 5
1.4 Determining which IBM HTTP Server you are running . 6

1.4.1 Using SDSF to find running HTTP Servers. 6
1.4.2 Determining which TCP/IP ports are used . 7
1.4.3 Accessing the home page. 8
1.4.4 Using the ps command to check for HTTP Servers . 8
1.4.5 Checking for non-running IBM HTTP Servers. 9

1.5 Checking your IBM HTTP Server version . 10
1.5.1 Determining IBM HTTP Server powered by Domino version 10
1.5.2 Determining IBM HTTP Server powered by Apache version 12
1.5.3 For more information. 12

Chapter 2. Features and performance. 13
2.1 New features in V8.5.5 . 14

2.1.1 Listing MVS data sets . 14
2.1.2 HTTP response translation improvements . 15
2.1.3 Federal Information Processing Standards (FIPS140-2) support 16
2.1.4 31-bit support . 17
2.1.5 Features in IHS powered by Domino and not in IHS powered by Apache 17

2.2 Support for zEnterprise Data Compression . 17
2.2.1 zEnterprise Data Compression requirements . 18
2.2.2 Verifying that zEnterprise Data Compression is active . 18
2.2.3 Enabling use of zEnterprise Data Compression . 19
2.2.4 Testing . 19
2.2.5 SMF information . 20
2.2.6 Comparing results . 20
2.2.7 SMF information about hardware compression . 21
2.2.8 Compression log usage information . 23
© Copyright IBM Corp. 2013, 2016. All rights reserved. iii

2.3 Functional differences . 23
2.4 Performance comparison . 24

2.4.1 Basic measure of throughput test . 24
2.4.2 CPU utilization test . 25
2.4.3 Measure of throughput with and without caching test . 26
2.4.4 Measure of CPU test. 27

Chapter 3. Installing your first IHS . 29
3.1 IHS code that is shipped with z/OS 2.2. 30
3.2 Obtaining and installing the product code . 30

3.2.1 Delivered as a component of other IBM products . 30
3.2.2 Downloaded at no charge from the IBM Shopz website . 30

3.3 Ordering and installing by using Shopz. 31
3.3.1 IBM Shop z website . 31
3.3.2 Ordering software . 31
3.3.3 Downloading the software. 38
3.3.4 FTP product code to z/OS UNIX in z/OS . 40
3.3.5 First job to run: GIMUNZIP . 44
3.3.6 Second job to run: UNZIPJCL. 45
3.3.7 Setting up SMP/E . 46
3.3.8 Receiving the product code . 50
3.3.9 Applying the product code . 50
3.3.10 Accepting the product code . 52
3.3.11 Summary. 52

3.4 Installation when a component of another IBM product . 52
3.5 Sample real-world setup process . 53

3.5.1 Defining a configuration directory . 53
3.5.2 Defining a user ID . 54
3.5.3 Defining a protected user ID for the started task. 55
3.5.4 Creating the IHS . 56
3.5.5 Defining a RACF STARTED rule . 56
3.5.6 Creating a Started Task to run the IHS. 57
3.5.7 Verifying that IHS is working . 57

3.6 Using intermediate symbolic links . 58
3.6.1 Setting up an intermediate link . 59

3.7 Maintenance upgrade . 60
3.7.1 Gradual maintenance rollout approach. 61
3.7.2 New_install_root shell . 62

Chapter 4. Administration . 65
4.1 Running IBM HTTP Server powered by Apache. 66
4.2 Using started tasks . 66

4.2.1 Starting the server. 66
4.2.2 Stopping the server . 67
4.2.3 Recycling the server to pick up changes. 67
4.2.4 Modifying command support in V8.5.5 . 68
4.2.5 Displaying version in job log . 70

4.3 Using apachectl from the command line . 71
4.3.1 Starting the server. 71
4.3.2 Stopping the server . 72
4.3.3 Restarting the server. 72
4.3.4 Mix and match. 72

4.4 Integration with WebSphere Application Server . 72
iv IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

4.5 Configuration. 73
4.5.1 Listen directive . 73
4.5.2 Virtual hosting . 73

4.6 Monitoring . 75
4.6.1 SDSF . 75
4.6.2 Checking pid and log files . 75
4.6.3 Server status. 76
4.6.4 Server status by using the modify command . 77
4.6.5 Thread usage . 77

4.7 Diagnostic tools and information . 78
4.8 Troubleshooting . 79
4.9 Migrating previous versions . 79
4.10 Tracing . 80

4.10.1 Information about tracing . 80
4.10.2 Limitation. 81
4.10.3 Some examples . 81

4.11 Handling logging . 82
4.12 Macro support . 82
4.13 Conditional controls. 83

Chapter 5. Migration . 85
5.1 Planning your migration . 86

5.1.1 Migration plan . 86
5.2 Migration guidance . 87

5.2.1 Scalable mode . 87
5.2.2 SMF records . 87
5.2.3 Server home directory. 88
5.2.4 Ports . 88
5.2.5 Virtual hosts . 89
5.2.6 Security . 90
5.2.7 Logging . 91
5.2.8 URL and file mapping directives . 92
5.2.9 WebSphere Application Server plug-in . 94
5.2.10 Timeouts . 94
5.2.11 Caching. 95
5.2.12 ASCII/EBCDIC considerations . 95
5.2.13 GWAPI . 97
5.2.14 Reverse Proxy . 97
5.2.15 Comparing DGW and IHS use of directives . 97
5.2.16 Cleaning up PARMLIB . 97

5.3 Migrating Library Server . 97
5.3.1 Set up in DGW . 98
5.3.2 Set up in V8.5.5 . 98
5.3.3 Testing Library Server. 101

Chapter 6. Scalability and workload management. 103
6.1 Overview . 104
6.2 DGW approach . 104
6.3 IHS V8.5.5 approach. 105

6.3.1 Multi-processing module . 105
6.3.2 How V8.5.5 looks on z/OS . 107
6.3.3 Example of dynamic scalability . 108
6.3.4 Sizing your server . 109
 Contents v

6.4 V8.5.5 support for WLM . 110
6.5 Working with WLM in IHS V8.5.5 . 111

6.5.1 Mapping app requests to one WLM transaction class as default approach 111
6.5.2 Mapping an application for a specific virtual host . 111
6.5.3 Mapping multiple applications within a specific virtual host 111
6.5.4 Connecting WLM directives and WLM setup . 112
6.5.5 WLM in action . 113

6.6 Summary. 116

Chapter 7. Security . 117
7.1 Security overview . 118
7.2 Configuring V8.5.5 for your security requirements . 118

7.2.1 Allowing unauthenticated access . 119
7.2.2 Allowing all authenticated user access . 119
7.2.3 Allowing authenticated user that belongs to a group access 120
7.2.4 Allowing authenticated user access with client credentials. 121
7.2.5 Required SAF definitions . 121
7.2.6 Complex authorization logic . 122

7.3 SSL and Session ID . 122
7.4 Configuring SSL support . 123

7.4.1 RACF or keystore files . 123
7.4.2 Creating required certificates . 123
7.4.3 Updating httpd.conf . 124
7.4.4 Testing SSL . 125
7.4.5 Advanced SSL options . 126
7.4.6 Basic SNI Support. 126

7.5 Controlling access by using mod_rewrite . 128
7.6 Caching and security considerations . 129

7.6.1 Authorization and access control . 129
7.6.2 Local vulnerabilities. 130
7.6.3 Cache poisoning . 130

Chapter 8. System Management Facilities support in IHS V8.5.5. 131
8.1 SMF overview . 132
8.2 DGW and SMF . 132
8.3 V8.5.5 and SMF . 132

8.3.1 Comparing DGW and V8.5.5 SMF records. 132
8.3.2 Content . 133
8.3.3 SMF browser. 134
8.3.4 Enabling for subtype 13 . 134
8.3.5 Enabling for subtype 14 . 135

8.4 Summary. 136

Chapter 9. Plug-in for WebSphere Application Server . 137
9.1 Plug-in overview . 138
9.2 Intelligent Management for Web Servers feature . 138
9.3 Configuring WebSphere Application Server plug-in into IBM HTTP Servers 140

9.3.1 IBM HTTP Server powered by Domino. 140
9.3.2 IBM HTTP Server powered by Apache. 140
9.3.3 Key difference . 141
9.3.4 Working with the plug-in configuration file. 141
9.3.5 Regenerating the plug-in configuration file . 143
9.3.6 Managing who serves application static files . 143
vi IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Chapter 10. Cache configuration . 145
10.1 Caching overview . 146

10.1.1 What can be cached . 146
10.1.2 Not cached . 147
10.1.3 File-handle caching. 147
10.1.4 In-memory caching . 148
10.1.5 Disk-based caching. 150

10.2 Fast Response Cache Accelerator . 151

Chapter 11. Modules . 153
11.1 Why custom modules are used. 154

11.1.1 Popularity of Apache modules . 154
11.2 DGW modules. 154

11.2.1 Migrating GWAPI modules to V8.5.5 modules . 154
11.3 Simple helloworld module . 155

11.3.1 Code structure of helloworld module. 155
11.3.2 Compiling the helloworld module . 156
11.3.3 Integrating the new helloworld module into the configuration file 158
11.3.4 Testing the helloworld module . 158

11.4 Apache-supplied example module . 158
11.4.1 Code structure overview . 158
11.4.2 Compiling the example module. 159
11.4.3 Integrating the example_module into the server conf file 159
11.4.4 Testing the example_module . 160

11.5 Using an open source Apache module . 160
11.5.1 Limit IP module . 161
11.5.2 Compiling the module . 161
11.5.3 Updating the httpd.conf file . 161
11.5.4 Restarting and testing . 161

Chapter 12. CGI scripts . 163
12.1 CGI overview. 164

12.1.1 Brief history . 164
12.1.2 CGI disadvantage . 164
12.1.3 CGI alternatives . 164
12.1.4 A use for CGI . 164

12.2 Rexx CGI programs in DGW. 165
12.2.1 DGW support for CGI programs . 165
12.2.2 Sample Rexx CGI program. 165
12.2.3 Using exec directive . 165
12.2.4 Running the example.rx CGI. 165

12.3 Rexx CGI programs in V8.5.5 . 166
12.3.1 Default cgi-bin setup . 166
12.3.2 Changing example.rx to enable it for V8.5.5 . 166
12.3.3 Support for cgiutils and cgiparse in V8.5.5.2. 169
12.3.4 Escaped characters . 170
12.3.5 Rexx CGI summary. 172
12.3.6 More complex Rexx sample . 172

12.4 Perl CGI programs in V8.5.5 . 173
12.4.1 Using Perl on z/OS . 173
12.4.2 Sample Perl CGI program. 173
12.4.3 IHS and LIBPATH . 173
12.4.4 Testing the Perl CGI program . 174

12.5 PHP CGI programs in V9 . 174
 Contents vii

12.5.1 Using php on z/OS . 174
12.5.2 Rocket PHP software . 174
12.5.3 Running PHP CGI programs. 174
12.5.4 PHP by using the action approach . 175
12.5.5 PHP by using the shebang approach . 181

12.6 PHP CGI programs in V8.5.5 . 184
12.6.1 Sample php CGI program . 185
12.6.2 PHP wrapper program . 185
12.6.3 Modifications to the httpd.conf file. 185
12.6.4 Testing the PHP CGI program . 186

12.7 Lua support . 186
12.7.1 Lua overview. 186
12.7.2 Lua and Apache server . 186
12.7.3 Lua advantage . 186
12.7.4 Using Lua . 186
12.7.5 Lua examples . 187
12.7.6 More information . 188

Appendix A. Additional material . 189
Locating the web material . 189
Using the web material. 189

System requirements for downloading the web material . 189
Downloading and extracting the web material . 190
viii IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2013, 2016. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

AIX®
CICS®
Domino®
IBM®
Lotus®

MVS™
RACF®
Redbooks®
Redpaper™
Redbooks (logo) ®

RMF™
System z®
WebSphere®
z/OS®
zEnterprise®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
x IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

http://www.ibm.com/legal/copytrade.shtml

IBM REDBOOKS PROMOTIONS
Find and read thousands of
IBM Redbooks publications

Search, bookmark, save and organize favorites

Get personalized notifications of new content

Link to the latest Redbooks blogs and videos

Download
Now

Get the latest version of the Redbooks Mobile App

iO
S

Android

Place a Sponsorship Promotion in an IBM
Redbooks publication, featuring your business
or solution with a link to your web site.

Qualified IBM Business Partners may place a full page
promotion in the most popular Redbooks publications.
Imagine the power of being seen by users who download
millions of Redbooks publications each year!

®

®

Promote your business
in an IBM Redbooks
publication

ibm.com/Redbooks
About Redbooks Business Partner Programs

IBM Redbooks promotions

http://bit.ly/redbooksapp
http://bit.ly/1bvYuMM
http://bit.ly/1lCxuBG
http://ibm.co/1maZVrw

THIS PAGE INTENTIONALLY LEFT BLANK

Preface

Users of IBM® z/OS® for the past several years had a choice of two HTTP Servers that they
can use. Now, one server became strategic while the other is no longer supported with z/OS
V2.2. IHS powered by Apache supports IPv6 and 64-bit execution and includes security
authentication and authorization capabilities that are similar to those capabilities that are
provided in IHS powered by IBM Domino®.

This IBM Redpaper™ publication is aimed at technicians who are responsible for planning
and deploying system software. It provides informationon about the various features that are
available in IBM HTTP Server powered by Apache. It also provides guidance about how to
upgrade from the old product to the new product.

Authors

This paper was produced by a team of specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

Edward McCarthy is an IBM certified specialist with over 14 years experience working with
IBM WebSphere® Application Server on various operating systems, including z/OS, Linux on
IBM System z®, IBM AIX®, and Windows. He has designed and configured numerous
WebSphere Application Server environments for many customers. He also has been involved
with all aspects of WebSphere Application Server, such as tuning, automating administration,
problem solving, and integration. Before joining IBM in 2000, he was an IBM CICS® and
WebSphere MQ systems programmer with an Australian government department for over
nine years. During this time, he implemented each new CICS version as part of an IBM beta
program. Edward also has worked on several IBM Redbooks®. He has presented
WebSphere topics at various conferences.

Thanks to the following people for their contributions to this project:

� Rich Conway
� Gary Puchkoff
� Donald Calas
� Mike Cox
� Eric M Covener
� Peter Kingsley
� Patrick O'Donnell
� Jeff Mierzejewski
� Bob Rinda
� Marna Walle
� William White
� Keith Winnard

Thanks to the authors of the first edition, IBM HTTP Server on z/OS: Migrating from
Domino-powered to Apache-powered, published in October 2013:

� Mike Ebbers
� Douglas Cardoso
� Camila Colanica
� Edward McCarthy
� Calalin Mierlea
© Copyright IBM Corp. 2013, 2016. All rights reserved. xiii

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xiv IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Summary of changes

This section describes the technical changes that were made in this edition of the paper and
in previous editions. This edition might also include minor corrections and editorial changes
that are not identified.

Summary of Changes
for IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered
as created or updated on December 12, 2016.

October 2016, Third Edition

This revision includes the following new and changed information.

New information
This revision describes new capability introduced in IBM HTTP Server powered by Apache
V9 such as:

� Basic SNI support
� Trace capability
� Improved log handling capability
� Support for use of Macros in conf file
� Conditional control
� Complex authorization logic
� Support for LUA

Changed information
� Define a protected user ID for the started task
� Document comparing DGW and IHS use of directives
� Clean up of Parmlib
� Include PHP CGI programs in V9
� Define a protected user ID for the started task
� Document comparing DGW and IHS use of directives
© Copyright IBM Corp. 2013, 2016. All rights reserved. xv

xvi IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Chapter 1. Introduction to IBM HTTP Server
for z/OS

Users of z/OS for the past several years had a choice of two HTTP Servers that they can use.

The original HTTP Server for use on z/OS (introduced in the 1990s) often was referred to as
the Domino Go Webserver, DGW, or simply IHS.

When the WebSphere Application Server product became available on z/OS around 2003, it
included an HTTP Server that was based on the widely used Apache HTTP Server. This
version became the strategic HTTP Server on z/OS, and the original version at some point
will no longer be supported.1

The aim of this IBM Redpaper publication is to describe various features that are available in
IBM HTTP Server powered by Apache, and to compare IBM HTTP Server powered by
Apache with IBM HTTP Server powered by Domino. It also provides advice on how to migrate
from the old version to the new version.

This chapter includes the following topics:

� 1.1, “Why you should migrate” on page 2
� 1.2, “New features in V8.5.5” on page 4
� 1.3, “New features in V9.0.0” on page 5
� 1.4, “Determining which IBM HTTP Server you are running” on page 6
� 1.5, “Checking your IBM HTTP Server version” on page 10

1

1 At the time of writing, z/OS V2.1 is planned as the last supported release for DGW.
© Copyright IBM Corp. 2013, 2016. All rights reserved. 1

1.1 Why you should migrate

The latest IBM HTTP Server is based on Apache and it is referred to as IBM HTTP Server
powered by Apache. This HTTP Server product is for z/OS that IBM is investing in for future
development.

The older IBM HTTP Server, powered by Domino, was functionally stabilized for several
years. The final version is IBM HTTP Server for z/OS V5.3. This product was referred to as
the IBM Lotus® Domino Go Web Server (DGW). IBM announced that z/OS V2.1 is the last
release of z/OS to include IBM HTTP Server powered by Domino. For more information, see
the z/OS 2.1 IBM Knowledge Center at this website:

https://ibm.biz/BdrTLs

IBM HTTP Server powered by Apache was available for many years and is the supported
IHS. It is available in z/OS Ported Tools2. IHS powered by Apache supports IPv6 and 64-bit
execution, and includes security authentication and authorization capabilities that are similar
to those capabilities that are provided in IHS powered by Domino.

IBM now ships IBM HTTP Server powered by Apache V9 with z/OS 2.2, as described in 3.1,
“IHS code that is shipped with z/OS 2.2” on page 30.

IBM recommends that clients who use IBM HTTP Server powered by Domino migrate to IBM
HTTP Server powered by Apache. This migration enables you to use the capability that is
provided by the Apache-based server, along with any other features that IBM might add in
future releases.

For those clients who are using an IBM product that uses the Domino powered server, be
aware that IBM is working to upgrade these products to replace the use of IBM HTTP Server
powered by Domino with IBM HTTP Server powered by Apache. Look for documentation
about each product as those changes are made or contact that product team for current
information about HTTP Server support.

IBM HTTP Server is based on Apache HTTP Server 2.2.8, with more fixes. The original
Apache server was developed in 1995 and is now developed and maintained by the Apache
Software Foundation, which is an open source community. Apache is a C language
implementation of an HTTP web server. It is widely used on many operating systems and
features a wide user community. You can extend the core capability by developing your own
modules or by using modules that are developed.

This wide user base provides a large community where you can obtain advice and examples
of how to the Apache HTTP Server is used, which can be of use for use of IBM HTTP Server
based on Apache.

IBM HTTP Server powered by Apache supports IPV6, whereas the older product does not
provide this support.

2 http://www.ibm.com/systems/z/os/zos/features/unix/ported/ihs/ihsv85.html
2 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

https://ibm.biz/BdrTLs
http://www-03.ibm.com/systems/z/os/zos/features/unix/ported/ihs/ihsv85.html
http://www.ibm.com/systems/z/os/zos/features/unix/ported/ihs/ihsv85.html

1.1.1 HTTP Server terminology

As described in this paper, an older and a newer IBM HTTP Server are available. It is
important to establish the terminology for these products and how we refer to the products.
Table 1-1 shows terminology for the two HTTP Server products.

Table 1-1 IBM HTTP Server terminology

On occasion, the generic terms IBM HTTP Server or IHS are used to refer to both products
when the topic being described is applicable to both.

1.1.2 IBM statement of support

For more information about which versions of the IBM HTTP Server powered by Apache will
be supported with z/OS 2.2, see this website:

https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10857

1.1.3 Documentation

For more information about documentation for the IHS powered by Domino shipped with z/OS
V1R13, see this website:

https://ibm.biz/BdrT9U

For more information about documentation for the IHS powered by Apache documentation at
the V8.5 level, see this website:

https://ibm.biz/BdrT9N

For more information about documentation for the IHS powered by Apache documentation at
the V9.0 level, see this website:

https://ibm.biz/BdrT97

For more information about migration documentation, see this website:

https://ibm.biz/BdrTCc

Official Name Short name Latest version How obtained

IBM HTTP Server
Powered by Domino

IHS Domino or IHS
DGW or DGW

V5.3 Included in z/OS until
V2.1 (then
discontinued)

IBM HTTP Server
Powered by Apache

IHS Apache or IHS V8.5.5 z/OS Ported Tools
WebSphere z/OS

IBM HTTP Server
Powered by Apache

IHS Apache or IHS V9.0 Shipped with z/OS 2.2

Note: You can use your IBM Ported Tools V1.3 IHSA feature (8.5.5) concurrently with z/OS
V2.2 IHSA (9.0) for some time until z/OS V2.1 is end of service (planned for September
2018).
Chapter 1. Introduction to IBM HTTP Server for z/OS 3

https://ibm.biz/BdrT9U
https://ibm.biz/BdrT9N
https://ibm.biz/BdrTCc
https://ibm.biz/BdrT97
https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10857

1.2 New features in V8.5.5

The latest version of IBM HTTP Server powered by Apache is V8.5.5 and includes several
new features. These new features are listed in Table 1-2.

Table 1-2 New features

1.2.1 Updates to this IBM Redpaper publication

The updates that were made in this edition of the Redpaper publication from December 2014
are listed in Table 1-3.

Table 1-3 Updates to the Second Edition

Feature For more information, see... Description

Scalability improvements
(Event MPM)

Chapter 6, “Scalability and
workload management” on
page 103

Use of the event MPM improves
the performance of the server.

z/OS Workload Management
classification of requests

Chapter 6 “V8.5.5 Support for
WLM”

Allows requests to be classified
to WLM transaction classes.

Systems Management
Facilities (SMF) logging

Chapter 8, “System
Management Facilities support
in IHS V8.5.5” on page 131

Logging to SMF records of
servers usage information and
individual requests.

z/OS operator commands 4.2.4, “Modifying command
support in V8.5.5” on page 68

Provides support to allow
standard type commands to be
issued.

Federal Information Processing
Standard (FIPS140-2) support

2.1.3, “Federal Information
Processing Standards
(FIPS140-2) support” on
page 16

Configures System SSL to use
only FIPS certified security
module.

IBM MVS™ data set support 2.1.1, “Listing MVS data sets”
on page 14

Allows serving of data sets
without the need to use CGI.

HTTP response translation
improvements

2.1.2, “HTTP response
translation improvements” on
page 15

Allows Content-Encoding
header to influence translation.

31-bit runtime support 2.1.4, “31-bit support” on
page 17

Assists with migration from IBM
HTTP Server powered by
Domino.

Update Description

“Using Health Check” on
page 10

Describes how to use Health Check to check for presence of IBM
HTTP Servers that are powered by Domino.

2.2, “Support for zEnterprise
Data Compression” on page 17

Describes support for the IBM zEnterprise® Data Compression
capability.

3.3, “Ordering and installing by
using Shopz” on page 31

Describes ordering and installing the product from Shopz.

“Length of STC name
consideration” on page 69

Clarifies modifying commands and Started Task name length.
4 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

1.3 New features in V9.0.0

The latest version of IBM HTTP Server powered by Apache is V9.0.0 and includes several
new features. These new features are listed in Table 1-4. These updates that were made to
this edition of the Redpaper publication were published in 2016.

Table 1-4 V9.0.0.0 list of new features

4.6.4, “Server status by using
the modify command” on
page 77

Describes other modify commands that are used to display server
status information.

5.3, “Migrating Library Server”
on page 97

Shows how to support Library Server in an IBM HTTP Server
powered by Apache.

11.1.1, “Popularity of Apache
modules” on page 154

Provides more advice about module development.

“MaxSpareThreads” on
page 110

Defines the MaxSpareThreads parameter.

Update Description

Feature For more information, see... Description

Basic SNI support 7.4.6, “Basic SNI Support” on
page 126

Allows server to send different
server-side certificate on same
TCPIP port, depending on DNS
name that is used.

Trace capability 4.10, “Tracing” on page 80 Traces request processing.

Improved log handling
capability

4.11, “Handling logging” on
page 82

Provides improved capability in
the way log files can be
handled.

Support for use of Macros in
configuration file

4.11, “Handling logging” on
page 82

Enables the use of macros to
simplify configuring a
configuration file.

Conditional control 4.13, “Conditional controls” on
page 83

New directives to control the
directives that are used, which
is an alternative to the use of
ReWrite directives.

Complex authorization logic 7.2.6, “Complex authorization
logic” on page 122

Enables configuring complex
authorization logic to control
access.

Support for LUA 12.7, “Lua support” on
page 186

A powerful embeddable
scripting language that is a
better way to perform CGI-type
programming.
Chapter 1. Introduction to IBM HTTP Server for z/OS 5

Other updates made to this Redbooks publication in June 2016 are listed in Table 1-5.

Table 1-5 Other updates made in 2016

1.4 Determining which IBM HTTP Server you are running

Most z/OS clients know whether they are running an HTTP Server on z/OS and whether they
are using IBM HTTP Server DGW, IBM HTTP Server Powered by Apache, or both. However,
if this information is unknown, you can use methods that are described in this section to
determine which server is being used.

1.4.1 Using SDSF to find running HTTP Servers

You can use SDSF to find if there are any HTTP Servers running on your z/OS LPARs.

Finding IBM HTTP Servers powered by Domino
Complete the following steps:

1. In SDSF, issue the pre * command so that you can see all of the STCs that are running on
the z/OS LPAR.

2. Enter a PS command to display the SDSF process display. Look for the column that is
named “Command”. You might need to scroll the display to the right to find the column.

3. Issue the following sort command to sort the Command column display in descending
order:

sort command d

4. Examine the Command column for instances of the word IMWHTTPD. If you find any
instances, these tasks are started tasks that are running IBM HTTP Server powered by
Domino. You can select that entry to view the JCL and determine which proclib it is read
from and then track down the owner.

We used this approach on the LPAR that we used for this Redpaper publication. Our SDSF
showed the output that is shown in Example 1-1 on page 7. Two servers that are named
IHSDC001 and IHSDE001 are running IBM HTTP Server powered by Domino.

Update Description

3.5.3, “Defining a protected
user ID for the started task” on
page 55

Guidance about setting up a different user ID under which to run
the started tasks.

3.7, “Maintenance upgrade” on
page 60

Discussion on how to plan applying maintenance and use of new
new_install_root shell

5.2.15, “Comparing DGW and
IHS use of directives” on
page 97

IBM document that compares how to perform the same logical
function in DGW and IHS.

5.2.16, “Cleaning up PARMLIB”
on page 97

Removing references to DGW from PARMLIB.

12.5, “PHP CGI programs in
V9” on page 174

Describes how to run PHP CGI programs, including use of
authentication.
6 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Example 1-1 SDSF output showing running IBM HTTP Servers powered by Domino

JOBNAME PID PPID ASID ASIDX LatchWaitPID Command
REXECD 131125 1 87 0057 RSHD
PMAP 33685558 1 82 0052 PORTMAP
IHSDC001 84018040 1 113 0071 IMWHTTPD
IHSDE001 84020252 1 133 0085 IMWHTTPD
IHV 131173 1 78 004E IHVINIT
JES2S001 16908334 1 30 001E IAZNJTCP

Finding IBM HTTP Servers powered by Apache
There is a similar process to determine whether there are any IBM HTTP Servers powered by
Apache running on a z/OS LPAR. Complete the following steps:

1. In SDSF, issue the pre * command.

2. Issue a PS command to display the SDSF process display. Look for the column that is
named Command. You might need to scroll the display to the right to find it.

3. Sort the display in descending order in the Command column by using the following
command:

sort command d

Depending on the directory that IBM HTTP Server powered by Apache is in, it might not be
easy to find a match in the display. Example 1-2 shows the output from SDSF on our z/OS
LPAR and the entries that are for IBM HTTP Server powered by Apache. Although the
displayed value in the Command column is truncated, we can see the string apach, which is
enough information to determine that which is enough information to determine that these
started tasks are running Apache. By selecting the entry, we view the STC JCL and help find
the owner.

Example 1-2 SDSF output showing running IBM HTTP Servers powered by Apache

JOBNAME PID Command
IHSAC001 -sh -c /ihsconfig/ihs/ihsac001/bin/apach
IHSAE002 -sh -c /ihsconfig/ihs/ihsae002/bin/apach
IHSAM001 /bin/sh -c /ihsconfig/ihs/ihsam001/bin/r
IHSAC001 /bin/sh /ihsconfig/ihs/ihsac001/bin/apac
IHSAE002 /bin/sh /ihsconfig/ihs/ihsae002/bin/apac
IHSAC001 /ihsconfig/ihs/ihsac001/bin/httpd -d /ih
IHSAC001 /ihsconfig/ihs/ihsac001/bin/httpd -d /ih

1.4.2 Determining which TCP/IP ports are used

It is useful to determine on which TCP/IP ports the HTTP Servers are listening.

One approach is to use the netstat command in the UNIX Systems Services (z/OS UNIX)
environment of z/OS. You can access the z/OS UNIX environment by one of the following
means:

� Log on to z/OS by using Telnet or SSH
� From ISPF, enter the TSO OMVS command

After you are in the z/OS UNIX environment, you can enter the netstat command.
Chapter 1. Introduction to IBM HTTP Server for z/OS 7

Because we knew that we had an HTTP Server running that was named IHSAE002, we
issued the netstat command and then sent that output to the grep command so that only
lines with the string IHSAE002 are displayed. The output that was produced is shown in
Example 1-3.

Example 1-3 Issuing netstat command

EDMCAR @ SC55:/Z1DRC1/usr/lpp/internet/bin>netstat | grep IHSAE002
IHSAE002 00AA7A07 9.12.4.28..21451 9.12.4.28..19067 Establsh
IHSAE002 008F1959 0.0.0.0..8235 0.0.0.0..0 Listen
IHSAE002 00AA7A05 9.12.4.29..8235 9.190.237.133..62941 Establsh

The line that includes the word “Listen” shows the TCP/IP port on which the IHSAE002 server
is listening, which in Example 1-3 is port 8235.

The last line shows that there is a TCP/IP connection between the HTTP Server and a client.
The client has a TCP/IP address of 9.190.237.133, and the host z/OS LPAR has a TCP/IP
address of 9.12.4.29.

1.4.3 Accessing the home page

By using this information, you can construct the URL to use to access the home page of the
HTTP Server, which in this case is the following URL:

http://9.12.4.29:8235

1.4.4 Using the ps command to check for HTTP Servers

Another way to check for running HTTP servers on your z/OS LPARs is to use the ps
command from the z/OS UNIX environment. To do perform this check, you must be
authorized to list all processes that are running.

Although you can use a user ID that has access to the BPX.SUPERUSER IBM RACF® rule,
a safer approach is use a user ID that has access to a RACF profile that specifically grants
the user the authority to perform only this requirement.

On our z/OS system, we issued the commands that are shown in Example 1-4 to give our
user ID EDMCAR read access to the required RACF profile.

Example 1-4 RACF commands to allow ps command to display all processes

permit SUPERUSER.PROCESS.GETPSENT class(unixpriv) id(edmcar) access(read)
SETROPTS RACLIST(unixpriv) REFRESH

We then logged on to the z/OS LPAR by using telnet and issued the ps -ef command. All
processes that are running in the z/OS UNIX environment were displayed. We then issued
the command that us shown in Example 1-5 to find any processes that were running IBM
HTTP Server for Domino.

Example 1-5 Using ps command to find running IBM HTTP Server powered by Domino

EDMCAR @ SC55:/u/edmcar>ps -ef | grep HTTP
IHSDC001 84018040 1 - Jun 19 ? 1:17 IMWHTTPD
IHSDE001 84020252 1 - Jun 24 ? 0:28 IMWHTTPD
8 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

The result of the command showed two processes, the names of which corresponded to
started tasks. If you performed this process on your own z/OS LPAR, you then use SDSF to
find the started task and view the JCL.

We then issued a similar command, but this time looking for the string “apache”, the result of
which is shown in Example 1-6.

Example 1-6 Using ps command to find running IBM HTTP Server powered by Apache

IHSAC001 33686436 1 - Jun 17 ? 0:00 -sh -c
/ihsconfig/ihs/ihsac001/bin/apachectl -k start -f conf/httpd.conf -DNO_
IHSAC001 33686437 33686436 - Jun 17 ? 0:00 /bin/sh
/ihsconfig/ihs/ihsac001/bin/apachectl -k start -f conf/httpd.conf -DNO
IHSAE001 67243597 1 - Jun 26 ? 0:00 -sh -c
/ihsconfig/ihs/ihsae002/bin/apachectl -k start -f conf/httpd.conf -DNO_
IHSAE001 84020819 67243597 - Jun 26 ? 0:00 /bin/sh
/ihsconfig/ihs/ihsae002/bin/apachectl -k start -f conf/httpd.conf -DNO

The result of the command showed four processes, the names of which corresponded to
started tasks. If you performed this process on your own z/OS LPAR, you then use SDSF to
find the started task and view the JCL.

1.4.5 Checking for non-running IBM HTTP Servers

It might be that you have HTTP Servers set up on your z/OS LPARs, but they are not running.
In that case, you cannot use the approaches that are described in 1.4, “Determining which
IBM HTTP Server you are running” on page 6. The most likely place to search is in the proclib
that is used by z/OS when started tasks are started. Locate the JES Procedure library as
shown in Example 1-7.

Example 1-7 Editing the SYS1.PROCLIB data set

Edit Entry Panel
Command ===>

ISPF Library:
 Project . . .
 Group
 Type
 Member . . . (Blank or pattern for member selection list)

Other Partitioned, Sequential or VSAM data set, or z/OS UNIX file:
 Name 'sys1.proclib'
 Volume Serial . . (If not cataloged)

Workstation File:
 File Name . .

Locate your Webserver member, then edit it as shown in Example 1-8.

Example 1-8 Webserver member

Menu Functions Utilities Help
sss
EDIT SYS1.PROCLIB
Command ===>
 Name Prompt Size Created
s IHSAE001 15 2013/06/13
. IHSAE002 15 2013/06/20
Chapter 1. Introduction to IBM HTTP Server for z/OS 9

. IHSAM001 15 2013/06/14

. IHSDC001 12 2013/06/14

. IHSDD001 12 2013/06/14

. IHSDE00# 19 2013/06/14

. IHSDE001 12 2013/06/13

. IHSDM001 12 2013/06/14

If the output shows PARM=’SH &DIR/bin/apachetl, you are running an IBM HTTP Server
Powered by Apache, as shown in Example 1-9.

Example 1-9 JCL showing use of apachectl

//IHS EXEC PGM=BPXBATCH,
// PARM='SH &DIR/bin/apachectl -k &ACTION -f &CONF -DNO_DETACH',

If the output is similar to the output that is shown in Example 1-10 (which shows the line EXEC
PGM=IMWHTTPD), you are running a Domino Go server.

Example 1-10 JCL showing use of IMWHTTPD

//WEBSRV EXEC PGM=IMWHTTPD,REGION=0K,TIME=NOLIMIT,
// PARM=('&LEPARM/&P1 &P2 &P3')

1.5 Checking your IBM HTTP Server version

It is useful to determine what version of HTTP Server you are using.

1.5.1 Determining IBM HTTP Server powered by Domino version

In SDSF, select the started task that is the running IBM HTTP Server powered by Domino.
The initial content of the OUTPUT DD of our running server is shown in Example 1-11.

Example 1-11 Output showing version for IBM HTTP Server powered by Domino

This is IBM HTTP Server V5R3M0
Built on Mar 28 2013 at 03:04:26.
Started at Mon Jun 24 20:06:23 2013
Running as "IHSDE001", UID:35002, GID:36000.
Using _CEE_ENVFILE /usr/lpp/internet/etc/httpd.envvars.
Using configuration file /etc/ihsde001/etc/httpd.conf.

As shown in Example 1-11, the version is V5R3M0.

Using Health Check
IBM developed a Rexx program that can be used as part of the Health Check capability to
check for the presence of IBM HTTP Servers powered by Domino. It can be used to help
prepare for the migration to z/OS 2.2. For more information about updates to the migration
Health Check about this Rexx, see the following z/OS migration and installation website:

http://www.ibm.com/systems/z/os/zos/installation/
10 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

http://www.ibm.com/systems/z/os/zos/installation/

Updating SAXREXX
We obtained an initial version of this Rexx from the IBM developer and copied it to a data set
that is concatenated to our SAXREXEC. We were advised to not copy it into the
SYS1.SAXREEXEC data set. On our system, we looked in the SYS1.PARMLIB(AXR00)
member and saw that a data set that is named WTSCPLX1.REXXEXEC was added to the
system Rexx setup. We put the Rexx into that data set.

Update HZSPARM
Copy the text that is shown in Example 1-12 into HZSPRMxx of your SYS1.PARMLIB.

Example 1-12 Text to update HXSPARM

ADDREP CHECK(IBMZMIG,ZOSMIG_HTTP_SERVER_DOMINO_CHECK)
 EXEC(DOMCHK)
 REXXHLQ(IBMZMIG)
 REXXTSO(YES)
 REXXIN(NO)
 MSGTBL(*NONE)
 USS(NO)
 VERBOSE(NO)
 SEVERITY(MEDIUM)
 INTERVAL(168:00) <=== once a week
 ACTIVE <=== change to inactive, if you don't want it to run right
now.
 EINTERVAL(SYSTEM)
 DATE(20140915)
 PARM('')
 REASON('Verify that IBM HTTP Server Domino is not in use.')

Importing change dynamically
Issue commands similar to the following commands to dynamically activate the entries that
are shown in Example 1-12:

F HZSPROC,ADD,PARMLIB=(xx)
F HZSPROC,REPLACE,PARMLIB=(xx,yy)

Example result
We started a IBM HTTP Server powered by Domino on our z/OS LPAR and then issued the
command. In the z/OS system log, we saw the messages that are shown in Example 1-13.

Example 1-13 Messages from running Health Check

F HZSPROC,ADD,PARMLIB=(02)
IEE252I MEMBER HZSPRM02 FOUND IN SYS1.PARMLIB
HZS0400I CHECK(IBMZMIG,ZOSMIG_HTTP_SERVER_DOMINO_CHECK): 769
ADD PROCESSING HAS BEEN COMPLETED
HZS0403I ADD PARMLIB PROCESSING HAS BEEN COMPLETED
D OMVS,ASID=ALL
BPXO070I 04.03.22 DISPLAY OMVS 772
OMVS 0011 ACTIVE OMVS=(1A)
USER JOBNAME ASID PID PPID STATE START CT_SECS
OMVSKERN BPXOINIT 002C 1 0 MR------ 08.46.23 22.8
 LATCHWAITPID= 0 CMD=BPXPINPR
 SERVER=Init Process AF= 0 MF=00000 TYPE=FILE
STC RESOLVER 0015 131074 1 1R---B-- 08.46.23 1.7
 LATCHWAITPID= 0 CMD=EZBREINI
IHSDE001 IHSDE001 0025 33686057 1 HK------ 04.02.44 .0
 LATCHWAITPID= 0 CMD=IMWHTTPD
Chapter 1. Introduction to IBM HTTP Server for z/OS 11

HZS0002E CHECK(IBMZMIG,ZOSMIG_HTTP_SERVER_DOMINO_CHECK): 773
DOMCHK8 One or more IBM HTTP Server(s) Powered by Domino were found.
IHSDE001

The last message that is shown identified the started task IHSDE001 as being an IBM HTTP
Server powered by Domino.

1.5.2 Determining IBM HTTP Server powered by Apache version

The started task that runs IBM HTTP Server powered by Apache does not display any version
information. This information often can be found in the error log file. Messages that include
the version are written to this log file when it is started, as shown in Example 1-14.

Example 1-14 Output showing version for IBM HTTP Server powered by Apache

Using config file /ihsconfig/ihs/ihsae001/conf/httpd.conf with -DNO_DETACH -DZOS
IBM_HTTP_Server/8.5.5.1 (UNIX) configured -- resuming normal operations

As shown in Example 1-14, the version of V8.5.5.1. Another option is to use the apachectl
command, as shown in Example 1-15. This approach shows the version and build date.

Example 1-15 Using apachectl to get version and build date

EDMCAR @ SC55:/ihsconfig/ihs/ihsae001/bin>./apachectl -v
Server version: IBM_HTTP_Server/8.5.5.1 (UNIX)
Server built: May 23 2013 00:51:38

1.5.3 For more information

For more information about how to find the IBM HTTP Server version you are running, see
this website:

https://ibm.biz/Bdrkfv
12 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

https://ibm.biz/Bdrkfv

Chapter 2. Features and performance

This chapter describes some of the new features in V8.5.5 of IBM HTTP Server powered by
Apache that are not covered elsewhere in this publication. Also described is a 2006
performance comparison of the two IBM HTTP Servers that are available on z/OS.

This chapter includes the following topics:

� 2.1, “New features in V8.5.5” on page 14
� 2.2, “Support for zEnterprise Data Compression” on page 17
� 2.3, “Functional differences” on page 23
� 2.4, “Performance comparison” on page 24

2

© Copyright IBM Corp. 2013, 2016. All rights reserved. 13

2.1 New features in V8.5.5

In the following sections, we describe the following new features that are not covered
elsewhere in this paper:

� 2.1.1, “Listing MVS data sets” on page 14
� 2.1.2, “HTTP response translation improvements” on page 15
� 2.1.3, “Federal Information Processing Standards (FIPS140-2) support” on page 16
� 2.1.4, “31-bit support” on page 17
� 2.2, “Support for zEnterprise Data Compression” on page 17

2.1.1 Listing MVS data sets

IBM HTTP Server powered by Domino supplied a sample GWAPI that provided a way to allow
users view z/OS data sets from a browser. Before Version 8.5.5, IBM HTTP Server powered
by Apache supplied a sample CGI program that provided a similar capability. For more
information, see this website:

http://people.apache.org/~gregames/mvsds

Version 8.5.5, IBM HTTP Server powered by Apache supplies a new module that includes a
more integrated way of providing this capability that does not use CGI programs. To use this
module, you must add the following line to your httpd.conf file:

LoadModule mvsds_module modules/mod_mvsds.so

Then, you add new directives to the httpd.conf so that the server can display z/OS data sets,
as shown in Example 2-1.

Example 2-1 Adding directives to allow viewing of z/OS data sets

<VirtualHost wtsc55.itso.ibm.com:8235>
<Location /mvsds >
Treat URL's as dataset names
MVSDS ON

Data sets often lack file extensions
DefaultType text/plain

Allow PDS listings
MVSDSIndexes On
</Location>

We added the directives that are shown in Example 2-1 to a server on our system and used
the http://wtsc55.itso.ibm.com:8235/mvsds/'edmcar.z.cntl' to view a data set.
14 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

http://people.apache.org/~gregames/mvsds
http://wtsc55.itso.ibm.com:8235/mvsds/'edmcar.z.cntl'
http://wtsc55.itso.ibm.com:8235/mvsds/'edmcar.z.cntl'

The produced output is shown in Example 2-2.

Example 2-2 Listing of data set members as seen in browser

Directory Listing of
'EDMCAR.Z.CNTL':
Name Size Created Changed ID

APPLYPTF 11 2009/03/04 2009/03/04 01:54:35 EDMCAR

ASMEXIT 23 2008/06/12 2008/06/12 22:56:07 EDMCAR

ASMRAUTH 23 2013/03/13 2013/04/08 05:07:42 EDMCAR

ASMRMMGR 22 2012/11/11 2013/02/28 19:27:48 EDMCAR
BPXBATCH 11 2010/02/16 2010/04/28 22:53:51 EDMCAR

We then clicked a member and its content was displayed.

This feature cannot display a list of data sets that match a specific mask. For example, the
following URL does not work:

http://wtsc55.itso.ibm.com:8235/mvsds/'edmcar'

You must enter the full name of the data set that you want to view.

2.1.2 HTTP response translation improvements

Traditionally, IBM HTTP Server powered by Apache performs translation between characters
sets that are based on the value of the Content-Type header alone. In Version 8.5.5, this
translation can now be influenced by using the Content-Encoding header. This header might
be useful in CGI programs that are sending data in EBCDIC or ASCII and want to influence
how the server translates. This feature is enabled by adding the following directive:

CharsetOptions DGWCompat

This directive can be added to affect all requests or added within specific Location directives,
as required. We set up a simple Rexx program as a test. Our code is shown in Example 2-3.

