
Redbooks

Front cover

IBM DB2 12 for z/OS
Technical Overview

Meg Bernal

Tammie Dang

Acacio Ricardo Gomes Pessoa

International Technical Support Organization

IBM DB2 12 for z/OS Technical Overview

December 2016

SG24-8383-00

© Copyright International Business Machines Corporation 2016. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (December 2016)

This edition applies to Version 12 of IBM DB2 for z/OS.

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks .x

Preface . xi
Authors. xi
Now you can become a published author, too! . xii
Comments welcome. xiii
Stay connected to IBM Redbooks . xiii

Part 1. Overview . 1

Chapter 1. DB2 12 for z/OS at a glance . 3
1.1 Subsystem . 4
1.2 Application functions . 4
1.3 Operations and performance . 5

Chapter 2. Continuous delivery . 7
2.1 Function level . 8

2.1.1 Star function level . 11
2.2 Catalog level . 11
2.3 Code level . 12
2.4 Activating a function level . 12
2.5 DISPLAY GROUP command . 14
2.6 Catalog changes . 19

2.6.1 The SYSIBM.SYSLEVELUPDATES table . 19
2.7 Application compatibility (APPLCOMPAT) . 20

2.7.1 Managing applications through function level changes . 22
2.7.2 Data Definition Language (DDL) statements sensitive to APPLCOMPAT 24

2.8 SQL processing option SQLLEVEL . 25
2.9 New built-in global variables . 26

2.9.1 PRODUCTID_EXT . 26
2.9.2 CATALOG_LEVEL . 26
2.9.3 DEFAULT_SQLLEVEL . 26

2.10 DB2 supplied stored procedures. 27
2.10.1 ADMIN_COMMAND_DB2. 27
2.10.2 GET_CONFIG. 27

2.11 Resource access control facility exit . 28
2.12 Instrumentation . 29

Part 2. Subsystem. 31

Chapter 3. Scalability . 33
3.1 Range-partitioned table spaces changes . 34

3.1.1 PBR RPN table space characteristics. 34
3.1.2 PBR RPN partitioned index characteristics. 34
3.1.3 PBR RPN non-partitioned index characteristics . 34
3.1.4 PBR RPN considerations . 35

3.2 DB2 internal latch contention relief . 36
3.3 Buffer pool simulation . 37
© Copyright IBM Corp. 2016. All rights reserved. iii

3.4 Support for sizes greater than 4 GB of active log data sets . 40

Chapter 4. Availability . 43
4.1 Improved availability for pending definition changes. 44

4.1.1 Altering index compression attribute . 44
4.1.2 Altering column . 44

4.2 Catalog availability improvements. 45
4.2.1 Handling dynamic SQL statement. 45
4.2.2 Single phase catalog migration. 45

4.3 Removal of point-in-time recovery restrictions for PBG table spaces 46
4.4 PBR RPN DSSIZE increase . 46
4.5 Insert partition . 46
4.6 REORG enhancements for PBGs, FlashCopy and LOBs. 46

4.6.1 Partition-by-growth (PBG) . 47
4.6.2 FlashCopy. 47
4.6.3 Large object (LOB) . 47

4.7 LOAD RESUME YES BACKOUT YES option . 47
4.8 Faster point-in-time recovery . 48

4.8.1 Single object by defaulting to the PARALLEL(1) option . 48
4.8.2 SCOPE UPDATED keyword . 48

4.9 TRANSFER OWNERSHIP SQL statement. 48
4.10 Auto-retry of GRECP and LPL recovery . 48

Chapter 5. Data sharing . 49
5.1 DISPLAY GROUP command . 50
5.2 XA support for global transactions . 50
5.3 Peer recovery . 52
5.4 Automatic retry of GRECP and LPL recovery . 53
5.5 Improved lock avoidance checking . 54
5.6 Asynchronous lock duplexing . 54

Part 3. Application functions . 59

Chapter 6. SQL . 61
6.1 Introduction . 62
6.2 Additional support for triggers . 64

6.2.1 Basic triggers . 65
6.2.2 Advanced triggers . 65
6.2.3 Differences between basic triggers and advanced triggers 66
6.2.4 Maintaining trigger activation order . 70

6.3 Pagination support . 70
6.3.1 Returning a subset of rows . 71
6.3.2 Data-dependent pagination support . 71
6.3.3 Numeric-based pagination . 74

6.4 Additional support for arrays . 76
6.4.1 Arrays as global variables . 77
6.4.2 Associative array support on ARRAY_AGG aggregate function. 78
6.4.3 Optional ORDER BY clause on ARRAY_AGG aggregate function 80

6.5 MERGE statement enhancements . 81
6.5.1 Additional source value support . 84
6.5.2 Additional data modification support . 84
6.5.3 Additional matching condition option . 84
6.5.4 Additional predicates on matching conditions support . 84
6.5.5 Atomicity . 84
iv IBM DB2 12 for z/OS Technical Overview

6.5.6 Enhanced MERGE statement example . 85
6.6 New built-in functions . 87

6.6.1 Aggregate functions for statistics . 87
6.6.2 Scalar functions for hashing . 90
6.6.3 GENERATE_UNIQUE_BINARY scalar function. 91
6.6.4 VARCHAR_BIT_FORMAT scalar function enhancement. 93

6.7 Enhanced built-in function support . 94
6.7.1 TIMESTAMP scalar function enhancement . 94
6.7.2 XMLMODIFY scalar function enhancement . 94

Chapter 7. Application enablement . 99
7.1 Ensuring application compatibility . 100
7.2 Temporal table enhancements . 101

7.2.1 Enhanced application periods. 101
7.2.2 Referential constraints for temporal tables . 104
7.2.3 Temporal logical transactions . 107
7.2.4 Auditing capabilities using temporal tables . 114

Chapter 8. Connectivity and administration routines . 119
8.1 Maintaining session data on the target server . 120
8.2 Preserving prepared dynamic statements after a ROLLBACK 122
8.3 DRDA fast load . 123
8.4 Profile monitoring for remote threads and connections. 123

8.4.1 Automatic start of profiles during subsystem start . 123
8.4.2 Support for global variables . 124
8.4.3 Support for wildcarding . 124
8.4.4 Idle thread enhancement . 125

8.5 Stored procedures supplied by DB2 . 126

Part 4. Operations and performance . 129

Chapter 9. Administrator function . 131
9.1 Dynamic plan stability . 132

9.1.1 Stabilization into and loading from catalog tables . 132
9.1.2 Stabilization method . 132
9.1.3 Catalog tables . 135
9.1.4 Calculating the EDM statement cache hit ratio . 137
9.1.5 Invalidation of stabilized dynamic statements . 138
9.1.6 EXPLAIN changes . 139
9.1.7 The FREE STABILIZED DYNAMIC QUERY subcommand 139
9.1.8 Monitor for stabilization . 141
9.1.9 DSNZPARM and installation panel . 144

9.2 Resource limit facility for static SQL . 146
9.2.1 Reactive governing static SQL . 146
9.2.2 Use cases . 148
9.2.3 RLF DSNZPARMs and installation panels . 151

9.3 Column level deferred alter (pending alter column) . 154
9.3.1 Utility . 158
9.3.2 ALTER INDEX . 159

9.4 Insert partition . 159
9.4.1 ALTER ADD PARTITION . 160
9.4.2 Utilities affected. 162
9.4.3 Catalog changes . 163
 Contents v

Chapter 10. Security . 167
10.1 Installation or migration without requiring SYSADM . 168
10.2 UNLOAD privilege. 169

10.2.1 Enforcing new privilege. 170
10.2.2 Using DB2 security facility. 170
10.2.3 Using Resource Access Control Facility (RACF) . 171

10.3 Object ownership transfer . 172
10.3.1 Supported objects . 174
10.3.2 New owner . 175
10.3.3 Revoking privileges of current owner . 175

Chapter 11. Utilities. 177
11.1 Backup and recovery enhancements . 178

11.1.1 Sequential image copy enhancements . 178
11.1.2 Copy support for FASTREPLICATION . 180
11.1.3 Alternate copy pools for system-level backups. 181
11.1.4 FLASHCOPY_PPRCP keyword option. 182
11.1.5 Point-in-time recovery enhancements. 183
11.1.6 MODIFY RECOVERY enhancements . 185

11.2 RUNSTATS enhancements . 186
11.2.1 Specifying FREQVAL without the COUNT n keywords 186
11.2.2 USE PROFILE support for inline statistics . 187
11.2.3 INVALIDATECACHE option . 187
11.2.4 RUNSTATS TABLESPACE LIST INDEX improvements 189
11.2.5 New keyword REGISTER for RUNSTATS utility . 190

11.3 REORG enhancements . 191
11.3.1 Improved FlashCopy management . 191
11.3.2 Preventing COPY-pending on a LOB table space during REORG of PBG . . . 192
11.3.3 Improved partition-level PBG REORGs . 193
11.3.4 REORG option for empty PBG partitions deletion . 194
11.3.5 Support for the COMPRESSRATIO catalog column. 194
11.3.6 Display claimers information on each REORG drain failure 195
11.3.7 Additional REORG enhancements . 196

11.4 LOAD and UNLOAD enhancements . 196
11.4.1 LOAD enhancements . 196
11.4.2 UNLOAD enhancements . 197

Chapter 12. Installation and migration . 199
12.1 Prerequisites for DB2 12 . 200

12.1.1 Data sharing . 200
12.1.2 Processor requirements . 200
12.1.3 Software requirements . 200
12.1.4 DB2 Connect prerequisites . 200
12.1.5 Programming language requirements, minimum levels 201
12.1.6 Minimum configuration (IEASYSxx) . 201

12.2 Single-phase migration and function level . 201
12.2.1 Fallback SPE . 202
12.2.2 EARLY code . 203
12.2.3 Pre-migration checkout . 204
12.2.4 Creating DSNZPARM and DECP modules. 205
12.2.5 Creating and verifying routines supplied by DB2 . 205
12.2.6 REBIND at each new release . 206
12.2.7 Activating new function level . 206
12.2.8 Deprecated in earlier releases and removed in DB2 12 206
vi IBM DB2 12 for z/OS Technical Overview

12.3 Installing a new DB2 12 system . 208
12.3.1 Defines DB2 to z/OS. 208

12.4 Subsystem parameters . 209
12.4.1 New subsystem parameters . 209
12.4.2 Removed subsystem parameters . 213
12.4.3 Install Parameters Default Changes . 214
12.4.4 Deprecated system parameters . 214

12.5 Installation or migration without requiring SYSADM . 214
12.6 Installation with z/OS Management Facility (z/OSMF) . 214

12.6.1 How to use DB2 installation CLIST and panels to generate z/OSMF artifacts . 216
12.6.2 Feeding the generated artifacts to z/OSMF . 222

12.7 Temporal catalog . 227
12.7.1 System-period data versioning for two RTS catalog tables 228
12.7.2 Real-time statistics externalization during migration . 229

Chapter 13. Performance . 231
13.1 Performance expectations . 232
13.2 In-memory buffer pool . 232
13.3 In-memory index optimization . 232
13.4 Improved insert performance for non-clustered data . 234

13.4.1 DDL clause on CREATE TABLESPACE and ALTER TABLESPACE 235
13.4.2 SYSIBM.SYSTABLESPACE new column: INSERTALG 235
13.4.3 ZPARM: DEFAULT_INSERT_ALGORITHM. 235

13.5 Query performance enhancements. 236
13.5.1 UNION ALL and Outer Join enhancements . 236
13.5.2 Sort improvements . 243
13.5.3 Predicate optimization. 246
13.5.4 Execution time adaptive index . 248

Part 5. Appendixes . 251

Appendix A. Information about IFCID changes . 253
IFCID header changes . 254
New IFCIDs . 254

IFCID 382: Begin parallel task synchronization suspend . 255
IFCID 383: End parallel task synchronization suspend. 255
IFCID 389: Fast index traversal . 255
IFCID 404: Serviceability trace record for new subsystem parameter

AUTH_COMPATIBILITY . 256
IFCID 413: Begin of pipe wait for a fast insert. 257
IFCID 414: End of pipe wait for a fast insert . 257
IFCID 477: Fast index traversal . 257

Application compatibility IFCID changes . 258
IFCID 366: Deprecated application compatibility trace . 258
IFCID 376: Application compatibility trace . 258

Dynamic SQL plan stability IFCID changes . 259
IFCID 002: RDS statistics block . 259
IFCID 002: EDM pool statistics block . 260
IFCID 021: Lock types . 260
IFCID 029: EDM request begin identifier and new block . 260
IFCID 030: EDM request end identifier and new block . 261
IFCID 106: New subsystem parameter . 261
IFCID 316: Stabilization and hash ID information . 262
 Contents vii

Fast INSERT IFCID changes . 262
IFCID 002: Package level pipe wait information . 262
IFCID 002: Data Manager Statistics block . 263
IFCID 003: Accounting control block. 263
IFCID 018: End of inserts and scans . 263
IFCID 058: Accumulated pipe wait time . 263
IFCID 106: New subsystem parameter . 264
IFCID 316: Statement level pipe wait information . 264
IFCID 401: Accumulated pipe wait time . 264
IFCID 413: Begin pipe wait . 264
IFCID 414: End pipe wait . 265

Lift partition limits IFCID changes limits . 265
IFCID 006: Pre-read page number flag and partition number. 266
IFCID 007: Post-read page number flag and partition number 266
IFCID 021: Resource name . 266
IFCID 106: New subsystem parameter . 267
IFCID 124: Page number within pageset . 267
IFCID 127: Agent suspend . 267
IFCID 128: Agent resume . 267
IFCID 150: Resource name . 268
IFCID 172: Resource name . 268
IFCID 196: Resource name . 269
IFCID 198: Page numbering flag . 269
IFCID 223: Identifier, new constant, and partition number . 269
IFCID 226: Page numbering flag . 270
IFCID 227: Page numbering flag . 270
IFCID 255: Partition number and relative page number . 270
IFCID 259: Partition number and relative page number . 271
IFCID 305: Table space partition number and type . 271

Large object (LOB) compression IFCID changes . 271
IFCID 003: Accounting control block. 271
IFCID 106: New subsystem parameter . 272

Transfer ownership IFCID changes . 272
IFCID 002: RDS statistics block . 272
IFCID 062: Statement type . 272
IFCID 140: Source object owner and name . 273
IFCID 361: Source object owner and name . 273

UNLOAD privilege for UNLOAD utility IFCID changes. 274
IFCID 106: New subsystem parameter . 274

Additional changed IFCIDs . 274
IFCID 106: Modifications and enhancements . 274
IFCID 125: Adaptive index processing . 276
New QWAC_WORKFILE_MAX and QWAC_WORKFILE_CURR fields 277

Appendix B. Additional material . 279
Locating the web material . 279
Downloading and extracting the web material . 279
viii IBM DB2 12 for z/OS Technical Overview

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2016. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

CICS®
DB2®
DB2 Connect™
FlashCopy®
IBM®
IBM z™

IBM z Systems®
IMS™
Language Environment®
Parallel Sysplex®
pureXML®
RACF®

Redbooks®
Redbooks (logo) ®
z Systems®
z/OS®
zEnterprise®

The following terms are trademarks of other companies:

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Other company, product, or service names may be trademarks or service marks of others.
x IBM DB2 12 for z/OS Technical Overview

http://www.ibm.com/legal/copytrade.shtml

Preface

IBM® DB2® 12 for z/OS® delivers key innovations that increase availability, reliability,
scalability, and security for your business-critical information. In addition, DB2 12 for z/OS
offers performance and functional improvements for both transactional and analytical
workloads and makes installation and migration simpler and faster. DB2 12 for z/OS also
allows you to develop applications for the cloud and mobile devices by providing
self-provisioning, multitenancy, and self-managing capabilities in an agile development
environment. DB2 12 for z/OS is also the first version of DB2 built for continuous delivery.

This IBM Redbooks® publication introduces the enhancements made available with DB2 12
for z/OS. The contents help database administrators to understand the new functions and
performance enhancements, to plan for ways to use the key new capabilities, and to justify
the investment in installing or migrating to DB2 12.

Authors

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Raleigh Center.

Meg Bernal is a Senior Software Engineer with the DB2 for
z/OS development team based in the IBM Silicon Valley
Laboratory. Meg is celebrating her twentieth year as a
Developer in DB2 and was involved in several SQL and
SQL PL enhancements in DB2 12. Meg often presents at
conferences and DB2 user groups, nationally and
internationally.

Tammie Dang is a Senior Software Engineer in the US. She
has 27 years of experience in the Relational Database field.
She holds a degree in Computer Science from the University of
Houston. Some areas of her expertise include intersystem
locking, data sharing on the IBM z/OS Parallel Sysplex®
platform, query parallelism, application development using
SQL, ODBC, JCC API, and stabilized dynamic SQL. She has
written extensively about DB2 for z/OS enhancements and
features.

Acacio Ricardo Gomes Pessoa is an IBM z/OS IMS™ and
DB2 Database Administrator in Brazil for IBM Global Services.
He started working at IBM in 2008 as a Mainframe Operator
and in Production Support. In 2010 he moved to the DBA
Team. He supports telecommunication applications using IMS
Full Function Databases and DB2 tables. He holds a degree in
Information Systems and his areas of expertise include IMS
and DB2 databases maintenance.
© Copyright IBM Corp. 2016. All rights reserved. xi

This project was led by:

� Martin Keen

Thanks to the following people for their contributions to this project:

� Maria Sueli Almeida
� Tom Beavin
� Gayathiri Chandran
� Steve Chen
� Chris Crone
� Jason Cu
� Xiaohong Fu
� Akiko Hoshikawa
� Jeff Josten
� Ravi Kumar
� Jae Lee
� Dorothy Lin
� Fen-Ling Lin
� Irene Liu
� Regina Liu
� Jane Man
� Claire McFeely
� Manvendra Mishra
� Emily Prakash
� Terence Purcell
� Haakon Roberts
� Hugh Smith
� Xiao Bo Wang
� Maryela Weihrauch

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
xii IBM DB2 12 for z/OS Technical Overview

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xiii

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

xiv IBM DB2 12 for z/OS Technical Overview

Part 1 Overview

This part contains the following chapters:

� Chapter 1, “DB2 12 for z/OS at a glance” on page 3
� Chapter 2, “Continuous delivery” on page 7

Part 1
© Copyright IBM Corp. 2016. All rights reserved. 1

2 IBM DB2 12 for z/OS Technical Overview

Chapter 1. DB2 12 for z/OS at a glance

IBM DB2 12 for z/OS delivers key innovations that increase availability, reliability, scalability,
and security for your business-critical information. In addition, DB2 12 for z/OS offers
performance and functional improvements for both transactional and analytical workloads
and makes installation and migration simpler and faster. DB2 12 for z/OS also allows you
to develop applications for the cloud and mobile devices by providing self-provisioning,
multitenancy, and self-managing capabilities in an agile development environment.

DB2 12 for z/OS is the first version of DB2 built for continuous delivery. As a growing number
of applications need to be created or modified in a matter of days, not months or years,
access to the latest functions and features in DB2 becomes more vital. With the introduction
of continuous delivery, DB2 will ship new functions and features when those items are ready.
Whatever your role is, you will now be able to select when you want a new item available in
your databases and applications. A full chapter is dedicated to continuous delivery to help you
be successful in leveraging this new capability.

The following sections have a brief overview of some of the important functions that are
provided by IBM DB2 Version 12.1 for z/OS (which throughout this book is also referred to as
DB2 12 for z/OS or just DB2 12). For the purposes of this discussion, these functions are
divided into the following categories, which correspond to several parts of this book:

� Subsystem

� Application functions

� Operations and performance

1

© Copyright IBM Corp. 2016. All rights reserved. 3

1.1 Subsystem

The chapters in the Subsystem part focus on the scalability, availability, and data sharing
enhancements.

One of the biggest enhancements on the scalability front in DB2 12 is the ability to store
256 trillion rows in a single table. DB2 12 is able to store all of those rows in a single table
through a new partition-by-range (PBR) table space structure. The new structure will use
relative page numbers (RPN) and remove the dependency between the number of partitions
and the partition size. By eliminating this dependency, you no longer need to research the
rules regarding their relationship or concern yourself with running out of space in a partition
that would cause you to change the partition limit keys and possibly result in an application
outage. As part of the new RPN structure, DB2 12 moves to seven-byte record identifiers
(RIDs), which consist of a two-byte part number and five-byte page number that allows the
table to increase its size.

DB2 12 is improving the availability of universal table space indexes by allowing alteration of
an index compression to be a pending change that places the index in advisory-REORG
pending (AREOR) status. By placing the index in AREOR status, applications may continue to
access those indexes during alteration. Prior to DB2 12, those indexes would have been
placed in a restrictive REBUILD-pending (RBDP) status. Several new features in DB2 12 also
prevent the database objects from being dropped and re-created, which affects critical data
availability.

One data sharing feature you might consider using in DB2 12 is the ability for one member
of a DB2 data sharing group to automatically initiate the recovery process of another failed
member in that same data sharing group. This type of processing is called peer recovery
whereby the assisting member initiates a restart in light mode operation on the failed member.
You may also see the simplicity in enabling asynchronous duplexing for the IRLM lock
structure, with performance similar to the simplex mode, while still taking advantage of dual
structures for availability.

1.2 Application functions

The application functions chapters focus on SQL, application enablement, and also
connectivity and administration routines.

In DB2 12, you can write triggers by using SQL Programming Language (SQL PL). SQL PL
allows developers to code logic in the form of an IF statement, WHILE statement, GOTO
statement, and so on, around their traditional SQL. SQL PL allows handlers to be coded so
that error conditions and warning conditions can be handled gracefully. With SQL PL support
for triggers, you can also debug, deploy, and maintain multiple versions of triggers. In fact, just
about everything you can do today with SQL PL routines, you can do with enhanced trigger
support in DB2 12.

DB2 12 has extended its support for the array data type. The array data type can be specified
for a global variable. With arrays as global variables, you can now reference arrays outside of
SQL PL routines because the array data type was an exclusive data type for SQL PL routines
prior to DB2 12. The array data type support provides the capability to treat data in your
tables as arrays and to treat your arrays as tables. With the enhancements to the array data
type, the restriction of referencing arrays across different types of objects and applications
has been lifted.
4 IBM DB2 12 for z/OS Technical Overview

DB2 12 continues to deliver enhancements to temporal tables as more customers identify
additional use cases for applications based on time. Starting in DB2 12, referential constraints
can be enforced on application-period temporal tables that contain a BUSINESS_TIME
period. Another enhancement to application-period temporal tables is the ability to use
the inclusive/inclusive model such that both the start time and the end time are included
in the time interval. With support for both the inclusive/exclusive model and now the
inclusive/inclusive model, applications developers have more flexibility in coding applications
to satisfy their business needs.

DB2 12 also provides additional support for system-period temporal tables with logical
temporal transactions that provide greater flexibility in data modifications and auditing
capabilities that answer the classic questions of who made changes to the database, when
did the changes occur, and what changes were made. The auditing capabilities became so
popular that the feature was retrofitted back to DB2 11 for z/OS.

1.3 Operations and performance

The operations and performance chapters focus on administrator functions, security, utilities,
installation and migration, and performance.

One of the biggest achievements with DB2 12 for z/OS in the performance area is to
potentially observe over 11 million inserts per second for unclustered data. DB2 12 introduces
a fast insert algorithm that not only can increase throughput but also has the potential to
reduce logging and reduce certain elapsed and CPU times. The fast insert algorithm is
enabled for only universal table spaces using MEMBER CLUSTER. The algorithm can be
enabled system-wide or for individual table spaces.

DB2 12 also introduces a number of advanced in-memory database techniques that have the
potential of providing CPU reductions. One in-memory technique is the introduction of a fast
traversal block (FTB) for indexes. FTBs are in-memory optimized index structures that allow
DB2 to traverse the FTB much faster than doing traditional page-oriented page traversal for
indexes that are cached in buffer pools.

Continuing the commitment in providing analytical insights, DB2 12 has the potential of
providing faster execution times for query workloads and even faster times for targeted
queries. One performance area of focus in DB2 12 is for the SQL UNION ALL operator. DB2
uses the UNION ALL operator for bi-temporal tables and transparent archiving, while
application developers often use UNION ALL as a good alternative to very large tables where
several smaller tables are joined by the UNION ALL to simulate the larger table. Outer joins
share similar performance challenges to UNION ALL in that both can result in materializing
some portion of the data into a workfile; as such, the materialization into a workfile can result
in significant performance degradation, consume workfile resources, or both. In DB2 12,
materialization to a workfile is minimized, trimming unnecessary columns from the
materialization, pushing predicates down to lower query blocks, pushing down the ordering of
data and fetching first counters into lower query blocks, and reordering outer join tables to
avoid materialization. All contribute to the enhanced performance for the UNION ALL operator
and outer joins.
Chapter 1. DB2 12 for z/OS at a glance 5

DB2 12 introduces an extensive amount of improvements to its utilities such as REORG,
LOAD, and RUNSTATS, and has made several enhancements to assist you with backup and
recovery. One attractive change to the REORG TABLESPACE utility is that the RELOAD
phase can now be offloaded to zIIP1. Prior to DB2 12, a statistics profile was allowed only on
the RUNSTATS utility; however, starting in DB2 12, both the LOAD and REORG
TABLESPACE online utilities allow you to use a statistics profile to collect inline statistics.

As for the RUNSTATS utility itself and other utilities that collect inline statistics, an option
exists to not invalidate dynamic statements in the dynamic statement cache. Prior to DB2 12,
the collection of statistics for an object always invalidated cached dynamic statements that
referred to the objects. The advantage of not invalidating the statement in the cache is that
DB2 can reuse the previously determined access path for the statement. Remember, the
default option of whether or not to invalidate the statements in the cache for RUSTATS is to
not invalidate them, which differs from prior releases of DB2.

DB2 12 also provides new functions that are useful for the database administrators such
as administering the complete life cycle of stabilized dynamic SQL. The administration
capabilities allow you to capture the runtime structures in the persistent DB2 catalog and
reload them on subsequent executions, much like static SQL.

With DB2 12, you can migrate or install DB2 without requiring SYSADM authority and ease
your migration process from anywhere and from any computer using a web-based
application, z/OS Management Facility.

1 IBM z™ Systems Integrated Information Processor (zIIP)
6 IBM DB2 12 for z/OS Technical Overview

Chapter 2. Continuous delivery

Each DB2 version delivers many enhancements in different areas that are welcomed by
customers worldwide. However, sometimes certain functionalities are required sooner than
the scheduled date of the next version. New release migration is also costly and
time-consuming. Waiting for years to receive the much needed features in the next version
might be impossible for certain business needs, thus the enhanced features must be
retrofitted to the version in the current service stream. Continuous delivery is a solution to
make enhancements available in the service stream sooner than the next version.

Continuous delivery is being approached in various ways in the industry, and also within IBM.
The various approaches run from changes that occur constantly (literally hundreds of times a
day,) to fix packs that contain enhancements, to point releases and modification levels. DB2
for z/OS customers want a solution that provides value, but does not create a large legacy of
point releases needing maintenance. DB2 12 is adopting a step approach to new functions
that involves shipping changes and service (both preventative service and defect fixes) in the
same service stream. By enabling customers to adopt new function and service in a
controlled manner, DB2 is giving customers the confidence to continue to move forward with
maintenance in their normal scheduling scheme, giving them the flexibility they need to run
their businesses that require stable systems, and enabling them to activate new functions
when they want.

This chapter covers the following topics:

� Function level
� Catalog level
� Code level
� Activating a function level
� DISPLAY GROUP command
� Catalog changes
� Application compatibility (APPLCOMPAT)
� SQL processing option SQLLEVEL
� New built-in global variables
� DB2 supplied stored procedures
� Resource access control facility exit
� Instrumentation

2

© Copyright IBM Corp. 2016. All rights reserved. 7

2.1 Function level

DB2 11 has various migration modes such as conversion mode (CM), star mode (CM*),
enabled new function mode (ENFM), and new function mode (NFM). With DB2 12, DB2
changes to a new concept of function level that helps to introduce the continuous delivery
model and to manage groups of new enhancements. This concept of function level starts
when you begin your migrations to DB2 12.

A function level enables a particular set of new DB2 capabilities and enhancements that were
previously delivered and applied in the single continuous stream of DB2 code. The single
continuous stream of DB2 code will include support for new capabilities, defect fixes, and
preventative service items. The new capabilities and enhancements are dormant when first
applied. Before the new capabilities of a function level can be used, that function level must
be activated using the ACTIVATE command. In addition, before an application can take
advantage of new capabilities, the application must also specify the corresponding application
compatibility value.

Function levels are specified by the 9-byte strings that correspond to the DB2 version,
release, and modification value, in the following format:

VvvRrrMmmm

In this format, vv is the version, rr is the release and mmm is the modification indicator.

As soon as DB2 12 general availability code is applied and DB2 is restarted, that code level is
capable of supporting functions compatible to DB2 11, and the new functions of DB2 12.
Therefore, the DB2 12 general availability code supports the following function levels:

� V12R1M100

Identifies the function level before activating a new function, after migration to DB2 12
(function level 100). You can think of function level 100 as being similar to conversion
mode (CM) in prior releases of DB2. DB2 11 members of the data sharing group may be
started. DB2 subsystems and data sharing members can fall back to DB2 11.

� V12R1M500

Identifies the lowest function level that enables a new function in DB2 12 (function level
500). This function level can be thought of as the new function mode (NFM) in DB2 11.
DB2 11 members of the data sharing group may not be started. DB2 subsystems and data
sharing members cannot fall back to DB2 11. The DB2 subsystem or all active members
of a data sharing group must have the code level of V12R1M500 (by migrating to DB2 12)
and the catalog has been converted to the V12R1M500 level using the CATMAINT utility.

� V12R1M100*

Identifies the function level where new functions are no longer available. DB2 11 members
of the data sharing group may not be started. DB2 subsystems and data sharing members
cannot fall back to DB2 11.
8 IBM DB2 12 for z/OS Technical Overview

Figure 2-1 shows a time line (from left to right) for how DB2 11 data sharing group can be
migrated to function level V12R1M100, in coexistence mode, the CATMAINT utility is used to
convert to DB2 12 catalog, and a few months later function level V12R1M500 is activated for
new feature exploitation. Note that the application packages are bound with the appropriate
APPLCOMPAT options before and after a new function is available.

Figure 2-1 Migration from DB2 11 to DB2 12 then activating the first new function level 500

As DB2 delivers more function levels in the continuous stream of DB2 code, the modification
level, mmm, in the function level string with value of 500 or greater is reserved for the various
function levels where new enhancements are supported.

Assume that function level V12R1M5xx (without a catalog change) and V12R1M5yy (with a
required catalog change) are delivered after V12R1M500 to support new enhancements. The
following figures show the activities moving to these function levels.
Chapter 2. Continuous delivery 9

In Figure 2-2, after the maintenance application of the V12R1M5xx code level, an ACTIVATE
command can be used to enable that function level.

Figure 2-2 Function level V12R1M5xx (without a catalog change)

In Figure 2-3, after the maintenance application of the V12R1M5yy code level and the catalog
level upgrade through the CATMAINT utility, an ACTIVATE command can be used to enable
that function level.

Figure 2-3 Function level V12R1M5yy (with a catalog change)
10 IBM DB2 12 for z/OS Technical Overview

2.1.1 Star function level

Without the code levels changing, a lower function level can be activated. If a user activates a
function level lower than the current function level, then the user activates the corresponding
star (*) function level. When the current function level is a star function level, DB2 continues to
tolerate objects, packages, and structures that were created or bound at the higher function
level that use capabilities supported in the higher level. Such objects can still be accessed in
the lower star function level, but they cannot be dropped and re-created while the star function
level remains activated. Such packages can still be executed, rebound, and automatically
bound. Note that rebinding of such packages work when the APPLCOMPAT bind option value
is the same or lower than the current star function level. Newly bound packages can be bound
at only the APPLCOMPAT levels up to the current function level.

If an application exploits new SQL features provided by a function level, binding the
application package with the corresponding APPLCOMPAT option is recommended even for
dynamic SQL statements. In this way, those existing packages behave the same after the *
function level is activated. For more details and examples, see 2.7, “Application compatibility
(APPLCOMPAT)” on page 20.

After activating function level V12R1M500 with new DB2 12 functionality, the function level
can be changed back to function level V12R1M100, which means the V12R1M100* function
level (that is, V12R1M100 star function level).

2.2 Catalog level

A catalog level indicates that a particular CATMAINT job has been run on the DB2 catalog
and converted it to the appropriate level. Each function level requires a specific catalog level.
However, not every function level introduces a new catalog level. If the catalog is not at the
minimum required catalog level when you attempt to activate a function level, the ACTIVATE
command fails, and the message output indicates the current and required catalog levels.

The CATMAINT utility is enhanced with the LEVEL keyword so the user can migrate the
current catalog to the specified catalog level. The syntax diagram (Figure 2-4) shows the
CATMAINT control statement.

Figure 2-4 CATMAIN control statement

The format for the catalog level is changed from DB2 11 to align with function level format.
The new format is a 9-byte string:

VvvRrMmmm

In this format, vv is the version, rr is the release, and mmm is the modification level. If the
catalog level is omitted, V12R1M500 is used.

For the initial migration to DB2 12 general availability code, the CATMAINT UPDATE LEVEL
V12R1M500 control statement must be specified. This is because the DB2 12 migration
process converts the catalog to be ready for new functions with function level V12R1M500.
There is no other separate step to convert the catalog for new functions. This single-phase
catalog migration reduces the change windows involved in migrating completely to the
DB2 12 release and improve availability of the system for application workload. Additionally,
Chapter 2. Continuous delivery 11

the V12R1M500 catalog level is compatible to DB2 11 to support both coexistence and
fallback cases.

Each catalog level is identified by the same identifier as the lowest function level that requires
it. For example, the function level immediately after V12R1M500 would require that the DB2
data sharing group or subsystem is at catalog level V12R1M500. The DB2 catalog level is
shown on the DISPLAY GROUP command output.

2.3 Code level

Each function level requires the DB2 data sharing group or subsystem to be at a specific code
level. That means the required code shipments that support new functions must be applied on
the DB2 data sharing group or subsystem before the corresponding function level can be
activated. Unlike function level, which is a data sharing group’s concept, code level is
pertinent to each member because maintenance can be applied differently on each member.
Each DB2 member in the data sharing group may have its own code level that differs from
another member’s code level.

Each code level is identified by the same identifier as the function level that requires it. For
example, function level V12R1M501 requires that each member of the data sharing group, or
a single DB2 subsystem is at code level V12R1M501. Code level is shown on the DISPLAY
GROUP command output abbreviated by a six-character string such as '121500' (for
V12R1M500), '121501' (for V12R1M501), '111500' (for DB2 11 new function mode).

2.4 Activating a function level

When first starting DB2 12, the current active function level is V12R1M100. This is also true
for the data sharing group even if there is another DB2 11 coexist member. The ACTIVATE
command is used to activate a function level which could be either higher or lower than the
current function level. The ACTIVATE command checks for all required actions before the
command is successful.

Currently, to activate function level V12R1M500 for the new functions shipped at DB2 12
general availability, all members of the data sharing group must be at a DB2 12 code level and
the catalog must already be converted to V12R1M500 level. After the function level
V12R1M500 is activated, another DB2 11 member cannot be started. Future function levels
might have these requirements:

� A DB2 subsystem or all members of a data sharing group must be at a certain code level.

� The catalog must be at a certain level.

� Any other documented requirement.

Notes:

� The DB2 12 general availability code is at code level '121500' (or V12R1M500). This is
because this code level is capable of new functions delivered at the DB2 12 general
availability announcement. Enhancements may be applied at various times followed by
a program temporary fix (PTF), which sets the code level for the appropriate
enhancements. When that PTF is applied, the DB’s code level is changed.

� Changing the code level does not automatically change the function level.
12 IBM DB2 12 for z/OS Technical Overview

Figure 2-5 shows the ACTIVATE command syntax:

Figure 2-5 The ACTIVATE command

The scope of the ACTIVATE command is GROUP. If the specified function level is successfully
activated, a successful message DSNU757I is displayed. A row will also be inserted into the
SYSIBM.SYSLEVELUPDATES catalog table to indicate that the activation completed successfully.

If unsuccessful, then the same DSNU757I message is issued, indicating the reason the group
or DB2 subsystem could not be taken to the specified function level.

The TEST option is useful to determine whether the DB2 subsystem or data sharing group
meets all requirements for the specified function level to be activate. The function level is not
changed with the TEST option.

The next three figures show examples of various ACTIVATE command outputs.

Figure 2-6 shows the user-specified V12R1M500 function level along with TEST. The user
wants to know if the subsystem is ready for this function level. The DSNU757I message
indicates that the subsystem is eligible for the specified level. In addition, because TEST was
not specified, the user received detailed information about each active group member. All of
the members have a current code level of V12R1M500 and the catalog has been migrated to
the V12R1M500 level. This is why the subsystem can be taken to the specified V12R1M500
level.

Figure 2-6 The ACTIVATE command with the TEST option

Figure 2-7 on page 14 shows the user-specified V12R1M500 function level with no TEST
option specified. This means the user wants to activate the V12R1M500 function level.
The DSNU757I message is displayed, indicating that the group successfully activated
the specified function level V12R1M500.
Chapter 2. Continuous delivery 13

Figure 2-7 The successful ACTIVATE command

Figure 2-8 shows the user-specified V12R1M500 function level for activation. The DB2 data
sharing group is in the migration process from DB2 11. The DSNU757I message is displayed
indicating that the data sharing group is not yet ready for the specified level because of
missing catalog update to the V12R1M500 level. In other words, the mandatory CATMAINT
update job for DB2 12 has not yet been run. Because the subsystem or group has not yet
migrated to DB2 12, the catalog level reflects the V11R1M500 level which is DB2 11 NFM
level.

Figure 2-8 The failed ACTIVATE command

2.5 DISPLAY GROUP command

There are a few changes in the output of the DISPLAY GROUP command on DB2 12. DB2 11
shows the catalog level with 3-byte string. In DB2 12, the catalog level is shown in the new
format of 9-byte string, VvvRrrMmmm. The migration mode is no longer displayed. The output
now always shows the following three function levels:

� The current function level is a 9-byte string that indicates the currently activated function
level.

� The highest activated function level is a 9-byte string that indicates highest function level
that was ever activated.

� The highest possible function level is a 9-byte string that indicates the highest function
level that can be activated.

That information can be used to determine the status of the subsystem or data sharing group
prior to activating the next function level.

Another change on the DISPLAY GROUP command is the code level for each DB2 member.
DB2 11 showed the individual DB2 code level as a 3-byte string. In DB2 12, the DISPLAY
14 IBM DB2 12 for z/OS Technical Overview

GROUP command shows each DB2’s code level in the format of 6-byte string, which indicates
version, release, and modification level (vvrmmm).

The examples in the following figures show various DISPLAY GROUP commands used
throughout the migration process, starting from migrating members in the data sharing to
DB2 12 code one at a time, to activating a new function.

Figure 2-9 shows a data sharing group with active, coexist members in DB2 12 and DB2 11
code levels. Some members have migrated to DB2 12 thus the catalog level is V12R1M500.
The DB2 LVL column shows members at code levels of version 12, release 1, modification
500 and version 11, release 1, modification 500.

Figure 2-9 The DISPLAY GROUP command on a data sharing group with coexistence
Chapter 2. Continuous delivery 15

Figure 2-10 shows a data sharing group where all active members have been migrated to
DB12 code level before activating any new function, thus the current function level is
V12R1M100 and the highest possible function level is V12R1M500.

Figure 2-10 The DISPLAY GROUP command on a data sharing group before new function activated
16 IBM DB2 12 for z/OS Technical Overview

Figure 2-11 shows a data sharing group where all active members have been migrated to
V12 code level and new function has been activated. Note that member DB1C at DB2 11
code level will not be able to restart after new function activation because DB2 has a hard
requirement that all members of a data sharing group must be at the code level equal or
greater than the activated function level.

Figure 2-11 The DISPLAY GROUP command on a data sharing group after new function activated
Chapter 2. Continuous delivery 17

Figure 2-12 shows a data sharing group where all active members have been migrated to
DB2 12 code level, a new function has been activated at level V12R1M500 and then activated
down to level V12R1M100 (no more DB2 12 new function enabled). Note that members
DB1D and DB1E with DB2 11 code level will not be able to restart because new function was
previously activated, thus the highest activated function level is V12R1M500.

Figure 2-12 The DISPLAY GROUP command with star function level

Figure 2-13 shows a non-data sharing DB2 subsystem migrated from DB2 11 and new
function has not yet been activated.

Figure 2-13 The DISPLAY GROUP command on non-data sharing member
18 IBM DB2 12 for z/OS Technical Overview

2.6 Catalog changes

When a package or package copy is bound or rebound, the current function level is saved in
the following new columns:

� SYSIBM.SYSPACKAGE.FUNCTION_LEVEL
� SYSIBM.SYSPACKCOPY.FUNCTION_LEVEL

When a row is inserted in SYSQUERY on the BIND QUERY subcommand, the current
function level is saved in the following new column:

� SYSIBM.SYSQUERY.FUNCTION_LVL

2.6.1 The SYSIBM.SYSLEVELUPDATES table

DB2 12 introduces the SYSIBM.SYSLEVELUPDATES catalog table to help track the history
of various changes to code level, catalog level, and function level over time. Each successful
execution of the ACTIVATE command is recorded in the SYSIBM.SYSLEVELUPDATES table
so history of these commands can be reviewed. When a CATMAINT UPDATE LEVEL utility is run
to change the catalog level, a row is also inserted in this table. In addition, the table records
the information when the code level is updated for the DB2 subsystem or members in the data
sharing group.

Table 2-1 shows the columns defined in the SYSIBM.SYSLEVELUPDATES catalog table.

Table 2-1 The SYSIBM.SYSLEVELUPDATES catalog table

Column name Data type Description

FUNCTION_LVL VARCHAR(10) Function level when this record was inserted

PREV_FUNCTION_LVL VARCHAR(10) Previous function level

HIGH_FUNCTION_LVL VARCHAR(10) Highest activated function level

CATALOG_LVL VARCHAR(10) Catalog level when this record was inserted

OPERATION_TYPE CHAR(1) Type of operation:
� “C” for catalog change
� “F” for function level
� “M” for maintenance update

EFFECTIVE_TIME TIMESTAMP(12) Time when the operation completed

EFFECTIVE_LRSN CHAR(10) RBA (or LRSN for data sharing) depicting the time that an operation
completed

OPERATION_TEXT VARCHAR(256) The text of the operation

GROUP_MEMBER VARCHAR(24) Name of the group member on which the operation was executed
Chapter 2. Continuous delivery 19

For the example assume that function levels V12R1M503, V12R1M505, and V12R1M506 are
available after function level V12R1M500. The content of the SYSLEVELUPDATES table in
this example indicates that three ACTIVATE commands were used at different times. The code
levels for both DB2A and DB2B members in the data sharing group were updated prior to
activating the function level V12R1M505. The user can also see the previous function level
immediately before the ACTIVATE command and the highest ever activated function level. Note
the action column values might change from this example when DB2 delivers the next code
level.

Table 2-2 The SYSLEVELUPDATES table's rows

2.7 Application compatibility (APPLCOMPAT)

DB2 11 introduced the concept of application compatibility as a package's APPLCOMPAT
bind option on the BIND PACKAGE, REBIND PACKAGE, and REBIND TRIGGER PACKAGE
subcommands or the CURRENT APPLICATION COMPATIBILITY special register. The
APPLCOMPAT bind option's default value is the APPLCOMPAT subsystem parameter.
Their format consists of version and release levels, and the two values supported in
DB2 11 are V10R1 and V11R1. They were added for the following purposes:

� To handle the application’s incompatible behaviors introduced by a new release

� To enable new SQL functionalities such as new SQL syntax and semantics

APPLCOMPAT will be extended to support specification of function levels. In DB2 12,
APPLCOMPAT is extended to a more granular level with the modification level to follow
the same format as function level. Initially, support for the following specifications of
APPLCOMPAT are available:

� V10R1: SQL behaviors are compatible to DB2 10.

� V11R1: SQL behaviors are compatible to DB2 11.

� V12R1M100: Is equivalent to V11R1.

� V12R1M500: SQL behaviors are compatible to DB2 12 and can be specified only if the
subsystem or data sharing group is at function level V12R1M500 or greater.

Function_lvl Prev_Function_lvl Catalog_lvl Operation_type Effective_time Operation_text Group_Member

V12R1M100 V12R1M100 V12R1M500 C 2017-03-01 CATMAINT
PROCESSING

DB2A

V12R1M500 V12R1M100 V12R1M500 F 2017-03-01 ACTIVATE
FUNCTION
LEVEL(V12R1500)

DB2A

V12R1M500 V12R1M100 V12R1M500 M 2017-06-01 TBD DB2A

V12R1M500 V12R1M100 V12R1M500 M 2017-06-01 TBD DB2B

V12R1M505 V12R1M500 V12R1M500 F 2017-07-01 ACTIVATE
FUNCTION
LEVEL(V12R1505)

DB2B

V12R1M503 V12R1M505 V12R1M500 F 2017-08-01 ACTIVATE
FUNCTION
LEVEL(V12R1503)

DB2A

V12R1M503 V12R1M505 V12R1M506 C 2017-12-01 CATMAINT
(V12R1506)

DB2B
20 IBM DB2 12 for z/OS Technical Overview

As new function levels are introduced, the corresponding new APPLCOMPAT values will also
be introduced for application usage. Example 2-1 shows the BIND PACKAGE syntax.

Example 2-1 The BIND PACKAGE syntax with the APPLCOMPAT option

BIND PACKAGE
>--------------+---+----------------->
 --------------|------APPLCOPMAT----(--V10R1--)---------------|

 (--V11R1--)
 (--function-level--)

Before the user can take advantage of new application capabilities delivered and enabled by
a function level, the user must also specify the corresponding application compatibility value
through the BIND or REBIND subcommand. For instance, to use the SQL syntax specified in
Chapter 6, “SQL” on page 61 the application must be bound with the APPLCOMPAT(V12R1M500)
or greater value.

There are no changes necessary to retrieve the APPLCOMPAT level of a package—the
information is available in the same place as it was in DB2 11. The existing catalog
SYSPACKAGE.APPLCOMPAT column’s data type is VARCHAR(10) and is long enough to
carry the extended format added in DB2 12. Also note that the APPLCOMPAT option on some
Data Definition Language (DDL) statements for SQL routines and advanced triggers also
follows the same format because they are to become the APPLCOMPAT bind option for the
routine or trigger’s corresponding package.
Chapter 2. Continuous delivery 21

Figure 2-14 shows the updated DSNEBP10 panel for application compatibility.

Figure 2-14 The DSNEBP10 migration panel with the APPLICATION COMPATIBILITY zparm

2.7.1 Managing applications through function level changes

On a BIND or REBIND package’s subcommand, DB2 12 checks that the specified application
compatibility value is equal or less than the current function level. This check is skipped on
autobind and REBIND without a new APPLCOMPAT option specified. This check is to ensure
that the new SQL syntax is allowed for the new and changed applications at the appropriate
level and disallowed when the function level has been changed to a lower function level (star
function level). The assumption is that when the function level is activated to a lower level, the
user does not want to expose more new applications to new enhancements in the previous
function level. However, when the existing applications use those enhancements, they should
still be able to execute.

The CURRENT APPLICATION COMPATIBILITY special register has the default value from
the package’s bind option and is applicable to dynamic data manipulation statements.
In DB2 11, the SET CURRENT APPLICATION COMPATIBILITY SQL statement can be
used to change the special register to a value other than the APPLCOMPAT bind option.
The CURRENT APPLICATION COMPATIBILITY special register is still supported in DB2 12.
However, the specified value is V12R1M500 or greater; that value must be the same or less
than the APPLCOMPAT bind option in the package where the SQL statement is executed.
22 IBM DB2 12 for z/OS Technical Overview

DB2 mandates this restriction to avoid failure for existing applications with dynamic SQL
statements when executed in lower star function level. The package’s APPLCOMPAT bind
option does not change when function level changes.

The preference is not to rely on the SET CURRENT APPLICATION COMPATIBILITY SQL
statement in applications if the function level can become a star function level later. Instead,
bind the application’s package with the APPLCOMPAT option at the required function level
and let it be the special register’s default value.

Consider this next example scenario. Assume a DB2 subsystem was activated with function
level V12R1M500 and then later activated back to function level V12R1M100, which is a star
function level. Package A is bound with the APPLCOMPAT(V12R1M500) option and has a
static SELECT ARRAY_AGG statement (which is a DB2 11 syntax) and a dynamic SELECT
OFFSET statement (which is a DB2 12 syntax). Package B is bound with the
APPLCOMPAT(V12R1M100) option and has the same two SQL statements and a SET
CURRENT APPLICATION COMPATIBILITY = V12R1M500 statement before the dynamic
SELECT statement.

Figure 2-15 shows the execution status for each SQL statement in the function levels
described for this scenario. All of the statements are successful except for package B’s SET
CURRENT APPLICATION COMPATIBILITY statement and SELECT statement with the new
OFFSET clause.

Figure 2-15 Two packages with statements executing in function levels V12R1M500 and V12R1M100*
Chapter 2. Continuous delivery 23

2.7.2 Data Definition Language (DDL) statements sensitive to APPLCOMPAT

Similar to when applications that issue DDL statements need to be protected when the
system is activated to a star function level, DDL changes introduced in DB2 12 now require
the APPLCOMPAT setting also. For example, the PAGENUM option on the CREATE
TABLESPACE statement to create a partition-by-growth with relative page number, or the new
TRANSFER OWNERSHIP statement are allowed only when the APPLCOMPAT option of the
containing package is V12R1M500 or greater.

Assuming the time is in increasing order, Figure 2-16 shows the behaviors in various function
levels, including star function level, for new versus existing applications that exploit new
functions.

Figure 2-16 Star function level and new versus existing applications that exploit new functions

DB2 12 saves the APPLCOMPAT option that is in effect when executing the DDL statement
in the new SYSENVIRONMENT.APPLCOMPAT column. This value can be used at various
activities such as pending definition changes, explicit and implicit regeneration of objects,
REPAIR DBD utility, and others. The need might exist to change the value that is saved in
the SYSENVIRONMENT.APPLCOMPAT column for an object. Therefore, a new USING
APPLICATION COMPATIBITY option is added to the ALTER REGERATE statement in
DB2 12 so the user can update the APPLCOMPAT value for the altered object.
24 IBM DB2 12 for z/OS Technical Overview

2.8 SQL processing option SQLLEVEL

A new SQL processing option (precompile and coprocess option), SQLLEVEL, is added in
DB2 12 and has the same format as function level. The SQLLEVEL option plays a similar role
as the package’s APPLCOMPAT bind option. New SQL syntax is allowed by the DB2 12
precompiler or coprocessor based on the setting of the SQLLEVEL option. Similar to the
NEWFUN option, which is only a CHAR(3) data type, SQLLEVEL is used to precompile or
compile without DB2 online. Hence, when the DBRM is bound, the actual bind result depends
on whether or not DB2 is at the appropriate function level.

The NEWFUN processing option is deprecated, although still allowed up to the V12 value. If
the NEWFUN and SQLLEVEL options are specified together, the NEWFUN value is ignored
and the message DSNH4789I is issued. If neither NEWFUN nor SQLLEVEL is specified on a
precompilation or compilation, the DSNHDECP SQLLEVEL parameter is used as the default
value.

The DSNHDECP SQLLEVEL parameter can be set on the DSNTIP41 installation panel
(Figure 2-17). In installation mode, the default setting of this field is the maximum supported
DB2 function level (currently V12R1M500); in migration mode, it is V12R1M100.

Figure 2-17 The DSNTIP41 panel for setting the Pre-compiler SQLLEVEL option
Chapter 2. Continuous delivery 25

2.9 New built-in global variables

To enable an application programming interface (API) for the various levels introduced for
continuous delivery in DB2 12, the following built-in global variables are created. Because of
single-phase migration, an application that retrieves these new variables can execute on a
coexist or fallback DB2 11 member and the values to be returned are indicated.

2.9.1 PRODUCTID_EXT

The PRODUCTID_EXT global variable contains the extended product identifier of the
database manager that invoked the function. This global variable has the following
characteristics:

� It is read only, with values maintained by the system.
� The type is VARCHAR(30).
� The schema is SYSIBM.
� The scope of this global variable is session.

The format of the extended product identifier values is pppvvrrmmm, where ppp is a three-letter
product code (such as DSN for DB2), vv is the version, rr is the release, and mmm is the
modification level (such as 100, 500, 501). For example, DSN1201500 identifies DB2 12 after
the activation of DB2 12 new function (function level 500 or greater). If retrieved on a coexist
DB2 11 member of a data sharing group, the value DSN1101500 is returned.

2.9.2 CATALOG_LEVEL

The CATALOG_LEVEL global variable contains the level of the current catalog. This global
variable has the following characteristics:

� It is read only, with values maintained by the system.
� The type is VARCHAR(30).
� The schema is SYSIBM.
� The scope of this global variable is session.

The format of the catalog level values is VvvRrMmmm, where vv is the version, r is the release,
and mmm is the modification level (such as 100, 500, 501). For example, V12R1M500 identifies
DB2 12 after the activation of DB2 12 new function (function level 500 or greater). If retrieved
on a coexist DB2 11 member of a data sharing group, the value V12R1M500 is returned
because the catalog has been converted to that level.

2.9.3 DEFAULT_SQLLEVEL

The DEFAULT_SQLLEVEL variable contains the default value of the SQLLEVEL SQL
processing option (DECPSQLL). This global variable has the following characteristics:

� It is read only, with values maintained by the system.
� The type is VARCHAR(30).
� The schema is SYSIBM.
� The scope of this global variable is session.

The format of the catalog level values is V10R1, V11R1, or VvvRrMmmm, where vv is the
version, r is the release, and mmm is the modification level (such as 100, 500, 501). For
example, V12R1M500 identifies DB2 12 after the activation of DB2 12 new function (function
level 500 or higher). If retrieved on a coexist DB2 11 member of a data sharing group, the
value V12R1M100 is returned because the group has not yet been activated to new function.
26 IBM DB2 12 for z/OS Technical Overview

2.10 DB2 supplied stored procedures

To accommodate the output change on the DISPLAY GROUP command, the following stored
procedures supplied by DB2 are affected:

� ADMIN_COMMAND_DB2
� GET_CONFIG

2.10.1 ADMIN_COMMAND_DB2

The ADMIN_COMMAND_DB2 stored procedure’s result set data type for the DB2_LVL
parameter is changed as documented in Figure 2-18.

Figure 2-18 Result set row for second ADMIN_COMMAND_DB2 result set (processing-type = "GRP")

Running the DSNTIJRT job with MODE(INSTALL) will define the result table
SYSIBM.DATA_SHARING_GROUP accordingly and bind the DBRMs for the stored
procedure.

Existing DB2 11 applications that call the SYSPROC.ADMIN_COMMAND_DB2 stored
procedure and retrieve the SYSIBM.DATA_SHARING_GROUP result set to access the
DB2_LVL column must be updated to use CHAR(6) instead of CHAR(3).

2.10.2 GET_CONFIG

DB2 12 modifies the XML output of the SYSPROC.GET_CONFIG stored procedure as
follows:

� Returns the following additional information from the output of the -DISPLAY GROUP
command under Common Data Sharing Group Information:

– Data Sharing Group Current Function Level
– Data Sharing Group Highest Activated Function Level
– Data Sharing Group Highest Possible Function Level

� Changes the Data Sharing Group Level key to Data Sharing Group Catalog Level key.

� Removed the Data Sharing Group Mode key.
Chapter 2. Continuous delivery 27

Figure 2-19 shows the XML output.

Figure 2-19 The XML output of the SYSPROC.GET_CONFIG stored procedure

Running the DSNTIJRT job with MODE(INSTALL) defines the result table
SYSIBM.DATA_SHARING_GROUP accordingly and binds the DBRMs for the stored
procedure. Existing applications that call the SYSPROC.GET_CONFIG stored
procedure must be updated to handle the new information.

2.11 Resource access control facility exit

The Resource access control module’s parameter list is changed with a new CHAR(10) field
to reflect the new code level’s format with version, release, and modification levels. The new
field is XAPLLVLX and replacing the deprecated XAPLLVL field.
28 IBM DB2 12 for z/OS Technical Overview

2.12 Instrumentation

The header for all DB2 12 trace records has several new fields to return information for code
level and incompatible changes to a trace record in the continuous delivery code stream:

� QWHS_MOD_LVL

Denotes the code level where the trace record was written.

� QWHS_REC_COMPAT and QWHS_REC_INCOMPAT

Can be used to check whether a trace record’s mapping has a compatible or incompatible
change.

� QWHS_MOD_LVL DS CL10

Code level for continuous delivery.

� QWHS_REC_INCOMPAT DS XL2

Incompatible change value. Incremented each time an incompatible change occurs, such
as changing the size of existing fields in a record or removing fields no longer being set,
which causes the offset to other fields to change.

� QWHS_REC_COMPAT DS XL2

Compatible change value. Incremented each time a compatible change occurs, such as
adding a new field in a reserved area, no longer setting an existing field, or increasing the
size of a record to add a new field) is made.
Chapter 2. Continuous delivery 29

30 IBM DB2 12 for z/OS Technical Overview

Part 2 Subsystem

This part contains the following chapters:

� Chapter 3, “Scalability” on page 33
� Chapter 4, “Availability” on page 43
� Chapter 5, “Data sharing” on page 49

Part 2
© Copyright IBM Corp. 2016. All rights reserved. 31

32 IBM DB2 12 for z/OS Technical Overview

Chapter 3. Scalability

The scalability enhancements for DB2 12 are described in the following topics:

� Range-partitioned table spaces changes
� DB2 internal latch contention relief
� Buffer pool simulation
� Support for sizes greater than 4 GB of active log data sets

3

© Copyright IBM Corp. 2016. All rights reserved. 33

3.1 Range-partitioned table spaces changes

Before DB2 12, the maximum number of partitions for a partitioned table was limited to 4,096
and the maximum partition size was also limited to 256 GB, so the partitioned table could only
have up to 64 partitions if the page size is 4K. The maximum number of partitions for a
partitioned table was dependent on the page size and the partition size. These limitations
existed because data pages were sequentially formatted based on the table space, not based
on each data partition.

DB2 12 introduces a solution for that scenario. A new type of partition-by-range (PBR)
structure called partition-by-range relative page numbering (PBR RPN).

3.1.1 PBR RPN table space characteristics

PBR RPN table space provides many structure differences compared to the previous format,
starting with relative page numbers (RPNs) that represent page numbers without embedded
partition numbers, instead of absolute page numbers.

In PBR structure, the partition size had a limit of 256 GB and PBR RPN enables the DSSIZE
to grow up to 1 TB for a partition, had an increase of the maximum table size from 16 TB
(4K page) to 4 PB, and is designed to go even larger.

Several DB2 internal data structures are expanded to 7-byte RIDs (2-byte part number, 5-byte
page number); achieving up to 256 trillion rows in a single table is also possible.

3.1.2 PBR RPN partitioned index characteristics

The maximum index partition size can be up to 1 TB and the size is independent from the
data partition size.

The record ID (RID) for each index entry will also be 7 bytes. The RID contains a 2-byte
partition number, a 4-byte page number, and a 1-byte record-id within the data page.

The index header page will record the index partition number and an indicator to indicate it is
a PBR RPN partitioned index.

The index page numbers within each index partition do not include the index partition number.

3.1.3 PBR RPN non-partitioned index characteristics

Non-partitioned index (NPI), on PBR RPN table spaces, continues to have the same
characteristics as for NPI in the previous DB2 versions, with some exceptions:

� For 4K, 8K, 16K, or 32K index page size, the maximum index space size will continue to
be limited to 16 TB, 32 TB, 64 TB, or 128 TB, respectively.

