
Redbooks

Front cover

Flexible Decision Management with
Business Rules on IBM z Systems

Mark Hiscock

Guy Hindle

Mike Johnson

Tim Wuthenow

James Taylor

David Griffiths

Graeme Everton

International Technical Support Organization

Flexible Decision Management with Business Rules on
IBM z Systems

June 2015

SG24-8014-02

© Copyright International Business Machines Corporation 2012, 2013, 2015. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Third Edition (June 2015)

This edition applies to Version 8.7.1 IBM Operational Decision Manager for z/OS.

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks .x

IBM Redbooks promotions . xi

Preface . xiii
Authors. xiii
Now you can become a published author, too! .xv
Comments welcome. .xv
Stay connected to IBM Redbooks . xvi

Part 1. IBM z Systems with business rules . 1

Chapter 1. The case for IBM Operational Decision Manager . 3
1.1 What Operational Decision Manager is. 4

1.1.1 Common business decisions that require managing . 4
1.1.2 Where are most decisions made today?. 5

1.2 Operational Decision Manager for z/OS . 6
1.3 Where Operational Decision Manager for z/OS can be used . 7
1.4 Who deploys Operational Decision Manager for z/OS? . 8

Chapter 2. IBM Operational Decision Manager for z/OS . 11
2.1 Operational Decision Manager for z/OS overview . 12

2.1.1 Operational Decision Manager for z/OS capabilities. 12
2.2 Decision Center for z/OS . 14

2.2.1 Features . 14
2.2.2 Decision Center consoles . 14

2.3 Decision Server for z/OS. 15
2.3.1 Rule Designer . 16
2.3.2 Execution options for business decisions on z/OS . 16

2.4 New in Operational Decision Manager Version 8.7.1 . 19
2.4.1 XOM and marshaller deployment through Decision Center 19
2.4.2 Embedded mode. 19
2.4.3 Stand-alone console address space. 19
2.4.4 PL/I support. 19
2.4.5 Decision engine across the product . 19
2.4.6 Business console . 20
2.4.7 IMS preinitialization routine. 20
2.4.8 Extended COBOL and PL/I data types . 20
2.4.9 Enhanced execution monitoring . 20
2.4.10 Liberty support . 21
2.4.11 COBOL code generation deprecation. 21

Chapter 3. Getting started with business rules . 23
3.1 Overview of the example used in this chapter . 24

3.1.1 Business scenario . 24
3.1.2 Business model. 24
3.1.3 Scenario rule model . 24
3.1.4 Project structure of a business rule on z/OS. 25
© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. iii

3.2 Getting started from a COBOL copybook . 25
3.2.1 Scenario overview. 25
3.2.2 Creating a rule project. 27
3.2.3 Creating COBOL XOM from a COBOL copybook. 28
3.2.4 Creating a business object model from the Java XOM. 35
3.2.5 Declaring ruleset parameters . 38
3.2.6 Adding BOM methods and mapping them to the XOM. 43
3.2.7 Creating the ruleflow . 50
3.2.8 Authoring rules . 53
3.2.9 Preparing the rule execution . 56
3.2.10 Building a COBOL application for rule execution . 64

3.3 Getting started from an existing rule project . 67
3.3.1 Scenario overview. 67
3.3.2 Generating a copybook from the BOM . 70
3.3.3 Deploying rule artifacts to zRule Execution Server for z/OS. 76
3.3.4 Building a COBOL application for rule execution . 78

Chapter 4. Managing business decisions through the full lifecycle 81
4.1 What is the lifecycle of rule artifacts in decisions . 82
4.2 Working with rules through the lifecycle . 83

4.2.1 Managing artifacts. 85
4.2.2 What roles are involved in the decision lifecycle. 86

4.3 Sharing decision artifacts between z/OS and a distributed environment 88
4.4 Installation topologies for Decision Center . 89

4.4.1 Basic topologies . 90
4.5 Managing artifacts through the lifecycle . 91

4.5.1 Rule Designer . 91
4.5.2 Decision Center . 93
4.5.3 Business Console . 94
4.5.4 REST API . 94
4.5.5 Deployment scripts . 95

4.6 Usage of defined rules . 95

Chapter 5. Invoking Operational Decision Manager from COBOL and PL/I clients . . 97
5.1 Designing the decision interface . 98
5.2 Coding the COBOL or PL/I client application . 98

5.2.1 HBRWS header structure . 99
5.2.2 HBRCONN API call. 101
5.2.3 HBRRULE API call . 101
5.2.4 HBRDISC API call. 101

5.3 Mapping from the COBOL copybook . 102
5.3.1 Structure of a COBOL-based rule project . 102
5.3.2 Supported COBOL and PL/I data types . 103
5.3.3 Creating custom converters . 103
5.3.4 Mapping level-88 constructs into BOM domain types . 105

5.4 Changing the client application to reach the rule server . 108
5.4.1 Batch application. 108
5.4.2 IMS application . 108
5.4.3 CICS application . 108
5.4.4 WebSphere Optimized Local Adapters batch application. 109

Chapter 6. Advanced topics for decision authoring . 111
6.1 Starting from an existing Java based BOM project . 112

6.1.1 Mapping Java data structures to COBOL . 112
iv Flexible Decision Management with Business Rules on IBM z Systems

6.2 Extending the capability of the rule execution with BOM methods 114
6.2.1 Preferred practices for using virtual methods . 115

6.3 Augmenting ruleset parameters from external data sources. 117
6.3.1 Preferred for providing rule execution data . 117
6.3.2 Approaches to providing data from external sources . 117

6.4 Considerations for sharing rules between z/OS and distributed applications 119
6.4.1 Sharing a COBOL or PL/I-based project with Java applications. 120
6.4.2 Sharing a Java BOM-based project with COBOL applications on z/OS 120

6.5 Authoring considerations for performance . 121

Part 2. System configuration . 123

Chapter 7. Prerequisites and considerations before you start. 125
7.1 Runtime environments on z/OS . 126

7.1.1 Configuring the run times . 126
7.1.2 Prerequisite checklist . 127

7.2 Teams needed for installation and configuration . 128
7.3 Gathering the customizable information . 129

Chapter 8. zRule Execution Server for IBM z/OS stand-alone server 131
8.1 Running on z/OS stand-alone . 132

8.1.1 Configuring the stand-alone zRule Execution Server for z/OS 132
8.1.2 Creating data sets for the zRule Execution Server for z/OS instance. 133
8.1.3 Creating the working data sets using HBRUUPTI. 134
8.1.4 Creating the working directories in UNIX System Services 135

8.2 Configuring the stand-alone zRule Execution Server for z/OS 136
8.2.1 Defining a new subsystem for zRule Execution Server for z/OS 136
8.2.2 Creating the started tasks (HBRXMSTR) . 136
8.2.3 Securing the zRule Execution Server for z/OS for z/OS resources 137
8.2.4 Starting the new instance . 142
8.2.5 Logging on . 143

8.3 Setting up the database connection as a Type 2 connection 145
8.3.1 Setting up a type 2 configuration for the console . 146
8.3.2 Updating the database parameters in HBRPSIST . 146
8.3.3 Setting up the DB2 identifying file . 146
8.3.4 Updating the PARM members . 146

Chapter 9. zRule Execution Server for z/OS embedded server 147
9.1 Introduction to the embedded server . 148
9.2 Move the decisions to the data . 148
9.3 When to choose embedded over stand-alone server . 149

9.3.1 Other benefits of the embedded zRES . 149
9.4 Configuring zRES embedded . 150

9.4.1 Batch control statements . 150
9.4.2 Preparing the batch job for the embedded server. 150
9.4.3 Executing zRES embedded . 150
9.4.4 Troubleshooting . 151

9.5 Not connecting to a console . 151

Chapter 10. Configuring IBM CICS to work with Operational Decision Manager . . . 153
10.1 Configuring CICS to invoke a stand-alone zRule Execution Server for z/OS 154

10.1.1 Creating working data sets for CICS. 154
10.1.2 Defining the required resources . 155
10.1.3 Updating the GRPLIST parameter . 155
 Contents v

10.1.4 Updating the CICS JCL. 155
10.1.5 Starting zRES and CICS. 156
10.1.6 Installing HBRGROUP . 156
10.1.7 Testing the configuration. 156
10.1.8 Automatically connecting CICS to a running zRES instance 156
10.1.9 Deploying and running the installation verification program 157

10.2 Configuring zRES to run in a CICS JVM server . 157
10.2.1 Creating working data sets for CICS. 158
10.2.2 Submitting jobs within the SHBRJCL working data set. 159
10.2.3 Adding ++CICSLIST++ to the CICS system initialization table 160
10.2.4 Setting the JVMPROFILEDIR . 160
10.2.5 Changing the CICS region JCL. 160
10.2.6 Providing a console for the zRule Execution Server . 160
10.2.7 Scenario for installation verification. 161
10.2.8 Security for the zRES on CICS JVM server . 161
10.2.9 CEDA installation of HBRGROUP resources . 161
10.2.10 Database connect for the CICS region . 161
10.2.11 Initializing the zRES in the CICS JVM server . 161
10.2.12 Deploying the installation verification program . 162

10.3 Working with multiple CICS JVM servers . 163
10.3.1 Using the same JVM profile and working directory . 164

10.4 Rule-owning regions and application-owning regions. 164
10.4.1 Cost effectiveness. 165
10.4.2 Create working data sets for the AOR region . 165
10.4.3 Define the required CICS connection resources. 166
10.4.4 Customize the HBRCSD JCL to use a remote server program 166
10.4.5 Define the required resources. 167
10.4.6 Edit the HBRCICSZ file to specify a remote target Rule Execution Server. . . . 167
10.4.7 Updating the GRPLIST parameter . 167
10.4.8 Updating the CICS JCL. 167
10.4.9 Installing HBRGROUP . 168
10.4.10 Testing the configuration. 168
10.4.11 Further information about configuring an AOR and ROR 168

Chapter 11. Configuring IBM IMS to work with Operational Decision Manager 169
11.1 IMS and Operational Decision Manager . 170
11.2 Configuration. 170

11.2.1 BMP and DL/I . 171
11.2.2 Message processing region . 171

11.3 IMS and Rule Execution Server on WebSphere Application Server for z/OS. 172

Chapter 12. Liberty Application Server on IBM z/OS . 173
12.1 Introduction . 174
12.2 Liberty on z/OS and Java . 174

12.2.1 Reasons to use Java on z/OS . 174
12.2.2 Collocation . 174
12.2.3 Management . 175
12.2.4 Security . 175
12.2.5 Transactions . 175

12.3 Operational Decision Manager running on Liberty on z/OS 175
12.3.1 Capabilities that can run in Liberty on z/OS . 175

12.4 Installation and configuration of Liberty. 175
12.4.1 A couple of subdirectories of interest . 176
vi Flexible Decision Management with Business Rules on IBM z Systems

12.4.2 Useful environment variables . 176
12.4.3 Creating the server . 177
12.4.4 The directory structure . 178
12.4.5 Liberty configuration files . 178

12.5 Running Liberty . 179
12.5.1 Using started tasks . 179
12.5.2 Starting and stopping a Liberty Server as a started task 180

12.6 Configuring Operational Decision Manager to run with Liberty 180
12.6.1 Configuration jobs . 180
12.6.2 The server.xml file. 181
12.6.3 Security profiles for Operational Decision Manager on Liberty 181
12.6.4 Connecting to the persistent store . 181
12.6.5 Enabling the Operational Decision Manager applications in Liberty 181

Chapter 13. Configuring IBM WebSphere Optimized Local Adapters support 183
13.1 Overview of WebSphere Operational Local Adapters. 184

13.1.1 Configuring WOLA . 184
13.1.2 JCL variables for using WOLA . 184

13.2 Configuration of WebSphere Application Server to use WOLA 184
13.3 Batch programs and Rule Execution Server using WOLA on z/OS 190
13.4 CICS and Rule Execution Server using WOLA on z/OS. 190
13.5 IMS and Rule Execution Server using WOLA on z/OS. 191

Chapter 14. Configuring Decision Warehousing . 193
14.1 Introducing the Decision Warehouse . 194
14.2 Configuring the Decision Warehouse . 194

14.2.1 Setting up the database resources . 194
14.2.2 Enabling ruleset monitoring . 194

14.3 Viewing the results of running with Decision Warehousing enabled 199
14.3.1 Execute the appropriate ruleset . 199
14.3.2 Viewing the results . 200

Chapter 15. Configuring the Rule Execution Servers for IBM z/OS console with virtual
IP addressing . 203

15.1 Overview of a multiple LPAR environment . 204
15.1.1 Hot deployment of rules in Operational Decision Manager. 204
15.1.2 Cold deployment of rules in Operational Decision Manager 205

15.2 Using virtual IP addressing to allow more than one zRules console to be used. . . . 205
15.2.1 What happens if the LPAR that hosts the zRules console fails 206
15.2.2 Using virtual IP addressing . 206
15.2.3 How VIPA maintains hot deployment . 207

Chapter 16. Configuring Operational Decision Manager to collect execution data using
SMF . 213

16.1 Overview . 214
16.2 Operational Decision Manager use of SMF . 214
16.3 Record format . 215

16.3.1 SMF header . 215
16.3.2 ODM header . 216
16.3.3 ODM exec segment . 217

16.4 Implementation . 217
16.5 Configuration. 218
16.6 Troubleshooting . 219
16.7 Formatting SMF output . 219
 Contents vii

Chapter 17. Problem determination. 223
17.1 Performance . 224
17.2 MustGather . 224

Part 3. Appendixes . 225

Appendix A. Calling out from a ruleset to a Virtual Storage Access Method file to
augment data. 227

Appendix B. Configuring runtime values by using variables defined in HBRINST . 231
B.1 Rules z/OS . 232
B.2 CICS . 233
B.3 CICS JVM server . 234
B.4 IMS . 234
B.5 DB2 database . 234
B.6 WebSphere Application Server. 236
B.7 WebSphere Optimized Local Adapters script parameters . 237
B.8 WebSphere Application installation script parameters . 237
B.9 Subsystem ID used by COBOL management . 238
B.10 WebSphere Application Server Liberty Profile . 238

Appendix C. Additional material . 239
Locating the web material . 239

Downloading the web material . 239

Abbreviations and acronyms . 241

Related publications . 243
IBM Redbooks . 243
Other publications . 243
Online resources . 243
Help from IBM . 244
viii Flexible Decision Management with Business Rules on IBM z Systems

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
CICS®
CICSPlex®
DB2®
IBM®
IBM z™
IBM z Systems™
ILOG®

IMS™
MVS™
Orchestrate®
OS/390®
RACF®
Rational®
Redbooks®
Redpaper™

Redbooks (logo) ®
System z®
TXSeries®
WebSphere®
Worklight®
z Systems™
z/OS®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
x Flexible Decision Management with Business Rules on IBM z Systems

http://www.ibm.com/legal/copytrade.shtml

IBM REDBOOKS PROMOTIONS
Find and read thousands of
IBM Redbooks publications

Search, bookmark, save and organize favorites

Get up-to-the-minute Redbooks news and announcements

Link to the latest Redbooks blogs and videos

Download
Now

Get the latest version of the Redbooks Mobile App

iO
S

Android

Place a Sponsorship Promotion in an IBM
Redbooks publication, featuring your business
or solution with a link to your web site.

Qualified IBM Business Partners may place a full page
promotion in the most popular Redbooks publications.
Imagine the power of being seen by users who download
millions of Redbooks publications each year!

®

®

Promote your business
in an IBM Redbooks
publication

ibm.com/Redbooks
About Redbooks Business Partner Programs

IBM Redbooks promotions

http://bit.ly/redbooksapp
http://bit.ly/1bvYuMM
http://bit.ly/1lCxuBG
http://ibm.co/1maZVrw

THIS PAGE INTENTIONALLY LEFT BLANK

Preface

The IBM® Operational Decision Manager product family provides value to organizations that
want to improve the responsiveness and precision of automated decisions. This decision
management platform on IBM z/OS® provides comprehensive automation and governance of
operational decisions that are made within mainframe applications. These decisions can be
shared with other cross-platform applications, providing true enterprise decision
management.

This IBM Redbooks® publication makes the case for using Operational Decision Manager for
z/OS and provides an overview of its components. It is aimed at IT architects, enterprise
architects, and development managers looking to build rule-based solutions. Step-by-step
guidance is provided about getting started with business rules by using a scenario-based
approach. This book provides detailed guidelines for testing and simulation and describes
advanced options for decision authoring. Finally, it describes and documents multiple runtime
configuration options.

Authors

This third edition of this IBM Redbooks publication was produced by a team working at the
IBM International Technical Support Organization, Raleigh Center.

Third edition: This third edition, SG24-8014-02, of this IBM Redbooks publication updated
the information presented in this book to reflect function available in IBM Operational
Decision Manager for z/OS Version 8.7.1.

Mark Hiscock is the Operational Decision Management
development team lead for z/OS based in Hursley, UK. He joined
IBM in 1999 and holds a first class degree in Computer Science
from the University of Portsmouth. He has over 10 years experience
working in mainframe development on products such as: ODM,
IBM WebSphere® MQ, IBM CICS®, IBM DB2®, WebSphere
Message Broker, and IBM WebSphere Application Server.

Guy Hindle is the team lead for Operational Decision Manager on
z/OS development based in the IBM Hursley development
laboratory in the UK. He has worked in IBM for 20 years and in IT
for over 25 years. Previous IBM roles include team lead, software
development, test, and education roles on projects including
application software development, middleware, and services
engagements. Before joining IBM, he developed application
generation tools for HR solutions and tools for corporate
management accounting. His expertise is in usability, software
application design, and database development.
© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. xiii

Thanks to the authors of the first and second editions of this book: Chris Backhouse, Andy
Flatt, Fiona Crowther, Janet Wall, Sebastien Brunot, Pierre Feillet, Youngxin Pan, and Wand
Wenjie. We thank them for their excellent work, much of which is still contained in this third
edition.

Mike Johnson is a senior developer for Operational Decision
Manager on z/OS in the IBM Hursley development laboratory in the
UK. In this role, he also acts as an ambassador for Operational
Decision Manager at various technical conferences. He has a
number of patents and publications and was one of the authors of
the first edition of this publication. Mike holds a Combined Honours
degree in Computing and Statistics from Aston University. He has a
particular interest in Ergonomic Design and has over 25 years
working in integration software.

Tim Wuthenow is an IT Specialist for WebSphere on
IBM z™ Systems. He holds a degree in Chemical Engineering from
North Carolina State University. His area of expertise is in the
configuration of WebSphere Operational Decision Management on
z/OS and CICS. He developed numerous client demonstrations
using the new capabilities of WebSphere Operational Decision
Management within the CICS and z/OS environments. He was also
one of the authors of the first edition of this publication.

James Taylor is an FVT lead for Operational Decision Manager on
z/OS. Performing this work, he is often the first to test drive new
function developed for the product on z series. During the 14 years
he has worked for IBM (at the Hursley Laboratory, UK), he
performed a diverse set of roles ranging from leading the
documentation team for CICS Transaction Gateway and
IBM TXSeries® to designing the user experience of IBM
Worklight®, the IBM mobile development platform.

David Griffiths is a senior member of the Operational Decision
Manager on z/OS development team based in the Hursley
development laboratory. After obtaining a degree in Physics at
Manchester University, David started programming in 1977 for
Marconi Radar and among many other things, worked as a UNIX
kernel developer, ported Java to NeXTSTEP and RiscOS before
joining the team porting Java to IBM OS/390® at IBM in 1998.

Graeme Everton is a member of the development team for
Operational Decision Manager on z/OS, based in the IBM Hursley
development laboratory in the UK. He has worked for IBM for nine
years and in IT for 20 years. Previously, he worked in Development
Operation Infrastructure for IBM z Systems™ Build Team and
before joining IBM, he worked as a Mobile Telecoms Technical
Consultant, a University Computer Systems Manager, IT Support
Engineer, and ran his own Mobile Computer Support company.
xiv Flexible Decision Management with Business Rules on IBM z Systems

The third edition of this IBM Redbooks publication project was led by:

Rufus P. Credle Jr., IBM Consulting IT Specialist and Information Developer
International Technical Support Organization, Raleigh Center

Thanks to the following person for her contribution to this project:

Emi Nakamura is an information developer for Operational Decision Manager. She was a
translation coordinator for Operational Decision Manager before becoming an information
developer two years ago. She worked on the product for more than 10 years as a translator, a
translation coordinator, and an information developer.

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

https://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xvi Flexible Decision Management with Business Rules on IBM z Systems

http://www.facebook.com/IBMRedbooks
https://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html
https://twitter.com/ibmredbooks
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

Part 1 IBM z Systems with
business rules

This part describes IBM Operational Decision Manager for z/OS and contains the following
chapters:

� Chapter 1, “The case for IBM Operational Decision Manager” on page 3

� Chapter 2, “IBM Operational Decision Manager for z/OS” on page 11

� Chapter 3, “Getting started with business rules” on page 23

� Chapter 4, “Managing business decisions through the full lifecycle” on page 81

� Chapter 5, “Invoking Operational Decision Manager from COBOL and PL/I clients” on
page 97

� Chapter 6, “Advanced topics for decision authoring” on page 111

Part 1
© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 1

2 Flexible Decision Management with Business Rules on IBM z Systems

Chapter 1. The case for IBM Operational
Decision Manager

This chapter introduces the concept of operational decision management and describes
using IBM Operational Decision Manager for z/OS to address the agility needs of enterprise
CICS, IBM IMS™, and batch COBOL or PL/I applications.

The following topics are covered in this chapter:

� 1.1, “What Operational Decision Manager is” on page 4
� 1.2, “Operational Decision Manager for z/OS” on page 6
� 1.3, “Where Operational Decision Manager for z/OS can be used” on page 7
� 1.4, “Who deploys Operational Decision Manager for z/OS?” on page 8

1

© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 3

1.1 What Operational Decision Manager is

Smarter business outcomes require the ability to quickly adapt to change. But corporate
leadership in every industry is struggling to keep pace with change whether it is driven by
regulatory, market, or customer forces. These changes directly affect the corporation’s
business policies and the business decisions that are required to consistently apply business
policies.

For example, a bank might have a lending policy stating, “Customers whose credit rating is
above average are entitled to a discounted rate on their loan”. The traditional application
development lifecycle requires a business analyst to document the detailed requirements and
to design and develop this policy into one or more business applications. Then, one or more
developers take those requirements and code or embed the decisions into the various
application programs. The application development is then followed by a lengthy testing
process. Unfortunately, the decisions are now hidden in the code of one or more programs,
and over time as additional changes are added to the business policy, the code becomes
more complex, making changes and auditability difficult.

Decision management is an important capability for delivering agile business solutions.
Decision management is the “business discipline, supported by software that enables
organizations to automate, optimize, and govern repeatable business decisions improving the
value of customer, partner, and internal interactions.” Decision management is the tool to help
corporations accelerate their reaction to the pace of the growing complexity of business
changes.

Accurate real-time business decisions provide many benefits within an organization. Better
decisions help companies identify opportunities for increased revenue and profitability, such
as in marketing and sales. Better decisions also help companies enforce compliance with
external and internal policies, such as in claims processing or eligibility determination. Finally,
better decisions help companies manage and reduce risk, such as with fraud detection and
credit approvals.

1.1.1 Common business decisions that require managing

There are, generally speaking, three types of decisions that are found in most businesses that
would benefit from better management:

� Decisions that help increase revenue:

– This type includes decisions that are used by marketing and sales to make targeted
offers based on customer profiles, demographics, and analytical models.

– For example: Is a customer eligible for a certain promotion or a cross-sell or up-sell
opportunity? Should a store discount the price of a product at the end of the day?

� Decisions around consistency and compliance with regulations:

– This type of decision can be found in all industries, such as financial, insurance, and
government sectors.

– For example: Are there prohibitions against a customer buying a certain quantity of a
product? Is a customer eligible to make a certain purchase based on where she is
located?

Business policy: A business policy is a statement of guidelines, which is implemented via
business decisions.
4 Flexible Decision Management with Business Rules on IBM z Systems

� Decisions that reduce and mitigate risk:

– The third type of decision includes those decisions that help reduce and mitigate risk.

– For example: Does the customer who just filled out a loan application online meet the
criteria to be approved?

Businesses must make one or all of these types of decisions, many times a day, ensuring they
are made correctly and consistently according to their business policies.

The objective of this book is to describe how Operational Decision Manager for z/OS can be
used to implement decision management in the CICS, IMS, and batch COBOL or PL/I
applications of an organization.

1.1.2 Where are most decisions made today?

The traditional approach to decision making requires a business analyst to understand the
business policies and create a requirements document, which defines the decisions to be
made. Then, one or more software developers take the requirements and code or embed the
decisions into the various application programs that support the business. This is achieved by
coding business rules into the chosen application programming language.

The application development is then followed by a lengthy testing process before the new
decisions become live in production.

Unfortunately, the decisions are now hidden in the code of one or more programs, and over
time as additional changes are added to the business policy, the code becomes more
complex, making it difficult to change, hard to visualize, and nearly impossible to manage.
The decisions can change frequently or rarely and changing a program to change the
decision, testing it, and getting it into production is not fast enough in today’s business
environment.

This scenario can be avoided by implementing a decision management solution, which takes
the decisions out of code and places them in a central repository. This makes the decisions
more flexible, visible, auditable, and manageable. This is illustrated in Figure 1-1.

Figure 1-1 The decision logic is moved out of code and into a decision manager

Note: Business decisions are made by evaluating one or more business rules.
Chapter 1. The case for IBM Operational Decision Manager 5

Not all decisions are equal and some are more applicable for decision management than
others. The following decisions are best suited:

� Those decisions that must be changed frequently to support the business

Decision management avoids costly application code changes.

� Those decisions that are duplicated in multiple applications running on multiple platforms

Decision management implements the decision once and stores it centrally, allowing it to
be called from multiple applications.

� Those decisions that must be visible for business purposes

Decision management allows decisions to be shared easily with lines of business or
regulatory auditors.

The next section introduces IBM Operational Decision Manager for z/OS and explains how it
can be used to implement a decision management solution on z/OS.

1.2 Operational Decision Manager for z/OS

Organizations embark on application modernization projects to enable their core
IBM z Systems business applications to respond rapidly to emerging opportunities. First,
these business applications must be understood in terms of the business decisions they
implement and the effect of decision changes on key business processes.

Organizations can efficiently implement application modernization projects by incrementally
externalizing their business decisions from COBOL or PL/I applications and moving them into
a decision management system. Most companies begin using Operational Decision Manager
with one or possibly two business decisions at a time. Taking an incremental approach with
decision management in core business applications provides organizations with a return on
investment (ROI) in the first phase of their projects. An incremental approach also avoids
embarking on a lengthy, labor-intensive “rip and replace” project. It finally enables the team to
understand the design and management techniques of decision management.

Operational Decision Manager combines the authoring, testing, and management of business
rules that are required for implementing business decisions. Operational Decision Manager
enables organizations to adapt incrementally the business decisions in their mainframe
applications while avoiding lengthy application development cycles.

Operational Decision Manager offers the following features:

� A set of tools for business users, administrators, and developers to edit and manage rules

� A powerful decision engine to execute business decisions

� A robust decision repository to centrally host the business decisions

� An extensive library to define and extend the decision execution and management
environment

Applying Operational Decision Manager to application modernization projects can
incrementally address projects in the following areas:

� Effective application maintenance: z/OS development teams need to address their long list
of maintenance projects for their core COBOL or PL/I business applications. If a
maintenance project requires updates to the decisions that are implemented in a specific
application, redesign those rules in Operational Decision Manager for enhanced ongoing
management.
6 Flexible Decision Management with Business Rules on IBM z Systems

� Consolidating or restructuring existing applications: Most organizations have duplicate
functionality in multiple applications, which causes a company to spend more time and
resources maintaining applications than is necessary. Consolidation combines the same
functionality into a single core business application. Using Operational Decision Manager
technology for these modernization projects centralizes the business decisions that were
previously duplicated.

� Sharing business decisions across applications and platforms. This area is an effective
way to obtain a higher ROI. Operational Decision Manager for z/OS provides the tooling to
design business decisions for your COBOL and PL/I applications that can be reused
across z/OS and distributed platforms.

1.3 Where Operational Decision Manager for z/OS can be used

Operational Decision Manager for z/OS provides intelligent and responsive decision
management for mainframe applications. It enables organizations to build solutions that can
automate the decision response to transactional and process-oriented business systems.

The decisions are translated into business rules, which are the detailed conditions and
actions that unambiguously enforce the business decision. The business rules state in detail
the circumstances under which the decision is applicable and the actions that enforce it.
Business decisions can be defined that result in new application behaviors, offering a quick
and productive route to enhance the business responsiveness of CICS, IMS, and batch
operations. Also, the business owner can be in control of the management of business
decisions and at the same time good governance and change management can be enforced.

Designing, maintaining, testing, implementing, and managing business decisions within
Operational Decision Manager provides the following benefits:

� A convenient communication channel between IT and business teams
� Easy implementation and reuse of business decisions across the enterprise
� Flexible options for progressive IT modernization

Operational Decision Manager for z/OS can benefit your organization in many ways:

� Customer relationship: By improving customer interaction and personalization:

– Achieve finer-grained personalization in customer interactions. Business rules enable
business users to implement more tailored promotions, pricing, risk models, and so on,
therefore, increasing the precision and personalization of operational decisions.

– Move decision making to the point of contact with customers and enable enterprises to
deploy decisions at the contact point with customers and improve consistency in
decisions about customers and customer interaction.

� Enterprise processes: By improving business alignment, compliance, and transparency:

– Achieve high pass-through rates in process automation. Centrally managing business
decisions enables you to streamline processes and helps you achieve higher levels of
automation and higher pass-through rates by externalizing decisions and automating
more complex decisions.

– Maximize decisions for resources, risk, and value. Managed business decisions enable
businesses to tie sources of insight (from historical data, predictive knowledge,
simulation, and events) and decision automation capabilities to achieve consistently
better business outcomes and maximize resources and value.
Chapter 1. The case for IBM Operational Decision Manager 7

� Business agility and speed: By improving business-led agility and responsiveness:

– Empower business users to manage and improve decisions. Managed business
decisions provide an agile platform to enable business users to manage decisions and
changes in a short time frame.

– Shorten response time to changing market conditions.

– Increase enterprise responsiveness to unforeseen events, as well as shortened
response time and time-to-business due to higher levels of automation.

1.4 Who deploys Operational Decision Manager for z/OS?

For a team to be effective, it is necessary to have the right set of skills in, or available to the
team, for consultation. As stated in the IBM Redpaper™ publication Making Better Decisions
using WebSphere Operational Decision Management, REDP-4836, the responsibility for
specifying and managing the business is considered from the point of view of the business
roles:

� Business analysts are responsible for specifying how the business needs to behave,
identifying key performance indicators (KPIs) that reflect how well the business is doing,
and defining the processes and decision points that are needed to manage the business.

� Line-of-business (LOB) users are responsible for the day-to-day management of the
business using the solutions. They are responsible for monitoring the KPIs and modifying
the way that decisions are made in order to optimize the business. In a decision
management solution, these roles have the responsibility for optimizing decisions to meet
the business need.

� Users are responsible for using the solution, and need to consider the solution from a
consumability and process-efficiency perspective. In many cases, the user role might be
the subject of KPIs that the solution is designed to support.

The responsibility for the delivery and maintenance of these systems lies with the IT
department. When embarking on a project using Operational Decision Manager technology,
there are new and expanded project roles. There are several key roles to include in these
projects:

� Application subject-matter expert (SME)

An SME on the application that is being modernized is an essential member of the team.
This individual provides awareness of the programming styles in use and an
understanding of the role that the application serves. Ideally, this SME is aware of the
application’s programming history, including the original purpose and design and how the
application changed over time.

� Enterprise architect

The enterprise architect can provide valuable context for the application’s role in the
business decisions that are managed.

� Business rule analyst/rule designer

This role understands the business decisions and rules for the new implementation. This
person provides input to the new design of the rules. This role is normally combined with
the business rule designer/implementer.

� Business object modeler

This role defines the business object model for the target application and maps the
COBOL or PL/I structures to business-friendly vocabulary.
8 Flexible Decision Management with Business Rules on IBM z Systems

� Business rule repository administrator

This role is responsible for ensuring that the business object model and rules are defined
consistently for all phases of the project and ensures that the rules can be shared across
platforms.

� Business rule miner

This role is optional. Normally, this person is the COBOL or PL/I developer, or a technical
business analyst, responsible to “drive through the code” to identify the candidate
business rules. This person enters them in the rule authoring user interface.

Operational Decision Manager for z/OS provides the ability for all the roles shown here to
participate in the creation, maintenance, and execution of the business decisions.

In Chapter 2, “IBM Operational Decision Manager for z/OS” on page 11, the multiple rule
authoring and execution capabilities offered by Operational Decision Manager for z/OS are
explained. It highlights the power of using Operational Decision Manager for z/OS when
adopting a business rules approach for application modernization on mainframe systems.
Chapter 1. The case for IBM Operational Decision Manager 9

10 Flexible Decision Management with Business Rules on IBM z Systems

Chapter 2. IBM Operational Decision
Manager for z/OS

This chapter provides an overview of how IBM Operational Decision Manager provides first
class decision management capabilities on z/OS.

The following topics are covered in this chapter:

� 2.1, “Operational Decision Manager for z/OS overview” on page 12
� 2.2, “Decision Center for z/OS” on page 14
� 2.3, “Decision Server for z/OS” on page 15
� 2.4, “New in Operational Decision Manager Version 8.7.1” on page 19

2

© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 11

2.1 Operational Decision Manager for z/OS overview

Operational Decision Manager for z/OS provides a smarter way for dealing with business
decisions. It is designed to help organizations gain more control and visibility over the
business decisions that take place in their enterprise applications. Businesses that use
Operational Decision Manager for z/OS will simplify their ability to create and make changes
to decisions required by enterprise applications. This enables them to cut costs and cycle
times, improve their agility and time to market, and enhance their visibility of business
decisions and the governance of those decisions.

Operational Decision Manager for z/OS can deliver these advantages to enterprise users
because it enables the separation of the decision logic from business application code and
processes.

2.1.1 Operational Decision Manager for z/OS capabilities

The Operational Decision Manager product family provides value to organizations that want
to improve the responsiveness and precision of automated decisions on z/OS and distributed
applications. On z/OS, this decision management platform provides comprehensive
automation and governance of the operational decisions that are made within mainframe
applications.

Operational Decision Manager for z/OS consists of two orderable products, illustrated in
Figure 2-1 on page 13, which together form a platform for the management and execution of
business rules:

� IBM Decision Center for z/OS provides an integrated repository and management
components for line-of-business (LOB) subject matter experts (SMEs) to directly
participate in the governance of business rule-based decision logic. Through the
capabilities of the Decision Center, business and IT functions can work collaboratively.
They align the entire organization in the implementation of automated decisions and
accelerate the maintenance lifecycle as they evolve, based on new external and internal
requirements.

Decision Center provides the following features:

– Comprehensive decision governance, including role-based security, custom metadata,
multiple branch release management, non-technical testing and simulation, and
historical reporting.

– Team collaboration through multiple user access for business users and integrated
synchronization between IT and business user environments.

Decision Center packaging includes these environments and tools:

– Decision Center Enterprise console for advanced authoring.
– Decision Center Business console for business users.
– Decision Center repository for centrally storing rules.
– Rule Solutions for Office for authoring rules in Microsoft Office.

For additional information about Decision Center for z/OS, see 2.2, “Decision Center for
z/OS” on page 14.

� IBM Decision Server for z/OS provides the runtime components to execute rule-based
decision logic on mainframe systems. This product enables exact decisions to be made
based on the context of each interaction.
12 Flexible Decision Management with Business Rules on IBM z Systems

With Decision Server for z/OS, an organization can process a business decision against
hundreds or even thousands of business rules to determine how to respond within both
front-end and back-end systems.

This product includes these components:

– Decision Server run times

These run times are designed to handle the unique aspects of business rule execution.
Decision Server for z/OS offers several mainframe runtime options for CICS, IMS, or
batch applications. These options allow development teams to choose a deployment
strategy that best fits their mainframe applications and architecture.

– Development tooling

Rule Designer provides an application development environment for authoring
business rules. It is used as the starting point to create a model on which the business
rules are authored. Rule Designer is the Eclipse-based development toolkit for
business rules. It is installed on a workstation.

