
Redpaper

Front cover

IBM Operational
Decision Manager
Enabling the Rule Engine to Augment the Decision Data

Michael Johnson

IBM REDBOOKS PROMOTIONS
Find and read thousands of
IBM Redbooks publications

Search, bookmark, save and organize favorites

Get personalized notifications of new content

Link to the latest Redbooks blogs and videos

Download
Now

Get the latest version of the Redbooks Mobile App

iO
S

Android

Place a Sponsorship Promotion in an IBM
Redbooks publication, featuring your business
or solution with a link to your web site.

Qualified IBM Business Partners may place a full page
promotion in the most popular Redbooks publications.
Imagine the power of being seen by users who download
millions of Redbooks publications each year!

®

®

Promote your business
in an IBM Redbooks
publication

ibm.com/Redbooks
About Redbooks Business Partner Programs

IBM Redbooks promotions

http://bit.ly/redbooksapp
http://bit.ly/1bvYuMM
http://bit.ly/1lCxuBG
http://ibm.co/1maZVrw

THIS PAGE INTENTIONALLY LEFT BLANK

Executive summary

This IBM® Redpaper™ publication describes IBM Operational Decision Manager (ODM).
ODM is a set of tooling and interfaces that provides an architecture that can encapsulate your
decision logic away from program code into rules, which are rendered as natural language.
Decisions are now more agile, adaptable to change, and visible to those who need them.

This paper supplements the following IBM Redbooks® publications:

� Flexible Decision Management with Business Rules on IBM z Systems, SG24-8014

http://www.redbooks.ibm.com/abstracts/sg248014.html

� Systems of Insight for Digital Transformation: Using IBM Operational Decision Manager
Advanced and Predictive Analytics, SG24-8293

http://www.redbooks.ibm.com/abstracts/SG248293.html

This paper describes a means to use additional data with your rules.

The challenges

Businesses are faced with many challenges in this increasingly competitive environment.
Operational decisions can be challenging to the business, but ODM can help you meet the
following concerns:

� Decisions are not consistent across the organization. This can be due to a number of
factors. Those of disparate systems, personalities and skills within and outside of the
business. The different channels through which the business operates.

� Decisions cannot be made at the correct moment and on time. Many factors can affect
this, but particularly decisions cannot be made if there are too many manual tasks and too
much data to handle to make decisions.

� It is hard to keep decisions up to date. Business is asking for more agility than the delivery
team can support.

� It is hard to understand how decisions are made. Business logic is in people’s minds or
application code.

� Lack of decisions ownership for business stakeholders. Development skills are required to
update automated decisions.
© Copyright IBM Corp. 2016. All rights reserved. ibm.com/redbooks 1

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/abstracts/sg248014.html
http://www.redbooks.ibm.com/abstracts/SG248293.html

The business challenge

Organizations must find solutions to the following sorts of questions:

� How can we cost-effectively support an expanding customer base, meet regulatory
requirements, and deter fraud while maintaining an always available and secure
environment?

� How can we reduce cost while improving information accuracy, security and data
governance?

� How can we provide fast, accurate analysis to set the correct premiums and improve
access to claims data across multiple international locations?

� How can we meet the need for 24 x 7 access to analytics for key services, such as those
of courts, hospitals, police, fire services, and financial and insurance markets?

The technical challenge

Customers have had some of the following challenges:

� Unable to quickly extract actionable insights from big data and identify market
opportunities to adapt or expand the offering to meet customer demand.

� Need to support more data online, identify fraud before it happens, better understand
customer behavior and improve response times.

� Need to increase system availability, optimize workloads, speed queries, and accelerate
the generation of claims reports.

� Needing a highly scalable, available platform to provide insight into government for
3 million citizens across the country.

Overview of IBM Operational Decision Manager

The following sections describe an ODM solution that supplements decision runtime data with
additional data during the decision process.

This paper investigates how to supplement the runtime data passed to a rule decision with
additional data sourced from an external location, such as a database. The platform being
used for this is IBM z Systems™, which for the scenario in this paper is where the additional
data exists on this system of record.

What is ODM?

Operational Decision Manager is a set of tooling and interfaces, which provide a means to
encapsulate decision logic away from program code into rules. These rules are rendered as
natural language. When decisions are exposed in this format, they become more agile,
adaptable to change, and visible to those who need them. By having a rich set of tooling, the
change cycle of a rule and its deployment is much less than the traditional code development
and deployment route.