Example 2-3 Rexx CGI program to demonstrate DGWCompat

/* REXX */
 say 'Content-type: text/html;charset=UTF-8'
 say 'Content-Encoding: EBCDIC’
 /* This next line separates the HTTP Header above from the
 the HTTP response body, and must be present */
 say ''
 say 'Hello from a Rexx CGI at time: 'time()
 asciiString = '30313233343536373839'x
 ebcdicString = 'F0F1F2F3F4F5F6F7F8F9'x
 say 'Ascii numbers: ' asciiString '
'
 say 'Ebcdic numbers: ' ebcdicString '
'
 exit
Chapter 2. Features and performance 15

/mvsds/'edmcar.z.cntl(APPLYPTF)'
/mvsds/'edmcar.z.cntl(ASMEXIT)'
/mvsds/'edmcar.z.cntl(ASMRAUTH)'
/mvsds/'edmcar.z.cntl(ASMRMMGR)'
/mvsds/'edmcar.z.cntl(BPXBATCH)'

When we ran this CGI program, we saw the output that is shown Example 2-4.

Example 2-4 Output when encoding header set to EBCDIC

Hello from a Rexx CGI at time: 21:34:31 Ascii numbers: ????????
Ebcdic numbers: 0123456789

We then changed the following line of the Rexx:

say 'Content-Encoding: EBCDIC'

to

say 'Content-Encoding: ASCII'

Rerunning the request produced the output that is shown in Example 2-5.

Example 2-5 Output when Encoding header is ASCII

ȅ???@????@?@م??@???@??@????z@??z??z??-?????@???????z@@0123456789
@L??n-ł????@???????z@@??????????@L??n-
L

Most of the output was now unreadable, but the ASCII string of numbers that was previously
unreadable is now readable.

2.1.3 Federal Information Processing Standards (FIPS140-2) support

Support is provided for the Federal Information Processing Standard (FIPS140-2).

The FIPS 140-2 standard was published by the National Institute of Standards and
Technology (NIST).

This standard defines the security requirements that must be satisfied by a cryptographic
module that is used in a security system that is protecting unclassified information within IT
systems. It is intended to cover various potential applications and environments in which
cryptographic modules might be deployed.

FIPS140-2 support is enabled by using the SSLFIPSEnable directive, which can be used only
in global scope in the httpd.conf file on z/OS. We configured System SSL to use only a
FIPS-certified security module. Restarting the server cannot be used to pick up changes that
are related to this directive; instead, you must stop and then restart the server.

An example of how to use the SSLFIPSEnable directive is shown in Example 2-6.

Example 2-6 Example of using the SSLFIPSEnable directive

z/OS: Global Scope only.
SSLFIPSEnable
<VirtualHost *:443>
SSLEnable
KeyFile safkeyring:///WASKeyring
</VirtualHost>
16 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

2.1.4 31-bit support

Version 8.5.5 of IBM HTTP Server powered by Apache now includes a 31-bit run time to help
migrate from DGW.

This feature can be useful if you have a GWAPI in IBM HTTP Server powered by Domino,
which used a product that provided 31-bit libraries only. If you need to convert the GWAPI to
an Apache style module, you must create a server that runs in 31-bit mode so that the
modules can call the 31-bit libraries.

This feature also was provided to allow IBM staff who currently use IBM HTTP Server
powered by Domino and rely on 31-bit libraries to plan to migrate to IBM HTTP Server
powered by Apache.

To set up a server that runs in 31-bit mode, you use the install_ihs script that is in the .31
bit subdirectory.

2.1.5 Features in IHS powered by Domino and not in IHS powered by Apache

IBM HTTP Server DGW supports the following features:

� Go Webserver Application Programming Interface (GWAPI). If you have any applications,
you must rewrite the modules as described in 2.1.4, “31-bit support” on page 17.

� Fast Response Cache Accelerator (FRCA).

2.2 Support for zEnterprise Data Compression

The zEnterprise Data Compression capability provides an efficient way of compressing data.
It is implemented in hardware that is available for System z. This capability uses significantly
less CPU than equivalent software compression methods.

APAR PI24424 supports the IBM HTTP Server powered by Apache to use the zEnterprise
Data Compression capability. For more information about this APAR, see this website:

http://www.ibm.com/support/docview.wss?uid=isg1PI24424

In our small scale testing, we saw CPU savings of approximately 85%.

If you are using your IBM HTTP Server powered by Apache to deliver large response files that
are good candidates for compression, use of this capability can significantly reduce the
required CPU.

The APAR delivers a new module to use in place of the default compression module. The
default compression module is mod_deflate.so.

The module that is supplied by this APAR is called mod_deflate_z.so.

If the size of the response is relatively small or there are dynamic responses that start with
small flushed chunks, the data can be compressed in software for efficiency reasons.
Chapter 2. Features and performance 17

http://www.ibm.com/support/docview.wss?uid=isg1PI24424

2.2.1 zEnterprise Data Compression requirements

To use zEnterprise Data Compression, the following requirements must be met:

� Use a zEC12 or BC12
� Peripheral Component Interconnect Express (PCIe) hardware adapter is installed
� Running z/OS 2.1
� Enabled the feature by using the IFAPRDxx member in SYS1.PARMLIB

On the z/OS system that was used to test this capability, the IFAPRD01 member contained
the following control statement:

WHEN (SYSNAME(*)) PRODUCT NAME(*) STATE(ENABLED)

2.2.2 Verifying that zEnterprise Data Compression is active

To verify that the zEnterprise Data Compression capability is available on a z/OS LPAR, issue
a D PCIE command. Example 2-7 shows the output that is generated from the use of this
command on the z/OS LPAR that we tested. It includes output from issuing a more specific
command to get more information about an individual accelerator.

Example 2-7 Example output from D PCIE command

D PCIE
IQP022I 23.47.03 DISPLAY PCIE 033
PCIE 0012 ACTIVE
PFID DEVICE TYPE NAME STATUS ASID JOBNAME PCHID VFN
0033 Hardware Accelerator ALLC 0013 FPGHWAM 05D0 0004
0023 Hardware Accelerator ALLC 0013 FPGHWAM 0578 0004

D PCIE,PFID=33
IQP024I 23.47.19 DISPLAY PCIE 035
PCIE 0012 ACTIVE
PFID DEVICE TYPE NAME STATUS ASID JOBNAME PCHID VFN
0033 Hardware Accelerator ALLC 0013 FPGHWAM 05D0 0004
 CLIENT ASIDS: NONE
 Application Description: zEDC Express
 Device State: Ready
 Adapter Info - Relid: 00000B Arch Level: 03
 Build Date: 02/13/2014 Build Count: 03
 Application Info - Relid: 000000 Arch Level: 02

FPGHWAM is an address space that is automatically started during z/OS initialization if the
PCIE facilities hardware is installed.

Note: The Peripheral Component Interconnect Express (PCIe) hardware adapter and the
associated software are a chargeable feature.
18 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

2.2.3 Enabling use of zEnterprise Data Compression

To enable an IBM HTTP Server powered by Apache to use the zEnterprise Data
Compression, replace the following line in the httpd.conf:

LoadModule deflate_module modules/mod_deflate.so

with

LoadModule deflate_module modules/mod_deflate_z.so

The server must be stopped and started or recycled to incorporate this change.

2.2.4 Testing

To test the effectiveness of zEnterprise Data Compression, we created a file in the htdocs
subdirectory of our server. We named this file sc63-uss.js. This file was not an actual Java
script file because it contained only a large directory listing of the UNIX System Services
environment on the z/OS LPAR. The file was 23844175 bytes, or nearly 24 MB.

Example 2-8 shows how we modified the httpd.conf so that the deflate module is called
when a request to access the sc63-uss.js was received by the server. We also added the
three DeflateFilterNote directives to create three keywords that we can refer to in the
LogFormat directive.

Example 2-8 Changes to start deflate module for Java script file

<IfModule mod_deflate.c>
 AddOutputFilterByType DEFLATE text/plain text/html
 <filesMatch "\.(js|css|html|mp3)$">
 SetOutputFilter DEFLATE
 </filesMatch>
 DeflateFilterNote Input instr
 DeflateFilterNote Output outstr
 DeflateFilterNote Ratio ratio
</IfModule>

The following original LogFormat was in the httpd.conf:

LogFormat "%h %l %u %t \"%r\" %>s %b" common

It was modified as shown in the following example:

LogFormat "%h %l %u %t \"%r\" %>s %b %D %{outstr}n/%{instr}n %{ratio}n%% common

The %D results in the time that is taken to process the request to be output. The text after %D
outputs the size of the file after it was compressed, the size of the file before it was
compressed, and the compression ratio achieved.

We used the following URL to access the sc63-uss.js file:

http://wtsc63.itso.ibm.com:8265/sc63-uss.js

Using the default deflate module
When we used the default Apache deflate module and accessed the file, we saw the following
entry in the access_log:

GET /sc63-uss.js HTTP/1.1" 200 1728840 15919520 1728822/23844175 7%
Chapter 2. Features and performance 19

Using the new deflate module
When we used the new deflate module and accessed the file, we saw the following entry in
the access_log:

GET /sc63-uss.js HTTP/1.1" 200 2713329 28821637 2713311/23844175 11%

2.2.5 SMF information

We set up our server to output an SMF record for each request. We accessed the file several
times for each of the deflate modules.

The details of a typical request to access the sc63-uss.js file by using the default deflate
module are shown in Example 2-9.

Example 2-9 SMF record for requests processed by default deflate module

Record#: 7;
 Type: 103; Size: 111; Date: Thu Nov 20 04:31:55 EST 2014;
 SystemID: SC63; SubsystemID: STC; Flag: 94;
 Subtype: 14 (IHS Request Info);
pid=262356 method=GET host=wtsc63.itso.ibm.com:8265 uri=/sc63-uss.js rip =
9.190.237.75 elapsed= 18507 cpu=0.42540

The details of a typical request to access the sc63-uss.js file by using the new deflate
module are shown in Example 2-10.

Example 2-10 SMF record for requests processed by new deflate module

Record#: 16;
 Type: 103; Size: 111; Date: Thu Nov 20 04:00:33 EST 2014;
 SystemID: SC63; SubsystemID: STC; Flag: 94;
 Subtype: 14 (IHS Request Info);
pid=84148426 method=GET host=wtsc63.itso.ibm.com:8265 uri=/sc63-uss.js rip =
9.190.237.75 elapsed= 23198 cpu=0.06992

2.2.6 Comparing results

The performance of typical requests that are processed by the default deflate module and the
new deflate module that uses the zEnterprise Data Compression capability are compared in
Table 2-1.

Table 2-1 Comparing performance of the two deflate modules

Conclusion
The results show that the new deflate module use of zEnterprise Data Compression results in
significant CPU savings of approximately 87% when the two individual requests are
compared.

Module Length after
compression

Ratio (Percent
compressed)

CPU used

Default deflate 1728822 7 (93) 0.42540

New deflate 2713311 11 (89) 0.06992
20 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

The zEnterprise Data Compression was slightly less than the compression that was achieved
by the default deflate module. However, the reduced compression is more than offset by the
significant CPU savings.

2.2.7 SMF information about hardware compression

SMF records that record usage of the zEnterprise Data Compression feature are written as
SMF type 74, subtype 9 records.

Extracting the SMF records
We ran the JCL that is shown in Example 2-11 to extract these SMF records after sending
several requests to the server.

Example 2-11 JCL to extract relevant SMF records

//GETSMF EXEC PGM=IFASMFDP
//DUMPIN DD DSN=SYS1.SC63.MAN2,DISP=SHR
//DUMPOUT DD DSN=EDMCAR.SMFDATA.T74,DISP=(NEW,CATLG),
// SPACE=(CYL,(10,10),RLSE),DCB=(RECFM=VB,LRECL=32760)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
INDD(DUMPIN,OPTIONS(DUMP)),
OUTDD(DUMPOUT,TYPE(74(9)))

Producing RMF report
We then ran the JCL that is shown in Example 2-12 to produce an IBM RMF™ report about
the usage of the zEnterprise Data Compression feature.

Example 2-12 JCL to produce an IBM RMF report

//RMFPP EXEC PGM=ERBRMFPP,REGION=0M
//MFPINPUT DD DSN=EDMCAR.SMFDATA.T74,DISP=SHR
//MFPMSGDS DD SYSOUT=*
//XPRPTS DD DISP=(NEW,CATLG),
// DSN=EDMCAR.RMF.PCIE.XML,
// UNIT=SYSDA,
// SPACE=(TRK,(15,10)),
// DCB=(LRECL=256,RECFM=VB,BLKSIZE=0)
//SYSIN DD *
 RTOD(0000,2400)
 STOD(0000,2400)
 SUMMARY(INT)
 REPORTS(PCIE)
 SYSOUT(T)
 DINTV(0002)

Downloading RMF XML Toolkit for Windows
To display the XML report, you need associated style sheets. These style sheets are included
as part of the RMF XML Toolkit for Windows and can be downloaded at this website:

https://ibm.biz/BdrkvQ

Note: The RMF report is written as XML to the XPRPTS data set.
Chapter 2. Features and performance 21

https://ibm.biz/BdrkvQ

At this website, a file that is named erbxmltk_110.msi is available for download. We
downloaded this file, ran it, and it installed the toolkit into the C:\zProducts\RMF\RMF
Postprocessor XML Toolkit directory that we manually selected.

Downloading the data set to PC
Use FTP with ASCII transfer to download the data set to your Windows PC.

Store the download file in the same directory in which the RMF Processor XML Toolkit was
stored. In our case, we downloaded the data set to the C:\zProducts\RMF\RMF Postprocessor
XML Toolkit directory and named it rmf-zedc-rept.xml.

Viewing the XML report
To view the report, we entered the following URL in our browser:

file:///C:/zProducts/RMF/RMF Postprocessor XML Toolkit/rmf-zedc-rept.xml

The output that was produced is shown in Figure 2-1. The output gives you information about
how the zEnterprise Data Compression hardware performed.

Figure 2-1 Viewing PCIE XML report in a browser
22 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

For more information about the PCIE Activity report, see the following IBM z/OS 2.1
Knowledge Center website:

https://ibm.biz/Bdrkvw

2.2.8 Compression log usage information

An APAR is included as part of the V8.5.5.5 release of the IBM HTTP Server powered by
Apache with which you can log compression information about each request. For more
information about APAR PI30041, see this website:

http://www.ibm.com/support/docview.wss?uid=swg1PI30041

How the LogFormat directive might be coded so that compression information was displayed
is shown in Example 2-13. An ‘H’ indicates that the zEnterprise Data Compression hardware
compression was used. An ‘S’ indicates that software compression was used, and a ‘-’
indicates that no compression was used.

Example 2-13 Example directive and sample log output

LogFormat "%h %l %u %t \"%r\" %>s %b %{Content-Encoding}o %{zEDC}n" common

9.80.82.19 - - [20/Nov/2014:20:04:49 -0500] "GET /big.txt HTTP/1.1" 200 47200 gzip
H
9.80.82.19 - - [20/Nov/2014:20:06:16 -0500] "GET /medium.txt HTTP/1.1" 200 30 gzip
S
9.80.82.19 - - [20/Nov/2014:20:06:16 -0500] "GET /other.xyz HTTP/1.1" 200 20 gzip
-

2.3 Functional differences

IBM HTTP powered by Apache supports IPV6; IBM HTTP Server for z/OS powered by
Domino does not.

IBM HTTP Server DGW and IHS powered by Apache both can be run as started tasks, but
the initial program they start is different. IHS DGW starts a program that is stored in a PDS.
The IHS powered by Apache starts the apachectl program that is stored in a directory of the
z/OS UNIX environment. For more information, see 4.1, “Running IBM HTTP Server powered
by Apache” on page 66.

IBM HTTP Server DGW runs with a fixed number of threads by default. IBM HTTP Server
powered by Apache runs multiple processes with multiple threads at start time. More
processes and threads can be added dynamically if the demand increases. For more
information, see Chapter 6, “Scalability and workload management” on page 103.

Both versions of IBM HTTP Server can serve content that is stored in EBCDIC and ASCII
format. For more information about setting up character set conversion in IBM HTTP Server
powered by Apache, see this website:

http://publib.boulder.ibm.com/httpserv/manual70/mod/mod_charset_lite.html

IBM HTTP Server DGW is installed by using the setup.sh script. IBM HTTP Server powered
by Apache is installed by using install_ihs. For more information, see Chapter 3, “Installing
your first IHS” on page 29.
Chapter 2. Features and performance 23

https://ibm.biz/Bdrkvw
http://www.ibm.com/support/docview.wss?uid=swg1PI30041
http://publib.boulder.ibm.com/httpserv/manual70/mod/mod_charset_lite.html

2.4 Performance comparison

In 2006, the Washington Systems Center conducted a series of performance tests with both
servers and concluded there was little performance difference between them. For more
information about this report, see the following resources:

� Chapter 3, “Installing your first IHS” on page 29

� The content of the report, which is available at this website:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101170

Although many improvements were made to IBM HTTP Server powered by Apache, there
were no improvements made to IBM HTTP Server powered by Domino.

2.4.1 Basic measure of throughput test

The first test shows a basic measure of throughput, as measured in MBps. Static objects
were served with no caching. The number of users who are presented to the HTTP Server
was scaled up from 100 to 400. The conclusion was that at this basic level of comparison of
throughput, the two HTTP Servers are essentially the same across the number of users
presented, as shown in Figure 2-2.

Figure 2-2 Measure of throughput
24 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101170
http://publib.boulder.ibm.com/httpserv/manual70/mod/core.html#addserverheader
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101170

2.4.2 CPU utilization test

The second test shows the CPU utilization per 100 static pages served. Again, the objects
were static and no caching was used. The number of users who are presented to the HTTP
Server was scaled up from 100 to 400. We see that the original HTTP Server for z/OS has a
slight CPU advantage over the HTTP Server for z/OS powered by Apache. We believe that
this result is because of the longer period the original HTTP Server was available and the
more extensive source code tuning that occurred, as shown in Figure 2-3.

Figure 2-3 CPU utilization
Chapter 2. Features and performance 25

2.4.3 Measure of throughput with and without caching test

The third test was a measure of throughput (measured in MBps) with and without caching.
Static pages were served. The original HTTP Server used the Fast Response Caching
Accelerator (FRCA) function of TCP on z/OS. The HTTP Server powered by Apache used its
own internal caching, as shown in Figure 2-4.

Figure 2-4 Throughput measured in MBps
26 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

2.4.4 Measure of CPU test

The final test was a measure of CPU while using the IBM WebSphere Application Server for
z/OS plug-in to handle a simple transaction request. In Figure 2-5, the vertical axis shows
CPU % per 100 transaction requests, and the horizontal axis shows increasing numbers of
users.

Figure 2-5 Measure of CPU that uses the IBM WebSphere Application Server plug-in

IBM HTTP Server for z/OS powered by Apache saw a moderate performance advantage
compared to the original HTTP Server. The difference is approximately 9% when the CPU
utilization numbers of the two are compared.
Chapter 2. Features and performance 27

28 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Chapter 3. Installing your first IHS

This chapter describes the installation and setup of your first IBM HTTP Server powered by
Apache.

This chapter includes the following topics:

� 3.1, “IHS code that is shipped with z/OS 2.2” on page 30
� 3.2, “Obtaining and installing the product code” on page 30
� 3.3, “Ordering and installing by using Shopz” on page 31
� 3.4, “Installation when a component of another IBM product” on page 52
� 3.5, “Sample real-world setup process” on page 53
� 3.6, “Using intermediate symbolic links” on page 58
� 3.7, “Maintenance upgrade” on page 60

3

© Copyright IBM Corp. 2013, 2016. All rights reserved. 29

3.1 IHS code that is shipped with z/OS 2.2

The product code for IBM HTTP Server powered by Apache on z/OS is shipped automatically
as part of z/OS 2.2.

The following example shows a typical default location on z/OS 2.2 for the product code:

/usr/lpp/ihsa_zos

You can begin defining IHS servers without downloading any other software. For more
information, see 3.5, “Sample real-world setup process” on page 53.

3.2 Obtaining and installing the product code

Before you can configure an IBM HTTP Server powered by Apache on z/OS, you must obtain
and install the product code because it is not included with the z/OS operating system. Only
IBM HTTP Server powered by Domino is included with z/OS.

The product code for IBM HTTP Server powered by Apache on z/OS can be obtained by
using one of the following methods:

� Delivered as a component of other IBM products
� Downloaded at no charge from the IBM Shopz website

3.2.1 Delivered as a component of other IBM products

If your company purchased WebSphere Application Server for z/OS, Business Process
Manager for z/OS, or Operational Decision Manager for z/OS, a compatible version of IBM
HTTP Server powered by Apache product code is included with these products.

For more information about this method, see 3.4, “Installation when a component of another
IBM product” on page 52.

3.2.2 Downloaded at no charge from the IBM Shopz website

If you do not have these products, you can download IBM HTTP Server powered by Apache
on z/OS (via program number 5655-M23) at no charge from the following BM Shopz website:

https://www.ibm.com/software/shopzseries/ShopzSeries_public.wss

IBM HTTP Server powered by Apache is part of the IBM z/OS Ported Tools. For more
information about the z/OS Ported Tools, see this website:

http://www.ibm.com/systems/z/os/zos/features/unix/ported

After downloading the IBM HTTP Server powered by Apache from Shopz, use SMP/E to
install the software. For more information about this process, see 3.3, “Ordering and installing
by using Shopz” on page 31. This approach does not use IBM Installation Manager.
30 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

https://www.ibm.com/software/shopzseries/ShopzSeries_public.wss
http://www.ibm.com/systems/z/os/zos/features/unix/ported

3.3 Ordering and installing by using Shopz

This section describes the process of ordering IBM HTTP Server powered by Apache from
the IBM Shopz website and then installing it. The result of this process is a zFS data set that
is mounted at a nominated directory in the z/OS UNIX environment on the z/OS LPAR, which
contains the executable IBM HTTP Server powered by Apache product code.

At the time of this writing, the downloaded product code resulted in V8.5.5.3 when installed by
using SMP/E. This release level of the product requires applying the PTF UI22400 at the
same time to resolve an installation issue. Applying this PTF as part of the installation
process is described in the following section.

3.3.1 IBM Shop z website

The IBM Shopz site is available at this website:

https://www.ibm.com/software/shopzseries/ShopzSeries_public.wss

The welcome window is shown in Figure 3-1.

Figure 3-1 IBM Shopz welcome window

3.3.2 Ordering software

As an IBM customer, click Sign in for registered users at the welcome window. A logon
window opens in which you can enter your User ID and password.

For the purposes of documenting the ordering process, we logged in by using the link for IBM
Employees. Although the steps that are shown in this section show this approach, the steps
are the same for IBM customers. Complete the following steps:

1. After logging on, the Shopz welcome window opens. To place a new order for IBM HTTP
Server powered by Apache, click Create new software orders for services or products.

The next window shows the beginning of the process to create an order. Select the z/OS
-Products option.
Chapter 3. Installing your first IHS 31

https://www.ibm.com/software/shopzseries/ShopzSeries_public.wss

2. From the drop-down menu for z/OS-Products, select the CBPDO (products) option, as
shown in Figure 3-2.

Figure 3-2 Start of create new order process

3. Click Continue. The Step 1 of 8 Specify Order Basics window opens, which shows your
customer number and other information. There is a field at the top of the window that is
named Order name that auto-generates a value, such as Products - 2014-11-11
16.42.03. Change this value to IHS Apache - 2014-11-11 16.42.03, and click Continue.

4. The Step 2 of 8 Select hardware systems window opens, which lists information about
your site. Select an appropriate entry. As IBM HTTP Server powered by Apache product is
no charge from IBM, you order it only once for your site, not for every hardware system
that appears in the list. This one copy of the software you obtain can be used on every
z/OS environment you have. Click Continue.

5. The Step 3 of 8 Report installed software window opens. Select the Do not use a report
for this order option and click Continue.
32 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

6. The Step 4 of 8 Shop for products window opens. Click Group and select MVS - System
Mgmt. and Security (81 products). In the Filter menu, select Show all products. In the
Search field menu, select Product description and in the Search for field, enter HTTP, as
shown in Figure 3-3.

Figure 3-3 Locating the IBM HTTP Server powered by Apache product
Chapter 3. Installing your first IHS 33

7. Click Show catalog to update the display to show the IBM HTTP Server powered by
Apache product, which is part of the IBM Ported Tools (see Figure 3-4).

Figure 3-4 The IBM HTTP Server powered by Apache found

8. Select the product and click Continue.

The Step 5 of 8 Specify order contents window opens. The following warning message is
displayed:

ATTENTION: Your order contains bypassable requisites.

9. You see that the message indicates that ordering z/OS and IBM Ported Tools for z/OS can
be bypassed. Leave all bypassable products cleared. Click Continue.

10.The Step 6 of 8 Select new licenses window opens. Select System independent license
and click Continue.
34 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

11.The Step 7 of 8 Specify delivery options window opens. The Preferred media menu
features several options. Although the quickest and simplest way to deliver the software is
through the Internet, other options are available, as shown in Figure 3-5.

Figure 3-5 Selecting the delivery method

12.When the Internet option is selected, the display is updated with more information about
the Shipping address, Bill to details, Payer details, Purchase Order, and Special
instructions. The Purchase order section should default to Not required. Click Continue.

13.The Step 8 of 8 Review and submit window opens. Review the details and if all of the
information is correct, click Submit.

14.A window opens in which you are prompted to confirm the order that you are about to
place. Click OK.
Chapter 3. Installing your first IHS 35

15.Another a window opens that confirms that your order was placed, as shown in Figure 3-6.

Figure 3-6 Confirmation that order was placed
36 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

16.A confirmation email is sent that includes information about your order, as shown in
Figure 3-7.

Figure 3-7 Email confirming that order is placed
Chapter 3. Installing your first IHS 37

3.3.3 Downloading the software

Some time later, an email is sent advising that the software is ready for download, as shown
in Figure 3-8.

Figure 3-8 Email confirming order ready for download

Complete the following steps to download the software:

1. Log back in to Shopz and you can see that the order now showed a link to the download,
as shown in Figure 3-9.

Figure 3-9 Order in Shopz with download link
38 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

2. Click link and the window that is shown in Figure 3-10 opens.

Figure 3-10 Shopz display where order can be downloaded from

3. Click Download to your workstation using IBM Download Director. The Download
Director opens in a new browser window. When prompted, specify a new directory to
which to download the product code. When the download completes, the Download
Director window looks as shown in Figure 3-11.

Figure 3-11 Completion of download
Chapter 3. Installing your first IHS 39

Figure 3-12 shows the content of the directory on the PC to which the product code was
downloaded.

Figure 3-12 Contents of directory product code download into

Obtaining PTF UI22400
To resolve a packaging error that prevents successful SMP/E installation, you must order PTF
UI22400 by using Shopz. After ordering this PTF from Shopz, the Download Director is used
to download the PTF to the PC. This process results in a directory structure that is similar to
the product code.

3.3.4 FTP product code to z/OS UNIX in z/OS

After the product code is downloaded onto your PC, it must be transferred by using FTP to a
directory in the z/OS UNIX part of the z/OS LPAR.

Transferring the GIMUNZIP file first
The first job that you run is the job in the following file:

S0030.CSP.STP32529.GIMUNZIP

Note: The Download package (160 MB) to host with RFNJOBS option also can be used.
This option runs a job on your z/OS LPAR that downloads the software from an IBM
website direct to your z/OS LPAR. (We did not try this approach for our demonstration.)
This approach requires that your z/OS LPAR can connect to the Internet. If it can connect,
this approach simplifies downloading the product package onto your z/OS LPAR because
you do not have to download the package to your PC and then transfer it by using FTP to
your z/OS LPAR.

However, not all sites enable their z/OS LPARs to create connections to the internet, which
is why we used the process that is described here.
40 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

We recommend that you perform a separate transfer by using FTP to copy the
S0030.CSP.STP32529.GIMUNZIP file to a data set on your z/OS LPAR. When we completed this
transfer, we issued the commands that are shown in Example 3-1. We used the cd IHS
command to create a second-level data set qualifier.

Example 3-1 FTP of file to data set on z/OS LPAR

ftp> quote site recfm=fb blksize=6160 lrecl=80
200 SITE command was accepted
ftp> quote type e
200 Representation type is Ebcdic NonPrint
ftp> cd "IHS."
250 "EDMCAR.IHS." is the working directory name prefix.
ftp> put S0030.CSP.STP32529.GIMUNZIP
200 Port request OK.
125 Storing data set EDMCAR.IHS.S0030.CSP.STP32529.GIMUNZIP
250 Transfer completed successfully.
ftp: 6399 bytes sent in 0.95Seconds 6.76Kbytes/sec.

STP qualifier value
In the name of the GIMUMZIP file, the third-level qualifier starts with the string STP. In our
case, this third-level qualifier was STP32529. It is a different value for different orders. Make a
note of this value because it is hardcoded in the supplied SMP/E Receive JCL, as described
in 3.3.8, “Receiving the product code” on page 50.

You must use the value of STP32529 when a subdirectory is created to store the product code
on the z/OS LPAR, as described next.

Transferring the product code
You need approximately 160 MB of disk space to store the files that make up the product
code. Therefore, you must allocate a new zFS data set to store the files.

We allocated a new zFS data set that we planned to use to store the source product code and
the installed product code. This approach is only an example and you can use directory
names that suit your environment.

Example 3-2 shows the JCL that we ran to allocate, format, and mount a new zFS in a
directory that was named /shared/ihs855.

Example 3-2 JCL to allocate, format, and mount a zFS

//EDMCARZ JOB (D999,MISC),'McCarthy X-8588',
// MSGLEVEL=(1,1),
// REGION=0M,
// CLASS=A,
// MSGCLASS=O
/*JOBPARM SYSAFF=SYSA
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE OMVS.IHS855.ZFS CLUSTER
 IF LASTCC=8 THEN SET MAXCC=0
 DEFINE CLUSTER (NAME(OMVS.IHS855.ZFS) -
 LINEAR MEGABYTES(600 100) SHAREOPTIONS(2))
/*
//FORMAT EXEC PGM=IOEAGFMT,REGION=0M,
Chapter 3. Installing your first IHS 41

// PARM=('-aggregate OMVS.IHS855.ZFS -compat ')
//SYSPRINT DD SYSOUT=*
/*
//MOUNTZFS EXEC PGM=IKJEFT01
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSTSIN DD *
 BPXBATCH SH +
 mount -f OMVS.IHS855.ZFS +
 -o AGGRGROW +
 /shared/ihs855 ; +
 df -k | grep OMVS.IHS855.ZFS ; +
 cd /shared ; +
 chmod 775 ihs855 ; +
 ls -lrt | grep ihs855

We then created a subdirectory by using the commands that are shown in Example 3-3. This
subdirectory into which we transfer the product code by using FTP. The name of the
subdirectory we created is the third-level qualifier of the GIMUNZIP file name, as described in
“STP qualifier value” on page 41.

Example 3-3 Setting up a subdirectory to store the product code

$ cd /shared/ihs855
$ mkdir STP32529
$ chmod 775 STP32529
$ ls -lrt
total 16
drwxrwxr-x 2 EDMCAR SYS1 8192 Nov 13 18:58 code

Standard FTP does not provide a mechanism to automatically transfer all files from a current
directory and all subdirectories. To transfer the contents of the subdirectories, you must
change into each subdirectory to transfer by using FTP the contents of each one to the z/OS
LPAR. Be sure to use binary transfer.

Example 3-4 shows the subdirectories and files in the /shared/ihs855/STP32529 directory
after the FTP process is complete.

Example 3-4 Files and subdirectories on z/OS after FTP process is complete

$ pwd
/shared/ihs855/STP32529
$ ls -lrtR

.:
total 944
-rw-r----- 1 EDMCAR SYS1 5040 Nov 13 19:06 GIMPAF.XSL
-rw-r----- 1 EDMCAR SYS1 20480 Nov 13 19:06 GIMPAF.XML
-rw-r----- 1 EDMCAR SYS1 11826 Nov 13 19:06 S0001.CSP.CSP.README
-rw-r----- 1 EDMCAR SYS1 32256 Nov 13 19:06
S0002.CSP.STP32529.DOCLIB.pax.Z
-rw-r----- 1 EDMCAR SYS1 32256 Nov 13 19:06
S0003.CSP.STP32529.RIMLIB.pax.Z
42 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

-rw-r----- 1 EDMCAR SYS1 6399 Nov 13 19:06 S0030.CSP.STP32529.GIMUNZIP
-rw-r----- 1 EDMCAR SYS1 322560 Nov 13 19:06
S0005.CSP.STP32529.PGMDIR.pax.Z
drwxr-x--- 2 EDMCAR SYS1 8192 Nov 13 19:06 SMPHOLD
drwxr-x--- 2 EDMCAR SYS1 8192 Nov 13 20:06 SMPPTFIN
drwxr-x--- 2 EDMCAR SYS1 8192 Nov 13 20:23 SMPRELF

./SMPHOLD:
total 2032
-rw-r----- 1 EDMCAR SYS1 1032192 Nov 13 19:07
S0004.CSP.STP32529.HOLDDATA.pax.Z

./SMPPTFIN:
total 206960
-rw-r----- 1 EDMCAR SYS1 32256 Nov 13 19:06
S0006.CBCACHE.HHAP85P.SMPMCS.pax.Z
-rw-r----- 1 EDMCAR SYS1 32256 Nov 13 19:06
S0007.CBCACHE.HOS1120.SMPMCS.pax.Z
-rw-r----- 1 EDMCAR SYS1 32256 Nov 13 19:07
S0008.CBCACHE.HVFB111.SMPMCS.pax.Z
-rw-r----- 1 EDMCAR SYS1 18115072 Nov 13 19:25
S0009.CBCACHE.HHAP85P.PTF.UI17041.pax.Z
-rw-r----- 1 EDMCAR SYS1 1397760 Nov 13 19:29
S0011.CBCACHE.HOS1120.PTF.UA57163.pax.Z
-rw-r----- 1 EDMCAR SYS1 23586304 Nov 13 19:39
S0010.CBCACHE.HHAP85P.PTF.UI20159.pax.Z
-rw-r----- 1 EDMCAR SYS1 18388480 Nov 13 19:45
S0012.CBCACHE.HOS1120.PTF.UA63842.pax.Z
-rw-r----- 1 EDMCAR SYS1 2717696 Nov 13 19:47
S0013.CBCACHE.HOS1120.PTF.UA67935.pax.Z
-rw-r----- 1 EDMCAR SYS1 797184 Nov 13 19:47
S0014.CBCACHE.HOS1120.PTF.UA67952.pax.Z
-rw-r----- 1 EDMCAR SYS1 2870784 Nov 13 19:49
S0016.CBCACHE.HOS1120.PTF.UA70330.pax.Z
-rw-r----- 1 EDMCAR SYS1 2515968 Nov 13 19:51
S0017.CBCACHE.HOS1120.PTF.UA71137.pax.Z
-rw-r----- 1 EDMCAR SYS1 2870784 Nov 13 19:53
S0018.CBCACHE.HOS1120.PTF.UA71772.pax.Z
-rw-r----- 1 EDMCAR SYS1 3685376 Nov 13 19:58
S0019.CBCACHE.HOS1120.PTF.UA72557.pax.Z
-rw-r----- 1 EDMCAR SYS1 3299328 Nov 13 20:04
S0020.CBCACHE.HOS1120.PTF.UA73914.pax.Z
-rw-r----- 1 EDMCAR SYS1 1290240 Nov 13 20:06
S0021.CSP.STP32529.ASSIGNS.pax.Z
-rw-r----- 1 EDMCAR SYS1 32256 Nov 13 20:06
S0022.CSP.STP32529.PRODDATA.pax.Z
-rw-r----- 1 EDMCAR SYS1 24071168 Nov 13 20:15
S0015.CBCACHE.HOS1120.PTF.UA68137.pax.Z

./SMPRELF:
total 123376
-rw-r----- 1 EDMCAR SYS1 32256 Nov 13 20:06 CBCACHE.IBM.HHAP85P.F1.pax.Z
-rw-r----- 1 EDMCAR SYS1 32256 Nov 13 20:06 CBCACHE.IBM.HHAP85P.F2.pax.Z
-rw-r----- 1 EDMCAR SYS1 32256 Nov 13 20:15 CBCACHE.IBM.HOS1120.F1.pax.Z
Chapter 3. Installing your first IHS 43

-rw-r----- 1 EDMCAR SYS1 21385728 Nov 13 20:22
CBCACHE.IBM.HHAP85P.F3.pax.Z
-rw-r----- 1 EDMCAR SYS1 32256 Nov 13 20:23 CBCACHE.IBM.HVFB111.F1.pax.Z
-rw-r----- 1 EDMCAR SYS1 18284544 Nov 13 20:41
CBCACHE.IBM.HOS1120.F2.pax.Z
-rw-r----- 1 EDMCAR SYS1 23288832 Nov 13 20:42
CBCACHE.IBM.HVFB111.F2.pax.Z

FTP UI22400 to z/OS
We used a similar process to binary transfer the contents of the UI22400 PTF to our z/OS
LPAR. Example 3-5 shows the contents of the directory on z/OS after this transfer was
complete.

Example 3-5 Contents of directory that includes the contents of PTF UI22400

$ pwd
/shared/ihs855/UI22400
$ ls -lrtR

.:
total 64
drwxr-xr-x 2 EDMCAR SYS1 8192 Nov 17 17:11 SMPPTFIN
drwxr-xr-x 2 EDMCAR SYS1 8192 Nov 17 17:11 SMPHOLD
-rw-r----- 1 EDMCAR SYS1 4800 Nov 17 17:11 GIMPAF.XSL
-rw-r----- 1 EDMCAR SYS1 2720 Nov 17 17:11 GIMPAF.XML

./SMPPTFIN:
total 35280
-rw-r----- 1 EDMCAR SYS1 18031104 Nov 17 17:11
S0001.SHOPZ.S2666231.SMPMCS.pax.Z

./SMPHOLD:
total 2096
-rw-r----- 1 EDMCAR SYS1 1064448 Nov 17 17:11
S0002.SHOPZ.S2666231.SMPHOLD.pax.Z

3.3.5 First job to run: GIMUNZIP

We performed the FTP file transfer that is described in “Transferring the GIMUNZIP file first”
on page 40 to add it to the data set. Then, we ran the following JCL job GIMUNZIP:

EDMCAR.IHS.S0030.CSP.STP32529.GIMUNZIP.

We modified EDMCAR.IHS.S0030.CSP.STP32529.GIMUNZIP (as shown in Example 3-6) to reflect
our environment.

Example 3-6 Modified GIMUNZIP JCL

//UNZIP EXEC PGM=GIMUNZIP,REGION=0M,PARM='HASH=NO' <=== NOTE 1
//SYSUT3 DD UNIT=SYSALLDA,SPACE=(CYL,(50,10))
//SYSUT4 DD UNIT=SYSALLDA,SPACE=(CYL,(25,5))
//SMPJHOME DD PATH='/usr/lpp/java/J6.0.1_64/' <===NOTE 2
//SMPCPATH DD PATH='/usr/lpp/smp/classes/' <===NOTE 2
//SMPOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
44 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

//SMPDIR DD PATH='/shared/ihs855/STP32529', <=== NOTE 3
// PATHDISP=KEEP
//SYSIN DD *
<GIMUNZIP>
<ARCHDEF
name="S0002.CSP.STP32529.DOCLIB.pax.Z"
volume="PTS002"
newname="EDMCAR.IHS.DOCLIB">
</ARCHDEF>
<ARCHDEF
name="S0003.CSP.STP32529.RIMLIB.pax.Z"
volume="PTS002"
newname="EDMCAR.IHS.RIMLIB">
</ARCHDEF>
<ARCHDEF
name="S0005.CSP.STP32529.PGMDIR.pax.Z"
volume="PTS002"
newname="EDMCAR.IHS.PGMDIR">
</ARCHDEF>
</GIMUNZIP>

The JCL that is shown in Example 3-6 refers to the following files:

� S0002.CSP.STP32529.DOCLIB.pax.Z
� S0003.CSP.STP32529.RIMLIB.pax.Z
� S0005.CSP.STP32529.PGMDIR.pax.Z

The GIMUNZIP job looks for these three files in the directory that is specified by the SMPDIR
DD card, which in our case was /shared/ihs855/STP32529. The files were stored in that
directory when we transferred the product code, as described in “Transferring the product
code” on page 41.

We ran the job. After the job was successfully completed, we now had the following three data
sets:

� EDMCAR.IHS.DOCLIB
� EDMCAR.IHS.PGMDIR
� EDMCAR.IHS.RIMLIB

3.3.6 Second job to run: UNZIPJCL

The second job to be run is the member that is named UNZIPJCL in the EDMCAR.IHS.RIMLIB
data set. When this job is run, it creates a data set, which in our case we named
EDMCAR.IHS.SAMPLE.JOBS.

Example 3-7 shows the JCL for the UNZIPJCL job after it was modified.

Example 3-7 Modified UNZIPJCL job

//UNZIP EXEC PGM=GIMUNZIP,REGION=0M,PARM='HASH=NO'
//SYSUT3 DD UNIT=SYSALLDA,SPACE=(CYL,(10,10))
//SYSUT4 DD UNIT=SYSALLDA,SPACE=(CYL,(15,5))
//SMPJHOME DD PATH='/usr/lpp/java/J6.0.1_64/'
//SMPCPATH DD PATH='/usr/lpp/smp/classes/'
//SMPOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SMPDIR DD PATH='/shared/ihs855/STP32529/SMPRELF/',
Chapter 3. Installing your first IHS 45

// PATHDISP=KEEP
//SYSIN DD *
<GIMUNZIP>
<ARCHDEF
name="CBCACHE.IBM.HHAP85P.F1.pax.Z"
volume="PTS002"
newname="edmcar.ihs.sample.jobs">
</ARCHDEF>
</GIMUNZIP>
/*

We ran this job and it created the EDMCAR.IHS.SAMPLE.JOBS data set. This data set contains
sample SMP/E jobs. In the following sections, we describe how we modified and ran these
jobs to complete the SMP/E process.

3.3.7 Setting up SMP/E

For the purposes of describing for this document the SMP/E installation process, we did not
want to use the SMP/E environment on the z/OS LPAR. Instead, we created a SMP/E
environment to be used only for installing IBM HTTP Server powered by Apache.

We used the sample JCL in SYS1.SAMPLIB(GIMSAMPU) to create this environment. We
copied this JCL and modified it for our use. An important change was to allocate a larger
SMPPTS, as shown in Example 3-8.

Example 3-8 Allocating a larger SMPPTS

//SMPPTS DD DSN=EDMCAR.IHS855.SMPPTS,
// DISP=(NEW,CATLG),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0,DSORG=PO),
// DSNTYPE=LIBRARY,
// UNIT=SYSDA,
// SPACE=(CYL,(550,50,50))

On your system, you can use your SMP/E environment.

If you have an older version of IBM HTTP Server powered by Apache installed, there are JCL
samples in EDMCAR.IHS.SAMPLE.JOBS to assist with removing the older version.

Allocating target and distribution data sets
The supplied JCL in EDMCAR.IHS.SAMPLE.JOBS(HAPALLO2) allocates the SMP/E target and
distribution data sets for the IBM HTTP Server powered by Apache product.

We modified the supplied JCL in SAMPLE.JOBS(HAPALLO2), as shown in Example 3-9.

Example 3-9 Modified HAPALLO2 JCL

//ALLOCT EXEC ALLOCTGT,
// HLQ=EDMCAR.HAP.V855, * HAP is the default
// DSP=CATLG, * CATLG is the default
// TVOL1=PTS006, * No default; volume1 for target library
// TVOL2=PTS007 * No default; volume2 for target library
//*
//ALLOCD EXEC ALLOCDLB,
// HLQ=EDMCAR.HAP.V855, * HAP is the default
46 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

// DSP=CATLG, * CATLG is the default
// DVOL=PTS006 * No default; volume for dist. libraries
//
//*
//* Note the // above to stop following step from running
//*
//* Did not use the following JCL as require zFS not HFS
//*
//**
//* The following step executes the PROC to allocate a new *
//* HFS data set for IBM HTTP Server V8.5 *
//**
//*
//ALLOCH EXEC ALLOCHFS,
// HLQ1=HAP.V8R5 * HAP.V8R5 is the default
// DSP=CATLG, * CATLG is the default
// HVOL=hhhhh1 * No default; volume for HFS data set

When we ran this JCL, we noticed that it allocated an HFS rather than a zFS. Because the
use of HFS is not recommended, we added a line in the JCL to stop the HFS from being
allocated by this JCL. We then set up the JCL as shown in Example 3-10 to allocate and
format a zFS. In the last step, we mounted the zFS at the directory where we want the
product code to be stored. In our case, the target directory was /shared/IHSA/V8R5M5.