For additional information about the runtime options that are available in Decision Server
for z/OS, see 2.3, “Decision Server for z/OS” on page 15.

Figure 2-1 Overview of Operational Decision Manager for z/OS
Chapter 2. IBM Operational Decision Manager for z/OS 13

2.2 Decision Center for z/OS

Decision Center for z/OS provides an integrated repository and the management
components for LOB SMEs to directly participate in the governance of decision logic.
Through the capabilities of Decision Center, business and IT functions can work
collaboratively. Decision Center helps you to align the entire organization in the
implementation of automated decisions. It helps you to accelerate the maintenance lifecycle
as the automated decisions evolve based on new external and internal requirements.

2.2.1 Features

Decision Center is the central hub that coordinates the decision lifecycle across the business
and IT parts of your organization. It provides the following features for business users to
manage their decisions:

� Rule authoring

Decision Center includes editors for authoring business rules and decision tables. These
editors are made available via a web console.

� Rule synchronization between users and developers

Synchronization is the key to collaborative work between business and IT users. You can
adopt a developer-centric or a business user-centric approach to managing
synchronization.

� Rule review and management

In the Decision Center consoles, business users can run queries and publish reports on
the content of their projects. Decision Center provides ways to customize how business
users can view the items in their projects with smart folders. Business users can also
manage releases and work with branches and baselines.

� Rule validation

Decision Center provides tools for validating that decisions are implemented as expected.
For business rules, Decision Center provides testing and simulation of rulesets.

� Rule deployment

Following verification, you can deploy your decision logic as rule applications to the
production system.

� Administration

After you configure Decision Center, you perform several regular administrative tasks to
provide optimum service to the business users.

Decision Center runs inside WebSphere Application Server for z/OS and can reside on z/OS
or Linux for z Systems. It can be deployed, as well, in a distributed environment to edit the
business rules. It can be configured to deploy those rules to a Decision Server running on
z/OS.

2.2.2 Decision Center consoles

Operational Decision Manager for z/OS provides two consoles as web-based applications
called the Business console and the Enterprise console. These are the primary methods for
business users to edit and author business rules. The Business console is aimed at business
subject matter experts who manage and govern lifecycle of decisions. Whereas the
Enterprise console functionality is for advanced business analysts and administrators to fully
14 Flexible Decision Management with Business Rules on IBM z Systems

develop, manage, and govern decisions. All decision-authoring assets accessed via these
consoles are versioned and persisted in an underlying database repository as shown in
Figure 2-2.

Figure 2-2 Operational Decision Manager for z/OS environment options

For more information about the Decision Center consoles and how they are used in the full
rule lifecycle, see Chapter 4, “Managing business decisions through the full lifecycle” on
page 81.

2.3 Decision Server for z/OS

Decision Server for z/OS provides the ability to author business decisions based on COBOL
copybook or PL/I include files. It then offers a number of z/OS based execution runtimes in
which the business decisions can be executed from COBOL and PL/I applications. The
following are key elements of Decision Server for z/OS:

� Business decision development

To develop a business decision for z/OS, you design business rules independently from
the application logic. Using Rule Designer, you develop rules and create a contract
between the application and the rule execution. An application can call the rules in a
number of ways using various execution options.

� Executing business decisions on z/OS

You have a number of options to execute decisions on z/OS, which allow CICS, IMS, and
batch COBOL or PL/I applications to call the Decision Server for z/OS.

� Validation of ruleset execution on z/OS

To improve the business decisions, you can test the ruleset execution and simulate
scenarios.

Decision Server on z/OS offers multiple execution environments with and without a
WebSphere Application Server base. See 2.3.2, “Execution options for business decisions on
z/OS” on page 16, which focuses on the execution environments of Decision Server.
Chapter 2. IBM Operational Decision Manager for z/OS 15

2.3.1 Rule Designer

Rule Designer is used for the base rule authoring. This tooling is Eclipse-based and installed
on a workstation. It cooperates with the Decision Center, which is installed on a distributed
operating system or on WebSphere Application Server installed on z/OS.

This split-platform configuration enables users to implement full business rule management
system (BRMS) functionality with the ability to define a business object model from COBOL or
PL/I definitions, run and test rules on COBOL or PL/I data, and call the rule engine from
existing CICS, IMS, and batch applications. Users who want to eliminate the duplication of
application functionality on z/OS and distributed applications can consolidate applications
and identify the rules that they can share between the two platforms.

The inclusion of COBOL and PL/I management in Rule Designer enables users to author
rules and develop object models that can be shared with COBOL, PL/I, and Java applications.
Developers import a COBOL or PL/I executable object model (XOM) from a copybook or
include file and create a Java XOM along with a marshaller project to provide the mapping
between Java and either COBOL or PL/I.

You do not have to re-engineer or rewrite an entire COBOL or PL/I application to start
managing the business rules for your z/OS applications. You can base the scope of your rules
on one, or a combination, of the following objects:

� A set of rules for a specific region, territory, or type of customer
� A process or subprocess within a z/OS application
� As a replacement for rules that might be hardcoded in your COBOL application

A rule-authoring environment is set up in the Rule Designer. Rule projects are created in the
Rule perspective.

This rule project can be synchronized with Decision Center to be shared with business users
who want to edit the rules. Alternatively, it can be deployed straight from Rule Designer to the
Decision Server running on z/OS.

2.3.2 Execution options for business decisions on z/OS

When it comes to deployment, Operational Decision Manager for z/OS does not impose a
rigid architectural or technical choice for business rule execution. Instead, it provides a set of
options of which you can take advantage of, depending on your strategy, application, and
architectural preferences.

Operational Decision Manager provides three options for running the Decision Server on
z/OS:

� zRule Execution Server for z/OS (zRES)

This option provides a native integration with existing COBOL or PL/I applications. A
supplied stub program provides an API to directly execute decisions in the zRule
Execution Server for z/OS. The zRES can run in three modes:

– Stand-alone mode provides a zRES address space that can be invoked from existing
COBOL or PL/I applications by way of the supplied API stub.

– Embedded mode allows the zRES to run inside the COBOL or PL/I address space. It is
accessed using the same API stub as the stand-alone server. This mode provides local
access to the rule execution data.
16 Flexible Decision Management with Business Rules on IBM z Systems

– In IBM CICS Transaction Server for z/OS V4.2 and higher, a local execution option
uses the new Java virtual machine (JVM) server environment to host the zRES within
the CICS region.

� Rule Execution Server on WebSphere Application Server for z/OS

This option brings the full power of WebSphere Application Server for z/OS to the rule
execution on z/OS. Full high availability and scalability are provided by the underlying
application server, and the full suite of decision management services is available.
Because of the ability to consume COBOL or PL/I data structures directly, the Rule
Execution Server environment can be easily integrated with existing COBOL or PL/I
applications.

� COBOL code generation

This option is for clients who want to retain their existing application architecture and
manage their business decisions within COBOL application code. The rules in a COBOL
application can be incrementally migrated to a central business rule repository for external
management, directly by business users. Then, the rules can be generated back into
COBOL code to be inserted into and called directly from the application. This option can
also be a first step toward the incremental modernization of applications.

All of the execution options are highlighted in Figure 2-3 and all provide the following decision
management values:

� Reduced risk, disruption, cost, and time to implement change
� Better visibility and maintainability of decision logic
� Improved decision logic reuse across applications

Figure 2-3 Operational Decision Manager for z/OS rule execution options

Note: This option does not support the generation of PL/I code.

Note: A limited use entitlement for WebSphere Application Server for z/OS is included with
Decision Server for z/OS for running the Rule Execution Server.
Chapter 2. IBM Operational Decision Manager for z/OS 17

A feature comparison between zRule Execution Server for z/OS, Rule Execution Server on
WebSphere Application Server for z/OS, and COBOL code generation is shown in Table 2-1.

Table 2-1 zRule Execution Server for z/OS feature comparison

Figure 2-4 shows the detailed environment options to execute business decisions from
COBOL or PL/I applications in CICS, IMS, and batch.

Figure 2-4 All the Decision Server for z/OS execution options

Some of the features such as running the zRule Execution Server for z/OS inside the batch
address space are new since version 8.0.1. Section 2.4, “New in Operational Decision
Manager Version 8.7.1” on page 19 explains all the new features since version 8.0.1.

Feature zRule Execution
Server for z/OS
(zRES)

Rule Execution Server
(RES) on WebSphere
Application Server for
z/OS

COBOL code
generation

Execution from Java Yes Yes No

Execution from COBOL and PL/I Yes Yes, through WebSphere
Optimized Local Adapter

Yes

OOTB COBOL and PL/I marshalling Yes Yes N/A

Testing Yes Yes No

Simulation Yes Yes No

Hosted transparent decision services No Yes No
18 Flexible Decision Management with Business Rules on IBM z Systems

2.4 New in Operational Decision Manager Version 8.7.1

The previous edition of this IBM Redbooks publication, Flexible Decision Automation for Your
zEnterprise with Business Rules and Events, SG24-8014, was based on version 8.0.1 of
Operational Decision Manager for z/OS. This third edition is based on version 8.7.1 and
therefore the new capabilities that were included in versions 8.5.0, 8.5.1, 8.6.0, 8.7.0, and
8.7.1 are described in this section.

2.4.1 XOM and marshaller deployment through Decision Center

Since version 8.7.1, the XOM and marshaller JAR files associated with a Decision Service
project can now be published to Decision Center. This allows a user in the Business Console
to deploy the Decision Service, with the XOM and the marshaller, so that the Decision
Service can be executed after a single deployment.

Previously, the XOM and the marshaller were required to be deployed separately using Rule
Designer, through the RES Console or via a scripted mechanism.

2.4.2 Embedded mode

The zRule Execution Server for z/OS can run inside the batch address space since version
8.6.0. In this mode, rule execution requests access data locally in the address space, which
improves performance for long running batch jobs. This is because no cross address space
data copying is required as everything runs in the local address space.

See Chapter 9, “zRule Execution Server for z/OS embedded server” on page 147 for more
information about the new embedded mode.

2.4.3 Stand-alone console address space

Since version 8.5.1, the Rule Execution Server (RES) console has been decoupled from the
zRule Execution Server address space. The RES console can now be run and managed as
its own address space. The HBRMODE runtime variable has been updated to include a
CONSOLE mode, which allows the zRule Execution Server to run the RES console in a
stand-alone address space.

Control statements can now be used to create a topology, which includes a single console
and multiple zRule Execution Servers

2.4.4 PL/I support

The PL/I language is fully compatible with Operational Decision Manager for z/OS as of
version 8.5.1. This means that PL/I include files can be imported to generate the Java
executable object model, which is then used as the start point for the rule project.

Starting in version 8.6.0, existing Java based rule projects can be PL/I enabled, meaning that
a PL/I include file can be generated to allow PL/I programs to call existing rule projects.

2.4.5 Decision engine across the product

The decision engine is designed to improve the overall performance of rule execution. The
decision engine compiles rule artifacts into an archive that contains code that is ready to
Chapter 2. IBM Operational Decision Manager for z/OS 19

execute. The ruleset loading in the engine is faster because no code is parsed or interpreted
at run time.

The decision engine is now supported across all of the Decision Server for z/OS execution
options. It is also supported on distributed platforms since Operational Decision Manager
version 8.5.1.

2.4.6 Business console

The Business console is aimed at business subject matter experts who manage and govern
lifecycle of decisions. It is a separate interface to the Enterprise console, which provides a
simpler experience for business users. It provides a modern web interface for managing and
editing rules and testing, simulating, and deploying them.

For more information about the Business console, see Chapter 4, “Managing business
decisions through the full lifecycle” on page 81.

2.4.7 IMS preinitialization routine

IMS message processing regions (MPRs) can gain performance benefits from using the
preinitialization routine now supplied by Operational Decision Manager for z/OS since version
8.5.1. This routine issues the HBRCONN call to connect to the zRES at MPR start time. The
IMS MPR applications must still issue an HBRCONN and HBRDISC API call, but they do not
perform the full connect and disconnect routines.

2.4.8 Extended COBOL and PL/I data types

Since version 8.5.1, both COBOL and PL/I data types have been extended to include new
data types.

PL/I support
The BIT string in PL/I is now supported when you generate a PL/I XOM from a PL/I include
file. The single-bit BIT is mapped to the Java boolean type, and the multiple-bit BIT is mapped
to the Java BitSet class.

COBOL support
Char, Enum, and Map data types in Java are now supported when you generate a COBOL
copybook from an existing Java BOM. They can be mapped to COBOL data types.

2.4.9 Enhanced execution monitoring

Since version 8.6.0, the System Management Facilities (SMF) can be used to collect
execution data, such as the number of decisions that are executed by your application at run
time.

The SMF records are written by the rule execution environment, whether it is running in the
zRule Execution Server for z/OS, a CICS rule-owning region, or Rule Execution Server on
WebSphere Application Server for z/OS.

The SMF records are written as type 120 subtype 100 records. See Chapter 16, “Configuring
Operational Decision Manager to collect execution data using SMF” on page 213 for more
information about the records, their usage, and the data they contain.
20 Flexible Decision Management with Business Rules on IBM z Systems

2.4.10 Liberty support

Since version 8.7.0, the WebSphere Application Server Liberty profile for z/OS can now be
used to host the ODM Rule Execution Server console and the Hosted Transparent Decision
Service.

The WebSphere Application Server Liberty profile for z/OS provides a lightweight alternative
to the traditional WebSphere Application Server for z/OS for running ODM.

For more information, see Chapter 12, “Liberty Application Server on IBM z/OS” on page 173.

2.4.11 COBOL code generation deprecation

Instead of using generated COBOL subprograms, the preferred mechanism for rule execution
on z/OS is to deploy RuleApps to a zRule Execution Server for z/OS instance. If you are using
the COBOL code generation feature in Rules for COBOL, you can use the COBOL
Generation Project Migration wizard to migrate your rule project to a zRule Execution Server
for z/OS compatible rule project.

However, if you are continuing to use COBOL code generation, be aware that in version 8.5.0,
the COBOL code generation user interface is not displayed in Rule Designer by default. To
display the COBOL code generation user interface in Rule Designer, stop Rule Designer, and
add the following parameter in the file <InstallDir>/eclipse.ini:

-Dcobol.code.gen=true

Save the file, and restart Rule Designer to enable the COBOL code generation feature.
Chapter 2. IBM Operational Decision Manager for z/OS 21

22 Flexible Decision Management with Business Rules on IBM z Systems

Chapter 3. Getting started with business
rules

This chapter describes and demonstrates the use of business rules on IBM z Systems.

The following topics are covered in this chapter:

� 3.1, “Overview of the example used in this chapter” on page 24
� 3.2, “Getting started from a COBOL copybook” on page 25
� 3.3, “Getting started from an existing rule project” on page 67

3

© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 23

3.1 Overview of the example used in this chapter

This section provides an overview of the business scenario and the related models that are
used in this chapter.

3.1.1 Business scenario

The business scenario that is used in this book describes a fictitious auto insurance company
that has a solution in place for validating an insurance application for its customers. The
company wants to manage and share this validation logic with other business applications on
z Systems.

The status of the in-place application and how a company wants the business rules to be
executed on z Systems determine the approach that is chosen. This chapter uses the
following typical approaches:

� Getting started from a COBOL copybook (see 3.2, “Getting started from a COBOL
copybook” on page 25)

� Getting started from an existing Java rule project (see 3.3, “Getting started from an
existing rule project” on page 67)

3.1.2 Business model

The business model used in this chapter represents an insurance quote application. This
model is simplified as one insurance quote request and one insurance quote response.

Insurance quote request
The insurance quote request includes the following information:

� Driver

This information includes personal information about the driver to assess the risk, such as
age, address, and license status.

� Vehicle

This information includes the make, model, year, and vehicle identification number,
together with a categorization of the vehicle type and a vehicle value. The insurance
discount policies differ based on the vehicle type.

Insurance quote response
The response to an insurance request includes the following information:

� The validation status of this insurance quote
� The validation message of this insurance quote
� The pricing and discount information of this insurance quote

3.1.3 Scenario rule model

The rules are designed to validate a customer’s eligibility for the quote application. These sets
of rules validate the customer’s age or accident history and provide the validation result and
possible reasons.
24 Flexible Decision Management with Business Rules on IBM z Systems

Both scenarios use the following rules:

� A maximum or minimum age rule, called MaxiMinimumAge, validates that the age of
customer is between lower and upper age limits.

� A number of accidents rule, called NumberOfAccidents, validates that the number of
accidents of the customer is below the set upper limits.

3.1.4 Project structure of a business rule on z/OS

This section illustrates a common project structure for business rule execution on zRule
Execution Server for z/OS (zRES). The following typical artifacts are used in zRule Execution
Server for z/OS projects:

� The rule project, which is used to design, debug, and manage the business rule

� The Java Execution Module (Java XOM), which is used to create a rule project and, which
is deployed as a Java archive (JAR) resource for rule execution at run time

� The marshaller, which handles the conversion between COBOL or PL/I data items and
Java data items at run time

� The RuleApp project, which is used to deploy business rules to the runtime configuration
of the zRule Execution Server for z/OS

3.2 Getting started from a COBOL copybook

This section includes detailed instructions about creating a rule application on z/OS that is
started from a COBOL copybook. These instructions also apply to rule applications, which
are built from a PL/I include file.

3.2.1 Scenario overview

In this scenario, an insurance company has a large COBOL application that runs on z/OS.
This COBOL application validates insurance applications. The company wants to manage the
logic codes that are scattered throughout the COBOL application and share them with other
business applications on z Systems. The company decides to migrate and manage the
business logic as a business rule application on z Systems.

In an actual scenario, you identify or create a COBOL copybook that contains the COBOL
data items that are required for the business rules. Example 3-1 on page 26 shows a sample
COBOL copybook (INSDEMO), which is designed for the first rule application on z Systems in
this scenario.

Important: The marshaller is a generated JAR file artifact. Never modify it yourself.

Note: The discussion of Decision Service projects is not included here. However, the
Decision Service project is now the default project type in version 8.7.1 and should be used
in place of the standard rule project.
Chapter 3. Getting started with business rules 25

Example 3-1 Sample COBOL copybook [INSDEMO.cpy]

01 REQUEST.
 05 DRIVER.

 10 FIRST-NAME PIC X(20).
 10 LAST-NAME PIC X(20).

 10 ZIPCODE PIC X(8).
 10 HOUSE-NUM PIC 9(8).
 10 AGE PIC 9(2) USAGE COMP-3.
 10 LIC-DATE PIC X(8).
 10 LIC-STATUS PIC X.
 10 NUMBER-ACCIDENTS PIC 99.
 05 VEHICLE.
 10 VEC-ID PIC X(15).
 10 MAKE PIC X(20).
 10 MODEL PIC X(20).
 10 VEC-VALUE USAGE COMP-1.
 10 VEC-TYPE PIC X(2).
 88 SUV VALUE 'SU'.
 88 SEDAN VALUE 'SD'.
 88 PICKUP VALUE 'PU'.
 01 RESPONSE.
 05 APPROVED PIC X.
 05 BASE-PRICE USAGE COMP-2.
 05 DIS-PRICE USAGE COMP-2.
 05 MSG-COUNT PIC 9(5) VALUE 0.
 05 MESSAGES PIC X(100)
 OCCURS 0 TO 100 TIMES
 DEPENDING ON MSG-COUNT.

Additional resources: You can find the INSDEMO.cpy copybook file in the additional
information that is included in this book in the code/Chapter3/CopybookBased directory. See
Appendix C, “Additional material” on page 239.
26 Flexible Decision Management with Business Rules on IBM z Systems

3.2.2 Creating a rule project

You can create a rule project in Rule Designer. A rule project enables you to manage, build,
and debug the items that make up the business logic of your application.

In this scenario, we cover classic rules only.

Follow these steps to create the rule project in Rule Designer:

1. Click File → New → Rule Project. Select Classic Rule Project → Standard Rule
Project, as shown in Figure 3-1 and click Next.

Figure 3-1 Selecting classic rule standard rule project

2. In the next New Rule Project dialog, enter insurance-rules into the Project name field as
shown in Figure 3-2. Click Finish.

Figure 3-2 Creating a rule project
Chapter 3. Getting started with business rules 27

The new rule project is created in the Rule Designer, as shown in Figure 3-3. For now, the
rule project contains only empty folders.

Figure 3-3 New rule project in the Rule Explorer view

3.2.3 Creating COBOL XOM from a COBOL copybook

To execute rules in a COBOL application, you generate the COBOL XOM from a COBOL
copybook. A COBOL XOM provides the necessary COBOL to Java mapping so that you can
create and execute your rules from a COBOL application.

To use the Rule Project Map to guide you through the COBOL XOM generation, follow these
steps:

1. Select the rules folder in the newly created rule project (highlighted in Figure 3-3).

2. In the Design part of the Rule Project Map tab, click Import XOM (Figure 3-4).

Figure 3-4 Importing a XOM into a rule project map
28 Flexible Decision Management with Business Rules on IBM z Systems

3. In the Import XOM dialog, select COBOL execution object model (Figure 3-5). Click OK.

Figure 3-5 Selecting the COBOL execution object model

4. On the Properties for insurance-rules dialog, click Add to add a COBOL Execution Object
Model (Figure 3-6).

Figure 3-6 Adding a COBOL Execution Object Model
Chapter 3. Getting started with business rules 29

5. On the Import COBOL XOM dialog, in the Execution object model name field, enter
insurance-xom, as shown in Figure 3-7. Click Add.

Figure 3-7 Importing the COBOL XOM

6. On the Select COBOL Copybook dialog, select a COBOL copybook by using one of the
Browse buttons and select the INSDEMO.cpy copybook (Figure 3-8). Click OK.

Figure 3-8 Selecting the COBOL copybook

Additional resources: You can find the INSDEMO.cpy copybook file in the additional
information that is included in this book in the Chapter3/CopybookBased directory. See
Appendix C, “Additional material” on page 239.
30 Flexible Decision Management with Business Rules on IBM z Systems

7. On the resulting Import COBOL XOM dialog (Figure 3-9), click Next.

Figure 3-9 Importing the selected COBOL copybook

8. On the Configure COBOL XOM Mapping dialog, use the type converter to map two
COBOL string items (PIC X) to a Java Date and a Boolean. Perform the following steps to
change LIC-DATE from type String to Date by using the type converter:

a. Expand the <insurance-xom> item. Expand the REQUEST item. Expand the DRIVER
item. Then, right-click the row that contains the LIC-DATE data item in the XOM
Mapping table, and click Add Converter, as shown in Figure 3-10 on page 32.
Chapter 3. Getting started with business rules 31

Figure 3-10 Adding a converter for LIC-DATE item

b. On the Configure Converter Settings dialog, select Built-in String to Date Converter.
Then, for the Date format field, enter yyyyMMdd, as shown in Figure 3-11. Click OK.

Figure 3-11 Configuring the date converter

LIC-DATE: Use yyyyMMdd here to parse the LIC-DATE item value, such as 20110908.
32 Flexible Decision Management with Business Rules on IBM z Systems

9. Change APPROVED from type String to Boolean, by using the type converter:

a. Expand the RESPONSE item. Then, right-click the row that contains the APPROVED
data item and click Add Converter.

b. On the Configure Transform settings dialog, select Built-in String to Boolean
Converter.

c. For the True value field, type T and for the False value field, type F, as shown in
Figure 3-12.

d. Click OK.

Figure 3-12 Configuring the Boolean converter

Values: The T and F values are COBOL values that represent True and False. You
can also customize these values as Y/N, YES/NO, and so on.
Chapter 3. Getting started with business rules 33

10.Click Finish to create the COBOL XOM (Figure 3-13).

Figure 3-13 Finishing the data type configuration

11.Click OK to close the Properties window (Figure 3-14).

Figure 3-14 Generating the COBOL XOM
34 Flexible Decision Management with Business Rules on IBM z Systems

12.The following artifacts are created, as shown in Figure 3-15:

– Java XOM project: insurance-xom
– COBOL XOM:

• Configuration file: insurance-xom.xml
• Marshaller: insurance-xom-xmarshaller.jar

Figure 3-15 COBOL XOM artifacts

3.2.4 Creating a business object model from the Java XOM

The business object model (BOM) is a business layer that is used to author business rules.
This section describes how to create a BOM in Rule Designer that is based on the Java XOM
that you created in 3.2.3, “Creating COBOL XOM from a COBOL copybook” on page 28.

Follow these steps to create a BOM from the COBOL XOM:

1. In the Design part of the Rule Project Map tab, click Create BOM, as shown in
Figure 3-16.

Figure 3-16 Select “Create BOM” from the Rule Project Map

Important: The insurance-xom project and COBOL XOM files are generated artifacts.
Do not change these artifacts manually.
Chapter 3. Getting started with business rules 35

2. In the New BOM Entry dialog, in the Name field, accept the default name for the BOM
entry. In this scenario, the default name is model. Ensure that the Create a BOM entry
from a XOM option is selected (Figure 3-17), and click Next.

Figure 3-17 Creating a BOM entry from a Java XOM

3. On the BOM Entry dialog, in the Choose a XOM entry field, click Browse XOM. On the
Browse XOM dialog, select insurance-xom, as shown in Figure 3-18, and click OK.

Figure 3-18 Selecting a generated Java XOM
36 Flexible Decision Management with Business Rules on IBM z Systems

4. In the Select classes field of the BOM Entry dialog, select the XOM package. When you
select the package, you automatically select all the classes that it contains, as shown in
Figure 3-19. Click Finish.

Figure 3-19 Selecting a XOM package to import all classes

5. In the Rule Explorer view, the bom folder contains a new BOM entry model, as shown in
Figure 3-20.

Figure 3-20 Viewing the generated BOM
Chapter 3. Getting started with business rules 37

6. View the generated BOM and its verbalization:

a. In the Rule Explorer view, Expand bom then double-click model to open the BOM
editor.

b. In the BOM editor, expand the insdemo package to view the generated BOM, as shown
in Figure 3-21.

c. Double-click the Driver class to view the default class verbalization.

Figure 3-21 Viewing the generated BOM Entry model in the BOM editor

d. The resulting Class Verbalization section (of the Class Driver window) is shown
(Figure 3-22).

Figure 3-22 Viewing the default verbalization

3.2.5 Declaring ruleset parameters

Ruleset parameters provide the means to exchange data between a COBOL application and
the rule application. You define ruleset parameters by name, type, and direction.

Language: The default verbalization is in English. If you are working in a localized
version of Rule Designer, you can verbalize the BOM classes in the language of
your locale.
38 Flexible Decision Management with Business Rules on IBM z Systems

In this example, you decide on the status of an insurance request and response, so that you
create ruleset parameters for the Request and Response classes. You use the IN direction for
the request parameter. The value of the request parameter is provided as input from the
COBOL client application on execution. The direction for the response parameter must be
IN_OUT. The value of the request parameter is set by the IN value passed by the client and
then updated by the engine on the way OUT. The updated value is returned to the client.

Follow these steps to declare ruleset parameters:

1. In the Design part of the Rule Project Map tab, click Define parameters, as shown in
Figure 3-23.

Figure 3-23 Selecting Define parameters option

2. In the Ruleset Parameters dialog, select Enable type check for COBOL XOM.

Important: You cannot use the OUT parameter direction with zRES, because COBOL
programs do not support memory allocation dynamically.
Chapter 3. Getting started with business rules 39

3. To define a request parameter, click Add. Then, change the following default values, as
shown in Figure 3-24:

– In the Name column, delete myParam and type request.

– In the Type column, click the ellipsis (…) on the right of the cell, and select Request
(Figure 3-24). The insdemo.Request entry is entered in the cell automatically.

– In the Direction column, select the IN direction.

– In the Verbalization column, type the insurance request.

Figure 3-24 Adding the ruleset parameter for request
40 Flexible Decision Management with Business Rules on IBM z Systems

4. To define the response parameter, click Add. Then, change the following default values,
as shown in Figure 3-25. A completed example is shown in Figure 3-27 on page 42:

– In the Name column, delete myParam and type response.

– In the Type column, the insdemo.Request entry is entered in the cell automatically, click
the ellipsis (…) on the right of the cell (Figure 3-25), and select Response (Figure 3-26
on page 42). The insdemo.Response entry is entered in the cell automatically.

– In the Direction column, select the IN_OUT direction.

– In the Verbalization column, type the insurance response.

Click OK.

Figure 3-25 Default Response ruleset parameters
Chapter 3. Getting started with business rules 41

Figure 3-26 Selecting ruleset parameter type

Figure 3-27 Add the ruleset parameter for response
42 Flexible Decision Management with Business Rules on IBM z Systems

3.2.6 Adding BOM methods and mapping them to the XOM

You use methods to specify conditions and actions in your rules. You create methods in the
Rule Designer. When you add methods to the BOM, you use BOM-to-XOM mapping in the
BOM editor to implement the method.

This section describes how to add the following BOM methods:

� addMessage: Defines what is needed to pass information from the rules.
� reject: Identifies whether the insurance request was rejected.

Adding the addMessage method
To add the addMessage method, follow these steps:

1. In the Rule Explorer view, expand the model package, and double-click the Response
class, as shown in Figure 3-28.

Figure 3-28 Selecting the Response class

Important: You cannot map the BOM method to a Java XOM method, because you must
not change the XOM.
Chapter 3. Getting started with business rules 43

2. On the Class Response page of the BOM editor, to the right of the Members section, click
New, as shown in Figure 3-29.

Figure 3-29 Creating a member
44 Flexible Decision Management with Business Rules on IBM z Systems

3. In the New Member dialog (Figure 3-30), enter the following information:

– For the Type, select Method.
– For the Name, enter addMessage.
– For the Type, enter void.

Click Add.

Figure 3-30 Creating a method for addMessage

4. In the Method Argument dialog (Figure 3-31), enter the following information:

– For the Name, enter msg.
– For the Type, enter java.lang.String.

Click OK, and then click Finish on the New Member dialog.

Figure 3-31 Adding the method argument
Chapter 3. Getting started with business rules 45

5. On the Class page of the BOM editor, the Members list now includes the
addMessage(String) method, as shown in Figure 3-32. Double-click the addMessage
method.

Figure 3-32 addMessage method created

6. In the Member Verbalization section of the BOM editor (Figure 3-33), click Create to view
the default verbalization.

Figure 3-33 Creating verbalization

7. The default verbalization of the addMessage class is now displayed. Keep the default
verbalization of add {0} to the messages of {this}, as shown in Figure 3-34.

Figure 3-34 Keeping the default verbalization

8. Scroll down to the BOM-to-XOM mapping section of the BOM editor and expand it to
activate the BOM-to-XOM mapping editor, as shown in Figure 3-35.

Figure 3-35 Activating the BOM-to-XOM mapping editor
46 Flexible Decision Management with Business Rules on IBM z Systems

9. Enter the following Java code (Figure 3-36):

this.messages.add(msg);

Figure 3-36 Adding method implementation

10.Save your work.

Adding the reject method
To add the reject method, follow these steps:

1. Double-click the Response class in the Rule Explorer. Under the Members section, click
New, as shown in Figure 3-37.

Figure 3-37 Creating a new reject method
Chapter 3. Getting started with business rules 47

2. In the New Member dialog (Figure 3-38), enter the following information:

– For the Type, select Method.

– For the Name, enter reject.

– For the Type, enter void.

Click Finish.

Figure 3-38 Defining the method argument

3. Create the default verbalization for the reject method. Double-click the reject() method.
Then, click Create and accept the default verbalization of reject {this}, as shown in
Figure 3-39.

Figure 3-39 Defining verbalization for the reject method
48 Flexible Decision Management with Business Rules on IBM z Systems

4. Scroll down to the BOM-to-XOM mapping section of the BOM editor and expand it to
activate the BOM-to-XOM mapping editor. Enter the following Java code, as shown in
Figure 3-40:

Type this.approved = false;

Save your work.

Figure 3-40 Implementing the reject method

The Rule Explorer now shows that these members are present in their classes, as shown in
Figure 3-41.

Figure 3-41 Viewing the new BOM methods
Chapter 3. Getting started with business rules 49

3.2.7 Creating the ruleflow

Before writing the rules, you orchestrate how the rules execute. You control the order in which
rules are executed by using ruleflows. When defining the flow of execution, you organize
rules into packages that contain related rules. This section explains how to create a package
that relates to the validation rules.

Follow these steps to create a ruleflow:

1. In Rule Designer, in the IBM Orchestrate® part of the Rule Project Map, click Add rule
package, (Figure 3-42).

Figure 3-42 Adding a rule package

2. In the New Rule Package dialog, in the Package field, enter validation and click Finish,
(Figure 3-43).

Figure 3-43 Entering the validation package name
50 Flexible Decision Management with Business Rules on IBM z Systems

3. To create the ruleflow, in the Orchestrate part of the Rule Project Map, click Add ruleflow,
(Figure 3-44).

Figure 3-44 Adding a new ruleflow

4. In the New Ruleflow dialog, in the Name field, enter mainflow and click Finish
(Figure 3-45).

Figure 3-45 Entering the ruleflow name
Chapter 3. Getting started with business rules 51

5. To create a ruleflow by using the Ruleflow diagram that is shown in Figure 3-46 and
Figure 3-47, complete the following steps:

a. Add the start node, which is the starting point of the ruleflow. Click the start node icon
() in the ruleflow diagram toolbar and drop it in the ruleflow diagram.

b. Add the end node, which is the endpoint of the ruleflow. Click the end node icon () in
the ruleflow diagram toolbar and drop it in the ruleflow diagram.

c. Add the task for the validation rule package, which is the rule task of the ruleflow. Click
the validation rule package in the Rule Explorer view and drag it into the ruleflow
diagram, as shown in Figure 3-46.

Figure 3-46 Dragging the validation package to the canvas

d. Connect the elements (as shown in Figure 3-47):
i. Click the arrow icon () to start connection mode.
ii. Click the start node icon () and then click the validation task box.
iii. Click the validation task box again, and finally, click the end node icon ().

Figure 3-47 Designing the ruleflow
52 Flexible Decision Management with Business Rules on IBM z Systems

6. Next, you can optionally refine the diagram by clicking the icon. Figure 3-48 shows the
diagram.

Figure 3-48 Refining the ruleflow

7. Save your work.

3.2.8 Authoring rules

This section explains how to write action rules and put them into the relevant package. You
can create the following rules in Rule Designer for the validation packages:

� MaxiMinimumAge rule
� NumberOfAccidents rule
Chapter 3. Getting started with business rules 53

To create the action rules, follow these steps:

1. Create the MaxiMinimumAge rule:

a. In the rules project, right-click “validation” and then click New → Action Rule, as
indicated in Figure 3-49.

Figure 3-49 Creating an action rule

b. In the New Action Rule dialog, enter MaxiMinimumAge in the Name field, as shown in
Figure 3-50. Click Finish.

Figure 3-50 Entering the rule name
54 Flexible Decision Management with Business Rules on IBM z Systems

c. The new action rule, MaxiMinimumAge, is displayed in the Rule Explorer view and the
Intellirule editor opens. Enter the validation with the MaxiMinimumAge rule, as shown
in Example 3-2.

Example 3-2 Validation with the MaxiMinimumAge rule

if
 the age of the driver of 'the insurance request' is less than 18
 or the age of the driver of 'the insurance request' is more than 60
then
 add "The age exceeds the maximum or minimum" to the messages of 'the
insurance response' ;
 reject 'the insurance response' ;

Figure 3-51 shows the generated action rule.

Figure 3-51 Viewing the MaxiMinimumAge rule

2. Create a second action rule by repeating step 1 on page 54 with a name of
NumberOfAccidents, as shown in Example 3-3.

Example 3-3 Validation with the NumberOfAccidents rule

if
 the number accidents of the driver of 'the insurance request' is more than
3
then
 add "Accidents number exceeds the maximum" to the messages of 'the
insurance response' ;
 reject 'the insurance response' ;
Chapter 3. Getting started with business rules 55

Figure 3-52 shows the generated action rule.

Figure 3-52 View the generated rules

3. Save your work.

You can also use a decision table or decision tree to write decision rules, as shown in the
example in Figure 3-53.

Figure 3-53 Decision table example

3.2.9 Preparing the rule execution

This section shows you how to deploy rules to the zRule Execution Server for z/OS and how
to view the deployed ruleset on the zRule Execution Server for z/OS web console.
56 Flexible Decision Management with Business Rules on IBM z Systems

Step 1: Creating a RuleApp project
First, you must create a RuleApp project to contain the rulesets that you want to execute. To
create a RuleApp project, follow these steps:

1. In Rule Designer, in the Deploy and Integrate section of the Rule Project Map, click
Create RuleApp project (Figure 3-54).