Operational Decision Manager gives you a vocabulary to write business rules. The
vocabulary comes from the business object model (BOM) that is created from the execution
object model (XOM). The XOM is the runtime model against which rules are run. It references
the application objects and data, and is the base implementation of the BOM.
2 IBM Operational Decision Manager

The XOM can be from any of the following sources:

� Compiled Java classes (Java execution object model)
� Extensible Markup Language (XML) Schema (dynamic execution object model)
� Common Business Oriented Language (COBOL) and Programming Language One (PL/I)

headers

These are imported to the ODM tooling to create the BOM. Rules are created from the
vocabulary of the BOM and then bundled together as a Decision Service. The Decision
Service is deployed to a rule engine. The rule engine makes decisions for the application
based on real-time data. This real-time data is passed as input parameters to the rule engine.

Using ODM allows the decisions to be separated from the client code. When the decisions
need to be changed due to business requirements, it is only these decisions and not the
application that need to be changed. New and changed rules are redeployed to the rule
engines without having to change the application code.

To supplement the data that will be passed to a rule engine there are a number of options:

� Obtain this information before passing all the information to ODM.
� An alternative to this is to have the rule engine obtain this information during the rule

processing. Obtaining the information before passing it to ODM is the preferred approach,
but there might be times when this information can only be obtained during rule
processing. If this is the case, and the additional information is held in a database, a
connection to the database must be established, and then obtain the information from the
database using a query.

Considerations

If the data needed to make a decision is not available to the client application, and this data is
in a database on IBM z Systems, it is probable that the decisions should be made as close as
possible to the data. This would mean running the decision service on the rules engine
running on z Systems. ODM has a stand-alone rule engine that runs on IBM z, known as the
zRule Execution Server (zRES) for IBM z/OS® environments. The rule engine, which runs
inside a zRES, is a Java Platform Standard Edition (Java SE) solution.

Ideally, if data were to be read over and over from the database it would be good to have a
pool of database connections that could be reused, as opposed to establishing a connection
each time a query was made. Establishing a Java Database Connectivity (JDBC) connection
is more costly than using an existing idle connection. zRES is not on an application server, so
it doesn’t have a pool to hold connections to the database. Therefore, we need to create a
connection pool that decisions could use when accessing the data in the database.

There are many patterns out there, including the following one, illustrating how this could be
achieved using a singleton pattern:

http://theopentutorials.com/tutorials/java/jdbc/jdbc-examples-introduction/#Single
ton_design_pattern

The solution

The proposal here is to have a pool of connections that have access to the database. For
ODM to be able to use the data from the database, a model of the data will be needed.

Code to represent the data from the database to extend the XOM, and the additional classes
needed to implement the connection to the database, are required.
3

http://theopentutorials.com/tutorials/java/jdbc/jdbc-examples-introduction/#Singleton_design_pattern

Implementation

The proposed implementation has the following components for the connection pool and
database access:

� ConnectionFactoryCreator

– This is a singleton pattern to hold a connection pool.
– It is implemented by Apache Commons Database Connection Pools (DBCP).
– The database credentials are provided in this class.

� The data access object (DAO)

– Obtains a connection from the pool of connections.
– Creates a statement from the connection.
– Runs the Structured Query Language (SQL) query on the statement.

� The transfer object (TO)

Holds the data that has been returned from the Database.

� DbUtil

Helper class for the database.

Business object models

For rules to access and use the TO, a new BOM is created for the DAO and the TO. Next, a
new BOM to XOM method is created that will be used by the rules to access the data in the
database.

The design of this BOM to XOM method completes the following actions:

1. Create a new DAO using the previous classes.
2. Call the method on the DAO to populate a TO.

This new method is verbalized so that the rules can call it. The TO is also verbalized so that
the values returned in the TO can then be used.

Rules can now use this additional information.

How to give the rules access to data in the database

From the Rules designer tooling, import the classes for the database access and give the rule
project access to them. Create a BOM to XOM mapping function, which asks the
DatabaseUtilities implementation for access to the database and retrieve the data from the
database. This BOM to XOM method is verbalized so that it can be used in a rule and return
a value that the rules can act on based on its value.

The structure of the data that will be returned from the database is modeled as a BOM, and
the individual fields verbalized.

How to use the sample in this Redpaper publication

The example in this Redpaper publication is built on top of the z Systems MiniLoan sample.