Example 3-10 JCL to allocate a zFS to store the product code

//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE OMVS.IHS.V8R5M5.ZFS CLUSTER
 IF LASTCC=8 THEN SET MAXCC=0
 DEFINE CLUSTER (NAME(OMVS.IHS.V8R5M5.ZFS) -
 LINEAR MEGABYTES(600 100) SHAREOPTIONS(2))
/*
//FORMAT EXEC PGM=IOEAGFMT,REGION=0M,
// PARM=('-aggregate OMVS.IHS.V8R5M5.ZFS -compat ')
//SYSPRINT DD SYSOUT=*
/*
//MOUNTZFS EXEC PGM=IKJEFT01
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSTSIN DD *
 BPXBATCH SH +
 cd /shared/IHSA ; +
 mkdir V8R5M5 ; +
 mount -f OMVS.IHS.V8R5M5.ZFS +
 -o AGGRGROW +
 /shared/IHSA/V8R5M5 ; +
 df -k | grep OMVS.IHS.V8R5M5.ZFS ; +
 chmod 775 V8R5M5 ; +
 cd /shared/IHSA/V8R5M5 ; +
 mkdir IBM ; +
 chmod 775 IBM ; +
Chapter 3. Installing your first IHS 47

 pwd; +
 ls -Rlrt

It is good practice to have the directory that was used for the SMP/E process separate from
the directory that is used in your runtime environment. In this case, we are installing the IBM
HTTP Server powered by Apache product code into the directory at /shared/IHSA/V8R5M5.

After we completed the SMP/E process, we created a zFS at a directory that was named
/usr/lpp/zWebSphere_OM/V8R5M5, and used DFDSS to copy the zFS at /shared/IHSA/V8R5M5
to /usr/lpp/zWebSphere_OM/V8R5M5.

The zFSs at these two locations are mounted as Read Only so that they are not accidentally
updated when they are not updated through SMP/E.

This process also allocates a subdirectory that is named IBM that is required for the SMP/E
process.

Adding DDDEFs to SMP/E
The supplied JCL in EDMCAR.IHS.SAMPLE.JOBS(HAPDDDE2) defines the DDDEFs in the SMP/E
environment for the IBM HTTP Server powered by Apache product.

We modified the JCL in EDMCAR.IHS.SAMPLE.JOBS(HAPDDDE2). The first part of Example 3-11
shows how the comments in the JCL reflect the changes we made, whereas the bottom part
shows how we changed the JCL to reflect the target directory we are using.

Example 3-11 Modified HAPDDDE2 JCL

2) Change EDMCAR.IHS855.GLOBAL.CSI to the data set name of your
 global data set
3) Change TARGET to the name of your target zone
4) Change DLIB to the name of your distribution zone
5) Change EDMCAR.HAP.V855 to the appropriate high-level qualifier
6) This job uses the recommended data set placement for the
 target libraries:
 Change PTS006 to the volser for first volume for the target
 libraries (TVOL1).
 Change PTS007 to the volser for second volume for the target
 libraries (TVOL2).
7) Change PTS006 to the volser of the distribution volume.

//DEFPATH EXEC PGM=GIMSMP,REGION=4096K
//SMPCSI DD DSN=EDMCAR.IHS855.GLOBAL.CSI,
// DISP=SHR
//SMPCNTL DD *
 SET BDY(TARGET) . /* CHANGE -PathPrefix- */
 ZONEEDIT DDDEF.
 CHANGE PATH('/usr/lpp/IHSA/V8R5/'*,
 '/shared/IHSA/V8R5M5/'*).
 ENDZONEEDIT.
48 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Increasing DSSPACE
Check the disk space settings for DSSPACE in the global zone of your SMP/E environment. If
they are the original defaults, they are too small and the Receive fails. Example 3-12 shows
the values that we used that allowed for a successful Receive.

Example 3-12 DSSPACE setting in the SMP/E Global zone

OPTIONS ENTRY GOPT - DSSPACE/DSPREFIX
===>

The OPTIONS entry contains the DSSPACE (data set space
allocation) values and the DSPREFIX for the SMPTLIB
Data sets.

Verify or enter the values for OPTIONS entry GOPT:

 DSPREFIX ===> EDMCAR.IHS855.SMPTLIB
 (Data set name prefix, up to
 26 characters)
 PRIMARY TRACKS ===> 2000 (Up to 4 numeric
 characters)
 SECONDARY TRACKS ===> 200 (Up to 4 numeric
 characters)
 DIRECTORY BLOCKS ===> 1000 (Up to 4 numeric
 characters)

Adjusting SYSUT4 space values
Check the disk space settings for DDDEF SYSUT4 in the global zone of your SMP/E
environment. If they are the original defaults, they are too small and the Receive fails.
Example 3-13 shows the values that we used that allowed for a successful Receive.

Example 3-13 SYSUT4 settings in the SMP/E Global zone

DDDEF ENTRY SYSUT4 - LIBRARY TYPE
===>

Enter Library DDDEF data to allocate DD statements for
data sets to be dynamically allocated during SMP/E
processing. Values must conform to JCL conventions.
However, no parenthesis can be entered.

 DATA SET NAME ===>
 (data set name, maximum 44 characters)
 INITIAL DISP ===> (OLD,SHR,MOD,NEW)
 FINAL DISP ===> (KEEP,DELETE,CATALOG)
 UNIT ===> SYSALLDA (unit type if not cataloged)
 VOLUME ===> (volume serial)
 SPACE UNITS ===> CYL (TRK, CYL, or block length)
 PRIMARY ===> 500 (primary space)
 SECONDARY ===> 100 (secondary space)
 DIR ===> (Number of directory blocks)
 SYSOUT ===> (SYSOUT class)
 WAITFORDSN ===> NO (YES or NO)
 PROTECT ===> NO (YES or NO)
 SMS OPTIONS ===> NO (YES or NO to edit SMS Options)
Press ENTER to save the changes.
Chapter 3. Installing your first IHS 49

3.3.8 Receiving the product code

The supplied RIMLIB(RCVPDO) JCL is used to receive the product code into the SMP/E
environment. We modified it as shown in Example 3-14. We added a RECEIVE control
statement to receive the UI22400 PTF.

Example 3-14 Modified RCVPDO JCL

//SMPER1 EXEC PGM=GIMSMP,REGION=0M,
// PARM='PROCESS=WAIT',
// DYNAMNBR=120
//SMPCSI DD DISP=SHR,DSN=EDMCAR.IHS855.GLOBAL.CSI <=== NOTE 1
//SMPNTS DD PATHDISP=KEEP,
// PATH='/shared/ihs855/' <=== NOTE 2
//SMPOUT DD SYSOUT=*
//SMPRPT DD SYSOUT=*
//SMPLIST DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//**
//* AS SHIPPED BY IBM, RCVPDO IS SET UP TO RECEIVE
//* THE FMIDS, PTFS AND HOLDDATA
//**
//SMPCNTL DD *
 SET BOUNDARY (GLOBAL) .
 RECEIVE
 FROMNTS(STP32529)
 .
 RECEIVE
 FROMNTS(UI22400)
 .

3.3.9 Applying the product code

The supplied EDMCAR.IHS.SAMPLE.JOBS(HAPAPPL2) JCL is used to apply the product code into
the SMP/E environment. We modified it as shown in Example 3-15. We added the UI22400
PTF to the APPLY statement.

Example 3-15 Modified SMP/E Apply JCL

//STEP1 EXEC PGM=GIMSMP,REGION=0M,TIME=NOLIMIT
//SMPCSI DD DSN=EDMCAR.IHS855.GLOBAL.CSI,DISP=SHR
//SMPCNTL DD *
 SET BOUNDARY(TARGET) .
 APPLY
 FORFMID(HHAP85P)
 SELECT(HHAP85P,UI22400)
 GROUPEXTEND(NOAPARS,NOUSERMODS)
 BYPASS(HOLDSYS, XZIFREQ).
/*

We ran an APPLY CHECK first. The key point to check is the directory the product code is
stored. You perform this check by reviewing the value that is specified for SHAPBIN2 in the
File Allocation Report, as shown in Example 3-16 on page 51.
50 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Example 3-16 SMP/E report showing target directory

SMP APPLY CHECK FILE ALLOCATION REPORT

DDNAME DDDEFNAM SMPDDNAM TYPE --------------DATA SET OR PATH----------

SHAPBIN2 SHAPBIN2 PATH '/shared/IHSA/V8R5M5/IBM/'

We then removed the CHECK keyword and ran the job again, which completed successfully.

We checked our target directory and saw the content that is shown in Example 3-17.

Example 3-17 Content of installed IBM HTTP Server powered by Apache

Directory List

Select one or more files with / or action codes. If / is used also
action from the action bar otherwise your default action will be us
with S to use your default action. Cursor select can also be used
navigation. See help for details.
EUID=354457 /shared/IHSA/V8R5M5/
 Type Permission Changed-EST5EDT Owner Filename R
_ Dir rwxrwxr-x 2014-11-17 18:51 EDMCAR .
_ Dir rwxr-xr-x 2014-11-14 02:01 HUTCH ..
_ Dir rwxrwxrwx 2014-09-05 08:24 QWER01 .31bit
_ Dir rwxr-xr-x 2014-09-05 08:24 QWER01 bin
_ Dir rwxr-xr-x 2014-09-05 08:24 QWER01 build
_ Dir rwxr-xr-x 2014-09-05 08:24 QWER01 conf
_ Dir rwxr-xr-x 2014-09-05 08:24 QWER01 error
_ Dir rwxr-xr-x 2014-09-05 08:24 QWER01 example_module
_ File rwxr-xr-x 2014-11-17 18:51 QWER01 HAPBB001.zip
_ File rwxr-xr-x 2014-11-17 18:51 QWER01 HAPBE001.sh
_ Dir rwxr-xr-x 2014-09-05 08:24 QWER01 htdocs
_ Dir rwxr-xr-x 2014-11-17 18:51 EDMCAR IBM
_ Dir rwxr-xr-x 2014-09-05 08:24 QWER01 icons
_ Dir rwxr-xr-x 2014-09-05 08:24 QWER01 include
_ Dir rwxr-xr-x 2014-09-05 08:24 QWER01 lib
_ Dir rwxr-xr-x 2014-09-05 08:24 QWER01 man
_ Dir rwxr-xr-x 2014-09-05 08:24 QWER01 modules
_ File rwxr-xr-x 2014-05-15 18:59 QWER01 notices
_ Dir rwxr-xr-x 2014-09-05 08:24 QWER01 readme
_ File rwxr-xr-x 2014-11-17 18:51 QWER01 readme.txt
_ File rwxr-xr-x 2014-09-05 08:24 QWER01 version.signature

Example 3-17 indicates that the product code for IBM HTTP Server powered by Apache was
installed successfully into the target directory in the z/OS UNIX environment on z/OS.

Browsing the version.signature file showed that it contained IBM HTTP Server 8.5.5.3,
which shows the version of the IBM HTTP Server powered by Apache that was installed.
Chapter 3. Installing your first IHS 51

3.3.10 Accepting the product code

The supplied EDMCAR.IHS.SAMPLE.JOBS(HAPACCE2) JCL is used to accept the product code
into the SMP/E environment. We modified it as shown in Example 3-18. We added the
UI22400 PTF to the ACCEPT statement.

Example 3-18 Modified Accept SMP/E JCL

//STEP1 EXEC PGM=GIMSMP,REGION=0M,TIME=NOLIMIT
//SMPCSI DD DSN=EDMCAR.IHS855.GLOBAL.CSI,DISP=SHR
//SMPCNTL DD *
 SET BOUNDARY(DLIB) .
 ACCEPT CHECK
 FORFMID(HHAP85P)
 SELECT(HHAP85P,UI22400)
 GROUPEXTEND(NOAPARS,NOUSERMODS)
 BYPASS(HOLDSYS).

We ran an ACCEPT CHECK, which completed successfully. Then, we removed the CHECK
keyword and ran the actual accept, which also completed successfully.

3.3.11 Summary

We now completed the SMP/E installation of the IBM HTTP Server powered by Apache
product. The product code is installed and ready for use in the target directory in the z/OS
UNIX environment on the z/OS LPAR.

We can now proceed with setting up a server, as described in IBM HTTP 3.5, “Sample
real-world setup process” on page 53.

3.4 Installation when a component of another IBM product

IBM HTTP Server powered by Apache can be delivered as part of other IBM products, such
as WebSphere Application Server for z/OS. The installation of products, such as WebSphere
Application Server for z/OS, requires the use of IBM Installation Manager. This section
provides resources that you can use to find more information about how you use IBM
Installation Manager to install the IBM HTTP Server powered by Apache.

When IBM HTTP Server powered by Apache is supplied with other IBM products, such as
WebSphere Application Server, a repository file that contains the IBM HTTP Server powered
by Apache product code also is supplied. You use IBM Installation Manager to install IBM
HTTP Server powered by Apache from this repository file.

For more information about how to use the Installation Manager on z/OS, see the IBM
Techdoc that is available at the following website. Although the information is not specifically
for IBM HTTP Server powered by Apache, the process is the same:

https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102014

The IBM Techdoc describes the following steps:

1. Creating the Installation Manager by using the Installation Manager toolkit.
2. Creating the WebSphere on z/OS V8 file system components on a /Service mount point.
3. Using the Installation Manager to populate the file system.
52 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102014

At the end of step 3, the product code is available in a zFS mounted at a directory in the z/OS
UNIX environment.

For more information about obtaining IBM Installation Manager, see this WebSphere
Application Server V8.5 IBM Knowledge Center website:

https://ibm.biz/Bdrt44

For more information about installing IBM Installation Manager on z/OS, see this WebSphere
Application Server V8.5 IBM Knowledge Center website:

https://ibm.biz/Bdrt4s

For more information about how to use Installation Manager to complete the installation of
IBM HTTP Server powered by Apache on z/OS, see this WebSphere Application Server
website:

https://ibm.biz/Bdrt4j

For more information about how entitled customers can install WebSphere Application Server
for z/OS components (such as IBM HTTP Server powered by Apache) directly without the use
of SMP/E, see this website:

http://www.ibm.com/support/docview.wss?uid=swg21659636

On our z/OS LPAR, the product code for IBM HTTP Server powered by Apache was at
/ihs/usr/lpp/IHSA/V8R5 and an updated version was provided at
/usr/lpp/zWebSphereEM1_IHSA /V8R5.

3.5 Sample real-world setup process

This section describes the steps that we used to set up an IBM HTTP Server as we do at a
client site.

The steps assume that the file system that contains the IBM HTTP Server powered by
Apache product code is mounted at /ihs/usr/lpp/IHSA/V8R5.

For IBM HTTP Server powered by Apache V9 in z/OS 2.2, we completed the process that is
described in this section to set up a server to verify that the process is unchanged.

3.5.1 Defining a configuration directory

We created a new directory in the root that is named ihsconfig. This directory stores
configurations for new IBM HTTP Servers powered by Apache.

We created a new zFS and mounted it read/write at the ihsconfig directory. This configuration
avoids the possibility of filling up the zFS that backs the root directory.

We then created the following subdirectories:

� ihs: The directory under which is stored the configurations for new IBM HTTP Servers
powered by Apache.

� home: The directory to use for the home directory for user IDs that are associated with
running IBM HTTP Servers powered by Apache.
Chapter 3. Installing your first IHS 53

https://ibm.biz/Bdrt44
https://ibm.biz/Bdrt4s
https://ibm.biz/Bdrt4j
http://www.ibm.com/support/docview.wss?uid=swg21659636

Directories for first IBM HTTP Server powered by Apache
Our first IBM HTTP Server powered by Apache is called IHSAE001. We created the following
directories:

� /ihsconfig/ihs/ihsae001
� /ihsconfig/home/ihsae001
� /ihsconfig/home/ihsaestc

You can use any directory as the home location for your IBM HTTP Server. A directory, such
as /ihsconfig/ihs/ihsae001, is used to reinforce the concept that the use of someone’s
home directory (such as /u/edward) is not a best practice.

3.5.2 Defining a user ID

We created a group by using the following command:

addgroup ihsrb13 omvs(gid(36000))

We then created a user ID that is named IHSAE001, which is used to create a server instance
of an IBM HTTP Server powered by Apache. This user ID must have an OMVS segment and
a home directory in the z/OS UNIX environment. This user ID is not used as the user ID to run
the started task that runs the IBM HTTP Server powered by Apache. For more information
about creating that user ID, see 3.5.3, “Defining a protected user ID for the started task” on
page 55.

Example 3-19 shows the RACF commands that we used to define the user ID.

Example 3-19 Defining user ID for the server

adduser ihsae001 dfltgrp(ihsrb13) name('IHS Server 1 Edward') omvs(uid(35001)
home('/ihsconfig/home/ihsae001') program('/bin/sh'))

alu ihsae001 password(ihsrb13) noexpire

The output from issuing the LU IHSAE001 OMVS command in Example 3-20 shows how we set
up this user ID.

Example 3-20 Listing of IHSAE001 user ID

USER=IHSAE001 NAME=IHS SERVER 1 EDWARD OWNER=EDMCAR CREATED=13.164
 DEFAULT-GROUP=IHSRB13 PASSDATE=13.164 PASS-INTERVAL=180 PHRASEDATE=N/A
 ATTRIBUTES=NONE
 REVOKE DATE=NONE RESUME DATE=NONE
 LAST-ACCESS=13.177/07:22:50
 CLASS AUTHORIZATIONS=NONE
 NO-INSTALLATION-DATA
 NO-MODEL-NAME
 LOGON ALLOWED (DAYS) (TIME)

 ANYDAY ANYTIME
 GROUP=IHSRB13 AUTH=USE CONNECT-OWNER=EDMCAR CONNECT-DATE=13.164
 CONNECTS= 178 UACC=NONE LAST-CONNECT=13.177/07:22:50
 CONNECT ATTRIBUTES=NONE

Note: There is no requirement for this user ID to have an OMVS UID of zero. It is
recommended that the user does not have an OMVS UID of zero.
54 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

 REVOKE DATE=NONE RESUME DATE=NONE
SECURITY-LEVEL=NONE SPECIFIED
CATEGORY-AUTHORIZATION
 NONE SPECIFIED
SECURITY-LABEL=NONE SPECIFIED

OMVS INFORMATION

UID= 0000035001
HOME= /ihsconfig/home/ihsae001
PROGRAM= /bin/sh
CPUTIMEMAX= NONE
ASSIZEMAX= NONE
FILEPROCMAX= NONE
PROCUSERMAX= NONE
THREADSMAX= NONE
MMAPAREAMAX= NONE

Setting owner and permissions
We then issued the following commands to set the owner and group of the directories:

cd /ihsconfig
EDMCAR:/ihsconfig: >ls -lrt
total 32
drwxr-xr-x 3 EDMCAR SYS1 8192 Oct 15 21:24 ihs
drwxr-xr-x 3 EDMCAR SYS1 8192 Oct 15 21:24 home
EDMCAR:/ihsconfig: >chown ihsae001:ihsrb13 ihs home
EDMCAR:/ihsconfig: >ls -lrt
total 32
drwxr-xr-x 3 IHSAE001 IHSRB13 8192 Oct 15 21:24 ihs
drwxr-xr-x 3 IHSAE001 IHSRB13 8192 Oct 15 21:24 home

3.5.3 Defining a protected user ID for the started task

It is a best practice to run the started task that runs the IBM HTTP Server powered by Apache
under a protected user ID. A protected user ID is one that includes the NOPASSWORD
attribute, which means that the user ID cannot be used to log on to z/OS.

Example 3-21 shows the command we used to define this user ID.

Example 3-21 RACF command used to define protected user ID

adduser ihsaestc dfltgrp(ihsrb13) name('Apache Started Task ID') nopassword
omvs(uid(35065) home('/ihsconfig/home/ihsaestc') program('/bin/sh'))

You see the following output from an LU ihsaestc command:

ATTRIBUTES=PROTECTED

This user ID was used when certificates and a key ring for SSL support was created, as
described in 7.4.2, “Creating required certificates” on page 123.
Chapter 3. Installing your first IHS 55

3.5.4 Creating the IHS

Before issuing the command to create the server instance, you should review the umask
setting.

The typical default value is 0022, which results in the directories and files that are created
having permissions of 755, which means any user can view the files.

You might want to consider setting the umask to 0007 by using the umask 007 command.

The files and directories that are created all feature public permissions set to 0, which means
they cannot be accessed by anyone other than the owner or someone who is a member of
the group.

For more information about setting up an IBM HTTP Server powered by Apache, see this
website:

https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101170

Using the advice in that Techdoc, we then issued the commands shown in Example 3-22.

Example 3-22 Creating the configuration for IBM HTTP Server powered by Apache

su – ihsae001
cd /ihs/usr/lpp/IHSA/V8R5/bin
./install_ihs /ihsconfig/ihs/ihsae001 8230

Before the command that is shown in Example 3-22 is issued, ensure that you created the
target directory from the ihsae001 user ID, as described in “Directories for first IBM HTTP
Server powered by Apache” on page 54. Also, you must set the owner and permissions, as
described in “Setting owner and permissions” on page 55.

The last value of 8230 in the command that is shown in Example 3-22 is the TCP/IP port on
which the created server listens when started. The command updates the Listen directive in
httpd.conf to the value you specify.

The output from issuing the commands that are shown in Example 3-22 is shown in
Example 3-23.

Example 3-23 Output from creating the configuration

Copying install directory and creating symlinks...
Updating install paths...
cmd: /ihs/usr/lpp/IHSA/V8R5/bin/postinst -i /ihsconfig/ihs/ihsae001 -t install -v
PORT=8230 -v SERVERNAME=wtsc55.itso.ibm.com
Updating permissions for WebSphere Application Server admin console...

3.5.5 Defining a RACF STARTED rule

We issued the RACF commands that are shown in Example 3-24 to define the user ID for the
started task that we set up to run the server under.

Example 3-24 RACF rules to map started task to a user ID

RDEFINE STARTED IHSAE001.* STDATA(USER(IHSAESTC))
SETROPTS RACLIST(STARTED) REFRESH
56 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101170

3.5.6 Creating a Started Task to run the IHS

We created a started task catalog procedure that is named IHSAE001 in SYS1.PROCLIB, as
shown in Example 3-25.

Example 3-25 Started task JCL

//*---
//IHSAE001 PROC ACTION='start',
// DIR='/ihsconfig/ihs/ihsae001',
// CONF='conf/httpd.conf'
//*---
//IHS EXEC PGM=BPXBATCH,
// PARM='SH &DIR/bin/apachectl -k &ACTION -f &CONF -DNO_DETACH',
// MEMLIMIT=512M
//STDOUT DD PATH='&DIR/logs/proc.output',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//STDERR DD PATH='&DIR/logs/proc.errors',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
// PEND

We then issued the S IHSAE001 command to start this started task. Unlike IBM HTTP Server
powered by Domino, which has only one started task running when it started, you see that
several started tasks started.

Example 3-26 shows the started tasks that are present after we started our IHSAE001 server.

Example 3-26 Started tasks running after starting IHSAE001

SDSF DA SC55 SC55 PAG 0 CPU/L/Z 3/ 2
COMMAND INPUT ===>
NP JOBNAME StepName ProcStep JobID Owner
 IHSAE001 STEP1 STC18072 IHSAESTC
 IHSAE001 STEP1 STC18068 IHSAESTC
 IHSAE001 IHSAE001 *OMVSEX STC18082 IHSAESTC
 IHSAE001 STEP1 STC18086 IHSAESTC
 IHSAE001 STEP1 STC18094 IHSAESTC
 IHSAE001 STEP1 STC18092 IHSAESTC

The started tasks are the result of the way the Apache server creates multiple children
process to handle the requests. For more information, see Chapter 6, “Scalability and
workload management” on page 103.

3.5.7 Verifying that IHS is working

We used the URL http://wtsc55.itso.ibm.com:8230 to verify that we can access the IHS
default home page, which produced the display that is shown in Figure 3-13 on page 58.
Chapter 3. Installing your first IHS 57

Figure 3-13 Home page of IBM HTTP Server powered by Apache

3.6 Using intermediate symbolic links

When the process that is described in 3.5, “Sample real-world setup process” on page 53 is
followed, many separate symbolic links are created from the HTTP server configuration of the
HTTP Server to the IBM HTTP Server powered by Apache product code. An example is
shown in Example 3-27.

Example 3-27 Symlinks to the product code

EDMCAR @ SC55:/ihsconfig/ihs/ihsae001/bin>ls -lrt
total 240
lrwxrwxrwx 1 IHSAE001 IHSRB13 35 Jun 13 21:20 sslstash ->
/ihs/usr/lpp/IHSA/V8R5/bin/sslstash
lrwxrwxrwx 1 IHSAE001 IHSRB13 31 Jun 13 21:20 sidd ->
/ihs/usr/lpp/IHSA/V8R5/bin/sidd
lrwxrwxrwx 1 IHSAE001 IHSRB13 44 Jun 13 21:20 set_attributes.sh ->
/ihs/usr/lpp/IHSA/V8R5/bin/set_attributes.sh
lrwxrwxrwx 1 IHSAE001 IHSRB13 37 Jun 13 21:20 rotatelogs ->
/ihs/usr/lpp/IHSA/V8R5/bin/rotatelogs

Complete the following steps if you need to change the maintenance level of the product code
that is used:

1. Stop all IBM HTTP Servers powered by Apache that include symlinks to the directory
where the product code is located.
58 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

2. Unmount the zFS at the product code directory.

3. Mount the zFS containing the new maintenance level at the product code directory.

4. Start IBM HTTP Servers powered by Apache.

If you have servers running on two z/OS LPARs to provide high availability, all servers must
still be stopped on both LPARs if the one product location is being used by both LPARs.

There is a better approach, which is described next.

3.6.1 Setting up an intermediate link

A better approach than the approach that is described in 3.6, “Using intermediate symbolic
links” on page 58 is to use a single intermediate symbolic link to point to the product code.
This approach is commonly used when WebSphere Application Server cells are set up on
z/OS. For more information, see this website:

https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100396

A similar approach can be used for IBM HTTP Server powered by Apache.

On our z/OS LPAR, we created an intermediary symbolic link that is named
/ihsconfig/ihsInstall by issuing the following commands:

cd /ihsconfig
ln -s /usr/lpp/zWebSphereEM1_IHSA/V8R5 ihsInstall

The result of these commands is shown in Example 3-28.

Example 3-28 Creating intermediate symbolic link

EDMCAR @ SC55:/ihsconfig>ls -lrt
total 96
drwxrwxrwx 6 EDMCAR SYS1 8192 Jun 14 11:23 ihs
drwxrwxr-x 6 EDMCAR SYS1 8192 Jun 14 13:04 home
lrwxrwxrwx 1 EDMCAR SYS1 32 Jun 20 07:30 ihsInstall ->
/usr/lpp/zWebSphereEM1_IHSA/V8R5

We then created a second server by using the intermediate symbolic link, as shown in
Example 3-29.

Example 3-29 Creating the configuration for IBM HTTP Server powered by Apache

su – ihsae001
/ihsconfig/ihsInstall/bin/install_ihs -admin /ihsconfig/ihs/ihsae002 8235

The output from this command is shown in Example 3-30.

Example 3-30 Output from creating second server

IHSAE001 @ SC55:/ihsconfig/ihs/ihsae002>/ihsconfig/ihsInstall/bin/install_ihs
-admin /ihsconfig/ihs/ihsae002 8235
Copying install directory and creating symlinks...
Updating install paths...
cmd: /ihsconfig/ihsInstall/bin/postinst -i /ihsconfig/ihs/ihsae002 -t install -v
PORT=8235 -v SERVERNAME=wtsc55.itso.ibm.com
Updating permissions for WebSphere Application Server admin console...
Chapter 3. Installing your first IHS 59

https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100396

Example 3-31 shows how the contents of the bin subdirectory of the new server are symbolic
links to the intermediate symlink.

Example 3-31 Links to the intermediate symlink

EDMCAR @ SC55:/ihsconfig/ihs/ihsae002/bin>ls -lrt
total 176
lrwxrwxrwx 1 IHSAE001 IHSRB13 28 Jun 20 07:34 ab ->
/ihsconfig/ihsInstall/bin/ab
lrwxrwxrwx 1 IHSAE001 IHSRB13 36 Jun 20 07:34 rotatelogs ->
/ihsconfig/ihsInstall/bin/rotatelogs
lrwxrwxrwx 1 IHSAE001 IHSRB13 36 Jun 20 07:34 preinst.sh ->
/ihsconfig/ihsInstall/bin/preinst.sh
lrwxrwxrwx 1 IHSAE001 IHSRB13 40 Jun 20 07:34 postinstall.sh ->
/ihsconfig/ihsInstall/bin/postinstall.sh

With this setup, you can now mount multiple maintenance levels of IBM HTTP Server
powered by Apache product code at different mount points. For example, you might have the
following maintenance levels mounted:

� Level N mounted at /usr/lpp/zWebSphereEM1_IHSA /V8R5
� Level N+1 mounted at /usr/lpp/zWebSphereEM2_IHSA /V8R5

Complete the following steps to change the server to use a new maintenance level:

1. Stop IBM HTTP Servers powered by Apache.

2. Delete the intermediate symlink at /ihsconfig/ihsInstall.

3. Redefine the intermediate symlink to point to the N+1 maintenance level by using ln -s
/usr/lpp/zWebSphereEM2_IHSA/V8R5 ihsInstall.

4. Start IBM HTTP Servers powered by Apache.

3.7 Maintenance upgrade

IBM HTTP Server powered by Apache V9 is included with z/OS 2.2 and the default
installation process results in the product code being part of a zFS that contains other z/OS
UNIX components.

If now or in the future you have several Apache V9 servers running on a single LPAR, you
might want to consider how to manage changing these servers to a new maintenance level of
IBM HTTP Server powered by Apache.

The default approach is to apply maintenance via the standard SMP/E process and then IPL
in that updated level of z/OS.

This approach means that all of the IBM HTTP Server powered by Apache servers on that
LPAR are upgraded at the same time, which might be acceptable for your organization.

However, if you want to take a more controlled approach in terms of bringing in a new
maintenance level of IBM HTTP Server powered by Apache, you might want to configure your
environment in a way that allows for such an approach.
60 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Apache servers on z/OS that are front ending WebSphere Application Server servers use the
product code that is included with the WebSphere Application Server product, which often is
stored in a separate zFS.

3.7.1 Gradual maintenance rollout approach

To change one or some IBM HTTP Server powered by Apache servers on a z/OS LPAR to a
new maintenance level, you need the following components:

� A copy of the IBM HTTP Server powered by Apache product code at maintenance level N
in its own zFS that is mounted at some directory in the z/OS UNIX environment.

� A copy of the IBM HTTP Server powered by Apache product code at maintenance level
N+1 in its own zFS that is mounted at some directory in the z/OS UNIX environment.

To achieve these maintenance levels, you must copy all of the IBM HTTP Server powered by
Apache product code that is under the default /usr/lpp/ihsa_zos location; for example, by
using the tar or pax command.

Then, mount a new zFS at a new directory location and use the tar or pax command to
restore the contents of the .tar or .pax file to the new location.

You then have a copy of the IBM HTTP Server powered by Apache product code at
maintenance level N in its own zFS mounted at some directory in the z/OS UNIX
environment; for example, at the /ihs/v9r0m0 directory.

When you apply maintenance to IBM HTTP Server powered by Apache product code to bring
it up to maintenance level N+1, you must perform a similar operation to get a copy of the IBM
HTTP Server powered by Apache product code at maintenance level N+1 in its own zFS
mounted at some directory in the z/OS UNIX environment; for example, at directory
/ihs/v9r0m1.

Note: For our purposes, we are referring only to Apache servers that use the IBM HTTP
Server powered by Apache product code that is supplied with z/OS V2.2. There are other
products that run on z/OS that supply their own copy of the IBM HTTP Server powered by
Apache product code.

For example, the IBM WebSphere Application Server for z/OS product code includes a
corresponding version of IBM HTTP Server powered by Apache.

Note: If you copy SMP/E maintained parts from your driving system to your target system,
ensure that you verified that all of the affected libraries (which include file systems and
PDS and PDSEs) are copied by referring to the appropriate SMP/E reports.

Also ensure that any dependent PTFs (which might be the result of a ++IF RREQ or
HOLDs) are copied; otherwise, you risk deploying a partial fix onto your target system.

In addition, ensure that you can determine what PTFs you are deploying in this gradual
maintenance rollout. You can get this information by keeping a copy of the SMP/E CSI that
is appropriate for what you are rolling out.
Chapter 3. Installing your first IHS 61

The set-up after this process is completed is shown in Figure 3-14.

Figure 3-14 Managing different maintenance levels of product code

Figure 3-14 also shows that a defined Apache server includes symlinks pointing to one copy
of the IBM HTTP Server powered by Apache product code. In this case, it is the copy at
maintenance level v9r0m0.

The result is that you can change individual server instances to use a different maintenance
level of the product code by complete the following steps:

1. Stop the server.
2. Change the symbolic link from /ihs/v9r0m to /ihs/v9r0m1.
3. Start the server.

After completing these steps, the symlinks for the defined server point to the copy of the
product code in the zFS containing maintenance level v9r0m1.

You can use one of the following approaches to change the symlinks in an individual IBM
HTTP Server powered by Apache to a new maintenance level:

� The symbolic link approach that is described in 3.6.1, “Setting up an intermediate link” on
page 59.

� The new script that is provided with IBM HTTP Server powered by V9 that changes all the
symbolic links.

3.7.2 New_install_root shell

Supplied with IBM HTTP Server powered by Apache is a new shell called new_install_root.
For more information about this new shell, see this website:

http://www.ibm.com/support/docview.wss?uid=swg21988561

The purpose of the new_install_root shell is to change all symbolic links in a defined IBM
HTTP Server powered by Apache server instance to a new directory path.
62 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

http://www.ibm.com/support/docview.wss?uid=swg21988561

The new_install_root shell should be run from the bin subdirectory of the IBM HTTP Server
powered by Apache product code.

To demonstrate use of the new_install_root shell, we set up a second server that is running
off a second copy of the IBM HTTP Server powered by Apache product code that includes the
following components:

� A copy of the IBM HTTP Server powered by Apache product code at /WebSphereEd/ihsv9.

� A second copy of the IBM HTTP Server powered by Apache product code at
/WebSphereEd/ihsv9r0m1.

� An IBM HTTP Server powered by Apache server instance at /ihsconfig/ihs/ihsae05 that
is built pointing to /WebSphereEd/ihsv9.

We started the IHSAE05 server and verified it can access the default home page. We then
stopped the IHSAE05 server.

We issued the following commands to change the IHSAE05 instance to point to the
alternative copy of the IBM HTTP Server powered by Apache as /WebSphereEd/v9rom1 by
using the following command:

cd /WebSphereEd/ihsv9r0m1/bin
./new_install_root -s /ihsconfig/ihs/ihsae05 -t /WebSphereEd/ihsv9r0m1

As the shell runs, it prints every symbolic link that it changes. Part of the output is shown in
Example 3-32.

Example 3-32 Partial output from running new_install_root

'/ihsconfig/ihs/ihsae05/.31bit' -> '/WebSphereEd/ihsv9r0m1/.31bit'
'/ihsconfig/ihs/ihsae05/bin/ab' -> '/WebSphereEd/ihsv9r0m1/bin/ab'
'/ihsconfig/ihs/ihsae05/bin/cgiparse' -> '/WebSphereEd/ihsv9r0m1/bin/cgiparse'

...
'/ihsconfig/ihs/ihsae05/notices' -> '/WebSphereEd/ihsv9r0m1/notices'
'/ihsconfig/ihs/ihsae05/properties' -> '/WebSphereEd/ihsv9r0m1/properties'
'/ihsconfig/ihs/ihsae05/readme' -> '/WebSphereEd/ihsv9r0m1/readme'
postinst: Could not reliably determine the server's fully qualified domain name,
using 127.0.0.1 for ServerName
SERVERROOT=/ihsconfig/ihs/ihsae05
PORT=80
SetupadmUser=EDMCAR
SetupadmGroup=SYS1
SERVERNAME=wtsc55.itso.ibm.com
SHLIBPATH_ENVAR=LIBPATH
PERL=/u/edmcar/perl
postinst complete
Moving from 9.0.0.0-PI56034 at /WebSphereEd/ihsv9 to 9.0.0.0-PI56034 at
/WebSphereEd/ihsv9r0m1 complete

We viewed the files in the IHSAE05 instance at /ihsconfig/ihs/ihsae05 and verified that the
symlinks were updated. The server was restarted and we verified that we can access the
default home page.
Chapter 3. Installing your first IHS 63

64 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Chapter 4. Administration

IBM HTTP Server powered by Apache can be administered by using the scripts and
configuration files that are provided by the product. This chapter describes the procedure to
start and stop the server and the way to configure the server and includes the following
topics:

� 4.1, “Running IBM HTTP Server powered by Apache” on page 66
� 4.2, “Using started tasks” on page 66
� 4.3, “Using apachectl from the command line” on page 71
� 4.4, “Integration with WebSphere Application Server” on page 72
� 4.5, “Configuration” on page 73
� 4.6, “Monitoring” on page 75
� 4.7, “Diagnostic tools and information” on page 78
� 4.8, “Troubleshooting” on page 79
� 4.9, “Migrating previous versions” on page 79
� 4.10, “Tracing” on page 80
� 4.11, “Handling logging” on page 82
� 4.12, “Macro support” on page 82
� 4.13, “Conditional controls” on page 83

4

© Copyright IBM Corp. 2013, 2016. All rights reserved. 65

4.1 Running IBM HTTP Server powered by Apache

The program apachectl that is included with IBM HTTP Server powered by Apache for z/OS
is used to start and stop a server. You can choose to issue this command interactively from a
telnet or OMVS session on the z/OS LPAR or to set up a started task that issues the
command.

You often use a started task to manage starting and stopping a server when you want the
server to be managed in the same way as any other major component that is running on the
z/OS LPAR. A started task approach also fits better if the server is started and stopped by an
automation product at IPL times.

Starting the server in a telnet or OMVS session might be useful when you are performing
some development work that is associated with your own server.

4.2 Using started tasks

The sample JCL that we used to set up a started task to run an IBM HTTP Server powered by
Apache was described in 3.5.6, “Creating a Started Task to run the IHS” on page 57. In this
section, we show the commands that can be used to control running the server when it is
running as a started task.

4.2.1 Starting the server

The start command that is used in SDSF to start the IHSAE002 server is shown in
Example 4-1.

Example 4-1 Issuing start command

SDSF DA SC55 SC55 PAG 0 CPU/L/Z
COMMAND INPUT ===> /s ihsae002
NP JOBNAME StepName ProcStep JobID

The tasks that were started as a result of the use of the start command are shown in
Example 4-2.

Example 4-2 Result of start completion

SDSF DA SC55 SC55 PAG 0 CPU/L/Z 5/ 4
COMMAND INPUT ===>
NP JOBNAME StepName ProcStep JobID Owner
 IHSAE002 STEP1 STC18243 IHSAE001
 IHSAE002 STEP1 STC18068 IHSAE001
 IHSAE002 STEP1 STC18249 IHSAE001
 IHSAE002 STEP1 STC18250 IHSAE001
 IHSAE002 STEP1 STC18219 IHSAE001
 IHSAE002 IHSAE002 *OMVSEX STC18247 IHSAE001

All of the spawned started tasks feature the same name because the original started task
included eight characters. If the started task name included seven characters or less, the
spawned started tasks each feature a digit appended to their name.
66 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

4.2.2 Stopping the server

To stop the server, you must enter a “/” at the Command Input area and then, press Enter. In
the System Command Extension area, you next enter the command as shown in
Example 4-3.

Example 4-3 Stopping a started task

SDSF DA SC55 SC55 PAG 0 CPU/L/Z 4/ 2/ 0 LINE 1-6 (
COMMAND INPUT ===> / SCR
NP Esss
 e System Command Extension
 e
 e Type or complete typing a system command, then press Enter.
 e
 e ===> s IHSAE002,action='stop'
 e ===>
 e
 e Place the cursor on a command and press Enter to retrieve it

After you enter the command, the server stops.

You also can perform a graceful stop of the server. A graceful stop tells the parent process to
advise the children to exit after completing all current requests or to exit immediately if no
requests are being processed. The parent process exits after all children finalized and exited
or the timeout that is specified by the GracefulShutdownTimeout is reached. If the timeout is
reached, any remaining children are forced to exit, which is done by using the following
command:

S IHSAE002,action='graceful-stop'

4.2.3 Recycling the server to pick up changes

If you change the httpd.conf file, it might be possible to have the running server pick up
these changes by performing a restart. This restart approach causes each child process to
reload the httpd.conf file and pick up any changes.

The restart can be done by using one of the following methods:

� Graceful
� Restart now

A graceful restart results in the parent process advising the children processes to exit after
their current request (or to exit immediately if they are not serving anything). The parent
process then rereads its configuration files and reopens its log files. The parent process then
replaces each child process as it dies with a child process from the new generation of the
configuration, which begins serving new requests immediately.

Note: If you enter the command at the Command Input prompt, running the command is
unsuccessful because SDSF converts the command to an uppercase format. Also, IBM
HTTP Server powered by Apache does not recognize the action=’stop’ part of the
command.
Chapter 4. Administration 67

A restart now results in the parent process to end its children processes without waiting for
them to complete any current processes. The parent process then rereads its configuration
files and reopens any log files. Then, it creates a set of children processes and continues
serving hits. For more information about these approaches, see this website:

http://httpd.apache.org/docs/2.2/stopping.html

The started tasks that represent the child processes are not restarted; therefore, the pid of
each one does not change.

Example 4-4 shows the use of the restart command. If you want to perform a graceful
restart, the graceful command is used.

Example 4-4 Restarting the server

SDSF DA SC55 SC55 PAG 0 CPU/L/Z 4/ 2/ 0 LINE 1-6 (
COMMAND INPUT ===> / SCR
NP Esss
 e System Command Extension
 e
 e Type or complete typing a system command, then press Enter.
 e
 e ===> s IHSAE002,action='restart'
 e ===>
 e
 e Place the cursor on a command and press Enter to retrieve it

You see messages in the error_log file that the server restarted.

4.2.4 Modifying command support in V8.5.5

V8.5.5 of IBM HTTP Server powered by Apache provides a new module with which you use
standard syntax for issuing commands to a server. To activate this feature, you must add the
directive that is shown in Example 4-5.

Example 4-5 Adding directive to support modify commands

LoadModule zos_cmds_module modules/mod_zos_cmds.so

To stop a server, you can issue the p ihsae002 command, as shown in Example 4-6.

Example 4-6 Stopping a server

SDSF DA SC55 SC55 PAG 0 CPU/L/Z 2/ 2
COMMAND INPUT ===> /p ihsae002
NP JOBNAME StepName ProcStep JobID Owner
 IHSAE002 STEP1 STC18259 IHSAE001
 IHSAE002 STEP1 STC18068 IHSAE001
 IHSAE002 STEP1 STC18249 IHSAE001
 IHSAE002 STEP1 STC18260 IHSAE001
 IHSAE002 STEP1 STC18250 IHSAE001
 IHSAE002 IHSAE002 *OMVSEX STC18262 IHSAE001

To perform a graceful stop of the server, enter the following command:

F IHSAE002,appl='graceful-stop'
68 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

http://httpd.apache.org/docs/2.2/stopping.html

To perform a graceful restart of the server, enter the following command:

F IHSAE002,appl='graceful'

To perform a restart of the server, enter the following command:

F IHSAE002,appl='restart'

Extraneous options
If you enter an invalid modify command, you see output in SDSF that is similar to the output
that is shown in Example 4-7.

Example 4-7 Response from issuing invalid command

BPXM022E MODIFY SYNTAX ERROR; INVALIDCMD WAS FOUND
WHERE ONE OF THE FOLLOWING WAS EXPECTED:
APPL= TERM= FORCE=
SHUTDOWN= RESTART= DUMP= FILESYS= RECOVER= SUPERKILL=

The modify command process uses a generic interface that expects the values that are
shown in Example 4-12 on page 71. Only the APPL keyword can be used with IBM HTTP
Server powered by Apache.

Length of STC name consideration
In “Extraneous options”, it happened that we were using an STC that was eight characters
long. This length meant that all of the OMVS STCs that were created featured the same name
as the original starting STC.

If your starting STC name is seven characters or less, the OMVS STCs that are created
include an extra appended character. For example, we set up a server that is running with the
STC name of IHSAE65. In SDSF, you can see the results as shown in Example 4-8.