� The maximum PIECESIZE size is limited to the DSSIZE of the table space, with a
maximum value of 256 GB; the default is 4 GB. Altering the PIECESIZE will result in the
index being placed into page set rebuild pending (PSRBP).

� The RID length in NPI is 7 bytes.

� The PAGENUM setting in SYSINDEXES and SYSINDEXPART will be 'A' to reflect
absolute page numbering.

� The header page will indicate that relative page numbering is used.
34 IBM DB2 12 for z/OS Technical Overview

3.1.4 PBR RPN considerations

The creation of PBR RPN table space is performed by CREATE table space or CREATE table
(implicit space) that has page format that differs from PBR table spaces. DEFINE NO is used
to avoid formatting of page sets. The table may have partitioned and non-partitioned indexes.

A ZPARM parameter (PAGESET_PAGENUM) is used to control whether creation of
range-partitioned uses relative page numbering. This ZPARM parameter applies when the
PAGENUM keyword is not specified on a CREATE TABLESPACE or CREATE TABLE with
implicit table space creation.

Figure 3-1 shows the syntax diagram for CREATE TABLESPACE with PAGENUM RELATIVE
option.

Figure 3-1 Syntax diagram for CREATE TABLESPACE

The existing PBR table spaces can be converted to PBR RPN with the ALTER TABLESPACE
statement by specifying PAGENUM RELATIVE. The ALTER TABLESPACE statement syntax
representation is shown in Figure 3-2 on page 36.
Chapter 3. Scalability 35

Figure 3-2 ALTER TABLESPACE statement syntax for PBR RPN conversion

This conversion by the ALTER statement results in a pending ALTER that sets the table space
in an AREOR (advisory reorganized pending) restrictive state. Then, when the entire table
space is reorganized with the REORG utility, the table space changes to be a PBR PRN table
space with all table space partitions and partitioned indexes formatted to use relative page
numbering.

Index and XML DSSIZE benefited from dependency removal between partition and partition
size. DSSIZE can be altered for a partitioned index and XML table space partition,
independent of the table space specification.

Figure 3-3 shows the new DSSIZE option on the CREATE INDEX syntax diagram.

Figure 3-3 DSSIZE keyword syntax diagram

The log record formats were changed to support 7-byte RIDs and the DSN1LOGP now
formats partition number explicitly.

The new type of RPN objects can be created or altered only with the application compatibility
of V12R1M500.

3.2 DB2 internal latch contention relief

DB2 12 provides internal latch contention relief to the following latch contention classes:

� LC14 buffer manager latch
� LC19 log latch
� LC23 page latch timer
� LC24 EDM latch
36 IBM DB2 12 for z/OS Technical Overview

Figure 3-4 compares DB2 12 and DB2 11 for which log latch reduction results were obtained
in a special insert test case.

Figure 3-4 Log latch reduction comparison

3.3 Buffer pool simulation

The benefit from increasing the size of buffer pool varies depending on the environment
workload. Buffer pool simulation provides accurate simulation results from increasing the
buffer pool size as it was in a real workload for a production environment.

To explain how buffer pool simulation works, the following scenario is used in an example:

� IBM Fictional Brokerage online transaction workload uses two-way data sharing, with
approximately 3000 transactions per second (TPS).

� Originally uses a total of 14 GB (7G * 2) local buffer pools.

� Simulate buffer pool one (BP1) to expand from 8 MB to 2 GB, total 18GB (9G * 2) buffer
pools.

� Collect statistics data or DISPLAY BUFFER POOL command outputs.

Figure 3-5 shows the buffer pool simulation steps.

Figure 3-5 Buffer pool simulation steps
Chapter 3. Scalability 37

Figure 3-6 shows the representation for display output from –DIS BPOOL (BP1) DETAIL for the
measurement interval.

Figure 3-6 Display output from –DIS BPOOL (BP1) DETAIL

To calculate numbers of avoidable sync I/O per second, the formula in Example 3-1 is used.

Example 3-1 Numbers of avoidable sync I/O per second calculation

Sync READ I/O (R) + SYNC READ I/O (S) / interval =
(avoidable sync I/O per second)

By adding the values related to the example, the calculation is as follows:

(25463982 + 81181) / 360 = 70958 I/O per sec

The simulation and validation results are shown in Figure 3-7 on page 39 and Figure 3-8 on
page 39.

Note: The preference is to reset SPSIZE(0) when simulating more than one SPSIZE and
also to take enough samples (2 - 3 hours) per SPSIZE.
38 IBM DB2 12 for z/OS Technical Overview

Figure 3-7 Simulation and validation results: Sync I/Os per second from BP1

Figure 3-8 Simulation and validation results: Performance improvement by expanding BP1
Chapter 3. Scalability 39

3.4 Support for sizes greater than 4 GB of active log data sets

Versions before DB2 12 support up to 4 GB size of active log data sets; DB2 12 greatly
increased the size of active log data sets to 768 GB.

Two methods are available to add new active log data sets that are greater than 4 GB:

� DB2 stand-alone utility DSNJU003

After DB2 new function is activated, stop DB2, run DSNJU003 NEWLOG to add the new
log, then restart DB2.

� DB2 -SET LOG NEWLOG command

After DB2 new-function mode is up, issue the command to add the new log.

When detecting >4GB logs in non-new function mode, log manager will issue a new error
message DSNJ158I. Furthermore, if detected during DB2 start, DB2 will be terminated with
abend code 00E80084. If it is from a -SET LOG command, the command will fail.

Alternatively, new message DSNJ159I is issued in new function when >768GB active log data
set size is detected.

Changes to messages DSNJ158I and DSNJ159I are described in the following list:

� New message DSNJ158I

DSNJ158I csect-name ACTIVE LOG DATA SET DSN=dsname IS GREATER THAN 4 GB IN SIZE

– Explanation

DB2 detected an active log data set greater than 4 GB in size. At that time DB2 V12
new function was not activated yet.

– dsname

The data set name for the active log encountering the error.

– System action

If it occurred from processing the -SET LOG NEWLOG command, the command failed. If it
occurred during DB2 start, DB2 abnormally terminated with 00E80084.

– System programmer response

If from the -SET LOG NEWLOG command, reallocate the data set to be less than 4 GB in
size. Then, retry the command. Greater than 4 GB is valid only after DB2 V12 new
function has been activated. Use the -DISPLAY GROUP command to show NEW
FUNCTION(Y) or (N).

If from DB2 start, reallocate the data set to be less than 4 GB in size or use DSNJU003
utility with DELETE dsname to remove the data set. Then restart DB2. Greater than 4 GB
is valid for DB2 restart only after DB2 V12 new function has been activated before.

Note: When a VSAM data set greater than 4 GB is defined, an association with System
Management Services (SMS) data class is required where the extended addressability
(EA) attribute is set to YES. The support >4GB log will be allowed only after DB2 12
new-function mode has been activated.
40 IBM DB2 12 for z/OS Technical Overview

� New message DSNJ159I

DSNJ159I csect-name ACTIVE LOG DATA SET DSN=dsname IS GREATER THAN 768 GB IN
SIZE

– Explanation

DB2 detected an active log data set greater than 768 GB in size, which is not
supported. The maximum size is 768 GB in DB2 V12 new function.

– dsname

The data set name for the active log encountering the error.

– System Action

If it occurred from processing the -SET LOG NEWLOG command, the command failed. If it
occurred during DB2 start, DB2 abnormally terminated with 00E80084.

– System programmer response

If from -SET LOG NEWLOG, reallocate the data set to be less than 768 GB in size. Then,
retry the command.

If from DB2 start, reallocate the data set to be less than 768 GB in size or use
DSNJU003 DELETE DSNAME to remove the data set. Then restart DB2.

Although the new maximum size for active log data sets is 768 GB, you might opt for size
less than 768 GB. The active log data set is allocated with a primary allocation quantity
and zero secondary quantity. The maximum volume size is 54 GB for a 3390-9, and
223 GB for a 3390-A EAV (extended address volume) unless copy services IBM
FlashCopy®, mirror, or PPRC) are not used, and then it is 1 TB. Offload to archive logs will
be another factor in choosing the optimal size. The archive log data set (vs tape), which is
a sequential data set, might require extended format (EF) to accommodate the new large
size.
Chapter 3. Scalability 41

42 IBM DB2 12 for z/OS Technical Overview

Chapter 4. Availability

This chapter introduces availability improvements by the following enhancements:

� Improved availability for pending definition changes
� Catalog availability improvements
� Removal of point-in-time recovery restrictions for PBG table spaces
� PBR RPN DSSIZE increase
� Insert partition
� REORG enhancements for PBGs, FlashCopy and LOBs
� LOAD RESUME YES BACKOUT YES option
� Faster point-in-time recovery
� TRANSFER OWNERSHIP SQL statement
� Auto-retry of GRECP and LPL recovery

4

© Copyright IBM Corp. 2016. All rights reserved. 43

4.1 Improved availability for pending definition changes

DB2 12 introduces availability improvements for pending definition changes, allowing
applications to access objects that in the previous DB2 releases had a restriction status that
prevented the access. This section describes two enhancement improvements:

� Altering index compression attribute
� Altering column

4.1.1 Altering index compression attribute

Indexes with a page size greater than 4 KB can be compressed to 4K page on DB2, and as a
result, DASD space is saved and achieves improved I/O efficiency.

However, when the compress attribute of an index in universal table space was altered, the
index was marked as a rebuild pending (RBDP) status, preventing applications from using the
index until the REORG TABLESPACE utility or the REBUILD INDEX utility completed.

DB2 12 introduces an improvement to the availability of indexes in universal table spaces,
now alterations to index compression are a pending change, placing the index in advisory
REORG-pending (AREOR) status, therefore applications can continue to access the indexes.

The updated value for the COMPRESS attribute in the ALTER INDEX statement is
materialized by a subsequent online REORG INDEX or online REORG TABLESPACE at
the table space level. With this improvement, database administrators can correct or remove
a pending change to index compression without affecting the target index. Also, this
improvement reduces the planning and costs that are associated with an application outage
caused by the previous behavior in DB2 11.

A new record is inserted in the SYSIBM.SYSPENDINGDDL catalog table with the following
information, when an ALTER INDEX COMPRESS is issued:

� OBJTYPE column = 'I'

� OPTION_KEYWORD = 'COMPRESS'

� OPTION_VALUE = 'xxx' ('YES' or 'NO')

4.1.2 Altering column

In the previous DB2 releases, DB2 provided the capability to alter column attributes such as
data type, length, precision, or scale of columns for a table through ALTER TABLE statement
with the ALTER COLUMN clause, but these alterations impact the availability or extra
performance overhead is required.

For example, in DB2 11, some column definition changes are immediate changes. That
means the affected indexes on the table are put in a restricted status. These indexes are not

Notes:

� If the index is defined with the DEFINE NO attribute and data sets are not created yet,
the alteration is still immediate.

� Also, for an index that is not in a universal table space, an alteration to index
compression can be a pending change if other pending changes exist at the index,
table, or table space level when the ALTER INDEX COMPRESS statement runs.
44 IBM DB2 12 for z/OS Technical Overview

available to be used in an access path optimization process. If a unique index is placed in
restrictive status, it results in an outage to the table.

DB2 12 enables ALTER COLUMN statements that change the data type, length, precision, or
scale of columns in pending alterations.

For more information about columns be pending alteration, see 9.3, “Column level deferred
alter (pending alter column)” on page 154.

4.2 Catalog availability improvements

This section describes the following catalog availability improvements in DB2 12:

� Handling dynamic SQL statement
� Single phase catalog migration

4.2.1 Handling dynamic SQL statement

When a transaction issues dynamic SQL statements, DB2 dynamically prepares the SQL
statements for execution. During preparation of dynamic SQL, DB2 acquires read claims on
several catalog table spaces and related indexes, and acquired a DBD lock on the catalog.
The DBD lock is needed to serialize catalog operations with CATMAINT and other DDL that
can execute against the catalog.

In previous releases of DB2, the transaction released the DBD lock and the read claims at
commit points. If transactions with dynamic SQL statements did not issue commit operations
for a long period of time, CATMAINT and online REORG on the catalog were blocked during
that long period.

DB2 12 manages releases DBD locks on the catalog and read claims against catalog objects,
as soon as PREPARE statement execution is complete, so this change improves availability
for CATMAINT utility and online REORG on catalog objects.

4.2.2 Single phase catalog migration

In DB2 11, the catalog is converted to DB2 11 format during migration to conversion mode.
Then, it is converted again during the enable new function mode. Each time the catalog is
updated, that can impact applications that access the catalog and other internal DB2
activities such as real-time statistics, which also updates certain catalog tables. These
contentions can result in an unavailable resource condition and failed application or catalog
update processes.

DB2 12 improves availability on the catalog resource by having only a single-phase migration.
There is only one CATMAINT job to convert the catalog to DB2 12 level. The V12R1M500
catalog level can be used for new function activation (to get to new-function mode) and
handled by the coexistence of fallback DB2 11 also. For more information, see Chapter 12,
“Installation and migration” on page 199.
Chapter 4. Availability 45

4.3 Removal of point-in-time recovery restrictions for PBG
table spaces

In DB2 12, the following restrictions were removed for point-in-time (PIT) recovery for
partition-by-growth (PBG) table spaces:

� Alteration of SEGSIZE
� Alteration of DSSIZE
� Alteration of Buffer Pool
� Alteration of MEMBER CLUSTER

With these restrictions removed, DB2 enables the data to be available for recovery even after
any of those alterations were performed. In this way, running an additional REORG to
materialize the data and then recover to the required recovery point is unnecessary.

More information is described in 11.1.5, “Point-in-time recovery enhancements” on page 183.

4.4 PBR RPN DSSIZE increase

DB2 12 introduces a solution for the scenario described above described in 4.3, “Removal of
point-in-time recovery restrictions for PBG table spaces” on page 46. A new type of
partition-by-range (PBR) structure called partition-by-range relative page numbering (PBR
RPN) allows DSSIZE to grow up to 1 TB for a partition. Also, the maximum table size has
increased from 16 TB (4K page) to 4 PB, and designed to grow even larger.

PBR RPN improves application availability when is necessary to change the DSSIZE
because up to DB2 11 a REORG execution was required and now an immediate ALTER is
allowed, this way, not preventing the access to the related objects.

For more information about PBR RPN structure characteristics and more considerations, see
Chapter 3, “Scalability” on page 33.

4.5 Insert partition

DB2 12 allows a partition be added in the middle of the table dynamically through the ALTER
statement. With this enhancement, the availability of the objects is much better because the
objects do not have to be dropped, re-created, and populated with data.

For more information, see Chapter 9, “Administrator function” on page 131.

4.6 REORG enhancements for PBGs, FlashCopy and LOBs

This section describes the following REORG enhancements:

� Partition-by-growth (PBG)
� FlashCopy
� Large object (LOB)
46 IBM DB2 12 for z/OS Technical Overview

4.6.1 Partition-by-growth (PBG)

In DB2 12, the REORG utility is improved to support the creation of a new PBG partition for
overflow rows during a partition-level REORG, thereby improving the availability of data.

For more detailed information about REORG enhancements related to PBG table space, see
Chapter 11, “Utilities” on page 177.

4.6.2 FlashCopy

DB2 12 avoids leaving the page set in COPY-pending when the REORG utility is run to create
an inline FlashCopy with no sequential inline image copy and FlashCopy fails. If FlashCopy
runs unsuccessfully, the REORG completes with a return code of 8.

For more detailed information about REORG enhancements related to improve FlashCopy
management, see Chapter 11, “Utilities” on page 177.

4.6.3 Large object (LOB)

A new feature in DB2 12 prevents the COPY-pending restriction status on a LOB table space
during REORG of partition-by-growth (PBG). An inline image copy is allocated for the new
LOB table space that is created.

For more detailed information about REORG enhancements that are related to prevention of
COPY-pending on a LOB table space, see Chapter 11, “Utilities” on page 177.

4.7 LOAD RESUME YES BACKOUT YES option

The LOAD utility applying the RESUME YES BACKOUT YES function was retrofitted to
DB2 11 and is now available in DB2 12.

DB2 availability is improved because when the RESUME YES BACKOUT YES function is
specified, all rows loaded by the current LOAD should be deleted if any input record has
violations. The table space is available at the completion of the LOAD.

BACKOUT or BACKOUT YES is allowed with only SHRLEVEL NONE. BACKOUT or
BACKOUT YES is not allowed with INCURSOR.

Figure 4-1 shows the syntax diagram for LOAD RESUME YES BACKOUT YES.

Figure 4-1 Syntax diagram for LOAD RESUME YES BACKOUT YES
Chapter 4. Availability 47

4.8 Faster point-in-time recovery

Point-in-time recovery can run faster with the following enhancements that are described in
this section, improving the availability of the related objects in the recovery:

� Single object by defaulting to the PARALLEL(1) option
� SCOPE UPDATED keyword

4.8.1 Single object by defaulting to the PARALLEL(1) option

This option indicates that the RECOVER utility should perform parallel restoring of image
copies when processing multiple objects. However, the PARALLEL(1) option can also improve
performance for recovery of a single object. In DB2 12, the RECOVER utility defaults to use
the PARALLEL(1) option even for recovery of a single object, thereby improving the
performance of data recovery.

4.8.2 SCOPE UPDATED keyword

DB2 12 introduces the SCOPE UPDATED keyword, applied when the RECOVER utility uses
the TORBA option or the TOLOGPOINT option. As a result, the RECOVER utility runs faster
because the objects that are specified in LISTDEFlist that have not changed since the
recovery point are not recovered. DB2 12 does not waste time recovering unnecessary data
sets.

For more information about SCOPE UPDATE keyword, see Chapter 11, “Utilities” on
page 177.

4.9 TRANSFER OWNERSHIP SQL statement

DB2 12 introduces the TRANSFER OWNERSHIP SQL statement, providing support for
changing ownership of an object while keeping the object available. Up through DB2 11, the
object must be dropped and re-created, which affects availability.

More detailed information related to TRANSFER OWNERSHIP SQL statement is in
Chapter 10, “Security” on page 167.

4.10 Auto-retry of GRECP and LPL recovery

DB2 12 implements retry logic for the logical page list (LPL) and group buffer pool recovery
pending (GRECP) recovery works. This logic is applied when automatic recovery of GRECP
and LPL fail, so the object becomes available faster.

For more information about how auto-retry of GREPC and LPL recovery works, see
Chapter 5, “Data sharing” on page 49.
48 IBM DB2 12 for z/OS Technical Overview

Chapter 5. Data sharing

DB2 data sharing can provide the following advantages over other database architectures:

� Separate, independent DB2 systems

� Improved DB2 availability during both planned and unplanned outages

� Increased scalability because you are not bound by the limits of a single DB2 system

� Greater flexibility when configuring systems

These advantages and an overview of the operational aspects of data sharing are described
in detail in DB2 12 for z/OS Data Sharing: Planning and Administration, SC27-8849.

DB2 12 for z/OS offers a number of data sharing enhancements to provide improved
availability, scalability, and performance:

� DDF shared session data across the data sharing group.

� In-memory indexes can reduce the number of Get Page requests and group buffer pool
requests.

� Improved insert space search can avoid P-lock contention and streamline inserts.

� UNLOAD ISOLATION(UR) utility avoids coupling facility page registration.

This chapter describes the following enhancements to data sharing:

� DISPLAY GROUP command
� XA support for global transactions
� Peer recovery
� Automatic retry of GRECP and LPL recovery
� Improved lock avoidance checking
� Asynchronous lock duplexing

5

© Copyright IBM Corp. 2016. All rights reserved. 49

5.1 DISPLAY GROUP command

DB2 12 for z/OS introduces the concept of continuous delivery where enhancements are
delivered continuously in the maintenance stream as they are available. Starting at release
migration or new installation, a function level is used to identify the set of enhancements and
capabilities available on the system. Similar to DB2 11 for z/OS where compatibility mode and
new function mode are available modes for a data sharing group, a group with DB2 12
members can have the corresponding function level V12R1M100 or V12R1M500 respectively
(or 100 and 500 for short). In DB2 12 for z/OS, the -DIS GROUP command no longer shows the
mode. Instead, its output is changed to show the following function levels, which belong to the
entire data sharing group (not individual member’s property):

� Current function level

This is the currently active function level for the data sharing group. The -ACTIVATE
command is used to change the current function level.

� Previously activated function level

This is the function level that was last activated before the current function level. The
previous activate function level might be higher than or level with the current function level.
If a previously activated function level is higher than the current function level, then the
current function level can be displayed with an asterisk (*) at the end, which is also called
star function level (similar to the star modes CM*, ENFM* in DB2 11 for z/OS).

� Highest activated function level

This is the highest function level that is activated so far. The highest activated function
level might be higher than or level with the current function level. If the highest activated
function level is higher than the current function level, then the current function level can
be displayed with an asterisk (*) at the end (as mentioned, this is similar to the star modes
CM*, ENFM* in DB2 11 for z/OS).

Other useful information about the -DIS GROUP command is each DB2 member’s code level.
The code level is shown with each member’s subsystem name, member ID, command prefix,
and so on. The code level is the applied PTF that provides the capability on each member. All
members must have at least the equivalent code level to the function level that is specified on
the -ACTIVATE command. The individual member’s code level is shown in the format VVRMMM
where VV is version, R is release, and MMM is the modification level. This differs from DB2 11 for
z/OS where the DB2 code level is three characters in the format VVR where VV is version, and
R is release.

For more information on the -DISPLAY GROUP command changes, see Chapter 2,
“Continuous delivery” on page 7.

5.2 XA support for global transactions

To use XA support with client applications communicating to a DB2 data sharing group, the
user must set up dynamic virtual IP addresses. A dynamic IP address must be configured for
the DB2 group, and one IP address must be set up for each DB2 member in the group. Prior
to DB2 12, DB2 was restricted in terms of its transaction architecture. For example, multiple
XA transactions using the same transaction ID (XID) or multiple branches of a global
transaction may not share resources (locks) in a data sharing environment. When different XA
resources on the same global XID connect to different members of the data sharing group
(either intentionally or by Workload Manger), the queries running on the global transaction
may experience contention against each other and time out. The same condition can occur
50 IBM DB2 12 for z/OS Technical Overview

when multiple XA transactions with different branches of the same global transaction connect
to different DB2 members with Sysplex Workload Management enabled. This is because the
DB2 server threads on different members are not able to share locks.

DB2 12 improves that situation where multiple connections on the same global transaction
(global transaction ID and format ID but branch qualifier IDs are different) are serviced by
different members of the data sharing group. A member is consider the owner of the global
transaction when that member is the first member connected to by the first XA resource using
an XA connection. That member writes an entry in the SCA structure with the global
transaction ID, format ID, the owning member’s IP address and port. Then when a
subsequent XA resource using an XA connection to connect to another member with the
same global transaction, that other member queries the SCA structure to determine the
owning member. A DRDA connect request is built and routed to the owning member using its
IP address and port. In this way, the subsequent queries actually run on the same member
and avoid a lock issue when branches of the global transaction connect to different members.

Figure 5-1 shows the interaction between two XA connections in the same global transaction
and one is being rerouted.

Figure 5-1 XA global transaction

Example 5-1 shows some Java code snippet that builds different branches of the same global
transaction connecting to different DB2 data sharing members and issuing UPDATE
statements on the same table.

Example 5-1 Java code with multiple branches of the same global transaction executing UPDATE on different members

/* Initialize data source members */
com.ibm.db2.jcc.DB2XADataSource dataSource1 = new com.ibm.db2.jcc.DB2XADataSource();
com.ibm.db2.jcc.DB2XADataSource dataSource2 = new com.ibm.db2.jcc.DB2XADataSource();
dataSource1.setDatabaseName("STLEC1");

dataSource1.setServerName("9.30.85.33"); // 1st member's IP address
dataSource1.setPortNumber(446);

dataSource1.setClientApplcompat("V12R1"); // set DB2 12 DDF new function
dataSource2.setDatabaseName("STLEC1");
dataSource2.setServerName("9.30.85.36"); // 2nd member's IP address
dataSource2.setPortNumber(446);

dataSource2.setClientApplcompat("V12R1"); // set DB2 12 DDF new function
/* XA Transaction */
javax.sql.XAConnection xaCon1 = null;
javax.sql.XAConnection xaCon2 = null;

java.sql.Connection con1 = null;
java.sql.Connection con2 = null;

/* Get XA Connections from data source members */
xaCon1 = dataSource1.getXAConnection();

xaCon2 = dataSource2.getXAConnection();
Chapter 5. Data sharing 51

/* Get XA Resources from XA Connections */
javax.transaction.xa.XAResource xaR1 = xaCon1.getXAResource();

javax.transaction.xa.XAResource xaR2 = xaCon2.getXAResource();

/* Get Connections from XA Connections */
con1 = xaCon1.getConnection();

con2 = xaCon2.getConnection();

/* Get Statements from Connections */
java.sql.Statement s1 = con1.createStatement();
java.sql.Statement s2 = con2.createStatement();

/* Assuming bid1 and bid2 are different branch values, the following code */
/* generates 2 XID's: xid1 and xid2 using the same format ID and global ID */
com.ibm.db2.jcc.DB2Xid xid1 = new com.ibm.db2.jcc.DB2Xid(fid, gid, bid1);
com.ibm.db2.jcc.DB2Xid xid2 = new com.ibm.db2.jcc.DB2Xid(fid, gid, bid2);

/* Begin transactions by invoking the start method with the TMLCS parm */
/* requesting that loosely coupled transactions are able to share locks. */

xaR1.start(xid1, com.ibm.db2.jcc.DB2XAResource.TMLCS);
xaR2.start(xid2, com.ibm.db2.jcc.DB2XAResource.TMLCS);
/* Both UPDATE statements below run on the same member with IP */

 /* address of 9.30.85.33. Though the 2nd UPDATE is first routed to */
 /* member with IP address of 9.30.85.36, it is routed to owning */
 /* whose IP address is 9.30.85.33. */
s1.execute("UPDATE TEMP SET ID = 123456789 WHERE ID = 159357");

s2.execute("UPDATE TEMP SET ID = 789456123 WHERE ID = 753951");

xaR1.end(xid1, javax.transaction.xa.XAResource.TMSUCCESS);
xaR2.end(xid2, javax.transaction.xa.XAResource.TMSUCCESS);
/* All connections with different branch qualifiers need to separately prepare */
xaR1.prepare(xid1);
xaR2.prepare(xid2);
/* All connections with different branch qualifier need to separately commit */
xaR1.commit(xid1, false);
xaR2.commit(xid2, false);

5.3 Peer recovery

Since the data sharing introduction in DB2 Version 4, customers have been using Automatic
Restart Manager (ARM) or other external mechanisms to restart a member automatically
when DB2 or the LPAR that DB2 is on fails. Many data sharing customers want DB2 to be
able to restart another peer DB2 member in the same data sharing group in the event that a
member fails. With this feature, customers no longer need to implement an external
mechanism to perform the automatically recovery process for a failed DB2 and would address
the DB2’s goal for reliability.

DB2 12 introduces an enhancement to restart a peer member automatically for retained lock
recovery in case of LPAR failures without requiring ARM or external automation. A new
DSNZPARM is introduced, PEER_RECOVERY, to specify whether this data sharing member
is to participate in data sharing peer recovery.
52 IBM DB2 12 for z/OS Technical Overview

These are the acceptable values:

� NONE

This member is not involved in the peer recovery process. NONE is the default value.

� RECOVER

This member should be recovered by a peer member in case this member fails.

� ASSIST

This member is to assist to recovery another peer.

� BOTH

This is the combination of RECOVER and ASSIST options.

PEER_RECOVERY DSNZPARM can be specified on the installation panel DSNTIPK and is
online-changeable.

Upon receiving the notification from z/OS that a peer member with a PEER_RECOVERY
setting of RECOVER or BOTH has failed; all surviving members that have the
PEER_RECOVERY setting of ASSIST or BOTH serializes the recovery process by obtaining
a global lock. The first assisting member having the lock attempts to restart the failed peer
DB2 by issuing the START DB2 command with the LIGHT(YES) option. The last DSNZPARM
load module used by the failed peer is also used to automatically restart it. Light restart is
requested because the goal is to handle retained locks only.

If this light restart results in a failure, another assisting member can retry the process to
recover the same instance of the failed member. When all members have tried and the failed
member still cannot be recovered, a manual intervention is needed to restart that DB2.

5.4 Automatic retry of GRECP and LPL recovery

When a group buffer pool structure fails before data in the structure is written into DASD, the
group buffer pool is put in the group buffer pool recovery pending (GRECP) state. The START
DATABASE command must be issued to recover the data. DB2 also attempts to recover the
GRECP state as soon as it occurs.

The logical page list (LPL) contains a list of pages (or a page range) that cannot be read or
written for reasons such as the transient disk read and write problems, which can be fixed
without redefining new disk tracks or volumes.

Specific to data sharing, the LPL also contains pages that cannot be read or written for
“must-complete” operations, such as a commit or a restart, because of a problem with the
coupling facility. For example, pages can be added if a channel failure occurs to the coupling
facility or disk, or if locks are held by a failed subsystem, disallowing access to the needed
page.

As soon as the pages are added to the logical page list, an automatic LPL recovery is
attempted by DB2. Automatic LPL recovery is also performed when the user issues the
START DATABASE command with ACCESS(RW) or ACCESS(RO) option for the table space,
index, or partition.

Automatic recovery of GRECP and LPL was introduced in DB2 9. However, if these automatic
recovery processes fail for some reason, then the object in the GRECP or LPL status remains
as is, and the user must reinitiate the recovery process by issuing the START DATABASE
command.
Chapter 5. Data sharing 53

To improve availability, DB2 12 implements the retry logic for the GRECP and LPL recovery
processes. This retry is initiated at three-minute intervals.

5.5 Improved lock avoidance checking

DB2 keeps track of the oldest write claim on a page set/partition and stores it as the
system-level commit log record sequence number (LRSN). In a data sharing environment, for
insert applications, the system-level commit LRSN is the key to better lock avoidance. To take
the best advantage of avoiding locks or reusing deleted space, all applications that access
data concurrently should issue COMMIT statements frequently. However, some applications
cannot issue COMMIT often because application logic causes the system-level commit and
read LRSN to remain old even though the majority of objects are already committed. This can
cause other threads running other applications to experience an increase of lock requests
because DB2 cannot exploit the lock avoidance logic.

In some cases, DB2 also keeps track of the read interest on a page set/partition and stores it
as the system-level read LRSN. Read LRSN is used by DB2 space management scheme to
determine if a deleted LOB space can be reused. In certain cases, with DB2 10, a deleted
LOB space is not reused effectively and causes the LOB space to grow. You can define LOBs
as inline LOBs to avoid the LOB space reuse problem, but this workaround leads to another
problem which is the base table space reuse problem. You must then run REORG to reclaim
the unused space.

DB2 12 improves both performance and space issues by providing greater granularity for
commit LRSN and read LRSN. These values are kept at the object level (page set or
partition) in each DB2 member’s memory. Each member can track a maximum of 500
object-level commit and read LRSN values. These are the oldest values for each object and
are advanced at commit. When a page is accessed, the page’s LRSN will be compared to the
object-level LRSN to determine whether a lock is needed. When the object is not in the track
list, the highest LRSN value from the list will be used for comparison. This technique is also
used in non-data sharing. In data sharing, each member also needs a global view of which
other members are also using this object. Therefore, the object-level commit and read LRSN
values are also stored in the SCA structure for each member.

5.6 Asynchronous lock duplexing

Up through DB2 11, the DB2 lock structure managed by IMS Resource Lock Manager (IRLM)
can be set up with system-managed duplexing for availability in case a coupling facility (CF)
failure occurs. This feature is available with CF Level 11. System-managed duplexing for any
coupling facility structure requires every structure update to occur in both primary and
secondary structures at the same time. Two identical commands are sent to both structures
with sequence numbers to be executed in parallel, and both must complete successfully
before the update request is returned to IRLM as the exploiter. The drawback with this
synchronous approach is performance overhead when the two structures are located further
away from each other (such as distance greater than 10 kilometers). This overhead can be
visible to a DB2 transaction making updates to the database and waiting for lock requests
(both primary and secondary structure updates) to be completed.
54 IBM DB2 12 for z/OS Technical Overview

With DB2 12, the new feature, asynchronous duplexing for lock structures, is introduced to
address the performance issue while maintaining the availability advantage. Figure 5-2 shows
the 2 DB2 data centers with larger distance and the system-managed duplexing group buffer
pools, SCA and lock structures.

Figure 5-2 Data centers for system-managed duplexing structures

This feature, which uses the z/OS asynchronous duplexing support for lock structures in the
coupling facility, has these requirements:

� CF Level 21 with service level 02.16
� z/OS V2.2 SPE with PTFs for APAR OA47796
� DB2 12 with PTFs for APAR PI66689
� IRLM 2.3 with PTFs for APAR PI68378

With asynchronous duplexing, the lock requests from a DB2 transaction will be sent to IRLM
and the z/OS cross-system extended services (XES) to the primary lock structure only.
XES will return a sequence number to IRLM and DB2 as soon as the primary structure's
update is done. Meanwhile a request to update the secondary structure is sent by XES in the
background. Each thread keeps track of the secondary structure’s update sequence number
and the oldest is saved at the DB2 member level. When a forced log write is needed for the
transaction (such as at COMMIT), DB2 and IRLM will check with XES that the oldest
sequence number's request has been successfully written to the secondary structure. Most of
the time, the secondary structure that was updated should have been completed because
continuous requests have been submitted to it in the background. If not, DB2 log write
process is suspended until updates to the secondary structure are done, and this suspend
time is accounted in the DB2 log write suspend time.

This approach usually has performance result similar to the simplex lock structure because
there is no waiting for dual structure updates in the mainline request to the primary structure.
The continuous, asynchronous background updates to secondary structure ensures
completion in a timely manner and achieves the duplexing functionality for availability in the
case when the primary structure fails.
Chapter 5. Data sharing 55

To exploit asynchronous duplexing, the CFRM couple data set (CDS) must be formatted
with new ASYNCDUPLEX keyword, and the CFRM policy for DB2 lock structure must be
updated with new ASYNCONLY keyword. After this CDS is in effect, a simple z/OS
SET XCF,REALLOCATE command can start rebuilding the lock structure with asynchronous
duplexing protocol, assuming all DB2 and IRLM members in the data sharing group have
joined with the appropriate code level PTFs.

The z/OS DISPLAY XCF,STR command support can be used to check structure status with
regard to the CFRM policy for duplexing (structures that are duplexed, or are in the process of
establishing duplexing, or are in the process of falling out of duplexing).

Figure 5-3 shows the z/OS DISPLAY XCF command output, which displays the asynchronous
duplexing status for the lock structure.

Figure 5-3 The z/OS DISPLAY XCF command output

Upon restarting DB2 12, DB2 identifies to IRLM and if IRLM has the PTF for APAR PI68378,
IRLM will request asynchronous duplexing protocol to XES. When the lock structure is
reallocated with the CFRM couple data set and CFRM policy indicates asynchronous
duplexing for the IRLM lock structure, the rebuild process begins as shown in the figure.
From this point on, the lock structure is allocated with this protocol and a subsequent DB2
IRLM member restarting with the PTF for APAR PI68378 is needed. Otherwise (such as
restarting of a coexisting DB2 11 member), XES will automatically rebuild the IRLM lock
structure with simplex mode.
56 IBM DB2 12 for z/OS Technical Overview

The z/OS messages listed in Example 5-2 will be issued to show that duplexing is no longer
active.

Example 5-2 Lock structure is rebuilt with simplex mode

IXC522I SYSTEM-MANAGED DUPLEXING REBUILD FOR STRUCTURE 423
 DSNCAT_LOCK1 IS BEING STOPPED
 TO FALL BACK TO THE OLD STRUCTURE DUE TO
 DUPLEXING PREVENTING A CHANGE IN THE SET OF CONNECTORS
 SYSTEM CODE: 00801000
IXC571I SYSTEM-MANAGED DUPLEXING REBUILD FOR STRUCTURE 424
 DSNCAT_LOCK1 HAS COMPLETED THE ASYNC DUPLEX ESTABLISHED PHASE
 AND IS ENTERING THE QUIESCE FOR STOP PHASE.
 TIME: 10/04/2016 14:53:05.725002
 AUTO VERSION: D17214AE 13530010
IXC571I SYSTEM-MANAGED DUPLEXING REBUILD FOR STRUCTURE 425
 DSNCAT_LOCK1 HAS COMPLETED THE QUIESCE FOR STOP PHASE
 AND IS ENTERING THE STOP PHASE.
 TIME: 10/04/2016 14:53:05.865551
 AUTO VERSION: D17214AE 13530010
IXC577I SYSTEM-MANAGED DUPLEXING REBUILD HAS 426
 BEEN STOPPED FOR STRUCTURE DSNCAT_LOCK1
 STRUCTURE NOW IN COUPLING FACILITY LF01
 PHYSICAL STRUCTURE VERSION: D17214AE 05DDB390
 LOGICAL STRUCTURE VERSION: D17214AE 05DDB390
 AUTO VERSION: D17214AE 13530010

When the coexisting DB2 11 is stopped, XES will rebuild the lock structure back to
asynchronous duplexing mode because all members are in DB2 12 function level
V12R1M100. Example 5-3 lists messages that are issued to show reduplexing.

Example 5-3 Lock structure is rebuilt to asynchronous duplexing mode

IXC536I DUPLEXING REBUILD OF STRUCTURE DSNCAT_LOCK1 506
 INITIATED.
 REASON: CONNECTOR DISCONNECTED FROM STRUCTURE
 IXC570I SYSTEM-MANAGED DUPLEXING REBUILD STARTED FOR STRUCTURE 507
 DSNCAT_LOCK1 IN COUPLING FACILITY LF01
IXC577I SYSTEM-MANAGED DUPLEXING REBUILD HAS 523
 ESTABLISHED ASYNC DUPLEXING FOR STRUCTURE DSNCAT_LOCK1
 STRUCTURE IS DUPLEXED
Chapter 5. Data sharing 57

58 IBM DB2 12 for z/OS Technical Overview

Part 3 Application functions

This part contains the following chapters:

� Chapter 6, “SQL” on page 61
� Chapter 7, “Application enablement ” on page 99
� Chapter 8, “Connectivity and administration routines ” on page 119

Part 3
© Copyright IBM Corp. 2016. All rights reserved. 59

60 IBM DB2 12 for z/OS Technical Overview

Chapter 6. SQL

In this chapter, SQL-related functionality introduced in DB2 12 for z/OS is described. Many
examples are provided to help demonstrate how the new features work. The examples can
help you in adapting and using the new features in your applications.

This chapter covers the following topics:

� Introduction
� Additional support for triggers
� Pagination support
� Additional support for arrays
� MERGE statement enhancements
� New built-in functions
� Enhanced built-in function support

Many SQL changes are available only when new function is activated and with an application
compatibility value of 'V12R1M500' or greater. For a description of new function activation, see
Chapter 2, “Continuous delivery” on page 7. For a summary of which SQL changes are
available with new function activation, see the “What's new in the initial DB2 12 release”
section of DB2 12 for z/OS What's New?, GC27-8861.

6

Note: Several SQL examples described here are in Appendix B, “Additional material” on
page 279. You can use the SQL examples in Appendix as templates to create your own
applications, and as a learning tool to understand DB2 functionality.
© Copyright IBM Corp. 2016. All rights reserved. 61

6.1 Introduction

This section describes several SQL changes introduced or modified in DB2 12 for z/OS. For a
complete description of each item, see DB2 12 for z/OS SQL Reference, SC27-8859.

Table 6-1 summarizes the set of SQL statement changes, new and modified, introduced in
DB2 12 for z/OS.

Table 6-1 Summary of SQL statement enhancements in DB2 12 for z/OS

SQL statement Description

ALTER FUNCTION (compiled
SQL scalar)

New clause:
� CONCENTRATE STATEMENTS

ALTER INDEX New clause:
� DSSIZE
Changed clause:
� COMPRESS

ALTER PROCEDURE (SQL
native)

New clause:
� CONCENTRATE STATEMENTS

ALTER TABLE New clauses:
� CCSID
� EXCLUSIVE and INCLUSIVE for BUSINESS_TIME

period-definition
� PERIOD BUSINESS_TIME clause for referential-constraints
Changed clauses:
� ADD PERIOD FOR
� ADD PARTITION

ALTER TABLESPACE New clauses:
� PAGENUM
� INSERT ALGORITHM
Changed clauses:
� COMPRESS
� DSSIZE

ALTER TRIGGER (advanced) New statement that allows for the altering of triggers that contain
SQL PL (SQL Procedural Language).

ALTER TRIGGER (basic) Was ALTER TRIGGER in prior releases

COMMENT Changed clause:
� TRIGGER trigger-name VERSION trigger-version-id

CREATE FUNCTION (compiled
SQL scalar)

New clauses:
� CONCENTRATE STATEMENTS
� WRAPPED

CREATE FUNCTION (inline SQL
scalar)

New clause:
� WRAPPED

CREATE FUNCTION (SQL table) New clause:
� WRAPPED

CREATE INDEX New clause:
� DSSIZE
62 IBM DB2 12 for z/OS Technical Overview

CREATE PROCEDURE (SQL
native)

New clauses:
� CONCENTRATE STATEMENTS
� WRAPPED

CREATE TABLE New clauses:
� CCSID on a CHAR, GRAPHIC, CLOB, or DBCLOB column
� EXCLUSIVE and INCLUSIVE clauses for PERIOD

BUSINESS_TIME clause
� PAGENUM
� PERIOD BUSINESS_TIME clause for referential-constraints
Changed clauses:
� DSSIZE
� NUMPARTS

CREATE TRIGGER (advanced) New statement that allows for the creation of triggers that
contain SQL PL (SQL Procedural Language).

CREATE TRIGGER (basic) New clause:
� WRAPPED

CREATE VARIABLE Changed clause:
� data-type

DELETE New clauses:
� BETWEEN value-1 AND value-2 clause of the period-clause
� fetch-clause

EXECUTE Changed clause:
� USING

EXECUTE IMMEDIATE Changed clause:
� variable

EXPLAIN New clause:
� STABILIZED DYNAMIC QUERY STMTID

fullselect New clause:
� offset-clause
Changed clauses:
� fetch-clause
� order-by-clause

GRANT (table or view privileges) New clause:
� UNLOAD

MERGE New clauses:
� signal-statement
� ELSE IGNORE
� delete-operation on modification-operation
Changed clauses:
� AS correlation-name
� assignment-clause
� WHEN matching-condition
� THEN modification-operation

OPEN Changed clause:
� USING

SQL statement Description
Chapter 6. SQL 63

6.2 Additional support for triggers

Triggers are a set of SQL statements that represents the business logic that should occur
when certain data modifications occur. The data modification that activates the trigger can be
an insert, update, or delete operation. The target of the data modification may be a table or a
view. When the trigger is activated by the data modification, the set of SQL statements
specified inside the trigger body will be executed. Starting in DB2 12 for z/OS, triggers can be
written in SQL Procedural Language (SQL PL). If a trigger is written with SQL PL, it is known
as an advanced trigger.

PREPARE New clause:
� offset-clause
Changed clause:
� fetch-clause

REVOKE (table or view privileges) New clause:
� UNLOAD

SELECT INTO New clause:
� offset-clause
Changed clauses:
� INTO
� fetch-clause

SET assignment-statement Changed clause:
DEFAULT

subselect New clause:
� offset-clause
Changed clauses:
� correlation-clause of collection-derived-table in a

table-reference of a FROM clause
� fetch-clause

TRANSFER OWNERSHIP New statement that allows for the transferal of ownership, of
certain objects, from one user to another user.

UPDATE New clause:
� BETWEEN value-1 AND value-2 clause of the period-clause

VALUES INTO Changed clauses:
� assignment clause source
� INTO

compound-statement for SQL
routines

New clause:
� ATOMIC
Changed clause:
� DEFAULT or CONSTANT

SQL statement Description
64 IBM DB2 12 for z/OS Technical Overview

SQL Procedural Language (SQL PL)
SQL PL is a subset of SQL that can be used to implement control logic around traditional SQL
statements. DB2 for z/OS supports the following control statements:

� assignment-statement
� CALL statement
� CASE statement
� compound-statement
� FOR statement
� GET DIAGNOSTICS statement
� GOTO statement
� IF statement
� ITERATE statement
� LEAVE statement
� LOOP statement
� REPEAT statement
� RESIGNAL statement
� RETURN statement
� SIGNAL statement
� WHILE statement

For detailed information about the control statements, see the “SQL control statements for
SQL routines and triggers” section in the DB2 12 for z/OS SQL Reference, SC27-8859.

6.2.1 Basic triggers

Prior to DB2 12, the CREATE TRIGGER statement was used to define a basic trigger.
Starting in DB2 12, the CREATE TRIGGER statement is renamed to the CREATE TRIGGER
(basic) statement, and as such, defines a basic trigger. The MODE DB2SQL clause continues to
be required in order to create a basic trigger. Basic triggers created prior to DB2 12 can still
be used on DB2 12 without modification.

6.2.2 Advanced triggers

Starting in DB2 12, the CREATE TRIGGER (advanced) statement defines an advanced
trigger. The body of an advanced trigger can contain traditional SQL as well as SQL PL. The
set of SQL statements supported within an advanced trigger is more extensive than for basic
triggers. For example, dynamic SQL statements can be used within an advanced trigger.
Additionally, with advanced triggers, multiple versions of an advanced trigger can be defined,
similar to how multiple versions of an SQL PL routine can be defined. Advanced triggers also
have debugging support, similar to SQL PL routines.

Because advanced triggers use SQL PL, they have several characteristics that are similar to
SQL PL routines. For instance, with an advanced trigger, you can specify various options
through the option-list on the CREATE TRIGGER (advanced) statement and ALTER
TRIGGER (advanced) statement. All variables, including transition variables, are nullable.
A larger set of SQL statements are supported in an advanced trigger compared to basic
triggers.

Advanced triggers can be created only when new function is activated and with an application
compatibility setting of 'V12R1M500' or greater. The MODE DB2SQL clause may not be specified
for an advanced trigger.
Chapter 6. SQL 65

6.2.3 Differences between basic triggers and advanced triggers

Catalog differences and behavioral differences exist between basic and advanced triggers.

Catalog information
The SYSIBM.SYSPACKAGE and SYSIBM.SYSTRIGGERS catalog tables provide
information about whether or not a trigger is a basic trigger or an advanced trigger. The
SYSIBM.SYSPACKAGE catalog table TYPE and VERSION columns and the
SYSIBM.SYSTRIGGERS catalog table SQLPL, DEBUG_MODE, and VERSION columns
contain the relevant information.

For example, suppose a table MYEMP exists that is like the DSN8C10.EMP sample table and
a basic trigger was created to calculate an employee’s bonus:

CREATE TRIGGER BAS_TRG_BONUS
AFTER INSERT ON MYEMP
FOR EACH ROW MODE DB2SQL -- MODE DB2SQL = basic trigger
BEGIN ATOMIC
 UPDATE MYEMP SET BONUS = BONUS + 5000;
END!

An advanced trigger was created to calculate an employee’s raise:

CREATE TRIGGER ADV_TRG_SAL
AFTER INSERT ON MYEMP
FOR EACH ROW -- no MODE DB2SQL = advanced trigger
BEGIN ATOMIC
 UPDATE MYEMP SET SALARY = SALARY + 1000;
END!

For basic triggers, in the SYSIBM.SYSPACKAGE catalog table, the TYPE will have the value
'T' and the VERSION will be an empty string because the VERSION option-list is not
supported with basic triggers; the SYSIBM.SYSTRIGGERS catalog table will have blanks or
the empty string for the SQLPL, DEBUG_MODE, and VERSION columns, respectively. For
advanced triggers, the SYSIBM.SYSPACKAGE catalog table TYPE will have the value '1' and
the VERSION will contain 'V1', because no version was specified and 'V1' is the default value
on the CREATE TRIGGER (advanced) statement; the SYSIBM.SYSTRIGGERS catalog table
will have the SQLPL column set to 'Y', the DEBUG_MODE set to '0', because
DEBUG_MODE was not specified, and the VERSION column set to 'V1', because no version
was specified.

The following select statement can be issued against the SYSIBM.SYSPACKAGE catalog
table to view the trigger specific column values for both basic and advanced triggers:

SELECT TYPE, VERSION, LENGTH(VERSION) AS LEN_VER, NAME
FROM SYSIBM.SYSPACKAGE
WHERE NAME = 'BAS_TRG_BONUS' OR NAME = 'ADV_TRG_SAL'!

That returns the following information:

TYPE VERSION LEN_VER NAME
---- ------- ------- -------------
1 V1 2 ADV_TRG_SAL
T 0 BAS_TRG_BONUS
66 IBM DB2 12 for z/OS Technical Overview

Issuing a select statement against the SYSIBM.SYSTRIGGERS catalog table shows the
trigger specific column values for both basic and advanced triggers:

SELECT SQLPL, HEX(SQLPL) AS HEX_SQLPL,
 DEBUG_MODE AS DBG, HEX(DEBUG_MODE) AS HEX_DBG,
 VERSION, LENGTH(VERSION) AS LEN_VER, NAME
FROM SYSIBM. SYSTRIGGERS
WHERE NAME = 'BAS_TRG_BONUS' OR NAME = 'ADV_TRG_SAL'!

That returns the following information:

SQLPL HEX_SQLPL DBG HEX_DBG VERSION LEN_VER NAME
----- --------- --- ------- ------- ------- ------------
Y 59 0 30 V1 2 ADV_TRG_SAL
 20 20 0 BAS_TRG_BONUS

Issuing CREATE TRIGGER or ALTER TRIGGER statements
The CREATE TRIGGER (basic) statement and ALTER TRIGGER (basic) statement may be
embedded in an application program or issued interactively. They are executable statements
that can be dynamically prepared but only if the DYNAMICRULES(RUN) behavior is
specified, either implicitly or explicitly. By comparison, the CREATE TRIGGER (advanced)
statement and ALTER TRIGGER (advanced) statement can only be dynamically prepared
and the DYNAMICRULES(RUN) behavior must be in effect.

Authorization requirements
For a basic trigger, the privilege set must include SYSADM authority, or if the REFERENCING
clause is specified, the SELECT privilege on the table or view on which the trigger is defined.

For an advanced trigger, the privilege set must include the SYSADM authority, or the SELECT
privilege on the table or view on which the trigger is defined, regardless of whether the
REFERENCING clause is specified.

Default encoding scheme
The default encoding scheme for a basic trigger is Unicode. The default encoding scheme for
an advanced trigger is determined from the DEFAULT APPLICATION ENCODING SCHEME field on
the DSNTIPF installation panel. On an advanced trigger, the APPLICATION ENCODING SCHEME
trigger-option on the CREATE TRIGGER (advanced) statement and ALTER TRIGGER
(advanced) statement can be used to set the application encoding scheme value to EBCDIC,
ASCII, or UNICODE. For advanced triggers to use the same UNICODE encoding scheme as
basic triggers, specify the APPLICATION ENCODING SCHEME UNICODE trigger-option on the
CREATE TRIGGER (advanced) statement or ALTER TRIGGER (advanced) statement.

Unhandled warnings at the completion of a trigger
For basic triggers, if a warning occurs during execution of the last SQL statement in the basic
trigger's body, the warning is not returned to the SQL statement that activated the trigger. By
contrast, with an advanced trigger, unhandled warnings are returned to the statement that
activated the trigger.

Note: These SQL examples are in Appendix B, “Additional material” on page 279 in the
sqlpl_trigger_catalog.sql file.
Chapter 6. SQL 67

Look at the following example to better understand how unhandled warnings are handled.
Once again, suppose a table MYEMP exists that is like the DSN8C10.EMP sample table and
a basic trigger was created to modify an employee’s job title. Remember that the JOB column
in the sample table is defined as a CHAR(8) field:

CREATE TRIGGER BAS_TRG_WARN
AFTER INSERT ON MYEMP
FOR EACH ROW MODE DB2SQL -- MODE DB2SQL = basic trigger
BEGIN ATOMIC
 UPDATE MYEMP SET JOB = CAST(JOB AS CHAR(1));
END! -- exclamation point as SQL terminator

An advanced trigger was created to modify an employee's work department. Recall, the
WORKDEPT column in the sample table is defined as a CHAR(3) field:

CREATE TRIGGER ADV_TRG_WARN
AFTER INSERT ON MYEMP
FOR EACH ROW -- no MODE DB2SQL = advanced trigger
BEGIN ATOMIC
 UPDATE MYEMP SET WORKDEPT = CAST(WORKDEPT AS CHAR(1));
END! -- exclamation point as SQL terminator

The following INSERT statement activates both triggers. Notice that the JOB value contains a
4-byte character string 'PRES' while the WORKDEPT value contains a 3-byte character string
'A00':

INSERT INTO MYEMP
VALUES ('000011', 'CHRISTINE', 'I', 'HAAS', 'A00', 'A1A1',
 '1965-01-01', 'PRES', 18, 'F', '1933-08-14',
 52750, 1000, 4220);

Only the advanced trigger returned the warning as noted by the message token 'A00' which
corresponds to the WORKDEPT value used on the INSERT statement:

SQLCODE = 445, WARNING: VALUE A00 HAS BEEN TRUNCATED

Transition variables as procedure OUT and INOUT parameters
For basic triggers, if a stored procedure is invoked from inside the trigger and a transition
variable was specified for an OUT or INOUT parameter, the updated transition variable value
is not visible to the trigger upon return from the stored procedure. For an AFTER basic trigger,
changes to transition variables are allowed. With an advanced trigger, changes to the
transition variable, as a result of the transition variable being set from a stored procedure, are
visible to the trigger upon return from the stored procedure. For an AFTER advanced trigger,
changes to transition variables are not allowed.

Look at an SQL PL stored procedure that sets an output parameter to a specific value,
namely 999:

CREATE PROCEDURE SP1 (OUT out_value INTEGER)
LANGUAGE SQL
BEGIN
 SET out_value = 999;
END!

Note: The SQL examples are in Appendix B, “Additional material” on page 279 in the
sqlpl_trigger_warning.sql file.
68 IBM DB2 12 for z/OS Technical Overview

A basic trigger is created whereby a stored procedure is invoked and the employee's bonus is
passed as the OUT parameter:

CREATE TRIGGER BAS_TRG_SP
NO CASCADE BEFORE INSERT ON MYEMP
REFERENCING NEW AS new_bonus
FOR EACH ROW MODE DB2SQL -- MODE DB2SQL = basic trigger
BEGIN ATOMIC
 CALL SP1(new_bonus.BONUS);
END!

Similarly, an advanced trigger is created to also invoke the stored procedure, passing in the
employee's salary as the argument for the OUT parameter:

CREATE TRIGGER ADV_TRG_SP
NO CASCADE BEFORE INSERT ON MYEMP
REFERENCING NEW AS new_salary
FOR EACH ROW -- no MODE DB2SQL = advanced trigger
BEGIN ATOMIC
 CALL SP1(new_bonus.SALARY);
END!

The following INSERT statement activates both triggers. Notice the BONUS value contains
the value 1000 while the SALARY value contains the value 52750.

INSERT INTO MYEMP
VALUES ('000011', 'CHRISTINE', 'I', 'HAAS', 'A00', 'A1A1',
 '1965-01-01', 'PRES', 18, 'F', '1933-08-14',
 52750, 1000, 4220);

Only the advanced trigger set the OUT parameter as indicated by only the SALARY column
having the value of 999.00, the value set by the stored procedure. The BONUS column
contains the original source value of 1000.00:

SELECT EMPNO, BONUS, SALARY FROM MYEMP;

That returns the following information:

EMPNO BONUS SALARY
------ ------- ------
000011 1000.00 999.00

Stand-alone fullselect and VALUES statement
Basic triggers allow both a fullselect and a VALUES statement to be specified. Advanced
triggers do not support either. As an alternative to the VALUES statement in an advanced
trigger, you can specify either the SELECT INTO statement or the VALUES INTO statement.

Note: The SQL examples are in Appendix B, “Additional material” on page 279 in the
sqlpl_trigger_outparm.sql file.
Chapter 6. SQL 69

6.2.4 Maintaining trigger activation order

Basic triggers and advanced triggers are alike in that multiple triggers may be created for the
same table, view, event, or activation time. The order in which those triggers are activated is
the order in which the triggers were created. DB2 records the timestamp when each CREATE
TRIGGER statement executes. When an event occurs in a table or view that activates more
than one trigger, DB2 uses the stored timestamps to determine which trigger to activate first.
DB2 always activates all the BEFORE triggers that are defined on a table or view before the
AFTER triggers that are defined on that table or view. Within the set of BEFORE triggers, the
activation order is by stored timestamp and within the set of AFTER triggers, the activation
order is by stored timestamp.

For example, the following three BEFORE advanced triggers are created against table
MYEMP:

CREATE TRIGGER MYTRIG1 BEFORE INSERT ON MYEMP VERSION V1 . . .;
CREATE TRIGGER MYTRIG2 BEFORE INSERT ON MYEMP VERSION V1 . . .;
CREATE TRIGGER MYTRIG3 BEFORE INSERT ON MYEMP VERSION V1 . . .;

When an INSERT statement is issued against the MYEMP table, MYTRIG1 is executed, then
MYTRIG2 is executed, then MYTRIG3 is executed.

Now, suppose you want to modify MYTRIG2 and keep the activation order of all triggers.
There are three ways to modify the MYTRIG2 trigger:

� Issue a CREATE OR REPLACE with the same version:

CREATE OR REPLACE TRIGGER MYTRIG2 BEFORE INSERT ON MYEMP VERSION V1 . . .;

� Issue an ALTER TRIGGER REPLACE VERSION with the same version:

ALTER TRIGGER MYTRIG2 REPLACE VERSION V1 . . .;

� Issue an ALTER TRIGGER ADD VERSION with a different version followed by an ALTER
TRIGGER ACTIVATE VERSION:

ALTER TRIGGER MYTRIG2 ADD VERSION V2 . . .;
ALTER TRIGGER MYTRIG2 ACTIVATE VERSION V2 . . .;

6.3 Pagination support

With the increase in mobile and web applications, often application developers want, or need,
to display only a subset of rows back to the user. Displaying a subset of rows at a time allows
the user to “page” through the data. Think of a typical search engine result page that displays
N number of rows and then allows the user to “page” to the next set of results. DB2 12 for
z/OS introduces two types of pagination support:

� Data-dependent
� Numeric-based

In addition, application developers have more flexibility in telling DB2 how many rows total
should be returned through the enhanced fetch-first-clause clause in the subselect clause.
70 IBM DB2 12 for z/OS Technical Overview

6.3.1 Returning a subset of rows

Application developers might want DB2 to return only a certain number of rows. Additionally,
application developers might want to have flexibility in telling DB2 how many rows to return.
Prior to DB2 12, the fetch-first-clause clause could be used to tell DB2 to return only N
number of rows. Starting in DB2 12, the fetch-first-clause clause is renamed to the
fetch-clause clause, which allows variables and parameter markers to be specified. Also
starting in DB2 12, the value specified for N can be a big integer. The value for N can also be
set to 0, which indicates to DB2 that no rows should be returned. Lastly, for readability,
application developers can specify NEXT instead of FIRST on the fetch-clause clause.

Figure 6-1 shows the syntax diagram for the fetch-clause clause. For complete information
about the clause, see DB2 12 for z/OS SQL Reference, SC27-8859.

Figure 6-1 Syntax diagram for fetch-clause

6.3.2 Data-dependent pagination support

Application developers code their applications to return relevant data not only to leverage
performance benefits from the database but also to minimize the amount of data processed
by their applications. One such method that application developers have in their toolbox
is to code their SQL with predicates. DB2 12 simplifies applications by allowing the
row-value-expression to be specified in a basic predicate along with the less than, less than
or equal to, greater than, or greater than or equal to comparison operators (<, <=, >, >=). Prior
to DB2 12, only the equal and not equal comparison operators (=,<>) were allowed with the
row-value-expression. A row-value-expression returns a single row of data where each
column in the row is an expression, expressions can be constants, variables, expressions
themselves, and others.