The MiniLoanDemo can be found in the following location:

/usr/lpp/zDM/V8R7M0/zexecutionserver/samples/ruleProjects
4 IBM Operational Decision Manager

The product sample enables client applications written in COBOL and PL/I to make rule calls
that use the same ODM rules.

You can import the projects as supplied in this paper, or build the projects following the
information given.

We advise importing the full example by importing the .zip file available with this paper and
select the five projects contained in it:

1. Go to the Rule Designer eclipse perspective.

2. Select File → import → existing projects into Workspace.

3. Point at the .zip file supplied with this paper and select all of the displayed projects.

4. You need to change the path to the commons-xxxx-<version>.jar Java Archive (JAR) files
on your system, as shown in substep b on page 6.

5. After this has been done, you should see a workspace that looks like that shown in
Figure 1.

Figure 1 Sample project

Alternatively, you can build the project up from the product sample and the example in this
Redpaper publication by completing the following steps.

To use the product sample with this example extension, complete the following steps:

1. If you want to build the project step by step, the product sample can be found from the ODM
zexecutionserver/samples directory on the z Systems server:

MiniLoanDemo-Workspace.zip

2. Use File Transfer Protocol (FTP) to move this file to the location where the tooling is
running.

3. From Rule Designer Eclipse perspective, select File → import → existing projects into
Workspace. Import the MiniLoan sample.

Note: DataBaseUtilities will display a warning.
5

4. Next, you need to import the example project for this Redpaper publication. Import only
the DatabaseUtilitiesproject from mikesredpaperDB2pool.zip, as shown in Figure 2.

Figure 2 The DataBaseUtilities folder

5. Next, under the Properties for the DatabaseUtilities, under the Java Build Path in Libraries,
point to the commons JAR files:

a. Under Projects, select the DataBaseUtilities folder. Right-click and select
Properties → Java build path.

b. Under Libraries, add external Java archive (JAR) files:

• Commons-dbcp-<version>.jar
• Commons-pool-<version>.jar

Figure 3 shows the Java Execution Object Model properties.

Figure 3 Java Execution Object Model properties

Tip: These JAR files are found with the product at the following location:

usr/lpp/zDM/V8R7M0/zexecutionserver/resconsole/lib
6 IBM Operational Decision Manager

6. Next, associate this DatabaseUtilities project with the MiniLoanDemo project.

Select the project references from the properties of the project and select the check boxes
next to the project, as shown in Figure 4.

Figure 4 Properties of the MiniLoanDemo project

7. Create an additional BOM called DatabaseModel and import the Employee class (TO) and
the Employee DAO by selecting New BOM entry from XOM.

8. Browse the xom under DatabaseModel and select the two classes, as shown in Figure 5.

Figure 5 The BOM structure
7

9. Under Properties → Business Object Model, if the BOM is not already displayed, add
this new Database Model BOM, as shown in Figure 6.

Figure 6 BOMs associated with the project

10.Create a new BOM to XOM method under EmployeeDAO called accessDB (int), as shown
in Figure 7. This method takes an integer, which represents the database record to
retrieve, and returns an Employee record:

a. Select the class in the BOM to add a new member (for example, Class
xom.EmployeeDAO).

b. Scroll down to the Members section.

c. Select New.

d. Give the new method a Name and a Type, such as xom.Employee.

Figure 7 shows the member information.

Figure 7 Creating the accessDB BOM to XOM method

The previous figure shows the input parameters and the verbalization of the method.

11.Select the new method and move down to the BOM to XOM Mapping.

8 IBM Operational Decision Manager

12.Paste the following code snippet in the Body section, as shown in Example 1.

Example 1 The BOM to XOM method body

xom.Employee employee = null;
try {
IntemployeeId = Income;
 // create a DataAccessObject
xom.EmployeeDAOempDao = newxom.EmployeeDAO();

System.out.println("accessDB");
System.out.println("created 1 DAOs");
// call the DAO method to make the connection to the DB
// the DAO asks the ConnectionFactory for this
// runs the SQL call
// returns a built employee object from the returned SQL data
employee = empDao.getEmployee(employeeId);

if(employee != null) {
System.out.println("b2x Employee Name:" + employee.getEmpName());
System.out.println("");

 }
else {
System.out.println("No Employee with Id: " + employeeId);