Example 4-8 SDSF display showing created OMVS STC names

JOBNAME StepName ProcStep JobID Owner
IHSAE65 IHSAE65 *OMVSEX STC09071 EDMCAR
IHSAE651 STEP1 STC07168 EDMCAR
IHSAE652 STEP1 STC09063 EDMCAR
IHSAE654 STEP1 STC07172 EDMCAR
IHSAE657 STEP1 STC07169 EDMCAR
IHSAE658 STEP1 STC07196 EDMCAR
IHSAE659 STEP1 STC07191 EDMCAR

When the originating STC name was eight characters long, it might appear that the modify
command was being issued to the originating STC. However, it was processed by one of the
created OMVS STCs.

Therefore, if you have an originating STC name with seven characters or less, you must
identify which of the created OMVS STCs must be targeted with modify commands.

To determine which OMVS STC to use, look in the z/OS syslog for a message when the
server is started that is similar to the following example:

BPXM023I (EDMCAR) IHS is active. Use jobname IHSAE658 for MVS commands.

This message informs you that any modify commands must use F IHSAE658. This message
appears in the z/OS syslog only.
Chapter 4. Administration 69

If you dynamically restart the server, a new BPXM023I message is issued that advises of the
new target OMVS STC.

4.2.5 Displaying version in job log

Complete following steps to display the IBM HTTP Server powered by Apache version in the
job log of the started task:

1. Create a Rexx named IHSLEVEL that contains the code that is shown in Example 4-9.

Example 4-9 Rexx code to display Apache version

/* REXX */
parse arg ihsDir
say 'ihs dir: ' ihsDir
address tso
call bpxwunix ihsDir"/bin/apachectl -version",,out.
Do outx = 1 to OUT.0
 Say 'OUT.'outx '=' OUT.outx
 "send '"OUT.outx"' operator(1)"
 End outx
exit 0

2. Modify the JCL that is used to start the server by adding a first step to start the IHSLEVEL
Rexx, as shown in Example 4-10.

Example 4-10 Modified JCL

//IHSAE001 PROC ACTION='start',
// DIR='''/ihsconfig/ihs/ihsae001''',
// CONF='conf/httpd.conf'
// EXPORT SYMLIST=(IDIR)
// SET IDIR=&DIR
//*---
//IHSLEVEL EXEC PGM=IKJEFT01
//SYSEXEC DD DISP=SHR,DSN=EDMCAR.Z.REXX
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSTSIN DD *,SYMBOLS=CNVTSYS
 IHSLEVEL '&IDIR.'
//*---
//IHS EXEC PGM=BPXBATCH,
// PARM='SH &IDIR/bin/apachectl -k &ACTION -f &CONF -DNO_DETACH',
// MEMLIMIT=512M
//STDOUT DD PATH='&IDIR/logs/proc.output',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//STDERR DD PATH='&IDIR/logs/proc.errors',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
// PEND
70 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Notice the following line in the JCL in Example 4-10 on page 70:

DIR='''/ihsconfig/ihs/ihsae001''',

Because the value of the DIR parameter contains lower case characters, triple single
quotes must be used so that it is used as a symbol in the JCL.

Sample output
When the server is started, you see messages in the job log that show the Apache version
similar to the messages that are shown in Example 4-11.

Example 4-11 Sample Apache version messages

15.54.22 STC29431 ---- THURSDAY, 08 DEC 2016 ----
15.54.22 STC29431 IEF695I START IHSAE001 WITH JOBNAME IHSAE001 IS
15.54.22 STC29431 $HASP373 IHSAE001 STARTED
15.54.22 STC29431 +Server version: IBM_HTTP_Server/8.5.5.1 (Unix)
15.54.22 STC29431 +Server built: May 23 2013 00:51:38
15.54.22 STC29431 Jobname Procstep Stepname CPU Time EXCPs
15.54.22 STC29431 IHSAE001 STARTING IHSLEVEL 00:00:00 102
15.54.22 STC29431 IHSAE001 STARTING IHS 00:00:00 102
15.54.22 STC29431 IHSAE001 --None-- *OMVSEX 00:00:00 65

Overriding DIR parameter again
If you must override the DIR parameter when the start command is issued, triple single
quotes must be used if the DIR parameter contains lower-case characters, as shown in the
following example:

s ihsae001,DIR='''/ihsconfig/ihs/ihsae001'''

4.3 Using apachectl from the command line

You can start a server from the command line in a z/OS environment by logging on to the
z/OS LPAR through Telnet or by using the OMVS command from ISPF to get to a command
prompt. The apachectl command to use for starting, stopping, or restarting the server
features the following format:

./apachectl -k <option>

4.3.1 Starting the server

To start the IHSAE002 server, issue the commands that are shown in Example 4-12.

Example 4-12 Starting a server from the command line

su - ihsae002
cd /ihsconfig/ihs/ihsae002/bin
./apachectl -k start
Chapter 4. Administration 71

No message is displayed in response to the start command in the session. Looking in SDSF,
you can see that the server started because several started tasks are displayed, as shown in
Example 4-13.

Example 4-13 The IHSAE002 server is now running

SDSF DA SC55 SC55 PAG 0 CPU/L/Z 3/ 2
COMMAND INPUT ===>
NP JOBNAME StepName ProcStep JobID Owner
 IHSAE001 STEP1 STC18243 IHSAE001
 IHSAE001 STEP1 STC18259 IHSAE001
 IHSAE001 STEP1 STC18068 IHSAE001
 IHSAE001 STEP1 STC18260 IHSAE001
 IHSAE001 STEP1 STC18250 IHSAE001

The name of the started tasks is the user ID that we were logged on as when the apachectl
command was issued. It is not the logical name of the server.

4.3.2 Stopping the server

To stop the server, issue one of the following commands, depending on what style of
shutdown you want to perform:

./apachectl -k stop

./apachectl -k graceful-stop

4.3.3 Restarting the server

To restart the server, issue one of the following commands, depending on what style of restart
you want to perform:

./apachectl -k restart

./apachectl -k graceful

4.3.4 Mix and match

You can use the modify commands (as described in 4.2, “Using started tasks” on page 66)
and the apachectl command from the command line to perform actions on a server. When
the apachectl command is used, the server on which it acts is the one corresponding to the
configuration directory from which you are issuing the command.

4.4 Integration with WebSphere Application Server

If you are using WebSphere Application Server, you can register your IBM HTTP Servers
powered by Apache with the WebSphere cell if they are defined in a managed node. By using
this configuration, the WebSphere Application Server administration console can be used to
stop and start the server. For more information, see this website:

https://ibm.biz/Bdr6yb
72 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

https://ibm.biz/Bdr6yb

4.5 Configuration

IBM HTTP Server powered by Apache features a main default configuration file that is named
httpd.conf. A sample configuration file that is named httpd.conf.default also is available
and is a copy of the original httpd.conf file. Both files can be found in the /conf subdirectory
where you set up the server. It is the httpd.conf file in which you must make configuration
changes to have it perform in the way you require.

IBM HTTP Server powered by Apache uses directives that are native to the original Apache
HTTP Server and directives that are available because more modules and features were
added by IBM.

Explaining all possible uses of the available directives is beyond the scope of this paper. Many
examples of how to configure the Apache HTTP Server to handle user requirements can be
found by searching the Internet.

This section reviews some of the key aspects of the httpd.conf file that you are more likely to
modify.

4.5.1 Listen directive

The Listen directive specifies the TCP/IP port on which the IBM HTTP Server powered by
Apache listens. If you want to change this port, edit the Listen directive in the httpd.conf file,
as shown in Example 4-14.

Example 4-14 Listen directive in the httpd.conf file

Listen: Allows you to bind the web server to specific IP addresses
and/or ports, in addition to the default. See also the <VirtualHost>
directive.
#
Change this to Listen on specific IP addresses as shown below to
prevent the web server from accepting connections on all interfaces
(0.0.0.0)
#
Change this to "Listen 0.0.0.0:port" to restrict the server to
IPv4.
#
Listen 8237

4.5.2 Virtual hosting

One of the most important features of IBM HTTP Server powered by Apache is the
VirtualHost directive. By using this feature, any number of directives that are to apply can be
associated to requests that match that directive. One server also can handle requests for any
number of logical domains. To enable this feature, you must specify at least the server name
of your site and the port.

The VirtualHost directive can include any other directives that apply only to that specific site.
One of these directives is DocumentRoot, which defines the folder that contains the
documents that your site serves to clients.
Chapter 4. Administration 73

In case your IBM HTTP Server powered by Apache hosts more than one site, you might find it
necessary to set separate document root folders for each site. For example, you can set an
IBM HTTP Server powered by Apache to host two websites that are named
www.ibmitsosite1.com and www.ibmitsosite2.com. The virtual host definitions might be
configured as shown in Example 4-15.

Example 4-15 Virtual hosts definition for two sites that are hosted by a single server

Listen 80
Listen 443
NameVirtualHost ibmitsosite1:80
NameVirtualHost ibmitsosite2:80
NameVirtualHost ibmitsosite:80
NameVirtualHost ibmitsosite:443
<VirtualHost www.ibmitsosite1.com:80>

DocumentRoot /www/ibmitsosite1
DirectoryIndex index.html index.htm
ErrorDocument 404 /www/ibmitsosite1/error404_1.html
ErrorDocument 500 /www/ibmitsosite1/error500_1.html

 ErrorLog logs/ibmitsosite1_80_error.log
 TransferLog logs/ibmitsosite1_80_access.log
 Loglevel error
</VirtualHost>
<VirtualHost www.ibmitsosite2.com:80>

DocumentRoot /www/ibmitsosite2
DirectoryIndex index.html index.htm
ErrorDocument 404 /www/ibmitsosite2/error404_2.html
ErrorDocument 500 /www/ibmitsosite2/error500_2.html

 ErrorLog logs/ibmitsosite2_80_error.log
 TransferLog logs/ibmitsosite2_80_access.log
 Loglevel info
</VirtualHost>
<VirtualHost www.ibmitsosite.com:80>

DocumentRoot /www/ibmitsosite_80_to_1
DirectoryIndex index.html index.htm
Redirect permanent / http://www.ibmitsosite1.com/

</VirtualHost>
<VirtualHost www.ibmitsosite.com:443>

DocumentRoot /www/ibmitsosite_443_to_2
DirectoryIndex index.html index.htm
Redirect permanent / http://www.ibmitsosite2.com/

</VirtualHost>

This example assumes that TCP/IP in your IBM HTTP Server powered by Apache host
resolves both site names and the www.ibmitsosite.com that is redirected to
http://www.ibmitsosite1.com if the request is on the port 80, and to
http://www.ibmitsosite2.com if the request is on port 443. The log levels are set to different
levels and files for each site.
74 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

4.6 Monitoring

IBM HTTP Servers powered by Apache can be monitored by using the methods that are
described in this section.

4.6.1 SDSF

If you are running your servers as started tasks, a good first check is to see whether the
started tasks are running if you suspect a problem.

4.6.2 Checking pid and log files

Common files to check on your server include the pid and log files. These files are in the log
subdirectory of the configuration directory of the server. In our case, the
/ihs/config/ihs/ihsae002/logs directory was used. Check the following files:

� httpd.pid: This process identity file contains the process number of the initial parent
process of the server. This file is refreshed when the server is started and you can use it to
search for the server process.

� error_log: This file is where the server logs alert, notice, warning, and error messages
are stored. You can use this log to view events, such as the hours that the server was last
restarted.

� access_log: This file is where the server logs records of all requests processed are stored.
You can use this log to search for information, such as how many 404 HTML response
code messages were received during a specific time. Also, this file contains by default the
IP addresses of the clients for which requests are processed.

Log rotation
The error_log and access_log files are not rotated by default. Therefore, their size might
grow to adversely affect your environment. One way to rotate the logs is to stop the server,
move the log files to another location, and then start the server. The problem with this method
is that you must restart the server, which means that your clients cannot access it.

To avoid this situation, configure rotation for this log files by using piped logs. IBM HTTP
Server powered by Apache can write error and access log files through a pipe to another
process. This feature is inherited from Apache. To configure piped logs, you must use a
program called rotatelogs that is in the bin folder of your IBM HTTP Server powered by
Apache installation path. Example 4-16 shows a way to rotate the access_log every one hour.

Example 4-16 Rotating the acces_log every 12 hours

CustomLog "|/ihsam001/bin/rotatelogs /ihsam001/logs/access_log 3600" common

The format of the access log file can be customized by using different percent directives that
you can add to the default LogFormat directive. Example 4-17 on page 76 shows the default
log format configuration and one output line from the access_log that indicates the following
information:

� The IP of the client request (as in the %h directive).

� The first hyphen that indicates the identity of the client machine, which in our case is not
available (as in the %l directive).

� The second hyphen that indicates the identity of the request user, which in our case is not
available (as in the %u directive).
Chapter 4. Administration 75

� The time that the request was received by the server (as in the %t directive).

� The method that is used by the client, requested resource, and protocol type (as in the
\"%r\" directive).

� The status code that is sent back by the server to the client (as in the %>s directive).

� The size of the object that is returned to the client (as in the %b directive).

Example 4-17 Default access_log format and output

IHSAM001 @ SC55:/ihsam001>cat ./conf/httpd.conf | grep LogFormat
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\""
combined
LogFormat "%h %l %u %t \"%r\" %>s %b" common
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent
IHSAM001 @ SC55:/ihsam001>cat ./conf/httpd.conf | grep access_log
CustomLog "|/ihsam001/bin/rotatelogs /ihsam001/logs/access_log 60000" common
IHSAM001 @ SC55:/ihsam001>tail -1 ./logs/access_log9.123.123.123 - -
[18/Jun/2013:16:18:54 -0400] "GET /images/administration.gif HTTP/1.1" 200 223

4.6.3 Server status

The default httpd.conf file contains the lines that are shown in Example 4-18.

Example 4-18 Directives to allow for server status reports

Allow server status reports generated by mod_status,
with the URL of http://servername/server-status
Change the ".example.com" to match your domain to enable.

<IfModule mod_status.c>
<Location /server-status>
 SetHandler server-status
 Order deny,allow
 Deny from all

The previous directives provide a URL that you can use to display the current state of the
server. It shows the requests that are being processed, available threads, and so on.

However, the default setup does not allow anyone to use it. The simplest change allows
anyone to use the URL. The required change is shown in Example 4-19.

Example 4-19 Allowing everyone access to the server status URL

Allow server status reports generated by mod_status,
with the URL of http://servername/server-status
Change the ".example.com" to match your domain to enable

<IfModule mod_status.c>
<Location /server-status>
 SetHandler server-status
 Order deny,allow
 Allow from all

A sample of the output produced is shown in Figure 6-5 on page 115.
76 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

4.6.4 Server status by using the modify command

For more information about setting up the IBM HTTP Server powered by Apache so that you
can view the status of requests being processed by issuing a request from a browser, see
4.6.3, “Server status” on page 76.

APAR PI24990 provides the ability to use a modify command to display this same type of
information so that it is displayed in the z/OS system log. The output is not displayed in the
STCs that run IBM HTTP Server powered by Apache.

The APAR also provides an option to reset the statistic counters. For more information about
the APAR, see this website:

http://www.ibm.com/support/docview.wss?uid=isg1PI24990

The support for this APAR will be available in V8.5.5.4 of the IBM HTTP Server powered by
Apache for z/OS.

To display server stats information, issue the following command:

F IHSAE658,APPL='stats'

Example 4-20 shows the output of this command.

Example 4-20 Sample of output displayed after issuing stats command

F IHSAE658,APPL='stats'
BPXM023I (EDMCAR) 280
IHS stats: hostname: wtsc69.itso.ibm.com ppid: 67240308
Interval: 84s Requests: 10 bytes: 241815
%busy: 0 (0,50,600)
rdy 50 bsy 0 rd 0 wr 0 log 0 dns 0 cls 0 ka na

To reset the server statistics information, use the resetstats or restats keyword, as shown in
the following command:

F IHSAE658,APPL='restats'

Example 4-21 shows a sample of the output that is produced by this command.

Example 4-21 Sample of resetstats command output

BPXM023I (EDMCAR) 282
IHS stats: hostname: wtsc69.itso.ibm.com ppid: 67240308
Interval: 7m Requests: 10 bytes: 241815
%busy: 0 (0,50,600)
rdy 50 bsy 0 rd 0 wr 0 log 0 dns 0 cls 0 ka na

4.6.5 Thread usage

The mpmstats module (if enabled) writes information periodically about thread usage by the
server. For more information about this module and the information it provides, see this
website:

https://publib.boulder.ibm.com/httpserv/manual70/mod/mod_mpmstats.html

For more information about how the information that is produced by the mpmstats module can
be written to SMF records, see 8.3.4, “Enabling for subtype 13” on page 134.
Chapter 4. Administration 77

https://publib.boulder.ibm.com/httpserv/manual70/mod/mod_mpmstats.html
http://www.ibm.com/support/docview.wss?uid=isg1PI24990

4.7 Diagnostic tools and information

IBM provides a utility package that is named ihsdiag for capturing diagnostic information
about IBM HTTP Server powered by Apache. This tool helps you investigate problems and
send diagnostic information to IBM support.

The ihsdiag tool can be downloaded from the following website:

https://www.ibm.com/support/docview.wss?uid=swg24008409

The package contains the following items:

� Documentation for configuring IBM HTTP Server powered by Apache and the operating
system for problem determination.

� Diagnostic modules to load into IBM HTTP Server powered by Apache to capture first
failure information.

� Diagnostic tools for gathering information about problem symptoms, including child
process crashes, hang conditions, high CPU conditions, and startup failures.

� IBM HTTP Server powered by Apache performance tuning information.

� IBM HTTP Server powered by Apache Q&A document

You must install the tool on your system. A prerequisite is that the gzip package is installed.
The tool is started as a Java component and must run under an IBM Java Runtime of 1.4.2 or
later. The tool creates a directory that contains a time stamp in the name. The gathered
information is saved in that directory.

The ihsdiag tool accepts the following tasks:

� DescribeSingleProcess
� DescribeAllProcesses
� ListAllProcesses
� GatherCrashDoc
� GatherHangDoc
� GatherHighCpuDoc
� CheckPlatform
� DescribeConfig
� ParseNetTrace

Example 4-22 shows an output of the ihsconfig tool.

Example 4-22 DescribeConfig task output of ihsdiag tool

HAIMO @ SC55:/ihsam001/ihsdiag-1.4.16>java -jar ./ServerDoc.jar DescribeConfig ihsam001
Web server version: 8.5.5.1
Reports, log files, and configuration files have been saved to directory
 ServerConfig.201306191554
If you have additional log files or configuration files, copy them there
before packing up the directory.
Web server log and conf files other than the default will have to be
copied manually.
WebSphere plug-in conf and log files will have to be copied manually.

Hint for packing up the directory:
 pax -wo to=ISO8859-1 -f ServerConfig.201306191554.tar ServerConfig.201306191554
 compress ServerConfig.201306191554.tar
78 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

https://www.ibm.com/support/docview.wss?uid=swg24008409

4.8 Troubleshooting

Complete the following steps to troubleshoot your IBM HTTP Server powered by Apache
installation:

1. Check the error log of the server for problems. Look for lines that contain strings, such as
{alert], [error], or [warn] because this type of messages might indicate the cause of
the problem.

2. Check the IHS Diagnostic Tools and Information package that is described in 4.7,
“Diagnostic tools and information” on page 78 for more diagnostic information, and the
MustGather steps for some problems. If you open an IBM Problem Management Record
(PMR) for IBM HTTP Server powered by Apache, you are prompted for the output of the
ihsdiag tool.

3. Ensure that the latest IHS fix level is installed. In most cases, the problem you encounter
was resolved in a fix that is available for downloading. For more information about IBM
HTTP Server powered by Apache recommended updates, see this website:

http://www.ibm.com/support/docview.wss?rs=177&context=SSEQTJ&uid=swg27005198

4. Check the following IBM HTTP Server powered by Apache support page for Technotes:

http://www.ibm.com/software/webservers/httpservers/support/

By following the first step of this procedure, you often can find the root cause of the problem.
Example 4-23 shows the output in the error_log for a common problem, namely trying to
access a file that does not exist.

Example 4-23 Error output in error_log

[Tue Jun 18 16:19:02 2013] [error] [client 9.123.123.123] File does not exist:
/ihsam001/htdocs/z

You can find two configuration issues. For more information about solving these issues, see
this website:

https://ibm.biz/Bdr6Sq

4.9 Migrating previous versions

No mechanism is supplied by IBM to migrate the configuration of an IBM HTTP Server
powered by Apache to a new version. Complete the following steps to migrate to a new
version:

1. Install the product code of the new version.

2. Use the new version of the product to create a server.

3. Modify the new httpd.conf file with the same changes you made to your server.

4. Make any other changes to the new configuration that you made to the server
configuration.

You can use a command, such as diff, to display the differences between your current
httpd.conf file and the new httpd.conf.default.
Chapter 4. Administration 79

http://www.ibm.com/support/docview.wss?rs=177&context=SSEQTJ&uid=swg27005198
http://www.ibm.com/software/webservers/httpservers/support/
https://ibm.biz/Bdr6Sq
http://www.ibm.com/support/docview.wss?rs=177&context=SSEQTJ&uid=swg27005198

Typically there are not many changes in the directives and modules between versions, but
there can be some changes. Review any changes in the new version and determine whether
these changes affect your server. For more information about how two new modules called
mod_authnz_saf and mod_authnz_ldap replace similar modules that are used in older
versions, see this website if you were migrating to Version 8.5:

https://ibm.biz/Bdr6ke

4.10 Tracing

IBM HTTP Server powered by Domino provided a method to trace the way it processed a
request.

IBM HTTP Server powered by Apache V9 now also provides a tracing capability. This tracing
capability is provided by Apache V2.4 upon which this version is built.

The tracing capability provides a way to trace the way the server processes a request, which
can be useful when the server does not process the request in the way you expect.

4.10.1 Information about tracing

The new tracing capability is controlled by new values that can be supplied on the LogLevel
directive. The new values that can be used all start with the value “trace”, as shown in
Figure 4-1.

Figure 4-1 Settings to use for enabling tracing

For more information about the new tracing-related directives, see this website:

http://httpd.apache.org/docs/current/mod/core.html#loglevel

For more information about how to perform tracing, see this website:

http://people.apache.org/~trawick/AC2014-Debug.pdf
80 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

https://ibm.biz/Bdr6ke
http://httpd.apache.org/docs/current/mod/core.html#loglevel
http://people.apache.org/~trawick/AC2014-Debug.pdf
http://httpd.apache.org/docs/current/mod/core.html#loglevel

Trace output is written to the error_log file.

4.10.2 Limitation

A limitation of the new tracing capability is that it cannot be started, stopped, or changed
dynamically. Any changes that are related to the tracing directives require a stop and start of
the server.

4.10.3 Some examples

Assume that the level of tracing is set to warn in the LogLevel directive.

We now want to trace how the server is processing requests that start with
/banking/deposits. Example 4-24 shows how we code directives to achieve this goal.

Example 4-24 Tracing requests that match a URL

Maximum trace for this URI
<Location /misbehavingApplication/>
 LogLevel trace8
</Location>

Next, we want to trace all requests that are coming from a certain TCP/IP address. How the
directives are coded for this trace is shown in Example 4-25.

Example 4-25 Tracing requests from a specific TCP/IP address

Maximum trace from a specific client
<if "%{REMOTE_ADDR} == '10.1.2.3'>
 LogLevel trace8
</if>

The tracing that is produced in Example 4-24 and Example 4-25 show output from all
modules that were involved with tracing the request.

How to code the directives so that only actions that are performed by the rewrite module are
output is shown in Example 4-26. IBM HTTP Server powered by Domino was unable to
perform this tracing.

Example 4-26 Tracing only the actions taken by the rewrite module

We're debugging just the mod_rewrite module here
<LocationMatch ^/app2/controller.do$>
 LogLevel rewrite:trace8
</Location>

We enabled tracing in our IBM HTTP Server powered by Apache by using the approach that
is shown in Example 4-25 and accessed the default home page. A small sample of the trace
output produced is shown in Example 4-27.

Example 4-27 Example of trace output

[Tue Jan 20 16:52:09.032625 2015] [core:trace4] [pid 131234:tid 2725491413163704327]
util_expr_eval.c(835): [client 9.190.237.30:54034] Evaluation of expression from
/ihsconfig/ihs/ihsae009/conf/httpd.conf:899 gave: 1, referer:
http://wtsc55.itso.ibm.com:8229/
Chapter 4. Administration 81

[Tue Jan 20 16:52:09.032636 2015] [authz_core:debug] [pid 131234:tid 2725491413163704327]
mod_authz_core.c(799): [client 9.190.237.30:54034] AH01626: authorization result of Require
all granted: granted, referer: http://wtsc55.itso.ibm.com:8229/
[Tue Jan 20 16:52:09.032640 2015] [authz_core:debug] [pid 131234:tid 2725491413163704327]
mod_authz_core.c(799): [client 9.190.237.30:54034] AH01626: authorization result of
<RequireAny>: granted, referer: http://wtsc55.itso.ibm.com:8229/
[Tue Jan 20 16:52:09.032674 2015] [core:trace3] [pid 131234:tid 2725491413163704327]
request.c(236): [client 9.190.237.30:54034] request authorized without authentication by
access_checker_ex hook: /images/ihs/support.gif, referer: http://wtsc55.itso.ibm.com:8229/
[Tue Jan 20 16:52:09.032679 2015] [charset_lite:trace2] [pid 131234:tid
2725491413163704327] mod_charset_lite.c(333): [client 9.190.237.30:54034]
should_translate_request: r->handler=(null), referer: http://wtsc55.itso.ibm.com:8229/

4.11 Handling logging

Apache always supplied a program that is named rotatelogs, which supports rotating logs
based on a time interval or maximum size of the log.

In Apache 2.4, the following enhancement were added to rotatelogs:

� Custom post-rotate script

Rotatelogs provides a new option -p, which can be used to specify a name of a program
that is called when a log file is created. The name of the previous log file is passed as a
parameter to the program specified.

For more information, see this website:

http://httpd.apache.org/docs/current/programs/rotatelogs.html

By using this option, a process can be set up to better manage log files as they are
produced.

� Circular list of output files

The normal processing of log files includes IBM HTTP Server powered by Apache running
rotatelogs according to how you configure it, which creates a log file. However, you then
must set up some mechanism to manage these old log files.

An alternative approach is to use the new -n option to specify how many log files are kept
by the server. If you specify “-3” for example, the server creates three log files and cycles
through writing output to each one in turn only.

4.12 Macro support

IBM HTTP Server powered by Apache V9 inherits the support that Apache 2.4 has for the
Macro directive. This capability is provided by a third-party module.

An example of where this macro capability is useful is if you are running an IBM HTTP Server
powered by Apache to support several virtual hosts. In this scenario, you might have large a
httpd.conf file. The file is large because each virtual host features many directives with
different values.
82 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

http://httpd.apache.org/docs/current/programs/rotatelogs.html
http://httpd.apache.org/docs/current/programs/rotatelogs.html

By using this marco capability, you can simplify the way your httpd.conf file is set up.

An example of the use of the macro directive is shown in Figure 4-2. In the example, a macro
that is named VHost was defined and expects three parameters. The macro then contains
several directives that referenced the passed parameters. The next three lines after the macro
definition show that the macro was called three times, which resulted in three defined
VirtualHost stanzas.

Figure 4-2 Example showing use of maro directive

4.13 Conditional controls

IBM HTTP Server powered by Apache V9.0 is built on Apache 2.4 and supports the following
directives that were added by Apache 2.4:

� if
� elseif
� else

For more information about these directives, see this website:

http://publib.boulder.ibm.com/httpserv/manual24/mod/core.html#if

IBM HTTP Server powered by Apache administrators always had a requirement to manage
conditional type requirements. Before these new directives, the common approach was to use
ReWrite directives. However, the use of a ReWrite directive can result in complex syntax that
is difficult to interpret.

The <if> and other new directives can be used in all contexts and provide a clearer way to
implement conditional requirements.
Chapter 4. Administration 83

http://publib.boulder.ibm.com/httpserv/manual24/mod/core.html#if

Examples of how to use this new capability are shown in Figure 4-3.

Figure 4-3 Examples of conditional control

Compare the host name to example.com and redirect to www.example.com if it
matches
<If "%{HTTP_HOST} == 'example.com'">
 Redirect permanent "/" "http://www.example.com/"
</If>

Force text/plain if requesting a file with the query string contains
'forcetext'
<If "%{QUERY_STRING} =~ /forcetext/">
 ForceType text/plain
</If>

Only allow access to this content during business hours
<Directory "/foo/bar/business">
 Require expr %{TIME_HOUR} -gt 9 && %{TIME_HOUR} -lt 17
</Directory>
84 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Chapter 5. Migration

This chapter provides guidance about migrating from IBM HTTP Server powered by Domino
to IBM HTTP Server powered by Apache.

This chapter includes the following topics:

� 5.1, “Planning your migration” on page 86
� 5.2, “Migration guidance” on page 87
� 5.3, “Migrating Library Server” on page 97

5

© Copyright IBM Corp. 2013, 2016. All rights reserved. 85

5.1 Planning your migration

As a wise old computer programmer once advised, there are only three key factors when it
comes to performing a successful migration:

� Planning
� Planning
� Planning

Therefore, a migration plan must be developed first to migrate from IBM HTTP Server
powered by Domino to IBM HTTP Server powered by Apache.

5.1.1 Migration plan

A plan outlines the steps that must be performed to migrate to IBM HTTP Server powered by
Apache. The plan helps you to identify the following issues:

� What needs to be done.
� Who is involved.
� Who is responsible for various tasks.
� How long it takes.

If you have only a few HTTP Servers powered by Domino that are infrequently used and that
usage is basic, your plan likely is simple to prepare and run. However, if you have many HTTP
Servers powered by Domino that use many GWAPI programs and various security functions,
your plan takes longer to prepare and is more detailed.

Determining what must be done
Your objectives include the following areas:

� Identify which IBM HTTP Servers powered by Domino are in use and on what z/OS LPARs
they run.

� Determine from where the IBM HTTP Server powered by Apache product code will be
obtained.

� Find information sources, such as this document, that can assist your understanding of the
new product.

� Determine how your IBM HTTP Servers powered by Domino are being used, including the
following examples:

– Is security being used?
– Does the server handle multiple hosts?
– Does the server listen on multiple ports?
– Are GWAPI modules being used, and do you have the source code for these modules?
– Is it set up to produce SMF records?
– Is it running in scalable mode?

� Plan the installation and configuration of new servers.

� Plan how you to switch over from old to new servers:

– Will this be a “big bang” approach, doing all servers at the same time?
– If running in a sysplex, you might bring in new servers on one LPAR first.
86 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Who is to be involved
This aspect includes the following considerations:

� Identifying the users of these servers so you can inform them that a change to IBM HTTP
Server powered by Apache is being planned.

� Identifying owners of applications that are accessed by the current servers.

� Identifying technical staff who must be involved in the migration process.

Responsibility for various tasks
After you identify the various groups who are involved your plan, you must clearly identify their
roles and responsibilities.

How long it takes
Your plan should include a timeline that shows when changes will be made and how long
tasks in the plan take.

5.2 Migration guidance

This section describes the following common aspects of a migration to IBM HTTP Server
powered by Apache:

� Scalable mode
� SMF records
� Server home directory
� Ports
� Virtual hosts
� Security
� Logging
� URL and file mapping directives
� WebSphere Application Server plug-in
� Timeouts
� Caching
� ASCII/EBCDIC considerations
� GWAPI
� Reverse Proxy
� Clean up PARMLIB

5.2.1 Scalable mode

If you are running servers in scalable mode, see Chapter 6, “Scalability and workload
management” on page 103, which compares scalable mode to the WLM classification
support that is provided in V8.5.5 of IBM HTTP Server powered by Apache.

5.2.2 SMF records

If your servers are set up to produce SMF records, see Chapter 8, “System Management
Facilities support in IHS V8.5.5” on page 131, which compares the SMF records written by
the two products.
Chapter 5. Migration 87

5.2.3 Server home directory

The server home directory directives in IBM HTTP Server powered by Domino and IBM HTTP
Server powered by Apache are slightly different. IBM HTTP Server powered by Domino
InstallPath and ServerRoot directives are replaced in IBM HTTP Server powered by Apache
with the ServerRoot directive. There is no such directive as InstallPath in IBM HTTP Server
powered by Apache. Example 5-1 shows how these directives are used in IBM HTTP Server
powered by Domino.

Example 5-1 InstallPath and ServerRoot

IBM HTTP Server powered by Domino InstallPath directive:
Set this to point to the server install path
Default: /Z1DRC1/usr/lpp/internet
Syntax: InstallPath <path>
InstallPath /Z1DRC1/usr/lpp/internet

IBM HTTP Server powered by Domino ServerRoot directive:
Set this to point to the directory where you unpacked this
distribution, or wherever you want HTTPd to have its "home".
By default this directory is located in the install path
specified by the InstallPath directive.
Default: server_root
Syntax: ServerRoot <path>
ServerRoot server_root

Example 5-2 shows the corresponding directive and how it is used in IBM HTTP Server
powered by Apache.

Example 5-2 ServerRoot directive

IBM HTTP Server powered by Apache ServerRoot directive:
ServerRoot: The top of the directory tree under which the server's
configuration, error, and log files are kept.
Do NOT add a slash at the end of the directory path.
ServerRoot "/ihsconfig/ihs/ihsam001"

The IBM HTTP Server powered by Domino Welcome equivalent in IBM HTTP Server powered
by Apache is the DirectoryIndex directive. IBM HTTP Server powered by Domino Welcome
index.html becomes IBM HTTP Server powered by Apache DirectoryIndex index.html.

5.2.4 Ports

IBM HTTP Server powered by Apache supports the use of multiple SSL and non-SSL ports.
You can use only non-SSL ports or only SSL ports. For each port, you want IBM HTTP Server
powered by Apache to listen on, you define a Listen directive. For example, use the Listen
9080 directive to have the server listen on port 9080.

SSL
To set up a port to use SSL, you must configure a VirtualHost stanza that contains an
SSLEnable directive. It is a good idea to use certificates stored in RACF, although you can use
keystore files.
88 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

IBM HTTP Server powered by Domino requires configuring every SSLCipherSpec that you
need, whereas IBM HTTP Server powered by Apache enables all SSLCipherSpec by default.
If you want to use only certain ciphers, you can use a combination of SSLCipherSpec and
SSLProtocolDisable directives. Example 5-3 shows a sample configuration that provides the
following actions:

� Server listens for HTTP on ports 81 and 87.

� Server listens on port 444. This SSL port is associated with the virtual host
www.site1.com. The certificate is stored in RACF with a label of site1_SAF_ring, and SSL
V2 is disabled.

� Server listens on port 447. This SSL port is associated with the virtual host
www.site2.com. The certificate is stored in a keystore file. Only some SSL ciphers are
enabled and some are disabled.

Example 5-3 IBM HTTP Server powered by Apache port definition and virtual host SSL configuration

Listen 81
Listen 87
Listen 444
Listen 447
<VirtualHost hostname1:444>
 ServerName www.site1.com:444
 SSLEnable
 Keyfile /saf site1_SAF_ring
 SSLProtocolDisable SSLv2
</VirtualHost>
<VirtualHost hostname1:447>
 ServerName www.site2.com:447
 SSLEnable
 SSLProtocolDisable SSLv2 TLSv1
 SSLCipherSpec 3A
 SSLCipherSpec 35
 SSLCipherSpec 34
 Keyfile /ihsconfig/ihs/ihsam001/ssl/site2.kdb
 SSLServerCert KDBLabel
</VirtualHost>

5.2.5 Virtual hosts

Both versions of IBM HTTP Server support multiple virtual hosts.

The DGW approach is to add the domain name or IP address to the end of directives, such as
Exec, Fail, Map, Pass, and Redirect. For more information about the DGW approach, see this
website:

https://ibm.biz/BdrUMj

IBM HTTP Server powered by Apache uses the underlying Apache approach. For more
information, see this website:

http://httpd.apache.org/docs/current/vhosts/

The Apache approach is to use the VirtualHost directive to identify a virtual host. Then, you
define any other directives within that stanza that are to apply to that virtual host.

To migrate from DGW to IBM HTTP Server powered by Apache, you must identify directives
in DGW that include domain names or IP addresses that are associated with them. Then, you
set up VirtualHost type directives to use for the identified domain name or TCP/IP
addresses.
Chapter 5. Migration 89

https://ibm.biz/BdrUMj
http://httpd.apache.org/docs/current/vhosts/

For more information about the use of multiple VirtualHost directives, see 4.5.2, “Virtual
hosting” on page 73.

5.2.6 Security

As you migrate your security aspects from IBM HTTP Server powered by Domino to IBM
HTTP Server powered by Apache, consider the following issues:

� User ID running your server
� LDAP authentication
� Authentication and authorization
� Key files

The default user ID that is running your server configuration in IBM HTTP Server powered by
Domino is user ID PUBLIC. The equivalent in IBM HTTP Server powered by Apache is the
User directive, which is not configured by default. The User directive often is used on
distributed systems where the parent Apache process is started as the root user ID. On z/OS,
there is no need to use a “root” style user ID; therefore, it is not necessary to use this
directive.

The LDAP authentication directives are different in IBM HTTP Server powered by Domino
and IBM HTTP Server powered by Apache. Example 5-4 shows an LDAP configuration for
IBM HTTP Server powered by Domino.

Example 5-4 IBM HTTP Server powered by Domino LDAP authentication directives

LDAPInfo PrimaryLdapServer {
Host LDAPhostname
Transport TCP
ClientAuthType Basic
ServerAuthType Basic
ServerDN "cn=dgw, o=IBM, c=RO"
ServerPasswordStashFile "StashFileName"
UserSearchBase "o=IBM c=RO"
GroupSearchBase "o=IBM c=RO"
Referrals On
}

The equivalent configuration for IBM HTTP Server powered by Apache is shown in
Example 5-5.

Example 5-5 IBM HTTP Server powered by Apache LDAP authentication directives

<Location /secure>
Order deny,allow
Allow from all
AuthName LDAPtx9name
AuthBasicProvider ldap
AuthType Basic
AuthLDAPURL
"ldap://ldap.example.com:1389/profiletype=user,sysplex=tx?rafid?sub?none"
Require valid-user
AuthLDAPBindDN "racfid=my-id,profiletype=user,sysplex=tx"
AuthLDAPBindPassword my-password
LdapReferrals on
</Location>
90 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

For an IBM HTTP Server powered by the Domino Transport, Host, Port, UserSearchBase,
and UserNameFilter directives, these directives are converted to the IBM HTTP Server
powered by Apache AuthLDAPURL directive.

For more information about security aspects, see Chapter 7, “Security” on page 117.

5.2.7 Logging

The IBM HTTP Server powered by Domino AccessLog, AgentLog, RefererLog, ErrorLog,
CgiErrorLog, ProxyAccessLog, and CacheAccessLog directives are replaced in IBM HTTP
Server powered by Apache with a more powerful and flexible set of log directives called
ErrorLog and CustomLog. You can use these directives for a virtual host container or for the
whole server. For more about these directives, see 4.5.2, “Virtual hosting” on page 73.

The IBM HTTP Server powered by Domino log directives that are shown in Example 5-6 on
page 92 can be replaced with the IBM HTTP Server powered by Apache log directives that
are shown in Example 5-7 on page 92.

Note: The IHS AuthLDAPURL directive is part of the mod_auth_ldap module. The following
syntax is used:

ldap://host:port/basedn?attribute?scope?filter

This string features the following elements:

� host:port

The name and port of the ldap server (defaults to localhost:389 for ldap, and
localhost:636 for ldaps). To specify multiple redundant LDAP servers, you must list all
servers separated by spaces.

� basedn

The DN of the branch of the directory from where all searches should start. It can be
the top of your directory tree or a subtree in the directory.

� attribute

The attribute to search for. Although RFC 2255 allows a comma-separated list of
attributes, only the first attribute is used, no matter how many are provided. If no
attributes are provided, the default is to use uid. The attribute must be unique across all
entries in the subtree you are using.

� scope

The scope of the search. It can be one or sub. A scope of base is also supported by
RFC 2255, but is not supported by this module. If the scope is not provided or if base
scope is specified, the default is to use a scope of sub.

� filter

A valid LDAP search filter. If not provided, this value defaults to (objectClass=*), which
searches for all objects in the tree. Filters are limited to approximately 8000 characters
(the definition of MAX_STRING_LEN in the Apache source code).
Chapter 5. Migration 91

Example 5-6 IBM HTTP Server powered by Domino log directives

AccessLog /ihsconfig/dws/ihsdm001/logs/httpd-log
AgentLog /ihsconfig/dws/ihsdm001/logs/agent-log
RefererLog /ihsconfig/dws/ihsdm001/logs/referer-log
ErrorLog /ihsconfig/dws/ihsdm001/logs/httpd-errors
CgiErrorLog /ihsconfig/dws/ihsdm001/logs/cgi-error
ProxyAccessLog /ihsconfig/dws/ihsdm001/logs/httpd-proxy
CacheAccessLog /ihsconfig/dws/ihsdm001/logs/httpd-cache

Example 5-7 IBM HTTP Server powered by Apache log directives

CustomLog /ihsconfig/ihs/ihsam001/access_log common
CustomLog /ihsconfig/ihs/ihsam001/referer_log referer
CustomLog /ihsconfig/ihs/ihsam001/agent_log agent
ErrorLog /ihsconfig/ihs/ihsam001/error_log

For more information about how you can tailor the information that is recorded in these logs,
see this website:

http://httpd.apache.org/docs/2.2/mod/mod_log_config.html#customlog

5.2.8 URL and file mapping directives

All URLs and file directives in IBM HTTP Server powered by Domino can be converted to
corresponding URLs and file directives in IBM HTTP Server powered by Apache. The
equivalent directives in IBM HTTP Server powered by Domino and IBM HTTP Server
powered by Apache are listed in Table 5-1.

Table 5-1 URL and file directive comparison

Migrating Pass directive
The IBM HTTP Server powered by Domino Pass directive can be converted to a simple IBM
HTTP Server powered by Apache Alias directive. However, if you are using the third
parameter (which is the IP address or site name), you must organize around containers, such
as VirtualHost, Directory, and Location.

A sample set of directives from IBM HTTP Server powered by Domino is shown in
Example 5-8 on page 93.

IBM HTTP Server powered by Domino IBM HTTP Server powered by Apache

Pass Alias

Exec ScriptAlias

Map Rewrite

Redirect Redirect

Fail Deny

Proxy ProxyPass
92 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

http://httpd.apache.org/docs/2.2/mod/mod_log_config.html#customlog

Example 5-8 HTTP Server Powered by Domino directives

Pass /itsoInfo/* /ihsconfig/dws/ihsde001/itsoSecret/* w3.sc55.itso.ibm.com
Pass /itsoInfo/* /ihsconfig/dws/ihsde001/itsoPublic/* wtsc55.itso.ibm.com

How these directives were converted to corresponding directives in IBM HTTP Server
powered by Apache is shown in Example 5-9.

Example 5-9 HTTP Server Powered by Apache Alias directives

<VirtualHost wtsc55.itso.ibm.com:8230>
Alias /itsoInfo/ /ihsconfig/dws/ihsde001/itsoPublic/
</VirtualHost>
<VirtualHost w3.sc55.itso.ibm.com:8230>
Alias /itsoInfo/ /ihsconfig/dws/ihsde001/itsoSecret/
</VirtualHost>

Example 5-10 shows the directory structure that was used in association with the directives
that are shown in Example 5-8.

Example 5-10 Directory layout used with IBM HTTP Server powered by Domino

EDMCAR @ SC55:/ihsconfig/dws/ihsde001>ls -lrtR itsoPublic itsoSecret

itsoSecret:
total 16
-rwxrwxr-x 1 EDMCAR IHSRB13 66 Jul 28 20:24 main.html

itsoPublic:
total 16
-rwxrwxr-x 1 EDMCAR IHSRB13 62 Jul 28 20:35 main.html

Example 5-11 shows the directory structure that was used in association with the directives in
Example 5-9.

Example 5-11 Directory layout used with IBM HTTP Server powered by Apache

EDMCAR @ SC55:/ihsconfig/ihs/ihsae001/htdocs>ls -lrtR itsoPublic itsoSecret
./itsoPublic:
total 16
-rwxrwxr-x 1 EDMCAR IHSRB13 62 Jul 28 20:39 main.html

./itsoSecret:
total 16
-rwxrwxr-x 1 EDMCAR IHSRB13 66 Jul 28 20:39 main.html

Migrating Exec and Redirect directives
The IBM HTTP Server powered by Domino Exec directive can be converted to the IBM HTTP
Server powered by Apache ScriptAlias directive and the Redirect is the same for both web
servers, with the exception that wildcards are not used in IBM HTTP Server powered by
Apache, as shown in Example 5-12 on page 94.
Chapter 5. Migration 93

Example 5-12 Exec directive conversion to ScriptAlias directive

#IBM HTTP Server powered by Domino example:
Exec /cgi-bin/* /ihsconfig/dgw/ihsdm001/cgi-bin/*
Redirect /oldcontext/* http://servername/newpath/*

#IBM HTTP Server powered by Apache example:
ScriptAlias /cgi-bin/ "/ihsconfig/ihs/ihsam001/cgi-bin/"
Redirect permanent /oldcontext http://servername/newpath

The IBM HTTP Server powered by Apache Redirect directive can be used in the following
instances:

� Redirect directive: Sends an external redirect that prompts the client to fetch a different
URL.