Figure 3-54 Creating a RuleApp project

2. In the New RuleApp Project dialog, enter insuranceApp in the Project name field as the
name for your RuleApp project. Ensure that Use default location is selected
(Figure 3-55). Click Next.

Figure 3-55 Entering the RuleApp name
Chapter 3. Getting started with business rules 57

3. The rule project is listed in the Rule Projects tab, as shown in Figure 3-56. Click Finish.

Figure 3-56 Viewing the Rule Projects tab

4. The RuleApp project is created and displayed in the Rule Explorer view, as shown in
Figure 3-57.

Figure 3-57 Viewing the insuranceApp project

Step 2: Deploying the RuleApp to the zRule Execution Server for z/OS
To be able to execute the ruleset with zRule Execution Server for z/OS, you must deploy the
following artifacts to zRule Execution Server for z/OS:

� RuleApps containing the business rules within rulesets
� A JAR resource or library that contains Java classes that are used by the rules

Important: The RuleApp must be deployed to zRule Execution Server for z/OS. Ensure
that you start zRule Execution Server for z/OS successfully before you continue this step.
For information, see the Deploying RuleApps and XOMs topic in the IBM Operational
Decision Manager Version 8.7.1 IBM Knowledge Center:

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.1/com.ibm.odm.zos.zres
/topics/con_zres_deploy_ruleapps_xoms.html
58 Flexible Decision Management with Business Rules on IBM z Systems

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.1/com.ibm.odm.zos.zres/topics/con_zres_deploy_ruleapps_xoms.html

To deploy the XOM, marshaller, and RuleApp, follow these steps:

1. Within the insuranceApp RuleApp project, double-click the archive.xml file to open the
RuleApp editor (Figure 3-58).

Figure 3-58 RuleApp editor for insuranceApp

2. In the Deployment pane, click Deploy to deploy the RuleApp to the Rule Execution Server
(Figure 3-59).

Figure 3-59 Deploying the RuleApp
Chapter 3. Getting started with business rules 59

3. In the Deploy RuleApp Archive dialog, select the default option Increment RuleApp
major version for deployment type (Figure 3-60) and click Next.

Figure 3-60 Selecting the deployment type

4. If your system is running Java 1.7, you receive a java version notification warning window
(Figure 3-61). Effective with Version 8.5, the default Java environment for the
IBM Operational Decision Manager, IBM Operational Decision Manager for z/OS, and
IBM Business Rules for z/OS Rule Designers became Java 7. While this is satisfactory for
a wide variety of decision management execution environments, there are situations
where a Java 6 environment is required. One example is using the zRule Execution Server
for z/OS in a CICS V4.2 environment. Both Java 6 and Java 7 are supported environments
on all platforms for the Operational Decision Manager and Business Rules rule products.

Figure 3-61 Java version notification warning

Note: A document detailing how to set up a Java 6 compliant environment for the Rule
Designer can be found at the following location:

http://www-01.ibm.com/support/docview.wss?uid=swg216914941
60 Flexible Decision Management with Business Rules on IBM z Systems

http://www-01.ibm.com/support/docview.wss?uid=swg21632148&aid=1
http://www-01.ibm.com/support/docview.wss?uid=swg216914941
http://www-01.ibm.com/support/docview.wss?uid=swg21632148&aid=1

5. Select Create a temporary Rule Execution Server configuration and enter the
following details, as shown in Figure 3-62:

– URL: http://<your.server.address>:<PORT>/res
– Login: resAdmin
– Password: resAdmin

Select Deploy XOM of rule projects and archives contained in the RuleApp and click
Finish.

Figure 3-62 Configuring the RuleApp deployment

In the Console tab, you can see the confirmation that the project has been deployed, as
shown in Figure 3-63. The artifacts are now deployed to the zRule Execution Server for z/OS
server.

Figure 3-63 Deploying the RuleApp confirmation
Chapter 3. Getting started with business rules 61

Step 3: Viewing deployed rule artifacts in the Rule Execution Server
console
You can log in to the Rule Execution Server console and use the Navigator pane to view the
deployed RuleApp and XOM. To view your deployed artifacts, follow these steps:

1. In a web browser, open the web console for zRule Execution Server for z/OS by using the
following URL:

http://<your.server.address>:<PORT>/res

2. At the login prompt for the Rule Execution Server console, enter the following login details:

– Login: resAdmin
– Password: resAdmin

3. On the Rule Execution Server console, click Explorer (Figure 3-64).

Figure 3-64 Exploring the rule project
62 Flexible Decision Management with Business Rules on IBM z Systems

4. In the Navigator pane, click RuleApps to view the deployed RuleApp (Figure 3-65).

Figure 3-65 Viewing the deployed ruleset

5. With the RulesApps tree fully expanded, click /insurancerules/1.0 ruleset to see the
Ruleset View (Figure 3-66).

Figure 3-66 Viewing the deployed ruleset view
Chapter 3. Getting started with business rules 63

6. In the Navigator pane, click Resources to view the deployed XOM and the marshaller file
(Figure 3-67).

Figure 3-67 Viewing deployed Java XOM and marshaller XOM

3.2.10 Building a COBOL application for rule execution

To execute the rules, you call the ruleset from the COBOL application. You can use the zRule
COBOL stub API to invoke the rule execution in a running instance of zRule Execution Server
for z/OS.

To build the COBOL application, follow these steps:

1. Include the required copybooks for the zRule COBOL stub API:

01 WS-REASON-CODES.
COPY HBRC.
COPY HBRWS.

2. Specify the ruleset path to initialize the values that are passed to zRule Execution Server
for z/OS:

* ruleset path from the zRules Execution Server
 MOVE "/insuranceApp/insurancerules" TO HBRA-CONN-RULEAPP-PATH

3. Configure the ruleset parameter:

– Set the name of the parameter:

MOVE 'request' TO HBRA-RA-PARAMETER-NAME(1)

– Set the length of the parameter:

MOVE LENGTH OF REQUEST TO HBRA-RA-DATA-LENGTH(1)

– Set the address of the parameter:

SET HBRA-RA-DATA-ADDRESS(1) TO ADDRESS OF REQUEST

4. Connect to zRule Execution Server for z/OS:

CALL 'HBRCONN' USING HBRA-CONN-AREA.
64 Flexible Decision Management with Business Rules on IBM z Systems

5. Execute the ruleset:

CALL 'HBRCONN' USING HBRA-CONN-AREA.

6. Disconnect from zRule Execution Server for z/OS:

CALL 'HBRDISC' USING HBRA-CONN-AREA.

COBOL application sample
Example 3-4 includes a sample COBOL application that you can use to call the rules that you
designed in the insurance-rules project.

Example 3-4 COBOL application sample to call the rules on zRule Execution Server for z/OS

IDENTIFICATION DIVISION.
 PROGRAM-ID. "INSMAIN".
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 COPY INSDEMO.
 01 WS-REASON-CODES.
 COPY HBRC.
 COPY HBRWS.
 01 WS-MESSAGE-IDX PIC 9(2).
 01 WS-MAX-TABLE-LEN PIC 9(18).

 PROCEDURE DIVISION.
 * Init ruleset parameter data
 MOVE 'John' TO FIRST-NAME
 MOVE 'Smith' TO LAST-NAME
 MOVE 'XA123456' TO ZIPCODE
 MOVE 123456 TO HOUSE-NUM
 MOVE 17 TO AGE
 MOVE '20110908' TO LIC-DATE
 MOVE 'F' TO LIC-STATUS
 MOVE 4 TO NUMBER-ACCIDENTS
 MOVE 'F' TO APPROVED
 MOVE 100 TO BASE-PRICE
 MOVE 0 TO MSG-COUNT
 * Move ruleset parameters to table HBRA-RA-PARMETERS
 MOVE ZERO TO HBRA-CONN-RETURN-CODES
 MOVE LOW-VALUES TO HBRA-RA-PARMETERS
 MOVE "/insuranceApp/insurancerules"
 TO HBRA-CONN-RULEAPP-PATH
 * Parameter Borrower
 MOVE LOW-VALUES TO HBRA-RA-PARMETERS.
 MOVE 'request' TO HBRA-RA-PARAMETER-NAME(1)
 MOVE LENGTH OF REQUEST TO HBRA-RA-DATA-LENGTH(1)
 SET HBRA-RA-DATA-ADDRESS(1)
 TO ADDRESS OF REQUEST
 * Parameter Loan
 MOVE 'response' TO HBRA-RA-PARAMETER-NAME(2)

Additional resources: You can find the INSMAIN.cbl application sample in the additional
information that is included in this book in the code/Chapter3/CopybookBased directory. See
Appendix C, “Additional material” on page 239.
Chapter 3. Getting started with business rules 65

 MOVE LENGTH OF RESPONSE TO HBRA-RA-DATA-LENGTH(2)
 * For ODO Table, the length represents the max length.
 COMPUTE WS-MAX-TABLE-LEN = LENGTH OF Messages * 100
 ADD WS-MAX-TABLE-LEN TO HBRA-RA-DATA-LENGTH(2)
 SET HBRA-RA-DATA-ADDRESS(2)
 TO ADDRESS OF RESPONSE
 * Get connection to rule execution server
 CALL 'HBRCONN' USING HBRA-CONN-AREA.
 IF HBRA-CONN-COMPLETION-CODE NOT EQUAL HBR-CC-OK
 DISPLAY "connect zRules failed"
 DISPLAY "CC code " HBRA-CONN-COMPLETION-CODE
 DISPLAY "RC code " HBRA-CONN-REASON-CODE
 DISPLAY "Message " HBRA-RESPONSE-MESSAGE
 ELSE
 DISPLAY 'connect zRules successful'
 END-IF
 * Invoke rule execution server
 CALL 'HBRRULE' USING HBRA-CONN-AREA
 IF HBRA-CONN-COMPLETION-CODE NOT EQUAL HBR-CC-OK
 DISPLAY "invoke zRules failed"
 DISPLAY "CC code " HBRA-CONN-COMPLETION-CODE
 DISPLAY "RC code " HBRA-CONN-REASON-CODE
 DISPLAY "Message " HBRA-RESPONSE-MESSAGE
 ELSE
 DISPLAY 'invoke zRules successful'
 END-IF
 * Get disconnect to rule execution server
 CALL 'HBRDISC' USING HBRA-CONN-AREA
 * Display result
 DISPLAY "********** EXECUTION RESULT *********"
 DISPLAY "DRIVER NAME: " FIRST-NAME
 DISPLAY "RESPONSE APPROVED: " APPROVED
 IF approved = "F"
 DISPLAY "Reject messages:"
 PERFORM VARYING WS-MESSAGE-IDX FROM 1 BY 1
 UNTIL WS-MESSAGE-IDX > MSG-COUNT
 DISPLAY messages (WS-MESSAGE-IDX)
 END-PERFORM
 END-IF
 DISPLAY "**************************************"
 STOP RUN.
66 Flexible Decision Management with Business Rules on IBM z Systems

Rule execution
You can compile and run the COBOL application on z/OS. In the COBOL application sample
that is shown in Example 3-4 on page 65, you hardcoded the following input values:

� AGE: 17
� NUMBER-ACCIDENTS: 4

Example 3-5 shows the results after the rule execution.

Example 3-5 Rule execution result

********** EXECUTION RESULT *********
DRIVER NAME: John
RESPONSE APPROVED: F
Reject messages:
Accidents number exceeds the maximum
The age exceeds the maximum or minimum

3.3 Getting started from an existing rule project

This section provides guidance about how to share business rules from an existing Java
based rule project to a COBOL or PL/I application on z/OS. The following instructions
describe the process for COBOL but equally apply when using PL/I.

3.3.1 Scenario overview

In this scenario, an insurance company has an existing business rule application to perform
user validation for an insurance application. The rule projects, which the company currently
uses, contain a BOM that is based on a Java XOM. The company deploys the rules to Rule
Execution Server in a distributed environment.

The company now wants to share the Java rule projects with COBOL applications that run on
z/OS and to manage the changes that are made to these rules. To share rules with COBOL
applications, the company must add the necessary COBOL structures to the BOM and then
generate a COBOL copybook. With these structures in the rule project, the company can then
deploy the rules application to zRule Execution Server for z/OS so that the COBOL
application can call the rulesets and execute the rules.

This section provides an existing rule project, sharinginsurance-rules, which has a BOM
that is generated from a Java XOM (sharinginsurance-xom). It also uses a RuleApp project
(sharinginsuranceApp) that is used for rule deployment to the runtime environment.

You can import the existing rule project from the source code that is delivered with this book.
See Appendix C, “Additional material” on page 239 for details.
Chapter 3. Getting started with business rules 67

To import the example rule project, follow these steps:

1. From the Rule Explorer view, right-click and then select Import from the menu.

2. In the Import dialog, select Existing Projects into Workspace, as shown in Figure 3-68.
Click Next.

Figure 3-68 Importing existing projects

Tip: You can quickly reduce the list of import sources by typing part of the name of the
import source in the Select an import source field.
68 Flexible Decision Management with Business Rules on IBM z Systems

3. In the Import Projects dialog, select the Select archive file option and browse to the
sharinginsurance.zip file. Select all three projects, as shown in Figure 3-69, and click
Finish.

Figure 3-69 Importing the insurance projects
Chapter 3. Getting started with business rules 69

4. Figure 3-70 shows the existing rule project structure in Rule Designer.

Figure 3-70 Existing rule project structure

3.3.2 Generating a copybook from the BOM

You use the COBOL Enabled BOM feature of Rule Designer to generate a copybook from the
BOM in the existing rule project.

Use the following configuration for the BOM:

� Specify each Java class type that you want to use as top-level data items in the copybook.

� Enter a name for the runtime marshaller project and package, which are created during
the copybook generation.
70 Flexible Decision Management with Business Rules on IBM z Systems

To configure the BOM for copybook generation, follow these steps:

1. In the Rule Explorer, right-click the sharinginsurance-rules rule project, and select
Properties → COBOL Management → COBOL Enabled BOM (Figure 3-71). Click Add.

Figure 3-71 Navigating to the COBOL enabled BOM

2. In the Select BOM entry dialog, select model, and click OK (Figure 3-72).

Figure 3-72 Selecting the BOM model

3. In the Resource Configuration section, accept the default names for the runtime
Marshaller Project and Marshaller Package. Click Next.
Chapter 3. Getting started with business rules 71

A table shows the proposed mapping between the Java structures in the BOM and the
COBOL structures, as shown in Figure 3-73.

Figure 3-73 Configuring the BOM to COBOL type mapping

Important: Several red error boxes show on certain lines. They are present because
the Java attribute name is not a valid COBOL name. Those fields have not been
enabled.
72 Flexible Decision Management with Business Rules on IBM z Systems

4. For each of the fields with an error, amend the COBOL name to make it suitable, for
example, by converting each underscore (_) character to a dash (-) character
(Figure 3-74).

Figure 3-74 Changing the COBOL names

5. Click the COBOL Picture field for the messages item of the xom.Response class and
change the default length for messages from X(20) to X(60), as shown in Figure 3-75.
Click Finish.

Figure 3-75 Changing the default mapping of the message item of the xom.Response class

Important: The default mapping from Java String to COBOL Picture length is 20. You
adjust this value per rule project. In this scenario, the sharinginsurance-rules project
uses a COBOL Picture length mapping value of 60, as required by the real reject
message in the business rules.
Chapter 3. Getting started with business rules 73

6. The BOM model is now listed as a COBOL enabled BOM, as shown in Figure 3-76. Click
Manage.

Figure 3-76 COBOL enabled BOM

7. In the Copybook Generation dialog (Figure 3-77), review the information and click Next.

Figure 3-77 Copybook generation information
74 Flexible Decision Management with Business Rules on IBM z Systems

8. You see the Copybook Generation preview dialog, as shown in Figure 3-78. Review the
information and click Finish.

Figure 3-78 Copybook generation preview

9. Returning to the COBOL Enabled BOM dialog, you see that a new copybook has been
created in the COBOL copybook setting section (Figure 3-79). Click OK.

Figure 3-79 COBOL copybook settings
Chapter 3. Getting started with business rules 75

You can view the generated copybook, as shown in Figure 3-80:

sharinginsurance-rules.cpy generated copybook

Figure 3-80 Generated copybook

3.3.3 Deploying rule artifacts to zRule Execution Server for z/OS

To execute a ruleset with zRule Execution Server for z/OS, you must deploy the rule project
and the Java XOM to a zRule Execution Server for z/OS. The deployment process is the
same as the process that is described in 3.2, “Getting started from a COBOL copybook” on
page 25.

Important: Do not change the generated copybook. When a change occurs to the BOM of
the rule project, use the COBOL enabled BOM feature to update the copybook.

Important: Ensure that you start zRule Execution Server for z/OS successfully before you
attempt to deploy rules.
76 Flexible Decision Management with Business Rules on IBM z Systems

To deploy rule artifacts to zRule Execution Server for z/OS, follow these steps:

1. Deploy the sharinginsuranceApp by using one of the following options:

– Opening the project and double-clicking the archive.xml file to open the RuleApp
editor. Then, in the Deployment pane of the RuleApp editor, click Deploy.

– Using the menu options by right-clicking the project and selecting RuleApp → Deploy,
as shown in Figure 3-81.

Figure 3-81 Deploying the RuleApp

2. For the deployment type, accept the Increment RuleApp major version default option,
and click Next.

3. Select Create a temporary Rule Execution Server configuration, and enter the
following details:

– URL: http://<your.server.address>:<PORT>/res
– Login: resAdmin
– Password: resAdmin

Click Finish.

Your artifacts are deployed to zRule Execution Server for z/OS. You can now build a COBOL
application to invoke the rule execution.
Chapter 3. Getting started with business rules 77

3.3.4 Building a COBOL application for rule execution

You deployed the rule artifacts to zRule Execution Server for z/OS. You can now use the
generated copybook to build a COBOL application for rule execution on z/OS.

Generated copybook example
First, you must know the structure of the generated copybook, as shown in Example 3-6.

Example 3-6 Generated copybook INSSHAR.cpy

01 request.
 02 driver.
 03 age pic S9(5).
 03 first-name pic X(20) value SPACE.
 03 house-num pic S9(10).
 03 last-name pic X(20) value SPACE.
 03 lic-date pic 9(8).
 03 lic-status pic X.
 88 BoolValue value 'T'.
 03 number-accidents pic S9(5).
 03 zipcode pic X(20) value SPACE.
 02 vehicle.
 03 make pic X(20) value SPACE.
 03 model pic X(20) value SPACE.
 03 vec-id pic X(20) value SPACE.
 03 vec-type pic X(20) value SPACE.
 03 vec-value usage COMP-1.
 01 response.
 02 approved pic X.
 88 BoolValue value 'T'.
 02 base-price usage COMP-2.
 02 dis-price usage COMP-2.
 02 messages-Num pic 9(9).
 02 messages pic X(60) value SPACE Occurs 10 Times.

COBOL application example
Now, you can build a COBOL application according to the generated copybook, as shown in
Example 3-7.

Example 3-7 COBOL application INSSHAR.cbl

IDENTIFICATION DIVISION.
 PROGRAM-ID. "INSSHAR".
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 * include the generated copybook
 COPY INSSHAR.
 01 WS-REASON-CODES.
 COPY HBRC.
 COPY HBRWS.

Additional resources: You can find the examples that are used in this section in the
additional information that is included in this book. For details, see Appendix C, “Additional
material” on page 239.
78 Flexible Decision Management with Business Rules on IBM z Systems

 PROCEDURE DIVISION.
 * Init ruleset parameter data
 MOVE 'John' TO FIRST-NAME
 MOVE 17 TO AGE
 MOVE 4 TO NUMBER-ACCIDENTS
 ……
 * Move ruleset path to table HBRA-RA-PARMETERS
 ……
 MOVE "/sharinginsuranceApp/sharinginsurancerules"
 TO HBRA-CONN-RULEAPP-PATH
 * move ruleset parameter for request and response
 MOVE 'request' TO HBRA-RA-PARAMETER-NAME(1)
 ……
 MOVE 'response' TO HBRA-RA-PARAMETER-NAME(2)

……
 * Get connection to rule execution server
 CALL 'HBRCONN' USING HBRA-CONN-AREA.
 ……
 * Invoke rule execution server
 CALL 'HBRRULE' USING HBRA-CONN-AREA
 ……
 * Get disconnect to rule execution server
 CALL 'HBRDISC' USING HBRA-CONN-AREA
 ……
 * Display result
 DISPLAY "RESPONSE APPROVED: " APPROVED
 ……
 STOP RUN.

Rule execution result
You can compile and run the COBOL application on z/OS. The COBOL application example
in Example 3-7 on page 78 produces the results that are shown in Example 3-8.

Example 3-8 Results of compiling and running the COBOL application

********** EXECUTION RESULT *********
DRIVER NAME: John
RESPONSE APPROVED: F
Reject messages:
Accidents number exceeds the maximum
The age exceeds the maximum or minimum

Chapter 3. Getting started with business rules 79

80 Flexible Decision Management with Business Rules on IBM z Systems

Chapter 4. Managing business decisions
through the full lifecycle

This chapter looks at the lifecycle of a decision and discusses considerations when deploying
to a z/OS environment.

The following topics are covered in this chapter:

� 4.1, “What is the lifecycle of rule artifacts in decisions” on page 82
� 4.2, “Working with rules through the lifecycle” on page 83
� 4.3, “Sharing decision artifacts between z/OS and a distributed environment” on page 88
� 4.4, “Installation topologies for Decision Center” on page 89
� 4.5, “Managing artifacts through the lifecycle” on page 91
� 4.6, “Usage of defined rules” on page 95

4

© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 81

4.1 What is the lifecycle of rule artifacts in decisions

Rule artifacts within Operational Decision Manager follow a general lifecycle that can be
tailored to the particular setup of your system. Rules can pass through one or more of the
available tools and through one or more repositories or databases before being deployed to
the production server. Your lifecycle can contain development, testing, production, and
maintenance systems, which are maintained by developers and business users as
appropriate.

A typical lifecycle includes rulesets and flows that are being developed by the development
department and saved in a central repository. Specific rules can then be accessed and
maintained by business users without the necessity of returning the rules to development to
be implemented in the software. From this point, rule artifacts are tested and then can be
deployed to the main production system. Maintenance can be carried out either by the
business users (for rules modifications) or by development (for more substantial changes). A
diagram of this process is shown in Figure 4-1.

Figure 4-1 Users and management of rules

One of the key reasons for extracting decisions into a decision management system is that it
allows you to separate the lifecycle of the decisions from the lifecycle of the application that
invokes the decision. This separation is important particularly on z Systems where the
application deployment cycles are often long, and the business wants to be able to change
the business behavior of the application more quickly. By separating the decision lifecycle
from the application lifecycle, you can gain agility in your business applications without
sacrificing the reliability of the core logic of your business applications.

Application Developer,
Architect

Business Analyst,
Business Manager

Systems Programmer,
Deployer

Rule Designer

Decision Center
Repository

zRES

Decision Center
Console

Deploy

Publish

Manage

Deploy

Management

Development

Business Center
ConsoleDecision

Changes

Update
82 Flexible Decision Management with Business Rules on IBM z Systems

4.2 Working with rules through the lifecycle

The decision lifecycle starts with the initial location of the rules within the business
applications. After the rules are identified, the data that is associated with the decisions can
be extracted and a copybook can be created that contains the required information.

The business application must be refactored to remove the current implementation of the
business decision and replace it with calls out to the Rule Execution Server for z/OS (zRES).
The application might have decision logic and business logic interspersed throughout it. To
optimize the application, refactor the application so that it makes the fewest calls possible to
the zRES, as shown in Figure 4-2.

Figure 4-2 Refactoring the business application

After the copybook containing the required data for the decision is created or identified, the
business rules for the initial version of the business decision can be authored. The initial
creation of the business object model (BOM) and verbalization is done in Rule Designer. This
action is generally considered an IT project, because it requires knowledge of the COBOL
data structure.

After the BOM is created, the IT department typically creates the initial version of the
business rules for the decision based on the rules that were previously embedded in the
application. After the first version of the business rules is created, the decision can be
deployed to a zRES environment and tested with the application.

With the first version of the decision now deployed, you must decide how to manage the
ongoing lifecycle of the decision. There are multiple approaches to this problem. In certain
development shops, the management of the business decisions remains a purely IT-based
process, using the Rule Designer environment for managing and maintaining the decisions.
Now that the business rules from the decision are authored in a far more accessible
language, it is often advantageous to allow the business team to interact directly with the
authored rules.

Business Application

Business
Logic

Decision
Logic

Business
Logic

Decision
Logic

Business
Logic

Before

Business Application

Business
Logic

Decision
Service Stub

Business
Logic

After
Refactoring

zRES
Chapter 4. Managing business decisions through the full lifecycle 83

Business users can view and modify rules using the Decision Center Enterprise Console or
Business Console as shown in Figure 4-3. Testing can still be carried out in the Decision
Center without needing to involve the IT department.

Figure 4-3 Movement of a rule through the lifecycle

After the initial deployment of the rules, the application developer can also publish the rules to
the Decision Center repository. Other roles can become involved in the decision lifecycle.

The Decision Center consoles provide two distinct functions:

� The ability to change the rules of decisions that are published to the repository
� The ability to manage versions and deploy decisions from the repository to the rule

runtime environments

An important part of the decision lifecycle is the ability to test the changes to the decision
before deploying it to the final server. You can use Decision Center to define scenarios or test
cases using, for example, a spreadsheet format to define the input and expected output.
Decision Center can then take this data, deploy the ruleset to a configured zRES, and
execute the decisions based on the supplied data. Decision Center can report situations
where expected results are not returned. This function gives you the ability for the decision
lifecycle to happen completely in isolation from the application lifecycle. Changes to the
decision behavior can be tested in isolation from the application before they are deployed into
the production system.

Decision Center
Repository

zRESDecision Center
Console

Decision Center
Console

System Programmer
Deployer

Update

Rule
requires
update

Business Analyst/
Business Manager

Rule for updating Deploy
84 Flexible Decision Management with Business Rules on IBM z Systems

4.2.1 Managing artifacts

There are a number of artifacts in the decision lifecycle that require managing, as shown in
Figure 4-4:

� Ruleset
� Java execution object module (XOM)
� RuleApp

Figure 4-4 Artifacts within the decision lifecycle

Ruleset
The ruleset contains a number of elements:

� The BOM
� The verbalization of that model
� The authored rules from the decision
� The ruleflow that guides the execution of the decision
� The declaration of the required parameters for this decision

The ruleset is the primary artifact that requires management. It contains the rules themselves
and the BOM on which they are based. The ruleset is the artifact that is published to Decision
Center. You can access the Decision Center to change the rules within a decision.

A ruleset can inherit from another ruleset. In this case, the decision contains the BOM,
verbalization, and rules from both rulesets. This approach is a useful way to reuse rules that
are shared across multiple decisions and manage the changes to the shared rules in a single
project.

The name of a ruleset is significant. It forms part of the ruleset path that is used by the client
to identify the decision that it wants to invoke on the server.

Any changes to the rules within a decision require the ruleset to be redeployed to make the
new decision behavior available. A preferred practice is to increment the minor version of the
decision when redeploying behavioral changes in the decision.

D
eploy

Rule Designer

zRES

RuleApp

RuleSet

Decision Center
Repository

Source Code
Repository

System

Java XOM
Chapter 4. Managing business decisions through the full lifecycle 85

Java XOM
The Java execution object module (XOM) is standard Java code that is the Java
representation of the imported COBOL copybook or PL/I include file. zRES uses this Java
XOM at run time for mapping the COBOL or PL/I data structure before rules can be executed.
The Java XOM can be deployed to the zRES server directly from Rule Designer or by using
JCL on the server’s LPAR.

Because the code is standard Java code, it must be managed and maintained by using a
source code management system. Rule Designer is based on Eclipse. Many of the standard
source code management systems have plug-ins that allow you to manage and handle
versioning for the Eclipse Java project directly from the Rule Designer environment. If the
starting point for the project is an imported copybook, this code is generated by Rule
Designer and must not be edited. If possible, mark this code as read-only within the source
code management system.

Only deploy the Java XOM if there are changes to the underlying data structures that define
the interface to this decision. This situation occurs when a change is made to the COBOL
copybook that was imported to create the BOM. A change of this nature also requires a
corresponding change in the COBOL client applications to use the new copybook structure.
For this reason, changes to the COBOL copybook are considered an IT project and happen
less frequently than changes to the decision behavior in the rules. A preferred practice is to
increment the major version number of the decision when making these interface changes.

RuleApp
The RuleApp is the deployment container for one or a number of related rulesets. RuleApps
are created for deployment either within Rule Designer or Decision Center. They are a
compressed (.zip) file that contains the required artifacts to execute the decision.

A RuleApp can be deployed directly to a server from either Rule Designer or Decision Center.
Or, a RuleApp can be exported as a JAR file that can be managed externally to the
Operational Decision Manager tool and deployed to a server by using scripts. This approach
can be useful when defining the process of performing decision updates where there is no
access from Rule Designer or Decision Center to the production zRES for z/OS.

The name of a RuleApp is significant. The name forms part of the ruleset path that is used by
the client to identify the decision that it wants to invoke on the server.

4.2.2 What roles are involved in the decision lifecycle

There are three roles that are involved in the lifecycle of a decision. The names vary from
company to company, but there are normally people who can be attributed to one or more of
the following roles:

� Application/decision developer
� Systems administrator/programmer
� Business team member

The major interaction among the team members occurs in the Decision Center environment.
Here, a developer synchronizes the RuleApps on which the developer is working in Rule
Designer. The systems administrator goes to Rule Designer to version and deploy decisions.
The business team accesses Rule Designer to view or change decisions.
86 Flexible Decision Management with Business Rules on IBM z Systems

The Decision Center environment provides role-based access authorities to allow the
systems administrator to give people the correct authority to access the rulesets for which
they are responsible. The granularity of access authority is delivered at the ruleset level. But,
with a little customizing, the granularity of management can be changed to match whatever is
required by the organization. Figure 4-5 shows how a set of permissions might appear for a
particular group of users.

Figure 4-5 Example permission settings for a business user

Rule developer
The rule developer is generally an IT-based person. In most organizations, the rule developer
is also part of the application development team that is responsible for the application that is
being modernized by having its decisions extracted. In a larger organization, a dedicated
team with the skill to externalize and develop decisions might exist, outside of the application
development team.

The rule developer is responsible for creating the initial version of the BOM and the
verbalization of that model. The rule developer normally writes the first pass at the rules
based on what currently exists in the application code. The rule developer’s primary tool is
Rule Designer. The rule developer is responsible for publishing the ruleset and the XOM to
Decision Center. This person also ensures that the Java XOM code is maintained in a source
code management system.

Systems administrator
The systems administrator is responsible for the production zRES servers and their health. In
the rule lifecycle, the systems administrator generally is responsible for versioning and
deploying new versions of a decision into the zRES. The systems administrator is also
responsible for maintaining the security model within the Decision Center environment to
ensure that users have access to only the rulesets for which they are responsible.

Business team
The business team is ultimately responsible for the business policies, which are enforced
through the business decisions. The business team provides the input to the behavior of the
business decisions. Depending on the level of adoption, the business team’s interaction
varies.

The business team provides input to the rule development team for business policy changes
to implement in the decisions. In one scenario, the business team can use Business Console
to search, view, and modify specific rules from the existing system, requesting assistance
from the rules development team if it is required.

In another scenario, the business team can view the rules from existing decisions in Decision
Center and make recommendations to the rule development team to update specific rules
that must be made to implement new business policies. In this mode, the business team has
read-only access to the rulesets that contain the applicable rules.
Chapter 4. Managing business decisions through the full lifecycle 87

|n a third scenario, the business team updates the rules within a decision directly to
implement changes that are required as business policies are updated. The business team
tests the changes to the decisions by using the testing and simulation capabilities that are
accessed through Decision Center consoles. The business team then notifies the systems
administrator that a new version of a decision is available and must be deployed.

4.3 Sharing decision artifacts between z/OS and a distributed
environment

Decision artifacts can be shared between distributed and z/OS environments if they are
developed with this compatibility in mind.

When considering sharing decisions between z/OS and other platforms, ensure that the
correct decision artifacts are available on each platform. As part of the decision lifecycle, the
required artifacts can come from separate management systems.

Figure 4-6 shows the artifacts that are involved in a decision and the artifacts that are
required to be deployed to various platforms.

Figure 4-6 Deployment of decision artifacts

Normally, only the rulesets and the Java XOM are required on the distributed platform. Often
in this configuration, the client is a Java application and is local to the Rule Execution Server
for distributed. The Java XOM is part of the client application class path, so it is not explicitly
deployed to the server as a resource. The rule session inherits the class path of the client
application.

Marshaller: The marshaller that is shown in Figure 4-6 is used to convert the COBOL or
PL/I data to Java so that it can be accessed by the Java based ruleset. It is only required
on the z/OS platform and must not be changed.

Required for
deployment to

distributed
environment

Required for
deployment to
z/OS environment

COBOL
Copybook

COBOL – Java
Marshaller

Java XOM

RuleSetRuleSet
88 Flexible Decision Management with Business Rules on IBM z Systems

On zRES, the COBOL copybook or PL/I include file that was either imported into, or
generated by, Rule Designer is required by the client COBOL application. The COBOL
copybook ensures that the data layout is exactly the layout that is expected by the marshalling
code. Because the client in this case is COBOL and the connection to the server is managed
by the zRES API stub, the Java XOM resource must be deployed to the server. This
deployment can be done either from the Rule Designer, Decision Center Business Console,
or locally using supplied scripts.

In both cases, the Rule Execution Server requires that the ruleset is deployed within a
RuleApp. This deployment is from either Rule Designer, Decision Center, or locally by using
scripts.

When sharing the decision across multiple platforms, it is important to make sure that the
decision lifecycle updates and deploys the correct parts of the decision when changes are
made. If the underlying data structure definitions are not changed when updating a decision,
only the rulesets within a RuleApp must be redeployed to make the new decision version
available. If changes are made to the copybook that is used to create the BOM, or if the Java
XOM was used to create the copybook, you need to redeploy artifacts. Redeploy artifacts on
all platforms where the decision is implemented to minimize the chances of unexpected
behavior or failures. For this reason, changes to the data model must be minimized after the
decisions are in production.

4.4 Installation topologies for Decision Center

The locations of the Decision Center repository and the Decision Center Enterprise and
Business consoles are largely independent of where the decision executes. Figure 4-7 on
page 90 shows possible options for installing a Decision Center to be used with zRES.
However, it is likely that more than one Decision Center console will be employed, possibly in
different locations.
Chapter 4. Managing business decisions through the full lifecycle 89

4.4.1 Basic topologies

Figure 4-7 shows three topologies using only one instance of the Decision Center console
and the Decision Center repository.

Figure 4-7 Deployment options for Decision Center repository and console

The Decision Center consoles require deployment to a web container. This web container can
be any one of the supported Java Platform, Enterprise Edition (Java EE) application servers
for distributed or WebSphere Application Server for z/OS. The Decision Center consoles also
require Java Database Connectivity (JDBC) access to the repository database.

The following sections provide a brief description of the topologies that are shown in
Figure 4-7.

Topology 1: Decision Center console and repository on distributed
In this topology, both the Decision Center console and repository are hosted on a distributed
or Linux for z Systems platform. The standard deployment from the Decision Center console
to zRule Execution Server for z/OS (zRES) is by HTTP-based communication. As long as
access is granted to the specific ports that are configured for deployment on the zRES or
other Rule Execution Server instances, it is straightforward to deploy to any zRES instance.
To Decision Center, the deployment interface to zRES looks the same as other Java EE
deployed Rule Execution Server instances.

All security to the console is role-based using the underlying application server to perform
authentication checks. You might prefer this configuration, because it does not require all
users of the Decision Center console to be defined to z/OS security.

Topology 2: Decision Center console on distributed and repository on
z/OS
This topology is similar to Topology 1. However, the database is on a z/OS logical partition
(LPAR). In this case, the Decision Center console must also have ports that are enabled in
any firewall to allow remote client access to the database on z/OS. Generally, Decision Center
is used less than the Decision Server, so the remote location of the database is not a
performance problem.