Figure 6-2 shows the basic predicate syntax diagram.

Figure 6-2 Syntax diagram for a basic predicate
Chapter 6. SQL 71

Data-dependent pagination features
Data-dependent pagination is a method whereby an application developer can display pages
of data at a time. The data returned in the last row of the page is the data used to fetch the
next page of data. Application developers code this style of pagination in their applications,
returning pages of data until no more rows qualify.

Several key features ensure data-dependent pagination returns the correct and proper data:

� All of the columns specified in the ORDER BY clause must be in either ascending or
descending order.

� All of the columns specified in the ORDER BY clause must generate a unique value.

You can have multiple rows with the same values but at least one column in that row must
distinguish that row from all other rows. For instance, in the phone book, there multiple
rows of people have the same last name and first name but the phone number is unique
among those rows.

Example 6-1 shows a high-level overview of how a data-dependent application might be
coded prior to DB2 12.

Example 6-1 Data-dependent application prior to DB2 12

-- determine the number of rows in the table
SELECT COUNT(*) INTO :NUMROWS FROM T1;

-- initialize input variables so all rows qualify
HV1 = 0;
HV2 = 0;
HV3 = '';
-- initialize row counter
ROWCTR = 0;

-- declare a cursor
DECLARE CSR CURSOR FOR
SELECT . . .
FROM T1
WHERE ((COL1 = :HV1 AND COL2 = :HV2 AND COL3 > :HV3) OR
 (COL1 = :HV1 AND COL2 > :HV2) OR
 (COL1 = :HV1)
ORDER BY COL1 ASC, COL2 ASC, COL3 ASC
FETCH FIRST 3 ROWS ONLY;

-- define a looping mechanism, in this example we use a GOTO
REFETCH_LABEL:

-- open the cursor
 OPEN CSR;

-- fetch from the cursor until EOF (+100)
 DO WHILE (SQLCODE != 0)
 FETCH FROM CSR INTO :HV1, :HV2, :HV3;

-- increment row counter
 ROWCTR = ROWCTR + 1;
 END WHILE;
72 IBM DB2 12 for z/OS Technical Overview

-- decrement number of rows still needed to fetch
 NUMROWS = NUMROWS - ROWCTR;

-- close the cursor
 CLOSE CSR;

-- if more rows still exist, open the cursor again using
-- with HV1, HV2, HV3 values from last fetch request
 IF (NUMROWS > 0) THEN
 GOTO REFETCH_LABEL;

Data-dependent pagination example
Consider a mobile phone application that uses data-dependent pagination to display
automobile information. In the mobile app, the automobiles with the lowest prices and mileage
are displayed first. Suppose the application developer wants to display only four rows at a
time on the mobile phone screen because the mobile phone screen is small in comparison to
a laptop or desktop computer.

A table, myAUTOS, has information about cars by a manufacturer:

SELECT VIN, MODEL, PRICE, MILEAGE FROM myAUTOS
 ORDER BY PRICE ASC, MILEAGE ASC, VIN ASC!

The results are as follows:

VIN MODEL PRICE MILEAGE
----------------- ----- ------- -------
JA4KA12340C000316 TL 995.00 140000
JF3KA96631C000012 TL 1995.00 110000
JH4KA96637C003617 RDX 5995.00 80000
JB1KA23667D000001 MDX 6995.00 100000
JH4KA96637C007613 MDX 6995.00 110000
JH5LA61637D761300 RDX 7995.00 65000
JH1KA63637C009625 RDX 7995.00 69000
JA4KA96638C111111 MDX 7995.00 100000
JD1CA26638C007613 MDX 7995.00 110000
JD2KA96638C001122 RDX 9995.00 80000

Notice that several cars have the same price, but the VIN column differs across all rows.

Prior to DB2 12, the application developer might have used the following SQL to display the
lowest priced autos with the lowest mileage:

SELECT VIN, MODEL, PRICE, MILEAGE
FROM myAUTOS
WHERE ((PRICE = :PRICE_VAR AND MILEAGE = :MILEAGE_VAR AND
 VIN > :VIN_VAR) OR
 (PRICE = :PRICE_VAR AND MILEAGE > :MILEAGE_VAR) OR
 (PRICE > :PRICE_VAR))
ORDER BY PRICE ASC, MILEAGE ASC, VIN ASC
FETCH FIRST 4 ROWS ONLY;

In that SQL, the columns are in ascending order. The first predicate searches for all three
attributes, while the second predicate searches for the two other columns that you are
interested in, while the last predicate searches for the most important column, the PRICE
column, to display the lowest priced auto first.
Chapter 6. SQL 73

Starting in DB2 12, the basic predicate can now compare one row-value-expression with
another row-value-expression with the greater than (>) operator:

SELECT VIN, MODEL, PRICE, MILEAGE
FROM myAUTOS
WHERE (PRICE, MILEAGE, VIN) > (:PRICE_VAR,:MILEAGE_VAR,:VIN_VAR)
ORDER BY PRICE ASC, MILEAGE ASC, VIN ASC
FETCH FIRST 4 ROWS ONLY;

With the additional comparison operators supported with row-value-expression comparisons,
application developers can choose to simplify their SQL and potentially make their
applications more readable. For detailed information about row-value-expression, basic
predicates, and expression, see the “Language elements” section in the DB2 12 for z/OS
SQL Reference, SC27-8859.

6.3.3 Numeric-based pagination

Another form of pagination application that developers might employ in their applications is to
use numeric-based pagination whereby data is returned to the user from a particular starting
row. DB2 12 provides another method for application developers to display a set of rows from
a particular starting row and for a particular number of rows with the new offset-clause clause.
The offset-clause clause tells DB2 to start returning rows to the application after a skipping a
certain number of rows. Prior to DB2 12, application developers might have used other
methods such as a scrollable cursor, a rowset cursor, an OLAP function, a stored procedure,
or application logic that consumed the rows prior to displaying the actual rows to the user.

For example, an application developer might have received a request from the business to not
display the three lowest items. This example uses a product table, MYPRODUCT, like the
DSN8C10.PRODUCT sample table, but with more rows in it:

SELECT NAME, PRICE FROM MYPRODUCT ORDER BY PRICE ASC;

The results are as follows:

NAME PRICE
-------- ---------
Tricycle 99.00
Unicycle 199.00
Fixie 500.00
Single-speed 699.00
Road bike 1000.00
Tandem 1699.00
Tri bike 2500.00
Mountain bike 5000.00
Cargo 5999.00
Electric 6999.00

Note: SQL examples are in Appendix B, “Additional material” on page 279 in the following
files:

� pagination_myautos_ddl.sql
� pagination_myautos_preV12appl.txt
� pagination_myautos_V12appl.txt
� pagination_myautos_drptbl.sql
74 IBM DB2 12 for z/OS Technical Overview

The application developer might declare a cursor with the offset-clause, as in the following
example, to prevent the three lowest items from being displayed:

DECLARE CS1 CURSOR FOR
SELECT NAME, PRICE
FROM MYPRODUCT
ORDER BY PRICE ASC
OFFSET 3 ROWS;

The data displayed to the user might be as follows, so that the 'Tricycle', 'Unicycle', and
'Fixie' bicycles are not displayed:

NAME PRICE
-------- ---------
Single-speed 699.00
Road bike 1000.00
Tandem 1699.00
Tri bike 2500.00
Mountain bike 5000.00
Cargo 5999.00
Electric 6999.00

Similarly, if the business wants to return only items 5 - 9 from the original table, the application
developer might code the cursor to use the offset-clause in conjunction with the fetch-clause
as in this example:

DECLARE CS1 CURSOR FOR
SELECT NAME, PRICE
FROM MYPRODUCT
ORDER BY PRICE ASC
OFFSET 4 ROWS
FETCH FIRST 5 ROWS ONLY;

The data displayed to the user might be as follows, so that the 'Tricycle', 'Unicycle',
'Fixie', 'Single-speed', and 'Electric' bicycles are not displayed:

NAME PRICE
-------- ---------
Road bike 1000.00
Tandem 1699.00
Tri bike 2500.00
Mountain bike 5000.00
Cargo 5999.00

Consider another example where the application developer wants to display only twenty rows
at a time. The application developer might have fetched data from multiple cursors, skipping
rows in the application, then display the data back to the user:

DECLARE CS1 CURSOR FOR SELECT …… FETCH FIRST 20 ROWS ONLY;
OPEN CS1;
loop 20 times:
 FETCH FROM CS1 INTO …;
 output result to user
end loop;
CLOSE CS1;
DECLARE CS2 CURSOR FOR SELECT …… FETCH FIRST 40 ROWS ONLY;
OPEN CS2;
loop 20 times:
 FETCH FROM CS2;
Chapter 6. SQL 75

end loop;
loop 20 times:
 FETCH FROM CS2 INTO …;
 output result to user
end loop;
CLOSE CS2;

Starting in DB2 12, an application developer can add the following code to the application to
display twenty rows at a time while using the new offset-clause in combination with the
enhancement to the fetch-clause:

:offset_hv = 0;
:fetch_hv = 20;
DECLARE CS1 CURSOR FOR SELECT …… OFFSET ? ROWS FETCH FIRST ? ROWS ONLY;
OPEN CS1 USING :offset_hv, :fetch_hv;
loop 2 times:
 loop 20 times:
 FETCH FROM CS1 INTO …;
 output result to user
 end loop;
 CLOSE CS1;
 :offset_hv = 20;
 OPEN CS1 USING :offset_hv, :fetch_hv;
end loop;

6.4 Additional support for arrays

DB2 11 provided support for the array data type. Arrays could be defined as ordinary arrays
or associative arrays. Ordinary arrays have a user-defined number of elements that are
referenced by their ordinal position in the array. Associative arrays have no user-defined
number of elements that are referenced by the array index value. An associative array’s index
values do not have to be contiguous but they are unique. SQL PL variables and parameters
for SQL PL routines could be defined as arrays.

DB2 11 also provided support for global variables. Global variables allow application
developers to create a variable once, and then use that variable across multiple SQL
statements within the same transaction. However, DB2 11 did not allow a global variable to be
defined as an array.

Starting in DB2 12, application developers can perform the following functions:

� Create global variables with an array data type.
� Specify an associative array as an argument to the ARRAY_AGG aggregate function.
� Optionally specify the order-by-clause on the ARRAY_AGG aggregate function.

Those functions allow applications to exploit variables with the array data type outside of
SQL PL objects (routines and triggers).

Note: SQL examples are in Appendix B, “Additional material” on page 279 in the following
files:

� pagination_myproduct_ddl.sql
� pagination_myproduct_appl.txt
� pagination_myproduct_drptbl.sql
76 IBM DB2 12 for z/OS Technical Overview

6.4.1 Arrays as global variables

Consider this small example of an SQL PL variable having an ordinary array type containing
INTEGER values. The ordinary array can hold a maximum of five elements. The steps in the
following example demonstrate how to create an array type, declare an SQL PL variable of
that array type, set an element in the array variable, and populate a column of a table.

CREATE TYPE myOrdIntArray AS INTEGER ARRAY[5]!
CREATE TABLE myResultsTB (countCOL INTEGER)!
COMMIT!
CREATE PROCEDURE SP1
LANGUAGE SQL
BEGIN
 DECLARE myOrdIntArrayVar myOrdIntArray;
 SET myOrdIntArrayVar[1] = 999;
 INSERT INTO myResultsTB VALUES(myOrdIntArrayVar[1]);
END!
CALL SP1!
COMMIT!
SELECT countCOL FROM myResultsTB!

The result of the SELECT statement displays the following information:

countCOL

 999

The next example is of a global variable that has a data type of INTEGER. The global
variable is then shared across multiple SQL statements.

CREATE VARIABLE myIntGV INTEGER!
CREATE TABLE myResultsTB (countCOL INTEGER)!
COMMIT!
SET myIntGV = 99!
COMMIT!
CREATE PROCEDURE SP1
LANGUAGE SQL
BEGIN
 INSERT INTO myResultsTB VALUES(myIntGV);
END!
COMMIT!
CALL SP1!
COMMIT!
SELECT countCOL FROM myResultsTB!

The result of the SELECT statement displays the following information:

countCOL

 99

Note: This SQL example is in Appendix B, “Additional material” on page 279 in the
sqlplvar.sql file.

Note: This SQL example is in Appendix B, “Additional material” on page 279 in the
globalvar.sql file.
Chapter 6. SQL 77

Starting in DB2 12, a global variable can now be created as an array type. Using the two
previous examples, an array global variable is now used to populate the result table:

CREATE TYPE myOrdIntArray AS INTEGER ARRAY[5]!
CREATE TABLE myResultsTB (countCOL INTEGER)!
COMMIT!
CREATE VARIABLE myIntAryGV myOrdIntArray!
COMMIT!
SET myIntAryGV [1] = 9!
CREATE PROCEDURE SP1
LANGUAGE SQL
BEGIN
 INSERT INTO myResultsTB VALUES(myIntAryGV[1]);
END!
COMMIT!
SELECT countCol FROM myResultsTB!

The result of the SELECT statement displays the following information:

countCOL

 9

6.4.2 Associative array support on ARRAY_AGG aggregate function

DB2 11 provided support for the ARRAY_AGG aggregate function, which allowed you to
create an array based on data in your tables. For all rows referenced in the query, the result
column value is assigned to an array element. The ARRAY_AGG aggregate produce only an
ordinary array in DB2 11.

For example, using a product table, MYPRODUCT, like the DSN8C10.PRODUCT sample
table, but with more rows in it:

SELECT NAME, PRICE FROM MYPRODUCT ORDER BY PRICE ASC;

The results are as follows:

NAME PRICE
-------- ---------
Tricycle 99.00
Unicycle 199.00
Fixie 500.00
Single-speed 699.00
Road bike 1000.00
Tandem 1699.00
Tri bike 2500.00
Mountain bike 5000.00
Cargo 5999.00
Electric 6999.00

Note: This SQL example is in Appendix B, “Additional material” on page 279 in the
aryglobalvar.sql file.
78 IBM DB2 12 for z/OS Technical Overview

Create an ordinary array global variable containing all product prices:

CREATE TYPE PRICES AS DECIMAL(30,2) ARRAY[25]!
COMMIT!
CREATE VARIABLE myPRICES PRICES!
COMMIT!
SET myPRICES = (SELECT ARRAY_AGG(PRICE ORDER BY PRICE ASC)
 FROM myPRODUCT)!
SELECT T.PRICE FROM UNNEST(myPRICES) AS T(PRICE)!

The results are as follows:

PRICE

 99.00
 199.00
 500.00
 699.00
1000.00
1699.00
2500.00
5000.00
5999.00
6999.00

Starting in DB2 12, you can use the ARRAY_AGG aggregate function to create an associative
array. The next example creates an associative array global variable for a price sheet where
the array’s index is the NAME and the elements of the array contain the PRICE:

CREATE TYPE PRICESHEET
 AS DECIMAL(30,2) ARRAY[VARCHAR(128) CCSID UNICODE]!
COMMIT!
CREATE VARIABLE myPRICESHEET PRICESHEET!
COMMIT!
SET myPRICESHEET = (SELECT ARRAY_AGG(NAME, PRICE)
 FROM MYPRODUCT)!
SELECT T.NAME, T.PRICE
FROM UNNEST(myPRICESHEET) AS T(NAME,PRICE)!

Results are as follows; notice that because this associative array has an index of character
data (NAME), the results are naturally ordered by NAME:

NAME PRICE
-------- ---------
Cargo 5999.00
Electric 6999.00
Fixie 500.00
Mountain bike 5000.00
Road bike 1000.00
Single-speed 699.00
Tandem 1699.00
Tri bike 2500.00
Tricycle 99.00
Unicycle 199.00

Note: This SQL example is in Appendix B, “Additional material” on page 279 in the
arrayagg.sql file.
Chapter 6. SQL 79

6.4.3 Optional ORDER BY clause on ARRAY_AGG aggregate function

As discussed previously, DB2 11 provided support for the ARRAY_AGG aggregate function.
The ARRAY_AGG aggregate function could produce only an ordinary array in DB2 11. If
multiple ordinary arrays were created, and the order-by-clause was specified for one of the
arrays, the order-by-clause had to be specified for all of the arrays.

For example, using the product table MYPRODUCT like the DSN8C10.PRODUCT sample
table, but with more rows in it.

SELECT NAME, PRICE FROM MYPRODUCT ORDER BY PRICE ASC;

Results are as follows:

NAME PRICE
-------- ---------
Tricycle 99.00
Unicycle 199.00
Fixie 500.00
Single-speed 699.00
Road bike 1000.00
Tandem 1699.00
Tri bike 2500.00
Mountain bike 5000.00
Cargo 5999.00
Electric 6999.00

Create two ordinary array global variables containing all product names and prices:

CREATE TYPE NAMES AS VARCHAR(128) CCSID UNICODE ARRAY[25]!
CREATE TYPE PRICES AS DECIMAL(30,2) ARRAY[25]!
COMMIT!
CREATE VARIABLE myNAMES NAMES!
CREATE VARIABLE myPRICES PRICES!
COMMIT!
SET (myNAMES, myPRICES) =
 (SELECT ARRAY_AGG(NAME ORDER BY PRICE ASC),
 ARRAY_AGG(PRICE ORDER BY PRICE ASC)
 FROM myPRODUCT)!
COMMIT!
SELECT T.NAME, T.PRICE
FROM UNNEST(myNAMES,myPRICES) AS T(NAME,PRICE)!

Results are as the follows:

NAME PRICE
-------- ---------
Tricycle 99.00
Unicycle 199.00
Fixie 500.00
Single-speed 699.00
Road bike 1000.00
Tandem 1699.00
Tri bike 2500.00
Mountain bike 5000.00
Cargo 5999.00
Electric 6999.00
80 IBM DB2 12 for z/OS Technical Overview

Starting in DB2 12, you can specify only one order-by-clause. In the next example, the
order-by-clause was removed for the PRICE column, which is the source of the myPRICES
ordinary array global variable:

SET (myNAMES, myPRICES) =
 (SELECT ARRAY_AGG(NAME ORDER BY PRICE ASC),
 ARRAY_AGG(PRICE)
 FROM myPRODUCT)!
SELECT T.NAME, T.PRICE
FROM UNNEST(myNAMES,myPRICES) AS T(NAME,PRICE)!

Results are as follows:

NAME PRICE
-------- ---------
Tricycle 99.00
Unicycle 199.00
Fixie 500.00
Single-speed 699.00
Road bike 1000.00
Tandem 1699.00
Tri bike 2500.00
Mountain bike 5000.00
Cargo 5999.00
Electric 6999.00

6.5 MERGE statement enhancements

DB2 9 provided the initial support for the MERGE statement. The MERGE statement allowed
application developers to either update existing rows in a table or insert new rows into a table,
depending on the source values specified. If the source values match the target values then
the rows are updated, otherwise the new values are inserted into the target table. The source
values could be an expression, host-variable-array, or NULL.

Starting in DB2 12, the MERGE statement is enhanced to allow the following support:

� Additional source value support
� Additional data modification support
� Additional matching condition options
� Additional predicates on the matching conditions support
� Atomicity

Refresher on MERGE statement support prior to DB2 12
Consider this DB2 11 MERGE statement example of a MYPRODUCT product table that is
similar to the DSN8C10.PRODUCT sample table:

SELECT * FROM MYPRODUCT ORDER BY PRICE ASC;

Note: This SQL example is in Appendix B, “Additional material” on page 279 in the
arrayagg.sql file.
Chapter 6. SQL 81

Results are as follows:

PID NAME PRICE
----- -------- ---------
00800 Tricycle 99.00
00900 Unicycle 199.00
00400 Fixie 500.00
00500 Single-speed 699.00
00200 Road bike 1000.00
00600 Tandem 1699.00
00300 Tri bike 2500.00
00100 Mountain bike 5000.00
00700 Cargo 5999.00
01000 Electric 6999.00

Using the MERGE statement, the price of the mountain bike will be updated to the value
4599.00 because its PID matches the of '00100' source value:

SET myPRICE = 4599.00;
SET myPID = '00100';
MERGE INTO MYPRODUCT Tgt
 USING (VALUES(myPID,myPRICE,myNAME))
 AS Src(myPID,myPRC,myNME)
 ON (Tgt.PID = Src.myPID)
 WHEN MATCHED THEN UPDATE
 SET PRICE = Src.myPRC
 WHEN NOT MATCHED THEN
 INSERT (PID,PRICE,NAME)
 VALUES (Src.myPID,Src.myPRC,Src.myNME)
 NOT ATOMIC CONTINUE ON SQLEXCEPTION;
SELECT * FROM MYPRODUCT ORDER BY PRICE ASC;

Results are shown in the following update:

PID NAME PRICE
----- -------- ---------
00800 Tricycle 99.00
00900 Unicycle 199.00
00400 Fixie 500.00
00500 Single-speed 699.00
00200 Road bike 1000.00
00600 Tandem 1699.00
00300 Tri bike 2500.00
00100 Mountain bike 4599.00
00700 Cargo 5999.00
01000 Electric 6999.00

This next example adds a new type of bicycle, called a 'Cruiser', to the product table:

SET myPRICE = 899.00;
SET myNAME = 'Cruiser';
SET myNAME = '00101';
MERGE INTO MYPRODUCT Tgt
 USING (VALUES(myPID,myPRICE,myNAME))
 AS Src(myPID,myPRC,myNME)
 ON (Tgt.PID = Src.myPID)
 WHEN MATCHED THEN UPDATE
 SET PRICE = Src.myPRC
82 IBM DB2 12 for z/OS Technical Overview

 WHEN NOT MATCHED THEN
 INSERT (PID,PRICE,NAME)
 VALUES (Src.myPID,Src.myPRC,Src.myNME)
 NOT ATOMIC CONTINUE ON SQLEXCEPTION;
SELECT * FROM MYPRODUCT ORDER BY PRICE ASC;

Results in the following row have a PID of '101' inserted into the table:

PID NAME PRICE
----- -------- ---------
00800 Tricycle 99.00
00900 Unicycle 199.00
00400 Fixie 500.00
00500 Single-speed 699.00
00101 Cruiser 899.00
00200 Road bike 1000.00
00600 Tandem 1699.00
00300 Tri bike 2500.00
00100 Mountain bike 4599.00
00700 Cargo 5999.00
01000 Electric 6999.00

DB2 12 MERGE statement syntax diagram
Figure 6-3 shows the MERGE statement syntax diagram for DB2 12. Notice the addition of
the table-reference for source values, the signal-statement as an action for the
matching-condition, and the ELSE IGNORE clause.

Figure 6-3 MERGE statement syntax diagram (partial)

Note: These SQL examples are in Appendix B, “Additional material” on page 279 in the
merge_preV12.sql file.
Chapter 6. SQL 83

6.5.1 Additional source value support

As described previously, prior releases of DB2 allowed the source values to be expression,
host-variable-array, or NULL. Starting in DB2 12, the source values can be any of the
following values:

� Data from tables
� Data from views
� Result from a fullselect
� An expression, host-variable-array, NULL

6.5.2 Additional data modification support

DB2 11 allowed application developers to update the target table or insert into the target
table. Either the single update occurred or the single insert occurred. Starting in DB2 12,
developers can issue a delete modification in addition to an update or insert modification.
Additionally, more than one delete, update, or insert may be specified. Lastly, users may
include the ELSE IGNORE clause to specify that no action should be taken for the rows
where no matching-condition evaluates to True.

6.5.3 Additional matching condition option

Besides allowing a delete, update, or insert operation, developers may also issue a
SIGNAL statement. The SIGNAL statement can be used to return an error when the
matching-condition evaluates to True.

6.5.4 Additional predicates on matching conditions support

DB2 11 allows you to specify either a MATCHED or a NOT MATCHED condition. If
MATCHED, then DB2 would perform the update modification; if NOT MATCHED, then DB2
would perform the insert modification. With DB2 12, a search-condition can be used with
either the MATCHED or NOT MATCHED condition to further qualify source values that
matched the ON search-condition.

6.5.5 Atomicity

The enhanced MERGE statement is atomic and therefore the NOT ATOMIC CONTINUE ON
SQLEXCEPTION clause is not allowed. In DB2 12, if you use the enhanced features
introduced on the MERGE statement, the MERGE statement is atomic in that the source rows
are processed as though a set of rows is processed by each WHEN clause. In comparison,
for a non-atomic MERGE statement, each source row is processed independently as though
a separate MERGE statement were executed for each source row. For a non-atomic MERGE
statement, if the data modification was an update modification, the update is cumulative in
that the rows that are updated from a source row are subject to more updates by subsequent
source rows in the same statement.

Also, for an atomic MERGE statement, if any source row encounters an error, processing
stops and no rows in the target table are modified. Conversely, for a non-atomic MERGE
statement, if any row encounters an error, processing continues for the remaining rows and
the row that encountered the error is not inserted or updated into the target table.
84 IBM DB2 12 for z/OS Technical Overview

6.5.6 Enhanced MERGE statement example

Suppose each group in a company has an activities table that contains all activities that this
group organizes; the ACTIVITIES_MASTER table contains all upcoming activities organized
by all groups in that company.

For example, the ACTIVITIES_GROUPA table contains all activities group A organizes. The
ACTIVITIES_GROUPB table contains all activities group B organizes, and so forth. All
activities tables have ACTIVITY as the primary key.

The ACTIVITIES_MASTER table has (GROUP, ACTIVITY) as the primary key, and ADATE is
not nullable. The ACTIVITIES_MASTER table has a LAST_MODIFIED column defined as a
row change timestamp column.

The following example is the corresponding SQL for the tables and global variable:

CREATE VARIABLE myGROUP CHAR(1)!
CREATE TABLE ACTIVITIES_MASTER
 (ACTIVITY CHAR(4) NOT NULL
 ,DESCRIPTION VARCHAR(128)
 ,ADATE DATE NOT NULL
 ,LAST_MODIFIED TIMESTAMP WITH DEFAULT
 ,GROUP CHAR(1) NOT NULL
 ,PRIMARY KEY (GROUP,ACTIVITY)
)!
CREATE TABLE ACTIVITIES_GROUPA
 (ACTIVITY CHAR(4) NOT NULL PRIMARY KEY
 ,DESCRIPTION VARCHAR(128)
 ,ADATE DATE NOT NULL
 ,LAST_MODIFIED TIMESTAMP
)!
Let's assume the ACTIVITIES_MASTER table already has a few rows:
SELECT *
FROM ACTIVITIES_MASTER
ORDER BY GROUP ASC, LAST_MODIFIED ASC!

Table 6-2 shows the contents of the ACTIVITIES_MASTER table.

Table 6-2 Current content of ACTIVITIES_MASTER table

Here is what group 'A' is organizing:

SELECT * FROM ACTIVITIES_GROUPA ORDER BY LAST_MODIFIED ASC!

ACTIVITY DESCRIPTION ADATE LAST_MODIFIED GROUP

0001 Luncheon at the golf course 2016-09-15 2016-09-28-09.12.36.
731879

A

0003 Movie at the mall 2016-09-15 2016-09-28-09.12.36.
811142

A

0002 Game of bowling 2016-09-16 2016-09-28-09.12.36.
807500

B

Chapter 6. SQL 85

Table 6-3 shows that group 'A' has two events being organized for 21 October 2016.

Table 6-3 Current content of ACTIVITIES_GROUPA table

Assuming the date today is 4 October 2016, you want to merge all activities into the
ACTIVITIES_MASTER table. Based on conditions, the MERGE statement will perform one of
these actions:

� Update the list of activities organized by group 'A'.
� Delete all outdated activities.
� Update the activities information (DESCRIPTION and ADATE), if they have changed.
� For new upcoming activities:

– Insert a new row representing the new upcoming activity.
– Signal an error if the date of the activity is not known.

The corresponding SQL is as follows:

SET myGROUP = 'A';
MERGE INTO ACTIVITIES_MASTER Tgt
USING (SELECT ACTIVITY, DESCRIPTION, ADATE, LAST_MODIFIED
 FROM ACTIVITIES_GROUPA) Src
ON (Tgt.ACTIVITY = Src.ACTIVITY) AND Tgt.GROUP = myGROUP
WHEN MATCHED AND Src.ADATE IS NULL THEN
 SIGNAL SQLSTATE '70001'
 SET MESSAGE_TEXT = Src.ACTIVITY ||
 ' cannot be modified. Reason: Date is unknown'
WHEN MATCHED AND Src.ADATE < CURRENT DATE THEN
 DELETE
WHEN MATCHED AND Tgt.LAST_MODIFIED < Src.LAST_MODIFIED THEN
 UPDATE SET (DESCRIPTION, ADATE, LAST_MODIFIED) =
 (Src.DESCRIPTION, Src.ADATE, DEFAULT)
WHEN NOT MATCHED AND Src.ADATE IS NULL THEN
 SIGNAL SQLSTATE '70002'
 SET MESSAGE_TEXT = Src.ACTIVITY ||
 ' cannot be inserted. Reason: Date is unknown'
WHEN NOT MATCHED AND Src.ADATE >= CURRENT DATE THEN
 INSERT (GROUP, ACTIVITY, DESCRIPTION, ADATE)
 VALUES ('A',Src.ACTIVITY, Src.DESCRIPTION, Src.ADATE)
ELSE IGNORE;

That SQL uses a global variable to indicate that the activities from group 'A' were being
merged into the table. To merge all of the activities from group 'B', you only need to modify
the global variable from 'A' to 'B' and use the same MERGE statement.

The MERGE statement used here successfully merged two rows from the
ACTIVITIES_GROUPA table into the ACTIVITIES_MASTER table. A new row having an
activity of '0004' was inserted into the table while the activity having '0001' was updated.

ACTIVITY DESCRIPTION ADATE LAST_MODIFIED

0004 Round of golf 2016-10-21 2016-09-13-09.12.36.
815246

0001 Luncheon at the golf course 2016-10-21 2016-09-28-09.12.36.
886441
86 IBM DB2 12 for z/OS Technical Overview

Table 6-4 shows the contents of the updated ACTIVITIES_MASTER table.

Table 6-4 Updated ACTIVITIES_MASTER table

6.6 New built-in functions

DB2 12 introduces a set of aggregate functions and scalar functions. The aggregate functions
can help with statistical analysis. The scalar functions provide enhancements for generating
BINARY data and generating hashing values.

DB2 12 introduces these new aggregate functions:

� MEDIAN
� PERCENTILE_CONT
� PERCENTILE_DISC

The following new scalar functions are for hashing and for generating unique binary values:

� HASH_CRC32
� HASH_MD5
� HASH_SHA1
� HASH_SHA256
� GENERATE_UNIQUE_BINARY

One other new built-in function you might not know about is the VARCHAR_BIT_FORMAT
scalar function. Although VARCHAR_BIT_FORMAT was available in DB2 11, it was made
generally available after DB2 11.

6.6.1 Aggregate functions for statistics

Analytics are becoming more important as businesses want to gain insight into their
customers, suppliers, products, and more. Performing analytics closer to where the data
resides might provide better performance. Applications built for analytics can be complex.
With additional SQL support, analytics can be performed by the database and applications
can be simplified.

ACTIVITY DESCRIPTION ADATE LAST_MODIFIED GROUP

0003 Movie at the mall 2016-09-15 2016-09-28-09.12.36.
811142

A

0004 Round of golf 2016-10-21 2016-10-04-15.54.38.
256115

A

0001 Luncheon at the golf course 2016-10-21 2016-10-04-15.54.38.
256115

A

0002 Game of bowling 2016-09-16 2016-09-28-09.12.36.
807500

B

Note: These SQL examples are in Appendix B, “Additional material” on page 279 in the
merge_V12.sql file.
Chapter 6. SQL 87

MEDIAN aggregate function
The MEDIAN function returns the median value of a set of numbers. You might often think of
the median to be the “middle” value. For instance, if a table has 3 rows and you sort the data,
the data in row 2 contains the median value. A table with 4 rows, results in a median of adding
the value from the sorted rows of row 2 with row 3 then dividing that value in half. The result of
the MEDIAN aggregate function produces a double precision floating-point number.

The following example uses product table MYPRODUCT, like the DSN8C10.PRODUCT
sample table, but with more rows in it:

SELECT NAME, PRICE FROM MYPRODUCT ORDER BY PRICE ASC;

Results are in the following 10 rows:

NAME PRICE
-------- ---------
Tricycle 99.00
Unicycle 199.00
Fixie 500.00
Single-speed 699.00
Road bike 1000.00
Tandem 1699.00
Tri bike 2500.00
Mountain bike 5000.00
Cargo 5999.00
Electric 6999.00

You can calculate the median price of the bikes directly in DB2 by using the new MEDIAN
aggregate function:

SELECT MEDIAN(PRICE) AS MEDIAN_PRICE,
 CAST(MEDIAN(PRICE) AS DECIMAL(30,2)) AS MEDIAN_PRICE_DEC
FROM MYPRODUCT;

Results are as follows:

MEDIAN_PRICE MEDIAN_PRICE_DEC
--------------------- ----------------
1.349500000000000E+03 1349.50

PERCENTILE_CONT aggregate function
The PERCENTILE_CONT aggregate function returns a percentile of a set of values.
The value returned corresponds to the specified percentile given a sort specification by
using a continuous distribution model. The PERCENTILE_CONT is calculated over a set
of rows identified in a group. Similar to the MEDIAN aggregate function, the result of the
PERCENTILE_CONT aggregate function produces a double precision floating-point number.

PERCENTILE_CONT syntax diagram
Figure 6-4 shows the syntax diagram for the PERCENTILE_CONT aggregate function.

Figure 6-4 Syntax diagram for PERCENTILE_CONT aggregate function
88 IBM DB2 12 for z/OS Technical Overview

PERCENTILE_CONT examples
The PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY sort-expression) can be used to
calculate the MEDIAN aggregate function:

SELECT PERCENTILE_CONT(0.5)
 WITHIN GROUP (ORDER BY PRICE)
 AS MEDIAN_PRICE,
 CAST(PERCENTILE_CONT(0.5)
 WITHIN GROUP (ORDER BY PRICE) AS DECIMAL(30,2))
 AS MEDIAN_PRICE_DEC
FROM MYPRODUCT;

Results are as follows:

MEDIAN_PRICE MEDIAN_PRICE_DEC
--------------------- ----------------
1.349500000000000E+03 1349.50

In the next example, the line of business wants to know the 95th percentile of the total
compensation per department from a table MYEMP that is like the DSN8C10.EMP sample
table:

SELECT WORKDEPT, PERCENTILE_CONT(0.95)
 WITHIN GROUP (ORDER BY COMM+BONUS+SALARY)
 AS SAL_95TH,
 CAST(PERCENTILE_CONT(0.95)
 WITHIN GROUP (ORDER BY COMM+BONUS+SALARY) AS DEC(30,2))
 AS SAL_95TH_DEC
FROM MYEMP
GROUP BY WORKDEPT;

Results are as follows:

WORKDEPT SAL_95TH SAL_95TH_DEC
-------- --------------------- ------------
A00 5.672000000000000E+04 56720.00
B01 4.535000000000000E+04 45350.00
C01 4.048760000000000E+04 40487.60
D11 3.412850000000000E+04 34128.50
D21 3.733240000000000E+04 37332.40
E01 4.418900000000000E+04 44189.00
E11 3.156600000000000E+04 31566.00
E21 2.853150000000000E+04 28531.50

PERCENTILE_DISC aggregate function
Similar to the PERCENTILE_CONT aggregate function, the PERCENTILE_DISC aggregate
function returns a percentile of a set of values. For the PERCENTILE_DISC aggregate
function, each value in the input set is treated as a discrete value. The value returned
corresponds to the specified percentile given a sort specification by using a discrete
distribution model. The value returned is always a value that appeared in the input set. The
PERCENTILE_DISC is calculated over a set of rows identified in a group. Unlike the MEDIAN
and PERCENTILE_CONT aggregate functions, the result of the PERCENTILE_DISC
aggregate function produces a result data type the same as the sort-expression data type.
Chapter 6. SQL 89

The next example looks for the 95th percentile, by using the discrete distribution model, of the
total compensation per department from a table MYEMP that is like the DSN8C10.EMP
sample table:

SELECT WORKDEPT, PERCENTILE_DISC(0.95)
 WITHIN GROUP (ORDER BY COMM+BONUS+SALARY)
 AS SAL_95TH
FROM MYEMP
GROUP BY WORKDEPT!

Results are as follows:

WORKDEPT SAL_95TH
-------- --------
A00 57970.00
B01 45350.00
C01 42110.00
D11 35430.00
D21 39763.00
E01 44189.00
E11 32730.00
E21 28742.00

6.6.2 Scalar functions for hashing

DB2 12 introduces hashing functions for the first time. Hashing functions in a database are
typically used to convert a character string into a fixed length value (or key). The new hash
value is a representation of the original character string. Using hashed values can help with
query performance if the hashed value is shorter in length than the original character string.
In addition, hashed values are often stored in the database and used as an index for data
retrieval.

HASH_CRC32, HASH_MD5, HASH_SHA1, and HASH_SHA256 scalar
functions
DB2 12 introduces a set of hashing functions with varying degrees of cryptographic strength.
That set of hashing functions is shown in the following list, from weakest cryptography to
strongest cryptography:

� HASH_CRC32
� HASH_MD5
� HASH_SHA1
� HASH_SHA256

Typically the stronger cryptographic hashes carry a longer execution time, therefore DB2
provides several hashing functions because user requirements differs, and DB2 provides a
variety of functions.

Note: These SQL examples are in Appendix B, “Additional material” on page 279 in the
bifs_stats.sql file.
90 IBM DB2 12 for z/OS Technical Overview

6.6.3 GENERATE_UNIQUE_BINARY scalar function

DB2 provides a GENERATE_UNIQUE scalar function that generates a unique value that
includes the internal form of Coordinated Universal Time (UTC), CPUID, and, if in a
sysplex environment, the sysplex member where the function was processed. The
GENERATE_UNIQUE function returns a CHAR(13) FOR BIT DATA value. With modern
processors reaching ever increasing speeds, the timestamp part of the GENERATE_UNIQUE
scalar function result is not precise enough to guarantee uniqueness. Therefore DB2 12
introduces the GENERATE_UNIQUE_BINARY function. The GENERATE_UNIQUE_BINARY
scalar function provides a more precise result as a BINARY(16) value.

Consider that the GENERATE_UNIQUE_BINARY and GENERATE_UNIQUE scalar functions
are non-deterministic. Additionally, the special register CURRENT TIMESTAMP returns a
timestamp value, and the GENERATE_UNIQUE_BINARY and GENERATE_UNIQUE
functions return a modified timestamp value. Further, when you reference the CURRENT
TIMESTAMP special register in an SQL statement, the value is determined for the entire
statement where as the GENERATE_UNIQUE_BINARY and GENERATE_UNIQUE scalar
functions generate a unique value for each affected row.

The following types of SQL statements will generate unique values for each row when the
GENERATE_UNIQUE_BINARY function or GENERATE_UNIQUE function is referenced:

� A multiple row insert statement
� An insert statement with a fullselect
� An insert operation in a MERGE statement

The following example demonstrates the use of these scalar functions in an insert statement
with a fullselect to generate the values to be inserted. The CURRENT TIMESTAMP special
register is also specified to provide input values.

CREATE TABLE myTABLE
 (ID CHAR(6),
 CURTMS TIMESTAMP,
 GENUNQ_TMS TIMESTAMP,
 GENUNQB_TMS TIMESTAMP)!
COMMIT!
INSERT INTO myTABLE
 SELECT EMPNO,
 CURRENT TIMESTAMP,
 TIMESTAMP(GENERATE_UNIQUE()),
 TIMESTAMP(GENERATE_UNIQUE_BINARY())
 FROM DSN8C10.EMP
 ORDER BY EMPNO
 FETCH FIRST 3 ROWS ONLY!
COMMIT!
Chapter 6. SQL 91

Table 6-5 shows the rows inserted into the table.

Table 6-5 myTABLE data populated from an insert with fullselect

Notice, the column values generated by the scalar functions are unique for each row, but the
special register was evaluated once and provided the same value for all rows.

Method for storing both GENERATE_UNIQUE_BINARY and
GENERAGE_UNIQUE values in the same column
If you have been storing values generated by the GENERATE_UNIQUE scalar function
in a column and now want to store values with greater precision generated by the
GENERATE_UNIQUE_BINARY scalar function, consider using the enhancement to the
TIMESTAMP scalar function that DB2 12 introduces. By using the TIMESTAMP scalar
function enhancement, the values produced by both the GENERATE_UNIQUE_BINARY and
GENERATE_UNIQUE scalar functions may coexist in the same column. DB2 suggests you
alter the existing column, presumably, of type CHAR(13) FOR BIT DATA to VARBINARY(16).
The TIMESTAMP scalar function is enhanced to allow a binary string with an actual length as
input of 13 bytes, of which is assumed to be a result from the GENERATE_UNIQUE function.

In this example, your existing table has a CHAR(13) FOR BIT DATA column that contains the
values generated from the GENERATE_UNIQUE scalar function:

CREATE TABLE myTABLE
 (ID INTEGER,
 GENUNQ CHAR(13) FOR BIT DATA);
COMMIT;
INSERT INTO myTABLE VALUES(GENERATE_UNIQUE(), 1);
COMMIT;
SELECT ID, LENGTH(GENUNQ) AS ULEN, HEX(GENUNQ) AS UHEX, TIMESTAMP(GENUNQ) AS UTMS
FROM myTABLE;

Results are as follows:

ID ULEN UHEX UTMS
-- ---- -------------------------- --------------------------
 1 13 00D161645F2B9B322600010001 2016-09-21-15.13.35.865267

The GENUNQ column can be altered to store values from GENERATED_UNIQUE_BINARY
values. Be sure to alter the column to a varying length string to ensure no padding takes
place.

ALTER TABLE myTABLE ALTER GENUNQ SET DATA TYPE VARBINARY(16);
COMMIT;
INSERT INTO myTABLE VALUES(2, GENERATE_UNIQUE_BINARY());

ID CURTMS GENUNQ_TMS GENUNQB_TMS

000010 2016-10-31-16.23.47.
737945

2016-10-31-23.23.47.
738026

2016-10-31-23.23.47.
738035

000020 2016-10-31-16.23.47.
737945

2016-10-31-23.23.47.
826548

2016-10-31-23.23.47.
826560

000030 2016-10-31-16.23.47.
737945

2016-10-31-23.23.47.
826594

2016-10-31-23.23.47.
826595

Note: The SQL example is in Appendix B, “Additional material” on page 279 in the
bifs_genuniq_inssel.sql file.
92 IBM DB2 12 for z/OS Technical Overview

COMMIT;
SELECT ID, LENGTH(GENUNQ) AS ULEN, HEX(GENUNQ) AS UHEX, TIMESTAMP(GENUNQ) AS UTMS
FROM myTABLE;

Results are as follows:

ID ULEN UHEX
-- ---- --------------------------------
 1 13 00D161645F2B9B322600010001
 2 16 00D161645F39797DAA00000001010001
UTMS

2016-09-21-15.13.35.865267
2016-09-21-15.13.35.922071

6.6.4 VARCHAR_BIT_FORMAT scalar function enhancement

The VARCHAR_BIT_FORMAT scalar function became available in DB2 11 after DB2 11 was
made generally available. The scalar function is available after new function is activated with
the application compatibility of 'V11R1' or greater is specified.

The VARCHAR_BIT_FORMAT scalar function returns a bit data string representation of a
character string that has been formatted using a format-string. The format-string contains a
template of how the input source string should be interpreted. The following format strings are
valid:

� 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
� 'XXXXXXXX-XXXX-XXXX-XXXXXXXXXXXXXXXX'

Each x or X corresponds to one hexadecimal digit in the result. If you use an uppercase “X”
then all input values must be in uppercase. If you use a lowercase “x” then all input values
must be lowercase.

The VARCHAR_BIT_FORMAT scalar function is often used for Universally Unique Identifiers
(UUIDs). UUIDs are 128-bit values that uniquely identify objects in software.

Here is an example with a UUID as input:

SELECT
 HEX(VARCHAR_BIT_FORMAT('db200c12-defa-11ad-b22f-b648bbb0916a',
 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'))
 AS HEX_UUID
FROM SYSIBM.SYSDUMMY1;

Results are as follows:

HEX_UUID

DB200C12DEFA11ADB22FB648BBB0916A

Note: These examples are in Appendix B, “Additional material” on page 279 in the
bifs_genuniq.sql file.

Note: This example is in Appendix B, “Additional material” on page 279 in the
bifs_vchbitfmt.sql file.
Chapter 6. SQL 93

6.7 Enhanced built-in function support

DB2 12 provides enhancements to the following scalar functions:

� TIMESTAMP
� XMLMODIFY

6.7.1 TIMESTAMP scalar function enhancement

The TIMESTAMP scalar function is enhanced to allow a binary string with an actual length
of 13 bytes, of which is assumed to be a result from the GENERATE_UNIQUE function.

An example of the TIMESTAMP enhancement is in “Method for storing both
GENERATE_UNIQUE_BINARY and GENERAGE_UNIQUE values in the same column” on
page 92.

6.7.2 XMLMODIFY scalar function enhancement

The Extensible Markup Language (XML) defines a set of rules for encoding documents in a
format that is both human-readable and machine-readable. The first working draft of an XML
specification was published in 1996. XML 1.0 became a Worldwide Web Consortium (W3C)
recommendation in February 1998.

DB2 9 for z/OS introduced support for the XML data type through the use of its IBM
pureXML® capabilities and a hybrid database engine. With DB2 9, XML data previously
stored in the traditional relational format can be stored natively as XML.

Many enhancements to XML processing were provided through maintenance in DB2 9 and in
DB2 10. Those functions and enhancements are documented in the following publications:

� DB2 10 for z/OS Technical Overview, SG24-7892
� Extremely pureXML in DB2 10 for z/OS, SG24-7915

DB2 11 provided many enhancements to XML functionality. Some of those enhancements
were retrofitted to DB2 10.

This section describes the XML enhancements in DB2 12, in particular, the following
expressions can now be used with the XMLMODIFY scalar function:

� FLWOR expressions
� Conditional expressions
� Sequence expressions

With the addition of these expressions, you can perform multiple update actions in a single
XMLMODIFY scalar function invocation. For the examples in the next sections, assume you
have a table purchaseOrders containing a column named PO that contains an XML document
as shown in Example 6-2.

Example 6-2 XML document sample original

<ipo:purchaseOrder
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:ipo=http://www.example.com/IPO
 xmlns:pyd=http://www.examplepayment.com
 orderDate="1999-12-01" pyd:paidDate="2000-01-07">

 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
94 IBM DB2 12 for z/OS Technical Overview

 <name>Helen Zoe</name>
 <street>47 Eden Street</street>
 <city>Cambridge</city>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <items>
 <item partNum="872-AA">
 <productName>Lawnmower</productName>
 <quantity>1</quantity>
 <USPrice>149.99</USPrice>
 <shipDate>2011-05-20</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <comment>Not shipped</comment>
 </item>
 </items>
</ipo:purchaseOrder>

Support for FLWOR expression
The following example demonstrates how you can use the FLWOR expression to increase the
US Price of each item by 10%. Notice the use of the for-let-where-return (FLWOR)
expression.

UPDATE purchaseOrders
SET PO = XMLMODIFY(
 'declare namespace ipo="http://www.example.com/IPO";
 for$iin /ipo:purchaseOrder/items/item
 let $p := $i/USPrice
 where xs:decimal($p)>0
 return
 replace value of node $p with $p *1.1
 ’);

Results are shown in Example 6-3.

Example 6-3 XML document sample after FLWOR update

<ipo:purchaseOrder
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:ipo=http://www.example.com/IPO
 xmlns:pyd=http://www.examplepayment.com
 orderDate="1999-12-01" pyd:paidDate="2000-01-07">

 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>47 Eden Street</street>
 <city>Cambridge</city>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <items>
 <item partNum="872-AA">
 <productName>Lawnmower</productName>
 <quantity>1</quantity>
Chapter 6. SQL 95

 <USPrice>164.98</USPrice>
 <shipDate>2011-05-20</shipDate>
 </item>
 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>196.89</USPrice>
 <comment>Not shipped</comment>
 </item>
 </items>
</ipo:purchaseOrder>

Support for conditional expression
Given the original XML document (Example 6-2 on page 94), this next example demonstrates
how you can update all items with a quantity greater than one with a discount of 10% and if
the quantity is one or less then increase the price by 5%. Notice the use of the if-else
condition.

UPDATE purchaseOrders
SET PO = XMLMODIFY(
 'declare namespace ipo="http://www.example.com/IPO";
 for $i in /ipo:purchaseOrder/items/item
 let $p := $i/USPrice
 let $q := $i/quantity
 where xs:decimal($p)>0 and xs:integer($q)>0
 return
 (
 if(xs:integer($q) > 1) then
 replace value of node $p with $p *0.9
 else
 replace value of node $p with $p *1.05)
 ’);

Results are shown in Example 6-4.

Example 6-4 XML document sample after conditional expression update

<ipo:purchaseOrder
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:ipo=http://www.example.com/IPO
 xmlns:pyd=http://www.examplepayment.com
 orderDate="1999-12-01" pyd:paidDate="2000-01-07">

 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>47 Eden Street</street>
 <city>Cambridge</city>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <items>
 <item partNum="872-AA">
 <productName>Lawnmower</productName>
 <quantity>1</quantity>
 <USPrice>149.99</USPrice>
 <shipDate>2011-05-20</shipDate>
 </item>
96 IBM DB2 12 for z/OS Technical Overview

 <item partNum="945-ZG">
 <productName>Sapphire Bracelet</productName>
 <quantity>2</quantity>
 <USPrice>178.99</USPrice>
 <comment>Not shipped</comment>
 </item>
 </items>
</ipo:purchaseOrder>

Support for sequence expression
Given the original XML document (Example 6-2 on page 94), the next example demonstrates
how you can perform the following two actions in a single invocation of the XMLMODIFY
scalar function:

� Replace the quantity of the item with partNum of 872-AA with the value 2.
� Delete the item with partNum of 945-ZG'.

Notice how the comma operator is used to construct a sequence of an update expression and
delete expression:

UPDATE purchaseOrders
SET PO = XMLMODIFY(
 'declare namespace ipo="http://www.example.com/IPO";
 replace value of node
 /ipo:purchaseOrder/items/item[@partNum="872-AA"]/quantity
 with xs:integer(2),
 delete node /ipo:purchaseOrder/items/item[@partNum="945-ZG"]
 ’);

Results are shown in Example 6-5.

Example 6-5 XML document sample after the use of a sequence expression

<ipo:purchaseOrder
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:ipo=http://www.example.com/IPO
 xmlns:pyd=http://www.examplepayment.com
 orderDate="1999-12-01" pyd:paidDate="2000-01-07">

 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>47 Eden Street</street>
 <city>Cambridge</city>
 <postcode>CB1 1JR</postcode>
 </shipTo>
 <items>
 <item partNum="872-AA">
 <productName>Lawnmower</productName>
 <quantity>2</quantity>
 <USPrice>149.99</USPrice>
 <shipDate>2011-05-20</shipDate>
 </item>
 </items>
</ipo:purchaseOrder>
Chapter 6. SQL 97

98 IBM DB2 12 for z/OS Technical Overview

Chapter 7. Application enablement

This chapter describes DB2 12 for z/OS functions, not strictly confined to SQL, that provide
infrastructure support for new applications or that simplify portability of existing applications to
DB2 for z/OS from other database systems.

This chapter covers the following topics:

� Ensuring application compatibility
� Temporal table enhancements

7

© Copyright IBM Corp. 2016. All rights reserved. 99

7.1 Ensuring application compatibility

DB2 11 for z/OS introduced mechanisms to limit potential SQL and XML incompatibilities on
application DML statements. In addition, the mechanisms allow you to control whether or not
new SQL syntax and semantics are supported for an application.

For instance, in DB2 11 new function mode with the application compatibility set to 'V11R1',
the maximum lengths for values returned for the SPACE and VARCHAR built-in functions
decreased from 32767 to 32764. If the length of the output string for either of those functions
was greater than 32764 bytes, applications received SQLCODE -171.

Additionally, all new SQL syntax changes introduced in DB2 11 were fenced by the
application compatibility value of 'V11R1'. For instance, DB2 11 introduced support for arrays
as SQL variables inside of SQL PL procedures and functions. On the CREATE PROCEDURE
or CREATE FUNCTION statement, you needed to specify the application compatibility option
to 'V11R1'.

The same infrastructure is in place for DB2 12 to ensure application compatibility:

� Identify applications that are affected by incompatible SQL and XML changes through the
migration job reports and trace records.

At the time of this writing, DB2 12 has no incompatibilities. If DB2 does introduce an
incompatible change in the future, use IFCID 376 to discover which applications will be
affected.

IFCID 376 reports incompatibilities for both static and dynamic SQL and is written once
per unique instance of a static statement, and also a dynamic statement in the dynamic
statement cache.

� Control the compatibility level to DB2 10 or DB2 11 at the application level. The following
methods apply to transitioning to new behavior:

– APPLCOMPAT(VnnR1) option on BIND/REBIND PACKAGE, REBIND TRIGGER
PACKAGE, CREATE/ALTER PROCEDURE (SQL native), and CREATE/ALTER
FUNCTION (compiled SQL scalar) for static SQL.

– APPLCOMPAT DSNZPARM for static SQL indicates the default value for the
APPLCOMPAT bind option.

– DSN_PROFILE_ATTRIBUTES for IBM DRDA applications.

– CURRENT APPLICATION COMPATIBILITY special register for dynamic SQL.

Starting in DB2 12, DB2 recommends explicitly specifying the APPLCOMPAT option as
follows:

– Packages for SQL routines, specify the option on the CREATE or ALTER SQL
statement.

– Packages for advanced triggers, specify on the CREATE or ALTER SQL statement.

– Packages associated with basic trigger, specify the option on the REBIND TRIGGER
PACKAGE command.

– Otherwise, specify the option on the BIND or REBIND PACKAGE command.

For details about application compatibility, see Chapter 2, “Continuous delivery” on page 7.
100 IBM DB2 12 for z/OS Technical Overview

7.2 Temporal table enhancements

Before introducing the temporal table enhancements in DB2 12, here is a review the temporal
table feature.

DB2 10 for z/OS added the initial support for temporal tables and data versioning. The term
temporal pertains to the concept of time, in particular, data that is associated with some point
in time. Many business applications associate data and time, as in these examples:

� Insurance policies

An insurer needs to keep track of when a client started insurance coverage, made
changes to their insurance coverage, or stopped and restarted their insurance coverage.

� Regulatory and compliance laws

A business needs to track of who made changes to the data and when the changes were
made. These changes might need to be preserved for an extended period of time.

Another key term used often with temporal tables is the notion of a period, which is a time
interval represented by a start time and an end time. DB2 supports two types of time periods:

� System period:

– A table with a system period is known as a system temporal table (STT).

– A pair of columns with system-maintained values that indicate the period of time when
a row is valid, which can also be referred to as a SYSTEM_TIME period.

– The system period is intended for supporting a concept of data versioning and is used
to provide the system maintained history of the data.

� Application period:

– A table with an application period is known as an application temporal table (ATT).

– A pair of columns with application-maintained values that indicate the period of time
when a row is valid, which can also be referred to as a BUSINESS_TIME period.

– The application period is intended for supporting a user-controlled way of establishing
the notion of validly of the data. It allows user applications to specify and control the
periods when certain data is considered valid to the user.

This section describes the DB2 12 enhancements related to temporal tables:

� Enhanced application periods
� Referential constraints for temporal tables
� Temporal logical transactions
� Auditing capabilities using temporal tables

7.2.1 Enhanced application periods

As 7.2.3, “Temporal logical transactions” on page 107 discussed, a period is a time interval
represented by a start time and an end time. If a start time of a period is considered to be
included in that period and the end time of the period is considered to be excluded from that
period, it is referred to as an inclusive-exclusive (or closed/opened) time interval. For
example, if the begin column has a value of '01/01/2015' and the end column has a value of
'03/21/2015', the row is valid from January 1, 2015 to March 20, 2015, including both of those

Note: Several of the SQL examples are in Appendix B, “Additional material” on page 279.
You can use the SQL examples in the appendix as templates to create your own
applications, and as a learning tool to understand DB2 functionality.
Chapter 7. Application enablement 101

dates. The row is not valid on 03/21/2015 (March 21, 2015)), the last day of the end column.
The inclusive-exclusive time interval has been the only time interval semantic available in
DB2 for an application-period temporal table with a BUSINESS_TIME period (ATT).

DB2 12 is enhanced to allow an application-period temporal table with a BUSINESS_TIME
period that use the inclusive-inclusive semantic. An inclusive-inclusive (or closed/closed) time
interval is a time interval where both the start time and end time are included in the interval.
Revisiting the previous example, if the begin column has a value of '01/01/2015' and the end
column has a value of '03/21/2015', the row is valid from January 1, 2015 to March 21, 2015,
including both of those dates.

To specify an inclusive-inclusive period, use the new INCLUSIVE keyword in the PERIOD
BUSINESS_TIME clause of the CREATE TABLE or ALTER TABLE statement. Notice, the
EXCLUSIVE keyword is the default (Figure 7-1).

Figure 7-1 Updated period-definition syntax diagram

With support for the inclusive-inclusive time interval, DB2 will generate the corresponding
temporal predicates for a time travel query. In Table 7-1, assume BUS_START and BUS_END
represent the BUSINESS_TIME period columns. Notice, the inclusive-inclusive predicates
now contain a greater than or equal to (>=) predicate; the previously supported
inclusive-exclusive model supported only a greater than (>) predicate.

Table 7-1 Temporal predicates for inclusive-inclusive time interval

SQL inclusive-inclusive ATT
(DB2 12)

inclusive-exclusive ATT
(pre-DB2 12)

AS OF expression BUS_START <= expression AND
BUS_END >= expression

BUS_START <= expression
AND
BUS_END > expression

FROM expression-1
TO expression-2

BUS_START < expression-2 AND
BUS_END >= expression-1 AND
expression-1 < expression-2

BUS_START <
expression-2 AND
BUS_END > expression-1
AND
expression-1 <
expression-2

BETWEEN expression-1
AND expression-2

BUS_START <= expression-2
AND BUS_END >= expression-1
AND expression-1 <=
expression-2

BUS_START <=
expression-2 AND
BUS_END > expression-1
AND expression-1 <=
expression-2
102 IBM DB2 12 for z/OS Technical Overview

Temporal inclusive-inclusive BETWEEN-AND example
Suppose you have a myPOLICIES table with BUSINESS_TIME period defined on the
BUS_START and BUS_END columns as INCLUSIVE:

PID COVERAGE BUS_START BUS_END
---- -------- ---------- ----------
A121 12000 2008-01-01 2008-07-01
A122 13000 2008-07-01 2008-07-01
A123 14000 2008-07-01 2009-01-01
A124 15000 2009-01-01 2010-01-01

If you want to set the coverage to be $55,555 for all policies like 'A12%' with a portion of
BUSINESS_TIME between '2008-07-01' and '2008-08-01' then issue the following
UPDATE statement:

UPDATE myPOLICIES
 FOR PORTION OF BUSINESS_TIME
 BETWEEN '2008-07-01' AND '2008-08-01'
SET COVERAGE = 55555
WHERE PID LIKE 'A12%';

This UPDATE statement has the following results:

� Three rows ('A121', 'A122', 'A123') have their coverages updated to $55,555.
� Policy 'A124' is unchanged.
� Rows for policies 'A121' and 'A123' have additional rows.