� RedirectMatch directive: Sends an external redirect that is based on a regular expression
match of the current URL.

� RedirectPermanent directive: Sends an external permanent redirect that prompts the client
to fetch a different URL.

� RedirectTemp directive: Sends an external temporary redirect that prompts the client to
fetch a different URL.

The DGW Map directive that is closest to IBM HTTP Server powered by Apache is the Rewrite
directive. This directive is included in the mod_rewrite module. For more information about
this directive, see 7.5, “Controlling access by using mod_rewrite” on page 128.

5.2.9 WebSphere Application Server plug-in

If you have servers that are using the WebSphere Application Server plug-in, see Chapter 9,
“Plug-in for WebSphere Application Server” on page 137.

5.2.10 Timeouts

The timeout directives in IBM HTTP Server powered by Domino differ from the IBM HTTP
Server powered by Apache timeout directives. IBM HTTP Server powered by Domino uses
the InputTimeout, OutputTimeout, and ScriptTimeout directives that in IBM HTTP Server
powered by Apache are translated into the TimeOut directive. This directive specifies a
number (in seconds) for the amount of time the server waits for certain events before failing a
request. This directive can be specified within the server context and, if needed, within the
virtual host context.

IBM HTTP Server powered by Domino PersistTimeout directive translates into the IBM HTTP
Server powered by Apache KeepAliveTimeout directive, which expresses the amount of time
(in seconds) the server waits for requests on a persistent connection. IBM HTTP Server
powered by Apache also uses the KeepAlive, MaxKeepAliveRequests, and KeepAliveTimeout
directives, as shown in Example 5-13.

Example 5-13 Timeout settings in IBM HTTP Server powered by Apache httpd.conf file

TimeOut 180
KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout 10
94 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

If set to On, the KeepAlive directive enables HTTP persistent connections. The
MaxKeepAliveRequests directive specifies the number of requests that are allowed on a
persistent connection. The KeepAliveTimeout directive specifies the amount of time (in
seconds) the server waits for requests on a persistent connection.

RequestReadTimeout directive
The mod_reqtimeout module provides the RequestReadTimeout directive, which can be used
to control how long the server waits for content from the client. For more information, see this
website:

https://publib.boulder.ibm.com/httpserv/manual70/mod/mod_reqtimeout.html

5.2.11 Caching

For more information about caching features migration considerations, see Chapter 10,
“Cache configuration” on page 145.

5.2.12 ASCII/EBCDIC considerations

The HTTP protocol stipulates that all request headers and response headers are transmitted
in 8-bit ASCII. POST content and response content often are in ASCII, if it is text. Most
programs that are running in IBM HTTP Server powered by Domino and in IBM HTTP Server
powered by Apache examine and create the headers in EBCDIC, and the server translates
them. The programs usually generate text content in EBCDIC. IBM HTTP Server powered by
Apache translates Request POST content to EBCDIC if it is text. To have the IBM HTTP
Server powered by Apache convert files in EBCDIC to ASCII, use the directives that are
similar to the directives that are shown in Example 5-14.

Example 5-14 IBM HTTP Server powered by Apache directives

LoadModule charset_lite_module modules/mod_charset_lite.so
<IfModule mod_charset_lite.c>

<Location / >
CharsetSourceEnc IBM-1047
CharsetDefault ISO8859-1

</Location>
 </IfModule>

IBM 1047 is an EBCDIC character set, and ISO8859-1 is an ASCII set. If documents are
stored in ASCII in the z/OS zFS, inform IBM HTTP Server powered by Apache by adding
directives similar to these just before the closing the </IfModule> in Example 5-14. The
directives must be similar to what is shown in Example 5-15.

Example 5-15 IBM HTTP Server powered by Apache directives for documents stored in ASCII

<Location /ascii_text/ >
 CharsetSourceEnc ISO8859-1
 CharsetDefault ISO8859-1
</Location>
Alias /ascii_text/ "/usr/lpp/internet/ascii/"

The AddType directive in IBM HTTP Server powered by Apache is similar to that in IBM HTTP
Server powered by Domino, but its options are in a different order. Also, IBM HTTP Server
powered by Apache has no options for encoding (that is, ASCII/EBCDIC/binary) or for quality
ratings.
Chapter 5. Migration 95

https://publib.boulder.ibm.com/httpserv/manual70/mod/mod_reqtimeout.html
https://publib.boulder.ibm.com/httpserv/manual70/mod/mod_reqtimeout.html

In addition, IBM HTTP Server powered by Domino allowed for a CGI to write a header
Content-Encoding: ascii or Content-Encoding: binary to control translation of response
content from EBCDIC to ASCII. IBM HTTP Server powered by Apache ignores this response
header.

Therefore, if it is impractical to separate the ASCII files from the EBCDIC files in the zFS, and
they are identifiable by the file name extension, you might consider the use of a
LocationMatch directive. For example, if your files that include the .ascii extension are
HTML files in ASCII and your files that include the .asctext extension are plain text files in
ASCII, you might consider directives that are shown in Example 5-16.

Example 5-16 Using LocationMatch directive

AddType text/html .ascii
 AddType text/plain .asctext
 <LocationMatch "\.(ascii|asctext)$" >
 CharsetSourceEnc ISO8859-1
 CharsetDefault ISO8859-1
</LocationMatch>

Regarding SSI files (server-side includes, often named with the suffix .shtml), IBM HTTP
Server powered by Domino handles these files even if they are stored on disk in ASCII. IBM
HTTP Server powered by Apache requires that these files are stored in EBCDIC.

For a CGI that emits its response content in ASCII, use directives similar to the directives that
are shown in Example 5-17.

Example 5-17 Directives for a CGI that emits response content in ASCII

<Location /ascii_exec/ >
 CharsetSourceEnc ISO8859-1
 CharsetDefault ISO8859-1
 </Location>
 ScriptAlias /ascii_exec/ "/usr/lpp/internet/ascii_e/"

If this CGI is a z/OS shell script that emits ASCII content, it should be stored in EBCDIC for
the command interpreter. It should still write its headers in EBCDIC, then write its response
content in ASCII.

The input content side of the request uses the same rules. That is, if the CGI is governed by
this ASCII Location container, IBM HTTP Server powered by Apache does not translate
Request POST content to EBCDIC.

IBM HTTP Server powered by Domino features several special options for GWAPI programs
that allow the program to control these ASCII/EBCDIC options. IBM HTTP Server powered by
Apache cannot use these programs or these options. The following directives in IBM HTTP
Server powered by Domino have no counterpart in IBM HTTP Server powered by Apache:

� PostDataConv
� DetectUTF8 ON
� ENUExecs
� AddEncoding
96 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

These directives in IBM HTTP Server powered by Domino have the following approximate
counterparts in IBM HTTP Server powered by Apache:

� DefaultFsCp - CharsetSourceEnc
� DefaultNetCp - CharsetDefault
� AddLanguage - AddLanguage
� AddCharSet - AddCharSet
� AddType - AddType

The special case for nph- output is the same in IBM HTTP Server powered by Domino and
IBM HTTP Server powered by Apache.

5.2.13 GWAPI

If GWAPI modules are used, you should determine their functionality and then determine
whether the same functionality can be provided by a capability of IBM HTTP Server powered
by Apache. If no corresponding capability is available, you might need to develop your own
custom module. For more information about using modules in IBM HTTP Server powered by
Apache, see Chapter 11, “Modules” on page 153.

5.2.14 Reverse Proxy

If DGW is used as a reverse proxy, IBM HTTP Server powered by Apache also can be
configured for use as a reverse proxy. For more information, see this website:

https://ibm.biz/BdrUa2

5.2.15 Comparing DGW and IHS use of directives

For more information about the configuration directives difference between DGW and IHS
and how the same logical function is achieved by the two different HTTP Severs, see this
website:

http://publib.boulder.ibm.com/httpserv/ihsdiag/conversion.html

5.2.16 Cleaning up PARMLIB

You should remove IMWHTTPD from any SCHED members of PARMLIBs.

5.3 Migrating Library Server

IBM Library Server provides a way to view IBM manuals by using a web browser. For more
information, see this website:

https://ibm.biz/BdrUay

You can set up an IBM HTTP Server powered by Domino as the server that supports Library
Server.

This section describes how you set up an IBM HTTP Server powered by Apache to support
Library Server.
Chapter 5. Migration 97

https://ibm.biz/BdrUa2
https://ibm.biz/BdrUay
http://publib.boulder.ibm.com/httpserv/ihsdiag/conversion.html
http://publib.boulder.ibm.com/httpserv/ihsdiag/conversion.html

5.3.1 Set up in DGW

We set up an IBM HTTP Server powered by Domino and added the directives that are shown
in Example 5-18. We also tested that the Library Server administration home page can be
accessed.

Example 5-18 Directives in DGW to support Library Server

#--
BookManager BookServer
#--

Exec /bookmgr-cgi/bookmgr.cmd* /usr/lpp/booksrv/cgi-bin/EPHBOOKS*
Exec /bookmgr-cgi/bookmgr.exe* /usr/lpp/booksrv/cgi-bin/EPHBOOKS*
Exec /bookmgr-cgi/* /usr/lpp/booksrv/cgi-bin/*

Pass /bookmgr/pictures/* /usr/lpp/booksrv/public/bookmgr/pictures/*
Pass /bookmgr/frames/* /usr/lpp/booksrv/public/bookmgr/frames/*
Pass /bookmgr/* /usr/lpp/booksrv/public/bookmgr/*

5.3.2 Set up in V8.5.5

In our IBM HTTP Server powered by Apache, we added the directives that are shown in
Example 5-19.

Example 5-19 Directives added to IBM HTTP Server powered by Apache

Alias /bookmgr/pictures /usr/lpp/booksrv/public/bookmgr/pictures
Alias /bookmgr/frames /usr/lpp/booksrv/public/bookmgr/frames
Alias /bookmgr /usr/lpp/booksrv/public/bookmgr

ScriptAlias /bookmgr-cgi/bookmgr.cmd "/usr/lpp/booksrv/cgi-bin/EPHBOOKS"
ScriptAlias /bookmgr-cgi/bookmgr.exe "/usr/lpp/booksrv/cgi-bin/EPHBOOKS"
ScriptAlias /bookmgr-cgi/ "/usr/lpp/booksrv/cgi-bin/"

The Alias directives that are shown in Example 5-19 were added after the Alias directives in
the httpd.conf file.

The ScriptAlias directives that are shown Example 5-19 were added after the ScriptAlias
directives in the httpd.conf file.

Handling css files
The file in /usr/lpp/booksrv/public/bookmgr/lsstyles.css is a text file and is stored as
ASCII in the UNIX System Services environment on z/OS. When accessed through Domino,
it is downloaded as a binary file. It features ASCII text in the browser and is then used
correctly.

In IBM HTTP Server powered by Apache, the default setup results in Apache trying to convert
the file from ASCII to EBCDIC. The result is invalid characters in the browser and thus an
invalid css file that the browser cannot use.

To resolve this issue, add the directive that is shown in Example 5-20 on page 99 near the
bottom of the httpd.conf file.
98 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Example 5-20 Directive to prevent character set conversion

SetEnvIf Request_URI /bookmgr/(lookat/index_files/.*\.css|.*\.css)$ no-xlate

The css files in the lookat/index_files directory are not used by Library Server. You can use
the following simpler directive instead:

SetEnvIf Request_URI /bookmgr/.*\.css no-xlate

We show the slightly more complicated directive in Example 5-20 as an example of how to
use a regular expression in the one directive to handle files in different subdirectories.

Environment Variable setup
The example that is shown in 5.3.2, “Set up in V8.5.5” on page 98 sets up a limited Library
Server only. For a fully functional Library Server, you must specify various environment
variables. How the /ihsconfig/ihs/ihsae65/bin/envvars file is updated to add directories
that are associated with Library Server is shown in Example 5-21.

Example 5-21 Updating envvars

export JAVA_HOME="/usr/lpp/java_mounts/J7.0/J7.1"
export XERCESCROOT="/usr/lpp/ixm/IBM/xml4c-5_7"
export
PATH="/bin:.:/usr/sbin:/usr/lpp/internet/bin:/usr/lpp/internet/sbin:/usr/lpp/ldap/
bin:$JAVA_HOME/bin:$PATH"
LIBPATH=".:$XERCESCROOT/lib:/usr/lpp/internet/bin:/usr/lpp/internet/sbin:/usr/lpp/
ldap/lib:$JAVA_HOME/lib:$JAVA_HOME/bin:$LIBPATH"
export EPHConfigPath="/etc/booksrv/configs"

In the httpd.conf file, you also must add the directives that are shown in Example 5-22.

Example 5-22 Adding PassEnv directives

PassEnv JAVA_HOME
PassEnv XERCESCROOT
PassEnv LIBPATH
PassEnv PATH
PassEnv EPHConfigPath

CGI memory considerations
When we first attempted to access Library Server through our IBM HTTP Server powered by
Apache, it did not succeed. In the error log, we found the following message:

CEE3512S An HFS load of module libicudata38.1.dll failed.
The system return code was 0000000157; the reason code was
 0BDF019B.

This message indicated that there was a lack of memory.

To determine how much memory was available to our CGI programs, we found a program that
is named jdkiv available at this website:

http://www.ibm.com/support/docview.wss?uid=swg21252834
Chapter 5. Migration 99

http://www-01.ibm.com/support/docview.wss?uid=swg21252834
http://www.ibm.com/support/docview.wss?uid=swg21252834

We placed this file in a directory on our z/OS LPAR. Then, we created the shell program that
is shown in Example 5-23.

Example 5-23 Shell program to display useful information

#!/bin/sh
printf "Content-Type: text/plain\r\n\r\n"
date
env
id
/u/edmcar/jdkiv
ulimit -a
echo 'ulimit -A 2000000'
ulimit -A 2000000
echo 'ulimit -M 800'
ulimit -M 800
echo 'ulimit setting now...'
ulimit -a

We added the ulimit statements to see whether the available memory for CGI programs can
be adjusted.

We stored this shell program in /ihsconfig/ihs/ihsae65/cgi-bin/showEnv.sh and started it
by using the following URL:

http://wtsc55.itso.ibm.com:8265/cgi-bin/showEnv.sh

The browser output included the following line from the jdkiv program:

getrlimit reports RLIMIT_AS as current: 35717120, max:2147483647

This value of 35717120 is insufficient to run the Library Server CGI programs and thus was
increased. This value is also referred to as the soft limit. The result of the ulimit commands
we issued is shown in Example 5-24.

Example 5-24 Output from ulimit commands

core file unlimited
cpu time 27011
data size unlimited
file size unlimited
stack size unlimited
file descriptors 65535
address space unlimited
memory above bar 512m
ulimit -A 2000000
ulimit -M 800
ulimit setting now...
core file unlimited
cpu time 27011
data size unlimited
file size unlimited
stack size unlimited
file descriptors 65535
address space 2000000k
memory above bar 512m
100 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

The output shows that the ulimit -A command increased the address space value, which is
the soft limit.

An Apache directive that is named RLimitMEM can be used to increase the soft limit.
However, during testing we found that this increase did not work. APAR PI31566 was opened
to correct this issue.

ASSIZEMAX value in OMVS Segment
To resolve this memory issue, the ASSIZEMAX value in the OMVS segment of the User ID the
server is running under can be adjusted. We used the following command:

ALTUSER EDMCAR OMVS(ASSIZEMAX(2147483647)

After restarting the server and restarting the shell, the jdkiv program generated the following
message:

getrlimit reports RLIMIT_AS as current:2147483647, max:2147483647

5.3.3 Testing Library Server

We used the following URL to test whether we can access Library Server through IBM HTTP
Server powered by Apache:

http://wtsc55.itso.ibm.com:8265/bookmgr-cgi/bookmgr.exe/ADMINISTRATION

This test succeeded with the browser showing the output that is shown in Figure 5-1.

Figure 5-1 Library Server administration home page
Chapter 5. Migration 101

102 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Chapter 6. Scalability and workload
management

This chapter describes the different ways that IBM HTTP Server powered by Apache
(IHS V8.5.5) and IBM HTTP Server powered by Domino (V5.3 or DGW) provide scalability
support. It also describes how they use WLM.

This chapter includes the following topics:

� 6.1, “Overview” on page 104
� 6.2, “DGW approach” on page 104
� 6.3, “IHS V8.5.5 approach” on page 105
� 6.4, “V8.5.5 support for WLM” on page 110
� 6.5, “Working with WLM in IHS V8.5.5” on page 111
� 6.6, “Summary” on page 116

6

© Copyright IBM Corp. 2013, 2016. All rights reserved. 103

6.1 Overview

Scalability is an important issue for HTTP Servers because the way the HTTP Server can be
configured to handle increases in activity can have an effect on the available resources.

Ideally, you want your HTTP Server to dynamically increase its capability to handle increases
in activity. This ability typically involves starting more processes and the use of more memory.
After the increase in activity subsides, you want the HTTP Server to dynamically reduce the
resources it is using by stopping processes and freeing memory.

V8.5.5 and V5.3 (DGW) provide dynamic scalability support, which they provide in different
ways.

6.2 DGW approach

The DGW approach is heavily integrated into the z/OS Workload Management (WLM)
capability. The approach that it uses is referred to as the Scalable Server mode.

How the Scalable Server mode works is described briefly in this section to compare with the
V8.5.5 approach. Figure 6-11 shows an overview of how the Scalable Server mode balances
requests across multiple DGW servers.

Figure 6-1 DGW Scalable Server mode overview

1 For more information, see Enterprise Web Serving with the Lotus Domino Go Webserver for OS/390, SG24-2074.
104 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

The address spaces include the following functions:

� Queue Manager

Queue manager is the front-end process. It receives the request from the client. If an
application environment (ApplEnv) definition is available (in the httpd.conf file and the
WLM policy), queue manager routes the request to the appropriate queue server by
putting the request onto the WLM queue. If no ApplEnv is defined, it handles the request.
Only one queue manager per web server is used in any one z/OS system.

� Queue Server

Queue server is the process that runs the client's request (except for secured connection
requests and requests that are not defined to run in a queue server). It searches its
associated queue and picks up the requests to process. Multiple queue servers can be
available for each queue and for any web server in one z/OS system.

WLM manages these processes based on the policies that are defined.

To meet the performance goals of the system, WLM controls the number of queue servers
that run requests on connected queues. If so many requests are received that the current
queue servers cannot meet the performance goals, WLM starts more queue servers. If the
demand for servers is low, WLM stops some idle queue servers to reduce the allocated
system resources.

For more information about Scalable Server mode and how to set it up, see this z/OS 1.13
IBM Knowledge Center website:

https://ibm.biz/Bdr5rB

6.3 IHS V8.5.5 approach

The V8.5.5 approach is simpler than the DGW approach and is not tied to WLM. For more
information about integrating with WLM, see 6.4, “V8.5.5 support for WLM” on page 110
describes how V8.5.5.

6.3.1 Multi-processing module

V8.5.5 uses the Apache Multi-Processing Module (MPM) to provide scalability support. A
server supports several MPMs. Versions of IBM HTTP Server powered by Apache up to and
including V8.0 use the worker MPM. For more information, see this website:

http://httpd.apache.org/docs/2.0/mod/worker.html

IBM HTTP Server powered by Apache versions from V8.5 onward use the event MPM. For
more information, see this website:

http://httpd.apache.org/docs/current/mod/event.html

The main concept of the worker and event MPM is to have available several child servers,
each of which contains several threads. This approach aims to achieve a balance between
system resources and performance.

The event MPM is based on the worker MPM but provides what is called async I/O support. In
this support, threads are not tied to a TCP/IP connection continuously, which results in better
performance and the ability to manage many more connections at once.

A single control process (which is referred to as the parent) starts the child processes.
Chapter 6. Scalability and workload management 105

https://ibm.biz/Bdr5rB
http://httpd.apache.org/docs/2.0/mod/worker.html
http://httpd.apache.org/docs/current/mod/event.html
http://httpd.apache.org/docs/current/mod/event.html

The Apache terminology can be confusing initially because it refers to starting child
processes, but then uses directives that include the word “server”, such as StartServers.
These StartServers directives refer to the child processes.

MaxClients and ThreadsPerChild directives
Several directives can be used to control how the worker MPM behaves. The key following
key directives are available:

� MaxClients

This directives specifies the maximum number of simultaneous client connections that are
allowed to the server.

� ThreadsPerChild

This directives specifies how many threads are in each child process (server).

It is these directives that V8.5.5 uses to determine how many child processes can be started.
For example, assume that the following set is in the configuration file:

MaxClients 100
ThreadsPerChild 5

If there are 100 connections to the server, 100/5 = 20 child processes are active in V8.5.5.

ThreadLimit parameter
The value that is specified for the ThreadLimit directive is the maximum value to which the
value of the ThreadsPerChild can be increased dynamically by using a restart command.

Reacting to changes in activity
V8.5.5 checks every second to determine how it is managing the current activity. If it detects
that the number of available threads in the running child processes are not enough to handle
the number of requests that are received, it dynamically starts another child process to
provide more threads for new requests on which to be dispatched.

If the activity drops off and more threads are available than needed, it stops child processes
to free up resources, such as memory.

Controlling available threads
When V8.5.5 receives new requests, there is a wait if there were no available threads while
V8.5.5 creates a child process before the requests can be processed. Although this process
does not take an inordinate amount of time, it is still better to avoid this situation.

The MinSpareThreads and MaxSpareThreads directives provide a way to control the number
of idle threads that are available at any time.

V8.5.5 assesses every second how many idle threads there are available in all child
processes. It stops or starts child processes so that the number of idle threads is within the
values of MinSpareThreads and MaxSpareThreads. This check provides an initial buffer of
available threads that can immediately start processing new requests and allow V8.5.5 on its
next check of how it is handling the workload to dynamically increase the number of child
processes, if needed.

For more information about tuning Apace, see this website:

http://publib.boulder.ibm.com/httpserv/ihsdiag/ihs_performance.html

Although z/OS is not addressed, the concepts that are described on the website still apply.
106 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

http://publib.boulder.ibm.com/httpserv/ihsdiag/ihs_performance.html

6.3.2 How V8.5.5 looks on z/OS

For an example of what V8.5.5 looks like when it is running on z/OS, see Figure 6-2. This
example shows the logical view of a V8.5.5 server running on z/OS and how it corresponds to
the started tasks that are seen in SDSF.

Figure 6-2 IBM HTTP Server powered by Apache on z/OS

In this example, we set the following directives:

� ThreadsPerChild: 4
� MaxClients: 12
� MinSpareThreads: 6
� MaxSpareThreads: 8

With these settings, a maximum of 12 simultaneous connections to V8.5.5 are available. Any
other connections are rejected after the maximum is met.

Two active child processes (labeled as Server) are available. Each process features four
threads because ThreadsPerChild is set to four.

If requests are received, V8.5.5 attempts to keep the number of available threads across all
child processes between the values that are specified for MinSpareThreads and
MaxSpareThreads. In this case, V8.5.5 has two child processes that are running that results
in eight available threads because these values are set to six and eight.

V8.5.5 can be started as a started task or started from a user session that is logged on by
using Telnet or in OMVS. Regardless of which method is used, you see a display in SDSF
similar to what is shown in Figure 6-2. In this case, we started V8.5.5 as a started task that is
named IHSAE001. If we started it from a user session, the value in the JOBNAME column
shows as the user’s TSO ID.

If 12 requests arrived, V8.5.5 starts the third child process, which is shown in the gray box in
Figure 6-2. In SDSF, you see that one more IHSAE001 appears as a result.
Chapter 6. Scalability and workload management 107

6.3.3 Example of dynamic scalability

To demonstrate how V8.5.5 allows you to dynamically change its runtime configuration to
support changes in workload, we set up our server with the following directives:

� ThreadLimit: 8
� MaxClients: 12
� ThreadsPerChild: 4

In this set up, the server can support 12 simultaneous connections at most and can start
three child processes with four threads each. The ThreadLimit value of eight means that the
number of threads per child process can be increased 4 - 8, as required.

We then used JMeter to simulate 20 simultaneous users that are trying to run the sleep
servlet with a sleep time of 2 seconds. In JMeter, we saw that the response time was erratic
and averaged 4 - 6 seconds. We then changed the directives to the following values:

� MaxClients: 24
� ThreadsPerChild: 8

We then issued the s ihsae002,action=’graceful’ command to perform a graceful restart
of our server while the load test was still running.

This restart resulted in the server now having eight threads per child process and needing to
start only three child processes. In JMeter, we immediately saw the effect of this change, as
the average response time settled around the 2-second mark, as shown in Figure 6-3 on
page 109.

Note: V8.5.5 allows you to change the MaxClients and ThreadsPerChild values by using a
graceful restart. However, the ThreadLimit value cannot be changed unless a full stop and
start of the server is completed.
108 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Figure 6-3 Result of dynamic reload to increase ThreadsPerChild

6.3.4 Sizing your server

In this section, we describe an approach to setting the parameters that we described to suit
your environment to optimize use of resources.

MaxClients
Start by deciding on the maximum number of clients that you expect to connect at any time.
For example, assume that the maximum number that you must support is 600. The directive
is set as shown in the following example:

MaxClients 600

ThreadsPerChild
Next, determine the maximum number of threads that each server process can handle. This
number can vary depending on your system capacity. Assume that a maximum value of 100
is reasonable, especially if SSL connections (which are computing-intensive) are used. In this
example, we use 100 and code the directive as shown in the following example:

ThreadsPerChild 100

ServerLimit
The specified value for ServerLimit limits the maximum number of child processes that can be
started. However, the maximum number of child processes that is started is equal to
MaxClients/ThreadsPerChild (in our case: 600/100 = 6). No extra child processes are started
if the result of MaxClients/ThreadsPerChild is less than the value set for ServerLimit.
Chapter 6. Scalability and workload management 109

Setting ServerLimit to a value less than the result of MaxClients/ThreadsPerChild results in
that lower number of child processes being started. In this case, the server does not have
enough child processes and threads to handle the maximum number of clients. Therefore,
this setting is not recommended.

MaxSpareThreads
MaxSpareThreads specifies the maximum number of idle threads that is maintained by the
server in anticipation of new requests. If this setting is too low, delays might occur as new
requests are queued. If the setting is too high, excess memory is used by the idle threads.

Reasonable values are any multiple of ThreadsPerChild, but significantly larger than
MinSpareThreads. Specifying the same value as MaxClients prevents IHS from reclaiming
idle threads. In this example, we set the value to 300.

MinSpareThreads
MinSpareThreads must be higher that the number of new requests that are received in 1
second. If the specified value is too low and V8.5.5 is running out of available threads, a delay
of a few seconds can happen before the available threads are created.

Use a value that is approximately equal to 10% of MaxClients. In this example, we chose a
value of 60 and coded the directive as shown in the following example:

MinSpareThreads 60

6.4 V8.5.5 support for WLM

IHS Version 8.5.5 introduces WLM support. This support allows requests that are received by
V8.5.5 to be classified to a WLM service class.

The way to set up V8.5.5 to work with WLM is simpler than the DGW approach. It requires
only the setup of classification definitions in WLM and the specification of the new
WLM-related directives in the V8.5.5 httpd.conf file.

Enabling WLM support
To enable V8.5.5 for WLM support, the module that provides this support must be added to
the httpd.conf file. We added the required directive after the LoadModule directives, as
shown in the following example:

#LoadModule rewrite_module modules/mod_rewrite.so
#LoadModule deflate_module modules/mod_deflate.so
WLM
LoadModule wlm_module modules/mod_wlm.so

WLM directives
The following new WLM directives are available:

� wlmSubSysType: Specifies a SubSystemType value that is defined in WLM.

� wlmTranClass: Specifies a value that is defined under the Name heading in the Qualifier
part of the WLM ISPF windows (with the Type filed set to a value of TC).

� wlmCollectionName: Specifies a value that is defined under the Name heading in the
Qualifier part of the WLM ISPF windows (with the Type field set to a value of CN).
110 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

For more information about these directives, see this website:

http://publib.boulder.ibm.com/httpserv/manual70/mod/mod_wlm.html

6.5 Working with WLM in IHS V8.5.5

V8.5.5 is based on Apache and provides great flexibility in how you code the directives in the
httpd.conf file. This paper cannot cover every possible configuration option of how you can
use the WLM directives in V8.5.5. Instead, it provides one example that shows how we used
these directives to classify different requests.

6.5.1 Mapping app requests to one WLM transaction class as default approach

The simplest (and in essence the default) approach is to map all requests to one WLM
transaction class. To complete this mapping, we added the following lines at the bottom of our
V8.5.5 httpd.conf file:

Default WLM Transaction Class
wlmSubSysType CB
wlmCollectionName IHSE01
wlmTranClass IHSEWLM1

If we added no other directives, all requests that are received by V8.5.5 are classified to the
IHSEWLM1 transaction class.

6.5.2 Mapping an application for a specific virtual host

We then wanted to classify requests for a specific application for a specific virtual host to be
mapped to a specific transaction class. In our example, we wanted requests that start with
IBMTools for the wtsc55.itso.ibm.com host to be classified to the IHSEWLM2 transaction
class. We achieved this mapping by adding the following directives near the bottom of the
httpd.conf file:

<VirtualHost wtsc55.itso.ibm.com:8235>
<Location /IBMTools/* >
wlmTranClass IHSEWLM2
</Location>
</VirtualHost>

Any requests that are received for the wtsc55.itso.ibm.com host that did not start with
IBMTools are classified to the IHSEWLM1 transaction class because it is the default class.

6.5.3 Mapping multiple applications within a specific virtual host

Next, we wanted different applications for a specific virtual host to be mapped to specific
transaction classes. In our example, we wanted requests that are sent to the
w3.sc55.itso.ibm.com virtual host to be classified as shown in the following examples:

� Requests starting with ItsoTools are classified to the IHSEWLM3 transaction class
� Requests starting with anything else are classified to the IHSEWLM4 transaction class
Chapter 6. Scalability and workload management 111

http://publib.boulder.ibm.com/httpserv/manual70/mod/mod_wlm.html

We added the following directives:

<VirtualHost w3.sc55.itso.ibm.com:8235>
<LocationMatch "/ItsoTools/*">
wlmTranClass IHSEWLM3
</LocationMatch>
wlmTranClass IHSEWLM4
</VirtualHost>

6.5.4 Connecting WLM directives and WLM setup

Now that the WLM directives are coded, we set up corresponding definitions in the WLM ISPF
panels. Figure 6-4 shows how the WLM directives that we specified correspond to values that
are specified in the WLM ISPF panels.

Figure 6-4 Mapping WLM directives to WLM ISPF panels settings

We mapped the different transaction classes to different WLM service classes.

The DGW scalable approach is that each queue server can process requests only for one
WLM transaction classification. V8.5.5 allows requests with different WLM classifications to
run within the same child process with each child process being a single started task.
112 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

6.5.5 WLM in action

To demonstrate the WLM classification in V8.5.5, we used JMeter to send requests to our
server. JMeter is an open source utility that is available from Apache that is used to run load
tests.

For more information, see this website:

http://jmeter.apache.org/

We set up the following JMeter load test sessions on our Windows workstation:

� Two users that are sending requests to wtsc55.itso.ibm.com to run requests that start
with IBMTools.

� Three users that are sending requests to wtsc55.itso.ibm.com to run that start with
ItsoTools.

� Two users that are sending requests to wtsc55.itso.ibm.com to run that start with
IBMTools.

� Three users that are sending requests to wtsc55.itso.ibm.com to run that start with
ItsoTools.

We then started these load tests. The requests that are received by V8.5.5 are routed to a
WebSphere Application Server on z/OS through the WebSphere Application Server plug-in
that is configured in the HTTP Server. The requests all start the same servlet, which enters a
wait state for 2 seconds. This approach was used so that requests run for a comparatively
long time to allow them to show up in our various displays.

What we saw in SDSF
In SDSF, we entered the ENC command to show active enclaves that are running in the z/OS
LPAR. This result is the WLM classification of the requests because the requests are
managed as enclaves by z/OS.

In SDSF we saw the following output:

SDSF ENCLAVE DISPLAY SC55 ALL LINE 1-2
COMMAND INPUT ===> S
NP NAME SSType Status SrvClass Per PGN RptClass
 380011E8A4 CB ACTIVE WASHI 1 IHSEWLM3
 540011E8B0 CB ACTIVE WASHI 1 IHSEWLM3
 640011E8AE CB ACTIVE WASMED 1 IHSEWLM4
 880011E8A8 CB ACTIVE WASMED 1 IHSEWLM1
 8C0011E8A6 CB ACTIVE WASLOW 1 IHSEWLM2
 A40011E8AA CB ACTIVE WASLOW 1 IHSEWLM2
 AC0011E8AC CB ACTIVE WASMED 1 IHSEWLM1

This output shows that the different requests are being classified to the appropriate WLM
service and report classes as expected.
Chapter 6. Scalability and workload management 113

http://jmeter.apache.org/

View from RMF
In IBM RMF, you can see the WLM view of how are requests were being processed, as shown
in Example 6-1.

Example 6-1 Using RMF to view of how requests are processed

RMF V1R13 Sysplex Summary - WTSCPLX1 Line 16 of 29
Command ===> Scroll ===> CSR

WLM Samples: 400 Systems: 16 Date: 06/21/13 Time: 21.48.20 Range: 100 Sec

 >>>>>>>>XXXXXXXXXXXXXXXXXX<<<<<<<<

Service Definition: WPS Installed at: 06/21/13, 20.30.35
 Active Policy: ALLCENT Activated at: 06/21/13, 20.30.44

 ------- Goals versus Actuals -------- Trans --Avg. Resp. Time-
 Exec Vel --- Response Time --- Perf Ended WAIT EXECUT ACTUAL
Name T I Goal Act ---Goal--- --Actual-- Indx Rate Time Time Time

WASHI S 1 0.0 0.200 90% 84% **** 9.450 0.000 0.316 0.317
WASLOW S 3 0.0 5.000 90% 100% 0.50 0.270 0.004 2.011 2.015
WASMED S 2 0.0 1.000 90% 11% 4.00 0.650 0.006 1.793 1.799
DDF R 0.0 0.730 0.000 0.001 0.001
IHSEWLM1 R 0.0 0.350 0.006 1.606 1.612
IHSEWLM2 R 0.0 0.270 0.004 2.011 2.015
IHSEWLM3 R 0.0 0.320 0.007 2.009 2.016
IHSEWLM4 R 0.0 0.300 0.007 2.010 2.017

This example is contrived because we are running requests that enter a wait state for
2 seconds. What it does show is how WLM is measuring how well the z/OS environment is
meeting the specified goals for our requests. Consider the following points:

� The requests that are running in service class WASHI are not meeting the goal of 90% of
requests that are completing in less than 0.2 seconds.

� The requests that are running in WASMED are also not meeting the goal of 90% of
requests that are completing in less than 1 second because the response time is 1.793
seconds.

� The requests that are running in WASLO are achieving the goal of 90% of requests
completing in less than 5 seconds because the average response time is 2.011 seconds.

RMF also shows information about the transaction classes.

V8.5.5 server-status output
V8.5.5 provides a module that is named mod_status with which you can send a request to the
server to get information about the requests being processed. During the load test, we sent
the following request to obtain the status information:

http://wtsc55.itso.ibm.com:8235/server-status
114 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

The information that was received is shown in Figure 6-5.

Figure 6-5 V8.5.5 server status information

Information from RMF WLM report
Because WLM information is recorded in SMF records, we ran a batch job to produce an
RMF WLM report for the period of our load test. An extract from this report (which shows
information about the IHSEWLM4 report class) is shown in Example 6-2.

Example 6-2 Displaying the IHSWLM4 report class

REPORT BY: POLICY=ALLCENT REPORT CLASS=IHSEWLM4
 DESCRIPTION =IHS ITSO

-TRANSACTIONS- TRANS-TIME HHH.MM.SS.TTT --DASD I/O-- ---SERVICE---
AVG 0.47 ACTUAL 2.013 SSCHRT 0.0 IOC 0
MPL 0.47 EXECUTION 2.007 RESP 0.0 CPU 2735
ENDED 140 QUEUED 5 CONN 0.0 MSO 0
END/S 0.23 R/S AFFIN 0 DISC 0.0 SRB 0
#SWAPS 0 INELIGIBLE 0 Q+PEND 0.0 TOT 2735
EXCTD 0 CONVERSION 0 IOSQ 0.0 /SEC 5
AVG ENC 0.47 STD DEV 0
REM ENC 0.00 ABSRPTN 10
MS ENC 0.00 TRX SERV 10

The report for the SMF interval shows the following useful information:

� ENDED: Number of requests that completed
� END/S: Transaction rate
� ACTUAL: Average response time

Not shown is the information about how much CPU was used. Although in our case this
amount was negligible, the amount from a real workload provides accurate information about
how much CPU was used.
Chapter 6. Scalability and workload management 115

6.6 Summary

V8.5.5 and DGW provide scalability support, but in different ways. Both also use WLM. V8.5.5
provides a simpler but effective and robust way of supporting any of your scalability
requirements.

Additionally, its support for WLM allows you to classify requests so that z/OS can prioritize
workloads when the system is under heavy load.
116 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Chapter 7. Security

This chapter describes the use of security with the IBM HTTP Server powered by Apache on
z/OS and includes the following topics:

� 7.1, “Security overview” on page 118
� 7.2, “Configuring V8.5.5 for your security requirements” on page 118
� 7.3, “SSL and Session ID” on page 122
� 7.4, “Configuring SSL support” on page 123
� 7.5, “Controlling access by using mod_rewrite” on page 128
� 7.6, “Caching and security considerations” on page 129

7

© Copyright IBM Corp. 2013, 2016. All rights reserved. 117

7.1 Security overview

Security can be used with IBM HTTP Server powered by Apache on z/OS in the following
ways:

� Thread level security

An independent security environment can be set for each thread that is running under
HTTP Server, which means that every client that connects to the server has its own
security environment.

� HTTPS/SSL support

HTTP Server fully supports the Secure Sockets Layer (SSL) protocol. HTTPS uses SSL
as a sublayer under the regular HTTP layer to encrypt and decrypt HTTP requests and
HTTP responses. By default, HTTPS uses port 443 for serving instead of HTTP port 80.

� LDAP support

The Lightweight Data Access Protocol (LDAP) specifies a simplified way to retrieve
information from an X.500-compliant directory in an asynchronous, client/server type of
protocol.

� Certificate authentication

As part of the SSL support, HTTP Server can use certificate authentication and act as a
certificate authority.

� Proxy support

IBM HTTP Server powered by Apache can be set up as a proxy server.

For more information, see the following IBM Knowledge Center website:

https://ibm.biz/Bdr5ZT

7.2 Configuring V8.5.5 for your security requirements

You can customize security in V8.5.5 in many ways. For more information about the security
capabilities of V8.5.5, see this website:

https://ibm.biz/Bdr5Yd

This website describes such topics as the use of certificates and authenticating with SAF.

Although it is beyond the scope of this paper to demonstrate all security capabilities, the
following section describes security that controls access to a Rexx program in the cgi-bin
directory. The Rexx program can access output in the JES2 Spool by using SDSF APIs.

The Rexx program that is described is available from the following IBM Techdoc:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD106087

The following sections are from this IBM Techdoc and describe four approaches to controlling
access:

� Allowing unauthenticated access
� Allowing all authenticated user access
� Allowing authenticated user that belongs to a group access
� Allowing authenticated user access with client credentials
118 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD106087
https://ibm.biz/Bdr5Yd
https://ibm.biz/Bdr5ZT
https://ibm.biz/Bdr5ZT

7.2.1 Allowing unauthenticated access

After you set up your own V8.5.5, the default level of security is used. This default level means
that no authentication is required to start the Rexx program. The implication is that anyone in
your organization who knows the URL can start it.

Although anyone can start the URL, they can view only the JES spool output that the user ID
under which IBM HTTP Server is running is authorized to view. All access to SDSF and JES
spool is done under the user ID of the HTTP Server, which must be limited to only what is
required.

7.2.2 Allowing all authenticated user access

The next level of access control is to require that only users who supply a user ID and
password that are validated by using the z/OS SAF interface can access the Rexx program.
However, access to SDSF and JES spool remains under the user ID of the HTTP Server. This
arrangement is often referred to as client-as-server access. To achieve this control, modify the
V8.5.5 httpd.conf file as described in this section.

In the httpd.conf file that your V8.5.5 is using, ensure that the following directives are
present:

� LoadModule auth_basic_module modules/mod_auth_basic.so
� LoadModule authz_user_module modules/mod_authz_user.so

In the same area of the httpd.conf file, add the following directives:

� LoadModule authnz_saf_module modules/mod_authnz_saf.so
� LoadModule authz_default_module modules/mod_authz_default.so

After adding these two lines, that area of the httpd.conf file resembles the file that is shown
in Example 7-1.

Example 7-1 httpd.conf after adding two LoadModule directives

LoadModule authn_file_module modules/mod_authn_file.so
LoadModule authz_user_module modules/mod_authz_user.so
IBM-Rexx Added next 2 line to support SAF authentication
LoadModule authnz_saf_module modules/mod_authnz_saf.so
LoadModule authz_default_module modules/mod_authz_default.so
#LoadModule authz_groupfile_module modules/mod_authz_groupfile.so
LoadModule include_module modules/mod_include.so

At the bottom of the httpd.conf file, add the lines that are shown in Example 7-2.

Example 7-2 Directives to set up security controls

<Location ~ "/(sdsfViewer.rx*)">
 AuthName zosSdsfViewer
 AuthType Basic
 AuthBasicProvider saf
 Require valid-user
 AuthSAFExpiration "EXPIRED! oldpw/newpw/newpw"
 AuthSAFReEnter "Enter new password one more time"
 CharsetSourceEnc IBM-1047
 CharsetDefault ISO8859-1
</Location>
Chapter 7. Security 119

The Location directive tells IBM HTTP Server that any URL that is received that ends with
sdsfViewer.rx is to feature the directives that are specified within that Location block of
directives that are applied.

You can change the value for the AuthName directive; for example, it might be Company ABC
z/OS Viewer. You must restart the V8.5.5 server to pick up this change. When accessing this
Rexx, you are prompted for a user ID and password, as shown in Figure 7-1.

Figure 7-1 RACF user ID and password prompt

7.2.3 Allowing authenticated user that belongs to a group access

The next level of access control allows only users who supply a user ID and password that
are validated by using the z/OS SAF interface and who are a member of a designated group
to access spool by using the Rexx program. This approach restricts access to those
authenticated users who are members of a defined RACF group.

This level of controlled access is HTTP Server enforced. We are still in the client-as-server
mode, where the SDSF/JES spool access is done under the user ID of the HTTP Server. To
achieve this access, the modifications to the V8.5.5 httpd.conf file that are described next
are required.

Add the Require saf-group directive to the Location block of directives, which now looks
similar to what is shown in Example 7-3.

Example 7-3 Add saf-group on httpd.conf file example

<Location /waslogs/>
 CharsetSourceEnc ISO8859-1
 AddEncoding x-gzip gz tgz
 Header set Content-Disposition "attachment;"
 AuthName zosSdsfViewer
 AuthType Basic
 AuthBasicProvider saf
 Require saf-group E1CELL
 AuthSAFExpiration "EXPIRED! oldpw/newpw/newpw"
 AuthSAFReEnter "Enter new password one more time"
</Location>

Note: You cannot use Require valid-user when Require saf-group is used.
120 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Restart the V8.5.5 server. When a user accesses the URL to run the Rexx program, they are
prompted for their user ID and password. IHS first validates the user ID and password with
RACF. Then, V8.5.5 validates that the user ID is connected to the group that is specified on
the directive.

7.2.4 Allowing authenticated user access with client credentials

The next level of access control is to configure V8.5.5 so that it uses the authenticated and
authorized client user ID to access the JES Spool rather than the user ID of the STC the
V8.5.5 is running under. This setup provides more granular control over which STC output a
user that uses this Rexx can view.