 }
 } catch (NumberFormatException e) {
e.printStackTrace();
 } catch (IOException e) {
e.printStackTrace();
 } catch (SQLException e) {
e.printStackTrace();
 }
return employee;
9

13.Add the imports that this method requires, as shown in Figure 8:

a. Move down to the BOM to XOM Mapping section of the new method.
b. Open the imports section and paste the required imports:

• importjava.io.IOException;
• importjava.sql.DriverManager;
• importjava.sql.Connection;
• importjava.sql.ResultSet;
• importjava.sql.SQLException;
• importjava.sql.Statement;

Figure 8 The imports for the code

Writing the rules

With this implementation, the verbalization enables the following information to be written.
One of the fields of the Employee object has been verbalized as the dept id, as shown in
Example 2.

Example 2 Code to return a field

add "accessing db" to the messages of 'the loan' ;
 add " the dept id = " + the dept id of accessDB (1) to the messages of 'the
loan' ;

In the rule, the value of the dept id field of the Employee object is returned. Behind this rule,
a query against the database is made for the record where the dept id is 1. A side effect of this
rule is that for each field of the Employee a query is made against the database.

To make only one query to the database, the following code could be used at the start of the
rule, as shown in Example 3.

Example 3 Rule to return the second entry in the database

definitions
set myEmployee to accessDB (2);
10 IBM Operational Decision Manager

This gets the second entry in the database. This shows a specific value, in this case 2, but we
could easily replace it with a variable, such as empId for example. Therefore, in the body of the
following rule (the MinimumAmount rule), it is possible to reference each field of the Employee
record that has been returned from the database, as shown in Example 4.

Example 4 Adding myEmployee fields to messages

definitions
setmyEmployeetoaccessDB (2);
if
 the yearly repayment of 'the loan' is more than the yearly income of
'the borrower' * 0.3
then
 add "Too big Debt-To-Income ratio" to the messages of 'the loan' ;
 reject 'the loan';

 add " name = " + the emp name of myEmployee to the messages of 'the loan' ;
 add " dep id = " + the dept id of myEmployee to the messages of 'the loan' ;
 add " Salary = " + the salary of myEmployee to the messages of 'the loan' ;

It might be possible depending on the scenario to populate the object with data from the
database before entering a rule package. In the Ruleflow editor of Rule Designer make an
access to the database to populate the object. This object is then available for use by all of
the rules.

To achieve this, complete the following steps:

1. Create a Variable Set, give it a name, and then add a variable to hold the information from
the database. An example named DBobject is shown in Figure 9.

Figure 9 Creating a Variable Set
11

2. In the Ruleflow, create an Initial Action. Write some Business Action Language (BAL) to
access the database and populate the object with this data, as shown in Figure 10.

Figure 10 Rule flow for the project

In this example, the record that has an ID of 1 is returned from the database, and this data is
held in the myDBrecord object. The data can now be accessed by the rule in the following way,
shown in Example 5.

Example 5 Accessing the salary field of myDBrecord

add " the salary = " + the salary of myDBrecord to the messages of 'the loan'

Deployment

When the artifacts are deployed from the Rule Designer tooling, a package of artifacts is sent
to the runtime location. When viewed from the Rule Execution Server (RES) console, the
Rule run time has all the pieces to evaluate the rule questions from the data provided.
12 IBM Operational Decision Manager

The deployed artifacts include the following components:

� The MiniLoan execution object model

Rules use this at run time to access the Borrow and Loan objects.

� The DatabaseUtilities

Implements the pool of database connections and the code that runs queries against the
database.

� The marshaller code

Maps the input COBOL and or PL/I variables of Borrower and Loan so that they can be
used by the Rule run time.

� The Apache package, which implements the pool of connections

Figure 11 shows the list of resources after a deployment, as seen on the ODM RES
management console.

Figure 11 Resources after deployment

The database

This sample relies on having data stored in a database. Example 6 shows the query that is
run against the database.

The database table is defined to have a table called employee that has a column called
emp_id.

Example 6 Query to return emp_id

SQL query: SELECT * FROM employee WHERE "emp_id" = <a number>
13

Figure 12 shows the columns of the database table. To use this example, the following table
needs to be defined with these rows and populated with data.

Figure 12 Columns of the table

In summary

This paper describes a technique to obtain decision data after a call to the rule engine has
been made. The solution describes obtaining this additional data from a database, but the
data could easily be from another source. The paper demonstrates how this might be done
with a runtime on z/OS. ODM runtimes run on different machines and architectures, so you
can choose the solution that keeps the access to the data as close as physically possible to
the data.