The content of each row after the update is as follows:

PID COVERAGE BUS_START BUS_END
---- -------- ---------- ----------
A121 55555 2008-07-01 2008-07-01
A122 55555 2008-07-01 2008-07-01
A123 55555 2008-07-01 2008-08-01
A124 15000 2009-01-01 2010-01-01
A121 12000 2008-01-01 2008-06-30
A123 14000 2008-08-02 2009-01-01

Temporal inclusive-inclusive AS OF example
Again, suppose you have a myPOLICIES table with BUSINESS_TIME period defined on the
BUS_START and BUS_END columns as INCLUSIVE:

PID COVERAGE BUS_START BUS_END
---- -------- ---------- ----------
A123 55555 2008-07-02 2008-08-01
A124 15000 2009-01-01 2010-01-01
A121 12000 2008-01-01 2008-06-30
A123 14000 2008-08-02 2009-01-01

If you want to see all policies with a BUSINESS_TIME as of '2009-01-01', issue the following
SELECT statement:

SELECT * FROM myPOLICIES
 FOR BUSINESS_TIME AS OF '2009-01-01';
Chapter 7. Application enablement 103

Notice in the following output that policy 'A124' is returned because its BUS_END is greater
than '2009-01-01' and the policy for 'A123' with coverage of $14,000 is returned because its
BUS_END is equal to '2009-01-01':

PID COVERAGE BUS_START BUS_END
---- -------- ---------- ----------
A124 15000 2009-01-01 2010-01-01
A123 14000 2008-08-02 2009-01-01

7.2.2 Referential constraints for temporal tables

In DB2 12, a temporal referential constraint can now be defined for an application-period
temporal table (ATT) that contains a BUSINESS_TIME period. With a temporal referential
constraint in place, DB2 will ensure the period of each child row is contained within a period of
a parent row (or a set of contiguous rows without gap). You can specify the PERIOD
BUSINESS_TIME clause in the definition of a referential constraint that enforces a temporal
referential constraint for an application-period temporal table. On the CREATE TABLE or
ALTER TABLE statement add PERIOD BUSINESS_TIME to the referential-constraint clause
or to the references-clause clause.

For DB2 to enforce the referential constraint, a unique index must be defined on the parent
table, with the BUSINESS_TIME WITHOUT OVERLAPS clause. The child table must also
have an index that corresponds to the foreign key defined with the BUSINESS_TIME
WITHOUT OVERLAPS clause. The BUSINESS_TIME period can be either
inclusive-exclusive or the newly introduced inclusive-inclusive period and both the parent and
child ATT must have the same semantics.

Updated syntax diagram for the referential constraint clause
An updated referential-constraint syntax diagram is shown in Figure 7-2.

Figure 7-2 Updated referential-constraint syntax diagram

Note: The SQL examples are in Appendix B, “Additional material” on page 279 in the
temporal_app_periods.sql file.
104 IBM DB2 12 for z/OS Technical Overview

Updated syntax diagram for the references clause
An updated references-clause syntax diagram is shown in Figure 7-3.

Figure 7-3 Updated references-clause syntax diagram

Referential constraint example
Suppose two tables exist:

� myDEPT: The parent application-period temporal table (ATT)
� myEMP: The child ATT

Notice that the myDEPT table has an application period defined on the DSTART and DEND
columns. The myEMP table has an application period defined on the ESTART and EEND
columns and the referential-constraint for the foreign key has the references-clause specified
with it:

CREATE TABLE myDEPT
 (DNO INTEGER NOT NULL,
 DNAME VARCHAR(30),
 DSTART DATE NOT NULL,
 DEND DATE NOT NULL,
 PERIOD BUSINESS_TIME (DSTART, DEND),
 PRIMARY KEY (DNO, BUSINESS_TIME WITHOUT OVERLAPS)
);
CREATE TABLE myEMP
 (ENO INTEGER NOT NULL,
 ESTART DATE NOT NULL,
 EEND DATE NOT NULL,
 EDEPTNO INTEGER,
 PERIOD BUSINESS_TIME (ESTART, EEND),
 PRIMARY KEY (ENO, BUSINESS_TIME WITHOUT OVERLAPS),
 FOREIGN KEY (EDEPTNO, PERIOD BUSINESS_TIME)
 REFERENCES DEPT (DNO, PERIOD BUSINESS_TIME)
);
Chapter 7. Application enablement 105

You create a unique index on the parent table, a unique index on the child table, plus an index
on the child's foreign key:

CREATE UNIQUE INDEX DPRIMARY_KEY ON myDEPT
 (DNO, BUSINESS_TIME WITHOUT OVERLAPS);
CREATE UNIQUE INDEX EPRIMARY_KEY ON myEMP
 (ENO, BUSINESS_TIME WITHOUT OVERLAPS);
CREATE INDEX EFOREIGN_KEY ON myEMP
 (EDEPTNO, BUSINESS_TIME WITH OVERLAPS);

INSERT statement examples
Assume the following three rows exist in the myDEPT parent table:

DNO DNAME DSTART DEND
--- ----- ---------- ----------
 3 SVT 2009-01-01 2010-01-01
 3 FVT 2010-01-01 2011-12-31
 4 DEV 2011-06-01 2011-12-31

The myEMP child table has one row:

ENO ESTART EEND EDEPTNO
----- ---------- ---------- -------
22218 2009-05-01 2011-02-03 3

You try to insert a row into the myEMP child table with an EDEPTNO of 3 having an end date
of August 1, 2012:

INSERT INTO myEMP VALUES(22300,'2009-05-01','2012-08-01',3);

The results show the following referential constraint error:

SQLCODE = -530, ERROR: THE INSERT OR UPDATE VALUE OF FOREIGN KEY EDEPTNO IS
INVALID

The following insert with EDEPTNO of 4 having valid start and end dates succeeds:

INSERT INTO myEMP VALUES(22218,'2011-06-03','2011-11-12',4);

UPDATE statement examples
Continuing with the example above, the myEMP table now has two rows:

ENO ESTART EEND EDEPTNO
----- ---------- ---------- -------
22218 2009-05-01 2011-02-03 3
22218 2011-06-03 2011-11-12 4

The myDEPT table has the original three rows:

DNO DNAME DSTART DEND
--- ----- ---------- ----------
 3 SVT 2009-01-01 2010-01-01
 3 FVT 2010-01-01 2011-12-31
 4 DEV 2011-06-01 2011-12-31

Issue an UPDATE statement against the myDEPT table having a department number of 4 and
set the start date to August 3, 2011:

UPDATE myDEPT SET DSTART = '2011-08-03' WHERE DNO = 4!
106 IBM DB2 12 for z/OS Technical Overview

This results in the following parent key error:

SQLCODE = -531, ERROR: PARENT KEY IN A PARENT ROW CANNOT BE UPDATED BECAUSE IT
HAS ONE OR MORE DEPENDENT RELATIONSHIP EDEPTNO

Similarly, you issue an UPDATE statement against the myEMP table having a department
number of 3 and set the end date to August 1, 2012:

UPDATE myEMP SET EEND = '2012-08-01' WHERE EDEPTNO = 3;

This results in the following referential constraint error:

SQLCODE = -530, ERROR: THE INSERT OR UPDATE VALUE OF FOREIGN KEY EDEPTNO IS
INVALID

UPDATE statement with split rows example
Assume the myEMP table contains the following data:

ENO ESTART EEND EDEPTNO
----- ---------- ---------- -------
22218 2009-05-01 2011-02-03 3
22218 2011-06-03 2011-11-12 4

If the rows are split as a result of an update request, the referential constraint will be enforced
during row splitting on the child table ATT. The following update is successful:

UPDATE myEMP
 FOR PORTION OF BUSINESS_TIME FROM '2011-07-01' TO '2011-08-01'
SET EDEPTNO = 3
WHERE EDEPTNO = 4;

The results are as follows. Notice, row 1 is unchanged, row 2 contains the updated period,
rows 3 and 4 represent the split rows.

ENO ESTART EEND EDEPTNO
----- ---------- ---------- -------
22218 2009-05-01 2011-02-03 3
22218 2011-07-01 2011-08-01 3
22218 2011-06-03 2011-07-01 4
22218 2011-08-01 2011-11-12 4

7.2.3 Temporal logical transactions

As explained in 7.2, “Temporal table enhancements ” on page 101, a system-period temporal
table (STT) is a table that contains a pair of columns with system-maintained values that
indicate the period of time when a row is valid. The period is referred to as a SYSTEM_TIME
period.

DB2 defines a logical unit of work as a recoverable sequence of operations within an
application process. An application process can consist of a single unit of work, that contains
several logical units of work as a result of issuing COMMIT or ROLLBACK statements. This
type of unit of work is often referred to as a physical unit of work.

Starting in DB2 12, application developers can initiate temporal logical units of work
against an STT that are not determined by COMMIT or ROLLBACK. The values for the
SYSTEM_TIME period, start and end columns, are determined based on the value of a

Note: The SQL examples are in Appendix B, “Additional material” on page 279 in the
temporal_ref_const.sql file.
Chapter 7. Application enablement 107

new built-in global variable that you set. The new built-in global variable is called
SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME and has a TIMESTAMP(12) data type. When
that built-in global variable is set to NULL, which is the default, no temporal logical
transactions are allowed.

The following data change operations are affected by temporal logical transactions:

� INSERT or UPDATE of STT

The begin column value of the current table is generated by DB2 based on the value of the
global variable.

� UPDATE or DELETE of STT

The end column value of the history table is generated by DB2 based on the value of the
global variable.

� DELETE from STT with extra row generation through the ON DELETE ADD EXTRA ROW clause

The begin column value and end column value of the extra row in the history table are
generated by DB2 based on the value of the global variable. For additional information
regarding the new clause, see DB2 12 for z/OS SQL Reference, SC27-8859.

In addition to the SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME global variable, DB2
introduces another built-in global variable, SYSIBM.TEMPORAL_LOGICAL_TRANSACTIONS, to
help application developers control physical units of temporal work versus logical units of
temporal work. This SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME built-in global variable
has a SMALLINT data type:

� A value of 0 (zero), the default, disallows multiple temporal logical transactions in a single
commit scope.

� A value of 1 (one) allows multiple temporal logical transactions in a single commit scope.

The next examples demonstrate the following scenarios:

� Single application, single logical temporal transaction, multiple physical transactions

� Single application, multiple logical temporal transactions, single physical transaction

� Single application, multiple logical temporal transactions, single physical transaction,
timestamp violation

� Two concurrent applications, competing multiple logical temporal transactions

Temporal logical transaction example
Suppose you have a myPOLICIES table with SYSTEM_TIME period defined on the
SYS_START and SYS_END columns and a history table myPOLICIES_HIST:

CREATE TABLE myPOLICIES
 (PID CHAR(4) NOT NULL,
 PTYPE VARCHAR(4) NOT NULL,
 COPAY SMALLINT NOT NULL,
 SYS_START TIMESTAMP(12) NOT NULL IMPLICITLY HIDDEN
 GENERATED ALWAYS AS ROW BEGIN,
 SYS_END TIMESTAMP(12) NOT NULL IMPLICITLY HIDDEN
 GENERATED ALWAYS AS ROW END,
 TRANS_ID TIMESTAMP(12) NOT NULL IMPLICITLY HIDDEN
 GENERATED ALWAYS AS TRANSACTION START ID,
 PRIMARY KEY (PID),
 PERIOD SYSTEM_TIME(SYS_START, SYS_END))!
COMMIT!
CREATE TABLE myPOLICIES_HIST LIKE myPOLICIES!
108 IBM DB2 12 for z/OS Technical Overview

COMMIT!
ALTER TABLE myPOLICIES
 ADD VERSIONING USE HISTORY TABLE myPOLICIES_HIST!

Assume the myPOLICIES STT has a single row (Table 7-2).

Table 7-2 STT myPOLICIES initial data

Single application, single logical temporal transaction, multiple physical
transactions example
This example demonstrates multiple physical transactions by having a COMMIT
between each data modification to the myPOLICIES table with rows added to the
myPOLICIES_HIST table, as appropriate, in a single logical temporal transaction as
the SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME global variable is modified only once.

The following steps demonstrate this scenario:

1. Set the SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME global variable to CURRENT
TIMESTAMP.

2. Issue a COMMIT.
3. Modify the policy type from 'PPO' to 'HMO'.

4. Issue a COMMIT.
5. Modify the copayment from 10 to 5.

6. Issue a COMMIT.

This is the corresponding SQL:

SET SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME = CURRENT TIMESTAMP!
COMMIT!
UPDATE myPOLICIES SET PTYPE = 'HMO' WHERE PID = 'C882'!
COMMIT!
UPDATE myPOLICIES SET COPAY = 5 WHERE PID = 'C882'!
COMMIT!

Notice that a COMMIT statement is issued after each UPDATE statement to produce multiple
physical transactions.

PID PTYPE COPAY SYS_START SYS_END TRANS_ID

C882 PPO 10 2016-10-05-13.04.14.
460764263000

9999-12-30-00.00.00.
000000000000

2016-10-05-13.04.14.
460764263000
Chapter 7. Application enablement 109

After the first update is committed, the myPOLICIES table has the updated policy type with
updated start and transaction times (Table 7-3) and the myPOLICIES_HIST table was
populated with a single row having an end time the same as the myPOLICIES start time
(Table 7-4).

Table 7-3 STT, myPOLICIES after policy type update

Table 7-4 History table, myPOLICIES_HIST, after policy type update

After the second update is committed, the myPOLICIES table has the updated
copayment with a new transaction time while its start time stayed the same (Table 7-5). The
myPOLICIES_HIST table is unchanged (Table 7-6).

Table 7-5 STT myPOLICIES after co-payment update

Table 7-6 History table, myPOLICIES_HIST, still contains unmodified single row

Single application, multiple logical temporal transactions within a single
physical transaction
This example demonstrates multiple data modifications to the myPOLICIES table within a
single physical transaction. The COMMIT is issued only once at the end with rows added to the
myPOLICIES_HIST table, as appropriate, in multiple logical temporal transactions as the
SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME global variable is modified multiple times.

The following steps demonstrate the scenario:

1. Set the SYSIBM.TEMPORAL_LOGICAL_TRANSACTIONS global variable to 1 to allow multiple
logical temporal transactions to occur in a single commit scope.

2. Set the SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME global variable to the CURRENT
TIMESTAMP.

3. Modify the policy type from 'PPO' to 'HMO'.

4. Set the SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME global variable again to the CURRENT
TIMESTAMP.

5. Modify the copayment from 10 to 5.

6. Issue a COMMIT.

PID PTYPE COPAY SYS_START SYS_END TRANS_ID

C882 HMO 10 2016-10-05-13.04.14.
570404000000

9999-12-30-00.00.00.
000000000000

2016-10-05-13.04.14.
657414608000

PID PTYPE COPAY SYS_START SYS_END TRANS_ID

C882 PPO 10 2016-10-05-13.04.14.
460764263000

2016-10-05-13.04.14.
570404000000

2016-10-05-13.04.14.
460764263000

PID PTYPE COPAY SYS_START SYS_END TRANS_ID

C882 HMO 2016-10-05-13.04.14.
570404000000

9999-12-30-00.00.00.
000000000000

2016-10-05-13.04.14.
756788072000

PID PTYPE COPAY SYS_START SYS_END TRANS_ID

C882 PPO 10 2016-10-05-13.04.14.
460764263000

2016-10-05-13.04.14.
570404000000

2016-10-05-13.04.14.
460764263000
110 IBM DB2 12 for z/OS Technical Overview

Assume you finished creating the myPOLICIES table (Table 7-7) and myPOLICIES_HIST
table.

Table 7-7 STT myPOLICIES initial data

This is the corresponding SQL:

SET SYSIBM.TEMPORAL_LOGICAL_TRANSACTIONS = 1!
SET SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME = CURRENT TIMESTAMP!
UPDATE myPOLICIES SET PTYPE = 'HMO' WHERE PID = 'C882'!
SET SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME = CURRENT TIMESTAMP!
UPDATE myPOLICIES SET COPAY = 5 WHERE PID = 'C882'!
COMMIT!

Notice that only a single COMMIT is issued after the last data modification to produce a single
physical transaction.

Looking at the data in the tables after the first update, the myPOLICIES table has the updated
policy type with updated start and transaction times (Table 7-8) and the myPOLICIES_HIST
table was populated with a single row containing an end time that is the same as the start
time in the myPOLICIES table (Table 7-9).

Table 7-8 STT myPOLICIES after policy type update

Table 7-9 History table, myPOLICIES_HIST, after policy type update

However, after the second update is committed, the myPOLICIES table has the updated
copayment with a new start time and an un-modified transaction time (Table 7-10) while the
myPOLICIES_HIST table has an additional row to record the copayment change (Table 7-11).

Table 7-10 STT myPOLICIES after copayment update

Table 7-11 History table, myPOLICIES_HIST, after copayment update

PID PTYPE COPAY SYS_START SYS_END TRANS_ID

C882 PPO 10 2016-10-05-13.23.54.
354977492000

9999-12-30-00.00.00.
000000000000

2016-10-05-13.23.54.
354977492000

PID PTYPE COPAY SYS_START SYS_END TRANS_ID

C882 HMO 10 2016-10-05-13.23.54.
460015000000

9999-12-30-00.00.00.
000000000000

2016-10-05-13.23.54.
461328022000

PID PTYPE COPAY SYS_START SYS_END TRANS_ID

C882 PPO 10 2016-10-05-13.23.54.
354977492000

2016-10-05-13.23.54.
460015000000

2016-10-05-13.23.54.
354977492000

PID PTYPE COPAY SYS_START SYS_END TRANS_ID

C882 HMO 2016-10-05-13.23.54.
540575000000

9999-12-30-00.00.00.
000000000000

2016-10-05-13.23.54.
461328022000

PID PTYPE COPAY SYS_START SYS_END TRANS_ID

C882 PPO 10 2016-10-05-13.23.54.
354977492000

2016-10-05-13.23.54.
460015000000

2016-10-05-13.23.54.
354977492000

C882 HMO 10 2016-10-05-13.23.54.
460015000000

2016-10-05-13.23.54.
540575000000

2016-10-05-13.23.54.
46132802200
Chapter 7. Application enablement 111

Single application, multiple logical temporal transactions within a single
physical transaction, timestamp violation
This example demonstrates multiple data modifications to the myPOLICIES table and rows
added to the myPOLICIES_HIST table, as appropriate, with multiple logical temporal
transactions in a single physical transaction. However, this example uses the global variable
SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME to set the transaction time to a point in time
prior to the initial time that the myPOLICIES table is populated.

The following steps demonstrate the scenario:

1. Set the SYSIBM.TEMPORAL_LOGICAL_TRANSACTIONS global variable to 1 to allow multiple
logical temporal transactions to occur in a single commit scope.

2. Set the SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME global variable to the CURRENT
TIMESTAMP.

3. Modify the policy type from 'PPO' to 'HMO'.

4. Set the SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME global variable to a time that is
prior to the initial SYS_START.

5. Modify the copayment from 10 to 5.

6. Issue a COMMIT.

Assume you finished creating the myPOLICIES table (Table 7-12) and myPOLICIES_HIST
tables.

Table 7-12 STT myPOLICIES initial data

This is the corresponding SQL:

SET SYSIBM.TEMPORAL_LOGICAL_TRANSACTIONS = 1!
SET SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME = CURRENT TIMESTAMP!
UPDATE myPOLICIES SET PTYPE = 'HMO' WHERE PID = 'C882'!
SET SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME =
 '2016-09-27-05.54.14.000000000000'!
UPDATE myPOLICIES SET COPAY = 5 WHERE PID = 'C882'!
COMMIT!

Notice that only a single COMMIT is issued after the last data modification to produce a single
physical transaction.

PID PTYPE COPAY SYS_START SYS_END TRANS_ID

C882 PPO 10 2016-10-05-13.49.04.
166123255000

9999-12-30-00.00.00.
000000000000

2016-10-05-13.49.04.
166123255000
112 IBM DB2 12 for z/OS Technical Overview

Looking at the data in the tables after the first update, the myPOLICIES table has the updated
policy type with an updated start time (Table 7-13) and the myPOLICIES_HIST table was
populated with a single row (Table 7-14).

Table 7-13 STT myPOLICIES after policy type update

Table 7-14 History table, myPOLICIES_HIST, after policy type update

However, after the second update is committed, the following error occurs because the
SYS_END was less than the SYS_START:

SQLCODE = -20528, ERROR: THE TARGET OF THE DATA CHANGE OPERATION IS A TABLE
MYPOLICIES, WHICH INCLUDES A PERIOD SYSTEM_TIME. A ROW THAT THIS DATA CHANGE
OPERATION ATTEMPTED TO MODIFY WAS ALSO MODIFIED BY ANOTHER TRANSACTION.

Two concurrent applications, competing multiple logical temporal
transactions
This example demonstrates two concurrent applications with competing logical temporal
transactions. Both applications set the SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME global
variable but application-2 set the SYSIBM.TEMPORAL_LOGICAL_TRANSACTION_TIME global
variable to a time prior to the initial SYS_START time.

Table 7-15 describes the scenario.

Table 7-15 Two applications with competing logical temporal transactions

Similar to the previous example of a single application having multiple logical temporal
transactions in a single physical transaction with a timestamp violation, Application-2 will also
experience SQLCODE -20528 because the SYS_END value was less than SYS_START value.

PID PTYPE COPAY SYS_START SYS_END TRANS_ID

C882 HMO 10 2016-10-05-13.49.04.
277947000000

9999-12-30-00.00.00.
000000000000

2016-10-05-13.49.04.
279435625000

PID PTYPE COPAY SYS_START SYS_END TRANS_ID

C882 PPO 10 2016-10-05-13.49.04.
166123255000

2016-10-05-13.49.04.
277947000000

2016-10-05-13.49.04.
166123255000

Application-1 Application-2

SET TEMPORAL_LOGICAL_TRANSACTION_TIME
= CURRENT TIMESTAMP

SET TEMPORAL_LOGICAL_TRANSACTION_TIME =
'2016-09-27-05.54.14.000000000000'

UPDATE myPOLICIES
SET PTYPE = 'HMO'
WHERE PID = 'C882'

UPDATE myPOLICIES
SET PTYPE = 'POS'
WHERE PID = 'C882'

Note: The SQL examples are in Appendix B, “Additional material” on page 279 in the
following files:

� temporal_log_trans.sql
� temporal_log_trans2.sql
� temporal_log_trans3.sql
Chapter 7. Application enablement 113

7.2.4 Auditing capabilities using temporal tables

As discussed in 7.2, “Temporal table enhancements ” on page 101, temporal tables are
often used to satisfy regulatory and compliance laws where a business needs to keep track
of who made what changes to the data and when the data changes were made. Using a
SYSTEM_TIME period with non-deterministic generated-expression columns, DB2 can now
keep track of the “who, what, and when” of data modifications.

A non-deterministic generated expression column is a generated column that is defined using
a non-deterministic expression. As such, the as-generated-expression-clause can now be
specified as part of the column-definition on the CREATE TABLE and ALTER TABLE
statements where the as-generated-expression-clause allows the following items to be
specified: DATA CHANGE OPERATION, special register, or session variable. For columns
defined with the new as-generated-expression-clause, DB2 automatically generates values
based on the source expression during data change operations (insert/update/delete) and
also with the LOAD utility when the OVERRIDE option is not specified.

For a delete operation, a new ON DELETE ADD EXTRA ROW clause is added to the ALTER
TABLE statement. This optional clause tells DB2 to insert an additional row into the
associated history table when a row is deleted from a system-period temporal table (STT).
The additional row is used to track information about the delete operation.

This auditing support with temporal tables also became available in DB2 11 for z/OS after
DB2 11 was made generally available. The functionality is available after migration to DB2 11
new function mode.

Updated syntax diagrams
The following syntax diagrams are updated or newly introduced:

� Updated column-definition with renaming of the generated-column-definition to the
generated-clause

� Inclusion of the as-generated-expression-clause to the generated-clause

� Definition of the new non-deterministic-expression to the
as-generated-expression-clause
114 IBM DB2 12 for z/OS Technical Overview

Updated column-definition
The syntax diagram for the updated column-definition is shown in Figure 7-4.

Figure 7-4 Syntax diagram for the updated column-definition

New generated-clause to include the as-generated-expression-clause
The syntax diagram for the generated-clause to include the
as-generated-expression-clause is shown in Figure 7-5.

Figure 7-5 Syntax diagram for the generated-clause

Inclusion of the non-deterministic-expression with the
as-generated-expression-clause

The syntax diagram for the as-generated-expression-clause is shown in Figure 7-6.

Figure 7-6 Syntax diagram for the as-generated-expression-clause
Chapter 7. Application enablement 115

Definition of non-deterministic-expression
The syntax diagram for the non-deterministic-expression is shown in Figure 7-7.

Figure 7-7 Syntax diagram for the non-deterministic-expression

Non-deterministic generated expression column specification
If you specify DATA CHANGE OPERATION for the non-deterministic-expression clause, DB2 will
generate a CHAR(1) value representing the data modification:

'D' Delete operation

'I' Insert operation

'U' Update operation

Currently, DB2 supports special registers (Table 7-16) and session variables (Table 7-17) to
be specified on the non-deterministic-expression clause. In addition, the data types of the
columns must comply with the data types listed in Table 7-16 and Table 7-17. These tables
indicate the expected data type for a non-deterministic generated expression column if the
special register or session variable in the first column is specified as the expression.

Table 7-16 Special registers supported with the non-deterministic-expression

Table 7-17 Session variables supported with the non-deterministic-expression

Special Register Column data type

CURRENT CLIENT_ACCTG VARCHAR(255)

CURRENT CLIENT_APPLNAME VARCHAR(255)

CURRENT CLIENT_CORR_TOKEN VARCHAR(255)

CURRENT CLIENT_USERID VARCHAR(255)

CURRENT CLIENT_WRKSTNNAME VARCHAR(255)

CURRENT SERVER CHAR(16)

CURRENT SQLID VARCHAR(n) where n>=8

SESSION_USER or USER VARCHAR(128)

Session variable Column data type

SYSIBM.PACKAGE_NAME VARCHAR(128)

SYSIBM.PACKAGE_SCHEMA VARCHAR(128)

SYSIBM.PACKAGE_VERSION VARCHAR(122)
116 IBM DB2 12 for z/OS Technical Overview

Temporal table auditing example
Suppose you slightly modified myPOLICIES table from the previous examples. The
myPOLICIES table also has a SYSTEM_TIME period defined on the SYS_START and
SYS_END columns and a history table, myPOLICIES_HIST. In addition, you included
non-deterministic generated expression columns in your table definition:

� A column that is based on the SESSION_USER special register
� A column that is based on the DATA CHANGE OPERATION clause

The DDL looks like the following example:

CREATE TABLE myPOLICIES
 (PID CHAR(4) NOT NULL,
 PTYPE VARCHAR(4) NOT NULL,
 COPAY SMALLINT NOT NULL,
 USER_ID VARCHAR(128) GENERATED ALWAYS AS (SESSION_USER),
 OPCODE CHAR(1) GENERATED ALWAYS AS (DATA CHANGE OPERATION),
 SYS_START TIMESTAMP(12) NOT NULL
 GENERATED ALWAYS AS ROW BEGIN,
 SYS_END TIMESTAMP(12) NOT NULL
 GENERATED ALWAYS AS ROW END,
 TRANS_ID TIMESTAMP(12) NOT NULL
 GENERATED ALWAYS AS TRANSACTION START ID,
 PRIMARY KEY (PID),
 PERIOD SYSTEM_TIME(SYS_START, SYS_END))!
CREATE TABLE myPOLICIES_HIST
 (PID CHAR(4) NOT NULL,
 PTYPE VARCHAR(4) NOT NULL,
 COPAY SMALLINT NOT NULL,
 USER_ID VARCHAR(128),
 OPCODE CHAR(1),
 SYS_START TIMESTAMP(12) NOT NULL,
 SYS_END TIMESTAMP(12) NOT NULL,
 TRANS_ID TIMESTAMP(12) NOT NULL)!
COMMIT!
ALTER TABLE myPOLICIES
 ADD VERSIONING USE HISTORY TABLE myPOLICIES_HIST
 ON DELETE ADD EXTRA ROW!

Assume the myPOLICIES STT has a single row and the myPOLICIES_HIST has no rows
(Table 7-18).

Table 7-18 STT myPOLICIES initial data

About two hours later, Jen updates the row, increasing the copayment by $10:

UPDATE myPOLICIES SET COPAY = COPAY + 10!

PID COPAY USER_ID OPCODE SYS_START SYS_END

C882 10 SALLY 'I' 2016-10-05-14.00.35.
565119448000

9999-12-30-00.00.00.
000000000000
Chapter 7. Application enablement 117

The myPOLICIES table has the updated row (Table 7-19) and a row is added to the
myPOLICIES_HIST table (Table 7-20).

Table 7-19 STT, myPOLICIES, after copayment was increased

Table 7-20 History table, myPOLICIES_HIST after co-payment was increased

Approximately, thirty minutes later, Chris deletes the policy:

DELETE FROM myPOLICIES!

The myPOLICIES table no longer has any rows but two rows are added to the
myPOLICIES_HIST table, one for the update and one for the delete (Table 7-21).

Table 7-21 History table, myPOLICIES_HIST after policy was deleted

PID COPAY USER_ID OPCODE SYS_START SYS_END

C882 20 JEN 'U' 2016-10-05-16.00.35.
565119448000

9999-12-30-00.00.00.
000000000000

PID COPAY USER_ID OPCODE SYS_START SYS_END

C882 10 SALLY 'I' 2016-10-05-14.00.35.
565119448000

2016-10-05-16.00.35.
565119448000

PID COPAY USER_ID OPCODE SYS_START SYS_END

C882 10 SALLY 'I' 2016-10-05-14.00.35.
565119448000

2016-10-05-16.00.35.
565119448000

C882 20 JEN 'U' 2016-10-05-16.00.35.
565119448000

2016-10-05-16.30.35.
000000000000

C882 20 CHRIS 'D' 2016-10-05-14.30.35.
000000000000

2016-10-05-16.30.35.
000000000000

Note: The SQL example are in Appendix B, “Additional material” on page 279 in the
following files:

� temporal_audit1.sql
� temporal_audit2.sql
� temporal_audit3.sql
118 IBM DB2 12 for z/OS Technical Overview

Chapter 8. Connectivity and administration
routines

This chapters describes enhancements in the connectivity and administration routines
of DB2 12:

� Maintaining session data on the target server
� Preserving prepared dynamic statements after a ROLLBACK
� DRDA fast load
� Profile monitoring for remote threads and connections
� Stored procedures supplied by DB2

8

© Copyright IBM Corp. 2016. All rights reserved. 119

8.1 Maintaining session data on the target server

Maintaining session data on the target DB2 12 for z/OS server is also called session token
support. When this feature is enabled, a single small session token (a few bytes) generated
by DB2 represents a client session. A transport is then associated with the session by flowing
the appropriate session token on it.

If this feature is not enabled, as in DB2 11 for z/OS, the client drivers using sysplex workload
balancing (WLB) must remember and track session information (such as global variables,
client information, and special registers) to support transaction pooling or connection reroute
as shown in Figure 8-1.

Figure 8-1 Remembering and tracking session information

Thus the WLB or client reroute initiated transport switch requires the client drivers to replay
the session data on the new transport. This results in growing size of replay data, security
exposure, and performance degradation.

In DB2 12 for z/OS, with the session token support, the session data will not be returned to
client from DB2 for z/OS server. Here the client using sysplex WLB will pass a session token
to DB2 server and DB2 will maintain session data for the data sharing group. DB2 will use the
following catalog tables to manage session data:

� SYSIBM.SYSSESSION

� SYSIBM.SYSSESSION_EX

� SYSIBM.SYSSESSION_STATUS

Tip: You need to configure clientApplcompat at the Connection/DataSource level with a
value 'V12R1' to enable session token support to control behavior of applications migrating
to DB2 12 for z/OS. Also, a new client driver level is required for your CLI and Java driver.
120 IBM DB2 12 for z/OS Technical Overview

In the sample scenario illustrated in Figure 8-2, if client connection is rerouted to DB2B, the
client will pass a session token on establishing transport (global variables, special registers
will be kept intact).

Figure 8-2 Sample scenario

Thus, with the session token support, the performance is better because you are now dealing
with much smaller replay data (only the session token), far fewer session commands, and
also it provides increased security for sensitive information in variables and registers.

When the application closes a logical connection, the driver flows a terminate connection to
DB2, resulting in the following sequence of events:

1. The distributed thread (DBAT) is pooled.

2. Connection is made inactive.

3. The session information is released.

You may use the MODIFY DDF command to set the session data timeout value. The session
data timeout value determines how long the session data will stay active before it can be
removed from the SYSIBM.SYSSESSION table. For example, -MODIFY DDF SESSIDLE(100)
sets the SESSIDLE value to 100 minutes.

Tip: Applications should explicitly close result sets, statements, and connections thereby
releasing database resources in a timely manner.

Note: If session data was purged, you receive a DRDA reply with the error code -30062
and the invalid session token message. The application that receives -30062 should
explicitly close the logical connection.
Chapter 8. Connectivity and administration routines 121

8.2 Preserving prepared dynamic statements after a
ROLLBACK

Up to DB2 11, when the application package is bound with KEEPDYNAMIC(YES), this option is
applicable to the COMMIT request only. Normally statements are cleaned up on COMMIT.
With the KEEPDYNAMIC(YES) option, DB2 keeps the runtime structures of cached dynamic
statements on COMMIT. Example 8-1 shows COMMIT and dynamic SQL in DB2 11,
assuming the package is bound with the KEEPDYNAMIC(NO) option.

Example 8-1 COMMIT and dynamic SQL with KEEPDYNAMIC(NO)

PREPARE STMTID FOR INSERT INTO T1 SELECT * FROM T2 WHERE T2.C1 = ?
EXECUTE STMTID USING :H1
EXECUTE STMTID USING :H2
COMMIT the dynamic INSERT is unprepared
EXECUTE STMTID USING :H3 fails because statement is not prepared

Example 8-2 shows the result when the package is bound with KEEPDYNAMIC(YES) option.

Example 8-2 Package bound with KEEPDYNAMIC(YES)

PREPARE STMTID FOR INSERT INTO T1 SELECT * FROM T2 WHERE T2.C1 = ?
EXECUTE STMTID USING :H1
EXECUTE STMTID USING :H2
COMMIT the dynamic INSERT is not unprepared
EXECUTE STMTID USING :H3 successful because statement is still prepared

The KEEPDYNAMIC(YES) functionality is to avoid a trip from the application to re-prepare
dynamic SQL statements after COMMIT, which improves performance. However, this
functionality does not apply to ROLLBACK on DB2 11. Example 8-3 shows ROLLBACK and
dynamic SQL in DB2 11, assuming the package is bound with the KEEDYNAMIC(YES) option.

Example 8-3 ROLLBACK and dynamic SQL

PREPARE STMTID FOR INSERT INTO T1 SELECT * FROM T2 WHERE T2.C1 = ?
EXECUTE STMTID USING :H1
EXECUTE STMTID USING :H2
ROLLBACK the dynamic INSERT is unprepared
EXECUTE STMTID USING :H3 fails because statement is not prepared

DB2 12 extends the KEEPDYNAMIC(YES) functionality to ROLLBACK also, where prepared
dynamic statements are retained at then end of a unit of work. With DB2 12, and the package
bound with APPLCOMPAT(V12R1M500) and KEEPDYNAMIC(YES); Example 8-4 shows the result.

Example 8-4 Package bound with APPLCOMPAT(V12R1M500) and KEEPDYNAMIC(YES)

PREPARE STMTID FOR INSERT INTO T1 SELECT * FROM T2 WHERE T2.C1 = ?
EXECUTE STMTID USING :H1
EXECUTE STMTID USING :H2
ROLLBACK the dynamic INSERT is not unprepared
EXECUTE STMTID USING :H3 successful because statement is still prepared

The DBAT is also kept active so the next re-execution of the statement can resume
immediately without the need for re-prepare.

Note: This function is available for local application as well.
122 IBM DB2 12 for z/OS Technical Overview

8.3 DRDA fast load

DB2 supplies the stored procedure DSNUTILU, which can be invoked by a DB2 application
program to run DB2 online utilities. The LOAD online utility is one such utility that DSNUTILU
supports. As such, DSNUTILU can be used to load data from distributed clients to DB2 for
z/OS servers by invoking the LOAD online utility.

Starting in DB2 12, the client drivers are enhanced to support remote loads to DB2 for z/OS
servers. The DB2 Call Level Interface (CLI) APIs and the Command Line Processor (CLP)
are modified to stream data to the load process in continuous blocks. By using the enhanced
client drivers, the loading of data from distributed clients can significantly reduce elapsed time
because the task that extracts data blocks and passes them to the LOAD utility is 100% zIIP
offloadable using the goal of the distributed address space. The function is available before
activating new function. For information about new function activation, see Chapter 2,
“Continuous delivery” on page 7.

8.4 Profile monitoring for remote threads and connections

DB2 provides monitoring capabilities by the use of profiles tables. Profile tables enable
you to monitor the use of system resources by remote applications, including remote
threads and connections, and to control performance-related subsystem parameters in
particular contexts on your DB2 subsystem. Each monitored situation is defined by a set
of criteria called a profile.

A profile is a set of criteria that identifies a particular situation on a DB2 subsystem. A profile
is defined by a record in the SYSIBM.DSN_PROFILE_TABLE table. The profile tables and related
indexes are created by the DSNTIJSG job during DB2 installation or migration. After profiling is
correctly defined, use the START PROFILE command to start profile monitoring. Issue a STOP
PROFILE command to disable all profile functions.

For further information about profiles, see the topic about using profiles to monitor and
optimize performance in DB2 12 for z/OS Managing Performance, SC27-8857.

DB2 12 offers several enhancements to system profiles:

� Automatic start of profiles during subsystem start
� Support for global variables
� Support for wildcarding
� Idle thread enhancement

8.4.1 Automatic start of profiles during subsystem start

A new subsystem parameter, PROFILE_AUTOSTART, is introduced to allow the START
PROFILE command processing to be automatically initiated as part of DB2 startup processing.
If you set this subsystem parameter to YES, DB2 will automatically start the START PROFILE
command processing.

Consider the following values:

� If you specify YES and your DB2 system was started with the ACCESS(MAINT) option or
LIGHT(YES) option, DB2 will ignore the setting of the PROFILE_AUTOSTART subsystem
parameter and not initiate START PROFILE.

� A value of NO, which is the default value, tells DB2 to not initiate START PROFILE during
startup processing.
Chapter 8. Connectivity and administration routines 123

8.4.2 Support for global variables

You can create profiles to define a set of criteria to monitor processes within DB2. For remote
applications, client information like application name, user ID name, and workstation name
are particularly helpful.

Consider these two tables:

� SYSIBM.DSN_PROFILE_TABLE. Contains a row for each profile.

� SYSIBM.DSN_PROFILE_ATTRIBUTES. Allows you to specify actions for DB2 to take when a
process, such as a SQL statement, thread, or connection meets the criteria of the profile.
The KEYWORDS column in the SYSIBM.DSN_PROFILE_ATTRIBUTES table indicates which
action DB2 should perform. Each action can have up to three attributes that control how
the specified action is applied by DB2. The attributes are defined by the ATTRIBUTE1,
ATTRIBUTE2, and ATTRIBUTE3 columns.

Starting in DB2 12, you can specify GLOBAL_VARIABLE as a KEYWORDS column
value in the SYSIBM.DSN_PROFILE_ATTRIBUTES table. The following built-in global variables
are supported:

� GET_ARCHIVE
� MOVE_TO_ARCHIVE
� TEMPORAL_LOGICAL_TRANSACTION_TIME
� TEMPORAL_LOGICAL_TRANSACTIONS

The ATTRIBUTE1 column must specify a valid SET assignment-statement statement for the
global variable. For example, if you want DB2 to allow temporal logical transactions to occur,
set the ATTRIBUTE1 column value as follows:

SET SYSIBM.TEMPORAL_LOGICAL_TRANSACTIONS = 1

If a profile filter matches a connection, DB2 will automatically apply the built-in global variable
value to the DB2 process of that connection when the connection is initially established, and
when a connection is reused.

Setting a built-in global variable in the profile table applies only to remote applications. This
function is available after new function is activated. For detailed information about new
function activation, see Chapter 2, “Continuous delivery” on page 7. For additional
information about temporal logical transactions, see Chapter 7, “Application enablement ” on
page 99.

8.4.3 Support for wildcarding

As indicated previously, SYSIBM.DSN_PROFILE_TABLE contains a row for each profile. Each
column in the table tells DB2 which connection to monitor. Prior to DB2 12, to handle various
connections, multiple rows had to be defined in the table. Starting in DB2 12, you may choose
to have a single row that represents more than one connection.

The following columns are enhanced in DB2 12 for remote connections:

� AUTHID
� LOCATION
� PRDID

The support described next is available before new function activation. For information about
new function activation, see Chapter 2, “Continuous delivery” on page 7.
124 IBM DB2 12 for z/OS Technical Overview

AUTHID column enhancement
The AUTHID column contains the authorization ID of a monitored user. The AUTHID column
can contain a VARCHAR(128) value. Starting in DB2 12, you can monitor all authorization IDs
that start with the same prefix by specifying an asterisk (*) at the end of the prefix. For
example, if you want to set your profile criteria to all authorization IDs that start with 'USER',
specify 'USER*' for the AUTHID column.

LOCATION column enhancement
The LOCATION column contains the IP address of a monitored connection. The LOCATION
column can contain a VARCHAR(254) value. Starting in DB2 12, you can specify a LOCATION
with the following values:

� IPv4 subnet address subnet prefix in the form of IPv4address/mm where mm is 8, 16, or 24
and represents the number of initial bits of an IPv4 address that belongs in the subnet.

For example, if you specify a value of 9.30.222.0/24, any IP address in the range
9.30.222.1 to 9.30.222.254 will be monitored.

� IPv6 subnet address subnet prefix in the form of IPv6address/mmm where mmm is 16, 32,
48, 64, 80, 96, or 112 and represents the number of initial bits of an IPv6 address that
belongs in the subnet.

� The form of either 0.0.0.0 or ::0, which represents any IP address.

PRDID column enhancement
The PRDID column contains the product-specific identifier of a monitored remote requester.
The PRDID column is a CHAR(8) value. Similar to the AUTHID column enhancement, starting
in DB2 12, you can monitor all product-specific identifiers that start with the same prefix by
specifying an asterisk (*) at the end of the prefix. For example, if you want to monitor all
versions of DB2 for z/OS, use 'DSN*' for the PRDID column.

8.4.4 Idle thread enhancement

As discussed previously, the SYSIBM.DSN_PROFILE_TABLE contains a row for each profile, the
SYSIBM.DSN_PROFILE_ATTRIBUTES table allows you to specify actions for DB2 to take when a
process meets the criteria of the profile. The MONITOR IDLE THREADS column in the
SYSIBM.DSN_PROFILE_ATTRIBUTES table tells DB2 to monitor, for an approximate amount of
time, an active server thread’s idle time. The ATTRIBUTE1 column is used to specify the type
of messages and level of detail of messages issued for monitored threads. The ATTRIBUTE2
column specifies the threshold the thread is allowed to be idle.

The ATTRIBUTE1 column is enhanced to allow the following values:

� EXCEPTION_ROLLBACK
� EXCEPTION_ROLLBACK_DIAGLEVEL1
� EXCEPTION_ROLLBACK_DIAGLEVEL2
Chapter 8. Connectivity and administration routines 125

If the threshold is exceeded according to the ATTRIBUTE2 value, DB2 issues the appropriate
type and level of messages, and if database changes occurred, but were not committed, the
following actions are performed:

� The thread is aborted.

� The database access thread (DBAT) is pooled.

� The database changes are rolled back.

� The connection becomes inactive as it is placed in a must-abort states.

This enhancement to idle threads for EXCEPTION_ROLLBACK became available in DB2 11
for z/OS after DB2 11 was made generally available. On a DB2 11 system, the functionality is
available after migration to DB2 11 new function mode. On a DB2 12 system, the function
becomes available after new function activation. For information about new function
activation, see Chapter 2, “Continuous delivery” on page 7.

8.5 Stored procedures supplied by DB2

The following administration routines are changed in DB2 12:

� ADMIN_COMMAND_DB2

This routine supports the DISPLAY GROUP command changes for continuous delivery. For
more information, see Chapter 2, “Continuous delivery” on page 7.

� ADMIN_COMMAND_DSN

This routine supports the FREE STABILITY DYNAMIC QUERY subcommand. For more
information, see Chapter 9, “Administrator function” on page 131.

� ADMIN_EXPLAIN_MAINT

This routine upgrades the EXPLAIN table definitions for the new release.
The suggested approach is to invoke this routine in the migration process with the
STANDARDIZE_AND_CREATE action to alter the existing EXPLAIN tables to conform
to DB2 12 format.

You can set the stored procedure input parameters to upgrade each existing EXPLAIN
table to the current format for DB2 12 and create any new tables needed for EXPLAIN:

– MODE to 'RUN'
– ACTION to 'STANDARDIZE_AND_CREATE'
– SCHEMA-NAME to the creator identified by the query

Note: DB2 hides the EXCEPTION_ROLLBACK event from the remote application
environment in either of the following scenarios:

� The aborted thread performed only read-only operations.

� The thread committed or aborted but the associated DBAT remained active before it
became idle.

It might appear to the remote application that database resources were lost, such as held
cursors, held LOB locators, declared global temporary tables, and KEEPDYNAMIC
sections.

Note: You can set MODE to 'PREVIEW' to obtain a report of any changes without
processing them.
126 IBM DB2 12 for z/OS Technical Overview

� ADMIN_INFO_SQL

This routine provides a serviceability mechanism to collect information needed for service
issues. This stored procedure is enhanced in DB2 12 as follows:

– Collect the EXPLAIN table, DSN_STATEMENT_TABLE, in the EXPL file. This is
needed for service cases where the function level information is useful.

– Issue the ALTER BUFFERPOOL commands earlier in the process.

� GET_CONFIG

This routine supports the DISPLAY GROUP command changes for continuous delivery. For
more information, see Chapter 2, “Continuous delivery” on page 7.
Chapter 8. Connectivity and administration routines 127

128 IBM DB2 12 for z/OS Technical Overview

Part 4 Operations and
performance

This part contains the following chapters:

� Chapter 9, “Administrator function” on page 131
� Chapter 10, “Security” on page 167
� Chapter 11, “Utilities” on page 177
� Chapter 12, “Installation and migration” on page 199
� Chapter 13, “Performance” on page 231

Part 4
© Copyright IBM Corp. 2016. All rights reserved. 129

130 IBM DB2 12 for z/OS Technical Overview

Chapter 9. Administrator function

DB2 12 introduces several features useful for the database administrators. This chapter
describes the following functions:

� Dynamic plan stability
� Resource limit facility for static SQL
� Column level deferred alter (pending alter column)
� Insert partition

9

© Copyright IBM Corp. 2016. All rights reserved. 131

9.1 Dynamic plan stability

Dynamic SQL statements allow applications to build SQL statements dynamically at run time.
Unlike static SQL statements, the full text of the dynamic SQL statement is not known at the
application’s bind time. In an ad hoc query environment, performance of dynamic SQL
statements is an important priority because enterprise applications use repeating dynamic
SQL and they often suffer from instability compared to static SQL. Although the risk of any
individual query regressing on any one day is small, exposing thousands of queries to access
path changes every day as statistics, the environment, maintenance level, and even release
of DB2 changes result in exposure to query performance regression.

To optimize a dynamic SQL statement’s performance, the prepared or bound form of the SQL
statement is often saved in the in-memory global dynamic statement cache (DSC). Then, for
the next request to prepare the dynamic SQL statement for execution, a copy of the bound
form of the SQL statement from the cache may be used. However, the storage of the bound
form of the dynamic SQL statement in the in-memory cache is not persistent and only
provides stabilization for dynamic queries over an instance of a database system. Further,
stabilization is not realized across different version of the database system. After the bound
form of the SQL statement is deleted from the cache, the dynamic SQL statement must be
prepared again. Even when the access plan for the dynamic SQL statement is persistently
stored and reused on the next PREPARE SQL, there is no guarantee that the same bound
form will result when the PREPARE process is repeated using the stored access plan.

DB2 12 addresses that concern by supporting the ability to stabilize and reuse the runtime
structures (the prepared form) for dynamic SQL, extending the stability that was available to
only statically bound SQL in DB2 11 to stabilized dynamic SQL.

9.1.1 Stabilization into and loading from catalog tables

Similar to static SQL statements that are bound in packages and saved in the persistent DB2
catalog and directory, DB2 12 saves the prepared runtime structures of dynamic SQL
statements and their corresponding EXPLAIN and dependency (object and authorization)
information, in the persistent new catalog tables, SYSDYNQRY and SYSDYNQRYDEP. The
source statements in the DSC can be saved in those catalog tables through the new START
DYNQRYCAPTURE command.

During subsequent prepared request of the same dynamic statement, DB2 looks in the DSC.
If the statement is not found in the DSC (cache miss), DB2 will look up the SYSDYNQRY for a
stabilized statement using the same criteria for DSC look up. If a match is found on the
catalog table, a running copy of the statement is made along with its dependency information
to insert into the DSC and to be executed by the running thread. This process is called
loading a stabilized dynamic statement into the DSC, which bypasses the full PREPARE
process altogether.

9.1.2 Stabilization method

When the function level is activated to 500 or above, START DYNQUERYCAPTURE (STA DYNQRY
for short) can be used to capture qualified statements in the DSC into the catalog tables. The
DSNT758 message is issued when attempting to issue the commands before new function
activation. This command can be executed with different scopes:

� SCOPE(LOCAL): Qualified statements in the DSC of the member where the command is
executed are handled.

� SCOPE(GROUP): Qualified statements in the DSC of all active members are handled.
132 IBM DB2 12 for z/OS Technical Overview

To execute this command, a privilege set of the process must include one of the following
authorities:

� SQLADM authority
� System DBADM authority
� SYSOPR authority
� SYSCTRL authority
� SYSADM authority

Figure 9-1 shows the STA DYNQRY command syntax.

Figure 9-1 The START DYNQUERYCAPTURE command

You provide a stabilization group name to logically associate a set of queries that are
captured or stabilized. The stabilization group name can be used as input to the FREE
command to free all the queries for a stabilization group.

Various criteria can be specified to find the statements that are stable and performed well to
be captured:

� Queries that were cached in the DSC under a specific CURRENT SQLID or all and have
been executed a number of times (threshold). Note that DB2 increments each statement’s
execution count only if IFCID318 is enabled. Therefore, to turn on this trace record or
TYPE(MONITOR) CLASS(29), then use EXPLAIN STATEMENT CACHE or other methods
to determine which statements are to be stabilized. The default threshold value is 2.

� A query with a specific statement ID or statement token as shown on the EXPLAIN
STATEMENT CACHE output or IFCID 316 trace record. These are IDs and tokens in the
DSC; hence, only the member’s DSC where the command is executed is examined.

The DSNX221I message is issued if the command has no syntax or no authorization error
thus is started successfully. An asynchronous service task is scheduled to begin the
stabilization process. The DSNX222I message is issued when the stabilization process
finishes with summarized information on the numbers of statements that DB2 attempted to
capture and actually captured. A command number is displayed on both messages to help
coordinate them together. The DSNX223I message is written if another dynamic query
capture process is already active for the specified SQLID.
Chapter 9. Administrator function 133

More than one STA DYNQRY command can be executed at the same time, and DB2 manages
the process so that a query can be stabilized with a stabilization group only. For a data
sharing group, the preference is to use the SCOPE(GROUP) option to reduce the contention
among members. DB2 captures queries in the member where the command starts, then
notifies other members to capture queries in their DSC concurrently. Thus, if a query exists on
multiple members, the number of scheduled queries for stabilization might be less than the
number of queries actually stabilized.

Example 9-1 specifies to DB2 to stabilize queries in the dynamic cache with CURRENT
SQLID of ADMF001 and that have been executed at least 50 times.

Example 9-1 The STA DYNQRY command and output

-STA DYNQUERYCAPTURE STBLGRP(ABC) THRESHOLD(50) CURSQLID(ADMF001)
DSNX221I -DB2A DSNXESTC DYNAMIC QUERY CAPTURE FOR
COMMAND NUMBER 3 STARTED SUCCESSFULLY.
DSNX222I -DB2A DSNXESC1 DYNAMIC QUERY CAPTURE
COMPLETED FOR COMMAND NUMBER 3 WITH 20 STATEMENTS SCHEDULED,
20 STATEMENTS STABILIZED, AND 0 STATEMENTS ALREADY STABILIZED.

Example 9-2 stabilizes all queries in the dynamic cache of each member in the data sharing
group that have been executed at least 200 times.

Example 9-2 The STA DYNQRY command and output

-STA DYNQUERYCAPTURE STBLGRP(DEF) THRESHOLD(200) SCOPE(GLOBAL)
DSNX221I -DB2A DSNXESTC DYNAMIC QUERY CAPTURE FOR
COMMAND NUMBER 2 STARTED SUCCESSFULLY.
DSNX222I -DB2A DSNXESC1 DYNAMIC QUERY CAPTURE
COMPLETED FOR COMMAND NUMBER 2 WITH 50 STATEMENTS SCHEDULED,
47 STATEMENTS STABILIZED, AND 3 STATEMENTS ALREADY STABILIZED.

Limitation
Qualified queries to be captured are those inserted in the DB2 dynamic cache excluding
these queries:

� Queries prepared with REOPT(AUTO)

� Queries prepared with CONCENTRATE STATEMENT WITH LITERALS

� Queries transformed due to referencing System Temporal, Application Temporal, or
Archived Transparency table and non-default setting of the CURRENT SYSTEM
TEMPORAL TIME special register, CURRENT BUSINESS TEMPORAL TIME special
register, or GET_ARCHIVE global variable.
134 IBM DB2 12 for z/OS Technical Overview

9.1.3 Catalog tables

Dynamic statements are stabilized in the SYSIBM.SYSDYNQRY table with an unique
stabilized statement ID and copy ID. The table has the following columns (Table 9-1).

Table 9-1 Catalog tables

The object and authorization dependency information are stored in the SYSDYNQRYDEP
table with the primary key as SDQ_STMT_ID and COPY ID column values to correlate back
to rows in the SYSDYNQRY table.

Column name Data type Description

SDQ_STMT_ID BIGINT NOT NULL Stabilized dynamic query statement ID.

STBLGRP VARCHAR(128) NOT NULL Stabilization group name

COPYID SMALLINT NOT NULL The copy of the stabilized runtime structures
for the query in this row:
� 0 – CURRENT
� 4 – INVALID

CURSQLID VARCHAR (128) NOT NULL Current SQLID for stabilized dynamic query.

CURSCHEMA VARCHAR (128) NOT NULL Current schema for stabilized dynamic query.

CURAPPLCOMPAT VARCHAR (10) NOT NULL Current application compatibility for stabilized
dynamic query.

QUERY_HASH CHAR(16) NOT NULL FOR BIT DATA The hash key generated by statement text.

QUERY_HASH_VERSION INTEGER NOT NULL The version of the query hash.

VALID CHAR(1) NOT NULL Whether the stabilized dynamic query is valid:
� N for No
� Y for Yes

LASTUSED DATE NOT NULL Date query using these runtime structures was
last run.

RELBOUND CHAR(1) NOT NULL The release when the query was stabilized.
See Release dependency indicators.

GROUP_MEMBER VARCHAR(24) NOT NULL The data sharing member name that updates
the row

STBLTIME TIMESTAMP NOT NULL Timestamp when statement was stabilized.

ROWID ROWID NOT NULL
GENERATED ALWAYS

Internal use only.

STMTTEXT CLOB (2M) NOT NULL The text of the SQL statement.

DATA1 BLOB(2G) INLINE LENGTH (32329)
NOT NULL

Internal use only.

DATA2 BLOB(2G) NOT NULL Internal use only.

DATA3 BLOB(2G) NOT NULL Internal use only.

DATA4 BLOB(2G) NOT NULL Internal use only.

DATA5 VARCHAR(128) NOT NULL Internal use only.

DATA6 CHAR(8) NOT NULL FOR BIT DATA Internal use only.
Chapter 9. Administrator function 135

Table 9-2 shows the columns that exist in the SYSDYNQRYDEP table.

Table 9-2 Column names in the SYSDYNQRYDEP table

Column name Data type Description

SDQ_STMT_ID BIGINT NOT NULL Stabilized dynamic query statement ID.

COPYID SMALLINT NOT NULL The copy of the dynamic query in this row.
Current version of the dynamic query.

BQUALIFIER VARCHAR(128) NOT NULL The value of the column depends on the type of object:
� If BNAME identifies a table space (BTYPE is R),

the value is the name of its database.
� If BNAME identifies a table on which a period is

defined (BTYPE is B or C), the value is the
qualifier of that table.

� If BNAME identifies user-defined function, a cast
function, a stored procedure, or a sequence
(BTYPE is F, O, or Q), the value is the schema
name.

� If BNAME identifies a role, the value is blank.
� Otherwise, the value is the schema of BNAME.

BNAME VARCHAR(128) NOT NULL The name of the object that the query depends on.

BTYPE CHAR(1) NOT NULL Type of object identified by BNAME and BQUALIFIER:
� 'A' = Alias
� 'E' = INSTEAD OF trigger
� 'F' = User-defined function or cast function
� 'G' = Created global temporary table
� 'H' = Global Variable
� 'I' = Index
� 'M' = Materialized query table
� 'O' = Stored procedure
� 'P' = Partitioned table space if it is defined as

LARGE or with the DSSIZE parm
� 'Q' = Sequence object
� 'R' = Table space
� 'S' = Synonym
� 'T' = Table
� 'V' = View
� 'W' = SYSTEM_TIME period
� 'Z' = BUSINESS_TIME period
� '0' (zero) = Sequence alias

CLASS CHAR(1) NOT NULL � 'A' = Authorization dependency
� 'D' = Data Definition Language dependency

BAUTH SMALLINT NOT NULL The privilege that is held on the object on which the
query is dependent. The privilege only applies when
CLASS is 'A':
� 50 = SELECTAUTH
� 51 = INSERTAUTH
� 52 = DELETEAUTH
� 53 = UPDATEAUTH
� 64 = EXECUTEAUTH
� 263 = USAGEAUTH
� 291 = READAUTH
� 292 = WRITEAUTH
� 0 = Column is not used
136 IBM DB2 12 for z/OS Technical Overview

9.1.4 Calculating the EDM statement cache hit ratio

The EDM storage statistics provide information that can help to determine how successful
applications are at finding statements in the dynamic cache and in the SYSDYNQRY catalog
table.

PREPARE REQUESTS (A) records the number of PREPARE requests.

FULL PREPARES (B) records the number of times that a statement was inserted into the
cache after a full PREPARE to derive the access path and build the runtime structures.

AUTHID_TYPE CHAR(1) NOT NULL The type of authorization ID indicated by AUTHID. The
authorization type only applies when CLASS is 'A':
' ' = Authorization ID
'L' = Role

AUTHID VARCHAR(128) NOT NULL The authorization ID or role of the user who holds the
privilege on the object on which the query is
dependent. The authorization ID only applies when
CLASS is 'A'.

DBNAME VARCHAR(24) NOT NULL If the value of BADMINAUTH IS 'D' (DBADMAUTH),
DBNAME contains the name of the database on which
the user or role indicated by AUTHID holds DBADM
authority. Otherwise the value is blank.

BADMINAUTH CHAR(1) NOT NULL The authority that allowed access to the object on
which the query is dependent. The admin authority
only applies when CLASS is 'A':
� 'B' = SDBADMAUTH
� 'D' = DBADMAUTH
� 'G' = ACCESSCTRLAUTH
� 'K' = SQLADMAUTH
� 'L' = SYSCTRLAUTH
� 'S' = SYSADMAUTH
� 'T' = DATAACCESSAUTH
� ' ' = Authority not held

PUBLICAUTH CHAR(1) NOT NULL Whether the privilege or authority is held by PUBLIC.
The PUBLIC privilege only applies when CLASS is 'A':
� 'Y' = Privilege is held
� ' ' = Privilege is not held

ALLOBJAUT CHAR(1) NOT NULL Whether the privilege is held on all objects within the
schema. The all objects privilege only applies when
CLASS is 'A':
� 'Y' = Privilege is held
� ' ' = Privilege is not held

QUERY_HASH CHAR(16) NOT NULL FOR BIT DATA The hash key of the statement text if the value of
CLASS is 'D', otherwise hexadecimal zeros.