Although this configuration results in the V8.5.5 accessing the JES Spool by using the
authenticated user ID, the STC output they can view depends on how security was set up in
SDSF and SAF. To achieve this access, modifications to the V8.5.5 httpd.conf file are
required. Add the SAFRunAS directive to the Location block of directives, which resembles
Example 7-4.

Example 7-4 Adding SAFRunAS on the httpd.conf file example

<Location /waslogs/>
 CharsetSourceEnc ISO8859-1
 AddEncoding x-gzip gz tgz
 Header set Content-Disposition "attachment;"
 AuthName zosSdsfViewer
 AuthType Basic
 AuthBasicProvider saf
 Require saf-group E1CFG
 SAFRunAS %%CLIENT%%
 AuthSAFExpiration "EXPIRED! oldpw/newpw/newpw"
 AuthSAFReEnter "Enter new password one more time"
</Location>

When V8.5.5 receives a request, it validates the RACF user ID and password. When the Rexx
program runs and attempts to access SDSF, the user ID that this access occurs under is the
validated RACF user ID.D

7.2.5 Required SAF definitions

To use SAFRunAS, you must update RACF (or whatever security product is used) to use
SAFRunAS. The following RACF commands are required:

RDEFINE FACILITY BPX.SERVER UACC(NONE) (if not defined already)
PERMIT BPX.SERVER CLASS(FACILITY) ID(ihs_user_id) ACC(read)
SETROPTS RACLIST(FACILITY) REFRESH

Note: Multiple group names can be specified on the directive.

Note: In Example 7-4, we used Require saf-group, but you can also use
Require valid-user, depending on how you want to control access.
Chapter 7. Security 121

If you do not set up RACF rules, you see a message in the syslog when you try to run the
Rexx program, as shown in Example 7-5.

Example 7-5 Syslog message example

ICH408I USER(WEBSRV1) GROUP(SYS1) NAME(WEBSRV1)
 BPX.SERVER CL(FACILITY)
 INSUFFICIENT ACCESS AUTHORITY
 ACCESS INTENT(READ) ACCESS ALLOWED(NONE)

7.2.6 Complex authorization logic

IBM HTTP Server powered by Apache V9.0 is built on Apache V2.4, which provides
enhanced capability for controlling authorization. New directives allow you to combine the
authorization directives to set up complex authorization logic. For more information about
these new directives, see this website:

http://httpd.apache.org/docs/2.4/mod/mod_authz_core.html#logic

Figure 7-2 shows an example of how a complex authorization is set up.

Figure 7-2 Example of complex authorization

7.3 SSL and Session ID

SSL provides for secure transmission of data across Internet Protocol networks. However,
this secure transmission is costly because of the extra CPU that is used to establish SSL
connections and the associated encryption and decryption.

z/OS provides a mechanism (which is referred to as the SID cache) that can help avoid the
extra processing of having to reestablish an SSL connection. For more information, see this
website:

https://ibm.biz/Bdr59Q

Note: The user IDs of the users must have a defined OMVS segment.
122 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

https://ibm.biz/Bdr59Q
http://httpd.apache.org/docs/2.4/mod/mod_authz_core.html#logic

7.4 Configuring SSL support

Setting up your IBM HTTP Server powered by Apache to use SSL requires the use of various
SSL-related directives and setting up certificates. This section describes the commands that
are used to enable IBM HTTP Server powered by Apache to support the use of SSL.

7.4.1 RACF or keystore files

Store your digital certificates in RACF. This approach is more secure than the alternative of
the use of keystore files in IBM HTTP Server powered by Apache. Leaving certificates in
keystore files in the z/OS UNIX environment is not considered as robust as the use of RACF
from a security perspective.

7.4.2 Creating required certificates

Example 7-6 shows the RACF commands that were used to create the required certificates
and key rings.

Example 7-6 Setting up certificates and key ring

* Create a certificate to sign the server certificate

RACDCERT CERTAUTH GENCERT SUBJECTSDN(CN('IHS CertAuth') OU('IHS RedPaper')) ,
WITHLABEL('IHS.Redpaper') TRUST SIZE(1024) NOTAFTER(DATE(2021/12/31))

* Create a server side certificate

RACDCERT ID (IHSAESTC) GENCERT SUBJECTSDN(CN('wtsc55.itso.ibm.com') O('IBM')
OU('IHS')), WITHLABEL('IHS'), SIGNWITH(CERTAUTH LABEL('IHS.Redpaper')) ,
SIZE(1024), NOTAFTER(DATE(2021/12/31))

*Create a key ring for the userid the server runs under

RACDCERT ADDRING(IHSKeyring.ITSO) ID(IHSAESTC)

* Connect server certificate to user keyring
RACDCERT ID(IHSAESTC) CONNECT (LABEL('IHS') RING(IHSKeyring.ITSO) DEFAULT)

* Connect singer certificate to user keyring '
RACDCERT ID(IHSAESTC CONNECT (RING(IHSKeyring.ITSO) LABEL('IHS.Redpaper')
CERTAUTH)

SETROPTS RACLIST(DIGTCERT) REFRESH

We then issued the following command to give the User ID that the IHS server runs under
access to the certificates that were created in Example 7-6:

permit IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(IHSAESTC) ACCESS(READ)
SETROPTS RACLIST(facility) REFRESH
Chapter 7. Security 123

If this access is not permitted, a RACF violation message is shown that is similar to the
following example when you start the server:

ICH408I USER(IHSAESTC) GROUP(IHSRB13) NAME(IHS SERVER 1 EDWARD)
 IRR.DIGTCERT.LISTRING CL(FACILITY)
 INSUFFICIENT ACCESS AUTHORITY
 ACCESS INTENT(READ) ACCESS ALLOWED(NONE)

7.4.3 Updating httpd.conf

The default SSL directives in the httpd.conf file when a server is first created are shown in
Example 7-7.

Example 7-7 Default SSL settings

#LoadModule ibm_ssl_module modules/mod_ibm_ssl.so
#Listen 443
#<VirtualHost *:443>
#SSLEnable
#</VirtualHost>
#KeyFile /ihsconfig/ihs/ihsae002/ihsserverkey.kdb

The changes that were made to enable SSL support are shown in Example 7-8.

Example 7-8 Enabling SSL support

LoadModule ibm_ssl_module modules/mod_ibm_ssl.so
Listen 8236
<VirtualHost *:8236>
SSLEnable
</VirtualHost>
KeyFile /saf IHSKeyring.ITSO

The server must be stopped and started to pick up this change. The SSL-related messages
that appeared in the server error_log file are shown in Example 7-9.

Example 7-9 SSL-related messages from error_log

[Thu Jul 11 04:36:59 2013] [info] SSL0320I: Using SSLV3 Cipher:
TLS_RSA_WITH_AES_128_CBC_SHA(2F)
[Thu Jul 11 04:36:59 2013] [info] SSL0320I: Using SSLV3 Cipher:
TLS_RSA_WITH_AES_256_CBC_SHA(35b)
[Thu Jul 11 04:36:59 2013] [info] SSL0320I: Using SSLV3 Cipher:
SSL_RSA_WITH_RC4_128_SHA(35)
[Thu Jul 11 04:36:59 2013] [info] SSL0320I: Using SSLV3 Cipher:
SSL_RSA_WITH_RC4_128_MD5(34)
[Thu Jul 11 04:36:59 2013] [info] SSL0320I: Using SSLV3 Cipher:
SSL_RSA_WITH_3DES_EDE_CBC_SHA(3A)
[Thu Jul 11 04:36:59 2013] [info] SSL0320I: Using TLSv10 Cipher:
TLS_RSA_WITH_AES_128_CBC_SHA(2F)
[Thu Jul 11 04:36:59 2013] [info] SSL0320I: Using TLSv10 Cipher:
TLS_RSA_WITH_AES_256_CBC_SHA(35b)
[Thu Jul 11 04:36:59 2013] [info] SSL0320I: Using TLSv10 Cipher:
SSL_RSA_WITH_RC4_128_SHA(35)
[Thu Jul 11 04:36:59 2013] [info] SSL0320I: Using TLSv10 Cipher:
SSL_RSA_WITH_RC4_128_MD5(34)
124 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

[Thu Jul 11 04:36:59 2013] [info] SSL0320I: Using TLSv10 Cipher:
SSL_RSA_WITH_3DES_EDE_CBC_SHA(3A)
[Thu Jul 11 04:36:59 2013] [debug] mod_ibm_ssl.c(4014): Empty cipher list
specified for SSLV2, disabling
[Thu Jul 11 04:36:59 2013] [debug] mod_ibm_ssl.c(4025): Setting ciphers for SSLV3
to "002F003500050004000A"
[Thu Jul 11 04:36:59 2013] [debug] mod_ibm_ssl.c(4025): Setting ciphers for TLSv10
to "002F003500050004000A"
[Thu Jul 11 04:36:59 2013] [debug] mod_ibm_ssl.c(4041): TLSv11 disabled, not
setting ciphers
[Thu Jul 11 04:36:59 2013] [debug] mod_ibm_ssl.c(4041): TLSv12 disabled, not
setting ciphers

The SSL-related messages that were output in the error_log file when we start an IHS V9.0
server on z/OS 2.2 are shown in Example 7-10.

Example 7-10

System SSL: SHA-1 crypto assist is available
System SSL: SHA-224 crypto assist is available
System SSL: SHA-256 crypto assist is available
System SSL: SHA-384 crypto assist is available
System SSL: SHA-512 crypto assist is available
System SSL: DES crypto assist is available
System SSL: DES3 crypto assist is available
System SSL: AES 128-bit crypto assist is available
System SSL: AES 256-bit crypto assist is available
System SSL: AES-GCM crypto assist is available
System SSL: Cryptographic accelerator is not available
System SSL: Cryptographic coprocessor is not available
System SSL: Public key hardware support is not available
System SSL: ECC secure key support is not available.
System SSL: ICSF Secure key PKCS11 support is not available

7.4.4 Testing SSL

We then entered the following URL in a browser:

https://wtsc55.itso.ibm.com:8236

The browser displayed a warning message in which it was advised that the server certificate
was not signed by a recognized certificate authority. This issue was expected, so it is
accepted.

We see that the SSL connection was established in the browser and the home page was
displayed.

The HTTP Server uses the z/OS gskkyman tool for key management to create a CMS key
database file, public and private key pairs, and self-signed certificates. You also can create a
SAF key ring in place of a CMS key database file.

For more information about gskkyman, see this website:

https://ibm.biz/Bdr5CR
Chapter 7. Security 125

https://ibm.biz/Bdr5CR

For more information about creating SAF key rings, see this website:

https://ibm.biz/Bdr5CX

7.4.5 Advanced SSL options

You can enable advanced security options, such as client authentication, setting and viewing
cipher specifications, defining SSL for multiple-IP virtual hosts, and setting up a reverse proxy
configuration with SSL. For more information, see this website:

https://ibm.biz/Bdr5Cr

7.4.6 Basic SNI Support

Basic SNI support provides a way to allow a single server to present different server side site
certificates for the same TCP/IP address.

What problem does basic SNI support solve?
An IBM HTTP Server powered by Apache is shown in Figure 7-3. It is listening on port 443,
which was configured to be the port to handle SSL connections to the server.

Figure 7-3 Basic SNI problem

The httpd.conf file was set up to support two virtual hosts (abc.ibm and xyz.ibm). The
TCP/IP address of the server is 1.2.3.4. The DNS names abc.ibm and xyz.ibm resolve to
this same address.

The httpd.conf file also is configured to send a server side certificate when an SSL
connection is established.

However, before IBM HTTP Server powered by Apache V9, only one SSL certificate was
presented by the server to all users. This certificate’s DNS name was set to n=abc.ibm,o=ibm.

When users access the abc.ibm site, they are presented with a certificate with a DNS name
that matches the DNS name of the site they are accessing. For these users, all is OK.
126 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

https://ibm.biz/Bdr5CX
https://ibm.biz/Bdr5Cr

However, the users who access the xyz.ibm site also are presented with the same certificate.
In these days of heightened awareness of hacking through the Internet, a user who is
accessing xyz.ibm and then sees a certificate with a different DNS name of abc.ibm can
incorrectly think something is amiss. This issue can lead to confusion and dissatisfaction with
the site.

Resolving the problem
IBM HTTP Server powered by Apache V9 provides a way to allow the server to present
different server side certificates, depending on what DNS name the server receives.

This presentation is done by the SNI support that is added in the underlying Apache 2.4 code.

SNI allows you to configure the IBM HTTP Server powered by Apache V9 so that it can
present different server side certificates for different DNS names that are hosted on the same
TCP/IP address.

For more information about the changes to the directive to support SNI, see this website:

http://publib.boulder.ibm.com/httpserv/manual24/mod/mod_ibm_ssl.html#SNI

Implementing SNI example
To test SNI, we issued the RACF commands that are shown in Example 7-11 to create a
certificate and attach it to the keyring that we set up in 7.4.2, “Creating required certificates”
on page 123.

Example 7-11 Defining new server side certificate

RACDCERT ID (IHSAESTC) GENCERT SUBJECTSDN(CN('pok55.itso.ibm.com') O('IBM')
OU('IHS')), WITHLABEL('IHSPOK55'), SIGNWITH(CERTAUTH LABEL('IHS.Redpaper')) ,
SIZE(1024), NOTAFTER(DATE(2021/12/31))

RACDCERT ID(IHSAESTC) CONNECT (LABEL('IHSPOK55') RING(IHSKeyring.ITSO))

SETROPTS RACLIST(DIGTCERT) REFRESH

We then changed the httpd.conf file to use SNI by adding the lines that are shown in
Example 7-12.

Example 7-12 Directives to support SNI

<VirtualHost *:8236>
 SSLEnable SNI
 ServerName itso.ibm.com
 SSLSNIMap wtsc55.itso.ibm.com IHS
 SSLSNIMap pok55.itso.ibm.com IHSPOK55
</VirtualHost>

KeyFile /saf IHSKeyring.ITSO

We restarted the server and then entered the following URLs:

https://wtsc55.itso.ibm.com:8236/
https://pok55.itso.ibm.com:8236/

In the browser, we viewed the received server side certificate for each site and saw that we
received the correct certificate for each site.
Chapter 7. Security 127

http://publib.boulder.ibm.com/httpserv/manual24/mod/mod_ibm_ssl.html#SNI

An alternative method to achieve the same result is shown in Example 7-13.

Example 7-13 Alternative method to support SNI

<virtualhost *:8236>
 ServerName itso.ibm.com
 SSLEnable SNI
</virtualhost>
<virtualhost *:8236>
 ServerName pok55.itso.ibm.com
 SSLEnable
 SSLServerCert IHSPOK55
</virtualhost>

7.5 Controlling access by using mod_rewrite

Apache provides a module called mod_rewrite. The directives in this module provide a
powerful capability you can use in V8.5.5 to control which requests are processed. An
advantage of the use of mod_rewrite directives is that they help to ensure that only the URLs
you expect are processed. They also help to prevent unauthorized access to files within your
V8.5.5 that you do not want to be accessed.

For more information, see the following resources:

� http://publib.boulder.ibm.com/httpserv/manual70/misc/rewriteguide.html
� https://httpd.apache.org/docs/2.2/rewrite/access.html

To help get you started on understanding the use of mod_rewrite, this section describes how
you can ensure that only a specific program in the cgi-bin directory can be started. The URL
that is used to start a Rexx that is named sdsfViewer with the default setup looks like the
following example:

http://wsc1.washington.ibm.com:9659/cgi-bin/sdsfViewer.rx

The default httpd.conf file allows this Rexx and any other program in the cgi-bin directory to
be run. Our aim is to show how (with a few changes) we can ensure that only the
sdsfViewer.rx CGI program can be accessed, and only the following URL works:

http://wsc1.washington.ibm.com:9659/tools/sdsfViewer.rx

First, we must make the mod_rewrite module available to the V8.5.5 server. The following
group of directives is found in httpd.conf:

#LoadModule userdir_module modules/mod_userdir.so
LoadModule alias_module modules/mod_alias.so
#LoadModule rewrite_module modules/mod_rewrite.so
#LoadModule deflate_module modules/mod_deflate.so

Remove the # on the LoadModule directive for the rewrite_module to uncomment it so that the
code now looks like the following example:

#LoadModule userdir_module modules/mod_userdir.so
LoadModule alias_module modules/mod_alias.so
LoadModule rewrite_module modules/mod_rewrite.so
#LoadModule deflate_module modules/mod_deflate.so
128 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

https://httpd.apache.org/docs/2.2/rewrite/access.html
http://wsc1.washington.ibm.com:9659/cgi-bin/sdsfViewer.rx
http://wsc1.washington.ibm.com:9659/tools/sdsfViewer.rx
http://publib.boulder.ibm.com/httpserv/manual70/misc/rewriteguide.html
http://publib.boulder.ibm.com/httpserv/manual70/misc/rewriteguide.html
https://httpd.apache.org/docs/2.2/rewrite/access.html

We then want to use the word “tools” in the URL rather than “cgi-bin.” The following line must
be included in the httpd.conf file:

ScriptAlias /cgi-bin/ "/shared/ihs_sdsf/cgi-bin/"

We added the following directive after the previous directive:

ScriptAlias /tools/ "/shared/ihs_sdsf/cgi-bin/"

This directive defines the alias name tools that maps to the cgi-bin directory.

We then use the ReWriteCond and ReWriteRule directives to ensure that only the
sdsfViewer.rx CGI program can be accessed. At the bottom of the httpd.conf file, add the
following code:

<VirtualHost *:9659>
RewriteEngine On
Only Allow requests associated with the sdsfViewer Rexx
If not expected URI, then redirect to URL to start the Rexx
 RewriteCond %{REQUEST_URI}
!(/tools/sdsfViewer.rx$|/icons/back.gif$|icons/compressed.gif$|/images/zec12.jpg$)
 ReWriteRule .* http://wsc1.washington.ibm.com:9659/tools/sdsfViewer.rx [R,L]
</VirtualHost>

This RewriteCond directive is an IF test to see whether the received URL matches any of the
specified values. If the URLs match the values, the request is processed. If the URLs do not
match, a redirect request is sent to the browser, which results in the browser sending a
request to start the sdsfViewer Rexx.

You must modify the ReWriteRule to reflect the DNS name of your site. The RewriteCond
directive also must be modified if you use a different value for the value of the variable
sdsfRexxPath in the sdsfViewer.rx program.

The net result of adding this code is that IBM HTTP Server can be used only to run the
sdsfViewer Rexx.

This description is an example of the usefulness of mod_rewrite in controlling the requests
that the V8.5.5 processes. Many other methods can be used in which you mod_rewrite to suit
your requirements.

7.6 Caching and security considerations

This section describes caching and security considerations.

7.6.1 Authorization and access control

The use of mod_cache is much like having a built-in reverse-proxy. Requests are served by the
caching module unless it determines that the back-end must be queried. Caching local
resources drastically changes the security model of V8.5.5.

Because traversing a file system hierarchy to examine potential .htaccess files is an
expensive operation that partially defeats the point of caching (to speed up requests),
mod_cache makes no decision about whether a cached entity is authorized for serving. That is,
if mod_cache cached some content, it is served from the cache if that content did not expire.
Chapter 7. Security 129

For example, if your configuration permits access to a resource by IP address, you must
ensure that this content is not cached. You prevent this cache by using the CacheDisable
directive or mod_expires. Left unchecked, mod_cache (much like a reverse proxy) caches the
content when served and then serves it to any client on any IP address.

7.6.2 Local vulnerabilities

As requests to users can be served from the cache, the cache can become a target for those
authorized users who want to deface or interfere with content. It is important to remember that
the cache must always be writable by the user on which V8.5.5 is running. This requirement is
in stark contrast to the popular recommendation that all content that is unwritable by the
HTTP Server user is maintained.

If the server user is compromised (for example, through a flaw in a CGI process), the cache
might be targeted. When mod_disk_cache is used, it is relatively easy to insert or modify a
cached entity.

This issue presents an elevated risk in comparison to the other types of attacks that are
possible to make as the server user. If mod_disk_cache is used, you must be aware of this
risk. Ensure that you upgrade your server when security upgrades are announced and run
CGI processes as a non-server user by using suEXEC, if possible.

7.6.3 Cache poisoning

When V8.5.5 is running as a caching proxy server, the potential for so-called cache poisoning
exists. This broad term is often used for attacks in which an attacker causes the proxy server
to retrieve incorrect (and often unwanted) content from the back-end.

For example, if the DNS servers that are used by your system are vulnerable to DNS cache
poisoning, an attacker might be able to control where V8.5.5 connects to when requesting
content from the origin server. Another example is the so-called HTTP request-smuggling
attack.

This Redbooks publication does not present an in-depth description of HTTP request
smuggling. However, it is important to be aware that a series of requests can be made, a
vulnerability can be used on an origin web server such that the attacker can entirely control
the content that is retrieved by the proxy.
130 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Chapter 8. System Management Facilities
support in IHS V8.5.5

This chapter describes the System Management Facilities (SMF) support that is now
available in V8.5.5 of IHS powered by Apache and compares it to V5.3 of IHS powered by
Domino.

This chapter includes the following topics:

� 8.1, “SMF overview” on page 132
� 8.2, “DGW and SMF” on page 132
� 8.3, “V8.5.5 and SMF” on page 132
� 8.4, “Summary” on page 136

8

© Copyright IBM Corp. 2013, 2016. All rights reserved. 131

8.1 SMF overview

SMF is a component of z/OS that is used to record various detailed information about
resources that are used by processes that run on z/OS. For more information about SMF, see
this website:

https://ibm.biz/Bdr57N

DGW featured support to produce SMF records for many years. V8.5.5 of the HTTP Server
powered by Apache introduces support to allow it to also produce SMF records.

If you have an older version of IBM HTTP Server powered by Apache and want to obtain SMF
records, the following IBM Techdoc provides a sample module that includes some of this
functionality:

https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101225

8.2 DGW and SMF

DGW writes SMF records of type 103. You can configure DGW to produce the following
subtypes of SMF type 103 data:

� Subtype 1: Configuration information
� Subtype 2: Performance information

For more information about the information that is recorded in these subtypes, see this
website:

https://ibm.biz/Bdr5WD

For more information about how to enable DGW to produce SMF records, see this website:

https://ibm.biz/Bdr5WF

8.3 V8.5.5 and SMF

V8.5.5 also writes SMF records of type 103. You can configure V8.5.5 to produce the
following subtypes:

� Subtype 13: Thread statistics
� Subtype 14: Information about each request

8.3.1 Comparing DGW and V8.5.5 SMF records

The key difference between the information that is recorded by V8.5.5 and DGW is that
V8.5.5 provides the capability to record an SMF record for each processed request whereas
DGW does not. The subtype 14 SMF record shows how much CPU was used to process an
individual request.
132 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

https://ibm.biz/Bdr57N
https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101225
https://ibm.biz/Bdr5WD
https://ibm.biz/Bdr5WF

8.3.2 Content

The data that is collected in the subtype 13 SMF records is listed in Table 8-1. This data is
periodic thread statistics that are produced by the mod_mpmstats module.

Table 8-1 Type 103 subtype 13 record format

The mod_mpmstats module records periodic information about IBM HTTP Server processing
threads in the error log. Before V7R0, it was available only as part of the ihsdiag mustgather
tool.

In V8.5.0.0 and later, the displayed number of threads in keepalive state is always zero
because of the Event MPM. Threads that are busy in non-module code cannot be counted
with TrackModules. For more information, see this website:

http://wilson.boulder.ibm.com/httpserv/manual70/mod/mod_mpmstats.html

The data that collected in the subtype 14 SMF records is listed in Table 8-2. This information
is HTTP access log data that is produced by the mod_smf module.

Table 8-2 Type 103 subtype 14 record format

Field Length

parent process ID 4

ready threads 4

busy threads 4

reading threads 4

writing threads 4

logging threads 4

dns threads 4

closing threads 4

keepalive threads 4

bytes served 8

requests served 8

servername len 4

servername $servername_len

Field Offset

process ID 0-3

method length (from start of data buffer) 4-7

domain length (from end of method) 8-11

uri length (from end of domain) 12-15

remote_ip length (from end of remote_ip) 16-19

cpu time 20-27

lapsed time (string) 28-35

variable length buffer 26+
Chapter 8. System Management Facilities support in IHS V8.5.5 133

http://wilson.boulder.ibm.com/httpserv/manual70/mod/mod_mpmstats.html

For more information, see this website:

http://wilson.boulder.ibm.com/httpserv/manual70/mod/mod_smf.html

8.3.3 SMF browser

IBM supplies an SMF browser that uses a JAR file that is named bbomsmfv, which can be used
to display the SMF record content in a formatted way. It is available at this website:

https://www.software.ibm.com/webapp/iwm/web/preLogin.do?source=zosos390

We used this browser to display the SMF records that we collected to show the content of the
subtype 13 and 14 SMF records.

8.3.4 Enabling for subtype 13

Enabling V8.5.5 to produce subtype 13 SMF records requires that the mpmstats module is
loaded and that the SMFReportInterval directive is specified. The supplied httpd.conf
includes the mpmstats module that is enabled by default as shown in the following example:

mod_mpmstats logs statistics about server activity to the main
error log. No records are written while the server is idle.
LoadModule mpmstats_module modules/debug/mod_mpmstats.so
<IfModule mod_mpmstats.c>
Write a record every 10 minutes (if server isn't idle).
Recommendation: Lower this interval to 60 seconds, which will
result in the error log growing faster but with more accurate
information about server load.
ReportInterval 600
Include details of active module in the statistics.
TrackModules On
</IfModule>

The only parameter for the SMFReportInterval directive is a number that indicates the interval
between the writing of the subtype 13 SMF records. You can add the directive after the
ReportInterval, as shown in the following example:

ReportInterval 600
SMFReportInterval 600

Sample
After the V8.5.5 was running for some time, we ran the following JCL to extract the subtype 13
SMF 103 records:

//IHS103 EXEC PGM=IFASMFDP
//DUMPIN DD DSN=SYS1.SC55.MAN2,DISP=SHR
//DUMPOUT DD DSN=EDMCAR.SMFDATA.IHS103,DISP=(NEW,CATLG),
// SPACE=(CYL,(10,10)),DCB=(RECFM=VB,LRECL=32760)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 INDD(DUMPIN,OPTIONS(DUMP)),
 OUTDD(DUMPOUT,TYPE(103(13)))

We issued the following command to format the collected SMF records:

java -cp bbomsmfv.jar:batchsmf.jar com.ibm.ws390.sm.smfview.SMF
'INFILE(EDMCAR.SMFDATA.IHS103)' 'PLUGIN(DEFAULT,STDOUT)' > ihsSmf.txt
134 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

http://wilson.boulder.ibm.com/httpserv/manual70/mod/mod_smf.html
https://www.software.ibm.com/webapp/iwm/web/preLogin.do?source=zosos390

The formatted output for a subtype 13 SMF record is shown in the following example:

Record#: 2141;
 Type: 103; Size: 100; Date: Sat Jun 22 07:19:15 EDT 2013;
 SystemID: SC55; SubsystemID: null; Flag: 94;
 Subtype: 13 (Unknown SMF Record type/subtype combination);
ServerName: wtsc55.itso.ibm.com; PID: 33688136;
Thread Details: [ready: 2; busy: 6; reading: 0; writing: 6; logging: 0; dns: 0;
closing: 0; keepalive: 0;]
Cumulative: [kbytes: 250; requests: 1281;]

In the output, we noticed that the description for the subtype 13 is shown as unknown. We
reported this issue to the author of the bbomsmfv JAR file and expect to be updated in the
future.

8.3.5 Enabling for subtype 14

To enable V8.5.5 to write subtype 14 SMF records, add a directive to inform V8.5.5 to load the
SMF module. Load the mod_smf module and choose a context to enable SMF logging with the
following SMFRecord directive:

LoadModule smf_module modules/mod_smf.so
...
<Location /IBMTools/>
SMFRecord ON
</Location>

Sample
After sending some requests to the V8.5.5, we ran this JCL to extract the subtype 14 SMF
103 records:

//IHS103 EXEC PGM=IFASMFDP
//DUMPIN DD DSN=SYS1.SC55.MAN2,DISP=SHR
//DUMPOUT DD DSN=EDMCAR.SMFDATA.IHS103,DISP=(NEW,CATLG),
// SPACE=(CYL,(10,10)),DCB=(RECFM=VB,LRECL=32760)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 INDD(DUMPIN,OPTIONS(DUMP)),
 OUTDD(DUMPOUT,TYPE(103(14)))

We issued the following command to format the collected SMF records:

java -cp bbomsmfv.jar:batchsmf.jar com.ibm.ws390.sm.smfview.SMF
'INFILE(EDMCAR.SMFDATA.IHS103)' 'PLUGIN(DEFAULT,STDOUT)' > ihsSmf.txt

The formatted output for a subtype 14 SMF record is shown in the following example:

Record#: 101;
 Type: 103; Size: 119; Date: Sat Jun 22 08:22:07 EDT 2013;
 SystemID: SC55; SubsystemID: STC; Flag: 94;
 Subtype: 14 (Unknown SMF Record type/subtype combination);
pid=84019836 method=GET host=w3.sc55.itso.ibm.com:8235 uri=/IBMTools/Sleeper rip =
9.190.237.212 elapsed= 2010 cpu=0.00032
Chapter 8. System Management Facilities support in IHS V8.5.5 135

SMF debug directive
A directive to get V8.5.5 output debug information about the processing of subtype 14 SMF
records can be added to the V8.5.5 httpd.conf file. Add the following line near the bottom of
the httpd.conf file:

SMFLogDebug ON

After directive is added and V8.5.5 is restarted, we sent one request to the server and
observed the following messages in the error_log file:

[Sun Jun 23 20:08:32 2013] [debug] mod_smf.c(321): SMF record content in hex and char:
[Sun Jun 23 20:08:32 2013] [debug] mod_smf.c(360): 007C00005E67006EA5010113173FE2E8
.@..;..>v.....SY
[Sun Jun 23 20:08:32 2013] [debug] mod_smf.c(360): E2C5E2E3C340000E05020BA000000003
SESTC...........
[Sun Jun 23 20:08:32 2013] [debug] mod_smf.c(360): 0000001A000000170000000CF04BF0F0
............0.00
[Sun Jun 23 20:08:32 2013] [debug] mod_smf.c(360): F0F5F300000000000000000FC7C5E3A6
053.........GETw
[Sun Jun 23 20:08:32 2013] [debug] mod_smf.c(360): A3A283F5F596854B89A3A2964B898294
tsc55oe.itso.ibm
[Sun Jun 23 20:08:32 2013] [debug] mod_smf.c(360): 4B8396947AF8F2F3F561C9A3A296E396
.com:8235/ItsoTo
[Sun Jun 23 20:08:32 2013] [debug] mod_smf.c(360): 9693A261C5C289A9C889A3C396A495A3
ols/EBizHitCount
[Sun Jun 23 20:08:32 2013] [debug] mod_smf.c(360): F94BF1F9F04BF1F6F54BF8F2
9.190.165.82
[Sun Jun 23 20:08:32 2013] [info] in SMF: write RC..: 0

8.4 Summary

Many clients that use z/OS often have a process in place that uses SMF records to analyze
the consumption of resources and performance of their various systems and applications.
The introduction of support in V8.5.5 to produce SMF records provides a way for these clients
to add V8.5.5 to this process. For those clients who do not have such a process, the SMF
support is still valuable in analyzing how V8.5.5 is performing daily.
136 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Chapter 9. Plug-in for WebSphere
Application Server

This chapter compares the setup of the WebSphere Application Server plug-in for the two
IBM HTTP Servers that run on z/OS.

WebSphere Application Server for z/OS provides a plug-in to use with IBM HTTP Server on
all platforms. Because two IBM HTTP Servers are available on z/OS, a version that is suitable
for use with each IBM HTTP Server is provided.

The plug-in performs the same purpose in both IBM HTTP Servers, which is to proxy
requests they receive to the back-end WebSphere Application Servers.

It is assumed that the WebSphere Application Server plug-in code was installed on the z/OS
LPAR.

This chapter includes the following topics:

� 9.1, “Plug-in overview” on page 138

� 9.2, “Intelligent Management for Web Servers feature” on page 138

� 9.3, “Configuring WebSphere Application Server plug-in into IBM HTTP Servers” on
page 140

9

© Copyright IBM Corp. 2013, 2016. All rights reserved. 137

9.1 Plug-in overview

The WebSphere Application Server plug-in works much the same in both IBM HTTP Servers
on z/OS.

The web server plug-in uses an XML configuration file to determine whether a request is for
the web server or the application server. This XML configuration file can be generated by the
WebSphere Application Server Administration console or by using wsadmin commands. For
more information, see the WebSphere Application Server Knowledge Center at this website:

https://ibm.biz/BdrNGK

The basic operation of the plug-in for IBM HTTP Server is that when a request reaches the
web server, the URL is compared to the URLs that are managed by the plug-in. If a match is
found, the plug-in configuration file contains the information that is needed to forward that
request to the web container by using the web container inbound transport chain, as shown in
Figure 9-1.

Figure 9-1 Web server plug-in routing

When you change the WebSphere Application Server configuration, how requests are routed
from a web server to the application server is affected. You must regenerate and propagate
the plug-in configuration file to the web server. You can propagate the file manually or
configure the propagation to be done automatically.

9.2 Intelligent Management for Web Servers feature

The Intelligent Management for Web Servers feature for WebSphere Application Server is
new in V8.5.5. This feature simplifies intelligent management capabilities through integration
of the On Demand Router (ODR) capability into the WebSphere Web Server plug-in to reduce
the need for the separate Java based proxy server in many scenarios.
138 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

https://ibm.biz/BdrNGK

Before this release, the typical method that was used to implement the ODR in your
environment is shown in Figure 9-2. This method was used because the ODR is a Java based
component and there were security concerns regarding the use of an ODR in a DMZ.

Figure 9-2 Previous way to use ODR

In WebSphere Application Server V8.5.5, the ODR is now available as a plug-in to run in an
IBM HTTP Server and is written in C code. This approach allows the ODR plug-in to be used
in IBM HTTP Servers, as shown in Figure 9-3.

Figure 9-3 New approach for using ODR

Clients often run IBM HTTP Servers on distributed operating systems in the DMZ. Because
these devices are on the front line in attempting to defend your site from hacking attempts,
consider the use of IBM HTTP Servers on z/OS in the DMZ to provide a more secure
operating system to help with this task.

The ODR is the WebSphere routing function that classifies incoming requests and then
dispatches the requests across the application server environment. This integration provides
significant value in terms of consolidation and simplification of the topology, which resulting in
fewer resources to manage and lower total cost of ownership.

Avoiding a problem: On WebSphere Application Server for z/OS, web servers with
Intelligent Management enabled do not start. For more information about how to resolve
this situation, see this Technote:

http://www.ibm.com/support/docview.wss?uid=swg21636467
Chapter 9. Plug-in for WebSphere Application Server 139

http://www.ibm.com/support/docview.wss?uid=swg21636467

The older ODR approach is stabilized in WebSphere Application Server V8.5.5, as described
at this website:

https://ibm.biz/BdrNGJ

9.3 Configuring WebSphere Application Server plug-in into IBM
HTTP Servers

The methods that are available to configure the WebSphere Application Server plug-in into
IBM HTTP Servers and the related directives are different. The WebSphere Application
Server plug-in code supplies a version of the plug-in module to use for the two different IBM
HTTP Servers that run on z/OS.

9.3.1 IBM HTTP Server powered by Domino

For more information about how to configure the WebSphere Application Server plug-in into
an IBM HTTP Server powered by Domino, see this website:

https://ibm.biz/BdrNGu

The process to set up IBM HTTP Server powered by Domino is manual. You must add at
least three directives, as shown in Example 9-1.

Example 9-1 Examples of directives that are used to use WebSphere Application Server plug-in

ServerInit
/usr/lpp/zWebSphereEM1_Plugins/V8R5/bin/ihs390WASPlugin_http.so:init_exit
/ihsconfig/dws/ihsde001/plugin/plugin-cfg-ihsde001.xml
Service /IBMTools/*
/usr/lpp/zWebSphereEM1_Plugins/V8R5/bin/ihs390WASPlugin_http.so:service_exit
ServerTerm
/usr/lpp/zWebSphereEM1_Plugins/V8R5/bin/ihs390WASPlugin_http.so:term_exit

Although you need only one ServerInit and one ServerTerm directive, several Service
directives often are needed, depending on how many different context roots are used.

9.3.2 IBM HTTP Server powered by Apache

For more information about how to configure the WebSphere Application Server plug-in into
an IBM HTTP Server powered by Apache, see this website:

https://ibm.biz/BdrNG9

Two steps are required to configure the WebSphere Application Server plug-in into an IBM
HTTP Server powered by Apache.

The first step is to make the WebSphere Application Server plug-in product code available to
IBM HTTP Server powered by Apache. An example of the commands that are used to make
the product code available is shown in Example 9-2 on page 141.
140 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

https://ibm.biz/BdrNGJ
https://ibm.biz/BdrNGu
https://ibm.biz/BdrNG9

Example 9-2 Making the WebSphere Application Server plug-in code available in the server

cd /usr/lpp/zWebSphereEM1_Plugins/V8R5/bin
./install_plugin.sh -pluginInstallLocation /usr/lpp/zWebSphereEM1_Plugins/V8R5
-pluginRuntimeLocation /ihsconfig/ihs/ihsae002/Plugins -wasInstallLocation
/usr/lpp/zWebSphereEM85/V8R5

The second step is to configure the httpd.conf file of IBM HTTP Server powered by Apache
to use the WebSphere Application Server plug-in. An example of the commands that are
used to configure this file is shown in Example 9-3.

Example 9-3 Configuring the WebSphere Application Server plug-in into the httpd.conf file

cd /ihsconfig/ihs/ihsae002/Plugins/bin
./ConfigureIHSPlugin.sh -plugin.home /ihsconfig/ihs/ihsae001/Plugins
-plugin.config.xml /ihsconfig/ihs/ihsae002/Plugins/config/ihsae002/plugin-cfg.xml
-ihs.conf.file /ihsconfig/ihs/ihsae002/conf/httpd.conf -operating.system ZOS
-WAS.webserver.name ihsae001 -WAS.host.name wtsc55.itso.ibm.com

After the command that is shown in Example 9-3 completes, the last two lines of the
httpd.conf file contain content similar to the excerpt that is shown in Example 9-4.

Example 9-4 An httpd.conf file excerpt

LoadModule was_ap22_module
/ihsconfig/ihs/ihsae002/Plugins/bin/mod_was_ap22_http.so
WebSpherePluginConfig
/ihsconfig/ihs/ihsae002/Plugins/config/ihsae002/plugin-cfg.xml

9.3.3 Key difference

How the two IBM HTTP Servers interact with the WebSphere Application Server plug-in
module includes the following differences:

� In IBM HTTP Server powered by Domino, you must define a corresponding Service
directive for any requests that you want to be processed by the WebSphere Application
Server plug-in.

� In IBM HTTP Server powered by Apache, the plug-in is called first for any request that is
received to see whether it is to be processed by the plug-in. If the plug-in finds that it does
not process the request, it returns control so that the server can process it.

There is no equivalent Apache directive to the Services directive that is used in IBM HTTP
Server powered by Domino because it is not required.

9.3.4 Working with the plug-in configuration file

The plug-in configuration file (plugin-cfg.xml) that is shown in Example 9-5 on page 142
includes routing information for all applications that are mapped to the web server. This file is
read by the binary plug-in module that is loaded in the web server. An example of a binary
plug-in module is the mod_ibm_app_server_http.dll file for IBM HTTP Server powered by
Apache on the z/OS platform.
Chapter 9. Plug-in for WebSphere Application Server 141

Example 9-5 An excerpt from the plugin-cfg.xml

<?xml version="1.0" encoding="ISO-8859-1"?><!--HTTP server plugin config file for
the webserver ITSOCell.wan.webserver1 generated on 2013.06.04 at 23:11:13 PM
BST-->
<Config ASDisableNagle="false" AcceptAllContent="false"
AppServerPortPreference="HostHeader" ChunkedResponse="false" FIPSEnable=”false”
FailoverToNext=”false” HTTPMaxHeaders=”300” IISDisableNagle="false"
IISPluginPriority="High" IgnoreDNSFailures="false"
OS400ConvertQueryStringToJobsCCSID=”false” RefreshInterval="60"
ResponseChunkSize="64" SSLConsolidate=”true” TrustedProxyEnable=”false”
VHostMatchingCompat="false">
 <Log LogLevel="Error"
Name="/opt/WebSphere/Plugins/logs/webserver1/http_plugin.log"/>

<Property Name="ESIEnable" Value="true"/>
<Property Name="ESIMaxCacheSize" Value="1024"/>
<Property Name="ESIInvalidationMonitor" Value="false"/>
<Property Name="ESIEnableToPassCookies" Value="false"/>
<Property Name="PluginInstallRoot" Value="/IBMIHS/webserver1/Plugins*"/>

<VirtualHostGroup Name="default_host">
 <VirtualHost Name="*:9080"/>
 <VirtualHost Name="*:80"/>
 <VirtualHost Name="*:9443"/>
 </VirtualHostGroup>

 <ServerCluster CloneSeparatorChange="false"GetDWLMTable=”false”
IgnoreAffinityRequests=”true” LoadBalance="Round Robin"
Name="server1_NodeA_Cluster" PostBufferSize=”64” PostSizeLimit="-1"
RemoveSpecialHeaders="true" RetryInterval="60">
 <Server ConnectTimeout="0" ExtendedHandshake="false" MaxConnections="-1"
Name="NodeA_server1" WaitForContinue="false">
 <Transport Hostname="wan" Port="9080" Protocol="http"/>
 <Transport Hostname="wan" Port="9443" Protocol="https">
 <Property Name="keyring"
Value="/IBMIHS/webserver1/Plugins/config/webserver1/plugin-key.kdb"/>
 <Property Name="stashfile"
Value="/IBMIHS/webserver1/Plugins/config/webserver1/plugin-key.sth"/>
 </Transport>
 </Server>
 </ServerCluster>

 <UriGroup Name="default_host_server1_NodeA_Cluster_URIs">
 <Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/snoop/*"/>
 <Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/hello"/>

 </UriGroup>
 <Route ServerCluster="server1_NodeA_Cluster"
UriGroup="default_host_server1_NodeA_Cluster_URIs"
VirtualHostGroup="default_host"/>
</Config>
142 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

The binary plug-in module does not change. However, the plug-in configuration file for the
binary module must be regenerated and propagated to the web server whenever a change is
made to the configuration of applications that are mapped to the web server. The binary
module reads the XML file to adjust settings and to locate deployed applications for the web
server.

The specific values for the UriGroup Name and AffinityCookie attributes depend on how you
assembled your application. Consider the following when you assemble your application:

� If you specify File Serving Enabled, only a wildcard URI is generated, regardless of any
explicit servlet mappings.

� If you specify Serve servlets by class name, a URI of the form URI name =
<webappuri>/servlet/ is generated.

Both of these options apply for the Name and AffinityCookie attributes.

When the plug-in configuration file is generated, it does not include admin_host in the list of
virtual hosts. For more information about how to add it to the list, see the following IBM
Knowledge Center website:

https://ibm.biz/BdrNgH

9.3.5 Regenerating the plug-in configuration file

The plug-in configuration file must be regenerated and propagated to the web servers when
changes are made to your WebSphere configuration that affect how requests are routed from
the web server to the application server. These changes include the following tasks:

� Installing an application
� Creating or changing a virtual host
� Creating a server
� Modifying HTTP transport settings
� Creating or altering a cluster

The plug-in file can be regenerated manually by using the administration tools. You can also
set up the plug-in properties of the web server to enable automatic generation of the file
whenever a relevant configuration change is made.

9.3.6 Managing who serves application static files

Typically, an application that is deployed in WebSphere Application Server consists of the
application programs, such as servlets, EJBs, and static files, such as images and HTML.
The default result is that requests for this static content mean that the WebSphere plug-in in
IBM HTTP Server powered by Apache must fetch them. This fetch can be inefficient because
it is more appropriate to have the V8.5.5 Server fetch the static content of the application. For
more information, see this website:

http://www.ibm.com/support/docview.wss?uid=swg21508890

This website includes a description of an approach to have the IBM HTTP Server powered by
Apache serve the static files of the application rather than the WebSphere Application Server.

A counter argument to whether you must use this approach is if your static content is static
and your users are using a browser, the browser cached this static content and the
WebSphere Application Server plug-in returns an HTTP response code of 304. The result is
that your WebSphere Application Server does not have to serve that much static content.
Chapter 9. Plug-in for WebSphere Application Server 143

https://ibm.biz/BdrNgH
http://www.ibm.com/support/docview.wss?uid=swg21508890
http://www.ibm.com/support/docview.wss?uid=swg21508890

144 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Chapter 10. Cache configuration

This chapter describes issues that are related to cache settings on IBM HTTP Server
powered by Apache. These configurations and settings are used to enable cache in IHS
powered by Apache environments only because this version does not support FRCA. This
overview is specific to the z/OS operating system.