Distributed

Decision
Center
Console

Repository

Distributed

Decision
Center
Console

Distributed

z/OS

Rule
Execution

z/OS

Rule
Execution

z/OS

Decision
Center
Console

Repository

Rule
Execution

Deploy Deploy

Repository

Deploy
90 Flexible Decision Management with Business Rules on IBM z Systems

You might prefer this configuration if the rule repository is required to have z/OS quality of
service (QoS) associated with it or if the rule repository is managed on the same platform as
the COBOL or PL/I source code repository. Generally, in this case, the security access to the
remote database is delegated to an application server-level connection. That way, each
Decision Center console user does not have to be defined to z/OS security.

Topology 3: Decision Center console and repository on z/OS
This topology places both the Decision Center console and repository on z/OS. The Decision
Center console requires a WebSphere Application Server for z/OS instance in which to run
and the repository requires an IBM DB2 instance. This topology can also be deployed to
distributed Rule Execution Server instances and to zRES instances.

You might prefer this configuration if all administration and deployment of a project are
contained within the z/OS teams.

4.5 Managing artifacts through the lifecycle

This section describes how the tools that are available in Operational Decision Manager for
z/OS can be used to manage artifacts through the lifecycle.

4.5.1 Rule Designer

The Rule Designer is primarily a tool for creating rule artifacts. It is used for the creation of
rules, ruleflows, decision trees, and other rules artifacts. It can be used to deploy rules to the
zRES.

Because this tool is primarily aimed at an IT department rather than a system programmer, it
is unlikely that it will be used to deploy a rule artifact to the production system. The main
communication for the Rule Designer is with development and the test Rule Execution
Servers, and with Decision Center repositories in these areas. It can, however, be used to
export rules artifacts for later deployment to a rule server by using external scripts that
implement the Representational State Transfer application programming interface (REST
API).
Chapter 4. Managing business decisions through the full lifecycle 91

Figure 4-8 shows the export window for a RuleApp.

Figure 4-8 Deployment and export from Rules Designer

Anything that is deployed from the Rule Designer to a zRES takes effect immediately.

The Rule Designer can also be used to publish rules and the XOM to a Decision Center
repository by first connecting to the appropriate Decision Center and then synchronizing with
it. This allows for publishing rules to the main root or to one of the branches. Roots and
branches are described in “Versioning” on page 93.
92 Flexible Decision Management with Business Rules on IBM z Systems

4.5.2 Decision Center

The Decision Center, as shown in Figure 4-9, can be configured to support a variety of users,
allowing it to be a central tool in managing artifacts currently in use. Anything deployed from
the Decision Center will be effective immediately on the zRES to which it has been deployed.

Figure 4-9 Decision Center on startup

When configured for business users, it might allow the modification of specific rules and
events and viewing of more complex scenarios. Deploying might not be appropriate in these
circumstances. Rules can be updated or modified. Testing a specific rule can also be done.

When used by a developer, rule artifacts can be created and modified, and then deployed to a
zRES. Although, more often, the Rule Designer is used for the main development and
Decision Center is used as a maintenance tool.

When used by a system programmer, it is likely that the majority of functions are enabled.
Although in some cases, it might be useful to disable the editing capabilities on artifacts that
have been developed by the other teams. The system programmer’s primary use of the
Decision Center is to deploy the rule artifacts to the appropriate Rule Execution Servers. The
Decision Center might also be used for exporting so that rules can be deployed to the
production server by using the REST APIs, as described in 4.5.4, “REST API” on page 94.

Versioning
When a new version of an element is modified, the Decision Center creates an archived
version of that element. Therefore, the history of a particular element can be tracked by
reviewing those archived versions.
Chapter 4. Managing business decisions through the full lifecycle 93

4.5.3 Business Console

The Business Console, as shown in Figure 4-10, is primarily a tool for use by business users.
It allows for the searching, viewing, editing, test, simulation, and deployment of rules. It also
allows timelines to be used to see the history of a rule.

The editing of rules in the Business Console causes an archived version of the rules to be
created as described in “Versioning” on page 93.

Figure 4-10 Business Center

4.5.4 REST API

Operational Decision Manager allows for the deployment of rules and supporting artifacts by
using the REST API services. Therefore, the deployment of a rule artifact can be scripted to
ensure that it is deployed in the same way each time. It also means that rule artifacts can be
published without using an HTTP connection between the tool and zRES. This is a useful
method when deploying to a production environment because it preserves security on the
production system.

As shown in Figure 4-11 on page 95, to use this method, first the rule artifact is exported, and
then, it is deployed to the zRES server by using scripts by using the REST API. The archive
file can be copied to the appropriate location, which means that HTTP connections are not
involved.
94 Flexible Decision Management with Business Rules on IBM z Systems

Figure 4-11 Deploying a rule artifact by using REST API services without using HTTP

4.5.5 Deployment scripts

By using JCL, is it possible to script the deployment of rules and the associated artifacts. It is
possible to deploy directly to the persistence layer using HBRDPLOY. However, this only
affects the database and does not inform running applications (such as the zRES) that
changes have occurred. Therefore, any changes that use this method need the zRES to be
restarted for the changes to take effect.

The preferred mechanism is to use the HBRDPLYC, which uses the REST API to deploy
directly to a running RES Console. This notifies the zRule Execution Servers to update their
copy of the rules.

4.6 Usage of defined rules

After a rule artifact is defined to the Decision Server, it is available for use by calling
applications. If the artifacts are deployed using the REST API or the RES Console, no restart
of the Decision Server is required.

The rule can then be modified separately to the application by using the methodologies
described in this chapter. The application using the rule does not require modification for an
update to be made to that rule. By using a deployment method that requires no restart, there
does not need to be any interruption of service for the rules to be updated.

Rule Designer zRES

Rule
Artifact
Archive

Deploy
(Scripts using

REST API)

Export
Chapter 4. Managing business decisions through the full lifecycle 95

96 Flexible Decision Management with Business Rules on IBM z Systems

Chapter 5. Invoking Operational Decision
Manager from COBOL and PL/I
clients

This chapter describes the design of the decision interface. It describes the mapping between
the COBOL and PL/I data structures passed into the decision run time and the Java
structures that are used to execute the rules. This chapter explains how you can then
customize this mapping.

This chapter also describes starting a new project for deployment from a COBOL copybook.
The same steps also apply for PL/I data structures.

The following topics are covered in this chapter:

� 5.1, “Designing the decision interface” on page 98
� 5.2, “Coding the COBOL or PL/I client application” on page 98
� 5.3, “Mapping from the COBOL copybook” on page 102
� 5.4, “Changing the client application to reach the rule server” on page 108

5

© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 97

5.1 Designing the decision interface

The starting point for any successful decision project is to design the decision interface
correctly. Often, there is an existing copybook that is used by the application that is being
enabled to access Operational Decision Manager. The natural starting point seems to be to
reuse this data structure as the interface to the decision. Although this approach might seem
to be the easiest, there are benefits to be gained by giving the interface more consideration.

When designing the decision interface, consider why you are externalizing business rules into
an external decision server. One of the main reasons might be that the business decisions
change on a shorter lifecycle than the applications that invoke them. Therefore, you might
want to isolate the application from changes to the business rules in the decision. However,
you also might want to isolate the business decision from maintenance changes that occur in
the application.

Changes in the application can alter the copybook that the application uses. Application
changes result in the need to import the copybook again to update the business object model
(BOM) that is used in the rules. These changes can potentially disrupt rules that are already
authored.

Also, the data in the copybook might not be suitable for use with rule authoring. Application
copybooks in COBOL and PL/I are often a mix between a representation of the business data
and its specific entries. For example, often COBOL FILLER statements are put in to align
data, or fields are created to hold return codes or other diagnostic information. These fields
have no business relevance to the decision and are confusing if they are included in the BOM.

It is important to ensure that the data passed across to the business decision contains all the
required information to successfully make the decision. When thinking about the data,
consider information that might not be used in the business rules that is embedded in the
application today. This information might be useful to develop a better business decision after
it is externalized. It is far easier to pass more data across when designing the decision
interface from the outset than to re-engineer the interface later or to add code into the
decision to retrieve external data.

It is a preferred practice to design the interface to a business decision in the same way that
you design a service interface. Consider the following information:

� The data that is used in the decision today
� The data that is easily available to the application
� The data that is required today, and potentially in the future, to maintain the decision after

it is externalized

Create a copybook or include file to hold that information specifically for the decision interface
that can be versioned for that purpose. The additional cost of a few COBOL MOVE or PL/I
assign statements is outweighed by the flexibility that this approach provides in isolating
changes in both the decision and the calling application.

5.2 Coding the COBOL or PL/I client application

To access the zRule Execution Server for z/OS (zRES), the application must use the supplied
client API. This API consists of the following API calls:

HBRCONN To connect to the server
HBRRULE To execute a decision
HBRDISC To disconnect from the server
98 Flexible Decision Management with Business Rules on IBM z Systems

Each API call takes the HBRWS copybook-defined structure as a parameter. These calls are
shown in 3.2.10, “Building a COBOL application for rule execution” on page 64.

5.2.1 HBRWS header structure

The HBRWS header structure is required for all zRES client API calls. For COBOL, it is in the
++HBRHLQ++.SHBRCOBS data set. For PL/I, it is in the ++HBRHLQ++.SHBRPLIS data set. It must be
included in any client programs that call the zRule Execution Server for z/OS.

Example 5-1 shows the layout of the HBRWS header structure for COBOL.

Example 5-1 Layout of the HBRWS header structure

01 HBRA-CONN-AREA.
 10 HBRA-CONN-EYE PIC X(4) VALUE 'HBRC'.
 10 HBRA-CONN-LENTH PIC S9(8) COMP VALUE +3536.
 10 HBRA-CONN-VERSION PIC S9(8) COMP VALUE +2.
 10 HBRA-CONN-RETURN-CODES.
 15 HBRA-CONN-COMPLETION-CODE PIC S9(8) COMP VALUE -1.
 15 HBRA-CONN-REASON-CODE PIC S9(8) COMP VALUE -1.
 10 HBRA-CONN-FLAGS PIC S9(8) COMP VALUE +1.
 10 HBRA-CONN-INSTANCE.
 15 HBRA-CONN-PRODCODE PIC X(4) VALUE SPACES.
 15 HBRA-CONN-INSTCODE PIC X(12) VALUE SPACES.
 15 HBRA-CONN-SSID PIC X(4) VALUE SPACES.
 15 HBRA-CONN-RESERVED PIC X(4) VALUE SPACES.
 10 HBRA-RESERVED01 PIC S9(8) COMP VALUE 0.
 10 HBRA-RESERVED02 PIC S9(8) COMP VALUE 0.
 10 HBRA-RESERVED03 PIC S9(8) COMP VALUE 0.
 10 HBRA-CONN-RULE-CCSID PIC S9(8) COMP VALUE 0.
 10 HBRA-CONN-RULEAPP-PATH PIC X(256) VALUE SPACES.
 10 HBRA-RESPONSE-AREA VALUE SPACES.
 15 HBRA-RESPONSE-MESSAGE PIC X(1024).
 10 HBRA-RA-INIT VALUE LOW-VALUES.
 15 HBRA-RESERVED04 PIC X(1792).
 10 HBRA-RA-PARMETERS
 REDEFINES HBRA-RA-INIT.
 15 HBRA-RA-PARMS OCCURS 32.
 20 HBRA-RA-PARAMETER-NAME PIC X(48).
 20 HBRA-RA-DATA-ADDRESS USAGE POINTER.
 20 HBRA-RA-DATA-LENGTH PIC 9(8) BINARY.
 10 HBRA-RESERVED.
 15 HBRA-RESERVED05 PIC X(12).
 15 HBRA-RESERVED06 PIC X(64).
 15 HBRA-RESERVED07 PIC X(64).
 15 HBRA-RESERVED08 PIC X(128).
 15 HBRA-RESERVED09 PIC X(132).

The entire HBRA-CONN-AREA must be passed on each of the three API calls to zRule
Execution Server for z/OS. The following sections describe the important elements of this
structure.
Chapter 5. Invoking Operational Decision Manager from COBOL and PL/I clients 99

HBRA-CONN-RETURN-CODES
The HBRA-CONN-RETURN-CODES element provides completion and reason codes to the
requested API call. If these responses do not have a zero value on their return from an API,
the user documentation provides more details about the error that occurred.

HBRA-CONN-RULEAPP-PATH
The HBRA-CONN-RULEAPP-PATH element is important for the data structure. This value is
used by zRule Execution Server for z/OS to identify which decision to execute on the specific
data. After a decision is deployed to zRule Execution Server for z/OS, the value for the
RULEAPP-PATH can be identified by logging on to the RES console and viewing the
deployed decision.

The RULEAPP-PATH uses this structure:

/<RULEAPP-NAME>/<RULEAPP-VER>/<RULESET-NAME>/<RULESET-VER>

The RULE-APP-VER and RULESET-VER are generally required only if the client wants to
execute a particular version of a decision that is deployed to zRule Execution Server for z/OS.
In most cases, this is the latest version of the decision. In this case, the path is simplified to
this structure:

/<RULEAPP-NAME>/<RULESET-NAME>

For example, the Miniloan example that is supplied with Operational Decision Manager uses
this structure:

/MiniLoanDemoRuleApp/MiniLoanDemo

The different combinations and what they mean can be found in Example 5-2. A practice used
for some customers is that when business rules change, they increment the ruleset version
and when the data structure (for example, COBOL copybook or PL/I include) changes, they
increment the rule application version.

Example 5-2 Using /MiniLoanDemoRuleApp/MiniLoanDemo as the Rule Application and Ruleset, the
following are the different combinations that can be used for calling applications and what each does

Scenario 1 to always call the latest RuleApp and Ruleset Version use:
/MiniLoanDemoRuleApp/MiniLoanDemo
Scenario 2 to always call a specific RuleApp version, but latest Ruleset Version
use: /MiniLoanDemoRuleApp/1.0/MiniLoanDemo
Scenario 3 to always call the latest RuleApp version, but specific Ruleset Version
use: /MiniLoanDemoRuleApp/MiniLoanDemo/1.0
Scenario 4 to always call a specific RuleApp version and a specific Ruleset
Version use: /MiniLoanDemoRuleApp/1.0/MiniLoanDemo/1.0

HBRA-RESPONSE-AREA
If any text messages or warnings are returned by the Java portion of the server, they are
returned in the HBRA-RESPONSE-AREA data area to help you diagnose any problems. A
preferred practice is to write this area out to an application log if a nonzero return code is
received.

HBRA-RA-PARAMETERS
The HBRA-RA-PARAMETERS section is required only on the HBRRULE API call. The
HBRA-RA-PARAMETERS section provides the user data that is used to evaluate the
decision.
100 Flexible Decision Management with Business Rules on IBM z Systems

The structure is a list of triplets to pass the parameter name, a pointer to the data in working
storage, and the length of the data:

� HBRA-RA-PARAMETER-NAME is the name of the parameter as it is known to the
decision. This parameter name is defined as part of the rule-authoring process. The
parameter name is case-sensitive and must be added as a character string, exactly as it is
defined in the ruleset.

� HBRA-RA-DATA-ADDRESS is a pointer to the location of the parameter in your working
storage. Normally, this element points to the address of the 01-level element in your
copybook that you imported to define this parameter to the decision. It is normally set like
the following example:

set HBRA-DATA-ADDRESS(1) to address of Borrower

� HBRA-RA-DATA-LENGTH defines the length of the data structure to which the
HBRA-DATA-ADDRESS points. Ensure that you set this element correctly so that all
necessary data is passed across to the decision execution. You can use COBOL or PL/I
intrinsic functions to calculate this value, for example:

move LENGTH OF Borrower to HBRA-DATA-LENGTH(1)

or

HBRA_RA_DATA_LENGTH(1) = SIZE (BORROWER);

5.2.2 HBRCONN API call

You use the HBRCONN API call to establish a connection to the zRule Execution Server for
z/OS server or for the Rule Execution Server for WebSphere Application Server on z/OS. The
HBRA-CONN-AREA data structure is passed as a parameter to this call.

In CICS, when using a Rule Execution Server for z/OS stand-alone server, Rule Execution
Server on WebSphere Application Server for z/OS, or the locally optimized Java virtual
machine (JVM) server deployment, the connection call is made at start or when the HBRC
transaction is run and not during the HBRCONN call.

5.2.3 HBRRULE API call

The HBRRULE API call invokes the decision for evaluation. The HBRA-CONN-AREA data
structure is passed as a parameter and must contain references to the ruleset parameter data
that is required for evaluating the decision.

Multiple HBRRULE calls should be made within a single HBRCONN/HBRDISC pair. This is
also the preferred practice when performance is a consideration as HBRCONN and
HBRDISC have a processing overhead associated with them.

5.2.4 HBRDISC API call

You use the HBRDISC API call to disconnect from the server after all decisions are evaluated
for this application. The HBRA-CONN-AREA is passed as a parameter.

Important: The HBRCONN API call should still be included in the CICS client applications
as it is used to perform transaction-based initialization.
Chapter 5. Invoking Operational Decision Manager from COBOL and PL/I clients 101

In CICS, HBRDISC does not disconnect the CICS region explicitly. Instead, for CICS, this is
achieved by using the HBRD transaction.

5.3 Mapping from the COBOL copybook

This section describes the following COBOL topics:

� Structure of a COBOL-based rule project
� Supported COBOL and PL/I data types
� Creating custom converters
� Mapping level-88 constructs into BOM domain types

This section focuses on COBOL, however the general concepts also apply to PL/I. Where
PL/I is different, it is highlighted in the text.

5.3.1 Structure of a COBOL-based rule project

In Chapter 3, “Getting started with business rules” on page 23, when importing a COBOL
copybook, a Java project is generated which is the Java Execution Module (XOM) project.

XOM project
The XOM project contains a Java representation of the COBOL or PL/I data structures. Each
level-01 item in the copybook, both group and elementary items, is mapped to a Java class.
Each non-level-01 group item is also mapped to a class.

Figure 5-1 Imported copybook level-01 items are mapped to Java classes

Important: The HBRDISC API call should still be included in the CICS client applications
as it is used to perform transaction-based cleanup.

Imported COBOL Copybook

01 Driver.
05 Name PIC X(10).
05 Age PIC 9(3).
05 Address.

10 HouseNum PIC 9(4).
10 Street PIC X(30).
10 District PIC X(30).
10 City PIC X(30).
10 PostCode PIC X(10).

01 QuotePrice PIC 9(5).

Generated Java XOM

Class Driver
String name
short age
AddressDets addressDets

Class AddressDets
short houseNum
String street
String district
String City
String postCode

Class QuotePrice
int quotePrice

Important: Only level-01 items can be used as ruleset parameters.
102 Flexible Decision Management with Business Rules on IBM z Systems

Marshalling
During the processing of requests from a COBOL or PL/I application, the zRule Execution
Server for z/OS first converts the native data into Java XOM objects. After executing the
ruleset, the zRule Execution Server for z/OS then converts the Java objects back to native
data.

The marshaller classes are not externalized and cannot be altered. The marshaller is
produced by Rule Designer during the importing of the COBOL copybook or PL/I include file.

5.3.2 Supported COBOL and PL/I data types

This section describes the supported and unsupported COBOL data types.

Supported and Unsupported types
The supported data types can be in the Operational Decision Manager (ODM)
IBM Knowledge Center:

COBOL

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.1/com.ibm.odm.dserver.rul
es.designer.author/cobol_topics/con_xomguidelines_cobol2java.html

PL/I

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.1/com.ibm.odm.dserver.rul
es.designer.author/pl1_topics/con_pl1_xomguidelines_pl12java.html

Some data types are not supported because there are no suitable Java types to which to
map. Do not include these types in the import copybook.

If the copybook structure cannot be changed, for example, for compatibility with existing
applications, consider this work-around. In the copybook for importing, change the data item
to a corresponding ordinary alphanumeric or national type of the same length. Then, these
data items are mapped to Java strings in the generated XOM class.

There are also two unsupported Occurs Depending On (ODO) table situations:

� ODO table within a fixed-length table
� ODO table sharing the ODO object

Consider using a fixed-length table to work around these limitations.

Converter
You can use type converters to change the Java type to which a COBOL or PL/I data item is
mapped. There are two built-in converters:

� String to boolean converter
� String to Date converter

You can also implement custom converters or set a XOM field to a custom-defined domain
class.

5.3.3 Creating custom converters

In Chapter 3, “Getting started with business rules” on page 23, you learned about how to use
the built-in type converters to map a COBOL data item to Java Boolean or Date type. There
Chapter 5. Invoking Operational Decision Manager from COBOL and PL/I clients 103

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.0/com.ibm.odm.dserver.rules.designer.author/pl1_topics/con_pl1_xomguidelines_pl12java.html
http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.0/com.ibm.odm.dserver.rules.designer.author/cobol_topics/con_xomguidelines_cobol2java.html

are cases when the built-in converter cannot meet your needs. You can then write a custom
converter.

Consider this example. In a COBOL program, instead of using only T to indicate true, the
program also accepts t, Y, and y as true values. But the built-in Boolean converter can accept
only one character as the true value. So, in this case, you need to write a custom converter.

A custom converter is a normal Java class. The class must be annotated with the
TypeConverter annotation. In the Converter dialog, users can select those classes with only
the TypeConverter annotation, along with the built-in converters.

You then need to implement an init method. This method is called by the run time to initialize
the converter with user-defined properties. There is also an optional TypeConverterProperties
annotation with which you can define the list of expected property keys. In this example, two
keys are defined:

true-values A comma-separated list of characters that indicate true
false-value The default value that indicates false

In the init method, the values of these properties are retrieved. Then, the list of true values to
the trueValues field is saved and the falseValue field is set to the false-value character. See
Example 5-3.

Example 5-3 Custom converter code (part 1 of 2)

@TypeConverter
@TypeConverterProperties({ "true-values", "false-value" })
public class MyBooleanConverter {

private List<String> trueValues;
private String falseValue;

public void init(Map<String, String> props) {
String trueStr = props.get("true-values");
trueValues = Arrays.asList(trueStr.split(","));
falseValue = props.get("false-value");

}

Now, you can define two conversion methods:

public <TargetType> convertToTarget(<SourceType> value)
public <SourceType> convertToSource(<TargetType> value) {

The <SourceType> is the default Java type that is directly mapped from COBOL data and the
<TargetType> is the type that you want to use in the generated XOM. The convertToTarget is
called during unmarshalling, and the convertToSource is called during marshalling.

In Example 5-4 on page 105, if the value that comes from COBOL is within the trueValues,
the result is true. Any other values convert to false. During marshalling, if the Java value is
true, the first of the possible true values is used, which is T in this case. If the Boolean value is
false, the false value F is used.
104 Flexible Decision Management with Business Rules on IBM z Systems

Example 5-4 Custom converter code (part 2 of 2)

public synchronized boolean convertToTarget(String value) {
return trueValues.contains(value);

}
public synchronized String convertToSource(boolean value) {

return value ? trueValues.get(0) : falseValue;
}

}

After the custom converter is implemented, you must add the Java project to the XOM path of
the rule project. Then, when adding a COBOL XOM, in the Converter dialog, you can choose
the converter that you defined and set the property values (see Figure 5-2).

In the generated marshaller code, the user-provided properties in this dialog are sent as
parameters in the call of the init method. Therefore, the converter is initialized before any
conversion operation.

Figure 5-2 Converter dialog with custom converter

5.3.4 Mapping level-88 constructs into BOM domain types

A domain can restrict the possible values that a type element in BOM can accept. During rule
authoring, the editor suggests values according to the enumerated domains. A semantic
check is also performed to check that the business rule does not use a value outside the
defined domain.
Chapter 5. Invoking Operational Decision Manager from COBOL and PL/I clients 105

The copybook that is shown in Example 5-5 was used in Chapter 3, “Getting started with
business rules” on page 23.

Example 5-5 COBOL copybook

05 VEHICLE.
 10 VEC-ID PIC X(15).
 10 MAKE PIC X(20).
 10 MODEL PIC X(20).
 10 VEC-VALUE USAGE COMP-1.
 10 VEC-TYPE PIC X(2).
 88 SUV VALUE 'SU'.
 88 SEDAN VALUE 'SD'.
 88 PICKUP VALUE 'PU'.

The vehicle type VEC-TYPE data item has three level-88 items, which define the valid values
for this item: SU, SD, and PU. When importing this copybook into the Rule Designer, the level-88
items are mapped to methods. These methods are helpful to check the value of the field or to
assign the correct value to the field, but they cannot prevent the field from being assigned
incorrect values. Ideally, a user might use valid values only with the vehicle type, or the user
can use actual vehicle types instead of codes to represent the vehicle types. A domain must
be defined to meet this requirement. In the COBOL XOM import wizard, a domain converter
to map the vehicle type to a Java domain type needs to be defined.

Follow these steps:

1. Implement a Java class as the XOM for the domain definition. Example 5-6 is the sample
code. In this class, define a constructor with a string parameter. This constructor accepts
the vehicle type codes and creates a VehicleType object. You must also implement a
getValue method to retrieve the string code from the VehicleType object.

Example 5-6 Java class for domain vehicle type

package redbook;
public class VehicleType {
 public final static VehicleType SUV = new VehicleType("SU");
 public final static VehicleType SEDAN = new VehicleType("SD");
 public final static VehicleType PICKUP = new VehicleType("PU");
 private String code;
 public VehicleType(String code) {
 this.code = code;
 }
 public String getValue() {
 return code;
 }
}

2. In Rule Designer, add the project to the Java XOM path of the rule project.

3. When you import a COBOL copybook, define a converter for the vehicle-type item. In the
dialog that is shown in Figure 5-3 on page 107, when you select Set Domain Support for
the Converter field, you can select the From type. The From type is the Java type when the
COBOL data is first unmarshalled and before the converter is applied.

You need to provide the domain class name that you want to use. You can then provide
detailed information for the domain class. Select Using Constructor to convert the string
codes to the domain object and then select the GetValue Method to convert the domain
object to string.
106 Flexible Decision Management with Business Rules on IBM z Systems

Figure 5-3 Converter dialog to set up the domain type

4. You must create a BOM entry for the domain class. Then, create a BOM entry for the
COBOL XOM. With the correct verbalization, you can use the domain in rule authoring
(Figure 5-4).

Figure 5-4 A sample decision table that uses the COBOL domain

5. In the converter dialog, you can also use a static factory method instead of a constructor to
define a domain converter. Example 5-7 on page 108 is a sample implementation of a
static factory method.
Chapter 5. Invoking Operational Decision Manager from COBOL and PL/I clients 107

Example 5-7 Static factory method in the domain class VehicleType

public static VehicleType getVehicleType(String code) {
 if (SUV.code.equals(code))
 return SUV;
 else if (SEDAN.code.equals(code))
 return SEDAN;
 else if (PICKUP.code.equals(code))

return PICKUP;
 else

return null;
 }

5.4 Changing the client application to reach the rule server

The client application needs to be bound to the ODM stub code depending on the server that
makes the business decision.

5.4.1 Batch application

For a batch application, the client application needs to be bound to the Operational Decision
Manager stub:

//HBRLIB DD DSN=++HBRHLQ++.SHBRLOAD
INCLUDE HBRLIB (HBRBSTUB)

The job that runs the client application will also have the following line that tells the application
which server to connect:

//HBRENVPR DD DISP=SHR,DSN=++HBRWORKDS++..SHBRPARM(HBRBATCH)

5.4.2 IMS application

For an IMS application, the client application needs to be bound with the Operational Decision
Manager stub for IMS:

//HBRLIB DD DSN=++HBRHLQ++.SHBRLOAD
INCLUDE HBRLIB (HBRISTUB)

More information about working with IMS is in Chapter 11, “Configuring IBM IMS to work with
Operational Decision Manager” on page 169.

5.4.3 CICS application

For a CICS application, the client application needs to be bound to the Operational Decision
Manager stub:

//HBRLIB DD DSN=++HBRHLQ++.SHBRCICS
INCLUDE HBRLIB (HBRCSTUB)

More information about working with the CICS JVM is in Chapter 10, “Configuring IBM CICS
to work with Operational Decision Manager” on page 153.
108 Flexible Decision Management with Business Rules on IBM z Systems

5.4.4 WebSphere Optimized Local Adapters batch application

For a WebSphere Optimized Local Adapters (WOLA) batch application, the client application
is bound as described in 5.4.1, “Batch application” on page 108. However, in addition, the job
that runs the application needs to include the WOLA parameter file:

//HBRENVPR DD DISP=SHR,DSN=++HBRWORKDS++..SHBRPARM(HBRWOLA)

More information about working with WOLA is in Chapter 13, “Configuring IBM WebSphere
Optimized Local Adapters support” on page 183.
Chapter 5. Invoking Operational Decision Manager from COBOL and PL/I clients 109

110 Flexible Decision Management with Business Rules on IBM z Systems

Chapter 6. Advanced topics for decision
authoring

This chapter describes the authoring rules for deployment to z/OS. It does not explain general
rule authoring. However, it does describe in more detail the mapping between the COBOL or
PL/I data structures that are passed into the decision run time and the Java structures that
are used to execute the rules. This chapter also explains how you can customize that
mapping.

This chapter describes starting a new project for deployment from either a COBOL copybook,
a PL/I include file, or an existing rule project based on Java. It then explains how you can
extend the capabilities of the decision execution by adding custom methods into the business
object model (BOM).

The following topics are covered in this chapter:

� 6.1, “Starting from an existing Java based BOM project” on page 112

� 6.2, “Extending the capability of the rule execution with BOM methods” on page 114

� 6.3, “Augmenting ruleset parameters from external data sources” on page 117

� 6.4, “Considerations for sharing rules between z/OS and distributed applications” on
page 119

� 6.5, “Authoring considerations for performance” on page 121

6

© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 111

6.1 Starting from an existing Java based BOM project

If rule projects are currently in production on distributed systems, and you want to migrate the
rule application to the mainframe, you can enable the BOM for a COBOL or PL/I application
and generate a COBOL copybook or PL/I include file.

6.1.1 Mapping Java data structures to COBOL

This section explains mapping Java data structures to COBOL. However, the same principles
are used when mapping from Java to PL/I.

Aggregation data structure
When mapping Java BOMs to COBOL, only BOM classes with aggregation relationships are
supported. If there are object references, a simple hierarchical data structure is supported.
Complex object graphs are not supported. For example, in the sample application that is used
in this document, the Insurance class has a field called Vehicle of type Vehicle. The vehicle
information is part of the insurance data, and it is a simple hierarchical data structure. This
example is supported.

But, if the Vehicle class references Insurance either directly or indirectly through other
classes, the data structure is not hierarchical. It contains loops. In this case, the
BOM-to-COBOL mapping is not supported. In addition, class inheritance is not supported.
The BOM must not include the following usage:

� Inheritance
� Loop reference, including self-reference
� Static attribute

Also, ensure that the BOM classes follow JavaBeans naming guidelines, such as well-formed
getters and setters; otherwise, the generated marshaller classes contain incorrect code.

General mapping rule
A BOM class is mapped to a COBOL group. Fields of the basic Java type are mapped to child
elementary data items. And, fields of the class type are mapped as subgroups (Example 6-1).

Example 6-1 A BOM with two classes

package xom;
public class Request {
 public xom.Driver primaryDriver;
 public xom.Driver secodaryDriver;
}
public class Driver {
public short age;
public string name;
}

Important: Only a BOM that originated from a Java execution object model (XOM) is
supported. A BOM that originated from an XML-based dynamic XOM is not supported.
112 Flexible Decision Management with Business Rules on IBM z Systems

When this BOM is mapped to a COBOL copybook, the primaryDriver and secondaryDriver
fields are generated as two groups with the same structure (Example 6-2).

Example 6-2 Copybook with two similar groups

01 request.
 02 primaryDriver.
 03 age pic S9(5).
 03 name pic X(20) value SPACE.
 02 secodaryDriver.
 03 age pic S9(5).
 03 name pic X(20) value SPACE.

An array is mapped to a table, and a collection is mapped to a size data item and a table
(Example 6-3).

Example 6-3 A BOM with an array and list

package xom;
public class Request {
 public xom.Driver[] drivers;
 public java.util.List vehicles domain 0,* class xom.Vehicle;
}
public class Driver {
public short age;
public string name;
}
public class Vehicle {
 public string vehicleId;
 public double vehicleValue;
}

The driver’s field is an array, so the COBOL data item is a fixed-length table. The vehicles field
is a list of Vehicle objects. So, in the generated copybook, vehicles-Num is used as the actual
size of the table vehicles (Example 6-4).

Example 6-4 Copybook for array and list sample

01 request.
 02 drivers Occurs 10 Times.
 03 age pic S9(5).
 03 name pic X(20) value SPACE.
 02 vehicles-Num pic 9(9).
 02 vehicles Occurs 10 Times.
 03 vehicleId pic X(20) value SPACE.
 03 vehicleValue usage COMP-2.
Chapter 6. Advanced topics for decision authoring 113

Mapping the basic Java type
Table 6-1 lists the Java to COBOL mapping.

Table 6-1 Java to COBOL mapping

You can change the default Java to COBOL mapping in the COBOL Type Settings tab of the
COBOL Management property panels. These panels are accessed by right-clicking the
project and choosing properties.

The following classes are unsupported Java types:

� Any Java classes, except the classes that are listed in Table 6-1
� The java.lang.Object class
� Classes that are defined in another BOM entry

6.2 Extending the capability of the rule execution with BOM
methods

The Business Action Language (BAL) that is used to define rules is flexible and extensible.
Generally, business rules are written from a vocabulary that is based on the structure of the
data that is passed in, for example:

If the age of the borrower is less than 18
then ……

It is also possible to verbalize methods to be invoked from rules. These methods can come
from either methods from the imported Java XOM classes or be defined directly in the BOM
as virtual methods, for example:

public void rejectTheLoan()
{
 this.approved = false;
}

Java type Default COBOL mapping Configuration

byte S9(3) Sign and length
USAGE BINARY, PACKED-DECIMAL,
COMP-5short S9(5)

int S9(10)

long S9(18)

java.math.BigInteger S9(18)

float COMP-1 Sign and length
USAGE BINARY, PACKED-DECIMAL,
COMP-5, and COMP-1double COMP-2

java.math.BigDecimal S9(9)V9(8)

java.lang.String X(20) X/N, length

java.util.Date 9(8) [yyyyMMdd] 9/X, date format

boolean
114 Flexible Decision Management with Business Rules on IBM z Systems

The method in this example can be verbalized as:

If the age of the borrower is less than 18
then reject the loan ;

Here, the method “reject the loan” can be used in place of the BAL statement:

make it false that the loan is approved ;

This approach greatly simplifies the rule authoring experience.

Although BOM methods are useful, ensure that the business decision can still be managed by
the business and that the decision is still reusable across multiple platforms. The next section,
6.2.1, “Preferred practices for using virtual methods” on page 115, describes several of the
preferred practices for BOM methods and shows you an example of using them.

6.2.1 Preferred practices for using virtual methods

To the IT-focused decision developer, the BOM methods might appear to be an attractive way
to augment the capabilities of a business decision. However, you can negate the value of
externalizing a business decision into a business rule engine if you do not use the BOM
methods correctly. This section describes a few of the preferred practices to help you avoid
misusing the BOM methods.

Do not bury business logic in the business decision
When you realize that you can access custom Java code from within a business decision call,
it can be tempting to add business logic to the decision. Adding business logic to the decision
is generally a bad idea. This statement might seem counterintuitive because often the terms
business logic and business rules are used interchangeably. When looking at the business
decisions, you must consider them only the rules part of the business application.

Figure 6-1 shows a simplified representation of a business application.

Figure 6-1 The structure of a business application

Business Application

Business Logic

Application
Control Flow

Data
Persistence

Business
Rules

Presentation
LogicEnd User

Data
Chapter 6. Advanced topics for decision authoring 115

Figure 6-1 on page 115 shows that a business application is normally made up of the
following elements:

� Presentation logic handling the user interaction
� Application control flow handling the flow of the logic through the application
� Business rules that are the implementation of the business behavior
� Data persistence layer that handles interaction with data sources

It is important to point out that the business rules do not interact with anything outside of the
application. If you want to be able to hot-deploy new versions of decisions, you must be
certain that changes to the business rules cannot break the application. If the business rules
call out to external data sources (see 6.3, “Augmenting ruleset parameters from external data
sources” on page 117), any changes must be tested within the full application, forcing a full
regression test.

If the changes to the business rules change only the business behavior within the application,
you can test the business rules in isolation to the full system. You only test to ensure that the
rules implement the business requirement correctly. Ensure that the rules do not cause an
issue for the application, for example, by forcing a divide by zero error. This level of testing is
only appropriate if the business rules are encapsulated within the application.