VARCHAR(128) NOT NULL Internal use only.

CHAR(8) NOT NULL FOR BIT DATA Internal use only.

Column name Data type Description
Chapter 9. Administrator function 137

LOAD FROM CATALOG (C) records the number of times that a statement was inserted into
the cache via the process where a SYSDYNQRY record is used to achieve access paths
stability, therefore bypassing the optimization and building of the runtime structure in a full
PREPARE process altogether.

To determine how often the dynamic statement was used from the cache, check the value in
CACHE HIT RATIO (D).

Procedure to calculate the EDM statement cache hit ratio
The following formula can be used to calculate the cache hit ratio which is the best
performance path:

(PREPARE REQUESTS - FULL PREPARES - LOAD FROM CATALOG) / PREPARE REQUESTS

To find cache hit ratio and load from catalog hit ratio, the following formula can be used:

(PREPARE REQUESTS - FULL PREPARES) / PREPARE REQUESTS

Example 9-3 demonstrates that formula.

Example 9-3 The EDM storage statistics

DYNAMIC SQL STMT QUANTITY FORMULA
---------------- -------- -------
PREPARE REQUESTS A 210225
FULL PREPARES B 42681
SHORT PREPARES 167544 (A - B - C)
 Short PREPARES based on cache 154592 (A - B - C - C)
 Short PREPARES based on catalog C 12952
CACHE HIT RATIO (%) 73.54 (A - B - C) / A
CATALOG+CACHE HIT RATIO (%) 79.70 (A - B) / A

In the example, A, B, and C are the EDM statistic counters QISEDSG, QISEDSI, and
QISEDPSF respectively.

9.1.5 Invalidation of stabilized dynamic statements

When a statement is captured into the SYSDYNQRY table, its COPY ID value is '0' and
VALID = 'Y'.

Various actions and events can invalidate stabilized dynamic SQL statements. For example,
changing objects that are referenced by the statement, such by issuing ALTER, REVOKE,
and DROP statements can invalidate stabilized dynamic SQL statements. The VALID column
of the SYSDYNQRY catalog table indicates the validity of stabilized dynamic statements.
When these invalidation situations occur, DB2 marks the saved runtime structures for the
stabilized access paths as invalid (VALID = 'N' with COPYID remains as '0').

The next time an invalidated statement is prepared, DB2 uses the full prepare process to
generate new access paths. Such invalidated statements are not stabilized until another
START DYNQUERYCAPTURE command is issued to stabilize them again. At that time, the
invalidated query will have copy ID of '4', and the newly stabilized, valid copy is added with
copy ID of '0'. The load stabilized dynamic statement process on the PREPARE request uses
only the valid copy.
138 IBM DB2 12 for z/OS Technical Overview

9.1.6 EXPLAIN changes

In DB2 12, cached queries in the DSC keep track of their stabilized statement IDs if a query
was captured into or loaded from the SYSDYNQRY table. This ID is externalized in the
EXPLAIN STATEMENT CACHE output and IFCID 316 trace record.

DB2 12 also adds a new option on the EXPLAIN statement, STABILIZED DYNAMIC QUERY
STMTID, for the ability to retrieve the access path information saved with a specific captured
statement.

Figure 9-2 shows the EXPLAIN statement’s syntax diagram.

Figure 9-2 The EXPLAIN statement syntax diagram

A COPY 'CURRENT' option will retrieve the row in the SYSDYNQRY table with matching
SDQ_STMTID and COPYID of 0 which is the copy usable on a load process. A COPY
'INVALID' option will retrieve the row in the SYSDYNQRY table with matching SDQ_STMTID
and COPYID of 4 which is the copy not usable on a load process. This EXPLAIN statement is
useful when an access path's comparison is needed such as after certain DDL activities
(dropping an index).

Because no QUERYNO exists for this EXPLAIN request, the HINT_USED column in the
PLAN_TABLE is populated with the string 'EXPLAIN SDQ: cid', and cid will be one of the
following values:

� “0” is the current copyid.

� "4” is the invalid copyid.

The QUERYNO column of each EXPLAIN table record that is returned is set to the default
value 0, and the COLLID column is set to DSNSTBLQRYEXPLAIN.

Various EXPLAIN tables in DB2 12 also have the new PER_STMT_ID column to correlate
back to the SYSDYNQRY.SDQ_STMTID column.

9.1.7 The FREE STABILIZED DYNAMIC QUERY subcommand

As queries are captured into the persistent catalog, the user can monitor usage and remove
the statements which are not loaded recently because they are not frequently executed. The
SYSDYNQRY.LASTUSED column can be referenced for the above information. A new TSO
Chapter 9. Administrator function 139

FREE STABILIZED DYNAMIC QUERY subcommand is supported to allow a user deleting the
captured statement (or statements) either by the ID or stabilization group name.

The PLANMGNTSCOPE option can be used to specify all copies or invalid copies
(COPYID = '4') are to be freed. The INVALIDONLY option is provided to target the invalid
copies (VALID = 'N').

Figure 9-3 shows the FREE subcommand syntax.

Figure 9-3 The FREE subcommand syntax diagram

Example 9-4 indicates how to free the stabilized dynamic query whose ID is 1234 and invalid
with COPYID of '4'.

Example 9-4 Free the invalid stabilized dynamic query whose ID is 1234, copy id = '4'’

FREE STABILIZED DYNAMIC QUERY SDQSTMTID (1234) PLANMGMTSCOPE(INVALID)

This new subcommand can also be revoked with the ADMIN_COMMAND_DSN stored
procedure. Example 9-5 shows the stored procedure's invocation to free all stabilized
dynamic queries for stabilization group APP01.

Example 9-5 The ADMIN_COMMAND_DSN invocation with Free stabilized dynamic queries

CALL SYSPROC.ADMIN_COMMAND_DSN('FREE STABILIZED DYNAMIC QUERY STBLGRP(APP01)', ?)
MSG:
ROWNUMText
1 DSNT340I -DB2A FREE STABILIZED DYNAMIC QUERY
2 COMPLETED SUCCESSFULLY FOR 5 STATEMENTS.
 "ADMIN_COMMAND_DSN" RETURN _STATUS: 0

Note: When freeing multiple statements in a stabilization group, DB2 issues a COMMIT
after each statement free. If any of the specified queries are in the dynamic statement
cache, FREE STABILIZED DYNAMIC QUERY purges them from the dynamic statement cache.

Note: A row with the VALID column of 'N' might or might not have the COPYID of '4'.
COPY ID of '4' is updated only when the statement is re-prepared, cached in the DSC and
recaptured in the SYSDYNQRY table.
140 IBM DB2 12 for z/OS Technical Overview

9.1.8 Monitor for stabilization

Because the STA DYNQRY MONITOR(NO) command performs only a snapshot capture of
stabilized dynamic queries, it does not capture all queries for the workload. You must
periodically issue the command to capture more queries as they are executed and qualified.
The MONITOR(YES) option avoids this unreliable work for you and allows DB2 to perform the
work continuously without performance overhead to the mainline SQL execution or to overall
system resource.

Start the monitor
When a STA DYNQRY command is issued with the MONITOR(YES) option, partially qualified
statements can be monitored to be stabilized later. An example of a partially qualified
statement is when the statement matches the CURRENT SQLID but the number of
executions has not reached the specified threshold value. Several concurrent monitoring
capture commands can be started, and DB2 assigns the stabilization group and command
number to each partially qualified statement in the DSC. Additionally, as new statements are
inserted into the DSC through the full PREPARE process, the stabilized dynamic statement
monitor process can link them to an active monitor request (if the CURRENT SQLID
matches).

At every minute interval, DB2 service task checks the DSC for monitored statements meeting
all criteria (such as the execution threshold) and stabilizes them into the SYSDYNQRY table.

Display the monitors
The new DISPLAY DYNQUERYCAPTURE command (DIS DYNQRY for short) can be used to display
all currently active dynamic query capture monitors. The DSNX250I message shows that DIS
DYNQRY command started, and the display output is followed. The DSNX260I message
indicates that a long display output continues from the previous output. Figure 9-4 shows the
command syntax.

Figure 9-4 The DISPLAY DYNQUERYCAPTURE command syntax diagram

Note: The STA DYNQRY MONITOR(YES) command also includes the MONITOR(NO) work (taking
the snapshot of the DSC and stabilized currently qualified statements) before beginning
the monitoring work.
Chapter 9. Administrator function 141

Stop the monitor
The new STOP DYNQUERYCAPTURE command stops the specified active dynamic query capture
monitoring request (or requests). Figure 9-5 shows the command syntax.

Figure 9-5 The STOP DYNQUERYCAPTURE command syntax

The CNO value can be obtained from the command number shown in the DSNX221I
message issued on the STA DYNQRY command or the DIS DYNQRY command output.

Use case
The following use case shows how the monitoring process works for multiple commands and
how the DIS DYNQRY command can be used to track progress. Assume that two applications
exist, application A and application B, with the dynamic SQL statements that are listed in
Example 9-6.

Example 9-6 Dynamic SQL statements for application A and application B

Application A: SET CURRENT SQLID = SCHEMA1
SELECT * FROM SCHEMA1.T1
INSERT INTO SCHEMA1.T1 SELECT FROM SCHEMA2.T2

Application B: SET CURRENT SQLID = SCHEMA2
 UPDATE SCHEMA2.T2 SET C1 -1 WHERE C2 = ‘ABC’

DELETE FROM SCHEMA2.T2 WHERE C2 = ‘ABC’

Assume also that applications A and B are executed twice, and the runtime structures of the
statements in Example 9-6 are inserted into the DSC with a number of executions of 2.

Assume further that the following first stabilize command is issued to start the stabilization for
dynamic query statement with monitoring capability:

- START DYNQUERYCAPTURE GROUP(GRPA) CURSQLID(SCHEMA1) THRESHOLD(2) MONITOR(YES)

With this command, the SELECT and INSERT statements from application A are stabilized
into the DB2 catalog because they match both criteria CURRENT SQLID and execution
threshold. Example 9-7 shows the output when a DIS DYNQRY command is issued after.

Example 9-7 Output of issuing a DIS DYNQRY command

-DISPLAY DYNQUERYCAPTURE CNO(*)
*** BEGIN DISPLAY DYNAMIC QUERY CAPTURE CNO(*)
==
CNO : 1
STBLGRP : GRPA
SCHEMA : SCHEMA1
THRESHOLD : 2
STABILIZED : 2
==
*** END DISPLAY DYNAMIC QUERY CAPTURE
142 IBM DB2 12 for z/OS Technical Overview

Next, the following second stabilize command is issued to start stabilization with monitoring
capability:

- START DYNQUERYCAPTURE GROUP(GRPB) CURSQLID(SCHEMA2) THRESHOLD(10) MONITOR(YES)

On this command, DB2 links the UPDATE and DELETE statements in the DSC to the second
monitor request. Example 9-8 shows the output when a DIS DYNQRY command is issued after.

Example 9-8 Output of issuing a DIS DYNQRY command

-DISPLAY DYNQUERYCAPTURE CNO(*)
*** BEGIN DISPLAY DYNAMIC QUERY CAPTURE CNO(*)
==
CNO : 1
STBLGRP : GRPA
SCHEMA : SCHEMA1
THRESHOLD : 2
STABILIZED : 2

CNO : 2
STBLGRP : GRPB
SQLID : SCHEMA2
THRESHOLD : 10
STABILIZED : 0
==
*** END DISPLAY DYNAMIC QUERY CAPTURE

Assume that application B is running again and its UPDATE statement is executed 8 more
times. The monitor service task finds that the UPDATE statement fully satisfies the filtering
criteria of the second monitoring request since the number of executions is now 10 and stores
the bound form of the UPDATE statement in the persistent catalog. The command in
Example 9-9 can then be issued to display pending monitoring requests.

Example 9-9 Display pending monitoring requests

- DISPLAY DYNQUERYCAPTURE CNO(*)
*** BEGIN DISPLAY DYNAMIC QUERY CAPTURE CNO(*)
==
CNO : 1
STBLGRP : GRPA
SCHEMA : SCHEMA1
THRESHOLD : 2
STABILIZED : 2

CNO : 2
STBLGRP : GRPB
SQLID : SCHEMA2
THRESHOLD : 10
STABILIZED : 1
==
*** END DISPLAY DYNAMIC QUERY CAPTURE

Note: For the command number (CNO) 2, the output now shows the progress of 1 (one)
stabilized statement.
Chapter 9. Administrator function 143

To stop a pending monitoring request, a STOP DYNQUERYCAPTURE command can be issued. For
example, assume that at this time, a STOP DYNQUERYCAPTURE CNO(2) command is issued for
the second monitoring command. In response, the monitoring request for SCHEMA2 is
deleted and the link from application B’s DELETE statement is also broken. The DELETE
statement can be subsequently executed but it will not be stabilized.

Next, assume further that a new application C executes the following dynamic SQL statement
twice:

INSERT INTO SCHEMA1.T1 SELECT * FROM SCHEMA1.T2

As this new statement is prepared and its runtime structures inserted into the DSC, a check is
made against the monitoring requests, and a link is established with the monitoring request 1
because the new statement satisfies the CURRENT SQLID criteria. When the execution
threshold of 2 is reached, DB2 automatically stabilizes this statement. Example 9-10 shows
that the output displays the updated progress in the monitoring requests.

Example 9-10 Display the updated progress in monitoring requests

-DISPLAY DYNQUERYCAPTURE CNO(*)
*** BEGIN DISPLAY DYNAMIC QUERY CAPTURE CNO(*)
==
CNO : 1
STBLGRP : GRPA
SCHEMA : SCHEMA1
THRESHOLD : 2
STABILIZED : 3
==
*** END DISPLAY DYNAMIC QUERY CAPTURE

9.1.9 DSNZPARM and installation panel

A new subsystem parameter, CACHEDYN_STABILIZATION, is introduced for specifying how
DB2 should stabilize cached dynamic SQL. The CACHEDYN_STABILIZATION DNZPARM is
externalized as CACHE DYN STABILITY on the DSNTIP8 installation panel (Figure 9-6 on
page 145).
144 IBM DB2 12 for z/OS Technical Overview

Figure 9-6 The DSNTIP8 installation panel

Consider the following information about the parameter:

� CACHE DYN STABILITY: Specify how DB2 is to stabilize cached dynamic SQL
statements. When a statement is stabilized, the CURRENT SQLID, statement text, and
runtime structures are written to catalog tables. When a dynamic SQL statement is not
present in the dynamic SQL statement cache, DB2 will load the runtime structures if
available from the SYSIBM.SYSDYNQUERY catalog table rather than performing a full
prepare. This extends the stability and reliability of performance of dynamic SQL.

� Range: CAPTURE, LOAD, BOTH, NONE

– CAPTURE: Statements may be stabilized through the -START DYNQUERY command with
both MONITOR(NO) and MONITOR(YES). DB2 will not load stabilized statements from
SYSDYNQUERY.

– LOAD: Statements may not be stabilized through any means.
The -START DYNQUERY command will fail, and any MONITOR(YES) commands in progress
will not stabilize statements, even if stabilization criteria are matched. During long
prepare, DB2 will attempt to load stabilized statements from SYSDYNQUERY with
which to run.

– BOTH: This is the default setting. Statements may be stabilized through the -START
DYNQUERY command through both MONITOR(NO) and MONITOR(YES). During long prepare,
DB2 will attempt to load stabilized statements from SYSDYNQUERY with which to run.

– NONE: Statements may not be stabilized through any means.
The -START DYNQUERY command will fail, and any MONITOR(YES) commands in progress
will not stabilize statements, even if stabilization criteria are matched. DB2 will not load
stabilized statements from SYSDYNQUERY.
Chapter 9. Administrator function 145

� Default: BOTH

� Data sharing scope: All members should use the same setting

� Online changeable: Yes

� DSNZPxxx: DSN6SPRM.CACHEDYN_STABILIZATION

9.2 Resource limit facility for static SQL

Traditionally, the DB2 resource limit facility (RLF) is used to govern dynamic SQL statements
so they do not unexpectedly consume too much resources such as locks, CPU, storage, I/O,
and so on, due to unanticipated access path change, DASD hardware degradation, or poorly
coded SQL. Abrupt poor performance when a static SQL statement in application runs away
in DB2 and accumulates many resources is also an issue that could negatively impact online
transactions in a production system.

Transaction Managers such as IBM CICS® and IMS have functions that control transactions
consuming resources in an IMS or CICS database. However, when the CICS or IMS
transaction invokes a static SQL statement running in DB2 for z/OS, the resource limit control
function does not apply. In a high volume online transaction processing environment, the
ability to proactively cancel poorly running DB2 threads can help avoid severe degradation of
an LPAR.

DB2 12 extends the RLF functionality to support static SQL statements to avoid unanticipated
application’s elapsed time as well as to control system’s resource consumption.

9.2.1 Reactive governing static SQL

You can define the RLF tables by using the unique naming convention DSNTRLSTxx and
DSNTRLMTxx where xx is an ID number. These RLF tables allow you to specify the limit
amount of processor resources, in service units, used by dynamic SQL statements. This type
of control function is called reactive governing because DB2 can interrupt the execution of the
qualified SQL statement and return a negative SQLCODE when the limit is reached.

DB2 12 enhances the reactive governing function of the RLF tables so that you can limit
resources used by static SQL statements too. To use RLF, the you insert rows into a resource
limit table with values that identify the context of the governed statements, the type of
governing, and threshold limits. The limits specified in the RLF tables apply to individual
dynamic or static SQL statements that qualify for a defined scope. You can specify different
function codes in the RLF tables to indicate whether static or dynamic SQL statements are to
be governed with the limit when they are executed. To insert a row for reactive governing on
static SQL statements, you can specify 'A' in the RLFFUNC column and the amount of
processor limit in ASUTIME column. The PLANNAME column has to be blank.

Note: Other functions are provided with RLF too, such as the predictive governing function,
query parallelism control function, and bind limit function. These function codes can be
specified in the RLF tables and are still applicable to dynamic SQL statements only.
146 IBM DB2 12 for z/OS Technical Overview

Similar to dynamic SQL, only the following static statements can be reactively governed:

� SELECT (cursor and singleton),
� INSERT
� UPDATE (search and position)
� MERGE
� TRUNCATE
� DELETE (search and position)

The change shown in Table 9-3 and Table 9-4 is applicable to the RLFFUNC column of the
user DSNRLSTxx and DSNRLMTxx tables supplied by DB2.

Table 9-3 RLFFUNC column in RLF DSNRLSTxx table

Table 9-4 RLFFUNC column in RLF DSNRLMTxx table

After a START RLF command is issued referencing these tables, the changes to the resource
limit table become effective immediately for all new threads.

While a thread is executing and using a limit, DB2 can detect that a filtering criteria can
change and apply the corresponding limit:

� When the primary user is changed
� When the client information is changed
� When a package is loaded for execution

Column name Column type Description

RLFFUNC CHAR(1) Specifies how the row is used. These values have an effect:
� '1' = The row reactively governs bind operations.
� '2' = The row reactively governs dynamic SELECT, INSERT,

UPDATE, MERGE, TRUNCATE, or DELETE statements by
package or collection name.

� '4' = The row disables query CP parallelism.
� '7' = The row predictively governs dynamic SELECT,

INSERT, UPDATE, MERGE, TRUNCATE, or DELETE
statements by package or collection name.

� 'A' = The row reactively governs static SELECT (cursor and
singleton), INSERT, UPDATE, MERGE, TRUNCATE, or
DELETE statements by package or collection name.

All other values are ignored.

Column name Column type Description

RLFFUNC CHAR(1) Specifies how the row is used. These values have an effect:
� '8' = The row reactively governs dynamic SELECT, INSERT,

UPDATE, MERGE, TRUNCATE, or DELETE statements by
client information (RLEUID, RLFEUAN, RLFEUWN, and
RLFIP).

� '9' = The row predictively governs dynamic SELECT,
INSERT, UPDATE, MERGE, TRUNCATE, or DELETE
statements by client information (RLEUID, RLFEUAN,
RLFEUWN, and RLFIP).

� 'B' = The row reactively governs static SELECT (cursor and
singleton), INSERT, UPDATE, MERGE, TRUNCATE, or
DELETE statements by client information (RLEUID,
RLFEUAN, RLFEUWN, and RLFIP).

All other values are ignored.
Chapter 9. Administrator function 147

Also, while a thread is executing and using a limit, a new limit may be updated in the RLF
tables. For the changed limit to be effective for such thread, RLF must be restarted.

When a row in the RLF table matches the currently executing static statement, the row’s
ASUTIME value is used to limit the statement’s execution. The static statement’s execution
can be stopped with the SQLCODE -905 when the consumed resource exceeds the specified
ASUTIME limit. Note that SQL requests related to a cursor such as OPEN, FETCH, CLOSE
can accumulate CP resources on the same SELECT statement. When no row in the RLF
table matches the currently executing static statement, DB2 uses the default limit value that is
set in the RLST ACCESS ERROR DSNZPARM for static SQL on installation panel
DSNTIPO4 which appears after panel DSNTIPO3.

9.2.2 Use cases

Two use cases are presented here.

Use case 1
These are the steps for using the DB2 resource limit facility to govern static SQL statements:

1. Insert rows into a DSNRLSTxx resource limit table with values that identify the context of
the governed statements (which application the statements are in, which client connection
the statements are from, which primary authorization ID executes the statements, and
more), the type of governing, and CP limits. Assume the rows are inserted (Table 9-5).

Table 9-5 Rows in the DSNRLSTxx table

The first row indicates that when user JOE runs any package in the collection COL1, at the
local location, no limit restricts any static statement in the package because the ASUTIME
column value is null.

The second row shows that when user JOE runs any package in the collection COL1, at
the local location, each dynamic statement in the package is restricted to 15,000 SUs.

The third row reflects that when any user runs package PKG2, in any collection from any
location in the network, including the local location, a processor limit of 10,000 SUs is
applied for each static statement in the package.

The last row shows that when any user runs package PKG2, in any collection from any
location in the network, including the local location, a processor limit of 20,000 SUs is
applied for each dynamic statement in the package.

RLFFUNC AUTHID PLANNAME RLFCOLLN RLFPKG LUNAME ASUTIME

A JOE (blank) COL1 (blank) (blank) (null

2 JOE (blank) COL1 (blank) (blank) 15000

A (blank) (blank) (blank) PKG2 PUBLIC 10000

2 (blank) (blank) (blank) (PKG2) PUBLIC 20000
148 IBM DB2 12 for z/OS Technical Overview

2. Issue the START RLMIT ID=xx command, where xx is the two-character identifier that was
specified when the RLF table was created. You can start and stop different resource limit
tables at different times. However, only one resource limit table of each type (DNSRLMTxx
or DSNRLSTxx) can be used at any given time.

3. When SQL statements are run in a package, DB2 uses the following search order:

a. Exact match
b. Authorization ID
c. Plan name, or collection name and package name
d. LU name
e. No row match

The following examples show the SQL statements in different packages that qualified for the
previous DSNRLSTxx table example and their corresponding limits governed by DB2
(Table 9-6).

Table 9-6 Dynamic and static SQL in packages and RLF limits used

Note: A DB2 11 behavior is that the CP time for a dynamic cursor can include CP time
incurred by a dynamic positioned UPDATE and DELETE (WCO) statement against the
same cursor. A static cursor can also be used to update or delete a particular row with a
static or dynamic positioned UPDATE or DELETE statement. When the ASUTIME limits for
static and dynamic SQL specified in the RLF table differ, a dynamic positioned UPDATE
and DELETE statement will use the dynamic limit, and a static positioned UPDATE and
DELETE statement will use the static limit.

Package name SQL request Applied limit in service units

COL1.X DCL CURSOR C1 FOR SELECT...

OPEN/FETCH C1 Infinite is used to govern
(accumulate into C1)

Static UPDATE WHERE CURRENT OF C1 Infinite is used to govern
(accumulate into C1)

Dynamic UPDATE WHERE CURRENT OF C1 15000 is used to govern
(accumulate into C1)

X.PKG2 DCL CURSOR C2 FOR STMID
PREPARE STMID FOR SELECT…

OPEN/FETCH C2 10000 is used to govern
(accumulate into C2)

Dynamic UPDATE WHERE CURRENT OF C2 10000 is used to govern
(accumulate into C2)

X.PKG3 DCL CURSOR C3 FOR SELECT...

OPEN/FETCH C3 10000 is used to govern
(accumulate)

Static UPDATE WHERE CURRENT OF C3 10000 is used to govern
(accumulate into C3)

Dynamic UPDATE WHERE CURRENT OF C3 20000 is used to govern
(accumulate into C3)
Chapter 9. Administrator function 149

Use case 2
Assume that the following subsystem parameters for RLF are set as shown here:

� RLFENABLE = ALL, to govern both static and dynamic SQL
� RLFERRSTC = 5000, as the default limit for locally originated static SQL
� RLFERRDSTC = 8000, as the default limit for remotely originated static SQL
� RLFERR = 10000, as the default limit for locally originated dynamic SQL
� RLFERRD = NOLIMIT, as the default limit for remotely originated dynamic SQL

The DSNRLST01 table (Table 9-7) and DSNRLMT01 table (Table 9-8) are activated for RLF.

Table 9-7 DSNRLST01 table

Note that in Table 9-7, the blank value of the LUNAME column is for locally originated SQL,
and the PUBLIC value is for both locally and remotely originated SQL.

Table 9-8 DSNRLMT01 table

The steps are as follows:

1. The following static query is issued from the locally executed package COL3.PKG3, by the
authorization ID FRANK:

DCL CURSOR C1 FOR SELECT SALARY FROM DSN8C10.EMP;
OPEN C1;
FETCH C1;

The default limit, 5000 service unit, for the locally originated static SQL is applied for
cursor C1 because no matching row is found for the thread from either the DSNRLMT01
table or the DSNRLST01 table.

2. The following static query is issued from the package COL4.PKG4, which is remotely
executed in the middleware application, APP4, by the authorization ID FRANK:

DCL CURSOR C2 FOR SELECT SALARY FROM DSN8C10.EMP;
OPEN C2;
FETCH C2;

The default limit, 8000 service unit, for the remotely originated static SQL is applied for
cursor C2 since there is no matching row found for the thread either from the DSNRLMT01
table or DSNRLST01 table.

RLFFUNC AUTHID PLANNAME RLFCOLLN RLFPKG LUNAME ASUTIME

JOE (blank) COL1 PKG1 (blank) 2000

JOE (blank) COL1 PKG1 (blank) 800

(blank) (blank) (blank) PKG2 PUBLIC 500

DAVID (blank) (blank) (blank) PUBLIC 600

RLFFUNC RLFEUAN RLFEUID RLFEUWN RLFIP ASUTIME

APP1 (blank) (blank) (blank) 1500

APP1 (blank) (blank) (blank) 700
150 IBM DB2 12 for z/OS Technical Overview

3. The following static SQL, which updates a static positioned row, is issued from the locally
executed package, COL1.PKG1, by the authorization ID JOE:

DCL CURSOR C3 FOR SELECT SALARY FROM DSN8C10.EMP;
OPEN C3;
FETCH C3;
UPDATE DSN8C10.EMP SET SALARY = SALARY + (SALARY * 0.1) WHRE CURRENT OF C3;

The 800 service unit limit, is applied for the static UPDATE statement that references static
positioned cursor C3 because the second row in the DSNTRLST01 table matches the
thread for static SQL.

4. The following static SQL, which updates a dynamic positioned row, is issued from the
locally executed package COL1.PKG1, by the authorization ID JOE:

DCL CURSOR C4 FOR S4;
STMT4 = 'SELECT SALARY FROM DSN8C10.EMP';
PREPARE S4 FROM :STMT4;
OPEN C4;
FETCH C4;
UPDATE DSN8C10.EMP SET SALARY = SALARY + (SALARY * 0.1) WHRE CURRENT OF C4;

The 2000 service unit limit, is applied for the static UPDATE statement that references the
dynamic positioned cursor C4 because the first row in the DSNTRLST01 table matches
the thread for dynamic SQL.

9.2.3 RLF DSNZPARMs and installation panels

Because DB2 12 supports different limits for governing dynamic and static SQL statements,
you might want to activate RLF for dynamic as in DB2 11 only, or static only, or both. The new
RLFENABLE DSNZPARM is introduced for the selection mentioned. Two new DSNZPARMs
are also added so the user can specify the action taken in the case DB2 cannot access the
RLF tables.

Two subsystem parameters for RLF are added to DSN6SYSP:

� RLFENABLE: Specifies the level of RLF governing when RLF is started.

� RLFERRSTC: Specifies what action DB2 is to take for static SQL statements when the
Resource Limit Facility governor encounters a condition that prevents it from accessing
the resource limit specification table. This setting also applies if DB2 cannot find an
applicable row in the resource limit specification table. It is equivalent to the existing
RLFERR parameter which pertains to dynamic SQL statements.

Also, a subsystem parameter for RLF is added to DSN6FAC:

� RLFERRDSTC: Specifies what action DB2 is to take for static SQL statements from a
remote location when the Resource Limit Facility governor encounters a condition that
prevents it from accessing the resource limit table. This setting also applies if DB2 cannot
find an applicable row in the resource limit table. It is equivalent to the existing RLFERRD
parameter of which pertains to dynamic SQL statements from a remote location.

Note: When a dynamic or static statement contains an external user-defined function,
the execution time for the user-defined function is not included in the ASUTIME of
the RLF-governed dynamic or static statement’s execution. The ASUTIME for a
user-defined function's execution is controlled based on the ASUTIME option specified
for the user-defined function in the CREATE FUNCTION statement.
Chapter 9. Administrator function 151

A new installation panel, DSNTIPO4 is introduced specifically for RLF-related subsystem
parameters. It appears after panel DSNTIPO3 (Figure 9-7).

Figure 9-7 New DSNTIPO4 installation panel for Resource Limit Facility

Summary of fields is as follows:

� The RLF AUTO START and RLST NAME SUFFIX fields were relocated directly from panel
DSNTIPO. They correspond to the DSN6SYSP.RLF and DSN6SYSP.RLFTBL parameters.

� The DYNAMIC SQL field was also relocated from DSNTIPO where it was named RLST
ACCESS ERROR. It corresponds to the DSN6SYSP.RLFERR parameter.

� The REMOTE DYNAMIC SQL field was relocated here from panel DSNTIPR (Distributed
Data Facility panel 1) where it was named RLST ACCESS ERROR. It corresponds to the
DSN6FAC.RLDERRD parameter.

� The RLF SCOPE field is new and corresponds to the DSN6SYSP.RLFENABLE
parameter.

� The STATIC SQL field is also new and corresponds to the DSN6SYSP.RLFERRSTC
parameter.

� The REMOTE STATIC SQL field is also new and corresponds to the
DSN6FAC.RLFERRDSTC parameter.

Only the three following new fields are discussed next:

� RLF SCOPE
� STATIC SQL
� REMOTE STATIC SQL
152 IBM DB2 12 for z/OS Technical Overview

RLF SCOPE
Specify the level of RLF governing when RLF is started.

� Range: DYNAMIC, STATIC, ALL

– DYNAMIC, the default, means that RLF will govern only dynamic SQL statements.
– STATIC means that it will govern only static SQL statements.
– ALL means that it will govern both types.

� Default: DYNAMIC

� Data sharing scope: All members should use the same setting

� Online changeable: Yes

� DSNZPxxx: DSN6SYSP.RLFENABLE

STATIC SQL
Specify what action DB2 is to take for static SQL statements when the Resource Limit
Specification governor encounters a condition that prevents it from accessing the Resource
Limit Specification table (RLST). This setting also applies if DB2 cannot find an applicable row
in the RLST.

� Range: NOLIMIT, NORUN, or an integer from 1 to 5000000

– NOLIMIT, the default, means that RLF will allow all static SQL statements to run
without limit.

– NORUN means that RLF will terminate all static SQL statements immediately with an
SQL error code. An integer setting of 1 - 5000000 specifies the number of service units
that RLF will use as the default resource limit for all static SQL statements. If the limit is
exceeded, the SQL statement is terminated.

� Default: NOLIMIT

� Data sharing scope: It is recommended that all members use the same setting

� Online changeable: Yes

� DSNZPxxx: DSN6SYSP.RLFERRSTC

REMOTE STATIC SQL
Specify what action DB2 is to take for static SQL statements from a remote location when the
Resource Limit Specification governor encounters a condition that prevents it from accessing
the Resource Limit Specification table (RLST). This setting also applies if DB2 cannot find an
applicable row in the RLST.

� Range: NOLIMIT, NORUN, or an integer from 1 to 5000000

– NOLIMIT, the default, means that RLF will allow all static SQL statements from a
remote location to run without limit.

– NORUN means that RLF will terminate all static SQL statements from a remote
location immediately with an SQL error code. An integer setting of 1 - 5000000
specifies the number of service units that RLF will use as the default resource limit for
all static SQL statements from a remote location. If the limit is exceeded, the SQL
statement is terminated.

� Default: NOLIMIT

� Data sharing scope: It is recommended that all members use the same setting

� Online changeable: Yes

� DSNZPxxx: DSN6FAC.RLFERRDSTC
Chapter 9. Administrator function 153

9.3 Column level deferred alter (pending alter column)

In DB2 11, the capability exists to alter a table column’s attribute, such as its data type,
precision, scale, or length through the ALTER TABLE ALTER COLUMN statement as an
immediate alteration. However, this function impacts the system in several ways:

� Some column alterations result in indexes being placed in a restrictive status. If a unique
index is placed in restrictive status, it results in an outage to the table.

� Column alterations invalidate dependent packages so the SQL referencing the columns
can be rebound or autobound. When dependent packages are rebound or go through
autobind, indexes in restrictive status are not candidates in selecting access path. Hence,
a suboptimal access path may be used instead.

� After the column is altered, the column definition changes are immediately reflected in the
catalog, but not in the data. Subsequent access to the column data results in data on the
retrieved rows being converted from the old definition format to the new definition format,
which incurs a performance overhead until the table is reorganized to convert all data to
the new definition format.

� If pending alterations for the containing table space or table are not yet materialized,
executing a subsequent immediate alteration (such as column alteration) fails. To resolve
this situation, one of the following actions is needed:

– A REORG utility must be run to materialize the pending changes first, followed by an
immediate column alteration, followed by another REORG to convert to the new
definition format.

– The order of alterations must be changed so that the immediate alterations are
performed prior to the pending alterations.

To address the ways that the system is impacted, DB2 12 enhances the alter column attribute
process to limit data unavailability, reduce impact to access paths, and allow ease of
scheduling schema alterations and REORG activities. You have a choice to execute the
ALTER TABLE ALTER COLUMN statement as an immediate or pending change. Other DDL
pending changes have been supported since DB2 10 such as ALTER TABLE ALTER
PARTITION, ALTER TABLE DROP COLUMN, ALTER TABLESPACE DSSIZE, ALTER INDEX
BUFFERPOOL, and others. When the ALTER TABLE ALTER COLUMN statement is a
pending change in DB2 12, the actual alteration will be done during the REORG utility
execution, and therefore, the following benefits can be observed:

� The new column definition is reflected in both the catalog and data at the same time.
There is no conversion needed when accessing data and hence no performance impact
incurred as a result of such conversion.

� Indexes are no longer placed in any pending states. They will be rebuilt during the
materializing REORG utility.

� Dependent packages are invalidated during the REORG SWITCH phase, after indexes
have already been rebuilt with the new definition.

� All pending alterations can be grouped together to be materialized by a single REORG
activity of the table space.
154 IBM DB2 12 for z/OS Technical Overview

Example 9-11 shows a partitioned table created followed by a pending alteration of a column
data type issued, and the resulting row in the SYSPENDINGDDL table (Figure 9-8).

Example 9-11 Pending alteration with the SYSPENDINGDDL row

CREATE TABLE SC.TB1
 (COLUMN1 INTEGER,
 COLUMN2 CHAR(100),
 COLUMN3 VARCHAR(100))
 IN DB1.TS1;
CREATE INDEX SC.IX1 ON SC.TB1(COLUMN1);
ALTER TABLE SC.TB1 ALTER COLUMN COLUMN1
 SET DATA TYPE BIGINT; -> SQLCODE +610

Figure 9-8 SYSPENDINGDDL table

DDL_MATERIALIZATION, a new ZPARM, is introduced to indicate whether eligible column
alterations are executed as immediate or as pending alterations.

Valid ZPARM values:

� ALWAYS_IMMEDIATE (default)
� ALWAYS_PENDING

This ZPARM only applies when all of the following conditions are met:

� The APPLCOMPAT bind option (for static ALTER) or the CURRENT APPLICATION
COMPATIBILITY special register (for dynamic ALTER) is set to V12R1M500 or higher.

� The ALTER COLUMN SET DATA TYPE statement is altering the column’s data type,
length, precision, or scale. The following alter items are ineligible to be pending:

– Altering the inline length of a LOB column
– Altering the subtype of a column
– Altering the XML type modifier of an XML column

� The underlying table space is a Universal Table Space (UTS) or pending alter exists to
convert to UTS.

� The underlying table space data sets are defined.
Chapter 9. Administrator function 155

Figure 9-9 shows the different behaviors between an immediate alteration and a pending
alteration based on the zparm DDL_MATERIALIZATION.

Figure 9-9 Differences between an immediate alteration and a pending alteration
156 IBM DB2 12 for z/OS Technical Overview

Figure 9-10 describes the status for the table space and its index when an allowed alteration
(of data type or data length) is done as immediate or pending.

Figure 9-10 Object status difference between immediate and pending alterations

Figure 9-11 shows how the order of pending alteration requests can make a difference
(successful or not).

Figure 9-11 Fail pending column alteration
Chapter 9. Administrator function 157

The immediate column alteration request fails because the earlier ALTER TABLESPACE
DSSIZE statement is a pending request (regardless of the zparm DDL_MATERIALIZATION
value) and has not been materialized yet. Switching to pending request by setting the zparm
DDL_MATERIALIZATION = ALWAYS_PENDING can fix this failure because both pending
alterations are stackable.

However, when the order of the two alter requests are switched, both statements will be
successful with the zparm DDL_MATERIALIZATION set to ALWAYS_PENDING or
ALWAYS_PENALWAYS_IMMEDIATE. The ALTER TABLE ALTER COLUMN statement is
done first under DDL_MATERIALIZATION = ALWAYS_IMMEDIATE and is an immediate
alteration which does not impede the next pending ALTER TABLESPACE statement
(Figure 9-12).

Figure 9-12 Successful ALTER requests due to order of execution

The pending column alteration enhancement does not allow any new alterations, and only the
possible existing ones are able to be deferred alterations. Some current restrictions still exist
on column level alterations such as length reduction (conversion from BINARY to CHAR FOR
BIT DATA data type), and change of a LOB column’s inline length. Restrictions related to
pending alters in general also apply to pending alter column.

New restrictions apply if alter column is executed as a pending change:

� An ALTER INDEX statement with the NOT PADDED clause where the index references a
column with pending definition

� A CREATE TABLE or ALTER TABLE statement that specifies a FOREIGN KEY
referencing a parent column with pending definition changes

9.3.1 Utility

The REORG materialization of alteration in the data can be done at a partition level for
immediate alter (flagged by the AREO* status). However, the REORG SHRLEVEL
REFERENCE or CHANGE utility to materialize alteration in the data must be done at a table
space level for pending alter (flagged by the AREOR status).

The LOAD REPLACE utility does materialize changes for immediate alter (flagged by the
AREO* status). This utility does not materialize changes for pending alter (flagged by the AREOR
status). Online REORG on the complete table space must be run as indicated above.

The RECOVERY and RECOVERY to point-in-time utility time prior to an immediate column
alteration are supported.
158 IBM DB2 12 for z/OS Technical Overview

In addition to deferred ALTER processing (for example, cleanup AREOR), the online REORG
utility also performs the following actions:

� Regenerates views, triggers, masks and permissions.

� Invalidates dependent package invalidation and dynamic statement cache.

� Updates versioning counter where only one new version number is generated.

� The DISCARD option discards rows in the materialized format with new schema definition.

� If the table space is in Basic Row Format (BRF), it will be converted to Reordered Row
Format (RRF) regardless of ROWFORMAT keyword or the RRF ZPARM.

� If the STATISTICS keyword not specified, the default option used is STATISTICS TABLE
ALL, INDEX ALL, UPDATE ALL, HISTORY ALL.

9.3.2 ALTER INDEX

An alteration of index to and from COMPRESS is a pending alteration independent of the
zPARM DDL_MATERIALIZATION. Before DB2 12, the index is set to the PSRBD status. Such
pending index change is materialized by the REORG, not by the REBUILD utility.

An alteration of index to NOT PADDED is not allowed if pending changes on column exists.
The reason is that the materializing REORG might generate a key larger than 2000 bytes due
to 2-byte length of NOT PADDED key entries. Without pending changes, the alteration to NOT
PADDED is allowed but sets the PSRBD status on the index.

An alteration of index to PADDED is always allowed but sets the PSRBD status on the index.
The reason this ALTER INDEX TO PADDED statement is allowed is because the keys are
fully expanded and can only shrink by the 2-byte length of NOT PADDED key entries.

9.4 Insert partition

In DB2 10, partitions in a partitioned table may be rearranged by rotating them around using
the ALTER TABLE ROTATE PARTITION 'n' TO LAST statement. This support provided some
capability for user to modify a table’s partition configuration. In addition, a user can also add a
new partition as the last partition at the end of the table via the ALTER TABLE ADD
PARTITION statement with ENDING AT x where x must be the highest limit key value.

DB2 12 extends the support to dynamically adding a partition in the middle of the table for
greater flexibility so that the logical partition numbers are arranged as how the data with the
limit key values are supposed to be stored. This functionality provides usability while
maximizing availability of the altered object.
Chapter 9. Administrator function 159

9.4.1 ALTER ADD PARTITION

Two SQL statements are available than can insert a new partition in the middle of the table.
Both give the same behavior:

� The user specifies the high limit key (x) of the newly inserted partition:

ALTER TABLE
ADD PARTITION ENDING AT x

This syntax is the same syntax as existed in DB2 10 when adding a partition at the end.
With DB2 12, the limit key x value can be any value so the new partition can be added in
the middle of the table.

� The user specifies the high limit key (x) of the newly inserted partition, along with the high
limit key (y) of the existing partition (n as the physical partition number for the subsequent
logical partition) that will be affected by the insert operation:

ALTER TABLE
 ADD PARTITION ENDING AT x
 ALTER PARTITION n ENDING AT y

This syntax is new in DB2 12 for family compatibility and ensures the user specifies the
intended place where the new partition is to be added.

Inserting a partition in the middle of the table is supported when the APPLCOMPAT bind
option (for static ALTER) or the CURRENT APPLICATION COMPATIBILITY special register
(for dynamic ALTER) is set to V12R1M500 or greater.

The keyword INCLUSIVE is implied by default even if it is not stated explicitly. The partition
specified in the ALTER PARTITION clause needs to be the very next logical partition to the
partition being added in the ADD PARTITION clause. In addition, the high limit key value
specified in the ALTER PARTITION clause must be the existing high limit key value for the
very next logical partition. The high limit key value cannot be altered in the same statement
while inserting a new partition.

A new first partition will be added if the specified high limit key for the inserted partition is
lower than the existing lowest limit key in the table.

The newly inserted partition will be physically added at the end to obtain a new physical
partition number. It will be assigned a new logical partition number based on the location
inserted and all the logical partition numbers after that will be renumbered by incrementing
by 1.

The adding partition request is considered a pending change when there is an existing
pending change or when both of the following items are true:

� A partition is added in the middle of the table.
� The data sets of the table space are already created.

Otherwise, the change is considered an immediate change, for example, adding a partition at
the end or the table space has the DEFINE(NO) attribute. Adding the last partition does not
affect existing data in existing partitions. When the data sets for a table space that has not yet
been defined, the table’s redefinition does not need to wait either. If the change is considered
an immediate change, the change to the description of the table takes effect immediately.

If the change is a pending change to the definition of the table, the changes are not reflected
in the definition or data at the time the ALTER TABLE statement is issued. Instead, the
affected partitions are placed in an advisory REORG-pending state (AREOR).
160 IBM DB2 12 for z/OS Technical Overview

Figure 9-13 shows a table with four partitions ending at keys 250, 500, 750, and 1000. It
shows how the physical and logical partitions are arranged if any of the following statements
are executed:

� ALTER TABLE ADD PARTITION ENDING AT 1250 statement
� ALTER TABLE ROTATE PARTITION 2 TO LAST ENDING AT 1250 statement
� ALTER TABLE ADD PARTITION ENDING AT 400 statement

Figure 9-13 Adding a partition at the end or middle of the table, or rotating a partition

The following restrictions are implemented:

� The table must be a ranged-partition table (PBR and PBR Relative Page Number are both
supported).

� The newly inserted partition’s limit key value under the ADD PARTITION clause is not the
same as an existing partition’s limit key.

� The partition specified in the ALTER PARTITION clause must be the very next logical
partition to the partition being added in the ADD PARTITION clause.

� The high limit key value specified in the ALTER PARTITION clause must be the existing
high limit key value for the very next logical partition, which can be obtained from the
catalog table. The high limit key value cannot be altered in the same statement while
inserting a new partition.

� If any outstanding unmaterialized alter limit key pending definition changes exist on the
last partition of the table, insert partition will not be allowed in the same table until the
pending alter limit key changes are materialized by a REORG execution.

� Adding a partition to the end of the table is not allowed if any outstanding pending
definition changes exist for the table space or objects within the table space.

� The table cannot contain a LOB column, a distinct type column that is based on a LOB
data type, or an XML column.
Chapter 9. Administrator function 161

Note that only one new partition to be inserted can be specified in a single ALTER TABLE
statement. However, multiple insert partition requests can be submitted with multiple ALTER
statements, one partition per statement, and all those pending requests will be materialized
by a single materializing REORG utility execution (Example 9-12).

Example 9-12 Multiple pending insert partitions in the same table are materialized

ALTER TABLE T1 ADD PARTITION ENDING AT 15
ALTER TABLE T1 ADD PARTITION ENDING AT 25
REORG TABLESPACE SHARELEVEL REFERENCE

9.4.2 Utilities affected

REORG and RECOVER are affected utilities.

REORG
In order to materialize the pending definition change for inserting partition, a partition-level
REORG utility for the affected partition (or partitions) must be executed. The REORG utility
must be online (SHRLEVEL REFERENCE or SHRLEVEL CHANGE). The new
SYSDDLPENDING.REORG_SCOPE_LOWPART and SYSDDLPENDING.REORG_SCOPE_HIGHPART columns
represent the logical partition range of the object’s definition prior to any pending definition
changes being materialized. If there are multiple SYSPENDINGDDL entries for multiple insert
partition pending definition changes and some of them get materialized first but not all of
them, these two fields get updated during the previous materializing REORG processing to
reflect the most current logical partition number range.

After converting this logical partition range to physical partition range, this is the partition
range that the user must include in the partition-level REORG to materialize this particular
pending definition change. If this partition range is not included in the partition-level REORG
execution, the REORG processing will proceed and a new warning message DSNU2918I
with return code 4 will be issued to indicate that the utility was run on a subset of affected
partitions and not all pending definition changes on the partition-level are applied.

If any additional table space level pending definition changes were issued on the table space
while some partitions are in advisory-REORG (AREOR) pending status due to inserting a
new partition, a table space level REORG is required to materialize all the pending definition
changes together at once.

If the partitions that are in pending status in the table space is due to insert partition pending
definition changes only, a table space level REORG with SCOPE PENDING option could also
be used to reorganize affected partitions and materialize the insert partition pending definition
changes.

If adjacent partitions are affected by either alter limit key or insert partition partition-level
pending definition changes, these adjacent partitions are required to be reorganized together
in order to materialize the partition-level pending definition changes. If the affected adjacent
partitions are not materialized together, none of the pending definition changes would be
materialized. In addition, a table space level REORG with SCOPE PENDING option can also
be used to reorganize affected partitions and materialize the pending definition changes.

While a partition-level REORG on the affected partitions can materialize insert partition
pending definition changes, by either PART specification or SCOPE PENDING, the
underlying REORG needs to quiesce the entire partitioned table space. The complete table
space is drained in the LOG phase due to partition numbers and ordering changes. Also,
packages and dynamic statements dependent on the table space will be invalided.
162 IBM DB2 12 for z/OS Technical Overview

The REORG utility may collect new statistics for the newly inserted and affected partitions.
For the newly inserted partition (or partitions), statistics will be collected with STATISTICS
TABLE ALL INDEX ALL UPDATE ALL HISTORY ALL options, unless you explicitly specify the
STATISTICS keyword with different options.

For the affected partition (or partitions), it is recommended to collect all statistics inline and to
have a profile defined for the table, and specify REORG STATISTICS TABLE USE PROFILE
in the materializing REORG execution for the recollection of the complete set of statistics.
If recalculation of statistics is not done, a warning message DSNU1166I with return code 4
can be issued to indicate that some partition statistics might no longer be accurate because
they have become obsolete. The partition statistics that might be obsolete are COLGROUP
statistics, KEYCARD statistics, HISTOGRAM statistics, frequency statistics
with NUMCOLS > 1, and statistics for extended indexes where applicable. You should
execute the RUNSTATS utility to collect the partition statistics again after the REORG utility.

RECOVER
The RECOVER utility to point-in-time cannot be run to a point before the materializing
REORG. The error message DSNU556I with return code 8 will be issued if such time is
specified. The REORGE utility can be execute to materialize the pending changes before
recovery to a point in time. DB2 12 does insert the SYSOBDS records for point-in-time
recovery in the future. A MODIFY RECOVERY utility does a cleanup of these records.

9.4.3 Catalog changes

Catalog changes are described in this section.

SYSIBM.SYSTABLESPACE
When a new partition is added at the end of the table, the existing table space PRIQTY and
SECQTY attributes of the previous logical partition are used for the space attributes of the
new partition. When a new partition is inserted in the middle of the table, the existing table
space PRIQTY and SECQTY attributes from table space level stored in SYSTABLESPACE
are used for the space attributes of the new partition. For this usage, DB2 12 added new
columns in SYSIBM.SYSTABLESPACE.

In addition, for newly created objects, the values for other table space attributes specified on
the CREATE TABLESPACE statement, or default values for unspecified options are saved in
new SYSTABLESPACE columns. These values are saved in SYSTABLESPACEPART in
DB2 11. In DB2 12, these values are also saved in SYSTABLEPART so that insert partition
can inherit these table space values. The column values can also be populated when an
ALTER TABLESPACE statement on these attributes occurs at the global level.

For migrated objects, values for these new columns, which are still NULL, will be populated
when any DDL changes (insert partition, alter partition, rotate partition, conversion from
index-controlled to table-controlled partitioning, table space type conversion, and others)
occur on the table space, and it will inherit values from the last logical partition (same as the
existing add partition behavior). The effect takes place immediately for immediate alters and
during materialization for pending definition changes.

The following new columns are added:

� PQTY
� STORTYPE
� STORNAME
� VCATNAME
� FREEPAGE
Chapter 9. Administrator function 163

� PCTFREE
� COMPRESS
� GBPCACHE
� TRACKMOD
� SECQTYI
� PCTFREE_UPD
� PCTFREE_UPD_CALC

SYSIBM.SYSINDEXES
The following new nullable columns will be added to the SYSINDEXES catalog table to store
default values for partition attributes at the index space level. These columns also exist in the
SYSINDEXPART catalog table in DB2 11. In DB2 12, the new columns added to
SYSINDEXES have their data type and description identical to those in SYSINDEXPART
except the new columns in SYSINDEXES are nullable.

The following new columns are added:

� PQTY
� STORTYPE
� STORNAME
� VCATNAME
� FREEPAGE
� PCTFREE
� GBPCACHE
� SECQTYI

SYSIBM.SYSPENDINGDDL
Two new nullable SMALLINT columns, REORG_SCOPE_LOWPART and
REORG_SCOPE_HIGHPART, are added to the SYSPENDINGDDL catalog table to store the
low logical partition range number and the high logical partition range number for which
REORG needs to include in the partition-level REORG execution to materialize insert
partition pending definition changes. In DB2 12, values for these two columns will be
populated for all pending definition changes.

Figure 9-14 shows a table that has three partitions (L for logical partition and P for physical
partition) ending at 20, 40, and 60 key values.

Figure 9-14 Table with 3 partitions

When an insert partition request with limit key of 30 is issued, the partitions and the
SYSDDLPENDING row look like this example (see Figure 9-15 on page 165 and Figure 9-16
on page 165):

ALTER TABLE ADD PARTITON ENDING AT 30
164 IBM DB2 12 for z/OS Technical Overview

Figure 9-15 Adding a logical partition with key 30

Figure 9-16 SYSDDLPENDING row

This row has the columns SYSDDLPENDING.REORG_SCOPELOWPART = 2 and
SYSDDLPENDING.REORG_SCOPEHIGHPART = 2 because only the existing logical partition number
2 is affected (it will become logical partition 3 and rows will be moved to the new partition).

Then a REORG utility is executed with affected partition number 2 to materialize the pending
change. Now the table has the new logical partition 3 with key values from 31 to 40. Next,
another insert partition request with limit key of 35 is issued. The partitions and the
SYSDDLPENDING row look like this example (see Figure 9-17 and Figure 9-18):

ALTER TABLE ADD PARTITON ENDING AT 35
-> SYSDDLPENDING.OPTION_VALUE = 35,

Figure 9-17 Adding logical partition with key 35

Figure 9-18 SYSDDLPENDING row

This row has the columns SYSDDLPENDING.REORG_SCOPELOWPART = 3 and
SYSDDLPENDING.REORG_SCOPEHIGHPART = 3 because only the existing logical partition number
3 is affected (it will become logical partition 4 and rows will be moved to the new partition).
Chapter 9. Administrator function 165

If no REORG utility was run to materialize the first insert partition request (where limit key was
at 30), the two rows shown in Figure 9-19 would be inserted in the SYSDDLPENDING table.

Figure 9-19 SYSDDLPENDING table

Only the original logical partition 2 is affected for both pending changes.
166 IBM DB2 12 for z/OS Technical Overview

Chapter 10. Security

This chapter covers the following DB212 security topics:

� Installation or migration without requiring SYSADM
� UNLOAD privilege
� Object ownership transfer

10
© Copyright IBM Corp. 2016. All rights reserved. 167

10.1 Installation or migration without requiring SYSADM

Up to DB2 11, only users with installation SYSADM authority can install new a DB2
subsystem or data sharing group or migrate DB2 to the new release. However, a system
operator (with installation SYSOPR authority) usually is the person performing the installation
or migration steps, which means he or she is granted SYSADM authority. SYSADM authority
also includes access to all data. Certain government regulations and policies require that
sensitive user data not be exposed to anyone, except the system administrator or data owner.
Therefore, to help protect user data and comply with security regulations, DB2 12 provides a
way to install or migrate a DB2 subsystem without having SYSADM authority.

With DB2 12 compatibility mode, a user with installation SYSOPR authority has the capability
to install and migrate a subsystem with no access to user data. Enhancements are made so
that SYSOPR authority can perform work necessary in the process such as these examples:

� Execute the CATMAINT utility to install or migrate to a new release.
� Issue the ACTIVATE FUNCTION LEVEL command.
� Access to all catalog tables and all tables in the system databases.
� Set current SQLID to SYSINSTL, regardless of SEPARATE SECURITY DSNZPARM setting.
� Use BINDAGENT privilege to specify any owner. The BINDAGENT privilege also gives the

ability to free any package, and bind or free a plan.

When executing the migration or installation jobs, system objects in the DB2 catalog might
need to be created by the user with installation SYSOPR authority, but these objects will be
owned by SYSINSTL. For this to work, the current SQLID must be set to 'SYSINSTL'. The
runner with installation SYSOPR now has the authority to use CREATE, ALTER, and DROP
on the following objects:

� Database
� Table space
� Table, auxiliary table, created global temporary table
� Index
� Stogroup
� Trigger
� Procedure, function including those in schema SYSTOOLS and SYSFUN

Additionally, SYSINSTL with installation SYSOPR authority now have the ability to CREATE,
ALTER, and DROP several objects without any additional privileges such as alias, distinct
type, sequence, global variable. SYSINSTL can also grant privileges on the following system
objects and resources:

� All database, table space, and table privileges on objects in the DSNDB04 database, and
DSNRGFDB, DSNRLST, DSNOPTDB, DSNMDCDB, DSNADMDB, DSNATPDB,
DSN5JSDB, DSNMQDB, SYSIBMTA, SYSIBMTS, and DSNXSR system databases

� The USE privilege on buffer pool and storage group

� All privileges on plans that begin with 'DSN'

� All privileges on packages where the collection-ID and package-name begin with 'DSN'

� The execute privilege on system-defined routines

Note: If procedure and function have an associated package, then the OWNER
keyword must be specified. If the stored procedures are created with the SECURITY
DEFINER clause, SYSINSTL must be defined in Resource Access Control Facility
(IBM RACF®).
168 IBM DB2 12 for z/OS Technical Overview

On the installation panel DSNTIPG shown in Figure 10-1, the ROUTINES CREATOR, SEC
DEF CREATOR, and INSTALL SQL ID fields must be set to SYSINSTL. The INSTALL PKG
OWNER field on this panel also must be set to an authorization ID (PKOWNER in this example)
that has been granted system DBADM and DATAACCESS authorities. This is necessary
because the BIND and REBIND commands issued during the installation and migration
processes require an owner that has authorization to bind and execute all the SQL
statements in the package.

Figure 10-1 DSNTIPG panel with Install SQL ID set to SYSINSTL

10.2 UNLOAD privilege

Up to DB2 11, the SELECT privilege is the lowest required privilege to execute the UNLOAD utility.
Even with the SELECT privilege, if the table has column masks or row permission defined, a
user might not be able to retrieve certain rows and columns by using an application that
issues the SELECT SQL statement. However, such a user with the SELECT privilege has the
ability to read all data in the table using the UNLOAD utility. Furthermore, the SQL SELECT
statement, static or dynamic, can be governed by the DB2 resource limit facility (RLF) to
control how many rows an application with those SQL statements can retrieve. RLF limits, row
permissions, and column masks do not apply to utilities. Executing an UNLOAD utility with only
the SELECT privilege can be considered a security vulnerability because a user can unload
and have access to large amounts of data beyond the user’s intended authorization. Also,
when running the UNLOAD utility, a user with the SELECT privilege can leave a restricted state
on the object in case the utility experiences an abend condition and is not terminated.
Chapter 10. Security 169

DB2 12 closes this security exposure by introducing the UNLOAD privilege, which is required
when executing the UNLOAD utility. This DB12 UNLOAD privilege provides separation between
the SQL SELECT and utility execution, thus the security administrator will have better control
to grant the appropriate authorization to intended usage.

10.2.1 Enforcing new privilege

The UNLOAD privilege can be established for users starting in DB2 12 compatibility mode (or
function level V12R1M100). However, this privilege is mandated for the UNLOAD utility only
after new function mode is activated (function level V12R1M500 or greater).

The SELECT privilege can still be used for the UNLOAD utility access in DB2 12 after new
function is activated, if AUTH_COMPATIBILITY DSNZPARM is set to the SELECT_FOR_UNLOAD
option. The default value for this DSNZPARM is NULL. Prior to activating function level
V12R1M500 or greater, the new serviceability trace record IFCID 404 may be enabled to
collect the authorization IDs that use the SELECT privilege to execute an UNLOAD utility. This
trace record is also retrofitted to DB2 11 so the auditing work can be done before migration to
DB2 12 also. The preference is to activate IFCID 404 prior to migrating to DB2 12 with the
PTF for APAR PI55706. Actions must be taken for those authorization IDs so the UNLOAD utility
will work as intended in the DB2 12 new function mode.