This chapter includes the following topics:

� 10.1, “Caching overview” on page 146
� 10.2, “Fast Response Cache Accelerator” on page 151

10
© Copyright IBM Corp. 2013, 2016. All rights reserved. 145

10.1 Caching overview

In IBM HTTP Server powered by Apache, mod_cache and mod_file_cache became standard
production functions. These caching architectures provide a powerful means to accelerate
HTTP handling, as an origin webserver and as a proxy.

The mod_cache and its provider modules (mod_mem_cache and mod_disk_cache) provide
intelligent, HTTP-aware caching. Generally, use mod_disk_cache rather than mod_mem_cache.
Caching static files is not recommended.

The content is stored in the cache, and mod_cache aims to honor all of the various HTTP
headers and options that control the cacheability of content. It can handle local and proxied
content. Also, mod_cache is aimed at simple and complex caching configurations in which you
are dealing with proxied content, dynamic local content, or must speed up access to local files
that change with time.

The mod_file_cache module presents a more basic form of caching. Rather than maintain the
complexity of actively ensuring the cacheability of URLs, mod_file_cache offers file-handle
and memory-mapping tricks to keep a cache of files as they were when V8.5.5 was last
started. As such, mod_file_cache is aimed at improving the access time to local static files,
which do not change often. Although mod_file_cache might be of use, as it was deprecated in
Apache. We recommend that it is not used.

As mod_file_cache presents a relatively simple caching implementation (apart from the
specific sections about CacheFile and MMapFile), the explanations in this publication cover
the mod_cache caching architecture.

10.1.1 What can be cached

The two styles of caching in V8.5.5 work differently. The mod_file_cache caching maintains
file contents as they were when V8.5.5 was started. When a request is made for a file that is
cached by this module, it is intercepted and the cached file is served.

However, mod_cache caching is more complex. When serving a request, the caching module
determines whether the content is cacheable if it was not cached previously. Determining
cacheability of a response depends on the following conditions:

� Enabling and disabling caching for URLs is controlled by using the CacheEnable and
CacheDisable directives.

� The response must have an HTTP status code of 200, 203, 300, 301, or 410.

� The request must be an HTTP GET request.

� If the request contains an “Authorization:” header, the response is not cached.

� If the response contains an “Authorization:” header, it must also contain an “s-maxage”,
“must-revalidate”, or “public” option in the “Cache-Control:” header.

� If the URL included a query string (such as from an HTML form GET method), it is not
cached unless the response specifies an explicit expiration by including an “Expires:”
header or the max-age or s-maxage directive of the “Cache-Control:” header.

� If the response has a status of 200 (OK), the response must also include at least one of
the “Etag”, “Last-Modified” or the “Expires” headers, or the max-age or s-maxage directive
of the “Cache-Control:” header, unless the CacheIgnoreNoLastMod directive was used to
require otherwise.
146 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

� If the response includes the “private” option in a “Cache-Control:” header, it is not stored
unless the CacheStorePrivate was used to require otherwise.

� If the response includes the “no-store” option in a “Cache-Control:” header, it is not stored
unless the CacheStoreNoStore was used.

� A response is not stored if it includes a “Vary:” header containing the match-all “*”.

10.1.2 Not cached

Any content that is highly time-sensitive or varies depending on the particulars of the request
that are not covered by HTTP negotiation must not be cached.

If you have dynamic content that changes depending on the IP address of the requester or
changes every 5 minutes, it must not be cached.

If the content that is served differs depending on the values of various HTTP headers, it might
be possible to cache it intelligently by using a Vary header.

Variable and negotiated content
If a response with a Vary header is received by mod_cache when it is requesting content by the
back-end, mod_cache attempts to handle the response intelligently. If possible, mod_cache
detects the headers attributed in the Vary response in future requests and serves the correct
cached response.

For example, if a response is received with a Vary header (as shown in Example 10-1),
mod_cache serves only the cached content to requesters with accept-language and
accept-charset headers matching the headers of the original request.

Example 10-1 Variable negotiate

Vary: negotiate,accept-language,accept-charset

10.1.3 File-handle caching

The act of opening a file can be a source of delay, particularly on network file systems. By
maintaining a cache of open file descriptors for commonly served files, V8.5.5 can avoid this
delay. Currently, V8.5.5 provides two different implementations of File-handle caching.

CacheFile
The most basic form of caching in V8.5.5 is the file-handle caching that is provided by
mod_file_cache. Rather than caching file-contents, this cache maintains a table of open file
descriptors. Files to be cached in this manner are specified in the configuration file by using
the CacheFile directive. The CacheFile directive instructs V8.5.5 to open the file when V8.5.5
is started and to reuse this file-handle for all access to this file, as shown in Example 10-2.

Example 10-2 Cache file path example

CacheFile /usr/IBM/HTTPServer/htdocs/index.html

If you intend to cache many files in this manner, you must ensure that your operating system’s
limit for the number of open files is set correctly. Although the use of CacheFile does not
cause the file-contents to be cached, it does mean that changes that are made to the file
while V8.5.5 is running are not picked up. The file is consistently served as it was when
V8.5.5 was started.
Chapter 10. Cache configuration 147

If the file is removed while V8.5.5 is running, V8.5.5 continues to maintain an open file
descriptor and serve the file as it was when V8.5.5 was started. Although the file was deleted
and does not show up on the file system, extra free space is not recovered until V8.5.5 is
stopped and the file descriptor is closed.

CacheEnable fd
The mod_mem_cache also provides its own file-handle caching scheme, which can be enabled
by using the CacheEnable directive, as shown in Example 10-3.

Example 10-3 File-handle caching example

CacheEnable fd /

As with all of mod_cache, this type of file-handle caching is intelligent and handles are not
maintained beyond the expiry time of the cached content.

10.1.4 In-memory caching

Serving directly from system memory is universally the fastest method of serving content.
Reading files from a disk controller or even worse, from a remote network is orders of
magnitude slower. Disk controllers usually involve physical processes, and network access is
limited by your available bandwidth. However, memory access can take mere nanoseconds.

System memory is expensive. Byte for byte, it is the most expensive type of storage, so it is
important to ensure that it is used efficiently. By caching files in memory, you decrease the
amount of available memory on the system. In the case of operating system caching, this
amount of memory is not so much of an issue. When V8.5.5’s own in-memory caching is
used, it is important to ensure that you do not allocate too much memory to a cache.
Otherwise, the system is forced to swap out memory, which likely degrades performance.

Operating system caching
Almost all modern operating systems cache file-data in memory that is managed directly by
the kernel. For example, we look at the difference in the time that it takes to read a file for the
first time and the second time on z/OS and Linux, as shown in Example 10-4.

Example 10-4 Operating system caching

SC55@wsc55.itso.ibm.com:$ time cat testfile > /dev/null
real 0m0.065s
user 0m0.000s
sys 0m0.001s
SC55@wsc55.itso.ibm.com$ time cat testfile > /dev/null
real 0m0.003s
user 0m0.003s
sys 0m0.000s

Even for this small file, there is a huge difference in the amount of time it takes to read the file.
This difference occurs because the kernel cached the file contents in memory.

By allocating spare memory on your system, you can ensure that more file-contents are
stored in this cache. This method can be an efficient means of in-memory caching and
involves no extra configuration of V8.5.5.
148 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Because the operating system knows when files are deleted or modified, it can automatically
remove file contents from the cache, when necessary. This feature is a significant advantage
over V8.5.5’s in-memory caching, which has no way of knowing when a file changes.

Despite the performance and advantages of automatic operating system caching, some
circumstances occur in which in-memory caching might be better performed by V8.5.5. For
example, an operating system can cache files only of which it is aware. If you are running
V8.5.5 as a proxy server, the files you are caching are not locally stored but remotely served.
If you still want the unbeatable speed of in-memory caching, V8.5.5’s own memory caching is
needed.

MMapFile caching
The MMapFile directive is provided by mod_file_cache. You can use this directive so that
V8.5.5 maps a static file’s contents into memory at start time (by using the mmap system call).
V8.5.5 uses the in-memory contents for all accesses to this file, as shown in Example 10-5.

Example 10-5 MMapFile caching

MMapFile /usr/IBM/HTTPServer/htdocs/index.html

As with the CacheFile directive, any changes in these files are not picked up by V8.5.5 after it
starts.

mod_mem_cache caching
An HTTP-aware intelligent in-memory cache is provided by mod_mem_cache. It also uses heap
memory directly, which means that even if MMap is not supported on your system,
mod_mem_cache might still perform caching. Caching of this type is enabled, as shown in
Example 10-6.

Example 10-6 Mod_mem_cache example

Enable memory caching
CacheEnable mem /
Limit the size of the cache to 1 Megabyte
MCacheSize 1024

Overusing the directive: The MMapFile directive does not track how much memory it
allocates; therefore, you must ensure that the directive is not overused. Each V8.5.5 child
process replicates this memory, so it is critically important to ensure that the mapped files
are not so large as to cause the system to swap memory.
Chapter 10. Cache configuration 149

10.1.5 Disk-based caching

A disk-based caching mechanism for mod_cache is provided by mod_disk_cache. As with
mod_mem_cache, this cache is intelligent. Content is served from the cache only if it is
considered valid.

Typically, the module is configured as shown in Example 10-7.

Example 10-7 Configuring mod_disk_cache

CacheRoot /var/cache/IBM/HTTPServer/
CacheEnable disk /
CacheDirLevels 2
CacheDirLength 1

Importantly, because the cached files are locally stored, operating system in-memory caching
often also is applied to their access. Although the files are stored on disk, it is likely that the
operating system ensures that they are served from memory if they are frequently accessed.

Understanding the cache-store
To store items in the cache, mod_disk_cache creates a 22 character hash of the URL that is
requested. This hash incorporates the host name, protocol, port, path, and any CGI
arguments to the URL to ensure that multiple URLs do not collide. Each character might be
any one of 64-different characters, which means that overall there are 64^22 possible hashes.

For example, a URL might be hashed to xyTGxSMO2b68mBCykqkp1w. This hash is used as a
prefix for the naming of the files that are specific to that URL within the cache. However, first it
is split up into directories according to the CacheDirLevels and CacheDirLength directives.

CacheDirLevels specifies how many levels of subdirectory are created, and CacheDirLength
specifies how many characters are in each directory. By using our example settings, the hash
is turned into a file name prefix as /var/cache/IBM/HTTPServer/x/y/TGxSMO2b68mBCykqkp1w.

The overall aim of this technique is to reduce the number of subdirectories or files that might
be in a specific directory because most file systems slow down as this number increases.
With setting of 1 for CacheDirLength, there can be (at most) 64 subdirectories at any specific
level. With a setting of 2, there can be 64 * 64 subdirectories, and so on. It is recommended to
use a value of 1 for CacheDirLength.

Setting CacheDirLevels depends on how many files you anticipate to store in the cache. With
the setting of 2 used in our example, a total of 4096 subdirectories can be created. With 1
million files cached, this figure works out at approximately 245 cached URLs per directory.

Each URL uses at least two files in the cache-store. Typically, there is a .header file, which
includes meta-information about the URL, such as when it is due to expire. It also includes a
.data file that is a copy of the content to be served.

In the case of content that is negotiated by using the Vary header, a .vary directory is created
for the URL in question. This directory has many .data files corresponding to the differently
negotiated content.

Maintaining the disk cache
Although mod_disk_cache removes cached content as files expire, it does not maintain any
information about the total size of the cache or how little free space might be left.
150 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Instead, the htcacheclean tool is provided with V8.5.5. As the name suggests, this tool is
used to clean the cache periodically. Determining how frequently to run htcacheclean and
what target size to use for the cache is complex; therefore, several attempts at using the tool
might be needed to find the optimal values.

The htcacheclean tool has two modes: It can be run as a persistent daemon or periodically
from cron. The htcacheclean tool can take up 1 hour or more to process large (tens of
gigabytes) caches. If you are running the tool from cron, you must determine how long a
typical run takes so that multiple instances are not run at the same time. Cache usage x
interval between htcacheclean is shown in Figure 10-1.

Figure 10-1 Typical cache growth and clean sequence

Because mod_disk_cache does not track how much space is used, you must ensure that
htcacheclean is configured to leave enough room for growth following a clean.

For more information about static pages, see 9.3.6, “Managing who serves application static
files” on page 143. For information about dynamic webpages and CGI, see Chapter 12, “CGI
scripts” on page 163.

10.2 Fast Response Cache Accelerator

IBM HTTP Server powered by Domino supported Fast Response Cache Accelerator (FRCA).
However, FRCA did not support requests that are received over SSL connections, which
limited its usefulness.

FRCA is not supported in IBM HTTP Server powered by Apache.

Do not use in-memory or on-disk caching for any static content. Use caching for generated,
proxied, or dynamic content.
Chapter 10. Cache configuration 151

152 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Chapter 11. Modules

This chapter describes the reasons why you might want to implement custom modules in your
environment. It also describes briefly how DGW supported custom modules. Three sample
Apache-style modules also are presented.

This chapter includes the following topics:

� 11.1, “Why custom modules are used” on page 154
� 11.2, “DGW modules” on page 154
� 11.3, “Simple helloworld module” on page 155
� 11.4, “Apache-supplied example module” on page 158
� 11.5, “Using an open source Apache module” on page 160

11
© Copyright IBM Corp. 2013, 2016. All rights reserved. 153

11.1 Why custom modules are used

DGW and V8.5.5 provide many features that you expect to find in an HTTP Server. However,
no matter how many features of a product are provided, users sometimes have a business
requirement that cannot be met by the product.

Although clients can request that a feature is added to the product, that process often takes
time. The ability of DGW and V8.5.5 to allow clients to implement custom modules that add
required capability in a short time is of great benefit.

11.1.1 Popularity of Apache modules

IHS is based on Apache, which means that you have access to many open source modules.
Typically, these modules are run in Apache HTTP Servers on distributed platforms. By using
V8.5.5 instead of DGW, you have access to a far greater range of developed modules. If you
encounter problems developing your own modules or implementing a module, various
Apache forums are available where you can request advice and assistance.

Taking an Apache module and implementing it in V8.5.5. DGW cannot compete with V8.5.5 in
this regard, as described in 11.5, “Using an open source Apache module” on page 160.

If you must develop your own Apache modules, search for a book about this topic on the
Internet. In addition, the following IBM Techdocs show examples of developing Apache
modules that might also be of use in helping you to gain an understanding of this task:

� Extending the IBM HTTP Server for z/OS Powered by Apache with custom modules:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101225

� Classify URL requests in Apache IHS using WLM on z/OS:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101858

11.2 DGW modules

DGW allows you to develop custom modules by using the Go Webserver Application
Programming Interface (GWAPI). The GWAPI modules are written in C code. Although
GWAPI modules also can be written in Rexx, these modules are limited to specific exit
routines. For more information about the use of GWAPI, see this website:

https://ibm.biz/Bdr7Xq

11.2.1 Migrating GWAPI modules to V8.5.5 modules

No utility is available that converts GWAPI modules to V8.5.5 modules. DGW and V8.5.5
(logically at a high level) provide a way to get the server to perform some action that they
cannot perform by default. How you must code the modules to perform this migration is
different for the two products.

The following sections feature sample Apache modules that can assist you with the task of
converting DGW GWAPI modules to Apache-style modules.
154 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

https://ibm.biz/Bdr7Xq
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101858
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101225
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101225
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101858
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101225
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101858

11.3 Simple helloworld module

Apache is open source software that was developed by volunteers and is widely used.
However, detailed documentation about working with custom modules in Apache-powered is
not readily available. If you are new to the area of custom modules, it can prove challenging to
get a custom module to work.

The purpose of the helloworld type custom module is to show the following information:

� Basics of how to code a custom module
� How to compile it
� How to integrate it into the HTTP Server
� How to test it

11.3.1 Code structure of helloworld module

Describing the inner workings of Apache modules is beyond the scope of this IBM Redpaper
publication. User who require more information are encouraged to read published books
about the subject. In this publication, we describe the basic concepts by using the code in the
helloworld module.

The code starts with the following include statements:

#include "httpd.h"
#include "http_config.h"

These statements feature bringing in core components that are necessary for use when
Apache modules are written. You always need these lines in any modules that you write.

The next piece of code is used to provide the “glue” between the Apache HTTP Server and
the custom module. The HTTP Server can then determine what functions in the module can
be started and when to start them, as shown in Example 11-1.

Example 11-1 AP_MODULE_DECLARE DATA example

module AP_MODULE_DECLARE_DATA modHelloWorld_module =
{
 /* Only one callback function is provided. Real
 * modules will need to declare callback functions for
 * server/directory configuration, configuration merging
 * and other tasks. */
 STANDARD20_MODULE_STUFF,
NULL,
NULL,
NULL,
NULL,
NULL,
modHelloWorld_register_hooks, /* callback for registering hooks */
};

When the HTTP Server starts, it calls this module. Notice the number of NULLs in our
example. These NULLs represent places where you can register hooks that process the
server configuration.
Chapter 11. Modules 155

The key line in our example is the line that includes with modHelloWorld_register_hooks. The
call to the modHelloWorld_module results in modHelloWorld_register_hooks being called. The
following example is the code for modHelloWorld_register_hooks:

static void modHelloWorld_register_hooks (apr_pool_t *p)
{
 ap_hook_handler(modHelloWorld_method_handler, NULL, NULL, APR_HOOK_LAST);
}

The code is telling the HTTP Server about what hooks are available to the server. In this case,
we are registering one hook only. You see in later sample modules that many hooks can be
registered.

The code is registering the modHelloWorld_method_handler hook, which includes the code
that is shown in Example 11-2.

Example 11-2 Registering the modHelloWorld_method_handler hook

static int modHelloWorld_method_handler (request_rec *r)
{
 /* Send a message to stderr (apache redirects this to the error log)*/
 fprintf(stderr,"apache2_modHelloWorld: A request was made.\n");
 /* Return DECLINED so that the Apache core will keep looking for
 * other modules to handle this request. This effectively makes
 * this module completely transparent. */
 return DECLINED;
}

The code consists of only one line, which prints a message only to the stderr of the Apache
server.

11.3.2 Compiling the helloworld module

Apache includes a Perl script that is named apxs that is used to compile custom-written
modules. Add the helloworld module source code to a directory of your choice on your z/OS
system, for example /var/ihsMods/modHelloWorld.

The apxs script is included as part of the V8.5.5 product. In our environment, the script was
placed in the /ihs/usr/lpp/IHSA/V8R5/bin/apxs directory. However, you cannot successfully
start the apxs script from this directory. You must run the install_ihs script in the
/ihs/usr/lpp/IHSA/V8R5/bin directory to define a V8.5.5 environment at a nominated
directory.

On the system that was used to develop the modules that are described in this chapter, the
defined V8.5.5 was in the /ihsconfig/ihs/ihsae001 directory.

From the /ihsconfig/helloWorld directory, we issued the following command:

/ihsconfig/ihs/ihsae001/bin/apxs -c mod_helloWorld.c
156 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

The output that is shown in Example 11-3 was produced.

Example 11-3 Command output

/ihsconfig/ihs/ihsae001/build/libtool --mode=compile cc -Wc,XPLINK,lp64,dll,expo
-Wl,XPLINK,lp64 -O3 -U_NO_PROTO -DPTHREAD_ATTR_SETDETACHSTATE_ARG2_ADDR
-DPTHREAD_SETS_ERRN
O -DPTHREAD_DETACH_ARG1_ADDR -DSIGPROCMASK_SETS_THREAD_MASK -DTCP_NODELAY=1
-I/ihsconfig/ihs/ihsae001/include -I/ihsconfig/ihs/ihsae001/include
-I/ihsconfig/ihs/ihsae001/i
nclude -Wc,DLL,expo -c -o mod_helloWorld.lo mod_helloWorld.c && touch
mod_helloWorld.slo
libtoolexe: cc -Wc,DLL,EXPORTALL -Wc,XPLINK,lp64,dll,expo -Wl,XPLINK,lp64 -O3
-U_NO_PROTO -DPTHREAD_ATTR_SETDETACHSTATE_ARG2_ADDR -DPTHREAD_SETS_ERRNO
-DPTHREAD_DETACH_ARG1_AD
DR -DSIGPROCMASK_SETS_THREAD_MASK -DTCP_NODELAY=1
-I/ihsconfig/ihs/ihsae001/include -I/ihsconfig/ihs/ihsae001/include
-I/ihsconfig/ihs/ihsae001/include -Wc,DLL,expo -c -o mod_
helloWorld.o mod_helloWorld.c
libtoolexe: echo timestamp >mod_helloWorld.lo
/ihsconfig/ihs/ihsae001/build/shlibtool --mode=link cc -Wc,XPLINK,lp64,dll,expo
-Wl,XPLINK,lp64 -O3 -U_NO_PROTO -DPTHREAD_ATTR_SETDETACHSTATE_ARG2_ADDR
-DPTHREAD_SETS_ERRN
O -DPTHREAD_DETACH_ARG1_ADDR -DSIGPROCMASK_SETS_THREAD_MASK -DTCP_NODELAY=1 -o
mod_helloWorld.la -rpath /ihsconfig/ihs/ihsae001/modules -module -avoid-version
-L/ihsconf
ig/ihs/ihsae001/lib -export-dynamic
--core-dll=/ihsconfig/ihs/ihsae001/lib/apachecore.dll mod_helloWorld.lo
libtoolexe: ar -rs mod_helloWorld.a mod_helloWorld.o
ar: creating mod_helloWorld.a
libtoolexe: cc -Wl,DLL -o mod_helloWorld.so -Wc,XPLINK,lp64,dll,expo
-Wl,XPLINK,lp64 -O3 -U_NO_PROTO -DPTHREAD_ATTR_SETDETACHSTATE_ARG2_ADDR
-DPTHREAD_SETS_ERRNO -DPTHREAD_DET
ACH_ARG1_ADDR -DSIGPROCMASK_SETS_THREAD_MASK -DTCP_NODELAY=1 mod_helloWorld.o
/ihsconfig/ihs/ihsae001/lib/apachecore.x /ihsconfig/ihs/ihsae001/lib/libapr-1.x
/ihsconfig/ihs/ih
sae001/lib/libaprutil-1.x /ihsconfig/ihs/ihsae001/lib/apachecore.x
/ihsconfig/ihs/ihsae001/lib/apachecore.x /ihsconfig/ihs/ihsae001/lib/libapr-1.x
/ihsconfig/ihs/ihsae001/lib/
libaprutil-1.x

The contents of the directory now includes the following lines:

-rw-rw-r-- 1 IHSAE001 IHSRB13 1916 Jun 18 20:50 mod_helloWorld.c
-rw-rw-rw- 1 IHSAE001 IHSRB13 0 Jun 18 20:52 mod_helloWorld.slo
-rw-rw-rw- 1 IHSAE001 IHSRB13 4400 Jun 18 20:52 mod_helloWorld.o
-rw-rw-rw- 1 IHSAE001 IHSRB13 10 Jun 18 20:52 mod_helloWorld.lo
-rw-rw-rw- 1 IHSAE001 IHSRB13 4654 Jun 18 20:52 mod_helloWorld.a
-rw-rw-rw- 1 IHSAE001 IHSRB13 80 Jun 18 20:52 mod_helloWorld.x
-rwxrwxrwx 1 IHSAE001 IHSRB13 86016 Jun 18 20:52 mod_helloWorld.so
-rw-rw-rw- 1 IHSAE001 IHSRB13 564 Jun 18 20:52 mod_helloWorld.la
Chapter 11. Modules 157

11.3.3 Integrating the new helloworld module into the configuration file

Next, we updated the HTTP Server configuration file to enable the modHelloWorld module. On
our system, the configuration file is in the /ihsconfig/ihs/ihsae001/conf/httpd.conf
directory.

Several LoadModule directives are in the configuration file. The last of these directives are
similar to the following directives:

LoadModule userdir_module modules/mod_userdir.so
LoadModule alias_module modules/mod_alias.so
#LoadModule rewrite_module modules/mod_rewrite.so
#LoadModule deflate_module modules/mod_deflate.so

Add the following line after the last LoadModule directive:

LoadModule mod_helloWorld_module /ihsconfig/helloWorld/mod_helloWorld.so

This code is placed on a single line.

11.3.4 Testing the helloworld module

We were running our V8.5.5 as a started task. We stopped and restarted it. We then entered
the following URL into a browser to access the server:

http://wtsc55oe.itso.ibm.com:8230

The V8.5.5 home page was displayed. In the stderr log file at
/ihsconfig/ihs/ihsae001/logs/error_log, we the following line was included:

[Tue Jun 18 21:23:30 2013] [warn] This message from mod_helloWorld

This result shows that our helloworld module was started because of the V8.5.5 processing
request that was sent.

11.4 Apache-supplied example module

This section describes how to compile, configure, and test the standard sample example
module that is included with V8.5.5.

11.4.1 Code structure overview

IHS product code contains a more extensive sample module that is named the example
module. On our system, this source in the following directory:

/ihs/usr/lpp/IHSA/V8R5/example_module/mod_example.c

When you create your own V8.5.5 environment as a result of running the install_ihs script,
you find a symbolic link that is named example_module that points to the directory that is used.
On our system, this directory was /ihsconfig/ihs/ihsae00. This sample module specifies
hooks that can be used with the Apache-powered server, as shown in Example 11-4 on
page 159.
158 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Example 11-4 Specifying hooks

static void x_register_hooks(apr_pool_t *p)
{
 ap_hook_pre_config(x_pre_config, NULL, NULL, APR_HOOK_MIDDLE);
 ap_hook_post_config(x_post_config, NULL, NULL, APR_HOOK_MIDDLE);
 ap_hook_open_logs(x_open_logs, NULL, NULL, APR_HOOK_MIDDLE);
 ap_hook_child_init(x_child_init, NULL, NULL, APR_HOOK_MIDDLE);
 ap_hook_handler(x_handler, NULL, NULL, APR_HOOK_MIDDLE);
 ap_hook_quick_handler(x_quick_handler, NULL, NULL, APR_HOOK_MIDDLE);
 ap_hook_pre_connection(x_pre_connection, NULL, NULL, APR_HOOK_MIDDLE);
 ap_hook_process_connection(x_process_connection, NULL, NULL, APR_HOOK_MIDDLE);
 /* Ý1¨ post read_request handling */
 ap_hook_post_read_request(x_post_read_request, NULL, NULL,
 APR_HOOK_MIDDLE);
 ap_hook_log_transaction(x_logger, NULL, NULL, APR_HOOK_MIDDLE);
#if 0
 ap_hook_http_method(x_http_method, NULL, NULL, APR_HOOK_MIDDLE);
 ap_hook_default_port(x_default_port, NULL, NULL, APR_HOOK_MIDDLE);
#endif
 ap_hook_translate_name(x_translate_handler, NULL, NULL, APR_HOOK_MIDDLE);
 ap_hook_header_parser(x_header_parser_handler, NULL, NULL, APR_HOOK_MIDDLE);
 ap_hook_check_user_id(x_check_user_id, NULL, NULL, APR_HOOK_MIDDLE);
 ap_hook_fixups(x_fixer_upper, NULL, NULL, APR_HOOK_MIDDLE);
 ap_hook_type_checker(x_type_checker, NULL, NULL, APR_HOOK_MIDDLE);
 ap_hook_access_checker(x_access_checker, NULL, NULL, APR_HOOK_MIDDLE);
 ap_hook_auth_checker(x_auth_checker, NULL, NULL, APR_HOOK_MIDDLE);
 ap_hook_insert_filter(x_insert_filter, NULL, NULL, APR_HOOK_MIDDLE);
}

Most of the hooks that are shown in Example 11-4 perform no action in the sample module. (It
is beyond the scope of this paper to explain them in depth.) Documentation about these
hooks can be difficult to find. Obtain a good book on this subject if you plan to develop your
own module.

11.4.2 Compiling the example module

We copied the example module source code to the directory /ihsconfig/example_module.
We then issued the following command to compile it:

/ihsconfig/ihs/ihsae001/bin/apxs -c mod_example.c

11.4.3 Integrating the example_module into the server conf file

Next, we integrated the example_module in the configuration file by using the same process
that was described for the helloworld module in 11.3, “Simple helloworld module” on
page 155 by adding the following line:

LoadModule example_module /ihsconfig/example_module/mod_example.so
Chapter 11. Modules 159

To verify that example_module is working, add directives to tell the HTTP Server when to start
it. These directives are included by adding the following lines at the bottom of the
configuration file:

<Location /example-info>
 SetHandler example-handler
</Location>
Example directive declared here: YES

We then stopped and started the server.

11.4.4 Testing the example_module

To test that the Apache-powered HTTP Server can start the various hooks in the
example_module, we entered the following URL:

http://wtsc55oe.itso.ibm.com:8230/example-info

The output is shown in the browser.

The top of this output is shown in Example 11-5.

Example 11-5 Top of output

mod_example Module Content-Handler Output
Apache HTTP Server version: "IBM_HTTP_Server"
Server built: "May 23 2013 00:51:38"

The format for the callback trace is:

n.<routine-name>(<routine-data>)
[<applies-to>]

The bottom of this output was as follows:

7. x_handler()
[DIR()

Environment for this call:
• Applies-to: DIR()
• "Example" directive declared here: YES
• "Example" inherited: NO

11.5 Using an open source Apache module

Because the Apache HTTP Server is widely used, many modules were developed by the
worldwide community. This section describes how you can take one of these open source
modules and implement it in V8.5.5. This description demonstrates that even though these
open source modules are not typically developed for use on z/OS, they can be implemented
them in V8.5.5.
160 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

11.5.1 Limit IP module

The Limit IP module provides a simple mechanism to limit how many open connections are
allowed from a single TCP/IP address.

The source code is available at this website:

http://dominia.org/djao/limitipconn2.html

11.5.2 Compiling the module

We copied mod_limitipconn.c to the /ihsconfig/limitIp directory. We then compiled it by
using the following command:

/ihsconfig/ihs/ihsae001/bin/apxs -c mod_limitipconn.c

11.5.3 Updating the httpd.conf file

We added the following line to describe how to compile, configure, and test the standard
sample example module that is included with the HTTP Server:

LoadModule limitipconn_module /ihsconfig/limitIp/mod_limitipconn.so

We added the following lines near the bottom of the httpd.conf file:

Set a server-wide limit of 2 simultaneous downloads per IP,
no matter what.
MaxConnPerIP 2

11.5.4 Restarting and testing

We then restarted the server. To test if this module worked, we coded a Rexx program that is
named sleeper.rx to which we can pass a parameter to specify how long the Rexx program
enters a sleep state. We placed sleeper.rx in the /ihsconfig/ihs/ihsae001/cgi-bin
directory.

We then issued the following URL from three different browser windows on our workstation:

http://wtsc55.itso.ibm.com:8230/cgi-bin/sleeper.rx?sleep=30

The first two requests were received by our V8.5.5 server and went into a sleep state.
However, the browser received the following message when we sent the third request:

Service Temporarily Unavailable
The server is temporarily unable to service your request due to maintenance
downtime or capacity problems. Please try again later.

IBM_HTTP_Server at wtsc55.itso.ibm.com Port 8230

Note: We found that when we copied the mod_limitipconn.c to a directory in z/OS UNIX,
it was not correctly formatted and all of the code was on one line. We opened the
mod_limitipconn.c file in WordPad on our Windows 7 workstation, added one space, and
saved the file, which corrected the formatting issue.
Chapter 11. Modules 161

http://dominia.org/djao/limitipconn2.html

In the V8.5.5 access_log, we saw the following messages:

9.190.237.213 - - [18/Jun/2013:22:01:25 -0400] "GET /cgi-bin/sleeper.rx?sleep=4
HTTP/1.1" 503 396
9.190.237.213 - - [18/Jun/2013:22:01:14 -0400] "GET /cgi-bin/sleeper.rx?sleep=30
HTTP/1.1" 200 1811
9.190.237.213 - - [18/Jun/2013:22:01:18 -0400] "GET /cgi-bin/sleeper.rx?sleep=30
HTTP/1.1" 200 1811

These messages show that the Limit IP module worked as expected by allowing two
connections from our workstation at address 9.190.237.213, but rejecting the third request.
162 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

Chapter 12. CGI scripts

This chapter describes the use of common gateway interface (CGI) scripts in IBM HTTP
Server powered by Apache (V8.5.5) and IBM HTTP Server power by Domino (DGW).

This chapter includes the following topics:

� 12.1, “CGI overview” on page 164
� 12.2, “Rexx CGI programs in DGW” on page 165
� 12.3, “Rexx CGI programs in V8.5.5” on page 166
� 12.4, “Perl CGI programs in V8.5.5” on page 173
� 12.5, “PHP CGI programs in V9” on page 174
� 12.6, “PHP CGI programs in V8.5.5” on page 184
� 12.7, “Lua support” on page 186

12
© Copyright IBM Corp. 2013, 2016. All rights reserved. 163

12.1 CGI overview

CGI provides a standard method to allow HTTP Servers to start a program that processes the
received request and generates a reply. CGI programs can be written in several languages,
such as C, Perl, PHP, and Rexx.

12.1.1 Brief history

The CGI approach was developed in the early 1990s when the Internet was just starting to
take off. The use of CGI allowed HTTP Servers to do more than serve static HTML pages.
The use of CGI programs allowed customized HTML to be returned to the user.

12.1.2 CGI disadvantage

HTTP Servers (including V8.5.5 and DGW) manage CGI processing by creating a thread to
run the CGI program that the received request wants to start. This approach is effective
because if the new thread encounters a problem running the CGI, only in that thread fails
instead of the entire HTTP Server.

However, if the HTTP Server was processing numerous requests that started CGI programs,
the HTTP Server used many resources to manage creating and ending threads to run the
CGI programs. In the 1990s when computers were not nearly as powerful as they are today,
this approach to starting CGI programs did not support large numbers of users.

12.1.3 CGI alternatives

Various alternative approaches to CGI were developed over the years, including FastCGI and
the use of Apache modules, such as mod_php. These approaches provide an alternative to the
standard CGI approach of creating a thread for each request, so they are more efficient.

In the 2000s, many clients moved away from using CGI programs. They used products, such
as WebSphere Application Server as the environment to run programs that perform complex
programming tasks while using the HTTP Server as a front end.

These alternatives are beyond the scope of this IBM Redpaper publication.

12.1.4 A use for CGI

There can be a question regarding whether it is worthwhile to use CGI programs. The answer
is probably not for those situations in which you are supporting tens of thousands of users
(although you can use CGI programs if you so want).

More likely, you might find it useful to use CGI programs for small scale tasks that need a
quick and inexpensive solution for a small user base.
164 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

12.2 Rexx CGI programs in DGW

DGW supports the use of Rexx for coding CGI programs. This section describes how to set
up DGW to run a supplied sample.

12.2.1 DGW support for CGI programs

For more information about the use of CGI programs in DGW, see this website:

https://ibm.biz/Bdr7z9

12.2.2 Sample Rexx CGI program

A sample Rexx CGI program is available at the following z/OS 1.13 IBM Knowledge Center
website:

https://ibm.biz/Bdr7z3

We pasted this sample code into a text file on our workstation and named it example.rx. We
then created a directory on the z/OS LPAR that was named
/ihsconfig/dws/ihsde001/cgi-bin and copied the example.rx file to this directory.

We found that to run this Rexx, we needed to edit the example.rx file that we transferred to
the z/OS directory. We added a space after the last character on the last line and saved the
change.

12.2.3 Using exec directive

To allow DGW to start our example.rx CGI program, we added the exec directive:

Exec /cgi-bin/example* /ihsconfig/dws/ihsde001/cgi-bin/example*

This directive tells DGW that any request that matches /cgi-bin/example* is to look in the
/ihsconfig/dws/ihsde001/cgi-bin directory for a match.

We then restarted our DGW server after making this change.

12.2.4 Running the example.rx CGI

We then used the following URL to start the example.rx CGI:

http://wtsc55.itso.ibm.com:8231/cgi-bin/example.rx?var1=1&var2=2&var3=3&var4=4&var
5=5&var6=6
Chapter 12. CGI scripts 165

https://ibm.biz/Bdr7z9

Some of the output that was produced is shown in Figure 12-1.

Figure 12-1 Portion of the output from example.rx

12.3 Rexx CGI programs in V8.5.5

IHS supports the use of Rexx for coding CGI programs. This section describes how you
change the example.rx that was running in DGW so that it runs in V8.5.5.

12.3.1 Default cgi-bin setup

By default, V8.5.5 is configured so that any program in the cgi-bin directory can be run. The
default directives that are used are shown in Figure 12-2.

Figure 12-2 Default directives that allow execution of CGI programs

12.3.2 Changing example.rx to enable it for V8.5.5

We copied example.rx to the /ihsconfig/ihs/ihsae002/cgi-bin directory. We then reviewed
the code to determine what must be changed to get it work in V8.5.5.

The second line of example.rx includes the following code:

'cgiutils -status 200 -ct text/html'

Processing forms with CGI scripts

This is an example of a CGI script which uses the cgiutils and cgiparse functions to
create a valid HTTP header and parse forms data, respectively. The cgiutils program
is used to create a set of HTTP headers for the CGI script output.
The following is an example of using the cgiparse command to query the values of
specific fields parsed from the QUERY_STRING.
The format of the cgiparse command is cgiparse -value fieldname
.
FORM_var2='2'; FORM_var3='3'; FORM_var4='4'; FORM_var5='5'; FORM_var6='6'.
.
Value for variable 1 = 1
Value for variable 2 = 2
Value for variable 3 = 3
Value for variable 4 = 4
Value for variable 5 = 5
Value for variable 6 = 6

Number of unique fields = 6

ScriptAlias /cgi-bin/ "/ihsconfig/ihs/ihsae002/cgi-bin/"

<Directory "/ihsconfig/ihs/ihsae002/cgi-bin">
 AllowOverride None
 Options None
 Order allow,deny
 Allow from all
</Directory>
166 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

This line uses a module that is named cgiutils and is supplied with DGW to create an HTTP
response header to be sent back to the browser. This line cannot be used in V8.5.5. We
replaced that line with the following lines:

say 'Content-type: text/html;charset=UTF-8'
say ''

These lines are performing the same task as what the cgiutils module perform, in that they
are creating an HTTP Response header.

The following line also must be reviewed:

'cgiparse -form'

That line produced the following output:

FORM_var1='1'; FORM_var2='2'; FORM_var3='3'; FORM_var4='4'; FORM_var5='5';
FORM_var6='6'

There is no direct equivalent V8.5.5 module for the DGW cgiparse command. However,
because that command is getting the query data that is sent by the request, we cam achieve
much the same thing by using the following line:

say 'query string: ' ENVIRONMENT('QUERY_STRING')

The next part of the Rexx code that must be replaced is shown in Figure 12-3.

Figure 12-3 Rexx code to be changed

Note: The second line (say '') must be included because it separates the HTTP
Response header from the body of the reply.

say 'Value for variable 1 = <CODE>'
'cgiparse -value var1'
say '
</CODE> '
say 'Value for variable 2 = <CODE>'
'cgiparse -value var2'
say '
</CODE>'
say 'Value for variable 3 = <CODE>'
'cgiparse -value var3'
say '
</CODE>'
say 'Value for variable 4 = <CODE>'
'cgiparse -value var4'
say '
</CODE>'
say 'Value for variable 5 = <CODE>'
'cgiparse -value var5'
say '
</CODE>'
say 'Value for variable 6 = <CODE>'
'cgiparse -value var6'
Chapter 12. CGI scripts 167

We replaced that code with the code that is shown in Figure 12-4.

Figure 12-4 Replacement code to display input data

Finally, the following lines must be replaced:

say 'Number of unique fields = <CODE>'numvars
'cgiparse -form -count'

We replaced those lines with the following line:

say 'Number of unique fields = <CODE>'numvars

The numvars variable was set in the code that is shown in Figure 12-4.

Modification results
We then used the following URL to start the modified example.rx CGI in our V8.5.5 server.
The only difference in the URL was the port number:

http://wtsc55.itso.ibm.com:8235/cgi-bin/example.rx?var1=1&var2=2&var3=3&var4=4&var
5=5&var6=6

The output was the same as shown in Figure 12-1 on page 166. The only difference was a
result of the code that we used to replace the 'cgiparse -form' as this produced the
following line of output:

var1=1&var2=2&var3=3&var4=4&var5=5&var6=6

query_string = ENVIRONMENT('QUERY_STRING')
IF query_string <> '' THEN
DO
 in = query_string
 DO I = 1 BY 1 UNTIL in=''
 PARSE VAR in key.i'='val.i'&' In
 if key.i='var1' then var1=val.i
 else if key.i='var2' then var2=val.i
 else if key.i='var3' then var3=val.i
 else if key.i='var4' then var4=val.i
 else if key.i='var5' then var5=val.i
 else if key.i='var6' then var6=val.i
 numvars = i
 END
END

say 'Value for variable 1 = <CODE>'var1
say '
</CODE> '
say 'Value for variable 2 = <CODE>'var2
say '
</CODE>'
say 'Value for variable 3 = <CODE>'var3
say '
</CODE>'
say 'Value for variable 4 = <CODE>'var4
say '
</CODE>'
say 'Value for variable 5 = <CODE>'var5
say '
</CODE>'
say 'Value for variable 6 = <CODE>'var6
168 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

12.3.3 Support for cgiutils and cgiparse in V8.5.5.2

By using APAR PI07665, IBM is providing versions of the cgiutils and cgiparse modules for
the IBM HTTP Server powered by Apache. This APAR is included as part of V8.5.5.2 of the
IBM HTTP Server powered by Apache. For more information about this APAR, see this
website:

http://www.ibm.com/support/docview.wss?uid=isg1PI07665

With these new modules, you do need to replace the use of cgiutils and cgiparse in CGI
programs in the way that is described in 12.3.2, “Changing example.rx to enable it for V8.5.5”
on page 166. This process simplifies migration of CGI programs that use cgiutils and
cgiparse.

Because we can obtain pre-release versions of these modules, we performed the tests that
are described in this section to verify that the modules functioned as expected.

Copying example.rx
We copied the example.rx that we used with DGW to our server by copying the following line:

/ihsconfig/dws/ihsde001/cgi-bin/example.rx

to the following line:

/ihsconfig/ihs/ihsae002/cgi-bin/example.rx

Copying modules to bin subdirectory
We copied the new modules to the bin subdirectory of our server, which in our case was the
following directory:

/ihsconfig/ihs/ihsae002/bin

We changed the permissions to 775 so that the modules can be run.

Updating PATH in envvars
To make the new modules available to CGI programs, we then edited the envvars file for our
server, which was in the following directory:

/ihsconfig/ihs/ihsae001/bin/envvars

We added the following line:

export PATH=/ihsconfig/ihs/ihsae002/bin:$PATH

Restarting and testing
We then restarted our server and used the following URL to start the example.rx CGI in our
IBM HTTP Server powered by Apache server:

http://wtsc55.itso.ibm.com:8235/cgi-bin/example.rx?var1=1&var2=2&var3=3&var4=4&var
5=5&var6=6

The output was the same as shown in Figure 12-1 on page 166. This result verified that we
can run the version of example.rx that ran in DGW in IBM HTTP Server powered by Apache
with no changes.
Chapter 12. CGI scripts 169

http://www.ibm.com/support/docview.wss?uid=swg1PI07665

12.3.4 Escaped characters

When a browser sends a URL, it replaces unsafe ASCII characters with a “%” followed by two
hexadecimal digits. This process is often referred to as escaping of characters.

IBM HTTP Server powered by Domino provided a routine that is named cgiparse that you
can use to manage receiving URLs that include escaped characters. Then, you can convert
these escaped characters back to the original characters.

IBM HTTP Server powered by Apache does not provide a similar routine. The Apache
approach is that it expects whatever language the CGI program is written in to handle this
issue. Languages, such as Perl and PHP, provide built-in functions to handle this conversion.

Rexx does not provide such a function. To provide this function in Rexx, we used an open
source Rexx routine that is available at this website:

http://www.slac.stanford.edu/slac/www/tool/cgi-rexx/

The usage statement that is shown in Example 12-1 is available at this website.

Example 12-1 Permission statement

Permission granted to use and modify this library so long as the
copyright above is maintained, modifications are documented, and
credit is given for any use of the library.