Do not add platform-specific logic if sharing rules
In most cases, Java is platform-independent. However, it is still possible to code Java
methods that only run in certain environments. For example, the JzOS Java libraries, which
are part of the base Java Runtime Environment (JRE) 6.0 for z/OS, provide a collection of
methods that are useful when coding Java on the mainframe. They contain methods for
accessing z/OS resources and formatting data, plus other useful features. After you code a
BOM method that uses the JzOS libraries, this business decision cannot be reused on a
distributed platform. The only way to share is to create either two versions of the Java XOM or
two separate rulesets, each containing a separate implementation of the BOM method,
depending on where the method is coded. Both of these options lead to greater complexity in
the rule management that is required to keep consistent decisioning across the platforms.

Use BOM methods sparingly
One of the key values of externalizing your business decisions as business rules is the ability
to author them in natural language, making them accessible to the business team. If you use
too many BOM methods, the result is recoding the business decision from the application into
BOM methods in the business rules rather than as BAL rules that are accessible. In the
extreme case, it is possible to code so much of the logic in BOM methods that the
externalized business decision is no more accessible to the business team than the original
business application from which the decision was extracted. The key is to use BOM methods
sparingly where they add value to the rule authoring by simplifying the language and the logic
required to author the decision.

BOM methods are useful in the following examples:

� Coding a formula that does not change but is used repeatedly within the decision.

One example is calculating the after-tax income of a client where the tax amount is
available as a variable to the BOM method.
116 Flexible Decision Management with Business Rules on IBM z Systems

� Simplifying the language that is required to perform a business operation to abstract from
the data model.

An example of this BOM method is where the business user has the ability to say:

reject the loan

Rather than having to know the relevant part of the data model to alter to create this
behavior.

� Handling more complex data structures within the data model.

The XOM model can contain more complex data structures, such as ordered lists. You can
use a simple BOM method, such as addMessage(), to isolate the business user from this
complex data structure.

6.3 Augmenting ruleset parameters from external data sources

Sometimes, decisions can only take place when data from DB2 or Virtual Storage Access
Method (VSAM) is obtained to augment the ruleset parameters. In this case, there are some
preferred practices that should be followed when obtaining the data.

6.3.1 Preferred for providing rule execution data

When designing a business rule application the preferred practice is to obtain all the required
data from ruleset parameters, provided by the client application. This maintains the flexibility
and portability of the rule application. It also optimizes performance, preventing the need to
contact a separate data provider during execution.

Occasionally in some, less common, situations the client application cannot access the data
needed to make the decision. In this case, it cannot be passed to the rule engine in ruleset
parameters.

Again, it must be stressed that alternative approaches to providing data should be considered
a last resort after careful consideration that the data is required in making the decision and
that it cannot be provided by the client application.

6.3.2 Approaches to providing data from external sources

The approach that you take to access data from an external source depends on the following
factors:

� The location of the data
� How frequently rule execution requires the data
� The computational cost of accessing the data via different approaches

The following sections provide information about the different ways external data can be
provided to a ruleset in addition to the data provided by the client application. These
approaches should only be taken after careful consideration that the data cannot be provided
by the ruleset parameters.

Provide rule execution via a wrapper program
This solution is applicable when the required external data can be accessed from the
environment on which the client (COBOL or PL/I) application is running, but you do not want
to load it into that client application.
Chapter 6. Advanced topics for decision authoring 117

The wrapper application is called by your client application instead of calling the rule engine
directly and does the following:

1. Receives Input and Output ruleset parameter data for the rule from the client application.
Can optionally receive details of the RuleApp and ruleset (if the same program is used for
multiple different RuleApps and rulesets).

2. Obtains the external data required, for example, from a database, data set, or file.

3. Calls the rule engine, providing the parameter data sent from the client application
combined with external data obtained.

4. Passes output parameters back to the client application.

The advantages of this approach are as follows:

� The same wrapper program could be used by multiple different client applications,
possibly calling multiple different RuleApps and rulesets. These applications would share
a common need to provide external data to the rules that they call.

� The rule application is not modified and so rule execution performance is not affected.

� The rule application does not perform any z/OS specific function and so remains portable
to a distributed environment.

Because of these advantages, this is the preferred approach to providing external data to a
ruleset. This approach, however, is not always possible:

� The client environment might not allow access to the data
� The size of the data might affect performance if it was passed via a copybook. This is

especially relevant if the data is only required intermittently. Passing it every time would
unnecessarily affect performance.

If using a wrapper program is not possible, one of the approaches covered in the next
sections could be considered, where the data is obtained during rule execution.

Provide external data by using a XOM method
When a COBOL or PL/I client program calls a ruleset, the Operational Decision Manager
marshaller code creates an instance of the Java XOM and populates it with the data the client
program sent.

The XOM may have originated on the distributed platform for use with Java client applications,
or it may have been automatically generated based on a COBOL copybook or PL/I include. In
either case, the Java XOM code contains getter and setter functions that map to the content
of the COBOL copybook or PL/I include.

To provide external data, you can add getter methods to the XOM that are not mapped to the
COBOL copybook or PL/I include. Instead, these methods can perform whatever function you
want in which to obtain data from an external source. No setter method should be defined.

The next time that you perform the “BOM update” function, by right-clicking the BOM, these
new methods will be mapped to BOM class members and can be verbalized for use in rules.

Following are some examples of external data sources that you can access from XOM
methods:

� A database, via Java Database Connectivity (JDBC)
� A file on the UNIX System Services file system
� A VSAM file, by using a JzOS feature (see the sample in Appendix A, “Calling out from a

ruleset to a Virtual Storage Access Method file to augment data” on page 227)
118 Flexible Decision Management with Business Rules on IBM z Systems

The advantage of this approach is that when the data is only required occasionally by the
rules, it need only be accessed on those occasions (by calling the XOM method). Providing
the data in a conventional way via the ruleset parameters requires sending it on every rule
execution.

Following are the disadvantages of this approach:

� You reduce the portability of the ruleset if it uses code that is specific to z/OS (for example,
JzOS).

� If the data is accessed frequently, and could have been provided by the client application,
performance and maintainability are unnecessarily impacted.

Provide external data using a BOM virtual method
Instead of accessing external data through code in the XOM, it can be included in the BOM by
using a virtual method. This is a method that is included in the BOM, but is not mapped to any
XOM method.

This option might be preferred if:

� The XOM is shared between multiple rule applications but only one application has a need
for the extra data.

� Responsibility for the XOM lies with another part of the organization.

Use the following steps to create a BOM virtual method:

1. Create a new empty BOM entry (by right-clicking the BOM folder in the Rule Explorer).

2. Create a class within this new BOM entry.

3. Expand the BOM to XOM Mapping section of the new class and enter the “Execution
Name” as void.

4. In the Members section of the class, select new to define a new member.

5. In the New Member panel:

a. Set the radio box Method.

b. In the type field, browse for the type of the external data to be returned by this method.

c. In the table at the bottom, use Add to add parameters that are required by the method;
for example, information that forms the lookup for the external data.

d. Press Finish to create the new member.

6. Double-click the member that you created, in the table, to open the editor view for it.

7. Check the boxes for Static and Final.

8. Expand the BOM to XOM Mapping section of the member editor and enter the
IBM ILOG® Rule Language (IRL) code to access the external data, finishing with a return
statement that passes the result back.

6.4 Considerations for sharing rules between z/OS and
distributed applications

One advantage of externalizing your business decisions is that you can identify decisions that
are duplicated across multiple applications. The next logical step is to remove the duplication
and manage the duplicated decisions as one decision to ensure consistency across the
solution. Situations can occur where a decision is deployed for both a z/OS application and a
Chapter 6. Advanced topics for decision authoring 119

distributed application. This type of deployment is possible, although certain considerations
exist.

6.4.1 Sharing a COBOL or PL/I-based project with Java applications

When you start from a COBOL copybook or PL/I include file as your definition for the data that
is passed into the decision (the XOM), the tooling initially generates a Java representation of
the COBOL data structure. These Java objects are used at run time by the decision server for
evaluating the business rules. After you import the copybook and develop your rules, the
following artifacts are left:

� The copybook
� A Java XOM project that represents the data from the copybook
� The Rule Project, which contains the marshaller and one or more rulesets that define the

rules in the decision

All these artifacts are required to deploy the rules to the zRule Execution Server for z/OS
environment, as shown in Figure 6-2.

Figure 6-2 Artifact deployment

If you want to reuse this decision in a distributed environment, deploy the Java project that
was created from COBOL or PL/I and the rulesets together to a distributed version of
Operational Decision Manager. In this case, you use the standard Java APIs to access the
decision. The client passes the data into and out of the decision using the Java XOM objects
that are generated from the COBOL copybook.

You must not edit or change the generated Java classes in any way. Any change to the
COBOL copybook requires the regeneration of the Java XOM. Any changes that you made
are lost. In this example, consider the COBOL copybook as the master copy of the data
model. Any required changes must be made to the COBOL copybook, and all other artifacts
regenerated.

6.4.2 Sharing a Java BOM-based project with COBOL applications on z/OS

Section 6.1, “Starting from an existing Java based BOM project” on page 112, describes the
process of enabling a Java BOM-based project for use with COBOL applications on z/OS.
When planning to enable a Java based BOM project, it is important to consider the
120 Flexible Decision Management with Business Rules on IBM z Systems

restrictions on the Java types that can be supported in this process. It is also important to
note that new artifacts are created in this process. The most important artifact to the run time
is the marshaller, which converts between the native data structures and the Java used at run
time. This artifact must be deployed to the zRule Execution Server for z/OS run time with the
Java XOM and ruleset projects.

When any changes are made to the Java XOM or to the generated BOM, you must rerun the
process to update the COBOL artifacts to synchronize them with the Java changes. In this
case, consider the Java XOM as the master data model. You must not change the COBOL
copybook after it is generated.

When using an existing Java project as a starting point to deploy to z/OS, ensure that no
platform-specific code is in the Java XOM. Rules can invoke methods that exist on classes in
the Java XOM. Ensure that if any methods are used in the rules, the methods do not invoke
any platform-specific code. Java code is independent of any platform. However, Java code
can become specific to a platform if it tries to access a data source that exists only in the
solution on particular servers. For example, the solution might use a client record database
that is hosted locally to the decision execution on IBM AIX® server1, but is not accessible to
z/OS server2 due to the firewall configuration.

6.5 Authoring considerations for performance

When authoring the rules, consider the implications on the performance of the decision. For
more information, see the IBM Redbooks publication Proven Practices for Enhancing
Performance: A Q & A for IBM WebSphere ILOG BRMS 7.1, REDP-4775, which provides
guidance about configuring and authoring for performance.
Chapter 6. Advanced topics for decision authoring 121

122 Flexible Decision Management with Business Rules on IBM z Systems

Part 2 System configuration

Multiple runtime environments are possible with Operational Decision Manager for z/OS. This
part describes these environments and how to configure them. It contains the following
chapters:

� Chapter 7, “Prerequisites and considerations before you start” on page 125

� Chapter 8, “zRule Execution Server for IBM z/OS stand-alone server” on page 131

� Chapter 9, “zRule Execution Server for z/OS embedded server” on page 147

� Chapter 10, “Configuring IBM CICS to work with Operational Decision Manager” on
page 153

� Chapter 11, “Configuring IBM IMS to work with Operational Decision Manager” on
page 169

� Chapter 12, “Liberty Application Server on IBM z/OS” on page 173

� Chapter 13, “Configuring IBM WebSphere Optimized Local Adapters support” on
page 183

� Chapter 14, “Configuring Decision Warehousing” on page 193

� Chapter 15, “Configuring the Rule Execution Servers for IBM z/OS console with virtual IP
addressing” on page 203

� Chapter 16, “Configuring Operational Decision Manager to collect execution data using
SMF” on page 213

� Chapter 17, “Problem determination” on page 223

Part 2
© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 123

124 Flexible Decision Management with Business Rules on IBM z Systems

Chapter 7. Prerequisites and considerations
before you start

This chapter provides an overview of the teams that are needed to complete a configuration
of Operational Decision Manager on z/OS. This chapter also includes a checklist to be
completed with the client values before embarking on a configuration.

The following topics are covered in this chapter:

� 7.1, “Runtime environments on z/OS” on page 126
� 7.2, “Teams needed for installation and configuration” on page 128
� 7.3, “Gathering the customizable information” on page 129

7

© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 125

7.1 Runtime environments on z/OS

The runtime environments on z/OS all support the COBOL or PL/I execution object model
(XOM), including the Rule Execution Server running on WebSphere Application Server on
z/OS.

Figure 7-1 shows the runtime environments that can be configured on z/OS:

� zRule Execution Server for z/OS (zRES) hosted on CICS
� Stand-alone zRES for z/OS
� Rule Execution Server (RES) hosted on WebSphere Application Server

All of these run times support the COBOL or PL/I XOM capability.

Figure 7-1 Runtime configurations on z/OS

7.1.1 Configuring the run times

You set up each runtime configuration by changing the related parameter values that are
grouped into a number of partitioned data set (PDS) members as listed in Table 7-1 on
page 127.

Important: However, the COBOL or PL/I XOM capability is not supported by the rule
engine running on WebSphere Application Server on a distributed platform.

Distributed or System z

CICS

Batch

COBOL
Application

COBOL
Application

zRES

Decision
Service

Business
Rules

Decision
Service

Business
Rules

zRES

Decision
Service

Business
Rules

Decision
Service

Business
Rules

RES on WAS

Decision
Service

Business
Rules

Decision
Service

Business
Rules
126 Flexible Decision Management with Business Rules on IBM z Systems

Table 7-1 Configuration parameters

For more information about the descriptions of the parameters in these members, see the
z/OS configuration and runtime variables topic in the IBM Operational Decision Manager
Version 8.7 IBM Knowledge Center:

http://www.ibm.com/support/knowledgecenter/SSQP76_8.7.1/com.ibm.odm.zos.config/top
ics/con_ds_jcl_and_runtime_vars.html

Each configuration parameter is updated with the site-specific values when the HBRUUPTI
job is used to configure a zRule Execution Server for z/OS instance. Use the HBRUUPTI job
to help configure an Operational Decision Manager z/OS instance. This job takes the client
values from the member HBRINST and stamps them into the related configuration parameter
members and configuration JCL jobs for that runtime instance. The configurations that are
created are based on the HBRCTRL member.

See Appendix B, “Configuring runtime values by using variables defined in HBRINST” on
page 231 for the client values that need to be gathered before you configure Operational
Decision Manager for z/OS.

7.1.2 Prerequisite checklist

Use Table 7-2 on page 128 to check that the z/OS system is at the correct prerequisite level.
For the current information, see the IBM Decision Center for z/OS 8.7 on z/OS website:

http://www.ibm.com/software/reports/compatibility/clarity-reports/report/html/soft
wareReqsForProduct?deliverableId=1399048306928&osPlatforms=z/OS

Member name Description

HBRBATCH Used to configure the batch client programs to access the zRule Execution Server.

HBRCICSD DB2 parameters when using zRule Execution Server in a CICS JVM Server.

HBRCICSJ Contains variables that are used when executing zRES in CICS JVM server. Also
used when connecting through Distributed Program Link (DPL) when using the
zRule Execution Server in a remote CICS JVM Server. HBRTARGETRES
determines whether the zRule Execution Server is local or remote.

HBRCICSZ Used when connecting a CICS Region to a zRule Execution Server group.

HBRCMMN Common parameters for zRule Execution Server for z/OS. The language of the
Rule Execution Server environment, the log level tracing, and the console
communication parameters.

HBRCTRL The control statements that tell the HBRUUPTI job which execution environments
to create. Uncommenting these out will create those specific working data sets.

HBREMBED Used when embedding the zRule Execution Server inside of a batch job’s address
space.

HBRPSIST Member that defines the type of persistence used by the zRule Execution Server
instance. This can be either DB2 or file system-based that is in UNIX System
Services.

HBRINST Custom configuration values for the configurations.

HBRSCEN Input for the Miniloan sample.

HBRWOLA The member that defines the WebSphere Optimized Local Adapters (WOLA)
connection for Operational Decision Manager to connect a COBOL program to a
WebSphere Application Server instance of the Rule Execution Server.
Chapter 7. Prerequisites and considerations before you start 127

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.0/com.ibm.odm.zos.config/topics/con_ds_jcl_and_runtime_vars.htm
http://www.ibm.com/software/reports/compatibility/clarity-reports/report/html/softwareReqsForProduct?deliverableId=1399048306928&osPlatforms=z/OS
http://www.ibm.com/software/reports/compatibility/clarity-reports/report/html/softwareReqsForProduct?deliverableId=1399048306928&osPlatforms=z/OS

Table 7-2 Prerequisites

7.2 Teams needed for installation and configuration

Before installing and configuring Operational Decision Manager on z/OS or Operational
Decision Manager on WebSphere Application Server for z/OS, it is necessary to involve
various groups that administer the products involved. Without these people, the configuration
is likely to be unsuccessful. In particular, the jobs for creating the database can be
precustomized by following the initial customization steps from the product documentation,
but the customized jobs might not be applicable to every site. These JCL jobs are a
suggested way of working and are examples that might require editing further for each
location.

When considering an Operational Decision Manager environment, a number of infrastructure
teams might need to be consulted. The following team functions can be grouped into one or
many teams:

� Installation group: Responsible for installing products by using SMP/E for z/OS

� System programmers: Responsible for creating started tasks, subsystems, z/OS file
systems, datasets, and system configuration

� Security managers: Responsible for setting up IBM RACF® or equivalent classes and
profiles

� Database administrators: Responsible for creating the DB2 repositories

� WebSphere Application Server administrators, if running on WebSphere Application
Server

� CICS administrators, if running the rules engine with or in CICS

� IMS administrators, when running with IMS

Item Value

z/OS level 1.13 or higher

Java level + service 6.0.1, 7, 7.1 all 64-bit support

DB2 + service 10 or 11

CICS + service � CICS 3.2
� CICS 4.2
� CICS 5.1
� CICS 5.2

WebSphere Application Server level � V8 with Fix Pack 4
� V8.5

Operational Decision Manager � HDM8710 - ODM Base z/OS (mandatory)
� HDM8711 - ODM and BR Common (mandatory)
� JDM8712 - Events Component z/OS
� HDM8713 - Rules Component z/OS
� JDM8714 - Decision Center z/OS
128 Flexible Decision Management with Business Rules on IBM z Systems

7.3 Gathering the customizable information

After help is committed from the groups that are mentioned in 7.2, “Teams needed for
installation and configuration” on page 128, gather all the information that is required to
customize the JCL jobs. The task of customizing the JCL jobs is done by the HBRUUPTI job
and uses the input that is supplied by the HBRCTRL and HBRINST members.

See Appendix B, “Configuring runtime values by using variables defined in HBRINST” on
page 231 for details of the variables that are available in HBRINST.
Chapter 7. Prerequisites and considerations before you start 129

130 Flexible Decision Management with Business Rules on IBM z Systems

Chapter 8. zRule Execution Server for IBM
z/OS stand-alone server

This chapter describes the process of setting up a stand-alone zRule Execution Server for
z/OS (zRES) server. This chapter also describes how the different types of database
connections are set up from the zRES server.

The following topics are covered in this chapter:

� 8.1, “Running on z/OS stand-alone” on page 132
� 8.2, “Configuring the stand-alone zRule Execution Server for z/OS” on page 136
� 8.3, “Setting up the database connection as a Type 2 connection” on page 145
� 8.3, “Setting up the database connection as a Type 2 connection” on page 145

8

© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 131

8.1 Running on z/OS stand-alone

This section describes how to run the rule engine on z/OS to consume batch work. The
following components make up the zRES:

� A stand-alone address space that hosts the rules engine
� A zRES console to administer the zRES server
� A database to hold the rules

Figure 8-1 shows the runtime environment of a stand-alone zRule Execution Server for z/OS.

Figure 8-1 zRES stand-alone server

8.1.1 Configuring the stand-alone zRule Execution Server for z/OS

To configure the stand-alone zRule Execution Server for z/OS, you must edit the values in the
HBRINST and HBRCTRL members and run the HBRUUPTI job. This action creates a set of
data sets that are configured for this zRES instance.

For example, the output from HBRUUPTI can produce the runtime configuration data sets
that are shown in Table 8-1 and Example 8-1 for one zRES instance.

Table 8-1 zRES instance configuration data sets

Example 8-1 Example zRES runtime configuration data sets

++HBRWORKDS++.HBR1.SHBRJCL
++HBRWORKDS++.HBR1.SHBRPARM
++HBRWORKDS++.HBR1.SHBRPROC

This step is repeated for each zRule Execution Server for z/OS instance that you want to
create. Each zRule Execution Server for z/OS has a unique identifier that is given by the
HBRSSID value, which was determined in the HBRCTRL member.

z/OS

zRES Console

zRES INS1
/u/INS1/wodm

Decision Server

zRES
INS1

Runtime Rule Repository

DB2

Data set Description

++HBRWORKDS++SHBRJCL Instance configuration jobs

++HBRWORKDS++SHBRPARM Instance configuration values

++HBRWORKDS++SHBRPROC Configured zRule Execution Server for z/OS started tasks
132 Flexible Decision Management with Business Rules on IBM z Systems

Defining the zRule Execution Server for z/OS instance working directory
In addition to a set of data sets for each zRule Execution Server for z/OS instance, each
instance also has a file system location. The run time uses the file system location, which is
called a working directory.

Running the HBRCRTI job from the instance data set SHBRJCL sets up the working directory
in z/OS System Services for the zRule Execution Server for z/OS instance.

8.1.2 Creating data sets for the zRule Execution Server for z/OS instance

This section describes how to create the data sets that are changed for the zRule Execution
Server for z/OS instance.

Customizing the HBRINST member of SHBRPARM
This section details which values must be updated. For more information, see Appendix B,
“Configuring runtime values by using variables defined in HBRINST” on page 231. This
appendix contains tables that explain how to customize the values in SHBRPARM(HBRINST)
for your system environment.

Setting up database persistence
When setting up the first zRES server, several values within the HBRINST member need to
be updated. Example 8-2 lists the variables that are updated in the first instance using
database persistence. The jobs that need to be ran to create the DB2 persistence layer are in
the following bulleted list. Have your DB2 Administrator inspect and change the following jobs
as required:

� HBRDSCDB
� HBRDSXOM
� HBRDSCTR
� HBRDSCDR
� HBRDSGRN

For more information about each of these variables, see Appendix B, “Configuring runtime
values by using variables defined in HBRINST” on page 231.

Example 8-2 List of variables that are used for database persistence

DB2HLQ
DB2RUNLIB
DB2SUBSYSTEM

Preferred practice: A preferred practice is to copy the target library SHBRPARM
partitioned data set (PDS) members HBRINST and HBRCTRL as new members within the
PDS, for example, HBRINSTD and HBRCTRLD. The HBRUUPTI job is modified to point to
these instances of HBRINSTD and HBRCTRLD.

Editing the DB2 jobs: Pre-version 8.7.1, if editing these tables, turn CAPS OFF because
there is a case-sensitive parameter in HBRDSCDB for the console to connect to the
database.

Type 2 connection: By default, zRES establishes a type 4 connection. For details about
how to use a type 2 connection, see 8.3, “Setting up the database connection as a Type 2
connection” on page 145.
Chapter 8. zRule Execution Server for IBM z/OS stand-alone server 133

DB2LOCATION
DB2VCAT
DB2ADMIN
DB2SCHEMA
RESDATABASE
RTSDATABASE
EVDATABASE
RESSTOGROUP
RTSSTOGROUP
EVSTOGROUP
DB2TABLEBP
DB2INDEXBP
DB2LOBBP
DB2SAMPLEPROGRAM
DB2SAMPLEPROGRAMPLAN
DB2BP4K
DB2BP8K
DB2BP32K
DB2USER
DB2PSWD
DB2GROUP
DB2SERVNAME
DB2PORT
DB2JARLOCN
DB2NATIVELOC

8.1.3 Creating the working data sets using HBRUUPTI

The HBRUUPTI member that is within the ++HBRHLQ++.SHBRJCL data set uses the values
in the HBRINST member to populate the SHBRJCL, SHBRPARM, SHBRPROC, and
SHBRWASC data sets that are changed to your system environment.

Changing HBRUUPTI
You must perform the following steps to change HBRUUPTI to create the new working data
sets for the zRule Execution Server for z/OS server. Customize the HBRINST data set to your
system environment by using the tables in Appendix B, “Configuring runtime values by using
variables defined in HBRINST” on page 231.

The preferred practice is to copy the target library SHBRPARM member HBRINST as a new
member within the SHBRPARM PDS and to create a new PDS with a name similar to
HBRINST (for example, HBRINSTD as outlined from “Customizing the HBRINST member of
SHBRPARM” on page 133.

To change HBRUUPTI, follow these steps:

1. Update the following line in HBRUUPTI that shows the target library high-level qualifier
(HLQ) that is set to the value HBRHLQ. Update this line with the value of your HBRHLQ
from Table B-1 on page 232. In this example, it is set to ODM.V8R7M1.TLIB:

SET HBRHLQ=ODM.V8R7M1.TLIB
134 Flexible Decision Management with Business Rules on IBM z Systems

2. Update the INLINES line, as shown in Figure 8-2, to match where the customization
member is created, which, by default, is in HBRHLQ.SHBRPARM(HBRINST). This points
to the instance of HBRINST that you use for the customization. If you use the preferred
practice, ensure that you update this to the correct value you have set.

Figure 8-2 Changing the INLINES line

3. Submit the job to create the working data sets for the zRule Execution Server instance.
This job creates the following data sets:

– ++HBRWORKDS++.SHBRJCL
– ++HBRWORKDS++.SHBRPARM
– ++HBRWORKDS++.SHBRPROC

For this example, if the HBRSSIDLIST were HBR1 and HBR2, and the HBRWORKDS was
ODM.V8R7M1, the following data sets are created:

– ODM.V8R7M1.HBR1.SHBRJCL
– ODM.V8R7M1.HBR1.SHBRPARM
– ODM.V8R7M1.HBR1.SHBRPROC
– ODM.V8R7M1.HBR2.SHBRJCL
– ODM.V8R7M1.HBR2.SHBRPARM
– ODM.V8R7M1.HBR2.SHBRPROC

8.1.4 Creating the working directories in UNIX System Services

After submitting the HBRUUPTI job, navigate to the following PDS, and open the job
HBRCRTI:

++HBRWORKDS++.SHBRJCL

This job runs a script, hbrcrtin.sh, that is in the ++HBRINSTPATH++, which is set in
Table B-1 on page 232. This job creates the ++HBRWORKPATH++ directory in the UNIX
System Services, which contains the following directories:

� config
� logs
� res_data
� res_xom
� work

The config directory contains the XML files that are required for the zRule Execution Server
to start, including the run time and the console.

// SET HBRHLQ=WODM.V8R7M1.TLIB
//HBRUUPTI EXEC PGM=IKJEFT01,REGION=2M,DYNAMNBR=99
//SYSPROC DD DISP=SHR,DSN=&HBRHLQ..SHBREXEC
//INCNTRL DD DISP=SHR,DSN=&HBRHLQ..SHBRPARM(HBRCTRLD)
//INLINES DD DISP=SHR,DSN=&HBRHLQ..SHBRPARM(HBRINSTD)
//SYSTSIN DD *
Chapter 8. zRule Execution Server for IBM z/OS stand-alone server 135

8.2 Configuring the stand-alone zRule Execution Server for z/OS

This section covers configuring the stand-alone zRule Execution Server for z/OS or one
zRule Execution Server group with one console.

For every type of setup, initially configure at minimum a zRule Execution Server console as
this is required for the zRule Execution Server stand-alone execution unit, the zRule
Execution Server in the CICS JVM, and the embedded zRule Execution Server.

8.2.1 Defining a new subsystem for zRule Execution Server for z/OS

The first step for the configuration of the stand-alone zRule Execution Server for z/OS is to
define the subsystem in which the new instances run. The systems programmer must perform
this task.

The following SETSSI command must be run, where ++HBRSSID++ is the subsystem ID that
was set in Table B-1 on page 232 under ++HBRSSIDLIST++. Run this command for each
instance:

SETSSI ADD,SUBNAME=++HBRSSID++

For example, if HBR1 and HBR2 are in the list, this command is run for each instance. Using
the example of HBR1 and HBR2 as the SSIDs, the following commands are correct:

SETSSI ADD,SUBNAME=HBR1
SETSSI ADD,SUBNAME=HBR2

8.2.2 Creating the started tasks (HBRXMSTR)

The next task in the configuration is to copy HBRXMSTR to the system PROCLIB for each
created subsystem. The HBRXMSTR members are for the started tasks. These started tasks
are attached to three parmlib members that are used for the definitions of various parameters
for the zRule Execution Server. If you use the HBRUUPTI job, you do not need to modify
these attached parmlib members unless your environment requires the change.

Adding HBRXMSTR to SYS1.PROCLIB
The next task is to copy HBRXMSTR to SYS1.PROCLIB (or a similar PROCLIB on your
environment). When copying over the data set members, you must change the names from
HBRXMSTR to ++HBRSSID++MSTR. Follow these steps:

1. Copy the ++HBRWORKDS++.SHBRPROC(HBRXMSTR) to
SYS1.PROCLIB(++SSID++MSTR).

2. Repeat the process for HBRXMSTR for all members created from HBRCTRL.

Preferred practice: By default, this job mounts all of the files to your system’s root file
system. To avoid this, create a file system before running this job at the
++HBRWORKPATH++ to contain the zRES configuration files. Another mount point should
be created at ++HBRWORKPATH++/logs to allow the logs to not be tied to the
configuration files. This way, if you are troubleshooting a job, the logs can grow in size
independent of the configuration files and if it filled up the directory, it would not affect the
runtime directory structures.
136 Flexible Decision Management with Business Rules on IBM z Systems

Authorizing the server instance as a started task
Authorize all ++HBRSSID++MSTR as started task procedures executing with the same user
ID. Use the following commands:

RDEFINE STARTED ++HBRSSID++MSTR.* STDATA(USER(<HBRSSID_USER>)
GROUP(<HBRSSID_GROUP>)

HBRSSID_USER is the server user ID and HBRSSID_GROUP is the RACF security group
name that is provided to you by your security administrator.

The started task definitions
Whether you are starting the stand-alone zRule Execution Server for z/OS started task or the
CICS zRule Execution Server for z/OS started task, both started tasks require that the
configuration parameters are provided to the job. The parameters are provided by the DD
card HBRENVPR on each started task. The DD card HBRENVPR specifies the input
parameter members.

8.2.3 Securing the zRule Execution Server for z/OS for z/OS resources

With Operational Decision Manager, you can secure the resources, files, and functions with
RACF. This section describes how to create this security for the server using RACF.

Security options
If running the zRule Execution Server for z/OS in production, you might want to secure all or
part of the zRule Execution Server for z/OS resources. However, if you plan to run the server
in a testing environment, you might want security disabled. You can use the following options
for security.

Within the file system, you can secure the following resources:

� The working directory so that only the authorized user IDs can access runtime data

� The installation directory so that only the authorized user IDs can access the files that are
needed to run the server

Using RACF, you can secure the following resources:

� You can secure the server resources that you use to perform the following tasks:

– Issue zRule Execution Server for z/OS commands from the z/OS console (or
equivalent).

– Sign on to the Rule Execution Server console.

– Connect to the zRule Execution Server for z/OS to execute rulesets.

� You can secure a subset of server resources. For example, you can secure access to the
Rule Execution Server console only.

Securing access to the working directory and installation directory
The working directory contains data that includes logs from the zRule Execution Server for
z/OS and configuration files. The installation directory contains the binary files that are
required to run the zRule Execution Server for z/OS server. The server user ID needs to read
and execute access for ++HBRWORKPATH++ and ++HBRINSTPATH++ which are the zRule

SYS1.PROC: SYS1.PROCLIB is the default. You need to change it to match your
environment. ++HBRSSID++ was set in Table B-1 on page 232.
Chapter 8. zRule Execution Server for IBM z/OS stand-alone server 137

Execution Server for z/OS work path, and the Operational Decision Manager installation
directory.

Creating the RACF classes for securing server resources
You can manage zRule Execution Server for z/OS by using RACF classes. You must create
the three RACF classes by using the ++HBRWORKDS++.SHBRJCL(HBRCRECL) job. To
secure the resources for the zRule Execution Server for z/OS instance, your RACF
administrator must run the HBRCRECL job. This job can be run from any of the members
within the ++HBRSSIDLIST++.

Creating the RACF classes
Using RACF, you can secure the following information:

� Ask the RACF administrator to run the HBRCRECL job or extract the code to use the
preferred execution methods to perform the following tasks:

– Issue zRule Execution Server for z/OS commands from the z/OS console (or
equivalent).

– Sign on to the Rule Execution Server console.

– Connect to the zRule Execution Server for z/OS to execute rulesets.

� You can secure a subset of server resources. For example, you can secure access to the
Rule Execution Server console only.

When your RACF administrator runs the HBRCRECL job, the job creates three RACF
classes: HBRADMIN, HBRCONN, and HBRCMD. Table 8-2 explains the characteristics of
these classes.

Table 8-2 RACF classes created by ++HBRWORKDS++.SHBRJCL(HBRCRECL)

After running the HBRCRECL job, give the server user ID read access to the class profile by
using the following commands:

PERMIT BPX.SERVER CLASS(FACILITY) ID(<HBRSSID_USER>) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

In this example, <HBRSSID_USER> represents the server user ID, which is the ID under
which the server runs.

Class Description

HBRADMIN This class controls whether server security and security for specific server
resources are enabled or disabled.

HBRCONN This class specifies the user IDs that are authorized to connect to the zRule
Execution Server for z/OS and to execute rulesets. This class is ignored if server
security is disabled.

HBRCMD This class specifies the user IDs that are authorized to issue zRule Execution
Server for z/OS commands, such as SET, PAUSE, or RESUME from the z/OS console
(or equivalent). This class is ignored if server security is disabled.

POSIT: The supplied JCL in HBRCRECL gives a POSIT value of 128. Change POSIT, as
required, to match your security environment requirements.
138 Flexible Decision Management with Business Rules on IBM z Systems

Disabling types of security
In Operational Decision Manager, you can optionally disable all types of security or parts of
the security. When the HBRADMIN class exists, security is enabled on all zRule Execution
Server for z/OS instances. Security can be enabled and disabled, as required. On a test
system, you might want no security on the instance so that you can test more freely, but you
do not have to disable the security to all instances that are used.

To disable levels of security, you must apply separate profiles to the HBRADMIN class.
Table 8-3 lists the profiles that can be added to the HBRADMIN class by using the following
commands:

RDEFINE HBRADMIN <RESOURCE_PROFILE> UACC(NONE)
SETROPTS RACLIST(HBRADMIN) REFRESH

Table 8-3 Resource profiles to disable parts of security on the zRule Execution Server

Replace ++HBRSSID++ with a value from the ++HBRSSIDLIST++ variable. Repeat for each
server that is listed in the ++HBRSSIDLIST++ variable for which you want to disable security.
Table B-1 on page 232 has details about the ++HBRSSIDLIST++ variable.

For more information, see the Managing server security topic in the IBM Operational Decision
Manager Version 8.7 IBM Knowledge Center:

http://www.ibm.com/support/knowledgecenter/SSQP76_8.7.1/com.ibm.odm.zos.config/top
ics/tpc_ds_manage_zres_security.html

Continue to one of the following sections, depending on the profile that you plan to use:

� If the CONNECT profile is used, go to “Managing connection security” on page 139.
� If the COMMAND profile is used, to go “Managing command security” on page 141.

Managing connection security
You set up connection security to ensure that only authorized user IDs can connect to the
zRule Execution Server for z/OS instance to execute rulesets. Connection security uses the
HBRCONN RACF class to authorize user IDs to connect to the server instance.

If the profile ++HBRSSID++.NO.SUBSYS.SECURITY or
++HBRSSID++.NO.CONNECT.SECURITY is used, the HBRCONN class is ignored.

Resource profile Description

++HBRSSID++.NO.SUBSYS.SECURITY This profile disables all security for a particular server instance. If
server security is disabled, HBRCONN and HBRCMD classes are
not used.

++HBRSSID++.NO.CONNECT.SECURITY This profile disables connection security for a particular server
instance, but it maintains other types of security.