10.2.2 Using DB2 security facility

The following SQL statement syntax diagrams show how to grant (Figure 10-2) the UNLOAD
privilege to a user ID and revoke (Figure 10-3 on page 171) the privilege.

Figure 10-2 The GRANT statement syntax with UNLOAD privilege
170 IBM DB2 12 for z/OS Technical Overview

Figure 10-3 The REVOKE statement syntax with UNLOAD option

A new column UNLOADAUTH is added to the SYSIBM.SYSTABAUTH catalog table to record
the successful result of the GRANT statement and the authorization ID having the UNLOAD
privilege in the GRANTEE column (Example 10-1; the result is shown in Table 10-1).

Example 10-1 Granting the UNLOAD privilege to USRT001 and the SELECT privilege to USRT002

GRANT UNLOAD ON TABLE T1 TO USRT001;
GRANT SELECT ON TABLE T1 TO USRT002;
SELECT GRANTEE, TTNAME, SELECTAUTH, UNLOADAUTH FROM SYSIBM.SYSTABAUTH WHERE
(GRANTEE = 'USRT001' OR GRANTEE = 'USRT002') AND TTNAME = 'T1';

Table 10-1 Result of query

10.2.3 Using Resource Access Control Facility (RACF)

If RACF is used for security management, then a new profile must be added for the UNLOAD
privilege in the RACF class. Example 10-2 shows a couple of RACF profiles defined for the
UNLOAD privilege (given to user USER001) and SELECT privilege (given to both users
USERT001 and USER002).

Example 10-2 Permitting UNLOAD and SELECT privileges to USER001 and only the SELECT
privilege to USER002

RDEFINE MDSNTB DB2A.EMPLOYEE.TABLE01.UNLOAD UACC(NONE) -OWNER(DB2OWNER)
PERMIT DB2A.EMPLOYEE.TABLE01.UNLOAD ID(USER001) ACCESS(READ) - CLASS(MDSNTB)
RDEFINE MDSNTB DB2A.EMPLOYEE.TABLE01.SELECT UACC(NONE) -OWNER(DB2OWNER)
PERMIT DB2A.EMPLOYEE.TABLE01.SELECT ID(USER001 USER002) -ACCESS(READ)
CLASS(MDSNTB)
SETR RACLIST(MDSNTB) REFRESH

GRANTEE TTNAME SELECTAUTH UNLOADAUTH

USRT001 T1 Y

USRT002 T1 Y
Chapter 10. Security 171

If a RACF access control module is written, the module should be updated to handle the new
ULOADAUTT constant value (297 or x'129') in the XAPLPRIV field of the RACF parameter
list. The RACF access control exit should have logic to handle whether the user or the role
associated with the user owns the table:

� If yes, then XAPLUPRM must match the owner name passed from DB2 by the
XAPLOWNR parameter when XAPLONRT indicates an authorization ID, or XAPLUCHK
must match XAPLOWNR and XAPLUCKT must match XAPLONRT.

� If no, then the user must have sufficient authority to one of the resources listed in the
corresponding class shown in Table 10-2.

Table 10-2 Resources and classes

10.3 Object ownership transfer

Another popular security item addressed in DB2 12 is the ability to change an object’s
ownership online. Ownership of a database object can be determined by several rules such
as whether the DDL statement that defines the object is a static or dynamic SQL, executed
under a trusted context with ROLE AS OBJECT OWNER or not, the privilege set for the DDL
statement, and so on. The ownership belongs to either an authorization ID or a role. To
comply with government and company regulations, the ownership of sensitive data must be
transferable from one authorization ID or role to another authorization ID or role. In DB2 11,
such a task can be accomplished only with DROP and CREATE DDL statements followed by
reloading data in the object as needed. These activities are disruptive in a production system
where access to the object is constantly acquired.

To provide the support for changing ownership while keeping the object available, DB2 12
introduces the TRANSFER OWNERSHIP SQL statement with the appropriate authorization.
This SQL statement can be either static or dynamic. The TRANSFER OWNERSHIP
statement is allowed when the application compatibility is V12R1M500 or greater. The
package containing the TRANSFER OWNERSHIP statement can be bound to that
application compatibility level after activating new function.

One of these resources: In this class:

DB2-subsystem.table-qualifier.table-name.UNLOAD MDSNTB or GDSNTB

DB2-subsystem.database-name.DBADM DSNADM

DB2-subsystem.SQLADM
This check is bypassed for user tables

MDSNSM or GDSNSM

DB2-subsystem.SYSDBADM
This check is bypassed for user tables

DSNADM

DB2-subsystem.DATAACCESS DSNADM

DB2-subsystem.ACCESSCTRL
This check is bypassed for user tables

DSNADM

DB2-subsystem.SYSCTRL
This check is bypassed for user tables

DSNADM

DB2-subsystem.SYSADM DSNADM

DB2-subsystem.SECADM
This check is bypassed for user tables

DSNADM
172 IBM DB2 12 for z/OS Technical Overview

Figure 10-4 shows the syntax diagram for the TRANSFER OWNERSHIP statement.

Figure 10-4 The TRANSFER OWNERSHIP statement syntax diagram

The CREATOR and CREATORTYPE columns in the following tables are updated with the
new owner when the transfer is successful for the objects:

SYSIBM.SYSDATABASE If ownership of a database is transferred (ownership of the
DSNDB01, DSNDB04, and DSNDB06 databases are not
allowed to be transferred)

SYSIBM.SYSSTOGROUP If ownership of a storage group is transferred

SYSIBM.SYSTABLESPACE If ownership of a table space is transferred

The OWNER and OWNERTYPE columns in the following tables are updated with the new
owner when the transfer is successful for the objects:

SYSIBM.SYSTABLES If ownership of a table is transferred

SYSIBM.SYSINDEXES If ownership of an index is transferred

SYSIBM.SYSVIEWS If ownership of a view is transferred

The example in Figure 10-5 on page 174 shows a table that is created and owned by an
authorization ID and later, its ownership is transferred to another authorization ID by the
SECADM authority.

Note: Although the syntax diagram does not specify ALIAS, an alias for TABLE and VIEW
can be specified on the TRANSFER OWNERSHIP statement and its based table or the
view ownership will be transferred.
Chapter 10. Security 173

Figure 10-5 SECADM transfers table's SZI10T's ownership from ADMF002 to ADMF003

10.3.1 Supported objects

The privilege set of the application executing the TRANSFER OWNERSHIP statement must
be the owner of the object or SECADM authority. Even with the SEPARATE_SECURITY
DSNZPARM set to NO, installed SYSADM and SYSADM authority is not sufficient to perform
the ownership transfer. By using this SQL statement, ownership of the following objects can
be transferred:

� Database
� Tablespace
� Table
� Index
� View
� Stogroup

Those objects must not be the system objects (owned by schemas that begin with SYS) and
must exist at the current server where the statement is executing. Therefore, three-part name
table or view, or alias created with the three-part name should have the location name
resolved to the local server. When ownership of a database is transferred, the ownerships of
other objects created in the same database such as tablespaces, tables, and views are not
transferred. When ownership of a table is transferred, the ownership of the following
dependent objects is also transferred:

� Index (if same owner)

� Implicitly created table space for this base table

� Implicitly and explicitly (same owner) created LOB objects (aux table, aux index, LOB table
space)

� XML objects (table, index, table space)

Note: The SYSTABLES.CREATEDBY column remains as is with the old owner while the
OWNER column is updated with the new owner. The catalog table SYSTABAUTH is also
updated with the appropriate table authorization’s grantor and grantee.
174 IBM DB2 12 for z/OS Technical Overview

10.3.2 New owner

The new owner can be an authorization ID, a role or the SESSION user (the primary
authorization ID executing the application). The new owner's name and type are recorded in
either the CREATOR/CREATORTYPE or OWNER/OWNERTYPE columns in the appropriate
DB2 catalog table where the object's definition is kept. The new owner is automatically
granted the same privileges that the old owner obtained when the object was created. The
new owner must have the set of privileges on the base objects, as indicated by the objects
dependencies, that are required to maintain the objects existence, unchanged.

For example, TAMMIED is the owner of table T1 and TAMMIED ID also has DBADM authority.
After executing the TRANSFER OWNERSHIP OF T1 TO ACACIO statement, ACACIO ID will also
have DBADM authority.

The example in Figure 10-6 shows that TAMMIED creates a view with the CREATE VIEW V1 AS
SELECT MYUDF(C1) FROM T1 statement. This view is updatable so TAMMIED ID, as the owner,
has SELECT, INSERT, UPDATE, DELETE privileges on the T1 based table. TAMMIED should
also have EXECUTE privilege on the MYUDF user-defined function. When owner TAMMIED
or SECADM executes the TRANSFER OWNERSHIP OF T1 TO MBERNAL statement, DB2 requires
that MBERNAL also has SELECT, INSERT, UPDATE, and DELETE privileges on the T1
based table, and EXECUTE privilege on the MYUDF user-defined function.

Figure 10-6 View’s ownership transfer failure

10.3.3 Revoking privileges of current owner

In DB2 12, the REVOKE PRIVILEGES option on the TRANSFER OWNERSHIP statement
must be specified to indicate that the current owner will not have any implicit privilege on the
object after the transfer is completed (Example 10-3). The following objects are invalidated:

� Dynamic cached statements that are dependent on the current owner’s privilege on the
object

� Stabilized dynamic statements that are dependent on the current owner’s privilege on the
object

Example 10-3 Transfer ownership of table EMPLOYEE.BENEFIT to role BENEFIT_ADMINROLE and
revoke current owner's privileges on this table

TRANSFER OWNERSHIP OF TABLE EMPLOYEE.BENEFIT TO ROLE BENEFIT_ADMINROLE REVOKE
PRIVILEGES;

If any package exists that is dependent on the current owner's privilege on the object, the
TRANSFER statement fails. This failure can be avoided by explicitly granting those privileges
from another source (such as SECADM) or if the current owner has an administrative
authority that allows access (such as DBADM on the database).
Chapter 10. Security 175

The query shown in Figure 10-7 can be used to identify those packages and the privileges
associated with a table and schema.

Figure 10-7 Query to find packages dependent on current owner's privilege on the table

For tables created prior to DB2 9, the query shown in Figure 10-8 can be used.

Figure 10-8 Query to find packages dependent on current owner's privilege on table (before DB2 9)

The grant actions performed by the current owner are not changed when the transfer
completes. Those privileges can be revoked separately after by using REVOKE statement
with the BY clause.

Also, that functionality does not apply to plan, packages, and security objects created in DB2.
Ownership of an application plan and package can be transferred by using the REBIND
subcommand with the existing OWNER option. The security objects, such as trusted contexts,
roles, row permissions, column masks and their ownerships can be transferred with the
DROP and CREATE DDL statements.

Note: The clone table and the base table are considered unrelated objects with regard to
access control. Therefore, transferring ownership of the clone table does not affect
ownership of the base table and vice versa. Ownership of each table should be transferred
separately as needed.
176 IBM DB2 12 for z/OS Technical Overview

Chapter 11. Utilities

This chapter covers the following enhancements for utilities:

� Backup and recovery enhancements
� RUNSTATS enhancements
� REORG enhancements
� LOAD and UNLOAD enhancements

11
© Copyright IBM Corp. 2016. All rights reserved. 177

11.1 Backup and recovery enhancements

DB2 12 introduces the following enhancements for backup and recovery utilities:

� Sequential image copy enhancements

� Copy support for FASTREPLICATION

� Alternate copy pools for system-level backups

� FLASHCOPY_PPRCP keyword option

� Point-in-time recovery enhancements

� MODIFY RECOVERY enhancements

11.1.1 Sequential image copy enhancements

DB2 uses &ICTYPE to refer the type of image copy taken. In DB2 11, &ICTYPE was set to 'C'
for image data set name allocated through TEMPLATE for COPY utility with CHANGELIMIT.
That way, users are unable to determine quickly and accurately whether an image copy data
set is a full or incremental copy.

DB2 12 supports &ICTYPE on TEMPLATE to reflect the actual type of image copy even when
CHANGELIMIT is specified for the COPY utility:

� &ICTYPE = 'F', when a full image copy will be generated

� &ICTYPE = 'I', when an incremental image copy will be generated

Figure 11-1 describes how to identify the type of image copy on DB2 11. The &ICTYPE is the
same for both types of image copies (incremental and full image copy), the letter “C” is
specified in the DSN value. The difference is found three lines above, which shows
INCREMENTAL IMAGE COPY or FULL IMAGE COPY.

Figure 11-1 How to identify the type of image copy on DB2 11
178 IBM DB2 12 for z/OS Technical Overview

Figure 11-2 describes how to identify the type of image copy on DB2 12. For incremental
image copy, the &ICTYPE is specified with the letter “I” in the DSN value, and for full image
copy, the &ICTYPE is specified with the letter “F” in the DSN value.

Figure 11-2 How to identify the type of image copy on DB2 12

Also an additional difference exists in the ways to identify the type of sequential image copy
being copied from FlashCopy. In DB2 11, the &ICTYPE letter for full image copy is “C” in the
DSN; in DB2 12, the letter “F” represents the &ICTYPE for full image copy taken from
FlashCopy (Figure 11-3).

Figure 11-3 Identifying the type of sequential image copy being copied from FlashCopy
Chapter 11. Utilities 179

11.1.2 Copy support for FASTREPLICATION

DB2 12 includes COPY_FASTREPLICATION, a subsystem parameter to specify whether fast
replication is required, preferred, or not needed during the creation of FlashCopy image copy
by the COPY utility. This new parameter was necessary because the creation of FlashCopy
image copy by the COPY utility used a default of FASTREP (PREF) (fast replication
preferred) and no options to override existed.

Figure 11-4 shows that in DB2 11, the FASTREPLICATION option was not specified, so it
depended on the customer’s SMS default setting and the default for the SMS is
PREFERRED.

Figure 11-4 DB2 11 without FASTREPLICATION parameter
180 IBM DB2 12 for z/OS Technical Overview

DB2 12 has the ability to control whether or not fast replication is used as Figure 11-5
represents.

Figure 11-5 DB2 12 with FASTREPLICATION parameter

11.1.3 Alternate copy pools for system-level backups

The previous DB2 releases can use up to only two copy pools, one for the database and one
for logs. These copy pools define the storage groups to copy and the backup storage groups
to store the copies.

In the DB2 12, the system level backup supports multiple copy pools in which you can keep
extra system level backups on disk during upgrades. Also, an alternate copy pool includes the
same defined set of storage groups as the standard copy pool, however different backup
storage groups are specified.

To use an alternate copy pool, specify the ALTERNATE_CP option and the related backup
storage group options (DBBSG and LGBSG) on the BACKUP SYSTEM utility control
statement:

� DBBSG refers to the backup storage group name for the database copy pool. It can be up
to eight characters and must be defined to DFSMS with the COPY POOL BACKUP
attribute.

� LGBSG refers to the backup storage group name for the log copy pool. It can be up to
eight characters and must be defined to DFSMS with the COPY POOL BACKUP attribute.

The naming conventions for the database copy pool and log copy pool are as follows:

� For the database copy pool: DSN$locname$DB

� For the log copy pool: DSN$locname$LG
Chapter 11. Utilities 181

11.1.4 FLASHCOPY_PPRCP keyword option

In DB2 12, the FLASHCOPY_PPRCP keyword is added to RESTORE SYSTEM and
RECOVER utilities allowing you to control the preserve mirror option for the DB2 production
volumes during FlashCopy operations when the recovery base is a system-level backup.
FLASHCOPY_PPRCP also applies to the RECOVER utility that uses a FlashCopy image
copy as recovery base.

Control options for RECOVER from FlashCopy image copy are shown in Table 11-1.

Table 11-1 Control options for RECOVER from FlashCopy image copy

Control options for RECOVER from System Level Backup are shown in Table 11-2.

Table 11-2 Control options for RECOVER from System Level Backup

Control options for RESTORE SYSTEM are shown in Table 11-3.

Table 11-3 Control options for RECOVER from RESTORE system

Preserve mirror behavior FlashCopy usage

zPARM FLASHCOPY_PPRC REC_FASTREPLICATION

Default REQUIRED PREFERRED

RECOVER keyword FLASHCOPY_PPRCP Not applicable

ADRDSSU keyword FCTOPPRCP FASTREPLICATION

Preserve mirror behavior FlashCopy usage

zPARM FLASHCOPY_PPRC REC_FASTREPLICATION

Default REQUIRED PREFERRED

RECOVER keyword FLASHCOPY_PPRCP Not applicable

FRRECOV keyword ALLOWPPRCP FR (=FASTREPLICATION)

ADRDSSU keyword FCTOPPRCP FASTREPLICATION

Control options before V12 ISMF COPYPOOL panels SETSYS FASTREPLICATION
(DATASETRECOVERY(...))

Preserve Mirror behavior FlashCopy usage

zPARM FLASHCOPY_PPRC

Default REQUIRED

RESTORE SYSTEM
keyword

FLASHCOPY_PPRCP

FRRECOV keyword ALLOWPPRCP -

ADRDSSU keyword FCTOPPRCP FASTREPLICATION

Control options before V12 ISMF COPYPOOL panels
182 IBM DB2 12 for z/OS Technical Overview

The syntax for FLASHCOPY_PPRCP for RECOVER and RESTORE SYSTEM is shown in
Example 11-1.

Example 11-1 FLASHCOPY_PPRCP syntax for Recover utility on DB2 V12

>--+-----------------------------+------------------------------>
 '-FLASHCOPY_PPRCP--+-NO-----+-'
 +-PMNO---+
 +-PMPREF-+
 '-PMREQ -'

11.1.5 Point-in-time recovery enhancements

This section describes the following point-in-time recovery enhancements:

� PIT Recover support for partition-by-growth (PBG) table spaces
� Recovering only necessary data sets

PIT Recover support for partition-by-growth (PBG) table spaces
In DB2 11, only range-partitioned table space, a LOB table space, or an XML table space
were able to be recovered to a point in time before a REORG job was run to materialize
pending definition changes. DB2 12 introduces PBG table spaces to be recovered to a point
in time before a REORG job was run to materialize pending definition changes.

The following RECOVER restrictions were removed in DB2 12 for PBG table spaces only:

� Alteration of SEGSIZE
� Alteration of DSSIZE
� Alteration of BPOOL
� Alteration of MEMBER CLUSTER

The following RECOVER restrictions remain in DB2 12 for PBG table spaces only:

� Recover of an index is not allowed.
� Entire table space must be specified.
� Not allowed if pending changes.
� Always VERIFYSET YES.
� TOCOPY is not allowed if SHRLEVEL CHANGE copy.
� No clone must exist.
� Current recover must be materialized before next recovery.
� Conversion not allowed of table space type / drop column / change hash before

deletion of PBG parts.

With the restrictions removed, DB2 12 enables the data to be available for recovery even after
any of those alterations were performed, this way, there is no need to run an additional
REORG to materialize the data and then recover to the required recovery point.

As in DB2 11, a subsequent REORG job must be executed in order to remove the REORP
(REORG pending) restriction status from the entire table space and complete the PIT
recovery process.
Chapter 11. Utilities 183

Example 11-2 demonstrates how PIT recovery before materializing REORG works for a LOB
compression object and sets the object to REORG pending status. Also, VERIFY YES is
enforced, so in this way, all involved objects must be set to this point.

Example 11-2 PIT recovery before materializing REORG for LOB compression: REORG pending

DSNU050I 300 08:42:39.92 DSNUGUTC - RECOVER TABLESPACE SZI10D.SZI10SA1
TOLOGPOINT X'00CFCC48468A97610400' VERIFYSET NO
DSNU124I -DB2A 300 08:42:39.96 DSNUCAIN - VERIFYSET NO SPECIFICATION IS IGNORED
AND VERIFYSET YES IS IN EFFECT FOR CURRENT UTILITY EXECUTION
DSNU1316I -DB2A 300 08:42:39.96 DSNUCAIN - THE FOLLOWING TABLESPACES ARE MISSING
FROM THE RECOVERY LIST
 SZI10D.SZI10S PARTITION 00001
DSNU050I 308 03:15:31.79 DSNUGUTC - RECOVER TABLESPACE SZI10D.SZI10SA1
TABLESPACE SZI10D.SZI10S TOLOGPOINT X'00CFCC48468A97610400' VERIFYSET NO
DSNU124I -DB2A 308 03:15:31.86 DSNUCAIN - VERIFYSET NO SPECIFICATION IS IGNORED
AND VERIFYSET YES IS IN EFFECT FOR CURRENT UTILITY EXECUTION
...
DSNU535I -DB2A 308 03:15:32.94 DSNUCATM - FOLLOWING TABLESPACES RECOVERED TO A
CONSISTENT POINT
 SZI10D.SZI10S
 SZI10D.SZI10SA1
DSNU506I -DB2A 308 03:15:32.98 DSNUGSRX - TABLESPACE SZI10D.SZI10SA1 IS IN REORG
PENDING STATE

Example 11-3 refers to the -DISPLAY DATABASE command showing the REORG pending
restriction status of the object.

Example 11-3 Display for table space with restrictive status

DSNT397I -DB2A
NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ----- ----------------- -------- -------- -------- -----
SZI10S TS 0001 RW
SZI10S TS
SZI10SA1 LS RW,REORP

Recovering only necessary data set
DB12 introduces the SCOPE keyword, which is applied when the RECOVER utility uses the
TORBA option or the TOLOGPOINT option. SCOPE has two variations:

� SCOPE UPDATED
� SCOPE ALL

The SCOPE UPDATED option can potentially improve recovery time because it indicates
which objects in the specified LISTDEF list are to be recovered, then the objects in the list that
have not changed since the recovery point are skipped by the RECOVER utility. In this way, it
does not waste time processing objects that have not changed and therefore do not need to
be recovered. The exception is for the following objects that are recovered even if they have
not changed since the specified recovery point:

� Indexes in information COPY-pending status
� Table spaces in COPY-pending status
� Any objects in RECOVER-pending status
184 IBM DB2 12 for z/OS Technical Overview

When DB2 skips the objects in which the recovery is not required, this message is issued:

DSNU1322I PROCESSING SKIPPED FOR dbname.tsname DSNUM n BECAUSE THE OBJECT DOES NOT
NEED TO BE RECOVERED.

The SCOPE ALL option indicates that all objects in the list are recovered, even if they have
not been updated.

The syntax for SCOPE UPDATED and SCOPE ALL are shown in Figure 11-6.

Figure 11-6 Syntax for SCOPE UPDATED and SCOPE ALL keywords

11.1.6 MODIFY RECOVERY enhancements

Two options are added to the MODIFY RECOVERY utility:

� DELETEDS

� NOCOPYPEND

DELETEDS option
The DELETEDS option is added. Its functionality is to delete cataloged image copy data sets
on disk or migrated by DFSMShsm tape when corresponding SYSCOPY records are deleted.
The IDCAM program is invoked to perform the deletion with DELETE commands.

This is an optional feature because it increased the elapsed time and some users keep the
image copy data sets even when no longer recorded in SYSCOPY.

The restart restrictions for DELETEDS are as follows:

� MODIFY abends after the deletion of the SYSCOPY records have been committed in the
MODIFY phase and the job is restarted. In this case, the DELETEDS phase will be
skipped and no image copy data sets will be deleted.

� MODIFY abends in the DELETEDS phase and the job is restarted. In this case, the phase
will be changed to UTILTERM, the image copy data sets that were not deleted in the first
invocation will not be deleted.
Chapter 11. Utilities 185

NOCOPYPEND option
The NOCOPYPEND option is added. It instructs MODIFY RECOVERY to not set COPY
pending restricted status even if all backups were deleted from SYSCOPY. This feature was
developed because MODIFY RECOVERY places objects in COPY-pending when all backups
have been deleted from SYSCOPY. In this case, up to DB2 11, you were not able to update
the data because of the restricted status.

11.2 RUNSTATS enhancements

DB2 12 provides several statistics collection enhancements, including several of which
improve SQL performance. These enhancements are described in the following topics:

� Specifying FREQVAL without the COUNT n keywords

� USE PROFILE support for Inline Statistics

� INVALIDATECHACHE option

� RUNSTATS TABLESPACE LIST INDEX improvements

� New keyword REGISTER for RUNSTATS utility

11.2.1 Specifying FREQVAL without the COUNT n keywords

FREQVAL indicates, when specified with the COLGROUP option, that frequency statistics to
be gathered for the specified group of columns. Up to DB2 11, a necessary step is to specify
an integer number of how many frequently occurring values are collected from the specified
column group; to get this number, DB2 users usually run queries simulating RUNSTATS
collection. If the count was not specified, an error occurred when COLGROUP was specified.

Example 11-4 shows the syntax diagram DB2 11.

Example 11-4 FREQVAL syntax for DB2 V11

>>-+--+------------------->
 | .-COUNT 10 MOST-------------. |
 '-FREQVAL -+---------------------------+-'
 | .-MOST--. |
 '-COUNT--integer--+-------+-'
 +-BOTH--+

+-LEAST--+

Now on DB2 12, if FREQVAL is specified without the COUNT n keywords, DB2 automatically
determines the appropriate number to collect and does not assume COUNT 10 MOST as in
DB2 11 with the COLGROUP option (Example 11-5).

Example 11-5 FREQVAL syntax for DB2 V12

>>-+--+--------------->
 '-FREQVAL -+-------------------------------+-'
 | (1) .-MOST--. |
 '-COUNT--integer------+-------+-'
 +-BOTH--+
 '-LEAST-'
186 IBM DB2 12 for z/OS Technical Overview

11.2.2 USE PROFILE support for inline statistics

The USE PROFILE support allows inline statistics to employ a previously stored statistics
profile to gather statistics for a table. The statistics profile is created by using the RUNSTATS
options of SET PROFILE and is updated using the UPDATE PROFILE RUNSTATS option.

On DB2 12 profiles are supported with inline statistics to match RUNSTATS functional
support. The latest PROFILE settings will be picked up so the appropriate statistics are
gathered during LOAD and REORG, avoiding an additional execution of RUNSTATS.

Example 11-6 shows the support for the USE PROFILE keywords added when the
STATISTICS keyword is used to specify the collection of inline statistics by REORG
TABLESPACE STATISTICS.

Example 11-6 Inline statistics

LISTDEF LLLL
 INCLUDE TABLESPACES DATABASE ... PARTLEVEL
REORG TABLESPACE LIST LLLL
SHRLEVEL CHANGE COPYDDN(TTTT)
STATISTICS TABLE(ALL) USE PROFILE REPORT YES

In addition, support for the USE PROFILE keywords is added when the STATISTICS keyword
is used to specify the collection of inline statistics by LOAD STATISTICS too.

The statistics profile is created by using the RUNSTATS options of SET PROFILE and is
updated using the UPDATE PROFILE RUNSTATS option (Example 11-7).

Example 11-7 RUNSTATS option

RUNSTATS TABLESPACE ... TABLE (...) SET PROFILE FROM EXISTING STATS
SELECT * FROM SYSIBM.SYSTABLES_PROFILES
PROFILE_TEXT
-+---------+---------+---------+---
COLUMN(..., ..., ...) INDEX(ALL)DEFAULT PROFILE

11.2.3 INVALIDATECACHE option

The INVALIDATECACHE option is introduced to control the invalidation of the dynamic
statement cache. This allows you to control when to invalidate the cache while collecting
statistics on objects.

With the INVALIDATECACHE YES/NO option for RUNSTATS, you can explicitly specify
whether cached statements should be invalidated or not. The proposed default for
RUNSTATS is INVALIDATECACHE NO.

The exceptions to the default for RUNSTATS are as follows:

� When RUNSTATS LIST REPORT NO UPDATE NONE is executed, the default value for the
INVALIDATECACHE option will be YES. The dynamic statement cache is invalidated for
the target objects.

� When RUNSTATS RESET ACCESSPATH is executed without the INVALIDATECACHE keyword,
the default value for the INVALIDATECACHE option will be YES.
Chapter 11. Utilities 187

If you specify RUNSTATS RESET ACCESSPATH INVALIDATECACHE NO, then RUNSTATS will issue
DSNU070I error message for the specification. The INVALIDATECACHE NO option is not
supported when RESET ACCESSPATH option is specified.

When you use a RUNSTATS LIST or execute INLINE STATISTICS, the default for
INVALIDATECACHE keyword is NO.

Invalidation by main utilities
When LOAD, REORG, or REBUILD INDEX is executed and when the object is in a restrictive
state, the dynamic statement cache for the target objects will be invalidated by the main utility.
For example, when the index is in restrictive rebuild pending state (RBDP), the statements in
the dynamic cache are invalidated by the main utility. When there are pending alters, as in the
case of REORG, the statements in the dynamic cache are invalidated by the main utility. The
invalidation is done regardless of inline STATISTICS specification.

The INVALIDATECACHE keyword in the statistics-spec applies only to the statistics
collection. It does not control the invalidation done by the main utility.

Figure 11-7 shows cache invalidation examples for LOAD, RUNSTATS, and REORG utilities.

Figure 11-7 Cache invalidation examples
188 IBM DB2 12 for z/OS Technical Overview

Figure 11-8 shows RUNSTATS and INVALIDATECACHE combinations.

Figure 11-8 RUNSTATS and INVALIDATECACHE combinations

11.2.4 RUNSTATS TABLESPACE LIST INDEX improvements

An improvement for RUNSTATS TABLESPACE LIST INDEX was developed because of an
excessive elapsed time and contention during the update of catalog tables when a LIST was
defined with PARTLEVEL keyword and the statement RUNSTATS TABLESPACE LIST INDEX
was issued. For every partition, the statistics were collected on all corresponding indexes.

Now, in DB2 12, when a list is defined with the PARTLEVEL keyword and the statement
RUNSTATS TABLESPACE LIST TABLE USE PROFILE is executed, for every tablespace part
processed, index statistics are collected on the respective index part of a partitioned index
or data partitioned index, no statistics on non-partitioned indexes (NPIs) are collected.

If the keyword INCLUDE NPI is specified, the statistics for the NPIs are collected for every
part of the tablespace.

Figure 11-9 on page 190 represents the difference between the method adopted by DB2 11
and how DB2 12 works with this improvement. In the example, the corresponding statics from
NPI that are relative to Partition 2 were not collected.
Chapter 11. Utilities 189

Figure 11-9 RUNSTATS TABLESPACES LIST INDEX on DB2 11 versus DB2 12

11.2.5 New keyword REGISTER for RUNSTATS utility

A new keyword called REGISTER for RUNSTATS utility is enabled to be used if SHRLEVEL
CHANGE is specified. It controls whether to register pages read by RUNSTATS utility with
SHRLEVEL CHANGE to Coupling Facility in a data sharing environment.

Figure 11-10 shows REGISTER keyword syntax for RUNSTATS utility.

Figure 11-10 REGISTER keyword syntax for RUNSTATS utility

Specifying REGISTER YES indicates that the pages that are read by the RUNSTATS utility
are registered with the coupling facility.

Specifying REGISTER NO indicates that the pages that are read by the RUNSTATS utility are
not registered with the coupling facility. This option reduces data sharing overhead. However,
because REGISTER NO is valid only with SHRLEVEL CHANGE, and SHRLEVEL CHANGE
implies ISOLATION UR, when you set REGISTER NO, RUNSTATS might collect statistics on
uncommitted data.
190 IBM DB2 12 for z/OS Technical Overview

11.3 REORG enhancements

The following REORG enhancements are described in this section:

� Improved FlashCopy management
� Prevention of COPY-pending for a LOB table space during REORG of PBG
� Improved partition-level partition-by-growth (PBG) REORGs
� REORG option for empty PBG partitions deletion
� Support for the new COMPRESSRATIO catalog column
� Display claimer information on each REORG drain failure
� Additional REORG enhancements

11.3.1 Improved FlashCopy management

One of the image copy options available for REORG TABLESPACE is FlashCopy technology.
The main advantages of this method against the traditional DB2 utility methods are the
performance and the availability. The FlashCopy is faster and reduces the time of unavailable
data.

The following scenario caused an extended application outage which is inconsistent with
running online REORG mindset:

1. REORG ran and created an inline FlashCopy with no sequential inline image copy.

2. The FlashCopy failed but then REORG completed and left the pageset in a copy-pending
state.

DB2 12 brings an improvement to this scenario, if FlashCopy has an unsuccessful execution,
REORG completes with return code (RC) of 8 and does not leave object in a restricted status
(Example 11-8).

Example 11-8 Online REORG failure scenario with unsuccessful FlashCopy image copy execution

DSNU050I 259 03:40:12.03 DSNUGUTC - REORG TABLESPACE LIST LLLL SHRLEVEL CHANGE
FCCOPYDDN(TTTT) FLASHCOPY CONSISTENT
...
DSNU385I 259 03:40:14.59 DSNURLGD - LOG PHASE COMPLETE, ELAPSED TIME = 00:00:00
DSNU421I 259 03:40:14.73 DSNUGFUM - START OF DFSMS MESSAGES
...
ADR709E (001)-ACS (01), AN ERROR OCCURRED IN THE STORAGE MANAGEMENT SUBSYSTEM
WHILE DETERMINING SMS CONSTRUCTS FOR
 DATA SET DSNC910.DSNDBC.SZI10D.SZI10S.I0001.A001 WITH
NEWNAME
 DSNC910.IC.FESWD2OG.SZI10D.SZI10S.A001.F. SMS MESSAGES
FOLLOW.
 IGD01014I DATA SET ALLOCATION REQUEST FAILED -
 SPECIFIED MGMTCLAS MGMTCL1 DOES NOT EXIST
...
DSNU422I 259 03:40:16.83 DSNUGCFD - END OF DFSMS MESSAGE
DSNU2908I 259 03:40:16.83 DSNURSWT - FLASHCOPY IMAGE COPY CREATION IS
UNSUCCESSFUL
DSNU012I 259 03:40:18.47 DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST
RETURN CODE=8
Chapter 11. Utilities 191

11.3.2 Preventing COPY-pending on a LOB table space during REORG of PBG

In the previous DB2 version, REORG of a PBG table space with a LOB column required
a new PBG partition to be created in the LOG phase. That new LOB table space had
COPY-pending status due to REORG’s inability to allocate a new image copy dataset at
that time.

A feature in DB2 12 prevents COPY-pending restriction status on a LOB table space during
REORG of PBG. An inline image copy is allocated for the new LOB table space created.

Example 11-9 shows output for REORG TABLESPACE of a PBG with a LOB column
required, in which inline image copies were not created for auxiliary table spaces and left
in COPY-pending in DB2 11.

Example 11-9 COPY-pending on a LOB table space during REORG of partition-by-growth in V11

DSNU050I 265 08:50:02.56 DSNUGUTC - REORG TABLESPACE SZI10D.SZI10S SHRLEVEL
CHANGE COPYDDN(TTTT) AUX YES
DSNU1155I -DB2A 265 08:50:03.80 DSNURFIT - AUXILIARY TABLESPACE SZI10D.SZI10SA1
WILL BE REORGANIZED IN PARALLEL WITH BASE TABLESPACE
...
...
DSNU1155I -DB2A 265 08:51:14.46 DSNURLOG - AUXILIARY TABLESPACE SZI10D.LM7OM5MI
WILL BE REORGANIZED IN PARALLEL WITH BASE TABLESPACE
...
DSNU1157I 265 08:51:18.64 DSNURSWT - INLINE IMAGE COPIES ARE NOT CREATED FOR
AUXILIARY TABLE SPACES REORGANIZED AND ARE LEFT IN COPY PENDING
DSNU381I -DB2A 265 08:51:21.82 DSNUGSRX - TABLESPACE SZI10D.LM7OM5MI IS IN COPY
PENDING

DB2 12 prevents the COPY-pending on a LOB table space during REORG of PBG.
Example 11-10 shows REORG for this case, and image copy is successful.

Example 11-10 Preventing COPY-pending on a LOB table space during REORG of PBG in DB2 12

DSNU050I 266 01:56:04.72 DSNUGUTC - REORG TABLESPACE SZI10D.SZI10S SHRLEVEL
CHANGE COPYDDN(TTTT) AUX YES
DSNU1155I -DB2A 266 01:56:06.08 DSNURFIT - AUXILIARY TABLESPACE SZI10D.SZI10SA1
WILL BE REORGANIZED IN PARALLEL WITH BASE TABLESPACE...
...
DSNU1155I -DB2A 266 01:57:32.17 DSNURLOG - AUXILIARY TABLESPACE SZI10D.LM81BRVC
WILL BE REORGANIZED IN PARALLEL WITH BASE TABLESPACE
...
DSNU428I 266 01:57:33.09 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE
SZI10D.LM81BRVC
192 IBM DB2 12 for z/OS Technical Overview

11.3.3 Improved partition-level PBG REORGs

DB2 12 improves the REORG TABLESPACE utility to support creation of a new PBG partition
for overflow rows during a partition-level REORG. The new partitions are automatically
created up to MAXPARTITIONS.

Without this feature, the REORG of a subset of PBG partitions failed because of the inability
to fit the data back into the required parts. In this way, more REORG executions were required
for the partitions than intended or even were necessary for a REORG of the entire table
space, resulting in higher CPU, memory, and disk space utilization.

Figure 11-11 shows a scenario comparison of REORG partitions on DB2 11 and DB2 12. In
this scenario, data does not fit in the partitions on DB2 11, and on DB2 12 new partitions are
created to hold the data.

Figure 11-11 Scenario comparison of REORG partitions on DB2 11 and DB2 12
Chapter 11. Utilities 193

11.3.4 REORG option for empty PBG partitions deletion

DB2 12 includes the DROP_PART keyword on the REORG TABLESPACE statement for PBG
empty partitions.

The scenario in Figure 11-12 illustrates how this DROP_PART keyword option works. In this
scenario, by using DROP_PART the data is moved to partitions A001 and A002. Partition
A003 and A004 were deleted.

Figure 11-12 The DROP_PART keyword usage

Example 11-11 shows the syntax diagram for DROP_PART keyword option.

Example 11-11 DROP_PART syntax option

 .-DROP_PART--NO--. .-SORTDATA-------------------------.
>--+----------------+--+----------------------------------+----->
 '-DROP_PART--YES-' | .-RECLUSTER--YES-. |
 '-SORTDATA--NO--+----------------+-'
 '-RECLUSTER--NO--'

11.3.5 Support for the COMPRESSRATIO catalog column

COMPRESSRATIO is a new catalog column for SYSIBM.SYSTABLESPACE and
SYSIBM.SYSTABLEPART. Its function is an accurate calculation for sort work data sets.

COMPRESSRATIO gets the average percentage of bytes saved by compression on each
compressed data record in the table space when the table space is defined with the
COMPRESS YES attribute. The value is based on an average row length and varies
depending on the actual length of the data rows.

REORG, LOAD REPLACE, and RUNSTATS automatically update this feature. REORG uses
COMPRESSRATIO value to better calculate the decompressed record size for the sort input.
194 IBM DB2 12 for z/OS Technical Overview

Example 11-12 shows a compression report in which the percent number of the bytes are
saved from compressed data rows.

Example 11-12 Compression report

 DSNU231I -DB2A 004 01:14:27.02 DSNURBDC - DICTIONARY WITH 4096 ENTRIES HAS BEEN
SUCCESSFULLY BUILT FROM 4603 ROWS FOR TABLE SPACE SZI10D.SZI10S

DSNU234I -DB2A 004 01:16:26.10 DSNURWT - COMPRESSION REPORT FOR TABLE SPACE
SZI10D.SZI10S

 58333 KB WITHOUT COMPRESSION
 15396 KB WITH COMPRESSION
 74 PERCENT OF THE BYTES SAVED FROM COMPRESSED DATA ROWS

 99 PERCENT OF THE LOADED ROWS WERE COMPRESSED
...
SELECT * FROM SYSIBM.SYSTABLEPART
WHERE DBNAME = 'SZI10D' ;
----------------+
! COMPRESSRATIO !
----------------+
! 74 !
----------------+

11.3.6 Display claimers information on each REORG drain failure

Up to DB2 11, REORG was not able to display the blocking claimers information on drain
failures except on the last drain attempt. It caused REORG termination with no possible
action taken.

DB2 12 displays the blocking claimers on each drain attempt failure in the utility job output for
REORG SHRLEVEL REFERENCE or CHANGE.

As Figure 11-13 shows, that information will be put out for each drain failure. The default is six
attempts, which is why Figure 11-13 indicates this is the first drain attempt that fails and the
second attempt will be made in five seconds.

.

Figure 11-13 DB2 12 blocking claimers display
Chapter 11. Utilities 195

11.3.7 Additional REORG enhancements

This section covers several additional REORG enhancements:

� New mapping table format support
� Permit REORG against RO objects
� Additional offload to zIIP

Mapping table format support
A mapping table format supports 7-byte RIDs needed with range-partitioned (PBR) relative
page numbering. For more information about PBR relative page numbering, see Chapter 3,
“Scalability” on page 33.

Permit REORG against read-only objects
Up to DB2 11, the REORG utility failed when executed against read-only objects, because
this option was not allowed by DB2. To correct this situation, DB2 12 allows REORG utility
execution against read-only objects.

Additional offload to zIIP
The IBM z Systems® Integrated Information Processor (zIIP) is enabled for REORG
RELOAD phase in DB2 12.

The objective of the enhancement is to reduce the cost of running REORG by offloading CPU
time to the zIIP processor. The phases of the utilities have been enabled over time:

V8 Index build in LOAD, REORG, and REBUILD
V9 REORG UNLOAD
V10 RUNSTATS
V11 Inline stats
V12 LOAD and REORG RELOAD

The zIIP is used as long as Workload Manager (WLM) tells the utility that zIIP is configured;
there are no changes to the utility statement.

Measurements show CPU time reduction in the RELOAD phase in LOAD being offloaded to
the zIIP and also for the offload for the REORG RELOAD phase.

11.4 LOAD and UNLOAD enhancements

LOAD and UNLOAD are also enhanced:

� LOAD enhancements
� UNLOAD enhancements

11.4.1 LOAD enhancements

These are the LOAD enhancements:

� LOAD PARALLEL with COLGROUP

� LOAD PART REPLACE skipping NPSI scan if empty partition-by-range (PBR) partition is
empty.

� PREFORMAT support for auxiliary table spaces

� Additional zIIP offload
196 IBM DB2 12 for z/OS Technical Overview

LOAD PARALLEL with COLGROUP
The use of parallelism can reduce the elapsed time for loading a considerable amount of
data and improve the performance for the LOAD utility. DB2 11 introduced the use of the
PARALLEL option for LOAD SHRLEVEL CHANGE | NONE, but it did not support inline COLGROUP
statistics.

The advantage of the COLGROUP option is to collect frequency and cardinality statistics on
any column group. This way determines a better access plan and improves query
performance. All the COLGROUP statistics can be collected during the LOAD invocation by
specifying FREQVAL and HISTOGRAM keywords.

LOAD PART REPLACE skipping NPSI scan if empty partition-by-range
(PBR) partition is empty
DB2 12 reduces elapsed and CPU time with this enhancement on LOAD PART REPLACE. It
skips the non-partitioned secondary index (NPSI) scan if partition-by-range (PBR) is empty.

PREFORMAT support for auxiliary table spaces
The PREFORMAT option supports auxiliary table spaces on DB2 12. With this option, the
need for DB2 to preformat new pages in a table space during the execution time is eliminated.

Additional zIIP offload
The zIIP is enabled for LOAD RELOAD phase in DB2 12. This enhancement reduces the cost
of running LOAD by offloading CPU time to the zIIP.

11.4.2 UNLOAD enhancements

DB2 12 provides two UNLOAD enhancements:

� The REGISTER keyword
� An UNLOAD privilege

The REGISTER keyword
The REGISTER keyword can be used if SHRLEVEL CHANGE ISOLATION UR is specified. It
controls whether to register pages read by the UNLOAD utility with SHRLEVEL CHANGE
ISOLATION UR to the coupling facility in a data sharing environment (Figure 11-14).

Figure 11-14 REGISTER keyword syntax example for UNLOAD

When REGISTER NO is specified, pages that are read by the UNLOAD utility are not
registered with the coupling facility. Pages that are resident with the coupling facility are not
processed by the UNLOAD utility. This option reduces data sharing overhead.

The REGISTER NO option is not supported for base table spaces with LOB or XML columns.
If the REGISTER NO option is not specified explicitly for a base table space with LOB or XML
columns, DB2 sets the REGISTER value to YES. If REGISTER NO is explicitly specified for a
base table space with LOB or XML columns, DB2 issues an error.
Chapter 11. Utilities 197

When REGISTER YES is specified, pages that are read by the UNLOAD utility are registered
with the coupling facility.

New UNLOAD privilege
For new UNLOAD privilege, see Chapter 10, “Security” on page 167.
198 IBM DB2 12 for z/OS Technical Overview

Chapter 12. Installation and migration

This chapter provides information to help you evaluate the changes in DB2 12 for z/OS and to
plan for a successful installation of or migration to DB2 12 for z/OS.

This chapter covers the following topics:

� Prerequisites for DB2 12
� Single-phase migration and function level
� Installing a new DB2 12 system
� Subsystem parameters
� Installation or migration without requiring SYSADM
� Installation with z/OS Management Facility (z/OSMF)
� Temporal catalog

12
© Copyright IBM Corp. 2016. All rights reserved. 199

12.1 Prerequisites for DB2 12

This section describes the prerequisite requirements for hardware and software to
successfully install and work with DB2 12 for z/OS.

12.1.1 Data sharing

Data sharing requires the latest coupling facility (CF) level recommended for your processor:

http://www.ibm.com/systems/z/advantages/pso/cftable.html

12.1.2 Processor requirements

These are the processor requirements:

� z196, or later, processors running z/OS V2.1, or later
� The processors must have enough real storage to satisfy these combined requirements:

– DB2 12 for z/OS
– z/OS
– The appropriate DFSMS storage management subsystem components, access

methods, telecommunications, batch requirements, and other customer required
applications

12.1.3 Software requirements

These are the software requirements:

� z/OS V2.1 Base Services (5650-ZOS), at minimum
� DFSMS V2 R1: DB2 Catalog is SMS managed
� IBM Language Environment® Base Services
� z/OS Version 2 Release 1 Security Server (RACF)
� IRLM Version 2 Release 3 (included with DB2 12 for z/OS)
� z/OS Unicode Services and appropriate conversion definitions

12.1.4 DB2 Connect prerequisites

You can make use of any version of IBM DB2 Connect™ to exploit most DB2 12 features
(such as new SQL syntax, utilities that work in function level V12R1M500, and so forth). For
continuous availability during the migration process, the minimum recommended level is DB2
V9.7 FP6 or 10.2 FP2 or later.

Some enhancements require a minimum DB2 Connect version and fix pack, which is
available after DB2 12 General Availability:

� A new client API to provide fast loading of tables from mobile devices.
� A new client API to determine the DB2 function level.
� Support for continuous delivery
� Improved security and scalability for client sysplex workload balancing
� Improved sysplex support for distributed global transactions
� Support for preserving prepared dynamic statements after a rollback
� Improved client separability aids

The suggestion is to move from the client or runtime client packages toward using the data
server driver.
200 IBM DB2 12 for z/OS Technical Overview

http://www.ibm.com/systems/z/advantages/pso/cftable.html

12.1.5 Programming language requirements, minimum levels

The following application development programming languages can be used to build
applications for DB2 12:

� Building applications using a DB2 precompiler:

– Assembler: High Level Assembler, part of the System Services element of z/OS

– Fortran: VS Fortran V2.6 (5668-806, 5688-087, 5668-805); new data types and new
SQL functions are not supported since DB2 9 for z/OS

� Building applications using a DB2 precompiler or coprocessor:

– C/C++: C/C++ (without Debug Tool), which is an optional priced feature of z/OS

– COBOL (one of the following):

• Enterprise COBOL for z/OS, V3.4 (5655-G53)
• Enterprise COBOL for z/OS, V4.1 (5655-S71), or later
• Enterprise COBOL for z/OS, V5.1 (5655-W32)

– PL/I (one of the following):

• Enterprise PL/I for z/OS, V3.9 (5655-H31)
• Enterprise PL/I for z/OS, V4.1 (5655-W67), or later

12.1.6 Minimum configuration (IEASYSxx)

� 1 TB of contiguous shared private per DB2 – HVSHARE:

– Default is 510 TB.
– Article on HVSHARE.

� 6 GB of contiguous 64-bit (HVCOMMON) per DB2:

– Same as DB2 11, with a default of 66 GB

� Configure additional megabytes of 1 MB LFAREA for maximum benefit:

– Large frame area.
– See z/OS APAR OA34024 for LFAREA sizing information.

� PDSEs:

– Required for SDSNLOAD, SDSNLOD2, ADSNLOAD, ADSNLOD2 (same as DB2 11).

12.2 Single-phase migration and function level

DB2 12 eliminates multiple migration modes that existed in DB2 11, such as CM, CM*,
ENFM, ENFM*, NFM. The CM or compatibility mode is equivalent to function level
V12R1M100 (before new function activation, BNFA). The new function mode (NFM) is now
equivalent to function level V12R1M500 or greater (after new function activation, ANFA). The
CM* mode is now called a star function level. For more information about function level, see
Chapter 2, “Continuous delivery” on page 7.

The DSNTIJTC (CATMAINT) migration job performs all changes necessary for the DB2 catalog
and directory objects. These objects can be handled by DB2 12 before and after new function
activation as well by DB2 11 with the fallback SPE applied. Fallback to DB2 11 (non-data
sharing) or coexist with DB2 11 members (in data sharing) is possible after the catalog level
has been changed to DB2 12 format (V12R1M500 catalog level).
Chapter 12. Installation and migration 201

There is no job to enable NFM. Instead, the DB2 ACTIVATE command is used to activate new
functions. Because only one step is necessary to update the catalog during migration to new
function, there is less impact to applications accessing the catalog thus improving catalog
availability.

Figure 12-1 shows important steps during migration to DB2 12 with some jobs being removed
from the DB2 11 migration process.

Figure 12-1 The migration process

12.2.1 Fallback SPE

The fallback SPE APAR PI33871 and any prerequisite fixes must be applied on DB2 11
before an attempt to start it with DB2 12 code level. If this is not done, DB2 12 restart will
terminate with message DSNR045I (Example 12-1).

Example 12-1 DSNR045I message

DSNR045I -DB2A DSNRRPRC DB2 SUBSYSTEM IS STARTING 795
AND
 IT WAS NOT STARTED IN A
 PREVIOUS RELEASE WITH THE FALLBACK SPE APPLIED.
 FALLBACK SPE APAR: UNKNOWN
 NEW RELEASE LEVEL: E5F1F2D9
 KNOWN LEVEL(S): 0000D7800000D7820000D7850000D79000000000
202 IBM DB2 12 for z/OS Technical Overview

In data sharing, all other active DB2 11 members must have the fallback SPE PI33871
applied. Message DSNX209E is issued if one member has the SPE on but another active
member does not (Example 12-2).

Example 12-2 DSNX209E message

DSNX209E -DB2A DSNGEDLC MEMBER DB2B IS AT A CODE 264
LEVEL WHICH IS NOT COMPATIBLE WITH THIS STARTING OR MIGRATING MEMBER.
 REQUIRED LEVEL: E5F1F2D9F1D4F5F0F0
 KNOWN LEVELS: 0000D7850000D79000000000

DB2 12 will not be creating or maintaining an INFO APAR. APARs are marked with
appropriate fix categories and that is what should be used to identify necessary maintenance.
A fix category is an identifier used to group and associate PTFs to a particular category of
software fixes. You can use the following fix categories to check for migration fallback and
coexistence maintenance:

� IBM.Migrate-Fallback.DB2.V12

Fixes that allow prior releases of DB2 to migrate to or fall back from DB2 12.

� IBM.Coexistence.DB2.SYSPLEXDataSharing

Fixes that enable DB2 releases to coexist when in data sharing mode.

12.2.2 EARLY code

If DB2 11 is at the prerequisite maintenance level prior to migration, its early code is upward
compatible with DB2 12. The DB2 12 early code is downward compatible with DB2 11 also.

After applying the appropriate early code maintenance in prefix.SDSNLINK data set, the early
code can be activated by either an initial program load (IPL) of the system or issuing the
MODIFY LLA,REFRESH command followed by the DB2 REFRESH DB2,EARLY command. The
REFRESH command displays the early code maintenance levels so you can check the output to
be sure that the correct early code was applied (Figure 12-2).

Figure 12-2 The DB2 -REFRESH command output
Chapter 12. Installation and migration 203

12.2.3 Pre-migration checkout

The DB2 BSDS data set must be converted to extended format using the DSNTIJCB job. If the
BSDS data sets are not in extended format, the DB2 12 restart will fail with the DSNJ157J
message. The preference is for this step to be done in DB2 11 NFM.

The DSNTIJPM and DSNTIJPC jobs are useful to identify actions needed prior to migration:

� Identify unsupported and deprecated Resource Limit Facility tables, Explain tables, utilities
mapping tables, and Unicode columns in EBCDIC tables that must be converted to
DB2 12 format after new function mode activation.

� Simple table spaces to be converted.

� Objects that must be dropped.

� DB2 12 supports application plans and packages bound in DB2 10 or DB2 12 only. Plans
and packages bound in DB2 9 or earlier releases will be auto-rebound on their first
execution on DB2 12. The pre-migration job DSNTIJPM identifies these objects. If they are
executed in DB2 12, they will be auto-rebound and a later execution on a coexist DB2 11
member will result in another autobind (because DB2 11 cannot execute a plan or
package bound in a later release). In addition, no PLANMGMT support is available when
autobind occurs. Therefore, be sure to rebind them while in DB2 11 to avoid autobind risk
during online migration.

To check DB2 11 data consistency and integrity on different objects, use the following utilities:

� DBD integrity for user data bases in catalog and directory:

– REPAIR DBD TEST DATABASE dbname
– REPAIR DBD DIAGNOSE DATABASE dbname

� DB2 referential integrity and table check constraint violations and consistency between
base table and corresponding LOB/XML table spaces:

– CHECK DATA TABLESPACE dbname.tsname part SCOPE ALL

� Consistency between table spaces and indexes:

– CHECK INDEX ALL TABLESPACE or CHECK INDEX LIST (with appropriate LISTDEF)

� Invalid LOB values or structural problems with the pages in a LOB table space:

– CHECK LOB TABLESPACE dbname.tsname for each LOB table space

� Integrity of the DB2 catalog:

– IBM provided DSNTESQ queries (should always return zero rows)

� Options to check each page of a table space for consistency:

– DSN1COPY with CHECK option

Another set of objects that should be checked prior to migration to DB2 12 is the
expression-based indexes. When these indexes are created, DB2 saves the bound form
(runtime structure) of the expression in the directory along with the index descriptor. If the
index was created in DB2 9, its runtime structure cannot be executed on DB2 12, thus DB2 12
will implicitly alter regenerate the index when it is referenced in a SQL statement as an access
path. Similar to the recommendation to rebind packages bound prior to DB2 10, be sure to
explicitly alter regenerate the expression-based indexes created on DB2 9 before migrating to
DB2 12. This avoids the implicit DDL activity while a DML application is executing on DB2 12
later. This suggestion is even more important if there is a DB2 11 coexist member in the data
sharing group.
204 IBM DB2 12 for z/OS Technical Overview

After the index is regenerated on DB2 12 for execution, if the DML application executes on a
DB2 11 member, the index will be regenerated there again (because DB2 11 does not
understand DB2 12 runtime structure). The query shown in Example 12-3 can be used to find
the expression-based indexes created in DB2 9.

Example 12-3 Query to find the expression-based indexes created in DB2 9

SELECT NAME, RELCREATED
FROM SYSIBM.SYSINDEXES
WHERE (IX_EXTENSION_TYPE = 'S' OR IX_EXTENSION_TYPE = 'T') AND
 RELCREATED = 'M'

12.2.4 Creating DSNZPARM and DECP modules

The DSNTIJUZ creates the DSNZPxxx and DSNHDECP load modules. Note that the
APPLCOMPAT DSNZPARM is set to V11R1 if the installation CLIST is run in MIGRATE
mode. The preference is for this DSNZPARM to remain as is on migration because it is the
default for the package's bind option APPLCOMPAT.

12.2.5 Creating and verifying routines supplied by DB2

DSNTIJRT must be run before new function activation and again after new function activation:

� Before activation to bind packages from DB2 12 DBRMs for existing DB2 supplied
routines.

� After activation to install and configure new DB2 supplied routines:

– SYSPROC.DSNUTILV

Similar to DSNUTILU but supports a utility statement of up to 2 GB in length.

– SYSIBMADM.CREATE_WRAPPED

For creating obfuscated native SQL routines.

DSNTIJRV must also be run before new function activation and again after new function
activation:

� Before activation to verify migration of existing DB2 supplied routines.

� After activation to verify installation and configuration of new DB2 supplied routines:

– SYSPROC.DSNUTILV

Similar to DSNUTILU but supports a utility statement of up to 2 GB in length.

– SYSIBMADM.CREATE_WRAPPED

For creating obfuscated native SQL routines
Chapter 12. Installation and migration 205

12.2.6 REBIND at each new release

After DB2 is migrated to DB2 12 function level V12R1M100, you should rebind existing
packages for the following reasons:

� Expose applications with static SQL to DB2 12 while fallback is possible.
� Take advantage of improved performance from new runtime structure (bound static SQL).
� Avoid SPROCs disabled and “puffing” required when executing prior release packages.
� Expose to new query optimization and runtime enhancements.
� Expose to new access path choices.
� Reduce exposure to problems with migrated packages from earlier releases.
� Avoid application’s incorrect outputs and thread abnormally ended situations.
� Prepare for further usage of plan management in DB2 12 and beyond.

12.2.7 Activating new function level

The new ACTIVATE command is used to move to function level V12R1M500 where new
functions are allowed. This is a SCOPE(GROUP) command. All members in a data sharing group
must be DB2 12. When this command is successful, a DB2 11 member cannot restart in the
same data sharing group. Fallback to DB2 11 is not allowed. Application compatibility can be
set to V12R1M500, V12R1M100, V11R1, or V10R1.

The ACTIVATE command with TEST option can be issued to check whether all requirements are
met to support the specified function level. After, the DISPLAY GROUP command can be used to
verify more information and results.

For syntax of the ACTIVATE command, see Chapter 2, “Continuous delivery” on page 7.

12.2.8 Deprecated in earlier releases and removed in DB2 12

Consider the following information:

� Query I/O parallelism is no longer supported: query will be executed with sequential
access mode.

� Resource limit tables (DSNRLMTxx) with formats earlier than DB2 1 are deprecated:

– START RLIMIT command will issue DSNT732I message.
– Tables are unusable.

� Resource limit tables (DSNRLSTxx) and related index with formats earlier than DB2
Version 8 are not supported:

– The DSNT731I message is issued during the START RLIMIT command to inform that the
DSNRLSTxx table is not used for RLF.

– The DSN9023I message is issued, the START RLIMIT command fails if a supported
DSNRLMTxx table is not available.

� Basic row format is deprecated:

All new tablespaces are created in reordered row format. Newly added partitions are
created in reordered row format, unless the tablespace contains a table with an
EDITPROC. The LOAD REPLACE or REORG TABLESPACE utility can be executed on
the basic row format table spaces to convert them to reordered row format.
206 IBM DB2 12 for z/OS Technical Overview

� Explain tables:

– Error SQLCODE -20008 is returned to the application if the explain tables are created
before DB2 11.

– Warning SQLCOD +20520 is returned to the application if the explain tables are created in
DB2 11.

These tables can be converted to DB2 12 format by either the ADMIN_EXPLAIN_MAINT
stored procedure or the DSNTIJXA batch job.