Note that the sample given is an example of the technique. The paper does not consider
certain error situations. Stronger error checking should be considered, such as what should
the behavior be when there are database connection errors, and when a Null employee
record is returned to the rules.

The paper also shows ways in which the data can be used by Rules using Variable Sets and
Definitions, and accessed in the then section of a rule. This is a very useful technique when
circumstances require additional data to be obtained after the decision data has been passed
to the rule engine. The technique can be extended to call IBM DB2® stored procedures, and
to do analytical scoring of the incoming data.

Systems cited in the example

The following sections describe the systems cited in this example.

z Systems

The z Systems servers are systems of record, which hold the most important data of the
business. It is critical that this data is secure, accurate, and maintained with governance.
Ideally, making decisions and scoring this data needs to be done as close to the data as one
can.
14 IBM Operational Decision Manager

There are a number of advantages to using z Systems:

� No data movement
� Best of class security
� Built-in auditing and governance
� Leverage existing high availability and disaster recovery (HA/DR) capabilities
� Currency of data
� Reduce complexity
� Eliminate data duplication
� Improve synchronization
� Bring analytic functions to the data
� Rules are used in the batch processing
� Decisions made from the preferred application environment

Why IBM z13

The choice to use IBM z13™ provides the following advantages:

� Larger cache = in-memory analytics for faster insight

� IBM Mathematical Acceleration Subsystem (MASS) libraries = 2 - 10 times improvement
porting x86 analytic workloads

� Single instruction, multiple data (SIMD) improvements = 80% increase in IBM ILOG®
CPLEX® Optimization Studio (CPLEX) on IBM z/OS modeling

� Processor (CPU) enhancements = no performance effect on real-time scoring in
transactions
15

Appendix

This appendix provides information about the following topics:

� Extending the XOM
� Adding classes to the XOM
� The data access object
� Class implementations: ConnectionFactory
� Using a pool manager for handling connections with DBCP 1.2.2 and pool 1.5.4

Extending the XOM

In the rule designer, we needed to extend the sample MiniLoan XOM to use additional
classes, which make the connection to the database.

Adding classes to the XOM

The XOM classes that make the connection to the database use an implementation that
creates a pool of connections to the database. These connections are used in the
implementation to give access to the database. Data from ODM is passed through in an SQL
statement. The database connection then gets returned to the pool of connections ready for
the next ODM rule invocation.

To import these into the Rule-designed project, select File → import → General → File
System (from directory…) and choose the XOM folder.

A compressed file containing the implementation will be supplied with this document.

For the new source files to resolve their externals, add the pool and DBCP JAR files to the
Project. This is done by completing the following steps:

1. From the Java perspective of the tooling, click Properties on the project.

2. In Java Build Path, and to the Libraries tab using the Add external Jars button, add the
two commons JAR files:

commons-dbcp-1.2.2.jar
commons-pool-1.5.4.jar

These can be found under the zexecutionserver/resconsole/lib directory.

3. Next, we have to get the BOM to recognize the new classes in the XOM. We had to create
a new BOM class with the name for the class. Select it by right-clicking and then choosing
BOM Update.

The previous example adds the additional XOM classes to an existing XOM.

The data access object

In our example, the DAO is the EmployeeDAO class. This class is where the SQL statement to
run is defined. The SQL statement derived from the IBM SPSS® model is placed here. The
first thing the method in this class does is to ask for a connection to the database. Either a
new connection is created or an idle connection from the pool is returned. Next, the IBM DB2
statement to run is created. You then perform the following steps:

1. Run the statement.
16 IBM Operational Decision Manager

2. If you get a result set back, you build and return an employee object built from the result of
the SQL query, as shown in Example 7.