++HBRSSID++.NO.COMMAND.SECURITY This profile disables command security for a particular server
instance, but it maintains other types of security. If you disable
command security, any user can issue a zRule Execution Server
for z/OS command from the z/OS console.
Chapter 8. zRule Execution Server for IBM z/OS stand-alone server 139

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.0/com.ibm.odm.zos.config/topics/tpc_ds_manage_zres_security.html

To implement connection security, you must authorize the user ID under which the server
runs and the user IDs of any applications that execute rulesets. The following steps are
required for authorizing user IDs to the HBRCONN class:

1. The resource profile needs the server instance defined to the HBRCONN class. Execute
the following command first to create the resource profile:

RDEFINE HBRCONN ++HBRSSID++ UACC(NONE)

2. Give the server user ID UPDATE access to the ++HBRSSID++ resource profile by using
the following command:

PERMIT ++HBRSSID++ CLASS(HBRCONN) ID(<HBRSSID_USER>) ACCESS(UPDATE)

3. Refresh the ++HBRSSID++ resource profile by using the following command:

SETROPTS RACLIST CLASS(HBRCONN) REFRESH

Next, authorize the applications by running the following steps:

1. Give READ access to the ++HBRSSID++ resource profile to each user that you want to
authorize. Use the following command:

PERMIT ++HBRSSID++ CLASS(HBRCONN) ID(<USER_ID>) ACCESS(READ)

2. Refresh the ++HBRSSID++ resource profile by using the following command:

SETROPTS RACLIST(HBRCONN) REFRESH

Managing console security
You use console security to ensure that there is control on the users that can access the
zRule Execution Server for z/OS console. The zRule Execution Server for z/OS console
security controls the ability to sign on to the zRule Execution Server for z/OS console. If
security is enabled, users must enter a user ID and password to sign on.

If the profile ++HBRSSID++.NO.SUBSYS.SECURITY is used, the HBRADMIN class is
ignored.

A standard set of roles exists within the zRule Execution Server for z/OS that gives access
rights to users. Enable console security by assigning user IDs to roles and then authorizing
the roles to access the console.

Table 8-4 on page 141 shows the profiles and the roles that they represent. The roles are
listed in order of increasing authority. RESMON is the lowest authority, and RESADMIN is the
highest authority. ++HBRSSID++ is the ID of the subsystem where the server runs.

UPDATE access: The server instance fails to initialize if the HBRCONN class does not
have UPDATE access. This requirement does not affect a server instance with
++HBRSSID++.NO.SUBSYS.SECURITY, or
++HBRSSID++.NO.CONNECT.SECURITY.

User IDs: For batch jobs, <USER_ID> is the RACF user ID that is used by the batch
job. For CICS transactions, <USER_ID> is the user ID that is assigned to the CICS
address space.
140 Flexible Decision Management with Business Rules on IBM z Systems

Table 8-4 zRule Execution Server for z/OS console security profiles

Perform the following steps to enable console security:

1. Define each resource profile, as shown in Table 8-4 to the HBRADMIN class. Use the
following commands to define all three roles:

RDEFINE HBRADMIN ++HBRSSID++.ROLE.RESMON UACC(NONE)
RDEFINE HBRADMIN ++HBRSSID++.ROLE.RESDEP UACC(NONE)
RDEFINE HBRADMIN ++HBRSSID++.ROLE.RESADMIN UACC(NONE)

2. Assign each user ID to one of the resource profiles by using the following commands for
the three roles:

PERMIT ++HBRSSID++.ROLE.RESMON UACC(NONE)
PERMIT ++HBRSSID++.ROLE.RESDEP UACC(NONE)
PERMIT ++HBRSSID++.ROLE.RESADMIN UACC(NONE)

3. Refresh the HBRADMIN class by using the following command:

SETROPTS RACLIST(HBRADMIN) REFRESH

Managing command security
You use command security to ensure that only authorized users can issue zRule Execution
Server for z/OS commands on the zRule Execution Server for z/OS console. Command
security uses the HBRCMD RACF class to authorize user IDs to issue zRule Execution
Server for z/OS commands.

If the profile ++HBRSSID++.NO.SUBSYS.SECURITY or the profile
++HBRSSID++.NO.COMMAND.SECURITY is used, the HBRCMD class is ignored.

When enabling command security on the zRule Execution Server for z/OS console, you must
define a resource profile to the HBRCMD class for each command that you want to secure.
Use the commands that are listed in Table 8-5 on page 142 to secure the zRule Execution
Server for z/OS console commands. ++HBRSSID++ is the ID of the subsystem where the
server runs.

Resource profile Role description

++HBRSSID++.ROLE.RESMON Users with monitoring rights are only allowed to view and explore RuleApps,
rulesets, decision services, execution units (XUs), and statistics. These users are
not allowed to modify these entities. They can also select a trace configuration
and view and filter trace information in Decision Warehouse. This authority
applies only to Rule Execution Server on WebSphere Application Server for z/OS.

++HBRSSID++.ROLE.RESDEP In addition to monitoring rights, users with deploying rights are allowed to deploy
RuleApp archives to edit and remove entities (RuleApps, rulesets, decision
services, Java execution object module (XOM) resources, and libraries), and to
run diagnostics.

++HBRSSID++.ROLE.RESADMIN Users with administrator rights have full control over the deployed resources and
access to information about the server. They can perform the following actions:
� Deploy, browse, and modify RuleApps, Java XOM resources, and libraries.
� Monitor the decision history, purge the history, and back up the history.
� Select a trace configuration, view and filter trace information, and clear trace

information in Decision Warehouse.
� Run diagnostics and view server information.
Chapter 8. zRule Execution Server for IBM z/OS stand-alone server 141

Table 8-5 zRule Execution Server for z/OS command security profiles

To authorize users to issue zRule Execution Server for z/OS commands, perform the
following steps:

1. If you want to limit any of the commands in Table 8-5 to authorized user IDs, you must
define the resource profiles to the following HBRCMD class commands:

RDEFINE HBRCMD <RESOURCE_PROFILE> UACC(NONE)

2. If you want to limit any of the commands in Table 8-5 to authorized user IDs, you must
permit the resource profiles to the following HBRCMD class commands:

PERMIT <RESOURCE_PROFILE> CLASS(HBRCMD) ID(<USER_ID>) ACCESS(UPDATE)

3. Refresh the HBRCMD class by using the following command:

SETROPTS RACLIST(HBRCMD) REFRESH

8.2.4 Starting the new instance

After completing the security setup and configurations, start the new server instance through
the z/OS console.

Authorizing the load library
If you are setting up your first instance on the logical partition (LPAR), you must authorize the
load library. You must perform the following steps:

1. Add the ++HBRHLQ++.SHBRAUTH load library to the authorized program facility
(APF)-authorized libraries by using the following command:

SETPROG APF,ADD,DSNAME=++HBRHLQ++.SHBRAUTH,SMS

2. Enable program control authorization for the ++HBRHLQ++.SHBRAUTH load library by
using the following two commands:

RALTER PROGRAM * ADDMEM(‘++HBRHLQ++.SHBRAUTH’//NOPADCHK)
SETROPTS WHEN(PROGRAM) REFRESH

Note that ++HBRHLQ++ is the product installation target library HLQ for the SHBRAUTH
PDS.

Starting a server instance
To start a new server instance, issue the following command:

START ++HBRSSID++MSTR

Resource profile Command Command description

++HBRSSID++.SET.TRACE SET TRACE Ability to change the trace level of the zRES.

++HBRSSID++.PAUSE PAUSE Pause the zRES from accepting new work.

++HBRSSID++.RESUME RESUME Resume a paused zRES.

++HBRSSID++.DUMP DUMP Request a dump from the zRES.

User IDs: For batch jobs, <USER_ID> is the RACF User ID that is used by the batch
job. For CICS transactions, <USER_ID> is the user ID that is assigned to the CICS
address space.
142 Flexible Decision Management with Business Rules on IBM z Systems

Replace ++HBRSSID++ with each member created by HBRCTRL to start all of the MASTER
address spaces.

If the server does not start, look at the output of the HBRMSTR job to see why it did not start.
The Job Step code can be searched in the IBM Knowledge Center to discover the reason why
the server did not start.

Typically, the server does not start for the following reasons:

� The load library was not APF-authorized.

� ++HBRINSTPATH++ does not point to the correct UNIX System Services directory.

� If you use symbolic links on ++HBRINSTPATH++ or ++HBRWORKPATH++, these links
might not link correctly. Therefore, you must verify the link.

� You did not execute the RACF security commands. Verify whether the RACF security
commands were run by using the resource profile setup. Ensure that the commands
executed and ensure that the user that started the server is authorized to start the server.

� The ports that were used for ++HBRCONSOLEPORT++ and
++HBRCONSOLECOMPORT++ were already in use by another application.

� The same port is used for ++HBRCONSOLEPORT++ and
++HBRCONSOLECOMPORT++.

8.2.5 Logging on

Now the stand-alone zRule Execution Server for z/OS console is up and running zRule
Execution Server for z/OS console and performing diagnostics.

Perform the following steps:

1. Using your browser, go to http://++HBRCONSOLECOMHOST++:++HBRCONSOLEPORT++/res. An
example of this could be http://zserveros.demos.ibm.com:34114/res.

Figure 8-3 on page 144 shows the console after logging in from an administrator’s
perspective. This gives the most options from a zRule Execution Server console’s
perspective. You can see the rule applications and its associated resources deployed under
the “Explorer” tab. From the “Decision Warehouse” tab, when turned on and executed
against, you can look at transaction information captured. The “Diagnostics” tab lets you
perform diagnostics from the console to verify connectivity and execution by the execution
server. The “Server Info” tab displays which execution units are connected to the zRule
Execution Server console. The console uses TCP/IP to manage the server connections.
Chapter 8. zRule Execution Server for IBM z/OS stand-alone server 143

Figure 8-3 The Rule Execution Server console has several tabs available for administrators. By using
the Diagnostics tab, you can test that the console and an execution unit are working properly.

Figure 8-4 shows how to execute the diagnostics test.

Figure 8-4 For the diagnostics to run, click “Run Diagnostics”

Figure 8-5 on page 145 shows a successful execution of the diagnostics test.
144 Flexible Decision Management with Business Rules on IBM z Systems

Figure 8-5 A successful diagnostics test.

8.3 Setting up the database connection as a Type 2 connection

Connection to the database can be either a type 4 connection or a type 2 connection. See the
DB2 documentation to determine which type is preferable for your environment. For more
information, see the How JDBC applications connect to a data source topic in the DB2 10 for
z/OS IBM Knowledge Center:

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=%2Fcom.ibm.
db2z10.doc.java%2Fsrc%2Ftpc%2Fimjcc_cjvjdcon.htm

The zRule Execution Server in RULE, CONSOLE, or TEST mode makes connections to the
database, so all need to be configured to connect to DB2.

The default database connection that is created by zRES is type 4, which is documented in
the Step 7: Configuring a DB2 persistence layer topic of the IBM Operational Decision
Manager Version 8.7 IBM Knowledge Center:

http://www.ibm.com/support/knowledgecenter/SSQP76_8.7.1/com.ibm.odm.zos.config/top
ics/tpc_ds_create_db2_persist.html

This section explains how to set up a type 2 database connection for the console and for
zRES.
Chapter 8. zRule Execution Server for IBM z/OS stand-alone server 145

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=%2Fcom.ibm.db2z10.doc.java%2Fsrc%2Ftpc%2Fimjcc_cjvjdcon.htm
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.family.config.zos%2Ftopics%2Ftpc_ds_create_db2_persist.html
http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.0/com.ibm.odm.zos.config/topics/tpc_ds_create_db2_persist.html

8.3.1 Setting up a type 2 configuration for the console

You need to include the DB2 library in the STEPLIB in the zRES PROC member. Obtain these
in ++HBRWORKDS++.SHBRPROC (from where they are copied to the SYS1.PROCLIB data
set, as described in 8.2.2, “Creating the started tasks (HBRXMSTR)” on page 136).

For HBRXCNSL, and for each HBRXMSTR that accesses the database, add the DB2
libraries to the STEPLIB, for example:

//STEPLIB DD DISP=SHR,DSN=&HBRHLQ..SHBRAUTH
// DD DISP=SHR,DSN=SYS2.DB2.V10.SDSNLOAD
// DD DISP=SHR,DSN=SYS2.DB2.V10.SDSNLOD2
// DD DISP=SHR,DSN=SYS2.DB2.V10.SDSNEXIT

8.3.2 Updating the database parameters in HBRPSIST

The URL that specifies the location of the database is in
++HBRWORKDS++.SHBRPARM(HBRPSIST). This needs to be updated, for example:

* URL associated with the database.
HBRDBURL=jdbc:db2:DSN10GP:currentSchema=ZRES;

8.3.3 Setting up the DB2 identifying file

You need to create an identifying file that indicates the SSID of the DB2 subsystem. This file
can then be read by the relevant Java virtual machines (JVMs). This file needs to be an
EBCDIC file in UNIX System Services, and it contains the SSID of the database. For
example, for the DB2 SSID DHGP, this file contains the following line:

db2.jcc.ssid=DHGP

8.3.4 Updating the PARM members

You need to update the PARM members that are associated with each zRES that accesses
the database. The member is HBRMSTR, and it is in ++HBRWORKDS++.SHBRPARM. For
this member, perform the following steps:

1. Include a LIBRARY_SUFFIX in the PARM member that points to the DB2 libraries on
System Services. Add a line that indicates the LIBPATH_SUFFIX, for example:

LIBPATH_SUFFIX=/usr/lpp/db210/lib

2. Indicate the DB2 subsystem to the JVM by pointing the JVM at the file that is created in
8.3.3, “Setting up the DB2 identifying file” on page 146, using the JAVA_OPTIONS
parameter. For example, if you use the identifying file DB2_SSID in the /u/db2Id directory,
your JAVA_OPTIONS might read this way:

JAVA_OPTIONS=-Ddb2.jcc.propertiesFile=/u/db2Id/DB2_SSID -Xms128M -Xmx768M
146 Flexible Decision Management with Business Rules on IBM z Systems

Chapter 9. zRule Execution Server for z/OS
embedded server

This chapter describes the process of how to use the embedded zRule Execution Server for
z/OS (zRES) inside a COBOL or PL/I batch address space. This chapter also discusses the
benefits of selecting the embedded zRES versus the stand-alone server.

The following topics are covered in this chapter:

� 9.1, “Introduction to the embedded server” on page 148
� 9.2, “Move the decisions to the data” on page 148
� 9.3, “When to choose embedded over stand-alone server” on page 149
� 9.4, “Configuring zRES embedded” on page 150
� 9.5, “Not connecting to a console” on page 151

9

© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 147

9.1 Introduction to the embedded server

We are now firmly in the era of big data where data sets can be many gigabytes or even
terabytes in size. The necessity to make decisions using this data means that moving the
data to the rule engine can often be impractical, expensive, and time consuming. For
example, when using the zRule Execution Server stand-alone to decide on 900,000 records,
each record must be copied to and from the zRES for the decision to be made.

In this case, where the data sets are very large and the batch jobs processing them are very
long, the zRule Execution Server embedded runtime may be a good choice of execution
environment.

9.2 Move the decisions to the data

Since ODM was first available on z/OS, the HBRCON, HBRRULE, and HBRDISC API
allowed batch clients to connect to a server and make decisions. The data that is required to
make the decision is copied to the server and the rules are executed in the server. However,
there is a cost to move the data to the server to execute the rules, and this cost increases as
the size of the data grows.

The zRES embedded option changes this model by hosting the rule engine inside the
COBOL or PL/I address space and makes the decisions locally. Therefore, the data is
accessed locally (in situ) and no copying is necessary to make the decision.

Since ODM 8.6.0, the capability to launch the Rule engine within the COBOL or PL/I address
space has been available. Applications still use the standard HBR API and make a simple
configuration change to launch the rule engine locally, instead of connecting to a zRES
stand-alone. This is illustrated in Figure 9-1.

Figure 9-1 The rule engine is hosted in the same address space as the application
148 Flexible Decision Management with Business Rules on IBM z Systems

It is easy to configure an application to run the zRES embedded versus the zRES
stand-alone. Therefore, it is important to understand the characteristics of your workload to
ensure that it is best suited for the zRES embedded mode.

9.3 When to choose embedded over stand-alone server

The rule engine running in the zRES is a Java application, and as such undergoes a period of
just-in-time (JIT) compilation after the zRES starts and also after the first rule execution. JIT
compilation means that more CPU is used at the start of rule execution, while the JIT
analyses execution paths and performs other optimizations to ensure that the code is more
efficient in the long term.

A zRES stand-alone server is typically a long running server process that would not be
restarted for weeks or even months. This means that JIT compilation occurs for a few minutes
after zRES start, and then the code is fully optimized until the server is restarted, or new
rulesets are deployed.

However, when using the embedded zRES, a new zRES server is started inside the batch job
which means that each batch job undergoes this period of JIT optimization, which is very
CPU intensive. The CPU used by the job also includes zRES server start, and ruleset
loading.

Therefore, embedded mode brings the most benefit when the following conditions are true of
the batch workload:

� Long running batch jobs: Those jobs that take a number of hours rather than a number of
minutes are best. This is because the cost of the startup and JIT optimization is a smaller
percentage of the overall batch execution.

� Small ruleset sizes: When the ruleset size is small (approximately 1000 rules or less),
more time is spent getting to the zRES stand-alone than executing in it. Also, smaller
rulesets take less time and CPU to complete JIT compilation.

� Large data size for evaluating rules: Large records take longer to copy to the zRES
stand-alone for execution. Accessing them locally removes this cost.

Therefore, batch jobs that process many hundreds of thousands of large records using
rulesets that are small are ideal candidates for zRES embedded.

9.3.1 Other benefits of the embedded zRES

When your batch workload meets the criteria described in 9.3, “When to choose embedded
over stand-alone server” on page 149, it is an ideal candidate for the zRES embedded mode.

Following are some other benefits that are also found when running the zRES in embedded
mode:

� Memory constraints: The zRES embedded server only runs for the lifetime of the batch job
and does not consume memory when not in use.

� Defined charge back to a job’s execution: The zRES embedded server runs as part of the
batch job and CPU consumption occurs inside the batch job’s address space.

Note: Performance of embedded zRES is stable after a 3 - 5-minute period of warmup
consisting of 10’s of thousands of calls. Embedded is less costly in terms of CPU per call
after a 4 - 5-minute period of warmup.
Chapter 9. zRule Execution Server for z/OS embedded server 149

9.4 Configuring zRES embedded

The zRule Execution Server embedded mode is configured by using control statements,
which are passed in to HBRUUPTI.

9.4.1 Batch control statements

ODM 8.6.0 introduces a new control statement command to create a BATCH execution
environment. This control statement is used to create embedded mode working data sets,
which the batch application uses to configure itself for zRES embedded mode.

When configuring the ++HBRHLQ++SHBRPARM(HBRCTRL), use the following batch control
statements:

CREATE BATCH HBRWORKDS=RULES.WORK.EMBED
HBRWORKPATH=/u/rules/workdirs/embed

Where, “HBRWORKDS” is the data set that is created and contains the JCL and parameter
files, and “HBRWORKPATH” is the zFS location that is used by the rule engine.

9.4.2 Preparing the batch job for the embedded server

When the working data sets are created, it is possible to configure the batch job JCL to
configure it for running the zRES embedded mode.

1. Submit ++HBRWORKDS++.SHBRJCL(HBRCRTI) to create the ++HBRWORKPATH++ for
the zRES embedded mode

2. Configure the batch job JCL to add the following members to the STEPLIB:

a. DD DISP=SHR,DSN=++HBRHLQ++.SHBRLOAD
b. DD DISP=SHR,DSN=++HBRHLQ++.SHBRAUTH

3. Configure the batch job JCL to add the HBRENVPR DD statement, which points to the
following data set concatenation:

a. DD DISP=SHR,DSN=++HBRWORKDS++.SHBRPARM(HBREMBED)
b. DD DISP=SHR,DSN=++HBRWORKDS++.SHBRPARM(HBRCMMN)
c. DD DISP=SHR,DSN=++HBRWORKDS++.SHBRPARM(HBRPSIST)

9.4.3 Executing zRES embedded

When the configuration is complete, submit your batch job to launch the application and
execute rules locally using the zRES embedded mode. An example JCL is provided in
++HBRWORKDS++.SHBRJCL(HBRMINBE) to launch the Miniloan demo with an embedded
zRES.

The output from the Miniloan demo running in a zRES embedded shows that the
HBRA-CONN-SSID of the HBRA-CONN-AREA is set to the value “EMBD”. This signifies that
the rule execution occurred locally in the zRES embedded.

Note: Ensure that the batch job has a large enough region size to accommodate the rule
engine. The REGION parameter should be larger than the maximum JVM heap size
specified in ++HBRWORKDS++.SHBRPARM(HBREMBED).
150 Flexible Decision Management with Business Rules on IBM z Systems

9.4.4 Troubleshooting

The embedded zRES writes logs in a similar manner to the zRES stand-alone. The only
major difference is that the embedded zRES does not include the HBRPRINT job output
element. Therefore, the API completion and reason codes should be used to ensure the
zRES embedded has started successfully.

When up and running, the zRES embedded writes log files if the HBRTRACELEVEL in
++HBRWORKPATH++.SHBRPARM(HBRCMMN) is set to a value that allows this to happen,
for instance, FINE or ALL. The log files are then in the following locations:

� The SYSOUT and SYSPRINT of the batch job
� The ++HBRWORKPATH++/logs directory on the zFS

9.5 Not connecting to a console

By default, all zRES environments connect to a RES Console to receive notifications of
ruleset updates. However, there might be a requirement that during the batch execution the
ruleset version must not change because all records must be processed by the same version
of a rule application and ruleset. This is important to consider when determining your type of
rule execution server that you want to use in your environment. If a batch application is
configured to always call the latest rule application and ruleset version, the embedded engine
is able to disable ruleset updates during the execution if configured properly. This is in
contrast to zRule Execution Server stand-alone, which has the potential to receive a ruleset
update during the execution of a batch job. In this scenario, the zRES stand-alone starts
executing with the new version and therefore records could potentially be executed with two
different versions of the rules.

To meet this requirement, the following property can be set to disable the zRES connecting to
the console on start.

The other benefit of setting this property is that no CPU time is used by the batch job to
establish and maintain the connection, thus speeding up the start time and reducing the
overall CPU consumption slightly.

Note: The zRES embedded returns HBR-RC-EMBED-JVM-ERR (3031) on the
HBRCONN call when the embedded rule engine cannot be started locally.

Note: Set HBRCONSOLECOM=NO in ++HBRWORKDS++.SHBRPARM(HBRCMMN)

Important: The following limitations are experienced when setting this property:

� No ruleset updates during the batch execution
� No ruleset statistics collected for this engine
Chapter 9. zRule Execution Server for z/OS embedded server 151

152 Flexible Decision Management with Business Rules on IBM z Systems

Chapter 10. Configuring IBM CICS to work
with Operational Decision
Manager

This chapter describes zRule Execution Server for z/OS when it is run within the CICS JVM
server. It considers the configuration of CICS and the zRule Execution Server for z/OS for this
environment. It also considers the use of rule owning regions and application owning regions.

The following topics are covered in this chapter:

� 10.1, “Configuring CICS to invoke a stand-alone zRule Execution Server for z/OS” on
page 154

� 10.2, “Configuring zRES to run in a CICS JVM server” on page 157

� 10.3, “Working with multiple CICS JVM servers” on page 163

� 10.4, “Rule-owning regions and application-owning regions” on page 164

10
© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 153

10.1 Configuring CICS to invoke a stand-alone zRule Execution
Server for z/OS

A CICS region can be configured so that a CICS program can call zRule Execution Server for
z/OS (zRES). The CICS region is known as an application-owning region (AOR). Currently,
the supported versions of CICS are 3.2, 4.1, 4.2, 5.1, and 5.2, as shown in Figure 10-1. This
section describes the required configuration to enable this feature. It assumes that you
already have a working zRES.

Figure 10-1 CICS AOR and stand-alone server

10.1.1 Creating working data sets for CICS

The following sections describe the steps to create the two working data sets for CICS:

� ++HBRWORKDS++.CICS.SHBRJCL
The required JCL, specific to CICS rule execution

� ++HBRWORKDS++.CICS.SHBRPARM
The runtime parameters

Define CICSLIST parameter in HBRINST
The CICSLIST parameter must be defined in HBRINST to run zRES with CICS. This value
names the start group list that installs the resources that Operational Decision Manager
requires. You can choose any valid name that you want.

Set this parameter in ++HBRHLQ++.SHBRPARM(HBRINST).

In this chapter, we use a value of “HBRLIST”.

Control statement for generating CICS working data sets
Edit ++HBRHLQ++.SHBRPARM(HBRCTRL) and add an entry to define the CICS working
data set (substituting the ++variables++ for your own values):

CREATE CICS HBRWORKDS=++HBRWORKDS++.CICS
CICSHLQ=++CICSHLQ++
CICSCSDDSN=++CICSCSDDSN++
154 Flexible Decision Management with Business Rules on IBM z Systems

For explanations of the ++variables++ used in the preceding example, see Appendix B,
“Configuring runtime values by using variables defined in HBRINST” on page 231

The HBRCTRL data set member is used by the HBRUUPTI job in the next step.

Submit the HBRUUPTI job
After you defined the parameter and added the control statement to HBRCTRL, submit the
following job to create the CICS working data set:

++HBRHLQ++.SHBRJCL(HBRUUPTI)

The CICS working data sets are created:

� ++HBRWORKDS++.CICS.SHBRPARM
� ++HBRWORKDS++.CICS.SHBRJCL

10.1.2 Defining the required resources

The resources that are required for CICS are defined by the JCL job:

++HBRWORKDS++.CICS.SHBRJCL(HBRCSD)

Submit this job to create the resources in a group named “HBRGROUP”.

10.1.3 Updating the GRPLIST parameter

After defining the resources, add the list name that you chose earlier (in “Define CICSLIST
parameter in HBRINST” on page 154) to the GRPLIST parameter in the CICS system
initialization table:

GRPLIST=(DFHLIST,HBRLIST)

10.1.4 Updating the CICS JCL

Modify the CICS region JCL to include the following changes, which allow access to the
zRES.

DFHRPL
In the CICS program library, DFHRPL, add the SHBRCICS PDS to the DFHRPL section:

// DD DSN=++HBRHLQ++.SHBRCICS,DISP=SHR

Passing the runtime variables to the CICS region
Adding the following to the CICS region JCL allows the client application access to the zRES
parameters, including such things as its subsystem identifier (SSID).

//HBRENVPR DD DISP=SHR,DSN=++HBRWORKDS++.CICS.SHBRPARM(HBRCICSZ)
// DD DISP=SHR,DSN=++HBRWORKDS++.CICS.SHBRPARM(HBRCMMN)

Scenario for installation verification
If you plan to use the installation verification procedure (MiniloanDemo) to test the zRES on
the CICS JVM server, add the following line in the runtime variables section:

//SCENARIO DD DISP=SHR,DSN=++HBRWORKDS++.CICS.SHBRPARM(HBRSCEN)
Chapter 10. Configuring IBM CICS to work with Operational Decision Manager 155

After the configuration is complete and you restarted the region, this line provides the
Miniloan sample with the scenario data that it requires. This sample application can be used
to verify that the rule engine is connected and working.

10.1.5 Starting zRES and CICS

Start zRES and CICS now (or restart them if CICS is already running). To start zRES, use the
following command:

START ++HBRSSID++MSTR

10.1.6 Installing HBRGROUP

Install the HBRGROUP resources to CICS by running the following command in CICS:

CEDA INSTALL GROUP(HBRGROUP)

10.1.7 Testing the configuration

The configuration can be tested by using the HBRC transaction. This transaction enables
CICS to call zRES. The return code that is shown in Table 10-1 indicates the success of the
transaction.

Table 10-1 Return codes

10.1.8 Automatically connecting CICS to a running zRES instance

This optional step means that it is not necessary to run the HBRC transaction to connect to a
running zRES. The zRES must be started before the CICS region. Otherwise, you need to
connect the CICS region by manually running HBRC.

There are two ways to automatically connect CICS to the running zRES instance:

� If you do not have a program list table defined, add the following parameter to the CICS
system initialization table:

PLTPI=HB

� If you have a program list table defined and specified in your CICS system initialization
table, add the HBRCCON program to the list by using this statement:

DFHPLT TYPE=ENTRY,PROGRAM=HBRCCON

Code Meaning

GBRZC9000 An error has occurred when executing the HBRC transaction.

GBRZC9001 CICS has connected to zRES.

GBRZC9002 CICS has disconnected from zRES.

GBRZC9003 The CICS region is already connected to zRES.
156 Flexible Decision Management with Business Rules on IBM z Systems

10.1.9 Deploying and running the installation verification program

Perform the following steps to run the IVP:

1. Deploy the RuleApp to the persistence layer by submitting the HBRDPLOY job in your
++HBRWORKDS++.CICS.SHBRJCL CICS working data set.

2. After you deploy the RuleApp, go back to the CICS region and run the CICS transaction
MINI. Your region then displays the output that is shown in Example 10-1.

Example 10-1 Output from the Miniloan Demo IVP

MINICICS--msg-The yearly income is lower than the basic request
MINICICS --Loan customer 0000000006
MINICICS --about to call # Execution Server
MINICICS -- Rule executed in-JVMS
MINICICS--name-Michelle loan amount-0001000100-approved-F
MINICICS--msg-The loan cannot exceed 1000000
MINICICS --Disconnect from zRule Execution Server
MINICICS --SUCCESSFUL COMPLETION of demo
MINICICS--name-John loan amount-0000250000-approved-F
MINICICS--msg-The age exceeds the maximum.
MINICICS --Loan customer 0000000003
MINICICS --about to call zRule Execution Server
MINICICS -- Rule executed in-JVMS
MINICICS--name-Sarah loan amount-0000500000-approved-F
MINICICS--msg-Credit score below 200
MINICICS --Loan customer 0000000004
MINICICS --about to call zRule Execution Server
MINICICS -- Rule executed in-JVMS
MINICICS--name-Andy loan amount-0000500000-approved-F
MINICICS--msg-Too big Debt-To-Income ratio
MINICICS --Loan customer 00000000 5
MINICICS --about to call zRule Execution Server
MINICICS -- Rule executed in-JVMS
MINICICS--name-David loan amount-0000250000-approved-F

The setup of a CICS client application connected to a zRES server is complete.

10.2 Configuring zRES to run in a CICS JVM server

Another runtime feature of Operational Decision Manager is the addition of a zRES that runs
within the CICS JVM server on CICS V4.2 and higher. The setup is similar for these versions
of CICS, although the version of supported Java that is required to operate the CICS JVM
servers within the region differs depending on the CICS version. This section describes the
setup of a server instance, which is called a CICS rule-owning region (ROR) and is shown in
Figure 10-2 on page 158. The instructions assume that the more general parameters in
HBRINST are already defined, for example, from having configured a zRES.

Note: To run the installation verification procedure (IVP), you must have specified the
SCENARIO DD statement when editing the CICS start JCL (see 10.2.7, “Scenario for
installation verification” on page 161).
Chapter 10. Configuring IBM CICS to work with Operational Decision Manager 157

Figure 10-2 CICS COBOL application and CICS JVM server

10.2.1 Creating working data sets for CICS

The following sections describe the steps to create the two working data sets for CICS:

� ++HBRWORKDS++.CICS.SHBRJCL
The required JCL, specific to CICS rule execution

� ++HBRWORKDS++.CICS.SHBRPARM
The runtime parameters

Define required parameters in HBRINST
You must update the ++HBRHLQ++.SHBRPARM(HBRINST) member to specify values for
the following parameters:

� CICSLIST
This value names the start group list that installs the resources that Operational Decision
Manager requires. You can choose any valid name that you want.

� JDBCPLAN
The plan that is used for JDBC connections in CICS.

� HBRJAVAHOME
Specify a version of Java that is compatible with your CICS installation:

• The CICS 4.2 environment supports Java 6.0.1 - 64 bit only.
• The CICS 5.1 environment supports Java 7.0 - 64 bit only.
• The CICS 5.2 environment supports Java 7.0.1 - 64 bit only.

Control statement for generating CICS working data sets
Edit ++HBRHLQ++.SHBRPARM(HBRCTRL) and add an entry to define the CICS working
data set (substituting the ++variables++ for your own values):

CREATE CICS HBRWORKDS=++HBRWORKDS++.CICS
CICSHLQ=++CICSHLQ++
CICSCSDDSN=++CICSCSDDSN++
HBRWORKPATH=/u/cics/REGION1

For explanations of the ++variables++ used in the preceding example, see Appendix B,
“Configuring runtime values by using variables defined in HBRINST” on page 231.
158 Flexible Decision Management with Business Rules on IBM z Systems

The HBRCTRL data set member is used by the HBRUUPTI job in the next step.

In Operational Decision Manager V8.6, CICSWORKPATH was removed from the control
statement. If the environment that the zRule Execution Server is being configured requires a
separate UNIX System Services path for CICS related files, add a variable in the control
statement for called HBRWORKPATH to create the new workpath.

Submit the HBRUUPTI job
After you defined the parameters and added the control statement to HBRCTRL, submit the
following job to create the CICS working data set:

++HBRHLQ++.SHBRJCL(HBRUUPTI)

The CICS working data sets are created:

� ++HBRWORKDS++.CICS.SHBRPARM
� ++HBRWORKDS++.CICS.SHBRJCL

10.2.2 Submitting jobs within the SHBRJCL working data set

Within the ++HBRWORKDS++.CICS.SHBRJCL data set that was created as a result of the
last step, are a number of JCL scripts that need to be run to complete configuration of a Rule
Execution Server in a CICS JVM.

Creating the working directories
The HBRCRTI job creates the CICS working path directories within UNIX System Services
with the required configuration pieces, and a separate directory for the CICS JVM server logs.

Submit the HBRCRTI job.

Creating the JVM profile
The HBRCJVMP job creates a JVM profile for the CICS region, within the ++HBRWORKPATH++
directory (which is created in “Creating the working directories”).

Submit the HBRCJVMP job, which creates the JVM profile. This must be copied to the
JVMPROFILEDIR of the CICS JVM servers.

Defining the CICS resources
Next, you define the CICS resources that are required by the server. To do this, submit these
two jobs:

� HBRCSD
This job defines the resources that are required by CICS regardless of where the rule
engine is running.

� HBRCSDJ
This job defines the extra resources that are required when the rule engine runs within a
CICS JVM.
Chapter 10. Configuring IBM CICS to work with Operational Decision Manager 159

10.2.3 Adding ++CICSLIST++ to the CICS system initialization table

Having defined the resources in the last step, add the value that you chose for
++CICSLIST++ (in “Define required parameters in HBRINST” on page 158) to the CICS
system initialization table that is specified by the GRPLIST parameter:

GRPLIST=(DFHLIST,HBRLIST)

10.2.4 Setting the JVMPROFILEDIR

If you do not already have a JVM profile directory defined, you need to set the default JVM
profile to point at the working directory that you created for CICS in ++HBRWORKPATH++.

In the CICS system initialization table, create the JVMPROFILEDIR variable. It needs to point to
the CICS working directory:

JVMPROFILEDIR=++HBRWORKPATH++

If you use a JVMPROFILEDIR other than ++HBRWORKPATH++, you must copy the profile that
was created in the last step (10.2.3, “Adding ++CICSLIST++ to the CICS system initialization
table” on page 160) to the correct JVMPROFILEDIR directory.

10.2.5 Changing the CICS region JCL

The CICS region JCL must be modified to include the lines that call the zRES on the CICS
JVM server.

DFHRPL
In the CICS program library, DFHRPL, add the SHBRCICS PDS to the DFHRPL section:

// DD DSN=++HBRHLQ++.SHBRCICS,DISP=SHR

Passing the runtime variables to the CICS region
Adding the following to the CICS region JCL allows the client application access to the zRES
parameters, including such things as its SSID.

//HBRENVPR DD DISP=SHR,DSN=++HBRWORKDS++.CICS.SHBRPARM(HBRCICSJ)
// DD DISP=SHR,DSN=++HBRWORKDS++.CICS.SHBRPARM(HBRCMMN)
// DD DISP=SHR,DSN=++HBRWORKDS++.CICS.SHBRPARM(HBRCICSD)

The HBRCICSD member in ++HBRWORKDS++.CICS.SHBRPARM sets up the database
environment.