� Utility mapping table:

The TARGET_XRID column in static mapping tables should be changed from CHAR(9) to
CHAR(11) by using either the ALTER or DROP followed by CREATE statement.
Enforcement begins after new function activation. The REORG utility ignores down-level
static mapping tables, creates a temporary implicit mapping table, and issues
informational message DSNU2900I and DSNU2901I (Figure 12-3).

Figure 12-3 Messages on REORG for old mapping table
Chapter 12. Installation and migration 207

12.3 Installing a new DB2 12 system

Figure 12-4 shows the DB2 12 installation process changes.

Figure 12-4 The installation process

12.3.1 Defines DB2 to z/OS

DSNTIJMV is used to define DB2 to the z/OS operating system. MEMLIMIT for ssidDBM1
address space has been changed from 4 TB to 19 TB to support new 16 TB limit for all buffer
pool storage. MEMLIMIT is the limit on the total size of usable virtual storage above the bar in
a single address space.

This panel also has improved setup for the DB2 supplied Java WLM environment
(DSNWLM_JAVA):

� JAVAENV content is now minimal _CEE_ENVFILE, MSGFILE, and XPLINK.
� CEE ENVFILE now specifies DB2_BASE, JCC_HOME, JAVA_HOME, and JVMPROPS.
� JVMPROPS now documents use of parms.
� In all files, content no longer has trailing blanks.
208 IBM DB2 12 for z/OS Technical Overview

12.4 Subsystem parameters

New DB2 releases typically have new and removed system parameters (DSNZPARMs) and
also changes in their default values. This section describes the following information:

� New subsystem parameters
� Removed subsystem parameters
� Install Parameters Default Changes
� Deprecated system parameters

12.4.1 New subsystem parameters

The following list describes the parameters:

� ALTERNATE_CP: Specifies the name of an alternate SMS copy pool for the DB2
BACKUP SYSTEM utility.

Range:

– 1 – 14 alphanumerics: Indicates what BACKUP SYSTEM will use as the name of the
alternate pool backup storage for system level backups and what RESTORE SYSTEM
will use as the name of the alternate pool backup storage group for system level
recoveries.

– Blank: Means that BACKUP SYSTEM will use the name specified in the
ALTERNATE_CP keyword (if present) of the utility control statement as an
alternate pool backup storage group when making the system level backup.

Default: blank

� AUTH_COMPATIBILITY: A list of options for overriding certain default authorization
checks.

Range:

– SELECT_FOR_UNLOAD: If this option is specified, the UNLOAD utility checks
whether the requester has the SELECT privilege on the target table. Otherwise, the
UNLOAD utility checks whether the requester has the UNLOAD privilege on the
specified table.

– Blank

Default: blank

� CACHEDYN_STABILIZATION: Specifies how DB2 is to stabilize cached dynamic SQL
statements.

Range:

– CAPTURE: Statements can be stabilized through the -START DYNQUERY command by
both MONITOR(NO) and MONITOR(YES). DB2 will not load stabilized statements from
SYSDYNQUERY.

– LOAD: Statements cannot be stabilized by any means. The -START DYNQUERY
command will fail, and any MONITOR(YES) commands in progress will not stabilize
statements, even if stabilization criteria are matched. During long prepare, DB2 will
attempt to load stabilized statements from SYSDYNQUERY with which to run.

– BOTH: Statements can be stabilized through the -START DYNQUERY command by both
MONITOR(NO) and MONITOR(YES). During long prepare, DB2 attempts to load stabilized
statements from SYSDYNQUERY with which to run.
Chapter 12. Installation and migration 209

– NONE: Statements cannot be stabilized by any means. The -START DYNQUERY
command will fail, and any MONITOR(YES) commands in progress will not stabilize
statements, even if stabilization criteria are matched. DB2 will not load stabilized
statements from SYSDYNQUERY.

Default: BOTH

� COMPRESS_DIRLOB: Specifies whether LOB table spaces in the DB2 directory are to be
compressed.

Range:

– NO: Means that LOB table spaces in the DB2 directory are not compressed.
– YES: Means LOB table spaces in the DB2 directory are compressed the next time they

are reorganized.

Default: NO

� COPY_FASTREPLICATION: For the COPY utility, specify whether FlashCopy fast
replication is PREFERRED, REQUIRED, or NONE for the creation of the FlashCopy
image copy.

Range:

– PREFERRED
– REQUIRED
– NONE

Default: PREFERRED

� DDL_MATERIALIZATION: Specifies when DB2 should materialize changes to the
definition of an object.

Range:

– ALWAYS_IMMEDIATE: For applicable requests, changes are materialized at the time
the request is executed and the containing table space is placed in AREO* / REBUILD
pending state. If there are any existing unmaterialized pending changes, the request
fails. This is the existing behavior for ALTER TABLE ALTER COLUMN SET DATA TYPE.

– ALWAYS_PENDING: For applicable requests, changes are not materialized at the time
the request and the affected objects are available until it is convenient to implement the
changes. The containing table space is placed in AREOR state. If any immediate
options specified in same statement, the change request fails. If any subsequent
immediate changes are executed before a pending change is materialized, those
subsequent immediate changes fail.

Default: ALWAYS_IMMEDIATE

� DEFAULT_INSERT_ALGORITHM: Specifies the default algorithm for inserting data into
table spaces.

Range:

– 1: The basic insert algorithm is used.
– 2: The fast insert algorithm is used.

Default: 2

� INDEX_MEMORY_CONTROL: Specifies the amount of memory that DB2 should allocate
for fast traversing of DB2 indexes.

Range:

– AUTO: Specifies that DB2 sets the upper limit of the storage to 20% of currently
allocated buffer pools (as opposed to the defined buffer pool size).
210 IBM DB2 12 for z/OS Technical Overview

– DISABLE: Specifies that DB2 returns any existing storage allocated for fast index
traversal and allocates no further storage for the purpose.

– 500 - 200000: Indicates the storage limit in megabytes for fast index traversal.

Default: AUTO

� PAGEABLE_1MB_FOR_THREADS: Specifies whether DB2 may use 1 MB pageable
storage when allocating HVSHARED above-the-bar object storage for thread pools and
thread STACK.

Range:

– NO: DB2 will not use 1 MB pageable storage for these objects.
– YES: DB2 may use 1 MB pageable storage for these objects. YES requires a

level of z/OS that supports 1 MB Pageable objects for HVSHARED. Sufficient
real storage should be available to avoid performance issues related to paging.
PAGEABLE_1MB_FOR_THREADS behavior is enabled only if REALSTORAGE_MANAGEMENT = OFF.

Default: YES

� PAGESET_PAGENUM: Specifies whether table spaces range-partitioned table spaces will
be created to use absolute page numbers across partitions or relative page numbers.

Range:

– ABSOLUTE: Means that PBR table spaces and associated indexes are created with
the same format and use of page number as DB2 11.

– RELATIVE: Means that PBR table spaces will be created so that PGNUM in the page
header has no partition number, and the partition number is only contained in the
header page for the partition.

Default: ABSOLUTE

� PEER_RECOVERY: Specifies whether a data sharing member is to participate in data
sharing peer recovery.

Range:

– NONE: This member is not to participate in peer recovery. Use this option if you
configured z/OS Automatic Recovery Manager (ARM) to restart failed DB2 members.

– RECOVER: This member should be recovered by a peer member in case it fails.

– ASSIST: This member should attempt to initiate peer recovery for other failed
members. When this member detects a failure, it will attempt to initiate a LIGHT(YES)
restart for the failed member if it hasn't already been initiated to recover the retained
locks.

– BOTH: Both RECOVER and ASSIST options are to be activated for this member.

Default: NONE

� PROFILE_AUTOSTART: Specifies whether the START PROFILE command processing is to
be automatically initiated as part of DB2 startup processing.

Range:

– NO: Indicates no automatic start behavior.
– YES: Specifies that START PROFILE command processing is to be automatically initiated

when DB2 is started. This option is ignored if DB2 is started with an ACCESS(MAINT)
or LIGHT(YES) specification.

Default: NO

Note: This option can impose a delay of DB2 availability when DB2 is started.
Chapter 12. Installation and migration 211

� RLFENABLE: Specifies the level of RLF governing when the resource limit facility (RLF) is
started.

Range:

– DYNAMIC: Govern only dynamic SQL statements.
– STATIC: Govern only static SQL statements.
– ALL: Govern both dynamic SQL and static SQL statements.

Default: DYNAMIC

� RLFERRSTC: Specifies what action DB2 is to take for static SQL statements when the
Resource Limit Specification governor encounters a condition that prevents it from
accessing the resource limit specification table.

Range:

– NOLIMIT: Allows all static SQL statements to run without limit.
– NORUN: Terminates all static SQL statements immediately with an SQL error code.
– 1 - 5000000: Specifies the number of service units to use as the default resource limit

for all static SQL statements. If the limit is exceeded, the SQL statement is terminated.

Default: NOLIMIT

� RLFERRDSTC: Specifies what action DB2 is to take for a static SQL query from a remote
location when the Resource Limit Specification governor encounters a condition that
prevents it from accessing the resource limit specification table.

Range:

– NOLIMIT: Allows the remote static query to run without limit.
– NORUN: Terminates the remote static query immediately with an SQL error code.
– 1 - 5000000: Specifies the number of service units to use as the default resource limit

for a remote static query. If the limit is exceeded, the query is terminated.

Default: NOLIMIT

� SQLLEVEL: Specifies the DB2 function level to be used by the precompiler and
coprocessor in the absence of the SQLLEVEL option.

Range:

– V10R1: The precompiler and coprocessor will accept only SQL that is valid in DB2 10
new function mode.

– V11R1, V12R1M100: The precompiler and coprocessor will accept only SQL that is
valid in DB2 11 new function mode.

– Function level: The precompiler and coprocessor will accept only SQL that is valid in
the specified function level.

Default: The maximum supported DB2 function level (on installation) or V12R1M100 (on
migration)

� STATFDBK_PROFILE: Specifies whether statistics recommendations identified during
query optimization should result in modifications to statistics profiles.

Range:

– YES: Means that DB2 will modify statistics profiles based on statistics
recommendations during query optimization.

– NO: Means that DB2 will not modify statistics profiles based on statistics
recommendations during query optimization. DB2 might still write the
recommendations to the SYSIBM.SYSSTATFEEDBACK catalog table depending
on the value of the subsystem parameter STATFDBK_SCOPE.

Default: YES
212 IBM DB2 12 for z/OS Technical Overview

� UTIL_DBBSG: Specifies the name of a backup SMS storage group to be used by the DB2
BACKUP SYSTEM utility for the DB copy pool.

Range:

– Blank: Means that BACKUP SYSTEM will have HSM use the COPY POOL BACKUP
storage group that is associated with each storage group specified for the copy pool.

– Valid SMS storage group name: Permitted only when ALTERNATE_CP is non-blank.
This storage group must have been defined with the COPY POOL BACKUP attribute.

Default: blank

� UTIL_LGBSG: Specifies the name of a backup SMS storage group to be used by the DB2
BACKUP SYSTEM utility for the LOG copy pool.

Range:

– Blank: Means that BACKUP SYSTEM will have HSM use the COPY POOL BACKUP
storage group that is associated with each storage group specified for the copy pool.

– Valid SMS storage group name: Permitted only when ALTERNATE_CP is non-blank.
This storage group must have been defined with the COPY POOL BACKUP attribute.

Default: Blank

� UTILS_HSM_MSGDS_HLQ: Specifies the high-level qualifier for data sets to be allocated
by the DB2 BACKUP SYSTEM and RESTORE SYSTEM utilities in order to receive
messages from IBM Hierarchical Storage Management (HSM) and IBM Data Facility Data
Set Services (DFDSS).

Range:

– Blank: Means that utilities do not receive these messages from HSM and DFDSS and
do not include them in diagnostics.

– A valid data set qualifier of 1 to 6 characters: A high-level qualifier that must also be
registered in HSM through a SETSYS command. Data sets that use this high-level
qualifier will be defined and populated by HSM and DFDSS during BACKUP SYSTEM
and RECOVER SYSTEM processing, then allocated by DB2 and the content written to
the utility's SYSPRINT DD. DB2 will then delete the data set. These data sets will not
include messages from DUMP processing because control is returned to DB2 before
dump processing is complete.

Default: Blank

12.4.2 Removed subsystem parameters

These parameters are removed:

� EDMPOOL
� LOBVALA
� LOBVALS
� SQWIDSC
� XMLVALA
� XMLVALS
� RRF
� ALCUNIT
� CATALOG
� CACHE_DEP_TRACK_STOR_LIM
� CACHEDYN_FREELOCAL
� CHECK_SETCHKP
� CONTSTOR
Chapter 12. Installation and migration 213

� MINSTOR
� DB2SORT
� INDEX_IO_PARALLELISM
� LEMAX
� SQWIDSC
� UTSORTAL

12.4.3 Install Parameters Default Changes

Changes are as follows:

� DSN6SPRM.APPLCOMPAT: From V11R1 to V12R1M500
� DSN6SPRM.EDM_SKELETON_POOL: From 10240 to 51200
� DSN6SPRM.PREVENT_NEW_IXCTRL_PART: From NO to YES
� DSN6ARVP.PRIQTY: From 4320 (blocks) to 125 (cylinders)
� DSN6ARVP.SECQTY: From 540 blocks to 15 cylinders
� DSN6SYSP.SMFACCT: From 1 to 1,2,3,7,8

12.4.4 Deprecated system parameters

Deprecated parameters are as follows:

� Subsystem parameter NEWFUNC is deprecated: Use SQLLEVEL instead.
� MATERIALIZE_NODET_SQLTUDF: In later DB2 releases, user-defined SQL table

functions that are defined with NOT DETERMINISTIC always behave as if
MATERIALIZE_NODET_SQLTUDF is set to YES.

12.5 Installation or migration without requiring SYSADM

Up to DB2 11, only users with installation SYSADM authority can install new a DB2
subsystem or data sharing group or migrate DB2 to the new release. However, a system
operator (with installation SYSOPR authority) usually is the person performing the installation
or migration steps which means he or she would be granted SYSADM authority. SYSADM
authority also include access to all data. Certain government regulations and policies require
that sensitive user data is not exposed to anyone, except the system administrator or data’s
owners. Therefore, to help protect user data and comply to security regulations, DB2 12
provides a way to install or migrate a DB2 subsystem without having SYSADM authority.

In DB2 12 compatibility mode, a user with installation SYSOPR authority can install and
migrate a subsystem with no access to user data. Enhancements are made so that SYSOPR
authority can perform works necessary in the process. For more information, see Chapter 10,
“Security” on page 167.

12.6 Installation with z/OS Management Facility (z/OSMF)

With the goal of streaming some areas in the z/OS system management, the z/OS
Management Facility was introduced as a web-based user interface to perform traditional
tasks and automate system-oriented tasks that run on the mainframe z/OS systems. By
logging on to z/OSMF through a web browser, a user, with proper security defined on the
z/OS system, can communicate to the z/OS system from anywhere, from any computer
connected to the Internet to perform work.
214 IBM DB2 12 for z/OS Technical Overview

The z/OSMF web-based interface can improve administrator productivity by allowing a single
point of control for tasks such as managing z/OS software, tools, performance monitoring,
problem diagnostics, and more.

See the following z/OS documentation for more detail about the z/OSMF product:

� z/OSMF installation and configuration:

IBM z/OS Management Facility Configuration Guide, SA38-0657-04

� z/OSMF workflow artifacts editing:

IBM z/OS Management Facility Programming Guide, SA32-1066-04

The z/OS Management Facility requires these items:

� z/OS Communications Server

� Security definitions (SAF)

� Other components are required for specific z/OSMF plug-ins

� IBM 64-bit SDK for z/OS Java Technology Edition V7

� You can use z/OSMF to modernize and automate various tasks required in the installation
and migration processes to DB2 11 (Figure 12-5 on page 215). In DB2 12, enhancements
were also made to the DB2 Installation CLIST (DSNTINST) and panels to generate
z/OSMF workflow artifacts. These artifacts are used to automate the DB2 installation and
migration tasks in z/OSMF. Then, the z/OSMF tasks can be scheduled for execution on the
z/OS system to migrate or install DB2 12 with status monitoring, all from an
easy-to-integrate web-based application.

Figure 12-5 z/OS Management Facility

Figure 12-6 shows how the workflow artifacts are used by z/OSMF to interface to DB2 on the
z/OS system. These artifacts (HLQ.SDSNMFSA, HLQ.SDSNSAM2, input variable files) are
generated by the DB2 installation CLISTs.
Chapter 12. Installation and migration 215

Figure 12-6 z/OSMF workflow generated for installing/migrating DB2

12.6.1 How to use DB2 installation CLIST and panels to generate
z/OSMF artifacts

The new sample CLIST, DSN8IDB2, can be executed. It dynamically allocates to ISPF the
data sets needed to run the DB2 installation CLIST, then starts the DB2 installation CLIST,
and finally frees those data sets allocated. The following TSO command can be used to run
this CLIST:

TSO EXEC ‘prefix.SDSNCLST(DSN8IDB2)

The following figures (Figure 12-7 through Figure 12-10 on page 220) show installation
panels and the input needed to create workflow artifacts (members in the HLQ.SDSNMFSA
and HLQ.SDSNSAM2 data sets).
216 IBM DB2 12 for z/OS Technical Overview

Figure 12-7 Creating workflow artifacts using DB2 installation panels
Chapter 12. Installation and migration 217

Figure 12-8 Panel DSNTIP8 to generate variables for external DSNZPARM
218 IBM DB2 12 for z/OS Technical Overview

Figure 12-9 Panel DSNTIP3 to generate variables for opaque DSNZPARM
Chapter 12. Installation and migration 219

Figure 12-10 Panel DSNTPM5 to stop DB2 11 and restart DB2 12

Those panels (Figure 12-7 on page 217 through Figure 12-10) will create XML files as
members in the HDQ.SDSNMFSA. They are workflow input variables. The panels also
generate XML files as members in the HDQ.SDSNSAM2 data sets, which are workflow
definition files.

Those members are listed in the next figures (Figure 12-11 on page 221 and Figure 12-12 on
page 221).
220 IBM DB2 12 for z/OS Technical Overview

Figure 12-11 The created members in SDSNMFSA data sets

Figure 12-12 The created members in SDSNSAM2 data sets
Chapter 12. Installation and migration 221

The following list describes sample workflow definition files (DSNTIWxx) provided by DB2 and
their associated input variable files (DSNTIVxx):

DSNTIWMS, DSNTIVMS For migrating a non-data sharing DB2 subsystem or the first
member of a data sharing group

DSNTIWMD, DSNTIVMD For migrating a subsequent member of a data sharing group

DSNTIWMN, DSNTIVMN For enabling V12 code or V11 NFM

DSNTIWIN, DSNTIVIN For installing a DB2 subsystem or the first member of a data
sharing group

DSNTIWIA, DSNTIVI For adding a DB2 subsystem to a data sharing group

12.6.2 Feeding the generated artifacts to z/OSMF

After generating the workflow definition files as artifacts through the install and migrate
CLIST, you can use those artifacts to create a workflow instance on the web-based z/OS
Management Facility. z/OSMF creates a workflow with a list of tasks. The tasks in the
workflow are steps to install or migrate DB2 and can be assigned to a different user who
is authorized in z/OSMF. The owner receives notifications for the tasks assigned. Then, the
workflow creator or owner can review the steps created for the workflow. Subsequently, the
workflow can be scheduled for automatic execution on z/OS, and progress can be monitored
from the web-based window.

That process to migrate a non-data sharing subsystem to DB2 12, using the sample
DSNTIWMS and DSNTIVMS files, is described in the following steps:

1. Create a workflow to install DB2 on z/OS.

2. Check list of tasks generated for the workflow.

3. Automate execution of the workflow which is the actual DB2 migration process on z/OS.

4. Monitor status of the workflow's tasks.

Figure 12-13 and Figure 12-14 on page 223 show the Create Workflow window on z/OSMF to
create a workflow named DM91_Migrate DB2 11 to V12_012616 to migrate a non-data
sharing member to DB2 12.
222 IBM DB2 12 for z/OS Technical Overview

Figure 12-13 Create workflow dialog

Figure 12-14 Creating a workflow named DM91_Migrate DB2 11 to V12_012616 to
migrate a non-data sharing member to DB2 12
Chapter 12. Installation and migration 223

Figure 12-15 shows a z/OSMF window to check the steps created for the workflow
DM91_Migrate DB2 11 to V12_012616.

Figure 12-15 Checking steps in the workflow DM91_Migrate DB2 11 to V12_012616

Note: These steps are similar to the jobs listed in Figure 12-1 on page 202.
224 IBM DB2 12 for z/OS Technical Overview

Figure 12-16 shows a window in z/OSFM used to perform automated execution of the steps
in the workflow DM91_Migrate DB2 11 to V12_012616.

Figure 12-16 Automating execution for workflow DM91_Migrate DB2 11 to V12_012616
Chapter 12. Installation and migration 225

Figure 12-17 shows a window to track the execution status of the steps in the workflow
DM91_Migrate DB2 11 to V12_012616.

Figure 12-17 Tracking status of workflow DM91_Migrate DB2 11 to V12_012616 - the migration process from z/OSMF

Note: Because z/OSMF also supports the Representational State Transfer (REST) API,
you can also use those interfaces to execute the workflow definition files and their
associated input variable files directly.
226 IBM DB2 12 for z/OS Technical Overview

12.7 Temporal catalog

DB2 collects real time statistics (RTS) during different activities such as SQL INSERT,
UPDATE, DELETE, utilities, DDL statement, and so on. DB2 always generates in-memory
statistics for each table space and index space in your system, including catalog objects. DB2
periodically writes these real-time statistics to the SYSIBM.SYSTABLESPACESTATS and
SYSIBM.SYSINDEXSPACESTATS catalog RTS tables at a specified interval. These real-time
statistics help to determine when objects require maintenance by utilities such as REORG,
RUNSTATS, or COPY.

Real-time statistics data is valuable to observe recent changes in size and organization of
table space partitions and index space partitions. Many DB2 customers have had concerns
with the lack of historical trending for real-time statistics data in the DB2 catalog objects over
years. This lack of functionality prevents customers from timely taking important actions such
as computing rate of change, and smarter automated management of the DB2 catalog
indexes and table spaces. From such analysis on historical information, customers may be
able to automate responses for near out-of-space conditions, or reorganize the objects as
needed.

Additionally, the system auditors might require the ability to determine who had which
authority at which time. DB2 11 can store the current state of authorization and preserve
authorization history on the user tables. However, this functionality is not available on the
DB2 catalog tables. Consequently, customers need to use log analysis tools to investigate
changes in authorization.

DB2 10 introduced the temporal table feature, which keeps historical information for the
table's data and activities on the table. During the migration to DB2 12 process, DB2 begins to
take advantage of this feature and apply it on some catalog tables to address the concerns.
New history tables for catalog objects are added during DB2 12 migration.

The DB2 12 CATMAINT process issues the following DDL statements:

� ALTER TABLE ADD column statement to add new SYS_START as row-begin, SYS_END
as row-end, and TRANS_START as transaction-start-ID columns in 16 base access
control tables and 2 RTS tables.

� ALTER TABLE ADD PERIOD statement to add a SYSTEM_TIME period to 16 base
access control tables and 2 RTS tables.

� CREATE TABLE statements to create 18 new catalog tables as history tables for the 16
base access control tables and 2 RTS tables. The history tables are created in table
spaces with DEFINE(NO) to avoid creating them for those customers that will never use
system-period data versioning capabilities in the catalog.

Note: These definitions are done by migration and installation, but actual system-period
data versioning enablement is to be done by the user.
Chapter 12. Installation and migration 227

The following access control tables and RTS tables are affected by the DDL statements in the
previous list during CATMAINT:

� SYSAUDITPOLICIES
� SYSCOLAUTH
� SYSCONTEXT
� SYSCONTEXTAUTHIDS
� SYSCONTROLS
� SYSCTXTTRUSTATTRS
� SYSDBAUTH
� SYSINDEXSPACESTATS
� SYSPACKAUTH
� SYSPLANAUTH
� SYSRESAUTH
� SYSROUTINEAUTH
� SYSSCHEMAAUTH
� SYSSEQUENCEAUTH
� SYSTABAUTH
� SYSTABLESPACESTATS
� SYSUSERAUTH
� SYSVIEWDEP

Their corresponding history tables are created with the same column names, data types, and
attributes (Figure 12-18). These history tables can be updated with proper authorization.

Figure 12-18 New catalog history tables

12.7.1 System-period data versioning for two RTS catalog tables

You can issue the ALTER TABLE statement with the ADD VERSIONING clause to
enable system-period data versioning on the SYSIBM.SYSTABLESPACESTATS and
SYSIBM.SYSINDEXSPACESTATS catalog tables. The alters can be done after new
function activation. DB2 will then manage the corresponding history tables,
SYSIBM.SYSTABLESPACESTATS_H and SYSIBM.SYSIXSPACESTATS_H, as system
temporal tables. Data in these history tables can help to determine historical trending for
every table space and index space's real-time statistics in the system.
228 IBM DB2 12 for z/OS Technical Overview

The temporal relationship can be eliminated with the ALTER TABLE DROP VERSIONING
statement as needed.

Such temporal relationships might be supported in the future on the access control history
tables in the DB2 catalog, introduced by DB2 12 migration, to preserve authorization history.
At this time, nn SQLCODE -607 message is issued for attempt to do so.

12.7.2 Real-time statistics externalization during migration

DB2 12 migration process is also enhanced to have the ability to disable RTS externalization
during migration processing. This ability can be useful in many CATMAINT operations where
RTS updates might interfere with CATMAINT type operations.

At the beginning of migration processing, RTS externalization will be disabled and when all
necessary processing is completed, it will be re-enabled. New message DSNT537I will be
issued when RTS externalization is enabled and disabled. In addition, the RTS Daemon will
automatically enable externalization after 3 hours to ensure an abend or termination in
CATMAINT processing does not leave RTS externalization permanently disabled.

After RTS statistics externalization is re-enabled at the end of migration, processing statistics
are not immediately externalized. Instead, they are externalized at the next regular statistics
externalization interval.
Chapter 12. Installation and migration 229

230 IBM DB2 12 for z/OS Technical Overview

Chapter 13. Performance

This chapter describes the DB2 12 enhancements that provide many types of improvements
in reducing elapsed and CPU time. These added values improve processing and render
better use of resources. An important aspect to mention is that this chapter discusses the
results of IBM early observations and feedback from the Early Support Program (ESP).

This chapter covers the following topics:

� Performance expectations
� In-memory buffer pool
� In-memory index optimization
� Improved insert performance for non-clustered data
� Query performance enhancements

13
© Copyright IBM Corp. 2016. All rights reserved. 231

13.1 Performance expectations

This topic describes the performance expectations based in the measurement evaluations for
the DB2 12 performance enhancements.

Online transaction processing (OLTP) achieved a CPU utilization reduction without an index
memory feature and also by exploiting an index in-memory feature. Further reduction is
possible with contiguous buffer pools, the RELEASE(DEALLOCATE) bind option, or both.

The insert improvements for non-clustered data achieved CPU reduction with throughput
improvement if the current bottleneck is from space, search, or page contentions.

Query performance has a wide range of improvement, achieving CPU reduction for query
workloads and improving efficiency by reducing other resource consumption.

13.2 In-memory buffer pool

Up to DB2 11, when the buffer pool was not large enough to contain the object, page-stealing
might have occurred, so pages that did not fit within the size of the buffer pool were managed
by the first-in, first-out (FIFO) algorithm.

In DB2 12, the updated PGSTEAL(NONE) option of the ALTER BUFFERPOOL command (which
makes possible the assigning of objects to in-memory buffer pools, in which the overflow area
size is automatically determined by DB2), generally 10% of the VPSIZE value in the range of
50 - 6400 buffers and the creation of overflow happens at the time that the buffer pool is
allocated. If the buffer pool is not large enough to support the objects, the pages that do not fit
in the main part of the buffer pool are placed in the overflow area, where in page stealing
occurs. Figure 13-1 shows a syntax diagram for the ALTER BUFFERPOOL command using the
PGSTEAL(NONE) option.

Figure 13-1 Syntax diagram for ALTER BUFFERPOOL command using PGSSTEAL(NONE) option

This new feature gets direct row access, avoiding getpage overhead and providing CPU
reduction measured for OLTP.

13.3 In-memory index optimization

DB2 12 introduces index Fast Traverse Block (FTB) with the Index Manager to optimize the
memory structure for fast index lookups and improving random index access.

Up to DB2 11, Index Manager maintained transversal information in index lookaside, which
keeps track of pages visited on the way to access the required index leaf page and then this
232 IBM DB2 12 for z/OS Technical Overview

information was kept from one access to the next. So, this method is good for sequential
access of an index, but thinking about random access of the index, several getpages are
required if the look aside does not get a parent of the leaf. Therefore, FTB is a complement for
index lookaside.

The use of FTBs is supported only on UNIQUE, PADDED, and NOT PADDED indexes with
a key size of 64 bytes or less. The best candidates for using FTB are indexes that support
heavy read access, indexes on tables with a random insert or delete pattern, and indexes with
high PCTFREE.

A new storage group (acomidxmgrcl20) is assigned to maintain the FTBs that are created.
The storage group characteristics for FTB are as follows:

� Minimum of 10 MB

� Upper limit of 200 GB

� Default value of 20% of currently allocated buffer pool storage or 10 MB

In addition, FTB storage is not part of buffer pool allocation.

A daemon process monitors index usage and allocates FTB storage to the indexes that can
benefit from this feature. FTB allocation is not permanent, so if the daemon determines that
FTB storage is not being used, FTB storage can be removed.

Figure 13-2 exemplifies the usage of random keyed access.

Figure 13-2 Random keyed access usage

To accommodate the fast transverse feature, a catalog table (SYSIBM.SYSINDEXCONTROL) was
created, SYSINDEXCONTROL, which specifies time windows to control the use of memory
allocated for an index.

Table 13-1 demonstrates how the data is stored in SYSIBM.SYSINDEXCONTROL.

Table 13-1 SYSIBM.SYSINDEXCONTROL example

SSID Partition IX Name IX Creator TYPE ACTION MONTH_
WEEK

MONTH DAY FROM_
TIME

TO_
TIME

DB2A 12 IXABC DBDA F D W 7

DB2B IXZ12 DBDA F D M 1 0000 1200

23 IXDEF DBDA F F M
Chapter 13. Performance 233

Table 13-1 on page 233 shows the following information:

� On member DB2A, disable FTB on partition 12 of index IXABC every Sunday.

� On member DB2B, disable FTB on all partitions of index IXZ12 until noon on the first day
of every month.

� On all members, force FTB on Partition 23 of index IXDEF at all times.

Figure 13-3 illustrates a syntax diagram to display for index memory usage.

Figure 13-3 Display syntax diagram for index memory usage

13.4 Improved insert performance for non-clustered data

DB2 12 introduces an insert algorithm that eliminates page contention and false leads. This
algorithm is called fast insert, which brings the concept of multiple algorithms for insert. The
fast insert algorithm is the default algorithm for MEMBER CLUSTER universal table spaces
(UTS) because universal table spaces are strategic and MEMBER CLUSTER addresses
cross member space map contention. Tables defined as APPEND and NON-APPEND can
use fast insert too.

Fast insert is available on DB2 12 after activation of new function because new log records
are introduced. For information about activating new function, see Chapter 2, “Continuous
delivery” on page 7.

A new subsystem parameter (ZPARM) is provided to define system-wide default. It is used if a
need exists to change the DB2 default insert algorithm level. DDL keywords are provided and
can be used when a specific insert algorithm level is needed.

Figure 13-4 shows that DB2 achieved three times the response time improvement of CPU
reduction using new DB2 12 insert algorithm.

Figure 13-4 Fast insert algorithm CPU reduction representation

The required external controls for fast insert algorithm enhancement are described next.
234 IBM DB2 12 for z/OS Technical Overview

13.4.1 DDL clause on CREATE TABLESPACE and ALTER TABLESPACE

DB2 users are able to set the insert algorithm for inserts through a new optional clause,
INSERT ALGORITHM, on the CREATE TABLESPACE and ALTER TABLESPACE statements.

Example 13-1 shows the INSERT ALGORITHM syntax diagram:

Example 13-1 INSERT ALGORITH syntax diagram

>>--CREATE TABLESPACE ------table-space-name ---...------>
.-INSERT ALGORITHM---0--------.
>---+-----------------------------+------...-------------><
'-INSERT ALGORITHM--level-----'

In the INSERT ALGORITHM level, an integer value is required and it is used only where
applicable for MEMBER CLUSTER UTS. The level values are as follows:

0 Specifies that the insert algorithm level is determined by the
DEFAULT_INSERT_ALGORITHM subsystem parameter at the time of an insert.

1 Specifies that the basic insert algorithm is used.

2 Specifies that the fast insert algorithm is used. Altering the insert algorithm for a table
space occurs immediately.

13.4.2 SYSIBM.SYSTABLESPACE new column: INSERTALG

To accommodate the insert algorithm level (described in 13.4.1, “DDL clause on CREATE
TABLESPACE and ALTER TABLESPACE” on page 235), the INSERTALG column is added to
SYSIBM.SYSTABLESPACE catalog table.

The data type of this column is SMALLINT NOT NULL WITH DEFAULT and the corresponding
values are as follows:

0 The insert algorithm level is determined by the DEFAULT_INSERT_ALGORITHM
DSNZPARM.

1 The level is the basic insert algorithm.

2 The level is the fast insert algorithm.

13.4.3 ZPARM: DEFAULT_INSERT_ALGORITHM

The DEFAULT_INSERT_ALGORITHM subsystem parameter specifies the default algorithm
for inserts into a table space. This ZPARM value affects only table spaces that are defined
with a value of 0 (zero) as the insert algorithm level. The default is 2.

1 Specifies the basic insert algorithm is the default.
2 Specifies the fast insert algorithm is the default.
Chapter 13. Performance 235

13.5 Query performance enhancements

DB2 12 provides query performances enhancements that result in CPU and elapsed-time
savings. Figure 13-5 illustrates some query performance measurement results that are
covered in this topic.

Figure 13-5 Query performance measurements results

The following topics explain and exemplify how these numbers were achieved:

� UNION ALL and Outer Join enhancements
� Sort improvements
� Predicate optimization
� Execution time adaptive index

13.5.1 UNION ALL and Outer Join enhancements

The query patterns UNION ALL and Outer Join have similar issues with materialization
(workfile) usage and inability to apply filtering early.

DB2 12 introduces the following high-level solutions:

� Reorder outer join tables to avoid materializations
� UNION ALL and Outer Join predicate pushdown
� Avoid workfile for outer materialization
� Push predicates inside UNION ALL legs or outer join query blocks
� Sort outer into table expression order
� Enable sparse index for inner table/view expression
� Pruning unused columns from materialized result
� Extended LEFT JOIN table pruning

Reorder outer join tables to avoid materializations
Allowing DB2 to internally reorder the outer join tables within the query overcomes a limitation
that can be exposed when combining outer and inner joins in the same query. In certain
instances, DB2 11 and previous releases materialized some tables that can result in local
or join filtering not being applied before the materialization. Some users who have been
exposed to this performance challenge have rewritten their queries to ensure that all inner
236 IBM DB2 12 for z/OS Technical Overview

joins appear before outer joins in the query, if possible. Rewriting a query is often difficult
given the proliferation of generated queries and applications being deployed without thorough
performance evaluation. Therefore, minimizing exposure to this limitation in DB2 12 provides
a valuable performance boost for affected queries.

UNION ALL and Outer Join predicate pushdown
When joining a table expression or an undistributed UNION ALL, DB2 considers whether to
push the join predicate into the table expression or UNION ALL legs.

The decision was cost-based because the decision whether to push the join predicate into the
view must be based on whether the query will run faster by pushing down the predicate, so if
the cost of the query is estimated to be smaller when the join predicate is pushed down, then
DB2 pushes down that join predicate.

In this way, choosing the best performing access is possible. It also improves archive
transparency queries that internally transform a base table into a materialized table
expression. For more information about archive transparency, see Managing Ever-Increasing
Amounts of Data with IBM DB2 for z/OS: Using Temporal Data Management, Archive
Transparency, and the DB2 Analytics Accelerator, SG24-8316.

Avoid workfile for outer materialization
DB2 12 can “pipeline” the rows from the first UNION ALL (on the left side of the join).
Transferring rows from one query block to another can require the results to be written
(materialized) to an intermediate work file. Pipeline means to pass the rows from one query
block to the next, without writing the intermediate result to a work file.

The work file avoidance for outer materialization with correlation predicate has the objective
of improving the performance.

Up to DB2 11, one work file was created to materialize the result of inner table expression for
each outer row; also, each work file was only allocated and read once, then was deallocated.
This method applied a reduction of allocation and deallocation overhead by reusing the same
work file, and in addition it applied only when the workfile fits a 32K page and the inner
guaranteed to return one row for each probe.

DB2 12 is able to change its execution time logic to call the UNION ALL processing directly to
avoid work file usage. Using this new method, DB2 enables the leading table expression
pipeline join to subsequent tables without materializing the leading table expression, saving
the cost of work file allocation and deallocation.

The results for this enablement are as follows:

� For outer pipelining (for the outer table of a join):

– CPU time savings for the queries with access path change from ACCESSTYPE 'R' to 'O'
– Workfile get page counts reduced due to the avoidance of workfile materialization.

� For inner pipelining (for the inner table of the join):

– Internal DB2 workloads achieved CPU reduction in WF getpages
– CPU and elapsed reduction for best case
Chapter 13. Performance 237

Push predicates inside UNION ALL legs or outer join query blocks
Figure 13-6 demonstrates performance challenges when UNION ALL is combined with an
outer join. The original query is shown at the top of the figure as a simple two-table (left outer)
join of T1 to T2. In this example, both T1 and T2 have archive enabled (which refers to the
DB2 11 transparent archive feature), thus DB2 will rewrite the query to include the active and
archive tables—with T1 circled and the arrow pointing to the first UNION ALL on the left side
of the join, and T2 circled with arrow pointing to the second UNION ALL on the right side of
the join. This representation is true of any UNION ALL within a view, where the view definition
is replaced within the query where it is referenced.

Figure 13-6 DB2 11 left outer join query with transparent archive tables (or any UNION ALL views)

The performance challenge for this query example is that DB2 will execute each leg of the
UNION ALL separately and combine the results from each side of the first UNION ALL, and
then combine each side of the second UNION ALL, before joining the two results together as
requested in the outer query block. In the V11 rewrite of the query, there are no join
predicates or any filtering within the UNION ALL legs. The term combining means that DB2
will return all columns and all rows from T1 in the first UNION ALL and all columns and all
rows from H1 and materialize those rows to a work file. The work file will then be sorted in
preparation for the join. This is repeated for the second UNION ALL—all columns and all rows
from T2 and H2 are materialized into a work file and sorted in preparation for the join on
column C1 from both work files.

The performance of this query will depend heavily on the size of the tables involved, with very
large tables consuming significant CPU and work file resources to complete.

In using the same example (from Figure 13-6), the next figure (Figure 13-7 on page 239)
explain how several of the UNION ALL enhancements in DB2 12 can improve the
performance of this query. While the internal rewrite of the tables to the UNION ALL
representation remains the same, DB2 12 adds the ability for the optimizer to make a
cost-based decision as to whether to push the join predicates into the UNION ALL legs.
238 IBM DB2 12 for z/OS Technical Overview

Figure 13-7 demonstrates the example where the optimizer chose to push the join predicates
inside each UNION ALL leg. The join predicates occur on only the right side of the join
because a join is FROM the left TO the right. The TABLE keyword is required externally for
this example to be syntactically valid because pushing down the predicates results in the
query appearing as a correlated table expression.

Figure 13-7 DB2 12 left outer join query with transparent archive tables (or any UNION ALL views)

Having the join predicates in each UNION ALL leg allows the join to “look up” each leg of the
UNION ALL for every row coming from the outer, rather than sort the full results for the join.
An additional optimization, to reduce work file usage and materialization, DB2 12 can
“pipeline” the rows from the first UNION ALL (on the left side of the join). Transferring rows
from one query block to another can require the results to be written (materialized) to an
intermediate work file as in the DB2 11 example. However, DB2 12 can “pipeline” the result
from the first UNION ALL to the join without requiring this materialization.

The result for this query in DB2 12, given the (cost based) join predicate pushdown, is that the
work file/materializations are avoided, and available indexes can be exploited for each leg, as
shown in Figure 13-7.

Sort outer into table expression order
Figure 13-8 on page 240 demonstrates additional DB2 12 enhancements that can improve
performance closer to queries that do not use the UNION ALL infrastructure. One option that
the optimizer has for improving join performance between two tables sequentially is for the
optimizer to introduce a sort of the outer (composite—denoted as SORTC_JOIN='Y' in the
EXPLAIN). If data from the outer table is accessed in a different sequence than the index
used for the join to the inner, DB2 can choose to sort the outer into the sequence of the
inner—allowing the access to the inner to occur in order. This approach is extended in
DB2 12 to joins to UNION ALL views/table expressions and is a cost-based choice for the
optimizer.
Chapter 13. Performance 239

Figure 13-8 DB2 12 left outer join UNION ALL query with sort of outer

Enable sparse index for inner table/view expression
Up to DB2 11, a supporting index was required for optimal performance and executed like a
correlated subquery for table/view expression with or without UNION ALL coded with
correlation predicates.

DB2 12 supports sparse index creation on the correlated table/view expression, so it avoids
the worst case of executing a correlated subquery without a supporting index.

Figure 13-9 on page 241 demonstrates another variation of the same query where there are
no supporting indexes for the join to T2.C1 or H2.C1. DB2 12 allows a sparse index to be built
on an individual leg of a UNION ALL. This applies to one or both legs, and is also cost-based
and thus can be combined with the other UNION ALL-focused enhancements.

Remember H1 is the archive table for T1, and H2 is the archive table for T2, as used in
previous examples.

Note: If sparse index is chosen, then no need exists to sort the outer into join order, as
depicted in Figure 13-8, because a sparse index can use hashing if the result can be
contained within memory and thus no concerns exist regarding random I/O.
240 IBM DB2 12 for z/OS Technical Overview

Figure 13-9 DB2 12 left outer join UNION ALL query without supporting join indexes

Pruning unused columns from materialized result
The select list pruning is extended, pruning unused columns from a materialized result when
table expressions, views, and table functions are involved.

This extension offers the following benefits:

� Reduction of the size of the intermediate result with less work file consumption, smaller
sort row, and so on.

� Enablement of more outer join, which means outer join tables that do not return columns
for the result may be pruned.

Example 13-2 involves a LEFT OUTER JOIN to a UNION ALL table expression. In the select
list for each leg of the UNION ALL is SELECT *, which means returning all columns from that
table. However, the referencing SELECT only requires P2.P_PARTKEY (for the SELECT list
and ON clause). Given the materialization of the UNION ALL table expression in DB2 11,
all columns from PART table will be accessed and materialized to the work file. DB2 11
processes all columns in materialized view/table expression.

Example 13-2 DB2 11 processing all columns in materialized view/table expression

SELECT P.P_PARTKEY,P2.P_PARTKEY
FROM TPCH30.PART AS P LEFT JOIN
(SELECT *
FROM TPCH30.PART
UNION ALL
SELECT *
FROM TPCH30.PART) P2
ON P.P_PARTKEY = P2.P_PARTKEY;

DB2 12 will prune the unnecessary columns and only require P_PARTKEY to be returned from
each UNION ALL leg, whereas DB2 11 returned all columns.
Chapter 13. Performance 241

If the UNION ALL table expression is materialized, then only P_PARTKEY is retrieved and
written or materialized to a work file compared with all columns retrieved in the DB2 11
example. And if P_PARTKEY is indexed, the optimizer might choose a non-matching index
scan in DB2 12 rather than table space scan in DB2 11. Similarly, if the join predicates were
pushed down in DB2 12 and matching index access was chosen on P_PARTKEY, then
index-only would now be possible because only P_PARTKEY is required.

Example 13-3 refers to unreferenced columns with optional join pushdown being pruned by
DB2 12.

Example 13-3 DB2 12 pruning unreferenced columns with optional join pushdown

SELECT P.P_PARTKEY,P2.P_PARTKEY
FROM TPCH30.PART AS P LEFT JOIN
(SELECT P_PARTKEY
FROM TPCH30.PART
UNION ALL
SELECT P_PARTKEY
FROM TPCH30.PART) P2
ON P.P_PARTKEY = P2.P_PARTKEY; <- Cost based pushdown available
 to UA legs

It achieved the following performance result:

� CPU and elapsed reduction when no access path change.

� CPU reduction for access path change and when tables are pruned. If columns that are
not needed are pruned by the query, the result might be that the query does not need any
columns from a table. And if that table is on the right side of a LEFT OUTER JOIN, and the
query will not return duplicates from that table, then the table can be pruned.

Extended LEFT JOIN table pruning
DB2 10 introduced LEFT OUTER JOIN table pruning when right table guaranteed not to
return duplicates (due to unique index or DISTINCT/GROUP BY) and no columns were
required for the final result, as shown in Figure 13-10.

Figure 13-10 DB2 10 left outer join table pruning

Figure 13-11 on page 243 represents DB2 11 LEFT OUTER JOIN query with materialization
and an unnecessary join. Similar to prior UNION ALL examples, the UNION ALL will retrieve
all columns and all rows from T1 and T2 and materialize these to a work file, which will be
sorted for the join. T3 is then joined to this materialized result and a sort to remove duplicate
C1 values (given the DISTINCT). Because no columns were required from the UNION ALL of
T1 and T2, and the DISTINCT would remove any duplicates that were introduced, this join is
unnecessary.
242 IBM DB2 12 for z/OS Technical Overview

Figure 13-11 DB2 11 LEFT OUTER JOIN to unnecessary table expression

DB2 12 extends table pruning to views and table expressions where no columns are required
and no duplicates are returned and also provides a simple rewrite as shown in Figure 13-12.
The view definitions and the query against the views are the same between the two figures.
What differs is how DB2 12 is able to prune out the table expression that contains the UNION
ALL. The result is simply a SELECT DISTINCT requiring access only to T3.

Figure 13-12 DB2 12 LEFT OUTER JOIN to unnecessary table expression

13.5.2 Sort improvements

The following topics cover sort, work file, and sparse index improvements:

� Sort minimization for partial order with FETCH FIRST
� Sort avoidance for OLAP functions with PARTITION BY
� Reducing sort row length
� Improve GROUP BY/DISTINCT sort performance and In-memory sort exploitation
� Sort workfile impacts
� Sparse index improvements

Sort minimization for partial order with FETCH FIRST
Up to DB2 11, a sort could be avoided and only “n” rows processed but only if an index was
chosen that completely avoided the ORDER BY sort. In many situations if a sort is still
required, seeing all the data is not necessary.
Chapter 13. Performance 243

DB2 12 reduces the number of rows fetched or processed when there is no index that avoids
the sort, if ordering by more than one column and only the leading column has an index.

Figure 13-13 shows how the sort minimization for a partial order with FETCH FIRST works:.

Figure 13-13 Sort minimization for partial order with FETCH FIRST

In the previous DB2 versions, the scenario was fetching all rows and sort into C1, C2
sequence, so in this way, millions of rows in the example above.

In DB2 12, when the tenth row is reached, then fetch until C1 changes. Using this method, 13
rows are fetched and 12 rows are sorted.

Sort avoidance for OLAP functions with PARTITION BY
Sort avoidance is also extended to online analytical processing (OLAP) functions that
combine PARTITION BY and ORDER BY. Although DB2 11 already supports sort avoidance,
if an index matches the ORDER BY clause with an OLAP function (such as RANK), that did
not apply for sort avoidance when PARTITION BY was involved. Example 13-4 highlights an
appropriate index that can be used in DB2 12 to avoid the sort for this SQL statement.

Example 13-4 Sort avoidance for OLAP functions with PARTITION BY clause

CREATE INDEX SK_SD_1 ON LINEITEM(L_SUPPKEY, L_SHIPDATE);
SELECT L_SUPPKEY, L_SHIPDATE,
 RANK() OVER(PARTITION BY L_SUPPKEY
 ORDER BY L_SHIPDATE) AS RANK1
FROM LINEITEM;

Reducing sort row length
A common behavior is that predicates coded in the WHERE clause are redundantly included
in the SELECT list and any redundancy in the sort key or data row has a negative impact on
sort performance and resource consumption. ORDER BY sort will remove columns from the
sort key if covered by the equals predicates in the WHERE clause.

DISTINCT or GROUP BY already removes redundant columns for sort avoidance. But if a
sort is required for DISTINCT or GROUP BY, such redundant columns remain until DB2 12,
when they are removed from the sort key, as shown in Example 13-5. Also, because C1 has
an equals predicate in the WHERE clause, all sorted rows are guaranteed to contain that
same value, and thus only C2 is needed for the sort.

Example 13-5 Redundant columns in the sort key

SELECT DISTINCT C1, C2
FROM TABLE
WHERE C1 = ?
244 IBM DB2 12 for z/OS Technical Overview

Up to DB2 11, for a SELECT (like SELECT C1, C2…..ORDER BY C1, C2), columns C1 and
C2 are duplicated as the sort key. With DB2 12, the sort does not duplicate if the sort key is
equal to the leading SELECT list columns.

This situation is applied for only fixed length columns (not VARCHAR, VARGRAPHIC, and
others).

Improve GROUP BY/DISTINCT sort performance and In-memory sort
exploitation
When sort cannot be avoided, exploiting memory to process the sort and reducing the length
of the sort can result in that sort being contained in-memory or at a minimum to reduce the
number of work file resources needed to complete the sort.

Prior to DB2 12, the maximum number of nodes of the sort tree was 32,000, and less for
longer sort keys that were limited by ZPARM SRTPOOL.

DB2 12 enables sort tree and hash entries growth to 512,000 nodes (non-parallelism sort) or
128,000 (parallel child task sort). In addition, default 10MB SRTPOOL can support 100,000
nodes for 100 byte rows.

Also, DB2 9 added hashing as input to GROUP BY/DISTINCT sort; in DB2 the number of
hash entries is tied to the number of nodes of the sort tree. Therefore, increasing the number
of nodes can result in higher cardinality GROUP BY/DISTINCT results, consolidating the
groups as rows are input to sort. This can increase the chance that the sort can be contained
in memory or at least reduce the amount of work file space required to consolidate duplicates
during the final sort merge pass.

DB2 12 can use the memory up to the ZPARM SRTPOOL value that might not have been
exploited in the previous DB2 versions.

As result, DB2 12 performance improvements for GROUP BY/DISTINCT provides a CPU
savings when sort can be contained in memory.

Sort workfile impacts
The large sorts may use the 32K page size regardless of row length on DB2 12. That is a big
difference from DB2 9, in which this page size was limited to less than 100-byte rows.

This increase can result in more 32K page size data sets for sort. However, it was developed
for other performance advantages that DB2 12 provides such as increased in-memory sorts,
increased tree and hash size, reduced materialization, reduced sort keys size, and sort
avoidance.

Sparse index improvements
DB2 12 provides sparse indexes support for the VARGRAPHIC data type. With this support,
the memory allocation was improved when multiple sparse indexes in query. Also, the sort
component improves its algorithms to adjust the type of sparse index that is built to optimize
memory and also to reduce getpages when a sparse index must overflow to the work file.

When building a sparse index, sort also attempts to trim the information that must be stored.

Sparse index is able to avoid duplicate key information when key equals the data and fixed
length keys, in addition, trimming trailing blanks for VARCHAR/VARGRAPHIC and prefix if all
keys have the same prefix.
Chapter 13. Performance 245

13.5.3 Predicate optimization

The following DB2 12 predicate optimizations are covered in this topic:

� Sort for stage 2 join expressions
� User-defined table function predicate optimizations
� VARBINARY data type indexability
� Row permission to correlated subquery indexability
� Additional IN-list performance enhancements

Sort for stage 2 join expressions
Expressions as join predicates are often stage 2, unless the exception for expression on the
outer (without sort) for nested loop joins.

DB2 12 allows resolution of expression before sort to support join support for expression on
inner and sparse index without sort on outer. See Example 13-6.

Example 13-6 Stage 2 join predicate

SELECT …
FROM T1, T2
WHERE T1.col1 = T2.col1 and
 T1.col2 = SUBSTR(T2.col2,1,10)

DB2 12 can improve the performance of stage 2 join predicates by allowing sort to evaluate
the function, and allowing sparse index to be built on the result for the join—which becomes
an optimal candidate on the inner table when the result can be contained in-memory, or when
there is no other viable index to support the filtering of the join. Alternatively, if the table with
the join expression is the outer table of the join, a sort for join order can allow access to the
inner table to be performed sequentially.

Stage 2 join predicates are often observed if tables are not designed with consistent data
types for joined columns, which might occur if applications are integrated at a later date, or if
business information is embedded within columns, or if timestamp columns are used within
each table and the join is by the consistent date portion of those columns (for example, insert
timestamps do not match between two tables). DB2 12 can therefore improve performance
significantly for these situations without requiring a targeted index on expression to be built.

User-defined table function predicate optimizations
User-defined table functions (also known as table UDFs, table functions, or TUDFs) were
initially targeted to allow an application program to be called from within an SQL statement.
This provided the flexibility to access objects that are not DB2 and represent them as a table
within SQL to be joined with DB2 tables. Inline table UDFs were a further extension to DB2
support, allowing the definitions to contain native SQL. An increase in table functions has
occurred as an alternative to views because of the capability to create a table function with
input parameters, whereas parameterized views are not supported in DB2 for z/OS.

Although prior releases provided similar merge (and thus materialization avoidance)
capabilities for table functions that were syntactically equivalent to views, DB2 12 improves
both the merge of deterministic table functions with input parameters and also improves
indexability of input parameters as predicates within the table function, as demonstrated in
Figure 13-14 on page 247.
246 IBM DB2 12 for z/OS Technical Overview

Figure 13-14 Table function with input variables

VARBINARY data type indexability
Up to DB2 11, support was limited for BINARY and VARBINARY predicate indexability when
the lengths of the operands of the predicates did not match. DB2 12 implicitly adds CAST
expressions on the VARBINAR and BINARY predicates when the length of the operands
does not match. Figure 13-15 compares the pre DB2 12 predicate as stage 2 of that with a
CAST added in DB2 12 to support indexability of mismatched length VARBINARY.

Figure 13-15 Pre-DB2 12 predicate as stage 2 of that with a CAST added in DB2 12 comparison

Although many clients might identify that VARBINARY or BINARY data types are not
exploited within their environments, improving indexability is important because DB2 scalar
functions can return a result as BINARY or VARBINARY. These improvements to the
underlying support of BINARY and VARBINARY indexability were necessary to allow indexing
on expressions to be built on those scalar functions and to be exploited for matching index
access.

Example 13-7 shows a scalar function as an index on expression that is indexable in DB2 12.
This example demonstrates the COLLATION_KEY scalar function with a parameter tailored
to German.

Example 13-7 Index on expression for VARBINARY-based expression

CREATE INDEX EMPLOYEE_NAME_SORT_KEY ON EMPLOYEE
(COLLATION_KEY(LASTNAME, 'UCA410_LDE', 600));
SELECT *
FROM EMPLOYEE
WHERE COLLATION_KEY(LASTNAME, 'UCA410_LDE', 600) = < ?
Chapter 13. Performance 247

Row permission to correlated subquery indexability
In versions prior to DB2 12, the correlation predicates in child-correlated subquery were stage
2 on row permissions for insert and update and DB2 12 provides support indexability for
correlated subqueries on row permissions for insert and update, benefitting efficiency of
security validation. Figure 13-16 shows a correlated subquery example of a row permission.

Figure 13-16 Correlated subquery predicates in a row permission

Additional IN-list performance enhancements
DB2 10 added IN-list table, where the optimizer could choose list prefetch for matching IN-list
access. The execution was one list prefetch request per IN-list element, so performed poorly
if low number of duplicates per element existed.

DB2 12 introduces an improvement to matching IN-list performance for poor clustering index,
allowing the accumulation of 32 RIDs per list prefetch request. Also, DB2 12 removes a
limitation that IN-lists cannot be used with index screening predicate for range-list access.

13.5.4 Execution time adaptive index

Execution time adaptive index is provided in DB2 12 as a solution for generic search queries
that used to be a challenge for query optimizers. They were considered a challenge for these
reasons:

� Filtering that could change each execution, so that choosing the one best access path was
impossible.

� Fields not searched by the user will populate with the whole range:

LIKE ‘%’ or BETWEEN 00000 AND 99999.

� Fields searched will use their actual values:

LIKE ‘SMITH’ or BETWEEN 95141 AND 95141.

Runtime adaptive index solution has the following benefits:

� Allows list prefetching-based plans (single or multi-index) to quickly determine index
filtering.

� Adjusts at execution time based on determined filtering:

– Does not require REOPT(ALWAYS).
248 IBM DB2 12 for z/OS Technical Overview

– For list prefetching or multi-index OR:

• Earlier opportunity exists to fall back to tablespace scan if large percentage of table
is to be read.

– For multi-index AND:

• Reorder index legs from most to least filtering.

• Early-out for non-filtering legs, and fallback to table space scan if no filtering.

– Quick evaluation is done based on literals that are used (for example LIKE ‘%’).

– Further costlier evaluation of filtering is deferred until after one RID block is retrieved
from all participating indexes:

• Provides better optimization opportunity while minimizing overhead for short
running queries.

� IFCID 125 is enhanced to track this feature.

� Solution is not limited to the search screen challenge:

– Any query where high uncertainty in the optimizer’s estimates exists:

• Range predicates.

• JSON, Spatial, and Index on expression.

The performance measurements evaluated to runtime adaptive index are as follows:

� List prefetching CPU reduction (when failover to table space scan is needed).

� Multi-index OR CPU reduction (when failover to table space scan is needed).

� Multi-index AND CPU reduction for re-ordering to put most filtering leg first.
Chapter 13. Performance 249

250 IBM DB2 12 for z/OS Technical Overview

Part 5 Appendixes

This part contains the following appendix sections:

� Appendix A, “Information about IFCID changes” on page 253
� Appendix B, “Additional material” on page 279

Part 5
© Copyright IBM Corp. 2016. All rights reserved. 251

252 IBM DB2 12 for z/OS Technical Overview

Appendix A. Information about IFCID changes

This appendix provides information about the new or changed instrumentation facility
component identifiers (IFCIDs) discussed in previous chapters of this book. See the following
resources:

� For more information about IFCIDs, see DB2 12 for z/OS What's New?, GC27-8861.
� For collecting accounting and statistics, see Subsystem and Transaction Monitoring and

Tuning with DB2 11 for z/OS, SG24-8182.

You can find up-to-date mappings of IFCIDs in the SDSNMACS data set that is delivered
with DB2.

This appendix includes the following topics:

� IFCID header changes
� New IFCIDs
� Application compatibility IFCID changes
� Dynamic SQL plan stability IFCID changes
� Fast INSERT IFCID changes
� Lift partition limits IFCID changes limits
� Large object (LOB) compression IFCID changes
� Transfer ownership IFCID changes
� UNLOAD privilege for UNLOAD utility IFCID changes
� Additional changed IFCIDs

A

© Copyright IBM Corp. 2016. All rights reserved. 253

IFCID header changes

The standard header (QWHS) used by all trace records is modified to include three new fields:

� QWHS_MOD_LVL: Function level of DB2 in the form VvvRrrMmmm, where vv is the version,
rr is the release and mmm is the modification level.

� QWHS_REC_INCOMPAT: Incompatible change counter.

� QWHS_REC_COMPAT: Compatible change counter.

Example A-1 shows the updated QWHS header.