We used the deWeb Rexx routine from the following website:

http://www.slac.stanford.edu/slac/www/tool/cgi-rexx/deweb

Disclaimer:

IBM DOES NOT WARRANT OR REPRESENT THAT THE CODE PROVIDED IS COMPLETE OR UP-TO-DATE.
IBM DOES NOT WARRANT, REPRESENT OR IMPLY RELIABILITY, SERVICEABILITY OR FUNCTION OF THE
CODE. IBM IS UNDER NO OBLIGATION TO UPDATE CONTENT NOR PROVIDE FURTHER SUPPORT.

ALL CODE IS PROVIDED “AS IS,” WITH NO WARRANTIES OR GUARANTEES WHATSOEVER. IBM
EXPRESSLY DISCLAIMS TO THE FULLEST EXTENT PERMITTED BY LAW ALL EXPRESS, IMPLIED,
STATUTORY AND OTHER WARRANTIES, GUARANTEES, OR REPRESENTATIONS, INCLUDING, WITHOUT
LIMITATION, THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT OF PROPRIETARY AND INTELLECTUAL PROPERTY RIGHTS. YOU UNDERSTAND
AND AGREE THAT YOU USE THESE MATERIALS, INFORMATION, PRODUCTS, SOFTWARE, PROGRAMS,
AND SERVICES, AT YOUR OWN DISCRETION AND RISK AND THAT YOU WILL BE SOLELY RESPONSIBLE
FOR ANY DAMAGES THAT MAY RESULT, INCLUDING LOSS OF DATA OR DAMAGE TO YOUR COMPUTER
SYSTEM.

IN NO EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY OR CONSEQUENTIAL DAMAGES OF ANY TYPE WHATSOEVER RELATED TO OR ARISING
FROM USE OF THE CODE FOUND HEREIN, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS
INTERRUPTION, LOST SAVINGS, LOSS OF PROGRAMS OR OTHER DATA, EVEN IF IBM IS EXPRESSLY
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS EXCLUSION AND WAIVER OF LIABILITY
APPLIES TO ALL CAUSES OF ACTION, WHETHER BASED ON CONTRACT, WARRANTY, TORT OR ANY
OTHER LEGAL THEORIES.

THIRD PARTY SOFTWARE IS LICENSED AND DISTRIBUTED TO YOU BY THE THIRD PARTY
DISTRIBUTORS AND/OR RESPECTIVE COPYRIGHT AND OTHER RIGHT HOLDERS UNDER THEIR TERMS
AND CONDITIONS. IBM MAKES NO EXPRESS OR IMPLIED WARRANTIES OR REPRESENTATIONS WITH
RESPECT TO SUCH SOFTWARE AND PROVIDES NO INDEMNITY FOR SUCH SOFTWARE. IBM GRANTS
NO EXPRESS OR IMPLIED PATENT OR OTHER LICENSE WITH RESPECT TO AND IS NOT LIABLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF SUCH SOFTWARE.
170 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

http://www.slac.stanford.edu/slac/www/tool/cgi-rexx/deweb
http://www.slac.stanford.edu/slac/www/tool/cgi-rexx/

When run on z/OS, the Rexx code results in ASCII characters. To get EBCDIC characters, we
found the lines that are shown in Example 12-2.

Example 12-2 Original deweb code

DO WHILE POS('%',String)\=0
 PARSE VAR String Pre'%'+1 Ch +2 In
 IF DATATYPE(Ch,'X') & LENGTH(Ch)=2 THEN
 Ch=X2C(Ch)
 ELSE DO; In=Ch||In; Ch='%'; END

Then, we changed the lines as shown in Example 12-3.

Example 12-3 Modified deweb code

xx = 1
DO WHILE POS('%',String)\=0
 PARSE VAR String Pre'%'+1 Ch +2 In
 IF DATATYPE(Ch,'X') & LENGTH(Ch)=2 THEN do
 INTERPRET ch_hex.xx "= '" || ch || "'x"
 ch = AETranslate('E' ch_hex.xx)
 xx = xx + 1
 end
 ELSE DO; In=Ch||In; Ch='%'; END

We then developed the AETranslate routine and added that routine to our Rexx CGI program,
the code for which is shown in Example 12-4.

Example 12-4 Rexx routine to do character translation

AETranslate: PROCEDURE; parse arg xFlag string
/**/
/* EBCDIC To ASCII & ASCII To EBCDIC Translate Tables */
/**/
E='000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F'x||,
 '202122232425262728292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F'x||,
 '404142434445464748494A4B4C4D4E4F505152535455565758595A5B5C5D5E5F'x||,
 '606162636465666768696A6B6C6D6E6F707172737475767778797A7B7C7D7E7F'x||,
 '808182838485868788898A8B8C8D8E8F909192939495969798999A9B9C9D9E9F'x||,
 'A0A1A2A3A4A5A6A7A8A9AAABACADAEAFB0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF'x||,
 'C0C1C2C3C4C5C6C7C8C9CACBCCCDCECFD0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF'x||,
 'E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEFF0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF'x

A='00010203CF09D37FD4D5C30B0C0D0E0F10111213C7B408C91819CCCD831DD21F'x||,
 '81821C84860A171B89919295A2050607E0EE16E5D01EEA048AF6C6C21415C11A'x||,
 '20A6E180EB909FE2AB8B9B2E3C282B7C26A9AA9CDBA599E3A89E21242A293B5E'x||,
 '2D2FDFDC9ADDDE989DACBA2C255F3E3FD78894B0B1B2FCD6FB603A2340273D22'x||,
 'F861626364656667686996A4F3AFAEC58C6A6B6C6D6E6F7071729787CE93F1FE'x||,
 'C87E737475767778797AEFC0DA5BF2F9B5B6FDB7B8B9E6BBBCBD8DD9BF5DD8C4'x||,
 '7B414243444546474849CBCABEE8ECED7D4A4B4C4D4E4F505152A1ADF5F4A38F'x||,
 '5CE7535455565758595AA0858EE9E4D130313233343536373839B3F7F0FAA7FF'x
if xFlag = "A"
then convString = translate(string,A,E)
else convString = translate(string,E,A)
return convString
Chapter 12. CGI scripts 171

In the example.rx, we then modified the code as shown in Example 12-5.

Example 12-5 Handling escaped characters in query string

query_string = ENVIRONMENT('QUERY_STRING')
IF query_string <> '' THEN
DO
 in = query_string
 DO I = 1 BY 1 UNTIL in=''
 PARSE VAR in key.i'='val.i'&' In
 key.i=DeWeb(key.i,"+")
 val.i=DeWeb(val.i,"+")
 if key.i='var1' then var1=val.i
 else if key.i='var2' then var2=val.i
 else if key.i='var3' then var3=val.i
 else if key.i='var4' then var4=val.i
 else if key.i='var5' then var5=val.i
 else if key.i='var6' then var6=val.i
 numvars = i
 END
END

We tested this code by using the following URL (the result is shown in Example 12-6):

http://wtsc55.itso.ibm.com:8235/cgi-bin/example.rx?var1=reservedChars%24%26%2B%2c%
2f%3a%3b%3d%3f%40&var2=unsafeChars%20%22%3C%3E%23%25%7b%7d%7c%5c%5e~%5b%5d%60

Example 12-6 Result of processing URL containing escaped characters

Value for variable 1 = reservedChars$&+,/:;=?@
Value for variable 2 = unsafeChars "<>#%{}|\^~[]`

This result showed that we can get our Rexx CGI program to correctly handle escaped
characters.

12.3.5 Rexx CGI summary

We showed the steps that we used to modify a Rexx program that was running in DGW to get
it to run in V8.5.5.

Although this program was a simple Rexx program, it does indicate that you can migrate Rexx
programs that are running in DGW to V8.5.5 if needed. The main changes that you must
make focus on how your Rexx code obtains information about the request.

12.3.6 More complex Rexx sample

For more information about an example of a more complex Rexx CGI program running in
V8.5.5, see the IBM Techdoc Using IBM HTTP Server and Rexx to view z/OS STC output
using SDSF, which is available at this website:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD106087
172 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD106087

12.4 Perl CGI programs in V8.5.5

Perl is another language that can be used for CGI programs in V8.5.5.

12.4.1 Using Perl on z/OS

You must acquire and install Perl on z/OS to use the program. Perl previously was included as
part of the IBM Ported Tools. For more information about Perl, see this website:

http://www.ibm.com/systems/z/os/zos/features/unix/ported/perl/

Rocket Software provides an Open Source port of Perl. For more information, see this
website:

http://www.rocketsoftware.com/ported-tools

Verify with the provider the support that is available for the software if you want support.

12.4.2 Sample Perl CGI program

To show the use of Perl for CGI programs, we created a file in the cgi-bin directory of our
V8.5.5 server that is named helloWorld.perl. The code for our sample Perl CGI program is
shown in Figure 12-5.

Figure 12-5 Our sample Perl CGI program

12.4.3 IHS and LIBPATH

To run Perl programs, the PATH and LIBPATH must be configured to ensure that the Perl
product code can be found.

In our /usr/lib, a symbolic link to the libperl.so module was included, as shown in
Figure 12-6.

Figure 12-6 Symlink to libperl.so

#!/usr/bin/perl

 print "Content-type: text/html\n\n";
 print <<"EOF";
 <html>
 <head>
 <title>IBM ITSO Simple Perl CGI</title>
 </head>
 <body>
 <h1>A Simple Perl CGI from the ITSO</h1>
 <p>Hello World</p>
 </body>
 </html>
EOF

$ cd /usr/local/lib
$ ls -lrt | grep libperl
lrwxrwxrwx 1 OMVSKERN SYS1 57 Mar 12 2007 libperl.so ->
/shared/perl/lib/5.8.7/os390-thread-multi/CORE/libperl.so
Chapter 12. CGI scripts 173

http://www.ibm.com/systems/z/os/zos/features/unix/ported/perl/
http://www.rocketsoftware.com/ported-tools

We must update the V8.5.5 setup so that it can run Perl CGI programs. This process was
done by updating the /ihsconfig/ihs/ihsae002/bin/envvars file by adding the following line:

export LIBPATH=/usr/lib:$LIBPATH

We also added the following directive near the bottom of the httpd.conf file so that the
updated LIBPATH is passed to the created processes in V8.5.5:

PassEnv LIBPATH

12.4.4 Testing the Perl CGI program

We used the following URL to start our Perl CGI program:

http://wtsc55.itso.ibm.com:8235/cgi-bin/helloWorld.perl

This produced the output shown in Figure 12-7.

Figure 12-7 Output from running the Perl CGI program

12.5 PHP CGI programs in V9

This section describes an updated process of how to run PHP CGI programs in IBM HTTP
Server powered by Apache V9. It reflects the change in how customers can obtain the PHP
software from Rocket Software.

12.5.1 Using php on z/OS

In the first edition of this IBM Redpaper publication, we wrote that you can download the PHP
for CGI programs by using the IBM Ported Tools site at this website:

http://www.ibm.com/systems/z/os/zos/features/unix/ported/php/

However, IBM no longer provides the PHP product.

Rocket Software provides an Open Source port of PHP, which is available at this website:

http://www.rocketsoftware.com/ported-tools

Verify with the provider the support that is available for the software if you want support.

12.5.2 Rocket PHP software

On our z/OS LPAR, the Rocket PHP software was installed in the /u/rocket directory.

12.5.3 Running PHP CGI programs

There are two ways you can configure PHP CGI programs to run in IBM HTTP Server
powered by Apache.

A Simple Perl CGI from the ITSO

Hello World
174 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

http://www.ibm.com/systems/z/os/zos/features/unix/ported/php/
http://www.rocketsoftware.com/ported-tools

Action approach
The first approach is to set IBM HTTP Server powered by Apache to start the PHP interpreter
and pass to it the name of the PHP CGI program it runs. For more information about this
approach, see 12.5.4, “PHP by using the action approach” on page 175.

Shebang approach
The second approach is to set IBM HTTP Server powered by Apache to start the PHP CGI
program directly. For more information, see 12.5.5, “PHP by using the shebang approach” on
page 181.

For more information about these approaches, see this website:

http://publib.boulder.ibm.com/httpserv/ihsdiag/dgw_migration_faq.html#action

The description for PHP in 12.5.4, “PHP by using the action approach” and 12.5.5, “PHP by
using the shebang approach” on page 181 also applies to other languages that are run as
CGI, such as Pearl.

12.5.4 PHP by using the action approach

Running PHP CGI programs by using the action approach requires that the first line of the
PHP program does not contain a shebang line on the following form:

#!/u/rocket/bin/php-cgi

Instead, the first line uses the following format:

<?php

Sample PHP CGI program
Example 12-7 shows the PHP CGI program we wrote to demonstrate running PHP CGI
programs. We added code to display the user ID that the PHP CGI program is running under.
This display demonstrates how to set up security controls around running PHP CGI
programs.

Example 12-7 The helloWorld.php program

<?php
$inipath = php_ini_loaded_file();
if ($inipath) {
 $iniPath = $inipath;
} else {
 $iniPath = 'A php.ini file is not loaded';
}
$phpPath = $_SERVERÝ"SCRIPT_NAME"¨;
$break = Explode('/', $phpPath);
$pfile = $breakÝcount($break) - 1¨;
$phpOwner = get_current_user();
$uid = posix_getuid();
$processUser = posix_getpwuid(posix_geteuid());
$username = getenv('USERNAME') ?: getenv('USER');
date_default_timezone_set('America/New_York');
$localTime = date("d/m/Y h:i:s a");
$ourPath = getcwd();
print <<<eot
<html>
Chapter 12. CGI scripts 175

http://publib.boulder.ibm.com/httpserv/ihsdiag/dgw_migration_faq.html#action

<head>
<title>IBM ITSO Simple php CGI </title>
</head>
<body>
<h1>A Simple php CGI from the ITSO </h1>
<p>Hello from a php CGI program</p>
</body>
<p>This PHP running under the user ID: {$processUserÝ'name'¨}</p>
<p>uid of the user ID: {$uid}</p>
<p>This PHP loaded from: {$ourPath}/{$pfile}</p>
<p>PHP ini loaded from: {$iniPath}</p>
<p>PHP CGI program owner: {$phpOwner}</p>
<p>Run at time: {$localTime}</p>
</html>
eot;
?>

Directives in httpd.conf
We added the directives that are shown in Example 12-8 to the httpd.conf file to run PHP
CGI programs without security.

Example 12-8 Directives added to httpd.conf file to run without security

Alias /noSecurePhp/ /ihsconfig/ihs/ihsae009/cgi-bin/phpNoSecure/

<Directory /ihsconfig/ihs/ihsae009/cgi-bin/phpNoSecure/>
AddHandler indirect-noSecurePhp-script .php
</Directory>

Action indirect-noSecurePhp-script /cgi-bin/noSecurePhp.sh

ScriptAliasMatch /cgi-bin/noSecurePhp.sh
/ihsconfig/ihs/ihsae009/cgi-bin/noSecurePhp.sh

<Location /cgi-bin/noSecurePhp.sh>
 Options +ExecCGI
 SetHandler cgi-script
</Location>

We added the directives that are shown in Example 12-9 to the httpd.conf file to run PHP
CGI programs with security.

Example 12-9 Directives added to httpd.conf file to run with security

Alias /securePhp/ /ihsconfig/ihs/ihsae009/cgi-bin/phpSecure/

<Directory /ihsconfig/ihs/ihsae009/cgi-bin/phpSecure/>
AddHandler indirect-securePhp-script .php
</Directory>

Action indirect-securePhp-script /cgi-bin/securePhp.sh

ScriptAliasMatch /cgi-bin/securePhp.sh
/ihsconfig/ihs/ihsae009/cgi-bin/securePhp.sh
176 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

<Location /cgi-bin/securePhp.sh>
 Options +ExecCGI
 SetHandler cgi-script
 # Since our application runs entirely beneath the wrapper, it's where
 # we must configure things like SAFRunAs
 Authname "LOGON REQUIRED"
 AuthType Basic
 AuthBasicProvider saf
 Require valid-user
 SAFRunAs %%CLIENT%%
<RequireAll>
 Require valid-user
 # Prevent direct access to the wrapper
 Require env REDIRECT_STATUS
 </RequireAll>

</Location>

The directives were annotated as shown in Figure 12-8 to help explain how IBM HTTP Server
powered by Apache processes a request to run a PHP CGI program by using the action
approach.

Figure 12-8 Interaction of directives

We sent the following URL:

http://wtsc55.itso.ibm.com:8229/securePhp/helloWorld.php

This URL is highlighted by “1” the Alias directive in Figure 12-8 on page 177.
Chapter 12. CGI scripts 177

The Alias directive indicates that this URL matches to the following directory in UNIX System
Services:

/ihsconfig/ihs/ihsae009/cgi-bin/phpSecure

The following components are shown in Figure 12-8 on page 177:

� The directory block (highlighted by “2”) contains an AddHandler directive, which specifies
the name of a handler that is named indirect-securePhp-script to be used for any file
ending with “.php”.

� The Action directive (highlighted by “3”) specifies the name of a CGI script to be started for
the specified handler, which in this case is /cgi-bin/securePhp.sh. This shell script is
also referred to as a wrapper script.

� The ScriptAliasMatch directive (highlighted by “4”) associates the specified CGI wrapper
script of /cgi-bin/securePhp.sh with a location in the UNIX System Services file system.

� The Location block (highlighted by “5”) is where we specify the security directives that are
used to control access to run this PHP CGI program.

When the IBM HTTP Server powered by Apache runs the securePhp.sh, it passes the name
of the PHP CGI program that is specified in the URL, which in this case is
securePhp/helloWorld.php.

Wrapper CGI shell scripts
The wrapper CGI shell scripts noSecurePhp.sh and securePhp.sh include the following lines:

#!/bin/sh
/u/rocket/bin/php-cgi $SCRIPT_FILENAME

The cgi.fix_pathinfo option in php.ini
The PHP product features a default configuration file in a file that is named php.ini.

To use the action approach, the php.ini file must be changed from the following option:

;cgi.fix_pathinfo=1

to the following option:

cgi.fix_pathinfo=0

However, you must consider where to locate the php.ini file with this change so that it is
found at run time.

On our z/OS LPAR, the PHP software was installed in the /u/rocket directory, which includes
the supplied php.ini file.

For the directives, we used the action approach. At run time, IBM HTTP Server powered by
Apache cannot find the php.ini file at this location.

The following options are available to correct this issue:

� Copy the supplied php.ini file to the same directory that the PHP wrapper shell script you
created is in. In our case, we placed the two PHP wrapper scripts in the following
directory:

/ihsconfig/ihs/ihsae001/cgi-bin

We also copied the supplied php.ini file to this directory and changed cgi.fix_pathinfo
as described in this section.
178 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

� Supply the location of the modified php.ini file by using a parameter in the wrapper shell
script. We tested this approach by changing the noSecurePhp.sh script, as shown in the
following example:

#!/bin/sh
/u/rocket/bin/php-cgi --php-ini /u/edmcar/php.ini $SCRIPT_FILENAME

If you attempt to run a PHP CGI program by using the action method and the PHP runtime
environment does not find a php.ini file with cgi.fix_pathinfo=0 specified, the following
error message appears in the browser:

No input file specified.

Setting up php CGI subdirectory
To test the action approach, we included the following shell scripts in the cgi-bin subdirectory
(see “Wrapper CGI shell scripts” on page 178):

noSecurePhp.sh
securePhp.sh

The following subdirectories were defined:

phpNoSecure
phpSecure

Into each of these subdirectories, we put a copy of our helloWorld.php CGI program.

Testing the action approach
We entered the following URL to access our PHP CGI program without security:

http://wtsc55.itso.ibm.com:8229/ilNoSecurePhp/helloWorld.php

The output that is shown in Example 12-10 was received.

Example 12-10 Output from running using action approach without security

A Simple php CGI from the ITSO

Hello from a php CGI program

This PHP running under the user ID: IHSAESTC

uid of the user ID: 35065

This PHP loaded from: /ihsconfig/ihs/ihsae009/cgi-bin/phpNoSecure/noSecurePhp.sh

PHP ini loaded from: /ihsconfig/ihs/ihsae009/cgi-bin/php.ini

PHP CGI program owner: IHSAE001

Run at time: 28/06/2016 12:59:51 am

You can see that when the PHP CGI program is run with no security, it ran under the user ID
that the started task is running under.

We entered the following URL to access our PHP CGI program with security:

http://wtsc55.itso.ibm.com:8229/ilSecurePhp/helloWorld.php
Chapter 12. CGI scripts 179

We received this prompt for a user ID and password, as shown in Figure 12-9.

Figure 12-9 Browser prompting for user ID and password

After entering the user ID and password, we received the output that is shown in
Example 12-11.

Example 12-11 Output from running using the action approach with security

Hello from a php CGI program

This PHP running under the user ID: EDMCAR

uid of the user ID: 2257

This PHP loaded from: /ihsconfig/ihs/ihsae009/cgi-bin/phpSecure/securePhp.sh

PHP ini loaded from: /ihsconfig/ihs/ihsae009/cgi-bin/php.ini

PHP CGI program owner: IHSAE001

Run at time: 27/06/2016 09:02:02 pm

You can see that when run with security, the PHP CGI program ran under the user ID that was
used to authenticate, not the user ID that the started task is running under.

Preventing direct calling of the wrapper shell
When this approach is used, incorrect coding of the directives can result in an external user
directly calling the wrapper shell script.

For example, it can allow the following URL to be processed:

http://wtsc55.itso.ibm.com:8229/cgi-bin/securePhp.sh?/u/edmcar/helloWorld.php

This URL is requesting the server to run the securePhp.sh wrapper script and trying to pass
the name of a php CGI program to run.
180 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

To prevent this issue, you must code the following directive:

Require env REDIRECT_STATUS

With this directive coded (as described in “Directives in httpd.conf” on page 176), any attempt
to start the wrapper shell script in a URL resulted in the message that is shown in
Example 12-12 appearing in the browser.

Example 12-12 Output showing prevention of wrapper script being run

Forbidden

You don't have permission to access /cgi-bin/noSecurePhp.sh on this server.

When we sent the URL to start the PHP program where we did not code the Require
directive, it did not start the specified CGI program that we tried to pass as a target program.
However, the server did start the specified wrapper shell script.

The Require env REDIRECT_STATUS syntax of the Require directive is the Apache 2.4 directive
on which IBM HTTP Server powered by Apache V9 is built. If you use IBM HTTP Server
powered by Apache V8.5 (which is built on an older Apache 2.2), the following syntax is used:

allow from env=REDIRECT_STATUS

Spawned started tasks
For each PHP CGI program that is started by using the action approach, two started tasks are
spawned to manage running the CGI program. These spawned started tasks feature names
that are based on the parent started task name.

12.5.5 PHP by using the shebang approach

This approach runs the target CGI script through the interpreter that is specified on the first
line of the CGI script. This first line is referred to as the shebang line.

Running PHP CGI programs by using the shebang approach requires that the first line of the
PHP program consist of a line that is shown in the following example:

#!/u/rocket/bin/php-cgi

This line (the shebang line) must start with the #! characters and then specify the location of
the PHP interpreter.

On our z/OS LPAR, the PHP software was installed under the /u/rocket directory.

Sample PHP CGI program
We used the same PHP CGI program that we used for the action approach, but added the
shebang line as a first line.

We added the following line as the shebang first line to the sample PHP CGI program that we
used in the testing of the action approach:

#!/u/rocket/bin/php-cgi

Directives in httpd.conf
We added the directives that are shown in Example 12-13 to the httpd.conf file to run PHP
CGI programs without security.
Chapter 12. CGI scripts 181

Example 12-13 Directives added to run PHP CGI programs without security

Alias /ilNoSecurePhp/ /ihsconfig/ihs/ihsae009/cgi-bin/ilphpNoSecure/
<Directory /ihsconfig/ihs/ihsae009/cgi-bin/ilphpNoSecure/>
 Options +ExecCGI
 SetHandler cgi-script

</Directory>

We added the directives that are shown in Example 12-14 to the httpd.conf file to run PHP
CGI programs with security.

Example 12-14 Directives added to run PHP CGI programs with security

Alias /ilSecurePhp/ /ihsconfig/ihs/ihsae009/cgi-bin/ilphpSecure/
<Directory /ihsconfig/ihs/ihsae009/cgi-bin/ilphpSecure/>

 Options +ExecCGI
 SetHandler cgi-script
 Authname "LOGON REQUIRED"
 AuthType Basic
 AuthBasicProvider saf
 Require valid-user
 SAFRunAs %%CLIENT%%

</Directory>

PHP CGI subdirectory setup
To test the action approach, we defined the following subdirectories in the cgi-bin
subdirectory:

ilphpNoSecure
ilphpSecure

We included a copy of our helloWorld.php CGI program in each of these subdirectories.

The cgi.force_redirect option in php.ini
The use of the shebang approach requires a php.ini file with the cgi.fix_pathinfo set to 0
as it was for the action approach.

However, it also requires that another option in the php.ini file is modified.

To use the shebang approach, the following php.ini file option must be changed from
;cgi.force_redirect=1 to cgi.force_redirect=0.

Testing shebang PHP CGI program
We entered the following URL to access our PHP CGI program without security:

http://wtsc55.itso.ibm.com:8229/ilNoSecurePhp/helloWorld.php

The output that is shown in Example 12-15 on page 182 was received.

Example 12-15 Output from running using shebang approach with no security

Hello from a php CGI program

This PHP running under the user ID: IHSAESTC

uid of the user ID: 35065
182 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

This PHP loaded from: /ihsconfig/ihs/ihsae009/cgi-bin/ilphpNoSecure/helloWorld.php

PHP ini loaded from: /ihsconfig/ihs/ihsae009/cgi-bin/php.ini

PHP CGI program owner: IHSAE001

Run at time: 28/06/2016 01:20:08 am

We entered the following URL to access our PHP CGI program with security:

http://wtsc55.itso.ibm.com:8229/ilSecurePhp/helloWorld.php

We were prompted for a user ID and password, as shown in Figure 12-10.

Figure 12-10 Browser prompting for user ID and password

After entering the user ID and password, we received the output that is shown in
Example 12-16.

Example 12-16 Output from running shebang approach with security

A Simple php CGI from the ITSO

Hello from a php CGI program

This PHP running under the user ID: EDMCAR

uid of the user ID: 2257

This PHP loaded from: /ihsconfig/ihs/ihsae009/cgi-bin/ilphpSecure/helloWorld.php

PHP ini loaded from: /usr/local/php/lib/php.ini

PHP CGI program owner: IHSAE001

Run at time: 28/06/2016 01:22:08 am
Chapter 12. CGI scripts 183

As shown in Example 12-16 on page 183, the PHP CGI program ran under the EDMCAR user
ID, which was the user ID we entered in the browser security prompt.

Specifying location of php.ini file
In the output that is shown in Example 12-15 on page 182 and Example 12-16 on page 183
that the line that starts with “PHP ini loaded from:” shows a different location for the php.ini
file.

This difference occurs because we used the following code in the first line of the
helloWorld.php program that was used to test the shebang approach without security:

#!/u/rocket/bin/php-cgi -nc/ihsconfig/ihs/ihsae099/cgi-bin/php.ini

The -nc option is used to specify the php.ini file that you want to be used by PHP when the
CGI program is run.

In the helloWorld.php program that was used to test the shebang approach with security, the
following code was used in the first line:

#!/u/rocket/bin/php-cgi

This code results in PHP loading the php.ini file from its default location of
/usr/local/php/lib/php.ini.

During testing, we set the first line of our helloWorld.php to the following code:

#!/u/rocket/bin/php-cgi -nc/usr/local/php/lib/php.ini

This code specifies the default location of the php.ini file. When we ran our test, we saw the
following output:

PHP ini loaded from: A php.ini file is not loaded

We were sure that the php.ini file at /usr/local/php/lib/php.ini was being used because
the request failed if we changed the cgi.force_redirect to 1. However, we did not determine
why the call to php_ini_loaded_file() in the helloWorld.php program returned no value
when the first line specified the default php.ini location.

Spawned started task
For each PHP CGI program that is started by using the action approach, one started task is
spawned to manage running the CGI program. The spawned started task includes a name
that is based on the parent started task name.

12.6 PHP CGI programs in V8.5.5

This section is the original content that describes how to run a PHP CGI program by using
IBM HTTP Server powered by Apache V8.5.5 with the PHP software that is included as part
of the IBM Ported Tool software.

This content is presented here in the updated version of this IBM Redpaper publication in
case this version is used.

The advice that is described in 12.5, “PHP CGI programs in V9” on page 174 also is
applicable for use with IBM HTTP Server powered by Apache V8.5.5.
184 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

12.6.1 Sample php CGI program

To show the use of PHP for CGI programs, we created a file in the cgi-bin directory of our
V8.5.5 server that is named helloWorld.php. The code for our sample php CGI program is
shown in Figure 12-11.

Figure 12-11 Our sample Perl CGI program

12.6.2 PHP wrapper program

To run PHP programs requires a wrapper program. We set up the wrapper program in the
cgi-bin directory as shown in Figure 12-12. We saved this wrapper program in
/ihsconfig/ihs/ihsae002/cgi-bin/php.

Figure 12-12 PHP wrapper program

12.6.3 Modifications to the httpd.conf file

The directives that were added to the httpd.conf file are shown in Figure 12-13. The
AddHandler directive defines a name to be associated with any request that ends with .php.
We used a name of php-script, but you can change this name to your own value.

Figure 12-13 Directives added to httpd.conf to support php

The Action directive tells V8.5.5 to start the wrapper program that is described in 12.6.2,
“PHP wrapper program” on page 185 for requests that matched the AddHandler directive.

<?php
print <<<eot
 <html>
 <head>
 <title>IBM ITSO Simple php CGI</title>
 </head>
 <body>
 <h1>A Simple php CGI from the ITSO</h1>
 <p>Hello from a php CGI program</p>
 </body>
 </html>
eot;
?>

#!/bin/sh
/usr/lpp/php/5.1.2/bin/php_cgi "$@"

PHP support added here
"php-script" is a name we get to make up
AddHandler php-script .php
/cgi-bin/php is a URL, not a filesystem path
Action php-script /cgi-bin/php
Debug output if the PHP stdout is bad
ScriptLog /ihsconfig/ihs/ihsae002/logs/php_stderr.log
Chapter 12. CGI scripts 185

12.6.4 Testing the PHP CGI program

We used the following URL to start our PHP CGI program:

http://wtsc55.itso.ibm.com:8235/cgi-bin/helloWorld.php

The output that is shown in Figure 12-14 was produced.

Figure 12-14 Output from running the php CGI program

12.7 Lua support

This section describes the support for Lua that was added in IBM HTTP Server powered by
Apache V9.0.

12.7.1 Lua overview

Lua is a powerful, fast, lightweight, embeddable scripting programming language that was
developed in approximately 1993.

12.7.2 Lua and Apache server

Traditional CGI programming involves the use of some language, such as C, Perl, Rexx, or
PHP. Regardless of what language you use for CGI programming, there is a key deficiency.
When the Apache server receives a request to run a CGI program, it must spawn a new
thread on which to run that CGI program.

On z/OS, this issue results in creating an OMVS Address Space to run the CGI program.
Then, that address space is ended and cleaned up by z/OS at the completion of the CGI
program.

For an Apache server that is running a light CGI load, this result might be OK. However, if
your site is performing or planning to perform heavy CGI type processing, the current CGI
approach is not ideal in terms of efficiency.

12.7.3 Lua advantage

The key advantage of Lua is that when the Apache server starts a Lua program, it runs on the
thread in the Apache server that is processing the request. Therefore, no new thread is
spawned and the processing is more efficient.

12.7.4 Using Lua

With any new technology that might be unfamiliar, one of the first questions asked by users
often is: Is anyone of substance using this technology?

Lua is popular in the gaming industry, including the following popular titles:

A Simple php CGI from the ITSO

Hello from a php CGI program
186 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

� World of Warcraft
� Angry Birds

Lua also is used in Wireshark, which is a network protocol analyzer.

12.7.5 Lua examples

To enable Lua in our Apache server, we made several changes.

We changed the following line:

#LoadModule lua_module modules/mod_lua.so

to

LoadModule lua_module modules/mod_lua.so

We then found the following line in the httpd.conf file:

#AddHandler cgi-script .cgi

We added the following line after the line:

AddHandler lua-script .lua

We then created a file in the cgi-bin subdirectory and named it serverInfo.lua with the
content that is shown in Example 12-17 on page 187.

Example 12-17 Sample Lua script

function handle(r)
 -- Set MIME type to text/plain:
 r.content_type = "text/plain"

 -- Call Function to get Host Name
 hostName = getHostName()
 r:puts("Hello from host: " .. hostName)
end
--
-- Function to get Host Name
--
 function getHostName()
 return os.getenv("HOSTNAME")
 end

We entered the following URL in a browser:

http://wtsc55.itso.ibm.com:8229/cgi-bin/serverInfo.lua

We saw the output that is shown in Example 12-18.

Example 12-18 Output from running sample Lua script

Hello from host: SC55
Chapter 12. CGI scripts 187

12.7.6 More information

For more information about Lua, see the following websites:

� http://www.lua.org
� http://www.modlua.org
188 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

http://www.lua.org
http://www.lua.org
http://www.modlua.org
http://www.lua.org
http://www.modlua.org

Appendix A. Additional material

This paper refers to additional material that can be downloaded from the Internet as
described in the following sections.

Locating the web material

The web material that is associated with this paper is available in softcopy on the Internet
from the IBM Redbooks web server. Point your web browser at:

ftp://www.redbooks.ibm.com/redbooks/REDP4987

Alternatively, you can go to the IBM Redbooks website at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the IBM Redpaper
publication form number: REDP4987.

Using the web material

The additional web material that accompanies this paper includes the following file:

File name Description
redp4987.pdf PDF of PowerPoint Presentation

System requirements for downloading the web material

The web material requires the following system configuration:

Hard disk space: 1 MB minimum
Operating System: Windows
Processor: Any
Memory: 1 MB

A

© Copyright IBM Corp. 2013, 2016. All rights reserved. 189

ftp://www.redbooks.ibm.com/redbooks/REDP4987
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Downloading and extracting the web material

Create a subdirectory (folder) on your workstation, and extract the contents of the web
material .zip file into this folder.
190 IBM HTTP Server on z/OS: Migrating from Domino-powered to Apache-powered

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738455598

REDP-4987-02

®

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	IBM Redbooks promotions
	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Summary of changes
	October 2016, Third Edition

	Chapter 1. Introduction to IBM HTTP Server for z/OS
	1.1 Why you should migrate
	1.1.1 HTTP Server terminology
	1.1.2 IBM statement of support
	1.1.3 Documentation

	1.2 New features in V8.5.5
	1.2.1 Updates to this IBM Redpaper publication

	1.3 New features in V9.0.0
	1.4 Determining which IBM HTTP Server you are running
	1.4.1 Using SDSF to find running HTTP Servers
	1.4.2 Determining which TCP/IP ports are used
	1.4.3 Accessing the home page
	1.4.4 Using the ps command to check for HTTP Servers
	1.4.5 Checking for non-running IBM HTTP Servers

	1.5 Checking your IBM HTTP Server version
	1.5.1 Determining IBM HTTP Server powered by Domino version
	1.5.2 Determining IBM HTTP Server powered by Apache version
	1.5.3 For more information

	Chapter 2. Features and performance
	2.1 New features in V8.5.5
	2.1.1 Listing MVS data sets
	2.1.2 HTTP response translation improvements
	2.1.3 Federal Information Processing Standards (FIPS140-2) support
	2.1.4 31-bit support
	2.1.5 Features in IHS powered by Domino and not in IHS powered by Apache

	2.2 Support for zEnterprise Data Compression
	2.2.1 zEnterprise Data Compression requirements
	2.2.2 Verifying that zEnterprise Data Compression is active
	2.2.3 Enabling use of zEnterprise Data Compression
	2.2.4 Testing
	2.2.5 SMF information
	2.2.6 Comparing results
	2.2.7 SMF information about hardware compression
	2.2.8 Compression log usage information

	2.3 Functional differences
	2.4 Performance comparison
	2.4.1 Basic measure of throughput test
	2.4.2 CPU utilization test
	2.4.3 Measure of throughput with and without caching test
	2.4.4 Measure of CPU test

	Chapter 3. Installing your first IHS
	3.1 IHS code that is shipped with z/OS 2.2
	3.2 Obtaining and installing the product code
	3.2.1 Delivered as a component of other IBM products
	3.2.2 Downloaded at no charge from the IBM Shopz website

	3.3 Ordering and installing by using Shopz
	3.3.1 IBM Shop z website
	3.3.2 Ordering software
	3.3.3 Downloading the software
	3.3.4 FTP product code to z/OS UNIX in z/OS
	3.3.5 First job to run: GIMUNZIP
	3.3.6 Second job to run: UNZIPJCL
	3.3.7 Setting up SMP/E
	3.3.8 Receiving the product code
	3.3.9 Applying the product code
	3.3.10 Accepting the product code
	3.3.11 Summary

	3.4 Installation when a component of another IBM product
	3.5 Sample real-world setup process
	3.5.1 Defining a configuration directory
	3.5.2 Defining a user ID
	3.5.3 Defining a protected user ID for the started task
	3.5.4 Creating the IHS
	3.5.5 Defining a RACF STARTED rule
	3.5.6 Creating a Started Task to run the IHS
	3.5.7 Verifying that IHS is working

	3.6 Using intermediate symbolic links
	3.6.1 Setting up an intermediate link

	3.7 Maintenance upgrade
	3.7.1 Gradual maintenance rollout approach
	3.7.2 New_install_root shell

	Chapter 4. Administration
	4.1 Running IBM HTTP Server powered by Apache
	4.2 Using started tasks
	4.2.1 Starting the server
	4.2.2 Stopping the server
	4.2.3 Recycling the server to pick up changes
	4.2.4 Modifying command support in V8.5.5
	4.2.5 Displaying version in job log

	4.3 Using apachectl from the command line
	4.3.1 Starting the server
	4.3.2 Stopping the server
	4.3.3 Restarting the server
	4.3.4 Mix and match

	4.4 Integration with WebSphere Application Server
	4.5 Configuration
	4.5.1 Listen directive
	4.5.2 Virtual hosting

	4.6 Monitoring
	4.6.1 SDSF
	4.6.2 Checking pid and log files
	4.6.3 Server status
	4.6.4 Server status by using the modify command
	4.6.5 Thread usage

	4.7 Diagnostic tools and information
	4.8 Troubleshooting
	4.9 Migrating previous versions
	4.10 Tracing
	4.10.1 Information about tracing
	4.10.2 Limitation
	4.10.3 Some examples

	4.11 Handling logging
	4.12 Macro support
	4.13 Conditional controls

	Chapter 5. Migration
	5.1 Planning your migration
	5.1.1 Migration plan

	5.2 Migration guidance
	5.2.1 Scalable mode
	5.2.2 SMF records
	5.2.3 Server home directory
	5.2.4 Ports
	5.2.5 Virtual hosts
	5.2.6 Security
	5.2.7 Logging
	5.2.8 URL and file mapping directives
	5.2.9 WebSphere Application Server plug-in
	5.2.10 Timeouts
	5.2.11 Caching
	5.2.12 ASCII/EBCDIC considerations
	5.2.13 GWAPI
	5.2.14 Reverse Proxy
	5.2.15 Comparing DGW and IHS use of directives
	5.2.16 Cleaning up PARMLIB

	5.3 Migrating Library Server
	5.3.1 Set up in DGW
	5.3.2 Set up in V8.5.5
	5.3.3 Testing Library Server

	Chapter 6. Scalability and workload management
	6.1 Overview
	6.2 DGW approach
	6.3 IHS V8.5.5 approach
	6.3.1 Multi-processing module
	6.3.2 How V8.5.5 looks on z/OS
	6.3.3 Example of dynamic scalability
	6.3.4 Sizing your server

	6.4 V8.5.5 support for WLM
	6.5 Working with WLM in IHS V8.5.5
	6.5.1 Mapping app requests to one WLM transaction class as default approach
	6.5.2 Mapping an application for a specific virtual host
	6.5.3 Mapping multiple applications within a specific virtual host
	6.5.4 Connecting WLM directives and WLM setup
	6.5.5 WLM in action

	6.6 Summary

	Chapter 7. Security
	7.1 Security overview
	7.2 Configuring V8.5.5 for your security requirements
	7.2.1 Allowing unauthenticated access
	7.2.2 Allowing all authenticated user access
	7.2.3 Allowing authenticated user that belongs to a group access
	7.2.4 Allowing authenticated user access with client credentials
	7.2.5 Required SAF definitions
	7.2.6 Complex authorization logic

	7.3 SSL and Session ID
	7.4 Configuring SSL support
	7.4.1 RACF or keystore files
	7.4.2 Creating required certificates
	7.4.3 Updating httpd.conf
	7.4.4 Testing SSL
	7.4.5 Advanced SSL options
	7.4.6 Basic SNI Support

	7.5 Controlling access by using mod_rewrite
	7.6 Caching and security considerations
	7.6.1 Authorization and access control
	7.6.2 Local vulnerabilities
	7.6.3 Cache poisoning

	Chapter 8. System Management Facilities support in IHS V8.5.5
	8.1 SMF overview
	8.2 DGW and SMF
	8.3 V8.5.5 and SMF
	8.3.1 Comparing DGW and V8.5.5 SMF records
	8.3.2 Content
	8.3.3 SMF browser
	8.3.4 Enabling for subtype 13
	8.3.5 Enabling for subtype 14

	8.4 Summary

	Chapter 9. Plug-in for WebSphere Application Server
	9.1 Plug-in overview
	9.2 Intelligent Management for Web Servers feature
	9.3 Configuring WebSphere Application Server plug-in into IBM HTTP Servers
	9.3.1 IBM HTTP Server powered by Domino
	9.3.2 IBM HTTP Server powered by Apache
	9.3.3 Key difference
	9.3.4 Working with the plug-in configuration file
	9.3.5 Regenerating the plug-in configuration file
	9.3.6 Managing who serves application static files

	Chapter 10. Cache configuration
	10.1 Caching overview
	10.1.1 What can be cached
	10.1.2 Not cached
	10.1.3 File-handle caching
	10.1.4 In-memory caching
	10.1.5 Disk-based caching

	10.2 Fast Response Cache Accelerator

	Chapter 11. Modules
	11.1 Why custom modules are used
	11.1.1 Popularity of Apache modules

	11.2 DGW modules
	11.2.1 Migrating GWAPI modules to V8.5.5 modules

	11.3 Simple helloworld module
	11.3.1 Code structure of helloworld module
	11.3.2 Compiling the helloworld module
	11.3.3 Integrating the new helloworld module into the configuration file
	11.3.4 Testing the helloworld module

	11.4 Apache-supplied example module
	11.4.1 Code structure overview
	11.4.2 Compiling the example module
	11.4.3 Integrating the example_module into the server conf file
	11.4.4 Testing the example_module

	11.5 Using an open source Apache module
	11.5.1 Limit IP module
	11.5.2 Compiling the module
	11.5.3 Updating the httpd.conf file
	11.5.4 Restarting and testing

	Chapter 12. CGI scripts
	12.1 CGI overview
	12.1.1 Brief history
	12.1.2 CGI disadvantage
	12.1.3 CGI alternatives
	12.1.4 A use for CGI

	12.2 Rexx CGI programs in DGW
	12.2.1 DGW support for CGI programs
	12.2.2 Sample Rexx CGI program
	12.2.3 Using exec directive
	12.2.4 Running the example.rx CGI

	12.3 Rexx CGI programs in V8.5.5
	12.3.1 Default cgi-bin setup
	12.3.2 Changing example.rx to enable it for V8.5.5
	12.3.3 Support for cgiutils and cgiparse in V8.5.5.2
	12.3.4 Escaped characters
	12.3.5 Rexx CGI summary
	12.3.6 More complex Rexx sample

	12.4 Perl CGI programs in V8.5.5
	12.4.1 Using Perl on z/OS
	12.4.2 Sample Perl CGI program
	12.4.3 IHS and LIBPATH
	12.4.4 Testing the Perl CGI program

	12.5 PHP CGI programs in V9
	12.5.1 Using php on z/OS
	12.5.2 Rocket PHP software
	12.5.3 Running PHP CGI programs
	12.5.4 PHP by using the action approach
	12.5.5 PHP by using the shebang approach

	12.6 PHP CGI programs in V8.5.5
	12.6.1 Sample php CGI program
	12.6.2 PHP wrapper program
	12.6.3 Modifications to the httpd.conf file
	12.6.4 Testing the PHP CGI program

	12.7 Lua support
	12.7.1 Lua overview
	12.7.2 Lua and Apache server
	12.7.3 Lua advantage
	12.7.4 Using Lua
	12.7.5 Lua examples
	12.7.6 More information

	Appendix A. Additional material
	Locating the web material
	Using the web material
	System requirements for downloading the web material
	Downloading and extracting the web material

	Back cover