10.2.6 Providing a console for the zRule Execution Server

The zRule Execution Server for z/OS within a CICS JVM requires a console to allow
deployment and management of rule applications just as a standard zRES server does. This
console is defined in the same way as for other configurations by adding a control statement
to ++HBRHLQ++.SHBRPARM(HBRCTRL) with a mode of CONSOLE. This creates working
data sets that start a zRES in console mode.
160 Flexible Decision Management with Business Rules on IBM z Systems

10.2.7 Scenario for installation verification

If you plan to use the IVP to test the zRES on the CICS JVM server, add the following line in
the runtime variables section:

//SCENARIO DD DISP=SHR,DSN=++HBRWORKDS++.CICS.SHBRPARM(HBRSCEN)

After the configuration is complete and the region is restarted later, this line provides the
Miniloan sample with the scenario data it requires. This sample application can be used to
verify that the rule engine is connected and working.

10.2.8 Security for the zRES on CICS JVM server

For the security setup for the zRES on the CICS JVM server, perform the steps in 8.2.3,
“Securing the zRule Execution Server for z/OS for z/OS resources” on page 137. You perform
the same steps for all zRES servers. The CICS region’s user for the started task must be
granted access to the connect security so that it can connect to the zRES instance for rule
execution.

10.2.9 CEDA installation of HBRGROUP resources

After you start the CICS region, you must install the resources that were defined earlier. Run
the following command in CICS:

CEDA INSTALL GROUP(HBRGROUP)

10.2.10 Database connect for the CICS region

Run the following command to connect the database to the CICS region of the zRES:

CEMT INQUIRE DB2CONN

Then, change the CONNECTST property from Notconnected to Connected.

10.2.11 Initializing the zRES in the CICS JVM server

After CICS starts, initialize the zRES in the CICS JVM server by using the CICS transaction
HBRC. This transaction sets up storage in the CICS JVM for connection to zRES and checks
and initializes the JVM. If successful, this transaction returns the following message:

GBRZC9001I RC=0000

If the connection is unsuccessful, it returns GBRZC9001E RC=XXXX, where XXXX is the return
code message.

For more information about these return codes, see the Completion codes topic in the
Decision Server for z/OS V8.7 product documentation:

http://www.ibm.com/support/knowledgecenter/SSQP76_8.7.1/com.ibm.odm.zos.ref/html/r
easoncodes/html/codes_zres.html

Tip: You can also use the DB2CONN=YES SIT parameter to perform this connection
automatically on CICS start.
Chapter 10. Configuring IBM CICS to work with Operational Decision Manager 161

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.0/com.ibm.odm.zos.ref/html/reasoncodes/html/codes_zres.html
http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.0/com.ibm.odm.zos.ref/html/reasoncodes/html/codes_zres.html

10.2.12 Deploying the installation verification program

Perform the following steps to run the IVP:

1. Deploy the RuleApp to the persistence layer by running the HBRDPLOY job in your
++HBRWORKDS++.CICS.SHBRJCL CICS working data set.

2. After you deploy the RuleApp, go back to the CICS region and run the CICS transaction
MINI. Your region then displays the output that is shown in Example 10-2.

Example 10-2 MINI output

MINICICS--msg-The yearly income is lower than the basic request
MINICICS --Loan customer 0000000006
MINICICS --about to call # Execution Server
MINICICS -- Rule executed in-JVMS
MINICICS--name-Michelle loan amount-0001000100-approved-F
MINICICS--msg-The loan cannot exceed 1000000
MINICICS --Disconnect from zRule Execution Server
MINICICS --SUCCESSFUL COMPLETION of demo
MINICICS--name-John loan amount-0000250000-approved-F
MINICICS--msg-The age exceeds the maximum.
MINICICS --Loan customer 0000000003
MINICICS --about to call zRule Execution Server
MINICICS -- Rule executed in-JVMS
MINICICS--name-Sarah loan amount-0000500000-approved-F
MINICICS--msg-Credit score below 200
MINICICS --Loan customer 0000000004
MINICICS --about to call zRule Execution Server
MINICICS -- Rule executed in-JVMS
MINICICS--name-Andy loan amount-0000500000-approved-F
MINICICS--msg-Too big Debt-To-Income ratio
MINICICS --Loan customer 00000000 5
MINICICS --about to call zRule Execution Server
MINICICS -- Rule executed in-JVMS
MINICICS--name-David loan
amount-0000250000-approved-F

The setup of the zRES on the CICS JVM server is complete.

Note: To run the IVP, you must have specified the SCENARIO DD statement when editing
the CICS start JCL (see 10.2.7, “Scenario for installation verification” on page 161).
162 Flexible Decision Management with Business Rules on IBM z Systems

10.3 Working with multiple CICS JVM servers

Rules execution can be run through multiple separate CICS systems on the same LPAR, with
the execution units (XUs) being deployed to each CICS system. This topology is displayed in
Figure 10-3.

Figure 10-3 Multiple separate CICS JVM servers

Using this method allows different CICS systems to simultaneously access the same set of
rules. They might be running different applications or have different uses that require them to
be separate from each other.

To set up multiple CICS JVM servers, first set up a single server by using the method that is
described in 10.2, “Configuring zRES to run in a CICS JVM server” on page 157.

Additional information is in the Configuring a CICS rule-owning region to execute rules in a
CICS JVM server topic in IBM Knowledge Center:

http://www.ibm.com/support/knowledgecenter/SSQP76_8.7.1/com.ibm.odm.zos.config/top
ics/tsk_ds_config_cics_jvm.html

The working directory that is created as part of this process can be used by all servers in the
IBM CICSPlex®. All servers can also use the default CICS JVM profile in that working
directory.
Chapter 10. Configuring IBM CICS to work with Operational Decision Manager 163

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.0/com.ibm.odm.zos.config/topics/tsk_ds_config_cics_jvm.html

10.3.1 Using the same JVM profile and working directory

If you want to use the same working directory and JVM profile for all the CICS regions, this is
the default behavior.

If you want to run the Installation Verification Sample on each region, you also need to add
the runtime variables DD statement to the CICS region JCL (see “Scenario for installation
verification” on page 155.

10.4 Rule-owning regions and application-owning regions

In the previous sections of this chapter, the configurations described have always involved an
application making a rule call to a rule execution environment on the same CICS region. It is
however possible to separate the client application program from the rule execution
environment by placing them in different regions:

� One or more regions contain the rule execution environment, hosted inside their JVM
server. These are called rule-owning regions (RORs).

� One or more regions contain the client application. These are called application-owning
regions (AORs) and execute their decisions remotely on an ROR.

This is illustrated in Figure 10-4.

Figure 10-4 CICS TS AORs executing decisions remotely on an ROR
164 Flexible Decision Management with Business Rules on IBM z Systems

In Figure 10-4 on page 164, CICS TS AORs can communicate with the ROR using a
distributed program link (DPL) or by using CICSPlex SM workload management (WLM). The
use of DPL or WLM allows the decision request to be routed dynamically to the ROR. This
provides a highly available and work load managed solution when two or more RORs are
used.

The next section details how this architecture also provides a cost effective way for the
COBOL and PL/I applications running in the AORs to execute business decisions using
Operational Decision Manager for z/OS running in the ROR.

10.4.1 Cost effectiveness

The cost of Operational Decision Manager for z/OS is based on the size of the LPARs that it is
deployed into regardless of whether Decision Server is running in a zRule Execution Server
for z/OS, WebSphere Application Server for z/OS, or CICS Transaction Server for z/OS. The
pricing of Operational Decision Manager for z/OS is not affected by the CICS TS pricing
model (Value Unit Edition or Monthly License Charge). The products are sold and priced
independently.

However, IBM CICS Transaction Server for z/OS Value Unit Edition offers a unique way to
contain the cost of Operational Decision Manager for z/OS for CICS TS applications running
in the AORs through two means:

� The CICS TS rule-owning region allows the isolation of the costs of Operational Decision
Manager into a single LPAR:

– There is no cost for the Operational Decision Manager for z/OS client libraries running
on the AOR. The client libraries provide the API required to execute rules on the ROR.

– Multiple AORs can route decision requests to Operational Decision Manager for z/OS
running in the ROR.

� z/NALC LPARs are separate from z/OS LPARs and are often smaller in size. Therefore,
the cost of Operational Decision Manager for z/OS is reduced.

Operational Decision Manager for z/OS also requires a DB2 database to store the runtime
artifacts and also to support runtime warehousing features. Another benefit of running
Operational Decision Manager for z/OS inside a z/NALC LPAR is that DB2 for z/OS Value
Unit Edition can be used to provide this persistence layer, further reducing the cost of
implementing Decision Management on z/OS.

Following are the steps to configure an application-owning region.

10.4.2 Create working data sets for the AOR region

Follow the instructions in 10.1.1, “Creating working data sets for CICS” on page 154 to create
working data sets for the region.

This results in two data sets:

� ++HBRWORKDS++.CICS.SHBRJCL
The required JCL, specific to CICS rule execution.

� ++HBRWORKDS++.CICS.SHBRPARM
The runtime parameters.
Chapter 10. Configuring IBM CICS to work with Operational Decision Manager 165

Installation on a different MVS image or sysplex
If your Operational Decision Manager installation is on a different IBM MVS™ image or
sysplex, after creating the working data sets you need to copy these and a few other data sets
to the MVS image of the application-owning region that you are configuring.

Copy the ++HBRHLQ++.SHBRCICS data set and the following members:

++HBRWORKDS++.CICS.SHBRJCL(HBRCSD)
++HBRWORKDS++.CICS.SHBRPARM(HBRCICSZ)
++HBRWORKDS++.CICS.SHBRPARM(HBRCMMN)
++HBRWORKDS++.CICS.SHBRPARM(HBRSCEN)

10.4.3 Define the required CICS connection resources

For the AOR and ROR to communicate with each other, some required resources must be
defined. These are referenced by the program definition.

For more information about remote connections in CICS, see the IBM Knowledge Center:

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.intercommu
nication.doc/topics/dfht12b.html

CONNECTION resource
If the two regions are to communicate by using intersystem communication (ISC) or
multiregion operation (MRO), a CONNECTION definition is required. The name of this
definition is used in the next step as the REMOTESYSTEM name.

SESSION resource
In addition to a CONNECTION definition, if you are using ISC or MRO as the connection
between the regions, you also require a SESSION resource to define properties of the
connection. This resource is not referenced directly by the program definition.

IPCONN resource
If the two regions are to communicate by using TCP/IP, an IPCONN definition is required. The
name of this definition is used in the next step as the REMOTESYSTEM name.

10.4.4 Customize the HBRCSD JCL to use a remote server program

The default configuration of the resources in ++HBRWORKDS++.CICS.SHBRJCL(HBRCSD) is for a
CICS client application calling a rule execution environment that is on the same region. Within
the job, there is a definition template for remote rule execution, which is commented out:

1. Comment out the existing definition of HBRCJVMS in HBRCSD.
2. Uncomment the remote definition that follows in the JCL.
3. In the program definition, enter a value for the remote system. This value should match an

existing IPCONN or CONNECTION definition that defines the remote CICS system.

Example 10-3 on page 167, HBRCSD to use a rule owning region, shows how the JCL
should look after being edited, although the value MYIPCONN would be exchanged for the
name of your regions IPCONN or CONNECTION definition.
166 Flexible Decision Management with Business Rules on IBM z Systems

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.intercommunication.doc/topics/dfht12b.html

Example 10-3 HBRCSD to use a rule owning region

* DEFINE PROGRAM(HBRCJVMS) GROUP(HBRGROUP)
* LANGUAGE(ASSEMBLER) RELOAD(NO) EXECKEY(USER)
* RESIDENT(NO) USAGE(NORMAL) USELPACOPY(NO)
* STATUS(ENABLED) CEDF(YES) DATALOCATION(ANY)
* CONCURRENCY(THREADSAFE)
* DESCRIPTION(IBM Decision Server for zOS)

 DEFINE PROGRAM(HBRCJVMS) GROUP(HBRGROUP)
STATUS(ENABLED) DYNAMIC(NO)
REMOTESYSTEM(MYIPCONN) REMOTENAME(HBRCJVMS)
DESCRIPTION(IBM Decision Server for zOS)

10.4.5 Define the required resources

The resources required for CICS are defined by the JCL job edited in the previous step:

++HBRWORKDS++.CICS.SHBRJCL(HBRCSD)

Submit this job to create the resources.

The resources are defined in a group named HBRGROUP.

10.4.6 Edit the HBRCICSZ file to specify a remote target Rule Execution Server

Edit the ++HBRWORKDS++.CICS.SHBRPARM(HBRCICSZ) member. Change the
HBRTARGETRES variable to RCICSJVM. This specifies the client application to use a
remote execution configuration.

10.4.7 Updating the GRPLIST parameter

After defining the resources, add the list name that you chose earlier (in “Define CICSLIST
parameter in HBRINST” on page 154) to the GRPLIST parameter in the CICS system
initialization table:

GRPLIST=(CICSHTAP,HBRLIST)

10.4.8 Updating the CICS JCL

Modify the CICS region JCL to include the following changes, which allow access to the
zRES.

DFHRPL
In the CICS program library, DFHRPL, add the SHBRCICS PDS to the DFHRPL section:

// DD DSN=++HBRHLQ++.SHBRCICS,DISP=SHR

Passing the runtime variables to the CICS region
Adding the following to the CICS region JCL allows the client application access to the zRES
parameters, including such things as its subsystem identifier (SSID).

//HBRENVPR DD DISP=SHR,DSN=++HBRWORKDS++.CICS.SHBRPARM(HBRCICSZ)
// DD DISP=SHR,DSN=++HBRWORKDS++.CICS.SHBRPARM(HBRCMMN)
Chapter 10. Configuring IBM CICS to work with Operational Decision Manager 167

Scenario for installation verification
If you plan to use the IVP to test the zRES on the CICS JVM server, add the following line in
the runtime variables section:

//SCENARIO DD DISP=SHR,DSN=++HBRWORKDS++.CICS.SHBRPARM(HBRSCEN)

After the configuration is complete and the region is restarted later, this line provides the
Miniloan sample with the scenario data that it requires. This sample application can be used
to verify that the rule engine is connected and working.

10.4.9 Installing HBRGROUP

Start CICS and install the HBRGROUP resources to CICS by running the following command
in CICS:

CEDA INSTALL GROUP(HBRGROUP)

10.4.10 Testing the configuration

The configuration can be tested by using the HBRC transaction. This transaction enables
CICS to call zRES. The return code that is shown in Table 10-1 on page 156 indicates the
success of the transaction.

Start CICS and issue the HBRC transaction.

To further verify the configuration, you can use the Installation Verification Sample (see
10.1.9, “Deploying and running the installation verification program” on page 157).

10.4.11 Further information about configuring an AOR and ROR

Further information about the steps that are required to configure an AOR and ROR can be
found in IBM Knowledge Center:

http://www.ibm.com/support/knowledgecenter/SSQP76_8.7.1/com.ibm.odm.zos.config/top
ics/tsk_ds_config_topol_2_3.html
168 Flexible Decision Management with Business Rules on IBM z Systems

Chapter 11. Configuring IBM IMS to work with
Operational Decision Manager

This chapter describes the use of Operational Decision Manager for z/OS with IMS.

The following topics are covered in this chapter:

� 11.1, “IMS and Operational Decision Manager” on page 170

� 11.2, “Configuration” on page 170

� 11.3, “IMS and Rule Execution Server on WebSphere Application Server for z/OS” on
page 172

11
© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 169

11.1 IMS and Operational Decision Manager

Using Operational Decision Manager from IMS allows the rules that influence the business
logic to be kept outside the IMS environment. Encapsulating the rules from these decision
points outside of the IMS application decouples the rules from the IMS applications. This
allows the business rules to be more reactive to changes without having to modify the IMS
applications. IMS can call Operational Decision Manager from programs running in the
message processing regions (MPR), Batch Message Processing (BMP), or Data Language/I
(DL/I) programs. IMS and the zRule Execution Server for z/OS (zRES) must reside on the
same logical partition (LPAR).

IMS uses the same API calls that are used by batch and CICS programs:

� HBRCONN: To connect to the server group
� HBRRULE: To run rules
� HBRDISC: to disconnect from the server group

However, these API calls use IMS dedicated stubs that are contained in a separate library, as
shown in Figure 11-1.

Figure 11-1 IMS calling into zRES

11.2 Configuration

This section describes the required configuration for the different types of programs within
IMS.

To resolve the API calls HBRCONN, HBRRULE, and HBRDISC, the IMS program needs to be
link-edited with the HBRISTUB module. To do this include the following link-edit step when
binding the client program:

INCLUDE HBRLIB (HBRISTUB)

Three configuration parameters relate to IMS:

� IMSHLQ: The high-level qualifier (HLQ) of the IMS installation
� IMSREGID: The region ID of the IMS region to be used
� IMSREGHLQ: The HLQ of the IMS region to be used

These three configuration parameters are used in the creation of the provided sample
programs (HBRMINI and HBRMINIT). Although it is useful to set them up, it is not necessary.
zRES can be used without them being set up, if the other configuration steps are followed.
170 Flexible Decision Management with Business Rules on IBM z Systems

11.2.1 BMP and DL/I

There is no additional setup required for BMP and DL/I programs to call into the zRES other
than including the ODM HBR API calls.

11.2.2 Message processing region

When running your rule decisions in this environment, configure the IMS system so that the
Operational Decision Manager IMS preinitialization module receives control before the MPR-
dependent regions are initialized. This preinitialization routine is called “HBRIPREI”.

This load module is found in the Operational Decision Manager SHBRLOAD library.

The DFSINT member
Use the DFSINTxx member of the IMS PROCLIB data set to identify the preinitialization
module.

Edit this member with the name of the preinitialization program. See Figure 11-2.

HBRIPREI is the preinitialization program.

Figure 11-2 DFSINITxx member

The DFSMPR procedure
This is the execution procedure that initiates an IMS message processing address space.

Edit the DFSMPR procedure’s PREINIT parameter to point to this DFSINTxx member:
PREINIT=DC.

The extract in Figure 11-3 shows this setting:

Figure 11-3 DFSMPR execute procedure extract
Chapter 11. Configuring IBM IMS to work with Operational Decision Manager 171

Message processing region (MPR) programs require extra setup to access zRES. In the
message processing JCL, you need to add the following information to the IMS started task:

1. An HBRENVPR statement that gives the location of the data set member. This contains
the details about the location of the rules environment:

//HBRENVPR DD DISP=SHR,
// DSN=++HBRWORKDS++.SHBRPARM(HBRBATCH)

2. Include the zRES load library in the STEPLIB and DFSESL statements:

// DD DSN=++HBRHLQ++.SHBRLOAD,DISP=SHR

3. Restart your IMS Message processing region so that it uses the changes that you made to
the JCL.

11.3 IMS and Rule Execution Server on WebSphere Application
Server for z/OS

Further configuration steps are necessary to run rules on Rule Execution Server on
WebSphere Application Server for z/OS. These steps are described in 13.5, “IMS and Rule
Execution Server using WOLA on z/OS” on page 191.
172 Flexible Decision Management with Business Rules on IBM z Systems

Chapter 12. Liberty Application Server on
IBM z/OS

This chapter introduces the Liberty Application Server on z/OS (Liberty on z/OS) and
describes the Operational Decision Manager capabilities in this environment.

The following topics are covered in this chapter:

� 12.1, “Introduction” on page 174
� 12.2, “Liberty on z/OS and Java” on page 174
� 12.3, “Operational Decision Manager running on Liberty on z/OS” on page 175
� 12.4, “Installation and configuration of Liberty” on page 175
� 12.5, “Running Liberty” on page 179
� 12.6, “Configuring Operational Decision Manager to run with Liberty” on page 180

12
© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 173

12.1 Introduction

Liberty on z/OS is an application server that has been written to use specific features of z/OS.
It is ideal for users that want to host their web server applications on a lightweight server. It
fulfills the following wish list:

� Lightweight: Uses a small footprint server.

� Composable: Server can be configured to only have the functions that the applications
require.

� Simple: Single user can manage servers and applications in a configuration file.

� Flexible: Shares configuration across servers and hosts; deploys using compressed files.

� Dynamic: Does not restart the server for every configuration change.

� Extensible: Starts small then adds capability; adding your own runtime capability.

How lightweight
An installable .JAR file that provides all of the Java EE web profile in less than 54 MB.

The server starts in less than 3 seconds with a JSP/JDBC application installed.

The server configuration allows you to control which features are loaded into a given server
instance at a fine-grained level, so you get exactly the function you want and no more.

Each feature is self-contained both from an installation and a runtime perspective. An
important aspect of this is the configuration metadata, which includes a set of default values.

A major aspect of the simplicity of Liberty is the configuration files. Instead of dozens of
separate XML files over many directories, you can configure a server in a single XML file.

12.2 Liberty on z/OS and Java

Liberty has been written to use the various reliability, availability, and serviceability
capabilities of z/OS. In Liberty, there are specific features for each of these areas.

12.2.1 Reasons to use Java on z/OS

z/OS has specialty engines for running Java work rather than the general processor engines.

In addition, the Java virtual machine has been specially written to use the specifics of the
z/OS hardware.

By moving workloads to z/OS, you can leverage the quality of service, management, and
scalability inherent on z/OS.

12.2.2 Collocation

z/OS is often the platform of choice for the location of your data. Improving the proximity of
your application to your data is desirable.
174 Flexible Decision Management with Business Rules on IBM z Systems

12.2.3 Management

z/OS has exceptionally good management systems for managing and controlling your
workloads.

Tight integration with z/OS Workload Manager enables policy-based prioritization of batch
and online workloads to gain maximum utilization of the resources.

12.2.4 Security

System Authorization Facility (SAF) provides a single point of security administration with a
strong tradition of careful, controlled security management.

12.2.5 Transactions

Resource Recovery Services (RRS) is a sysplex-enabled transaction sync point coordinator
facility integrated with z/OS. It excels at TX processing and recovery.

12.3 Operational Decision Manager running on Liberty on z/OS

In this section, we examine the capabilities of Operational Decision Manager that can be run
in Liberty on z/OS.

12.3.1 Capabilities that can run in Liberty on z/OS

The following Operational Decision Manager capabilities can run in Liberty on z/OS:

� The Rule Execution Server console can be run on Liberty. This is an ideal use case
because Liberty is small, lightweight, and fast to start. The benefits in running the console
in Liberty provide a small footprint plus the speed advantage of deploying cross memory to
DB2 by using a type 2 connection. This deployment occurs while using the advanced SAF
capability of z/OS through a security provider such as Resource Access Control Facility
(RACF).

� The hosted transparent decision service (HTDS) application is supported giving client
application access to business rules via Web Services and RESTful interfaces. The Web
Services Description Language (WSDL) file for the web service can be obtained by
selecting SOAP when retrieving the HTDS description file. The Web Application
Description File (WADL) for the Representational State Transfer (REST) service can be
obtained by selecting REST when retrieving the HTDS description file.

� Testing and simulation capabilities. Operational Decision Manager testing and simulation
capabilities supplied by the Decision Runner application can now be hosted in this
environment.

12.4 Installation and configuration of Liberty

Liberty is currently not packaged with Operational Decision Manager, but is available as a
separate package from WebSphere Application Server.
Chapter 12. Liberty Application Server on IBM z/OS 175

The UNIX System Services installation directory structure for Liberty looks something like this
(Figure 12-1).

Figure 12-1 Liberty directory structure

12.4.1 A couple of subdirectories of interest

Table 12-1 shows two of the subdirectories of the Liberty installation that are of interest.

Table 12-1 Subdirectories of the Liberty installation

The README.TXT file describes the actions that the server command can initiate.

12.4.2 Useful environment variables

Refer to the “Liberty Profile z/OS Quick Start Guide”, which is available at the following
website:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102110

The “Quick Start” guide has a good overview and step-by-step instructions for creating a
Liberty server from the UNIX shell.

Environment variables that are shown in Table 12-2 on page 177 need to be set in your
environment before you start the process of defining a new application server.

Subdirectory Use

templates/ Runtime customization
templates and examples

templates/zos/procs/ z/OS proc templates for starting
a Liberty server
176 Flexible Decision Management with Business Rules on IBM z Systems

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102110

Table 12-2 Environment variables of interest for Liberty

With the _BPXK_AUTOCVT=ON variable set, it is then possible to tag files with the appropriate
code page. See Example 12-1.

Example 12-1 Tagging files

chtag -t -c iso8859-1 <filename>

ls -lT shows tagged files

where <filename> is the name of the file to be tagged

12.4.3 Creating the server

After the previous variables are set, change the directory into the location given by the
WLP_INSTALL_DIR variable and then change into the bin sub-directory.

Then, create a server by using the following command:

To start the server, use the command:

To stop the server, use the following command:

To view the output from the server, use the following steps:

1. Change the directory to the location given by WLP_INSTALL_DIR.

2. Then, change to the servers subdirectory and you should find a directory called myServer.

3. Change to this directory and then the subsequent logs directory and view the
messages.log file, which is an ASCII file.

Variable Description

JAVA_HOME Location of 64-bit Java 6 or
Java 7

WLP_USER_DIR Location where the Server
definitions reside

WLP_INSTALL_DIR Root of WebSphere Liberty
Profile

_BPXK_AUTOCVT=ON Converts text files to the tagged
code page for the file

server create myServer

where “myServer” is the name of a new server

server start myServer

server stop myServer
Chapter 12. Liberty Application Server on IBM z/OS 177

12.4.4 The directory structure

After the “server create” command is executed, a directory structure beneath WLP_USER_DIR is
created.

The directory structure might look like Figure 12-2 for a server called myServer.

Figure 12-2 Creation of myServer

12.4.5 Liberty configuration files

Under the myServer directory (Figure 12-3 on page 179), there are a number of configuration
files:

� server.env
� jvm.options
� server.xml

Note: To allow the ASCII format file messages.log to be processed from USS, either:

- Tag the messages.log file, allowing the OS to see the file is an ASCII file

OR

- Use a tool such as viascii
178 Flexible Decision Management with Business Rules on IBM z Systems

Figure 12-3 Configuration files

server.env
This file gives the location of Java.

jvm.options
As the name suggests, this file specifies anything that is related to the JVM, such as server
port numbers.

server.xml
This file contains the configurations settings for this Liberty server. The file gets replaced with
the one tailored for the Operational Decision Manager’s (ODMs) capability.

12.5 Running Liberty

Liberty can be run from the UNIX System Services command line. However, if Liberty
features require access to z/OS authorized services, this is supplied by a lightweight address
space, fondly called the Angel task or Angel process. Only one Angel process is required per
LPAR regardless of how many servers are running there.

As well as the Angel process, a server can also be a started task.

12.5.1 Using started tasks

Liberty supplies started task jobs for the Angel process and the server in the templates folder.
See Figure 12-4 on page 180.
Chapter 12. Liberty Application Server on IBM z/OS 179

Figure 12-4 Liberty server started tasks

12.5.2 Starting and stopping a Liberty Server as a started task

Before running the following commands, set up the “STARTED” and “SERVER” profiles:

� start BBGZSRV,JOBNAME=BBSERV1,PARMS=’myServer’
� stop BBSERV1

12.6 Configuring Operational Decision Manager to run with
Liberty

After a Liberty server is created, the next step is to replace the default Liberty configuration
with one that configures Liberty to host Operational Decision Manager.

To create the customization data set for Liberty, use the WebSphere Application Server
control statement. After the customization job is run, you have a set of members customized
for your topology. The jobs to create the Liberty configuration for Operational Decision
Manager are described in the next subsection.

12.6.1 Configuration jobs

Operational Decision Manager supplies three configuration jobs for Liberty:

� HBRWLPC
� HBRWLPR
� HBRWLPS

Note: Refer to the Liberty Profile Quick Start Guide: “z/OS definitions” section
180 Flexible Decision Management with Business Rules on IBM z Systems

The server.xml file and the customized management file for the Rule Execution Server
console is created by running the preceding jobs. More detail is given in the following
sections.

Then, the .war files can be placed in the Liberty server’s application directory and the
server.xml file replaced with the one for Operational Decision Manager.

12.6.2 The server.xml file

The Liberty configuration file supplied by the HBRWLPC job after it is run, places a
customized server.xml file in the working directory that is specified. Move this file to the
directory of the Liberty server.

The Liberty features that are required by Operational Decision Manager are already defined
in this configuration file.

12.6.3 Security profiles for Operational Decision Manager on Liberty

The RACF HBRWLPR sample job defines the following profiles:

� BBGZDFLT.res.resAdministrators
� BBGZDFLT.res.resDeployers
� BBGZDFLT.res.resMonitors
� BBGZDFLT.testing.resAdministrators
� BBGZDFLT.testing.resDeployers
� BBGZDFLT.DecisionRunner.resAdministrators
� BBGZDFLT.DecisionRunner.resDeployers

The first part of the name, BBGZDFLT, is the prefix name as given in the started task of
Liberty.

The second part, for example, “res” is the ID of the application that is defined to Liberty. In this
case, this is the Rule Execution Management Console. The final part of the name is the
Operational Decision Manager group that users are allocated.

12.6.4 Connecting to the persistent store

Liberty can connect to a local database on the same LPAR using a Type 2 connection. This is
the default setting for Operational Decision Manager. Using a Type 2 connection is the
optimal way to connect to the database, but requires the Liberty Angel process to be running.

Run the Operational Decision Manager database jobs for defining the database to which the
RES Management Console connects.

12.6.5 Enabling the Operational Decision Manager applications in Liberty

Enable Liberty with the Operational Decision Manager function by copying the following
application to the application directory of the Liberty server.

In the directory:

Note: The Liberty server can also be started from the UNIX System Services command
line with this type 2 JDBC connection to the database.
Chapter 12. Liberty Application Server on IBM z/OS 181

/usr/lpp/zDM/V8R7M0/executionserver/applicationservers/WLP855

� testing.war
� DecisionRunner.war
� DecisionService.war

Copy these three .war files to the application directory of the Liberty server.

The following .war file is input to the HBRWLPS job: res.war.

Figure 12-5 shows the input to the ressetup.xml Ant task. This job creates a Rule Execution
Server console .war file updated with the specific values for this customization, and writes the
output in the Operational Decision Manager working directory into the .war file:
customerRes.war

Figure 12-5 RES console configuration with job HBRWLPS

Copy the customerRes.war new file to the application directory of the Liberty server.

Starting the Liberty server
Restart the Liberty server, which is now configured for Operational Decision Manager from
either the started task or from the command line of UNIX System Services 12.5.2, “Starting
and stopping a Liberty Server as a started task” on page 180.

If the server started as a started task, the following output is seen in the job log (Figure 12-6).

Figure 12-6 Output in the servers started task job log

The server is now running with Operational Decision Manager.

After the server comes up and the applications are started, use a web browser to connect to
the Operational Decision Manager RES console using the example URL provided in the
following shaded box.

Note: Do not copy the res.war file to the Liberty server’s application directory because this
has not been customized to the local settings.

For example: http://machinename.hursley.ibm.com:9111/res
182 Flexible Decision Management with Business Rules on IBM z Systems

Chapter 13. Configuring IBM WebSphere
Optimized Local Adapters
support

WebSphere Optimized Local Adapters (WOLA) is a feature of WebSphere Application Server
for z/OS that manages communication between WebSphere Application Server and an
external address space, such as CICS, batch, or IMS, that resides in the same logical
partition (LPAR).

For more information about WOLA, see the Configuring WebSphere Optimized Local
Adapters (WOLA) topic in the Operational Decision Manager Version 8.7.1 IBM Knowledge
Center:

http://www.ibm.com/support/knowledgecenter/SSQP76_8.7.1/com.ibm.odm.zos.config/top
ics/con_ds_install_config_wola.html

The following topics are covered in this chapter:

� 13.1, “Overview of WebSphere Operational Local Adapters” on page 184
� 13.2, “Configuration of WebSphere Application Server to use WOLA” on page 184
� 13.3, “Batch programs and Rule Execution Server using WOLA on z/OS” on page 190
� 13.4, “CICS and Rule Execution Server using WOLA on z/OS” on page 190
� 13.5, “IMS and Rule Execution Server using WOLA on z/OS” on page 191

13
© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 183

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.0/com.ibm.odm.zos.config/topics/con_ds_install_config_wola.html

13.1 Overview of WebSphere Operational Local Adapters

WebSphere Operational Local Adapters is a component of WebSphere Application Server for
z/OS. It uses cross-memory mechanisms to provide a bidirectional, high volume exchange of
messages between WebSphere Application Server for z/OS and the calling application.

When Operational Decision Manager is installed on WebSphere Application Server for z/OS,
WOLA can be used as a way for COBOL or PL/I applications to execute rules by using Rule
Execution Server (RES) within Operational Decision Manager on WebSphere Application
Server for z/OS, rather than running the z/OS native Rule Execution Server. COBOL or PL/I
applications do not need any changes to connect to Operational Decision Manager using
WOLA because the redirection is achieved by runtime JCL variables. This allows Operational
Decision Manager to benefit from this method of high volume message exchange.

13.1.1 Configuring WOLA

When calling to RES using WOLA, it is necessary for WOLA to know the correct WebSphere
Application Server with which to connect. There might be more than one WebSphere
Application Server running on the same system and you need to connect to the one running
RES. This information is included in the required JCL variables.

13.1.2 JCL variables for using WOLA

Use the following JCL variables for WOLA:

� The first variable indicates that the target RES is accessed using WOLA. Set
++HBRTARGETRES++ to WOLA.

� RES also needs to know where the WOLA load library can be located. This is the load
library that was created as part of the WOLA setup. The ++HBRWOLALOADLIB++
indicates the location of your WOLA load library. This load library is created as part of the
WOLA configuration process.

� Indicate the details of the WebSphere Application Server to use by using the Cell, Node,
and Server name, which lead to a unique WebSphere Application Server. The following
variables give a unique identifier to the correct WebSphere Application Server:
– ++HBRWOLACELL++
– ++HBRWOLANODE++
– ++HBRWOLASERVER++

For more information about the WOLA-related variables that can be set in the HBRINST
member, see “WebSphere Optimized Local Adapters script parameters” on page 237.

13.2 Configuration of WebSphere Application Server to use
WOLA

The exact configuration of WOLA depends on the version of WebSphere Application Server
for z/OS that is used.
184 Flexible Decision Management with Business Rules on IBM z Systems

For more information, see the Configuring WebSphere Optimized Local Adapters (WOLA)
topic in the Operational Decision Manager Version 8.7 IBM Knowledge Center:

http://www.ibm.com/support/knowledgecenter/SSQP76_8.7.1/com.ibm.odm.zos.config/top
ics/tsk_ds_install_wola_was8.html

Assume that WOLA is configured for WebSphere Application Server with the load libraries
created at WODM.OLA.LOADLIB.

This section provides an example of a configuration that only uses the following steps to
configure WOLA:

1. Create a load library that contains the modules that are required by WOLA from within the
WebSphere Application Server installation directory in UNIX System Services. See the
WebSphere Application Server documentation for more details. In this example, it is
assumed that the load libraries have been created at WODM.OLA.LOADLIB.

2. Install and configure WOLA as described in the product documentation for your version of
WebSphere Application Server.

3. Restart WebSphere Application Server to pick up the changes. You see messages in the
WebSphere Application Server logs that indicate the WOLA status:

Support is activated: BBOMOOO1I enable_adapter:1

4. It is now necessary to install the WOLA Enterprise JavaBeans (EJB) into WebSphere
Application Server. This application is used to listen for the WOLA input.

Complete the following steps:

a. In the WebSphere Application Server administrative console, select Application →
New Application and select New Enterprise Application from the New Application
panel, as shown in Figure 13-1.

Figure 13-1 WebSphere Application Server New Application panel

Note: The following instructions are specific for WebSphere Application Server V8.5. If
you are using a different version, other configuration might be necessary. For more
information, see the IBM Knowledge Center:

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.1/com.ibm.odm.zos.c
onfig/topics/tsk_ds_deploy_wola_ear_was.html
Chapter 13. Configuring IBM WebSphere Optimized Local Adapters support 185

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.0/com.ibm.odm.zos.config/topics/tsk_ds_install_wola_was8.html
http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.0/com.ibm.odm.zos.config/topics/tsk_ds_deploy_wola_ear_was.html

b. On the “Preparing for the application installation” panel, select Remote file system
and click Browse to help you select the location of the WOLA EAR file on the z/OS
server. It is in the /executionserver/applicationservers/WOLA directory of your
installation. An example is shown in Figure 13-2.

Figure 13-2 Preparing for the application installation

c. On the following window, select Detailed for the type of installation. Expand Choose to
generate default bindings and mappings and check Generate Default Bindings,
as shown in Figure 13-3. Click Next.