Example A-1 Updated QWHS

QWHS_MOD_LVL DS CL10 MODIFICATION LEVEL FOR
* CONTINUOUS DELIVERY
QWHS_REC_INCOMPAT DS XL2 Incompatible change value
* incremented each time an
* incompatible change occurs,
* such as changing the size of
* existing fields in a record
* or removing fields no longer
* being set which causes the
* offset to other fields to
* change is made
QWHS_REC_COMPAT DS XL2 Compatible change value.
* Incremented each time a
* compatible change occurs,
* such as adding a new field in a
* reserved area no longer setting
* an existing field or increasing
* the size of a record to add a
* new field is made

New IFCIDs

DB2 12 introduces the following new IFCIDs:

� IFCID 382: Begin parallel task synchronization suspend
� IFCID 383: End parallel task synchronization suspend
� IFCID 389: Fast index traversal
� IFCID 404: Serviceability trace record for new AUTH_COMPATIBILITY subsystem parameter
� IFCID 413: Begin of pipe wait for fast insert
� IFCID 414: End of pipe wait for fast insert
� IFCID 477: Fast index traversal
254 IBM DB2 12 for z/OS Technical Overview

IFCID 382: Begin parallel task synchronization suspend

The IFCID 382 trace records the beginning of a suspend for parallel task synchronization.

Example A-2 shows the IFCID 382 indicating whether or not the task suspended was for a
parent or child.

Example A-2 New IFCID 382 indicating the type of task suspended

* BEGIN Suspend for parallel task synchronization *
***QW0382
DSECT IFCID(QWHS0382)
QW0382ST DS CL1 Type of task suspended.
QW0382PT EQU C'P' Task suspended is a parent
QW0382CT EQU C'C' Task suspended is a child

IFCID 383: End parallel task synchronization suspend

The IFCID 383 trace records the ending of a suspend for parallel task synchronization.

Example A-3 shows the IFCID 383 indicating whether or not the task suspended was for a
parent or child.

Example A-3 New IFCID 383 indicating the type of the task suspended

* END Suspend for parallel task synchronization *

QW0383 DSECT IFCID(QWHS0383)
QW0383RT DS CL1 Type of task resumed.
QW0383PT EQU C'P' Task resumed is a parent
QW0383CT EQU C'C' Task resumed is a child

IFCID 389: Fast index traversal

The IFCID 389 trace records information about indexes that have structures allocated for fast
index traversal.

Example A-4 shows the IFCID 389 indicating which indexes have fast traversal blocks (FTBs)
associated with them.

Example A-4 New IFCID 389 for indexes with fast traversal blocks (FTBs)

* IFCID 0389 to record all indexes with FTBs. Each trace * * record can
contain information about up to 500 indexes. *

*
QW0389 DSECT IFCID(QWHS0389)
QW0389H DS 0CL8 HEADER RECORD
QW0389NU DS H NUMBER OF INDEXES WITH FTBs
 DS CL6 RESERVED
QW0389AR DS 0CL16 (S)
*
Appendix A. Information about IFCID changes 255

QW0389DB DS CL2 DATA BASE ID
QW0389OB DS CL2 INDEX PAGE SET ID
QW0389PT DS CL2 PARTITION NUMBER
QW0389LV DS CL2 NUMBER OF INDEX LEVELS IN FTB
QW0389SZ DS XL4 SIZE OF FTB IN BYTES
 DS CL4 RESERVED
*

IFCID 404: Serviceability trace record for new subsystem parameter
AUTH_COMPATIBILITY

A new UNLOAD authorization has been added to the UNLOAD utility. With the enhancement
is a new AUTH_COMPATIBILITY subsystem parameter. The IFCID 404 provides
serviceability information to be used by the DB2 development team.

Example A-5 shows the IFCID 404 providing serviceability information for the
AUTH_COMPATIBILITY subsystem parameter.

Example A-5 New IFCID 404

**
* IFCID 0404 to service authorization compatibility *
* settings *
**
QW0404 DSECT
QW0404TO DS CL1 (S)
 DS CL3 (S)
QW0404NM DS CL16 (S)
QW0404PR DS H Privilege checked
QW0404OT DS CL1 Object type
QW0404AT DS CL1 Authid type
* ' ' - Authorization ID
* 'L' - Role
QW0404F1_Off DS H Offset from QW0404 to authid or a role
QW0404F2_Off DS H Offset from QW0404 to schema name
QW0404F3_Off DS H Offset from QW0404 to object name
 DS CL2 (S)
*
QW0404F1_D DSECT
QW0404F1_Len DS H Length of the following field
QW0404F1_Var DS 0CL128 %U Authid or role
*
QW0404F2_D DSECT
QW0404F2_Len DS H Length of the following field
QW0404F2_Var DS 0CL128 %U Schema name
*
QW0404F3_D DSECT
QW0404F3_Len DS H Length of the following field
QW0404F3_Var DS 0CL128 %U Object name
*
QW0404CM DC CL1'C'
QW0404SQ DC CL1'S'
QW0404UL DS CL1'U'
* (S) = FOR SERVICEABILITY
256 IBM DB2 12 for z/OS Technical Overview

IFCID 413: Begin of pipe wait for a fast insert

IFCID 413 records the beginning of a wait for a pipe for a fast INSERT.

Example A-6 shows the IFCID 413 indicating the resource of the pipe wait for a fast insert.

Example A-6 New IFCID 413

* IFCID 0413 THE BEGINNING OF A WAIT FOR A PIPE SUSPEND *

QW0413 DSECT IFCID(QWHS0413)
QW0413PN DS CL8 PROC NAME
QW0413RN DS 0CL6 RESOURCE NAME
QW0413DB DS XL2 DATA BASE ID
QW0413PS DS XL2 PAGE SET ID
QW0413PT DS XL2 PARTITION NUMBER
 DS CL2 RESERVED
QW0413DMS DS XL4 (S)
QW0413CNT DS XL2 (S)
QW0413LMT DS XL2 (S)
QW0413FL DS XL2 (S)
 DS XL2 (S)
* (S) = FOR SERVICEABILITY

IFCID 414: End of pipe wait for a fast insert

IFCID 414 records the end of a wait for a pipe for a fast INSERT.

Example A-7 shows the IFCID 414 indicating the reason for the pipe wait resume.

Example A-7 New IFCID 414

* IFCID 0414 RECORDS THE END OF THE WAIT FOR PIPE SUSPEND *

QW0414 DSECT IFCID(QWHS0414)
QW0414R DS CL1 REASON FOR PIPE WAIT RESUME
QW0414FL DS XL2 (S)
 DS XL2 (S)
 DS CL1 (S)
* (S) = FOR SERVICEABILITY

IFCID 477: Fast index traversal

IFCID 477 records the allocation and deallocation of structures for fast index traversal.

Example A-8 shows the IFCID 477 indicating the whether or not the task suspended was for a
parent or child.

Example A-8 New IFCID 477 to indicate fast traversal blocks (FTBs) allocation or deallocation

* IFCID 0477 trace record for each allocated or deallocated *
* Index Fast Traverse Block (FTB). If action is "create FTB" *
Appendix A. Information about IFCID changes 257

* then QW0477CO bit is ON. If action is "FREE FTB" then *
* QW0477CO bit is OFF. *

QW0477 DSECT IFCID(QWHS0477)
QW0477DB DS CL2 DATA BASE ID
QW0477OB DS CL2 INDEX PAGE SET ID
QW0477PT DS CL2 PARTITION NUMBER
QW0477LV DS CL2 NUMBER OF INDEX LEVELS IN FTB
QW0477SZ DS XL4 SIZE OF FTB IN BYTES
QW0477FL DS X IFCID477 FLAGS
QW0477CO EQU X'80' THIS BIT IS ON IF ACTION -CREATE FTB
 DS CL3 AVAILABLE
*

Application compatibility IFCID changes

At times, DB2 might need to deliver changes that can have an effect on how your applications
execute. If DB2 made a change in its behavior, you can run a trace record to identify which
applications might be affected. Prior to DB2 12, IFCID 366 and IFCID 376 recorded such
changes in your applications. Starting in DB2 12, IFCID 376 now records this information.

IFCID 366: Deprecated application compatibility trace

IFCID 366 is deprecated in DB2 12. DB2 no longer accepts trace commands for IFCID 366
and does not write out this trace record. Use Existing IFCID 376 to identify incompatibilities.

IFCID 376: Application compatibility trace

Constants resided in IFCID 366 but are now in IFCID 376. The constants indicate which
incompatibility changes your application is exposed to. There are no new incompatibilities
introduced in DB2 12.

Example A-9 shows the updated IFCID 376 containing constants indicating incompatibility
types.

Example A-9 Updated IFCID 376

QW0376 DSECT
QW0376FN DS F Incompatible change indicator
*............................QW0376FN CONSTANTS..................
C_QW0376_CHAR EQU 0001 V9 SYSIBM.CHAR(decimal-expr)
* function
C_QW0376_VCHAR EQU 0002 V9 SYSIBM.VARCHAR(decimal-expr)
* function
* CAST (decimal as VARCHAR or CHAR)
C_QW0376_TMS EQU 0003 Unsupported character string
* representation of a timestamp
C_QW0376_IMPCAST EQU 0007 Use the pre-v10 server compatibility
* behavior which is not to implicitly
* cast input host variables during
* server host bind-in processing
C_QW0376_SPPARMS EQU 0008 data types of the returned output
258 IBM DB2 12 for z/OS Technical Overview

* data match the data types of the
* corresponding CALL statement
* arguments
C_QW0376_IGNORETZ EQU 0009 Use the pre-V10 server compatibility
* behavior which is to ignore time
* zone information when bind in TMSTZ
* hostvar to TMS target
C_QW0376_TRIM EQU 0010 V9 RTRIM, LTRIM and STRIP functions
C_QW0376_XMLINS EQU 1101 Insert into an XML column without
* XMLDOCUMENT function
C_QW0376_XPATHERR EQU 1102 XPath evaluation error
C_QW0376_RLF EQU 1103 RLF governing
C_QW0376_CLIENTAC EQU 1104 Long CLIENT_ACCTNG Special Reg value
C_QW0376_CLIENTAP EQU 1105 Long CLIENT_APPLNAME Special Reg
* value
C_QW0376_CLIENTUS EQU 1106 Long CLIENT_USERID Special Reg value
C_QW0376_CLIENTWK EQU 1107 Long CLIENT_WRKSTNNAME Special Reg
* value
C_QW0376_CLIENTSR EQU 1108 Long client Special Reg value for
* RLF
C_QW0376_TMSCAST EQU 1109 CAST(string AS TIMESTAMP)
C_QW0376_SPACEINT EQU 1110 SPACE integer argument greater than
* 32764
C_QW0376_VCHARINT EQU 1111 VARCHAR int argument greater than
* 32764
C_QW0376_XMLEMPT EQU 1112 XML_RESTRICT_EMPTY_TAG ZPARM is used
* and empty XML element is serialized
* to <X></X>
*..

Dynamic SQL plan stability IFCID changes

Several IFCIDs were changed in support of the dynamic SQL plan stability enhancement:

� IFCID 002: RDS statistics block
� IFCID 002: EDM pool statistics block
� IFCID 021: Lock types
� IFCID 029: EDM request begin identifier and new block
� IFCID 030: EDM request end identifier and new block
� IFCID 106: New subsystem parameter
� IFCID 316: Stabilization and hash ID information

IFCID 002: RDS statistics block

The QXSTSFND field was added to the RDS statistics block (QXST) to indicate the number of
times a PREPARE request was satisfied.

Example A-10 shows a snippet of the IFCID 002 indicating the new field.

Example A-10 Changed IFCID 002

QXSTSFND DS D # of times a PREPARE request was satisfied+
* by making a copy from the stabilized +
* statement in SYSIBM.SYSDYNQRY catalog +
Appendix A. Information about IFCID changes 259

* table. The stabilized statement search is +
* done only when no matching statement was +
* found in the prepared statement cache. +

IFCID 002: EDM pool statistics block

Several fields are added to the EDM pool statistics block (QISE) to record the number of
requests to look for dynamic SQL plan stability and to record the number of certain matches.

Example A-11 shows the changes to the QISE for the dynamic SQL plan stability
enhancement.

Example A-11 Changed QISE

QISEDPSL DS D /* # of requests to look for DPS */
QISEDPSC DS D /* # of times possible row found */
QISEDPSM DS D /* # of times match thrgh text/bind opt*/
QISEDPSF DS D /* # of times match found */

IFCID 021: Lock types

Two new lock types are added to IFCID 21 to record concurrent access control on a stabilized
query in the SYSDYNQRY table.

Example A-12 shows the new lock types, QW0021HI and QW0021SG, that were added to
the IFCID 021 for dynamic SQL plan stability.

Example A-12 Changed IFCID 021

QW0021HI EQU X'42' * SYSDYNQRY HASH_ID lock *
QW0021SG EQU X'43' * SYSDYNQRY STBLGRP lock *

IFCID 029: EDM request begin identifier and new block

A new identifier (ID) value, DY, is added to the IFCID 029 to indicate the object is for a table for
dynamic SQL plan stability. Also, a new section is added that is specific for dynamic SQL plan
stability.

Example A-13 shows the new ID value plus the new block dedicated to dynamic SQL plan
stability information.

Example A-13 Changed IFCID 029

QW0029ID DS CL2 DB=DBDID, CT=CURSOR TABLE, PT=PACKAGE TABLE
* DY=DPS TABLE
. . .
 ORG QW0029DB DY DPS TABLE MAPPING FOLLOWS
QW0029SC DS CL18 %U SCHEMA SHORT NAME
* Truncated if QW0029SC_Off¬=0
QW0029QH DS CL16 HASHID
QW0029CP DS H COPY ID
QW0029QD DS XL8 SDQE_STMTID
QW0029QC DS XL4 RESERVED
QW0029SC_Off DS H (FIXED 15)
260 IBM DB2 12 for z/OS Technical Overview

QW0029RB DS CL1 release bound
QW0029FL DS XL1 RESERVED
. . .
*
QW0029SC_D Dsect Use if QW0029SC_Off¬=0
QW0029SC_Len DS H Length of the following field
QW0029SC_Var DS 0CL128 %U SCHEMA

IFCID 030: EDM request end identifier and new block

The same information described above for IFCID 029 will also be added to the IFCID 030. A
new identifier (ID) value, DY, is added to the IFCID 029 to indicate the object is for a table for
dynamic SQL plan stability. Also, a new section is added that is specific for dynamic SQL plan
stability.

Example A-14 shows the new ID value plus the new block dedicated to dynamic SQL plan
stability information.

Example A-14 Changed IFCID 030

QW0030ID DS CL2 DB=DBDID, CT=CURSOR TABLE, PT=PACKAGE TABLE
* DY=DPS TABLE
. . .
 ORG QW0030DB DY DPS TABLE MAPPING FOLLOWS
QW0030SC DS CL18 %U SCHEMA SHORT NAME
* Truncated if QW0030SC_Off¬=0
QW0030QH DS CL16 HASHID
QW0030CP DS H COPY ID
QW0030QD DS XL8 SDQE_STMTID
QW0030QC DS XL4 Number of records read
QW0030SC_Off DS H (FIXED 15)
QW0030RB DS CL1 release bound
QW0030FL DS XL1 FLAG
. . .
QW0030SC_D Dsect Use if QW0030C_Off¬=0
QW0030SC_Len DS H Length of the following field
QW0030SC_Var DS 0CL128 %U SCHEMA

IFCID 106: New subsystem parameter

The QWP4CDST field is added to trace the internal setting of the new subsystem parameter
CACHEDYN_STABILIZATION.

Example A-15 shows the field in IFCID 106.

Example A-15 Changed IFCID 106

QWP4CDST DS CL1 CACHEDYN_STABILIZATION s17830
* B = BOTH s17830
* C = CAPTURE s17830
* L = LOAD s17830
* N = NONE s17830
Appendix A. Information about IFCID changes 261

IFCID 316: Stabilization and hash ID information

Several fields have been added to the IFCID 316 to contain identifiers for the stabilized
statement and hash plus the stabilization group name.

Example A-16 shows the new fields in IFCID 316.

Example A-16 Changed IFCID 316

QW0316_SDQ_STMTID DS XL8 Stabilized statement ID
QW0316_QUERY_HASH_ID DS CL16 Query's hash ID
QW0316_QUERY_HASH_VER DS F Version of query's hash ID
QW0316_STBLGRP_Off DS H Offset from QW0316 to
* stabilization group
. . .
QW0316_STBLGRP_D Dsect Use if QW0316STBLGRP_Off¬=0
QW0316_STBLGRP_Len DS H Length of the next field
QW0316_STBLGRP_Var DS 0CL128 %U Stabilization group name

Fast INSERT IFCID changes

Additional instrumentation was added to track the time spent in waiting for formatting pages in
DB2. Tracking will be by package, statement, and plan accounting. The following IFCIDs are
changed in support of the fast INSERT enhancement:

� IFCID 002: Package level pipe wait information
� IFCID 002: Data Manager statistics block
� IFCID 003: Accounting control block
� IFCID 018: End of inserts and scans
� IFCID 058: Accumulated pipe wait time
� IFCID 106: New subsystem parameter
� IFCID 316: Statement level pipe wait information
� IFCID 401: Accumulated pipe wait time
� IFCID 413: Begin pipe wait
� IFCID 414: End pipe wait

IFCID 002: Package level pipe wait information

Two new fields, QPAC_PIPE_WAIT and QPAC_PIPEWAIT_COUNT, are added to the
accounting control block (QPAC) to indicate pipe wait information for the package.

Example A-17 shows the new fields to IFCID 002 for package pipe wait details.

Example A-17 Changed IFCID 002

QPAC_PIPE_WAIT DS XL8 /* accumulated wait time for a pipe */
* /* while executing this package */
QPAC_PIPEWAIT_COUNT DS F /* number of wait trace events */
* /* processed for waits for a pipe */
* /* while executing this package */
262 IBM DB2 12 for z/OS Technical Overview

IFCID 002: Data Manager Statistics block

Two new counts, QISTINPA and QISTINPD, have been added to the Data Manager Statistics
Block (DSNDQIST) of IFCID 002.

Example A-18 shows the new counters in IFCID 002.

Example A-18 Changed IFCID 002

QISTINPA DS D /* Number of DM Fast Insert @fi1*/
* /* (Insert Algorithm Level 2) @fi1*/
* /* pipes allocated since DB2 @fi1*/
* /* restart. @fi1*/
QISTINPD DS D /* Number of DM Fast Insert @fi1*/
* /* (Insert Algorithm Level 2) @fi1*/
* /* pipes disabled since DB2 @fi1*/
* /* restart. @fi1*/

IFCID 003: Accounting control block

Two new fields, QWAX_PIPE_WAIT and QWAX_PIPEWAIT_COUNT, are added to the
accounting control block (QWAX) to indicate pipe wait information.

Example A-19 shows the new fields in IFCID 003 for pipe wait details.

Example A-19 Changed IFCID 003

QWAX_PIPE_WAIT DS CL8 /* Accumulated wait time for pipe
* wait */
*
QWAX_PIPEWAIT_COUNT DS F /* Number of wait trace events
* processed for pipe wait */

IFCID 018: End of inserts and scans

Four new counts are added to IFCID 018 to various fast INSERT processing information. In
addition, the QW0018FI field was removed because it is no longer used by DB2.

Example A-20 shows the new counters in IFCID 018.

Example A-20 Changed IFCID 018

QW0018FI DS XL8 ROWS INSERTED VIA FAST INSERT @KS
* @KS
QW0018FS DS XL8 ROWS COULD NOT USE FAST INSERT @KS
* @KS
QW0018FA DS XL8 NBR TIMES FAST INSERT PIPEREFILLD@KS
* @KS
QW0018FW DS XL8 NBR TIMES DB2 WAITED FOR FAST INS@KS

IFCID 058: Accumulated pipe wait time

A new timer, QW0058PW, has been added to the IFCID 058 to record the accumulated pipe
wait time.
Appendix A. Information about IFCID changes 263

Example A-21 shows the new timer in IFCID 058.

Example A-21 Changed IFCID 058

QW0058PW DS CL8 Accumulated wait time for pipe

IFCID 106: New subsystem parameter

The QWP4DINA field is added to trace the internal setting of the new subsystem parameter
DEFAULT_INSERT_ALGORITHM.

Example A-22 shows the new subsystem parameter in IFCID 106.

Example A-22 Changed IFCID 106

QWP4DINA DS H DEFAULT_INSERT_ALGORITHM s17836

IFCID 316: Statement level pipe wait information

A new field, QW0316_PIPE_WAIT, is added to IFCID 316 to record the pipe wait for a
statement.

Example A-23 shows the new statement level pipe wait time in IFCID 316.

Example A-23 Changed IFCID 316

QW0316_PIPE_WAIT DS wait time for pipe wait

IFCID 401: Accumulated pipe wait time

A new field, QW0401WH, is added to IFCID 401 to record the accumulated pipe wait time.

Example A-24 shows the new accumulated time for pipe wait in IFCID 401.

Example A-24 Changed IFCID 401

QW0401WH DS CL8 Accumulated wait for pipe wait

IFCID 413: Begin pipe wait

IFCID 413 is new to DB2 12 and is used to record the beginning of the pipe wait processing.
The serviceability IFCID is used by the DB2 development team.

Example A-25 shows the resource name in IFCID 413.

Example A-25 Changed IFCID 413

* IFCID 0413 THE BEGINING OF A WAIT FOR A PIPE SUSPEND *

QW0413 DSECT IFCID(QWHS0413)
QW0413PN DS CL8 PROC NAME
QW0413RN DS 0CL6 RESOURCE NAME
QW0413DB DS XL2 DATA BASE ID
QW0413PS DS XL2 PAGE SET ID
264 IBM DB2 12 for z/OS Technical Overview

QW0413PT DS XL2 PARTITION NUMBER
 DS CL2 RESERVED
QW0413DMS DS XL4 (S)
QW0413CNT DS XL2 (S)
QW0413LMT DS XL2 (S)
QW0413FL DS XL2 (S)
 DS XL2 (S)
* (S) = FOR SERVICEABILITY

IFCID 414: End pipe wait

Like IFCID 413, IFCID 414 is new to DB2 12 and is used to record the end of the pipe wait
processing. IFCID 414 is also a serviceability IFCID used by the DB2 development team.

Example A-26 shows the new accumulated time for pipe wait in IFCID 414.

Example A-26 Changed IFCID 414

* IFCID 0414 RECORDS THE END OF THE WAIT FOR PIPE SUSPEND *

QW0414 DSECT IFCID(QWHS0414)
QW0414R DS CL1 REASON FOR PIPE WAIT RESUME
QW0414FL DS XL2 (S)
 DS XL2 (S)
 DS CL1 (S)
* (S) = FOR SERVICEABILITY

Lift partition limits IFCID changes limits

DB2 currently stores absolute page numbers in certain IFCID trace records with the
enhancements to lift partition limits; new fields will be added to store the 6-byte absolute page
numbers and new subsystem parameter values. The following IFCIDs are changed in support
of the enhancement to lift partition limits:

� IFCID 006: Pre-read page number flag and partition number
� IFCID 007: Post-read page number flag and partition number
� IFCID 021: Resource name
� IFCID 106: New subsystem parameter
� IFCID 124: Page number within pageset
� IFCID 127: Agent suspend
� IFCID 128: Agent resume
� IFCID 150: Resource name
� IFCID 172: Resource name
� IFCID 196: Resource name
� IFCID 198: Page numbering flag
� IFCID 223: Identifier, new constant, and partition number
� IFCID 226: Page numbering flag
� IFCID 227: Page numbering flag
� IFCID 255: Partition number and relative page number
� IFCID 259: Partition number and relative page number
� IFCID 305: Table space partition number and type
Appendix A. Information about IFCID changes 265

IFCID 006: Pre-read page number flag and partition number

IFCID 006 is modified to contain a flag indicating whether the page number is relative or
absolute and includes the partition number, when applicable.

Example A-27 shows the new flag and partition number field in IFCID 006.

Example A-27 Changed IFCID 006

QW0006P DS X FLAGS
QW0006P1 EQU X'80' 1 = Relative page number in QW0006PG
* 0 = Absolute page number in QW0006PG
 DS CL2 unused
QW0006PT DS F Partition number or 0 if non-
* partitioned

IFCID 007: Post-read page number flag and partition number

Like IFCID 006, IFCID 007 is modified to contain a flag that indicates whether the page
number is relative or absolute and includes the partition number, when applicable.

Example A-28 shows the new flag and partition number field in IFCID 007.

Example A-28 Changed IFCID 007

QW0007P DS X Flags
QW0007P1 EQU X'80' 1 = Relative page number in QW0007PF
* 0 = Absolute page number in QW0007PF
 DS CL1 unused
QW0007PT DS F Part number or 0 if non-partitioned

IFCID 021: Resource name

The resource name has been added to IFCID 021 to indicate resources using relative page
numbers.

Example A-29 shows the new resource name information in IFCID 021.

Example A-29 Changed IFCID 021

 ORG QW0021KR
QW0021KE DS 0CL7 * ID of small resource when QW0021KL=16 *
QW0021KF DS XL2 * partition number *
QW0021KG DS CL4 * page number *
QW0021KH DS XL1 * record id within page *
 DS CL17 * insure that offset of QW0021FC is *
* * 24 bytes from QW0021KR *
266 IBM DB2 12 for z/OS Technical Overview

IFCID 106: New subsystem parameter

The QWP4PSPN field is added to trace the internal setting of the new subsystem parameter
PAGESET_PAGENUM.

Example A-30 shows the new subsystem parameter in IFCID 106.

Example A-30 Changed IFCID 106

QWP4PSPN DS CL1 PAGESET_PAGENUM:
* A=ABSOLUTE, R=RELATIVE

IFCID 124: Page number within pageset

IFCID 124 has been modified to include the page number within the pageset, QW01244N.

Example A-31 shows the new field for the page number in IFCID 124.

Example A-31 Changed IFCID 124

QW01244N DS XL6 ! PAGE NUMBER WITHIN PAGESET
* ! For RPN obj=2 bytes of part#
* ! 4 bytes of page#
* ! For Non-RPN obj= ignore first
* ! 2 bytes, next 4 bytes are
* ! absolute page number
 DS CL2 ! unused
*

IFCID 127: Agent suspend

Like IFCID 006 and 007, IFCID 127 is modified to contain a flag indicating whether the page
number is relative or absolute and includes the partition number, when applicable. IFCID 127
is also a serviceability IFCID used by the DB2 development team.

Example A-32 shows the new flag and partition number field in IFCID 127.

Example A-32 Changed IFCID 127

QW0127P DS X Flags
QW0127P1 EQU X'80' 1 = Relative page number in QW0127PG
* 0 = Absolute page number in QW0127PG
 DS CL2 unused
QW0127PT DS F Part number or 0 if non-partitioned
 DS CL4 unused
* (S) = FOR SERVICEABILITY

IFCID 128: Agent resume

Like IFCID 127, IFCID 128 is modified to contain a flag indicating whether the page number
is relative or absolute and includes the partition number, when applicable. Additionally,
IFCID 128 records the page number. IFCID 128 is also a serviceability IFCID used by the
DB2 development team.
Appendix A. Information about IFCID changes 267

Example A-33 shows the new flag and partition number field in IFCID 128.

Example A-33 Changed IFCID 128

QW0128P DS X Flags
QW0128P1 EQU X'80' 1 = Relative page number in QW0128PG
* 0 = Absolute page number in QW0128PG
 DS CL1 unused
. . .
QW0128PG DS F PAGE NUMBER
* Based on QW0128P1,either absolute or
* relative page number is stored here,
* partition# can be found in QW0128PT
QW0128PT DS F Part number or 0 if non-partitioned
* (S) = FOR SERVICEABILITY

IFCID 150: Resource name

Like IFCID 021, IFCID 150 is updated to indicate the resource name using relative page
numbers.

Example A-34 shows the new resource name information in IFCID 150.

Example A-34 Changed IFCID 150

 ORG QW0150KR *
QW0150KE DS 0CL7 * ID of small resource when QW0150KL=16
QW0150KF DS XL2 * partition number
QW0150KG DS CL4 * page number
QW0150KH DS XL1 * record id within page

IFCID 172: Resource name

Like IFCID 021 and 150, IFCID 172 is updated to indicate the resource name using relative
page numbers.

Example A-35 shows the new resource name information in IFCID 172.

Example A-35 Changed IFCID 172

 ORG QW0172KR *
QW0172KE DS 0CL7 * ID of small resource when QW0172RL=16
QW0172KF DS XL2 * partition number
QW0172KG DS CL4 * page number
QW0172KH DS XL1 * record id within page
 DS CL17 REST OF SPACE FOR 28 BYTE RESOURCE NAME
268 IBM DB2 12 for z/OS Technical Overview

IFCID 196: Resource name

IFCID 196 is also updated to indicate the resource name using relative page numbers.

Example A-36 shows the new resource name information in IFCID 196.

Example A-36 Changed IFCID 196

 ORG QW0196KR *
QW0196KE DS 0CL7 * ID of small resource when QW0196RL=16
QW0196KF DS XL2 * partition number
QW0196KG DS CL4 * page number
QW0196KH DS XL1 * record id within page
 DS CL17 REST OF SPACE FOR 28 BYTE RESOURCE NAME

IFCID 198: Page numbering flag

IFCID 198 is also modified to contain a flag indicating whether the page number is relative or
absolute, and the partition number and page number.

Example A-37 shows the new fields in IFCID 198.

Example A-37 Changed IFCID 198

QW0198PN DS F PAGE NUMBER
* Based on QW0198P1, either absolute or
* relative page number is stored here,
* the partition# can be found in QW0198PT
. . .
QW0198P DS X Flags
QW0198P1 EQU X'80' 1 = Relative page number in QW0198PN
* 0 = Absolute page number in QW0198PN
 DS XL2 unused
QW0198PT DS F Partition number or 0 if non-partitioned
*

IFCID 223: Identifier, new constant, and partition number

IFCID 223 is modified to contain a resource identifier, a new constant indicating a partitioned
table space with relative page numbers, and a partition number.

Example A-38 shows the new fields in IFCID 223.

Example A-38 Changed IFCID 223

QW0223KY DS 0CL5 ID of small resource when QW0223TY='L' or
* 'R'
. . .
QW0223TR EQU C'R' PBR UTS that uses relative page numbers
QW0223PT DS XL2 1-based partition number if partitioned
* (S) = FOR SERVICEABILITY
Appendix A. Information about IFCID changes 269

IFCID 226: Page numbering flag

IFCID 226 is also modified to contain a flag indicating whether the page number is relative or
absolute, and the partition number and page number. IFCID 226 is also a serviceability IFCID
used by the DB2 development team.

Example A-39 shows the new fields in IFCID 226.

Example A-39 Changed IFCID 226

QW0226PG DS F PAGE NUMBER TO READ/WRITE
* Based on QW0226P1,either absolute or
* relative page number is stored here,
* partition# can be found in QW0226PT
. . .
QW0226P DS X Flags
QW0226P1 EQU X'80' 1 = Relative page number in QW0226PG
* 0 = Absolute page number in QW0226PG
 DS XL2 unused
QW0226PT DS F Partition number or 0 if non-partitioned
* (S) = FOR SERVICEABILITY

IFCID 227: Page numbering flag

Like IFCID 226, IFCID 227 is also modified to contain a flag indicating whether the page
number was relative or absolute, and the partition number and page number. IFCID 227 is
also a serviceability IFCID used by the DB2 development team.

Example A-40 shows the new fields in IFCID 227.

Example A-40 Changed IFCID 227

QW0227PG DS F PAGE NUMBER TO READ/WRITE
* Based on QW0227P1,either absolute or
* relative page number is stored here,
* partition# can be found in QW0227PT
. . .
QW0227P DS X Flags
QW0227P1 EQU X'80' 1 = Relative page number in QW0227PG
* 0 = Absolute page number in QW0227PG
 DS XL2 unused
QW0227PT DS F Partition number or 0 if non-partitioned
* (S) = FOR SERVICEABILITY

IFCID 255: Partition number and relative page number

IFCID 255 has two new fields for the partition number and relative page number.

Example A-41 shows the new fields in IFCID 255.

Example A-41 Changed IFCID 255

QW0255P1 DS CL2 2-byte Pageset piece/partition number
QW0255P2 DS CL4 4-byte Relative page# (within the piece)
270 IBM DB2 12 for z/OS Technical Overview

IFCID 259: Partition number and relative page number

IFCID 259 has two new fields for the partition number and relative page number.

Example A-42 shows the new fields in IFCID 255.

Example A-42 Changed IFCID 255

QW0259K4 DS CL4 4-byte Relative page number for RPN object
* For QW0259G1, relative pg# is stored here
 DS CL16 16 BYTES OF ZEROS
. . .
 ORG QW0259K4
QW0259KQ DS CL3 Relative page number for non-RPN object
 DS CL1 reserved
 DS CL16 16 bytes of zeros

IFCID 305: Table space partition number and type

IFCID 305 is modified to record the partition number for a table space that uses relative page
numbers in addition to introducing a new table space type value.

Example A-43 shows the new fields in IFCID 305.

Example A-43 Changed IFCID 305

QW0305PT DS XL2 Partition number.
* Valid when QW0305TY='R'
. . .
QW0305TY DS CL1 TABLE SPACE TYPE
* POSSIBLE VALUES ARE :
* 'N' - NON LARGE TABLE SPACE
* 'L' - NON-EA 5-BYTE RID TABLE SPACE
* 'V' - EA 5-BYTE RID TABLE SPACE
* 'R' - PBR UTS that uses relative
* page numbers

Large object (LOB) compression IFCID changes

DB2 12 introduces LOB compression capabilities with the new IBM zEnterprise® Data
Compression (zEDC) hardware. IFCID 003 and IFCID 106 are modified to trace LOB
compression times and waits plus the new subsystem parameter internal setting.

IFCID 003: Accounting control block

Two new fields, QWAX_LOBCOMP_WAIT and QWAX_LOBCOMP_COUNT, are added to the
accounting control block (QWAX) to indicate the accumulated wait time and the number of
wait trace events processed for LOB compression.
Appendix A. Information about IFCID changes 271

Example A-44 shows the new fields in IFCID 003.

Example A-44 New fields for LOB compression in IFCID 003

QWAX_LOBCOMP_WAIT DS CL8 /* Accumulated wait time for LOB
* compression */
QWAX_LOBCOMP_COUNT DS F /* Number of wait trace events
* processed for LOB compression */

IFCID 106: New subsystem parameter

The QWP4CDRL field is added to trace the internal setting of the new subsystem parameter
COMPRESS_DIRLOB.

Example A-45 shows the new field in IFCID 106.

Example A-45 Changed IFCID 106

QWP4MISD DS X
* EQU X'80' Not available e17790
QWP4CDRL EQU X'40' COMPRESS_DIRLOB s10853

Transfer ownership IFCID changes

DB2 12 provide support to allow you to alter object owners with the new SQL statement
TRANSFER OWNERSHIP. The following IFCIDs are modified:

� IFCID 002: RDS statistics block
� IFCID 062: Statement type
� IFCID 140: Source object owner and name
� IFCID 361: Source object owner and name

IFCID 002: RDS statistics block

The QXTRNOWN field is added to the RDS statistics block (QXST) to indicate the number of
times that ownership was transferred.

Example A-46 shows a snippet of the IFCID 002 indicating the new field.

Example A-46 Changed IFCID 002

QXTRNOWN DS D # of TRANSFER OWNERSHIP

IFCID 062: Statement type

A new statement type of X'AB' is added to indicate the statement was a TRANSFER
OWNERSHIP statement in IFCID 062.

Example A-47 shows the new field in IFCID 062.

Example A-47 Changed IFCID 062

QW0062TO EQU X'AB' TRANSFER OWNERSHIP
272 IBM DB2 12 for z/OS Technical Overview

IFCID 140: Source object owner and name

The QW0140SC and QW0140SN fields, which describe the source object owner and name,
are updated in IFCID 140.

Example A-48 shows the new fields in IFCID 140.

Example A-48 Changed IFCID 140

QW0140SC DS CL8 %U SOURCE OBJECT OWNER: Three cases
* 1) If object type not equal User Auth -
* Qualifier of the object against
* which authorization was checked.
* Valid for qualifiable objects.
* 2) If object type equals User Auth -
* Qualifier of ALIAS being created.
* Valid for CREATE ALIAS privilege.
* 3) If object type equals User Auth -
* Qualifier of the object being
* transferred. Valid for TRANSFER
* OWNERSHIP statement.
* Truncated if QW0140SC_Off¬=0
*
QW0140SN DS CL18 %U SOURCE OBJECT NAME: Three cases
* 1) If object type not equal User Auth -
* Name of the object against which
* authorization was checked.
* 2) If object type equals User Auth -
* Name of the object being created. Valid
* when privilege is CREATE ALIAS,
* CREATEDBA, CREATEDBC, or CREATE
* STOGROUP.
* 3) If object type equals User Auth -
* Name of the object being transferred.
* Valid for TRANSFER OWNERSHIP statement.
* Truncated if QW0140SN_Off¬=0
*

IFCID 361: Source object owner and name

The descriptions for the QW0361SC_Var and QW0361SN_Var fields for the source object
owner and name are updated in IFCID 361.

Example A-49 shows the new fields in IFCID 361.

Example A-49 Changed IFCID 361

QW0361SC_Var DS 0CL128 %U SOURCE OBJECT QUALIFIER/OWNER
* If object type equals User Auth -
* Qualifier of the object being
* transferred. Valid for TRANSFER
* OWNERSHIP statement.
*
. . .
QW0361SN_Var DS 0CL128 %U Source object Name
* If object type equals User Auth -
* Name of the object being transferred.
* Valid for TRANSFER OWNERSHIP statement.
*

Appendix A. Information about IFCID changes 273

UNLOAD privilege for UNLOAD utility IFCID changes

A new UNLOAD privilege can be specified for the UNLOAD utility through the new
AUTH_COMPATIBILITY subsystem parameter. IFCID 404 is introduced as a serviceability
trace and is described in “New IFCIDs” on page 254. In addition, IFCID 106 is modified to
trace the internal setting of the parameter.

IFCID 106: New subsystem parameter

The QWP4AUTC field is added to trace the internal setting of the new subsystem parameter
AUTH_COMPATIBILITY. The QWP4AUTCSU field indicates the SELECT_FOR_UNLOAD
option of AUTH_COMPATIBILITY has been specified.

Example A-50 shows the new fields in IFCID 106.

Example A-50 Changed IFCID 106

QWP4AUTC DS XL1 AUTH_COMPATIBILITY s20166
QWP4AUTCSU EQU X'80' - SELECT_FOR_UNLOAD s20166

Additional changed IFCIDs

In addition to the IFCID changes, DB2 12 introduces changes to the following IFCIDs:

� IFCID 106: Modifications and enhancements
� IFCID 125: Adaptive index processing
� New QWAC_WORKFILE_MAX and QWAC_WORKFILE_CURR fields

IFCID 106: Modifications and enhancements

IFCID 106 is modified to remove fields no longer used in DB2 12:

� The QWP4RIFS field is removed. The QWP4RIFS field was used to trace the internal
setting of the REORG_IGNORE_FREESPACE subsystem parameter but that parameter
was deprecated in DB2 10 and in DB2 11 and is now eliminated in DB2 12.

� Starting in DB2 12, the storage management of LOB and XML data is managed by DB2
therefore the LOBVALA, LOBVALS, XMLVALA, and XMLVALS subsystem parameters are
no longer recorded.

Enhancements to IFCID 106 are as follows:

� Eight new fields to trace internal settings of three new subsystem parameters are
introduced for resource limit facility (RLF) for static SQL enhancements:

– Fields for subsystem parameter RLFERRSTC:

• QWP1RLFFS
• QWP1RLFUS
• QWP1RLFNS

– Fields for subsystem parameter RLFENABL:

• QWP1RLFDNEN
• QWP1RLFSTEN
274 IBM DB2 12 for z/OS Technical Overview

– Fields for subsystem parameter RLFERRDSTC:

• QWP9RLFRS
• QWP9RLFNS
• QWP9RLFLS

� The field QWP1PFASY is added to trace the internal setting of the new subsystem
parameter PROFILE_AUTOSTART.

� The field QWP4RSO is added to trace the internal settings of the new subsystem
parameter RETRY_STOPPED_OBJECTS.

� The field QWP4MNSU is added to trace the internal setting of the
MATERIALIZE_NODET_SQLTUDF subsystem parameter.

� The field QWP4ERTS is added to trace the internal settings of the new subsystem
parameter RENAMETABLE.

� For online backup and recovery enhancements, the QWP4CYFR field is added for the
COPY support added to FASTREP(REQ).

Also, four new subsystem parameters are introduced and their internal settings are being
recorded:

– QWP4BSACP for the ALTERNATE_CP parameter
– QWP4UDBSG for the UTIL_DBBSG parameter
– QWP4ULBSG for the UTIL_LGBSG parameter
– QWP4UHMDH for the UTILS_HSM_MSGDS_HLQ parameter

� The QWP4DDLM field is added to trace the internal setting of the new subsystem
parameter DDL_MATERIALIZATION.

� The QWPAPEERREC is added to trace the internal setting of the new subsystem
parameter PEER_RECOVERY.

� The QWP4SFPR field is added to trace the internal setting of the new subsystem
parameter STATFDBK_PROFILE.

Another subsystem parameter, QWP4TPTM, is introduced in DB2 12 and is retrofit to DB2 11
and DB2 10. The QWP4TPTM is added to trace the internal setting of the new subsystem
parameter TEMPLATE_TIME.

Example A-51 shows the modified IFCID 106 for the items described above.

Example A-51 Changed IFCID 106

QWP1RLFFS EQU X'10' IF 1 INDICATE NOLIMIT (STATIC) S20000
QWP1RLFUS EQU X'08' IF 1 INDICATE NORUN (STATIC) S20000
QWP1RLFDNEN EQU X'04' 1 when RLFENABLE=DYNAMIC or ALL S20000
QWP1RLFSTEN EQU X'02' 1 when RLFENALBE=STATIC or ALL S20000
. . .
QWP1PFASY EQU X'10' PROFILE_AUTOSTART=YES dp1897
. . .
 DS CL4 Do not reuse s22058
QWP1LVS DS F (s) s22058
. . .
 DS CL4 Do not reuse s22058
QWP1XVS DS F (s) s22058
. . .
QWP1RLFNS DS F RLF static limit in SU's S20000
. . .
QWP4MS4D DS X
Appendix A. Information about IFCID changes 275

* X'80' Not available s2593
. . .
QWP4RSO EQU X'01' RETRY_STOPPED_OBJECTS DM1851
. . .
QWP4MNSU EQU X'80' MATERIALIZE_NODET_SQLTUDF DM1912
. . .
QWP4ERTS EQU X'40' RENAMETABLE DN1840
* '0' = DISALLOW_DEP_VIEW_SQLTUDF DN1840
* '1' = ALLOW_DEP_VIEW_SQLTUDF DN1840
. . .
QWP4BSACP DS CL16 ALTERNATE_CP s12997
QWP4UDBSG DS CL8 UTIL_DBBSG s12997
QWP4ULBSG DS CL8 UTIL_LGBSG s12997
QWP4CYFR DS CL1 COPY_FASTREPLICATION s23187
QWP4DDLM DS CL1 DDL_MATERIALIZATION n22751
* I=ALWAYS_IMMEDIATE n22751
* P=ALWAYS_PENDING n22751
. . .
QWP4UHMDH DS CL8 UTILS_HSM_MSGDS_HLQ s17863
. . .
QWP4SFPR EQU X'20' STATFDBK_PROFILE s24345
. . .
QWP9RLFLS EQU X'20' If 1, indicate NOLIMIT (static) S20000
QWP9RLFRS EQU X'10' If 1, indicate NORUN (static) S20000
. . .
QWP9RLFNS DS F RLF static limit in SU's s20000
. . .
QWPAPEERREC DS CL1 PEER_RECOVERY DP1857
* 'N' = NONE DP1857
* 'R' = RECOVER DP1857
* 'A' = ASSIST DP1857
* 'B' = BOTH DP1857

IFCID 125: Adaptive index processing

The following fields are added to IFCID 125. The fields record the RID list processing
statistics for adaptive index processing and also details about the adaptive index processing
that was performed.

� QW0125TI
� QW0125QI
� QW0125_TRSN
� QW0125_PRSN
� QW0125_ORSN
� QW0125_TRSN

Example A-52 shows those new fields in IFCID 125 for adaptive index processing.

Example A-52 IFCID 125 new fields

QW0125TI DS XL8 index probing estimate: total number of
* RIDs in the index (set to MAX BIGINT for
* full leg)
QW0125QI DS XL8 index probing estimate: number of RIDs
* within the keyrange, adjusted for filter
276 IBM DB2 12 for z/OS Technical Overview

* factor
QW0125_TRSN DS CL1 reason leg was terminated
* F: leg was marked 'full'
* T: leg with < 32 RIDs
QW0125_PRSN DS CL1 reason leg not probed
* A: all legs fetched all RIDs
* B: this leg fetched all RIDs (<1 RIDblock)
* E: probing failed
* F: leg was marked 'full'
* K: cannot probe - missing high/low key
* M: mix of 'R'/'I'/'U' entries does not get
* reordered
* O: APS indicated to not probe
* S: earlier leg of index AND-ing was
* 'likely' very filtering
* V: leg 'likely' very filtering
QW0125_ORSN DS CL1 reason leg was reodered
* V: leg 'likely' very filtering
* P: probing
QW0125_FRSN DS CL1 reason leg was marked 'full'
* L: non-filtering LIKE
* R: range predicate (non-LIKE)
* P: if OR-ing and est. # of RIDs > 30%
* or if AND-ing and est. # of RIDs > 50%
* of the table
* M: if not reason 'P', but est. # of RIDs
* > 'ridlist logical limit'
* G: aggressive termination
* T: most selective leg of AND-ing
* with FF >= 35%

New QWAC_WORKFILE_MAX and QWAC_WORKFILE_CURR fields

Two fields, QWAC_WORKFILE_MAX and QWAC_WORKFILE_CURR, are added to the
QWAC control block to provide thread-level information about the workfile usage.

Example A-53 shows changes to the QWAC.

Example A-53 Changed QWAC

QWAC_WORKFILE_MAX DS XL8 /* Maximum number of workfile blocks */
* /* being used by this agent at any */
* /* given point in time (traditional */
* /* workfile use, DGTT and DGTT */
* /* indexes) */
QWAC_WORKFILE_CURR DS XL8 /* Current number of workfile blocks */
* /* being used by this agent */
* /* (traditional workfile use, DGTT */
* /* and DGTT indexes) */
Appendix A. Information about IFCID changes 277

278 IBM DB2 12 for z/OS Technical Overview

Appendix B. Additional material

This book refers to additional material that can be downloaded from the Internet as described
in the following sections.

Locating the web material

The web material associated with this book is available in softcopy on the Internet from the
IBM Redbooks web server:

ftp://www.redbooks.ibm.com/redbooks/SG248383

Alternatively, you can go to the IBM Redbooks website:

ibm.com/redbooks

Search for SG248383, select the title, and then click Additional materials to open the directory
that corresponds with the IBM Redbooks form number, SG248383.

Downloading and extracting the web material

Create a subdirectory (folder) on your workstation, and extract the contents of the web
material .zip file into this folder.

B

© Copyright IBM Corp. 2016. All rights reserved. 279

ftp://www.redbooks.ibm.com/redbooks/SG248383
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

280 IBM DB2 12 for z/OS Technical Overview

IS
B

N
 0738442305

S
G

24-8383-00

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

IBM
 DB2 12 for z/OS Technical Overview

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738442305

SG24-8383-00

®

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Part 1 Overview
	Chapter 1. DB2 12 for z/OS at a glance
	1.1 Subsystem
	1.2 Application functions
	1.3 Operations and performance

	Chapter 2. Continuous delivery
	2.1 Function level
	2.1.1 Star function level

	2.2 Catalog level
	2.3 Code level
	2.4 Activating a function level
	2.5 DISPLAY GROUP command
	2.6 Catalog changes
	2.6.1 The SYSIBM.SYSLEVELUPDATES table

	2.7 Application compatibility (APPLCOMPAT)
	2.7.1 Managing applications through function level changes
	2.7.2 Data Definition Language (DDL) statements sensitive to APPLCOMPAT

	2.8 SQL processing option SQLLEVEL
	2.9 New built-in global variables
	2.9.1 PRODUCTID_EXT
	2.9.2 CATALOG_LEVEL
	2.9.3 DEFAULT_SQLLEVEL

	2.10 DB2 supplied stored procedures
	2.10.1 ADMIN_COMMAND_DB2
	2.10.2 GET_CONFIG

	2.11 Resource access control facility exit
	2.12 Instrumentation

	Part 2 Subsystem
	Chapter 3. Scalability
	3.1 Range-partitioned table spaces changes
	3.1.1 PBR RPN table space characteristics
	3.1.2 PBR RPN partitioned index characteristics
	3.1.3 PBR RPN non-partitioned index characteristics
	3.1.4 PBR RPN considerations

	3.2 DB2 internal latch contention relief
	3.3 Buffer pool simulation
	3.4 Support for sizes greater than 4 GB of active log data sets

	Chapter 4. Availability
	4.1 Improved availability for pending definition changes
	4.1.1 Altering index compression attribute
	4.1.2 Altering column

	4.2 Catalog availability improvements
	4.2.1 Handling dynamic SQL statement
	4.2.2 Single phase catalog migration

	4.3 Removal of point-in-time recovery restrictions for PBG table spaces
	4.4 PBR RPN DSSIZE increase
	4.5 Insert partition
	4.6 REORG enhancements for PBGs, FlashCopy and LOBs
	4.6.1 Partition-by-growth (PBG)
	4.6.2 FlashCopy
	4.6.3 Large object (LOB)

	4.7 LOAD RESUME YES BACKOUT YES option
	4.8 Faster point-in-time recovery
	4.8.1 Single object by defaulting to the PARALLEL(1) option
	4.8.2 SCOPE UPDATED keyword

	4.9 TRANSFER OWNERSHIP SQL statement
	4.10 Auto-retry of GRECP and LPL recovery

	Chapter 5. Data sharing
	5.1 DISPLAY GROUP command
	5.2 XA support for global transactions
	5.3 Peer recovery
	5.4 Automatic retry of GRECP and LPL recovery
	5.5 Improved lock avoidance checking
	5.6 Asynchronous lock duplexing

	Part 3 Application functions
	Chapter 6. SQL
	6.1 Introduction
	6.2 Additional support for triggers
	6.2.1 Basic triggers
	6.2.2 Advanced triggers
	6.2.3 Differences between basic triggers and advanced triggers
	6.2.4 Maintaining trigger activation order

	6.3 Pagination support
	6.3.1 Returning a subset of rows
	6.3.2 Data-dependent pagination support
	6.3.3 Numeric-based pagination

	6.4 Additional support for arrays
	6.4.1 Arrays as global variables
	6.4.2 Associative array support on ARRAY_AGG aggregate function
	6.4.3 Optional ORDER BY clause on ARRAY_AGG aggregate function

	6.5 MERGE statement enhancements
	6.5.1 Additional source value support
	6.5.2 Additional data modification support
	6.5.3 Additional matching condition option
	6.5.4 Additional predicates on matching conditions support
	6.5.5 Atomicity
	6.5.6 Enhanced MERGE statement example

	6.6 New built-in functions
	6.6.1 Aggregate functions for statistics
	6.6.2 Scalar functions for hashing
	6.6.3 GENERATE_UNIQUE_BINARY scalar function
	6.6.4 VARCHAR_BIT_FORMAT scalar function enhancement

	6.7 Enhanced built-in function support
	6.7.1 TIMESTAMP scalar function enhancement
	6.7.2 XMLMODIFY scalar function enhancement

	Chapter 7. Application enablement
	7.1 Ensuring application compatibility
	7.2 Temporal table enhancements
	7.2.1 Enhanced application periods
	7.2.2 Referential constraints for temporal tables
	7.2.3 Temporal logical transactions
	7.2.4 Auditing capabilities using temporal tables

	Chapter 8. Connectivity and administration routines
	8.1 Maintaining session data on the target server
	8.2 Preserving prepared dynamic statements after a ROLLBACK
	8.3 DRDA fast load
	8.4 Profile monitoring for remote threads and connections
	8.4.1 Automatic start of profiles during subsystem start
	8.4.2 Support for global variables
	8.4.3 Support for wildcarding
	8.4.4 Idle thread enhancement

	8.5 Stored procedures supplied by DB2

	Part 4 Operations and performance
	Chapter 9. Administrator function
	9.1 Dynamic plan stability
	9.1.1 Stabilization into and loading from catalog tables
	9.1.2 Stabilization method
	9.1.3 Catalog tables
	9.1.4 Calculating the EDM statement cache hit ratio
	9.1.5 Invalidation of stabilized dynamic statements
	9.1.6 EXPLAIN changes
	9.1.7 The FREE STABILIZED DYNAMIC QUERY subcommand
	9.1.8 Monitor for stabilization
	9.1.9 DSNZPARM and installation panel

	9.2 Resource limit facility for static SQL
	9.2.1 Reactive governing static SQL
	9.2.2 Use cases
	9.2.3 RLF DSNZPARMs and installation panels

	9.3 Column level deferred alter (pending alter column)
	9.3.1 Utility
	9.3.2 ALTER INDEX

	9.4 Insert partition
	9.4.1 ALTER ADD PARTITION
	9.4.2 Utilities affected
	9.4.3 Catalog changes

	Chapter 10. Security
	10.1 Installation or migration without requiring SYSADM
	10.2 UNLOAD privilege
	10.2.1 Enforcing new privilege
	10.2.2 Using DB2 security facility
	10.2.3 Using Resource Access Control Facility (RACF)

	10.3 Object ownership transfer
	10.3.1 Supported objects
	10.3.2 New owner
	10.3.3 Revoking privileges of current owner

	Chapter 11. Utilities
	11.1 Backup and recovery enhancements
	11.1.1 Sequential image copy enhancements
	11.1.2 Copy support for FASTREPLICATION
	11.1.3 Alternate copy pools for system-level backups
	11.1.4 FLASHCOPY_PPRCP keyword option
	11.1.5 Point-in-time recovery enhancements
	11.1.6 MODIFY RECOVERY enhancements

	11.2 RUNSTATS enhancements
	11.2.1 Specifying FREQVAL without the COUNT n keywords
	11.2.2 USE PROFILE support for inline statistics
	11.2.3 INVALIDATECACHE option
	11.2.4 RUNSTATS TABLESPACE LIST INDEX improvements
	11.2.5 New keyword REGISTER for RUNSTATS utility

	11.3 REORG enhancements
	11.3.1 Improved FlashCopy management
	11.3.2 Preventing COPY-pending on a LOB table space during REORG of PBG
	11.3.3 Improved partition-level PBG REORGs
	11.3.4 REORG option for empty PBG partitions deletion
	11.3.5 Support for the COMPRESSRATIO catalog column
	11.3.6 Display claimers information on each REORG drain failure
	11.3.7 Additional REORG enhancements

	11.4 LOAD and UNLOAD enhancements
	11.4.1 LOAD enhancements
	11.4.2 UNLOAD enhancements

	Chapter 12. Installation and migration
	12.1 Prerequisites for DB2 12
	12.1.1 Data sharing
	12.1.2 Processor requirements
	12.1.3 Software requirements
	12.1.4 DB2 Connect prerequisites
	12.1.5 Programming language requirements, minimum levels
	12.1.6 Minimum configuration (IEASYSxx)

	12.2 Single-phase migration and function level
	12.2.1 Fallback SPE
	12.2.2 EARLY code
	12.2.3 Pre-migration checkout
	12.2.4 Creating DSNZPARM and DECP modules
	12.2.5 Creating and verifying routines supplied by DB2
	12.2.6 REBIND at each new release
	12.2.7 Activating new function level
	12.2.8 Deprecated in earlier releases and removed in DB2 12

	12.3 Installing a new DB2 12 system
	12.3.1 Defines DB2 to z/OS

	12.4 Subsystem parameters
	12.4.1 New subsystem parameters
	12.4.2 Removed subsystem parameters
	12.4.3 Install Parameters Default Changes
	12.4.4 Deprecated system parameters

	12.5 Installation or migration without requiring SYSADM
	12.6 Installation with z/OS Management Facility (z/OSMF)
	12.6.1 How to use DB2 installation CLIST and panels to generate z/OSMF artifacts
	12.6.2 Feeding the generated artifacts to z/OSMF

	12.7 Temporal catalog
	12.7.1 System-period data versioning for two RTS catalog tables
	12.7.2 Real-time statistics externalization during migration

	Chapter 13. Performance
	13.1 Performance expectations
	13.2 In-memory buffer pool
	13.3 In-memory index optimization
	13.4 Improved insert performance for non-clustered data
	13.4.1 DDL clause on CREATE TABLESPACE and ALTER TABLESPACE
	13.4.2 SYSIBM.SYSTABLESPACE new column: INSERTALG
	13.4.3 ZPARM: DEFAULT_INSERT_ALGORITHM

	13.5 Query performance enhancements
	13.5.1 UNION ALL and Outer Join enhancements
	13.5.2 Sort improvements
	13.5.3 Predicate optimization
	13.5.4 Execution time adaptive index

	Part 5 Appendixes
	Appendix A. Information about IFCID changes
	IFCID header changes
	New IFCIDs
	IFCID 382: Begin parallel task synchronization suspend
	IFCID 383: End parallel task synchronization suspend
	IFCID 389: Fast index traversal
	IFCID 404: Serviceability trace record for new subsystem parameter AUTH_COMPATIBILITY
	IFCID 413: Begin of pipe wait for a fast insert
	IFCID 414: End of pipe wait for a fast insert
	IFCID 477: Fast index traversal

	Application compatibility IFCID changes
	IFCID 366: Deprecated application compatibility trace
	IFCID 376: Application compatibility trace

	Dynamic SQL plan stability IFCID changes
	IFCID 002: RDS statistics block
	IFCID 002: EDM pool statistics block
	IFCID 021: Lock types
	IFCID 029: EDM request begin identifier and new block
	IFCID 030: EDM request end identifier and new block
	IFCID 106: New subsystem parameter
	IFCID 316: Stabilization and hash ID information

	Fast INSERT IFCID changes
	IFCID 002: Package level pipe wait information
	IFCID 002: Data Manager Statistics block
	IFCID 003: Accounting control block
	IFCID 018: End of inserts and scans
	IFCID 058: Accumulated pipe wait time
	IFCID 106: New subsystem parameter
	IFCID 316: Statement level pipe wait information
	IFCID 401: Accumulated pipe wait time
	IFCID 413: Begin pipe wait
	IFCID 414: End pipe wait

	Lift partition limits IFCID changes limits
	IFCID 006: Pre-read page number flag and partition number
	IFCID 007: Post-read page number flag and partition number
	IFCID 021: Resource name
	IFCID 106: New subsystem parameter
	IFCID 124: Page number within pageset
	IFCID 127: Agent suspend
	IFCID 128: Agent resume
	IFCID 150: Resource name
	IFCID 172: Resource name
	IFCID 196: Resource name
	IFCID 198: Page numbering flag
	IFCID 223: Identifier, new constant, and partition number
	IFCID 226: Page numbering flag
	IFCID 227: Page numbering flag
	IFCID 255: Partition number and relative page number
	IFCID 259: Partition number and relative page number
	IFCID 305: Table space partition number and type

	Large object (LOB) compression IFCID changes
	IFCID 003: Accounting control block
	IFCID 106: New subsystem parameter

	Transfer ownership IFCID changes
	IFCID 002: RDS statistics block
	IFCID 062: Statement type
	IFCID 140: Source object owner and name
	IFCID 361: Source object owner and name

	UNLOAD privilege for UNLOAD utility IFCID changes
	IFCID 106: New subsystem parameter

	Additional changed IFCIDs
	IFCID 106: Modifications and enhancements
	IFCID 125: Adaptive index processing
	New QWAC_WORKFILE_MAX and QWAC_WORKFILE_CURR fields

	Appendix B. Additional material
	Locating the web material
	Downloading and extracting the web material

	Back cover