Example 7 Building and returning an employee object

public class EmployeeDAO {
 private Connection connection;

 private Statement statement;

 public EmployeeDAO() { }

 public Employee getEmployee(int employeeId) throws SQLException {
 String query = "SELECT * FROM employee WHERE \"emp_id\"=" + employeeId;

 System.out.println (query);

 ResultSet rs = null;
 Employee employee = null;
 try {
 connection =
ConnectionFactoryCreator.getInstance().getPoolDataSource().getConnection();

 statement = connection.createStatement();

rs = statement.executeQuery(query);
 if (rs.next()) {

employee = new Employee();
employee.setEmpId(rs.getInt("emp_id"));
employee.setEmpName(rs.getString("emp_name"));

employee.setDob(rs.getDate("db"));
employee.setSalary(rs.getDouble("salary"));

employee.setDeptId((rs.getInt("dept_id")));
}
 } finally {
 DbUtil.close(rs);
 DbUtil.close(statement);
 DbUtil.close(connection);
 }

 // Display some pool statistics
printDriverStats();
 return employee;

}
}

17

Class implementations: ConnectionFactory

The class implementations are shown in Example 8.

Example 8 Class implementations

package com.mikes.jdbc.db;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

public class ConnectionFactory {
 //static reference to itself
 private static ConnectionFactory instance = new ConnectionFactory();
 public static final String URL = "jdbc:db2://localhost:41100/DSNV11GP";
 public static final String USER = "ZILOGDB";
 public static final String PASSWORD = "xxxxxxxx";
 public static final String DRIVER_CLASS = "com.ibm.db2.jcc.DB2Driver";

 //private constructor
 private ConnectionFactory() {
 try {
 Class.forName(DRIVER_CLASS);
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 }
 }

 private Connection createConnection() {
 Connection connection = null;
 try {
 connection = DriverManager.getConnection(URL, USER, PASSWORD);
 } catch (SQLException e) {
 System.out.println("ERROR: Unable to Connect to Database.");
 }
 return connection;
 }

 public static Connection getConnection() {
 return instance.createConnection();
 }
}

18 IBM Operational Decision Manager

Using a pool manager for handling connections with DBCP 1.2.2 and pool
1.5.4

The following list describes design considerations:

� Extended ConnectionFactory to ConnectionFactoryCreator:

– This uses DBCP and a pool implementation to maintain a pool of connections.

– These connections get returned to the pool when released, rather than losing the
connection completely.

– This class is a singleton that loads the database driver and establishes the pool.

� <Something>DAO, the data access object, is the class that asks for connections and then
runs the query to the database.

The overall design is to have one ConnectionFactoryCreator object that creates multiple
connections when there are no free connections in the pool. If there is a free connection, this
connection is allocated to the next activity.

The DAO does all of the requesting, and a Transfer Object TO is used to request actions
from the DAO.

About the author

Michael Johnson is a developer and gives presentations about Operation Decision Manager
on z/OS. He works out of the Hursley IBM lab in the UK. He has spent his career in the
messaging and brokering environments across platforms. He has a Combined honors degree
in Computing and Statistics.

Now you can become a published author, too

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time. Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run 2 - 6 weeks in length, and
you can participate either in person or as a remote resident working from your home base.

Find out more about the residency program, browse the residency index, and apply online:

ibm.com/redbooks/residencies.html
19

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us.

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form:

ibm.com/redbooks

� Send your comments in an email:

redbooks@us.ibm.com

� Mail your comments:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
20 IBM Operational Decision Manager

http://www.redbooks.ibm.com/rss.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2016. All rights reserved. 21

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

CPLEX®
DB2®
IBM®
IBM z™
IBM z Systems™

ILOG®
Redbooks®
Redpaper™
Redbooks (logo) ®
SPSS®

z Systems™
z/OS®
z13™

The following terms are trademarks of other companies:

 is a trademark or registered trademark of Ustream, Inc., an IBM Company.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Other company, product, or service names may be trademarks or service marks of others.
22 IBM Operational Decision Manager

http://www.ibm.com/legal/copytrade.shtml

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738455059

REDP-5333-00

®

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	IBM Redbooks promotions
	Executive summary
	The challenges
	The business challenge
	The technical challenge

	Overview of IBM Operational Decision Manager
	What is ODM?
	Considerations
	The solution
	Implementation
	Business object models
	How to give the rules access to data in the database
	How to use the sample in this Redpaper publication
	Writing the rules
	Deployment
	The database
	In summary

	Systems cited in the example
	z Systems
	Why IBM z13

	Appendix
	Extending the XOM
	Adding classes to the XOM
	The data access object
	Class implementations: ConnectionFactory
	Using a pool manager for handling connections with DBCP 1.2.2 and pool 1.5.4

	About the author
	Now you can become a published author, too
	Comments welcome
	Stay connected to IBM Redbooks

	Notices
	Trademarks

	Back cover