Figure 13-3 Selecting the options for installing the application

d. On the Install New Application window, click Next until you reach step 5.
186 Flexible Decision Management with Business Rules on IBM z Systems

e. For res-wola-proxy-ejb-8.7.1.jar, select JNDI for all interfaces. If it is not already
entered, enter ejb/com/ibm/rules/wola/ProxyExecutionSessionBean for the Target
Resource JNDI Name.

For res-wola-worker-ejb-8.7.1.jar, select JNDI name for all interfaces. If it is not
already entered, enter ejb/com/ibm/rules/wola/PojoExecutionSessionBean for the
Target Resource JNDI Name.

Figure 13-4 shows the step to provide JNDI names for beans. Then, click Next until
you reach step 7.

Figure 13-4 Step 5: Provide JNDI names for beans
Chapter 13. Configuring IBM WebSphere Optimized Local Adapters support 187

f. Step 7 requires the mapping of EJB references to beans. For the Module column for
res-wola-proxy-ejb-8.7.1.jar, if it is not already entered, enter the Target Resource
JNDI Name of ejb/com/ibm/rules/wola/PojoExecutionSessionBean, as shown in
Figure 13-5. Click Next until you reach the Summary window.

Figure 13-5 Step 7: Mapping the EJB reference to the bean
188 Flexible Decision Management with Business Rules on IBM z Systems

g. On the Summary window, as shown in Figure 13-6, click Finish. The application is
installed. Click Save to save the changes.

Figure 13-6 Step 11: Summary of application installation
Chapter 13. Configuring IBM WebSphere Optimized Local Adapters support 189

h. The application can be displayed by selecting Applications → Application Types →
WebSphere Enterprise Applications, as shown in Figure 13-7, where the application
is listed as Decision Server WOLA EndPoint. Start the application by selecting it and
clicking Start.

Figure 13-7 List of installed applications that include WOLA EndPoint

13.3 Batch programs and Rule Execution Server using WOLA
on z/OS

With the previous configurations already in place (setting up the variables as described in
13.1, “Overview of WebSphere Operational Local Adapters” on page 184, and setting up the
WebSphere Application Server as described in 13.2, “Configuration of WebSphere
Application Server to use WOLA” on page 184), there are no further requirements to connect
a batch program to RES running in WebSphere Application Server for z/OS using WOLA.

13.4 CICS and Rule Execution Server using WOLA on z/OS

Several of the steps described in this section are the same steps that are required for setting
up CICS to work with RES. These steps are indicated. However, there are some differences
to ensure that CICS is aware of the location of WOLA and the details about which WebSphere
Application Server for z/OS that WOLA is accessing. Complete the following steps:

1. Check the value of the ola_cicsuser_identity_propagate variable. This variable is used
to specify permissions for CICS application level identities to be used for authentication
when calling the rule. By default, it is set to 0, which indicates undefined. More information
about this variable is in the Optimized local adapters environment variables topic of the
WebSphere Application Server, Network Deployment, Version 8.5 IBM Knowledge Center:

http://www-01.ibm.com/support/knowledgecenter/SSEQTJ_8.5.5/com.ibm.websphere.zs
eries.doc/ae/cdat_olacustprop.html

2. Similar to setting up CICS for RES, submit the JCL job HBRCSD to define the resources
that are required by CICS.

3. Submit the HBRCWOLA job. This job defines the resources that are required for WOLA
under CICS.
190 Flexible Decision Management with Business Rules on IBM z Systems

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=%2Fcom.ibm.websphere.nd.multiplatform.doc%2Finfo%2Fae%2Fae%2Fcdat_olacustprop.html

4. Edit the CICS system initialization table. For setting up CICS for RES, add the value of the
CICSLIST parameter to the list of resource definition groups specified by the GRPLIST
parameter. To work with WOLA, also add the name BBOLIST to the GRPLIST parameter to
ensure that CICS can locate the necessary transactions.

5. When setting up CICS for RES, the SHBRCICS load libraries needed to be added to
DFHRPL concatenation in the CICS JCL. To work with WOLA, you also need to add the
SHBRWOLA libraries, for example:

//DFHRPL DD DISP=SHR,DSN=&HBRHLQ..SHBRCICS
// DD DISP=SHR,DSN=WODM.OLA.LOADLIB

6. Pass the necessary runtime variables to the server by adding the
SHBRPARM(HBRWOLA) and SHBRPARM(HBRCMMN) data set members to the
HBRENVPR data definition (DD) statement, as shown in the following DD statements:

//HBRENVPR DD DISP=SHR,DSN=++HBRHLQ++.SHBRPARM(HBRWOLA)
// DD DISP=SHR,DSN=++HBRHLQ++.SHBRPARM(HBRCMMN)

7. If you plan to run the Miniloan sample application to verify your configuration, add the
SHBRPARM(HBRSCEN) data set member as a SCENARIO DD statement. The
HBRSCEN member contains input values to the Miniloan application.

//SCENARIO DD DISP=SHR,DSN=++HBRWORKDS++.SHBRPARM(HBRSCEN)

8. Start the WebSphere Application Server and CICS.

9. RES requires the HBRGROUP resources to be installed. WOLA requires the BBOACSD
group to be installed. Use the following commands:

CEDA INSTALL GROUP(HBRGROUP)
CEDA INSTALL GROUP(BBOACSD)

10.Activate the optimized local adapters TRUE program by using the following command:

BBOC START_TRUE

11.The configuration can be tested by running the HBRC transaction from CICS.

For more information, see the Use the CICS environment topic in the WebSphere Application
Server, Network Deployment, Version 8.5 IBM Knowledge Center:

http://www-01.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.zseri
es.doc/ae/tdat_useola_in_step4.html

13.5 IMS and Rule Execution Server using WOLA on z/OS

To connect IMS to RES using a WOLA interface, it is necessary to provide IMS with details of
the location of that WOLA. In each case, follow this process:

1. There needs to be an entry in the external subsystem member in the IMS PROCLIB to
contain an entry to indicate that WOLA must be used. If you do not already have a
member, you need to create one. Include this entry:

WOLA,BBOA,BBOAIEMT

2. Pass the SSM parameter into your IMS start data.
Chapter 13. Configuring IBM WebSphere Optimized Local Adapters support 191

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=%2Fcom.ibm.websphere.nd.multiplatform.doc%2Finfo%2Fae%2Fae%2Ftdat_useola_in_step4.html

3. The WOLA load library that is created during the WOLA setup needs to be included in the
IMS control region startup JCL in both the STEPLIB and the DFSESL DDs:

– BMP: You need to restart IMS in order to pick up the changes.

– MPR: MPR requires additional steps for setup:

i. Similar to setting up for calling out to RES (as described in 11.2, “Configuration” on
page 170), include an HBRENVPR DD in your message processing region JCL. In this
case, ensure that it points to a member that contains the WOLA parameters rather
than the RES group.

ii. Similar to setting up for calling out to RES, add the WOLA load library to your
STEPLIBR and DFSESL DD statements in the message processing JCL.

The message processing region needs to be restarted for IMS to pick up the changes:

– DL/I: DL/I programs are currently not supported in this environment.

For information, see the Use the IMS environment topic in the WebSphere Application Server,
Network Deployment, Version 8.5 IBM Knowledge Center:

http://www-01.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.zseri
es.doc/ae/tdat_useola_in_step5.html
192 Flexible Decision Management with Business Rules on IBM z Systems

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?topic=%2Fcom.ibm.websphere.nd.multiplatform.doc%2Finfo%2Fae%2Fae%2Ftdat_useola_in_step5.html

Chapter 14. Configuring Decision
Warehousing

This chapter describes the Decision Warehouse, which is part of the Rule Execution Server.
The configuration of the Decision Warehouse and its possible uses are also covered.

The following topics are covered in this chapter:

� 14.1, “Introducing the Decision Warehouse” on page 194
� 14.2, “Configuring the Decision Warehouse” on page 194
� 14.3, “Viewing the results of running with Decision Warehousing enabled” on page 199

14
© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 193

14.1 Introducing the Decision Warehouse

The Decision Warehouse is used for monitoring and reporting on ruleset execution. With
ruleset monitoring enabled, details of each ruleflow used, the path, and the rules fired are
recorded. The purpose of the Decision Warehouse function is to help you understand what
happened when a ruleset was executed. This data might be required for auditing or
performance analysis.

The Decision Warehouse is accessed by using the Rule Execution Server (RES) console1.
The details of recorded statistics are stored in a database for future reporting.

Decision Warehouse is shipped in a default configuration so that it can be used immediately.

14.2 Configuring the Decision Warehouse

Complete the following steps to configure the Decision Warehouse:

� Set up the database resources
� Enable ruleset monitoring

14.2.1 Setting up the database resources

During the normal Operational Decision Manager configuration, the Decision Warehouse
database definitions, customized to your environment for the Decision Warehouse function,
are presented in the partitioned data set (PDS) member:

++HBRWORKDS++.SHBRJCL(HBRDSCTR)

Run the HBRDSCTR job to create the database entities that are required to store the rules
data that is traced during rule execution.

14.2.2 Enabling ruleset monitoring

To monitor ruleset execution, you must set the monitoring options in the ruleset parameters,
available from the Rule Execution Server console, a section of which is shown in Figure 14-1
on page 195.

1 Recall that the console is the same irrespective of whether it is being hosted via zRule Execution Server for z/OS
(zRES) or via the console for Rule Execution Server (RES) on WebSphere Application Server for z/OS.
194 Flexible Decision Management with Business Rules on IBM z Systems

Figure 14-1 Ruleset view of the Rule Execution Console

To set up monitoring, follow these steps in the RES console, note Figure 14-1:

1. On the Rule Execution Server console window, select the Explorer tab.

From the Navigator pane:

2. Expand RuleApps to see a list of RuleApps in the RuleApp view.

3. Expand a RuleApp to see the rulesets.
Chapter 14. Configuring Decision Warehousing 195

4. Select a ruleset to see the Ruleset View as shown in Figure 14-2.

Figure 14-2 Ruleset View

5. Click Show Monitoring Options (tracing currently disabled) to expand the box and
present the box as shown in Figure 14-3.

Figure 14-3 Hide Monitoring Options

Note: The boxed area Show Monitoring Options (tracing currently disabled) is
collapsed in the diagram.
196 Flexible Decision Management with Business Rules on IBM z Systems

6. Click the edit icon () to present the monitoring options showing all the monitoring
options that are available, as shown in Figure 14-4.

Figure 14-4 Monitoring options
Chapter 14. Configuring Decision Warehousing 197

7. To turn on monitoring and to enable specific options to be chosen, select Enable tracing
in Decision Warehouse, resulting in Figure 14-5.

Figure 14-5 Editable monitoring options

8. Choose the monitoring options that you prefer.

Note: For more information about the Decision Warehouse monitoring options, see the
Decision Warehouse section of IBM Knowledge Center for Operational Decision
Manager 8.7:

http://www.ibm.com/support/knowledgecenter/SSQP76_8.7.1/com.ibm.odm.dserver.
rules.res.managing/topics/con_res_dw_overview.html
198 Flexible Decision Management with Business Rules on IBM z Systems

http://www.ibm.com/support/knowledgecenter/SSQP76_8.7.1/com.ibm.odm.dserver.rules.res.managing/topics/con_res_dw_overview.html

9. When you have all the values set as required, save the settings by using the icon,
resulting in a view that is similar to Figure 14-6.

Figure 14-6 Monitoring options set

14.3 Viewing the results of running with Decision Warehousing
enabled

To see the results of running rules with Decision Warehouse enabled, first appropriate rules
need to be run, then the results can be read:

� 14.3.1, “Execute the appropriate ruleset” on page 199
� 14.3.2, “Viewing the results” on page 200

14.3.1 Execute the appropriate ruleset

Submit a job that calls the Operational Decision Manager runtime engine with rules that you
chose to monitor.

Note: The execution trace data is now written to the default Decision Warehouse database
until such times as tracing is disabled.
Chapter 14. Configuring Decision Warehousing 199

14.3.2 Viewing the results

Results of the tracing can be searched from the RES console.

1. From the RES console, select the Decision Warehouse tab (Figure 14-7).

Figure 14-7 Search Decisions view in the Rule Execution Server console
200 Flexible Decision Management with Business Rules on IBM z Systems

2. Clicking Search provides a list of results, for example, see Figure 14-8.

Figure 14-8 Example results list

3. Click a link in the Decision Trace column to see a separate web page with full details
about the rule execution in the following sections:

a. Execution Details (Figure 14-9)

Figure 14-9 Decision Trace Execution Details

b. Decision Trace (Figure 14-10)

Figure 14-10 Decision Trace details

Note: A decision identifier is automatically generated, by default, and is equal to the
identifier of the execution unit (XU) connection.
Chapter 14. Configuring Decision Warehousing 201

c. Input Parameters (Figure 14-11, “Decision Trace Input Parameters” on page 202)

Figure 14-11 Decision Trace Input Parameters

d. Output Parameters (Figure 14-12)

Figure 14-12 Decision Trace Output Parameters
202 Flexible Decision Management with Business Rules on IBM z Systems

Chapter 15. Configuring the Rule Execution
Servers for IBM z/OS console
with virtual IP addressing

This chapter describes the use of a virtual IP address (VIPA) to allow zRules consoles to
manage Rule Execution Servers for z/OS (zRES) on multiple logical partitions (LPARs) or
multiple systems. This allows for uninterrupted rules deployment to continue during LPAR
maintenance or downtime.

This chapter uses a scenario that consists of two LPARs, six rule execution environments, two
zRES consoles, and one database, as shown in the diagram in Figure 15-3 on page 208.

The following topics are covered in this chapter:

� 15.1, “Overview of a multiple LPAR environment” on page 204

� 15.2, “Using virtual IP addressing to allow more than one zRules console to be used” on
page 205

15
© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 203

15.1 Overview of a multiple LPAR environment

This environment is an Operational Decision Manager for z/OS system that consists of
multiple zRES instances, which reside on multiple LPARs that are supported by a single
zRules console that is connected to a single database. The ability to publish changed rules
applications to a running zRES without having to restart the server, which is called hot
deployment (15.1.1, “Hot deployment of rules in Operational Decision Manager” on
page 204), from the zRules console is supported by using an internal asynchronous
“publish/subscribe” notification mechanism.

An example topology is a configuration that consists of two LPARs, LPAR A and LPAR B,
which reside in PLEX 1, as shown in Figure 15-1.

Figure 15-1 Multiple LPAR Operational Decision Manager system

There are two styles of rules application deployment:

� Hot deployment of rules
� Cold deployment of rules

15.1.1 Hot deployment of rules in Operational Decision Manager

Hot deployment of rules in Operational Decision Manager is the ability to publish changed
rules applications to a running Rule Execution Server without having to restart the server. The
deployment feature works by deploying the Rule Application using the zRules console.

Rule deployment can be performed directly from the zRules console, Rule Designer, Rule
Team server, or Decision Center Business console. The zRules console uses asynchronous
messages to notify all rule execution environments that are registered to that zRules console.
The next invocation of that rule causes the zRES to go to the database to load the newest
level of that rule application.
204 Flexible Decision Management with Business Rules on IBM z Systems

After the zRES reads the rules from the database, it continues to use that version of the rules
until it is notified of another update. Figure 15-2 shows information flows that describe how
deployment, storage, registration, and notification occur.

Figure 15-2 Hot deployment in a multiple LPAR environment

15.1.2 Cold deployment of rules in Operational Decision Manager

Cold deployment is performed by using a deployment method that directly updates the rules
that are stored in the database. The rule execution environments load rules from the
database, which means that on the first invocation of a ruleset, the rule execution
environment goes to the database and retrieves the latest copy of the ruleset. On any
subsequent invocations, it reuses the same ruleset unless it is notified of an updated version.
To refresh rulesets in the rule execution environment to pick up ruleset changes, the rule
execution server must be restarted.

15.2 Using virtual IP addressing to allow more than one zRules
console to be used

Any zRES that is on the same LPAR as the zRules console can restart the zRules console, if
the console fails. However, if the LPAR that hosts the zRules console fails, there is no means
for the remaining zRESs to start (or restart) a zRules console. Therefore, hot deployment is
not available until the LPAR that hosts the zRules console is brought back online.

This section explains the setup and behavior of a zRules console that uses VIPA to manage
zRESs on multiple LPARs (or systems), therefore allowing continued hot deployment during
LPAR maintenance or downtime.

The following sections describe the various elements that are associated with the loss of an
LPAR that hosts a zRES and a ZRules console:

� 15.2.1, “What happens if the LPAR that hosts the zRules console fails” on page 206
� 15.2.2, “Using virtual IP addressing” on page 206
� 15.2.3, “How VIPA maintains hot deployment” on page 207
Chapter 15. Configuring the Rule Execution Servers for IBM z/OS console with virtual IP addressing 205

15.2.1 What happens if the LPAR that hosts the zRules console fails

If the LPAR that hosts the zRules console fails, for example, LPAR A in Figure 15-2 on
page 205, there is no means for the remaining zRES, which is on LPAR B, to start (or restart)
the zRules console (zConsole). Therefore, the hot deployment of rules is available until
LPAR A is brought back online.

The rule execution environments on LPAR B still continue to execute the rules from the
database. Rule deployment is still possible but only by using a cold deployment method
because hot deployment is unavailable.

15.2.2 Using virtual IP addressing

Hot deployment can be more flexible in a production environment by using virtualization to
allow the zRules console to be run on more than one LPAR. This situation is possible
because all of the zRules console communication is performed by using TCP/IP.

To use a VIPA, define a virtual host that maps to LPAR A and LPAR B, which allows both
LPARs to share the zRules console communication port and the zRules console HTTP port.

Send all requests to one server until it becomes unavailable. Therefore, for the example that
is used here, all traffic is sent to LPAR A until the connection to LPAR A is lost, and then all
traffic is sent or redirected to LPAR B.

There are many ways in which VIPA can be set up for a configuration. The following IBM
publication, z/OS Communications Server: IP Configuration Guide, SC31-8775-20, provides
all the required information to decide how to set up VIPA:

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_1.13.0/com.ibm.zos.r13.halz00
2/f1a1b3b1151.htm%23wq464

Example 15-1 and Example 15-2 are extracts from the TCP PARMS data set from each
LPAR. You can use these extracts for an example setup, and they can help you with several
default settings.

Example 15-1 TCP PARMS for LPAR A

VIPADYNAMIC
 VIPADEFINE MOVE IMMED 255.255.255.252 9.20.9.53
 VIPADISTRIBUTE 9.20.9.53 PORT
 24159 34159 44159
 DESTIP ALL
ENDVIPADYNAMIC

Example 15-2 TCP PARMS for LPAR B

VIPADYNAMIC
 VIPABACKUP 100 MOVE IMMEDIATE 255.255.255.252 9.20.9.53
ENDVIPADYNAMIC

Note: Do not use a balancing algorithm on the port sharing because you are not sharing
the load.
206 Flexible Decision Management with Business Rules on IBM z Systems

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_1.13.0/com.ibm.zos.r13.halz002/f1a1b3b1151.htm%23wq464

In Example 15-1 on page 206 and Example 15-2 on page 206, the following entries are
underlined twice:

� 9.20.9.53: IP address for VIPA
� 24159: SSPPORT port number (not required for VIPA support)
� 34159: CONSOLEPORT port number
� 44159: CONSOLECOM port number

Descriptions of the ports are in Table B-1 on page 232.

The “share port” setup is also explained in the IBM publication, z/OS Communications Server:
IP Configuration Guide, SC31-8775-20. The configuration that is shown in Example 15-3 is
created by adding the following configuration to the TCP PARMS data set on both LPARs.

Example 15-3 TCP PARMS for LPAR A and LPAR B

IPCONFIG DYNAMICXCF 192.168.x.x 255.255.255.0 1
PORT
34159 TCP OMVS SHAREPORT ; zRules Console Port
44159 TCP OMVS SHAREPORT ; zRules Console ComPort

After the VIPA and share port are set up, the zRES needs to use the virtual host. You must
modify the two zRES’s parms members. In the ++HBRWDS++.SHBRPARM(HBRCMMN)
member, modify the HBRCONSOLECOMPORT and HBRCONSOLECOMHOST parameters to use the virtual
host and share port, as demonstrated in Example 15-4.

Example 15-4 HBRCMMN parms for each zRES

HBRCONSOLECOMPORT=44159
HBRCONSOLECOMHOST=zodm.hursley.ibm.com

In the ++HBRWDS++.SHBRPARM(HBRCNSL) member, modify the HBRCONSOLEPORT
parameter to the shared port that is defined as shown in Example 15-5.

Example 15-5 HBRCNSL parm for each zRES

HBRCONSOLEPORT=34159

After these modifications, you must restart all zRESs.

15.2.3 How VIPA maintains hot deployment

This section describes the use of VIPA in the scenario that is presented in Figure 15-1 on
page 204. The following modes of operation are described:

� “Normal operation”
� “Failure of LPAR A” on page 209
� “Restoration of LPAR A” on page 210
� “Return to the normal operating environment” on page 210

Normal operation
With all the servers started, by using the VIPA and shared ports, the zRules console works
normally. All traffic is routed to the zRules console on LPAR A, and therefore, all servers are
registered to the one zRules console on LPAR A.
Chapter 15. Configuring the Rule Execution Servers for IBM z/OS console with virtual IP addressing 207

Share port enables the two zRules console address spaces to start and bind to the port. See
Figure 15-3, which depicts an Operational Decision Manager for z/OS configuration using
VIPA.

The following four actions are performed for the hot deployment feature:

� Deployment
� Storage
� Registration
� Notification

The registration is performed during zRES start. If the connection is lost, the zRES attempts a
reconnection. If the connection attempt fails, the zRES attempts to reconnect every 10
seconds.

Deployment uses the virtual host and the shared console port. The zRules console,
zConsole, stores rulesets in the database and notifies all connected rule execution
environments, again, as though VIPA is not being used.

Figure 15-3 Configuration of VIPA using two zRules consoles
208 Flexible Decision Management with Business Rules on IBM z Systems

Failure of LPAR A
This section describes the sequence of events if a failure occurs that results in the loss of
access to LPAR A. The scenario is depicted in Figure 15-4.

Figure 15-4 Failover to zConsole on LPAR B

The events occur in this sequence:

1. LPAR A fails.

2. VIPA routes all traffic that is aimed at the zRules console to the zRules console on
LPAR B, which is zConsole (BackUp).

3. The rule execution environments, HBR4, HBR5, and HBR6, lose their connection to the
LPAR A zRules console (zConsole) and try to reconnect.

4. The result of the reconnection attempt is an almost instantaneous connection to the
zRules console that runs on LPAR B zConsole (BackUp), which ensures that the hot
deployment can continue.

Standard rule execution and rule deployment continue from this point.

To work around the issue of this lack of awareness of rule changes that are made by another
zRules console, manually refresh the zRES console on LPAR B, which forces new rules to be
visible.

To manually refresh the zRES console on LPAR B, click Update RuleApps on the Explorer
tab in the zRules console, as shown in Figure 15-5.

Figure 15-5 Update RuleApps on zRules console Explorer tab

Important: There is no function to make the zRules console on LPAR B aware of any rule
changes that are made by the zRules console that runs on LPAR A.
Chapter 15. Configuring the Rule Execution Servers for IBM z/OS console with virtual IP addressing 209

Restoration of LPAR A
This section describes the scenario that is associated with the restoration of a failed LPAR
(LPAR A in this example) that hosts the Operational Decision Manager execution
environments and a zRES console.

The failed LPAR needs to be brought online normally, and Operational Decision Manager rule
execution environments also need to be started normally.

Traffic continues to be routed to zConsole (BackUp) on LPAR B, uninterrupted, until an
intervention occurs. See Figure 15-6.

Figure 15-6 LPAR A restored

Return to the normal operating environment
To return the Operational Decision Manager system to the original mode of operation, which
is routing traffic to LPAR A, the zRules console that runs on LPAR B, zConsole (BackUp),
needs to be restarted.

Important: The configuration will not automatically return operation to the zRules console
on LPAR A after LPAR A is restored.

Note: By using this example, fail back is a deliberate act after LPAR maintenance or
recovery is completed successfully. The behavior can be tailored in the VIPA setup to meet
other configuration requirements.
210 Flexible Decision Management with Business Rules on IBM z Systems

The result of restarting the LPAR B zRES console, zConsole (BackUp), is shown in
Figure 15-7.

Figure 15-7 Operational Decision Manager system following a restart of zConsole (BackUp)

The result of restarting the zConsole (BackUp) is similar to the situation that is described in
“Failure of LPAR A” on page 209:

1. VIPA routes all traffic that is aimed at a zRules console to the zRules console on LPAR A,
zConsole.

2. The rule execution environments, HBR1, HBR2, and HBR3, lose their connection to the
LPAR B zRules console, zConsole (BackUp), and try to reconnect.

3. The result of the attempt to reconnect is an almost instantaneous connection to the zRules
console (originally used before the LPAR failure) that runs on LPAR A zConsole.

Hot deployment continues to be possible. A refresh might be required, as shown in
Figure 15-5 on page 209. This time, you update RuleApps on the zRules console Explorer
tab on the LPAR A zRES console, zConsole.
Chapter 15. Configuring the Rule Execution Servers for IBM z/OS console with virtual IP addressing 211

212 Flexible Decision Management with Business Rules on IBM z Systems

Chapter 16. Configuring Operational
Decision Manager to collect
execution data using SMF

This chapter describes how Operational Decision Manager uses the System Management
Facilities (SMF) to record statistics about rule executions and how to configure SMF usage
with Operational Decision Manager.

The following topics are covered in this chapter:

� 16.1, “Overview” on page 214
� 16.2, “Operational Decision Manager use of SMF” on page 214
� 16.3, “Record format” on page 215
� 16.4, “Implementation” on page 217
� 16.5, “Configuration” on page 218
� 16.6, “Troubleshooting” on page 219
� 16.7, “Formatting SMF output” on page 219

16
© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 213

16.1 Overview

System Management Facilities (SMF) is the standard mechanism for recording all aspects of
system activity on z/OS. It is used for used for accounting, performance monitoring, capacity
planning, and so on. SMF recording is record based: Each application that wants to use SMF
is responsible for defining their own record format, which describes the activity for that
application. z/OS provides an API that allows these records to be output to either a Virtual
Storage Access Method (VSAM) data set or SMF logstream. z/OS also provides programs to
read back the records for producing reports. The format of all SMF records is published and
users can choose how they output such reports in a human readable way. z/OS provides the
infrastructure for writing and storing the records and reading them back, while application
developers supply the record content.

Every SMF record has a standard common header followed by an application defined header.
The common header contains a time stamp that records the time when the record was written
to SMF. When reading SMF records back for formatting, a time range may be supplied to limit
the records returned to just that range. All records have a type where types 0 - 127 are
reserved for IBM applications.

Records can either be written as soon as events occur, or they can be buffered by the
application and written out at periodic intervals. If an application chooses periodic intervals,
SMF provides a system-wide interval time, which the application may interrogate.

16.2 Operational Decision Manager use of SMF

Operational Decision Manager support for SMF has progressed through three stages:

� In the beginning, there was support for SMF “Type 89” records. This is a generic type of
record that just records the application CPU time as a whole.

� As some customers were starting to implement inter-departmental charging of their
Operational Decision Manager usage, they felt the need for more detailed accounting of
rule usage. Release 8.5 of Operational Decision Manager (then named WebSphere
Operational Decision Manager) added support for its own type of SMF record, detailing
how many times a particular ruleset was called in a given interval. These are known as
Type 120 Subtype 100 records.

� With release 8.7 of Operational Decision Manager, the Type 120 Subtype 100 record was
expanded to include the actual CPU time for each ruleset.

This chapter describes the newer Type 120 records only.

Because SMF top-level record types are limited to numbers 0 - 127 for IBM products, all these
numbers are already assigned and Operational Decision Manager does not have its own
top-level type. Instead, it extends another existing type, number 120, which is owned by
WebSphere Application Server. Type 120 records in turn can have a number of subtypes and
Operational Decision Manager is allocated subtype 100 - 199 for its records.

While the main attraction for customers of SMF with Operational Decision Manager is for
charging purposes, SMF records are of interest also for profiling and monitoring. This is
because it gives you an easy way to see which rulesets are being called most often and,
which are consuming the most CPU.
214 Flexible Decision Management with Business Rules on IBM z Systems

Operational Decision Manager uses the interval mechanism of SMF recording: Statistics
about rulesets are updated internally after every ruleset execution and then output to SMF at
the end of each standard SMF interval. After writing the SMF records, the stats are reset to
zero, ready for the next interval.

If Operational Decision Manager is stopped before the interval occurs, the record is written at
the time of shutdown so that no data is lost.

16.3 Record format

The SMF records written by Operational Decision Manager (ODM) have the following format:

16.3.1 SMF header

The SMF header is a standard header common to all SMF records and has the following
fields:

typedef struct {
 char SMF120FLG; /* System indicator */
 char SMF120RTY; /* Record type 120 (x'78') */
 char SMF120TME[4]; /* Time when SMF moved record*/
 char SMF120DTE[4]; /* Date when SMF moved record*/
 char SMF120SID[4]; /* System ID */
 char SMF120SSI[4]; /* Not used by ODM */
 uint16_t SMF120STY; /* Record Subtype */
 uint16_t SMF120HDV; /* ODM record version number */
 uint32_t SMF120HDO; /* Header offset in a record */
 uint16_t SMF120HDL; /* Header length */
 uint16_t SMF120HDN; /* Number of headers */
} SMFRecordHeader;

Operational Decision Manager sets SMF120RTY to 120 to indicate a WebSphere Application
Server type 120 record. SMF120STY is set to 100 to indicate that it is an Operational
Decision Manager record and SMF120HDV is set to version 3.

SMF Header

ODM Header

ODM exec segment

ODM exec segment

...

Note: If multiple Operational Decision Manager servers are in use on the same machine,
they each output their own set of SMF header/ODM header/ODM exec segments.

Note: The Operational Decision Manager record versions are not compatible with an
earlier version. Therefore, if you attempt to format a version 3 record with code written for
version 2, you get abnormal results.
Chapter 16. Configuring Operational Decision Manager to collect execution data using SMF 215

The SMF header is immediately followed by a single ODM header, so SMF120HDO is the
size of the above SMFRecordHeader structure. SMF120HDL is the length of the ODM
header. And SMF120HDN is set to 1.

16.3.2 ODM header

The ODM header is unique to the subtype 100 records and has the following structure:

typedef struct {
 char SMF120VER[16]; /* ODM version */
 char SMF120XUL[32]; /* XU Location */
 char SMF120XUT[32]; /* XU Type */
 char SMF120SDT[16]; /* SMF interval start date */
 char SMF120STM[16]; /* SMF interval start time */
 char SMF120EDT[16]; /* SMF interval end date */
 char SMF120ETM[16]; /* SMF interval end time */
 uint32_t SMF120EXO; /* Exec section start point */
 uint16_t SMF120EXL; /* Length of an exec segment */
 uint16_t SMF120EXN; /* Total number of exec segments */
} HBRSMF120ST100RecordHeader;

� SMF120VER is the version of ODM, for example, 8.7.1.0

� SMF120XUL is the execution unit (XU) location. This is a string that identifies the server
that the rule engine is running in:

– For zRule Application Server for z/OS (zRES), this is the SSID of the master address
space

– For CICS, it is the application identifier (APPLID)

– For WebSphere Application Server, it takes the form
“cell_name:node_name:server_name”

– For zRES embedded, it is the batch job name

– For Java batch, it is the class name

� SMF120XUT is a string identifying the type of server in which the XU is running:

– For zRES, this is “zRule Execution Server”

– For CICS JVM, this is “CICS JVM Server” (note that CICS can be configured to use
either zRES or the CICS JVM)

– For zRES embedded, this is “Embedded zRule Execution Server”

– For WebSphere Application Server, this is “WebSphere Application Server”

– For Java batch, this is “Embedded Rule Execution Server”

� SMF120SDT, SMF120SDM, SMF120EDT, and SMF120EDM denote the interval start and
end date and time

Immediately following the ODM header are zero or more exec segments. SMF120EXO is
equal to the length of the SMF header plus the length of the ODM header. SMF120EXL
contains the length of each exec segment and SMF120EXN contains the number of exec
segments.

Note: The number of exec segments can be zero if “HBRSMF120ST100EMPTY” is set to
YES to request that records are written even if there was no activity in the interval.
216 Flexible Decision Management with Business Rules on IBM z Systems

16.3.3 ODM exec segment

One ODM exec segment is output for each unique ruleset that is executed during the
preceding interval. It has the following structure:

typedef struct {
 uint64_t RULEXNUM; /* Ruleset successful execution count */
 uint64_t RULEXBAD; /* Ruleset failed execution count */
 uint64_t RULEXFSUM; /* Ruleset sum of fired rules */
 uint64_t RULEXCALLS; /* Ruleset number of zRES calls */
 uint64_t RULEXTIME; /* Ruleset zRES total elapsed Java time */
 uint64_t RULEXTMAX; /* Ruleset zRES maximum elapsed Java time */
 uint64_t RULEXTMIN; /* Ruleset zRES minimum elapsed Java time */
 uint64_t RULEXCPU; /* Ruleset zRES total CPU Java time */
 uint64_t RULEXCMAX; /* Ruleset zRES maximum CPU Java time */
 uint64_t RULEXCMIN; /* Ruleset zRES minimum CPU Java time */
 char RULEXPATH[256]; /* Ruleset execution path */
} HBRSMF120ST100RecordExec;

� RULEXNUM contains the number of successful executions for the given execution path in
the preceding interval. This normally is the same value as RULEXCALLS.

� RULEXBAD contains the number of failed executions. A ruleset call can fail if for instance
there is an error in the rule logic or if an attempt is made to access a null variable.

� RULEXFSUM is the total number of rules that fired.

� RULEXCALLS is the total number of calls made to execute the given ruleset. This is equal
to RULEXNUM + RULEXBAD.

� RULEXTIME is the total wall clock time from entry to ODM/Java to exit for this ruleset.

� RULEXTMAX is the maximum wall clock time taken by a single rule execution for this
ruleset in this interval. Take this figure lightly because it is affected by what else is
happening on the machine, for instance, a Garbage Collection (GC) cycle or just that there
are many competing threads at that particular time.

� RULEXTMIN is the minimum wall clock time.

� RULEXCMAX and RULEXCMIN are similar to RULEXTMAX and RULEXTMIN except that
they measure CPU time for the thread executing the rule. The max figure again can be
skewed by a GC cycle because the current thread participates in the GC work (this is just
how Java works).

� RULEXPATH is the ruleset execution path. There is only one exec segment per
RULEXPATH for a given interval/XU.

16.4 Implementation

The Operational Decision Manager SMF records record only the time spent in Java code from
the point where the Operational Decision Manager Java code got called to the point where it
returned. No attempt is made to record native JNI CPU time before or after the call because it
is considered that this will be tiny in comparison to the Java time.

In general, the way that it works is as follows:

� Note: All time values are in microseconds.
Chapter 16. Configuring Operational Decision Manager to collect execution data using SMF 217

� On entry to the Operational Decision Manager Java code, the current wall clock and
thread CPU time are saved in a local variable

� The rule parameters are unmarshalled and a call made to execute the ruleset

� As part of this execution, an internal record is updated with the number of fired rules, and
so on, and this record is stored in a hashtable keyed by the ruleset path

� When the call to execute the ruleset returns, just before the return from the Operational
Decision Manager Java code, the difference between the current and saved wall clock and
thread CPU time is calculated and the internal record updated with these values

� Meanwhile, a background thread sleeps for the SMF interval time. When it wakes up, it
gets the records from the hashtable, writes them out to SMF and then clears the hashtable
ready for the next interval

The thread CPU time is obtained using the TIMEUSED macro. The documentation for that
macro includes the following note.

16.5 Configuration

The configuration steps vary according to which XU is being used, but in all cases the server
must have at least READ access to the RACF BPX.SMF profile of the FACILITY class.

SMF recording is turned off by default so the following steps must be taken to enable it:

� For zRES, set the property HBRSMFST100=YES in SHBRPARM(HBRMSTR). Optionally,
set HBRSMFST100EMPTY=YES if empty SMF records are required to be output even
when there is no activity during the interval.

� For CICS, set the same properties as shown in the preceding bullet point but in the
member SHBRPARM(HBRCICSJ) for the CICS region.

� For WebSphere Application Server, it is a little more complicated. See the IBM Knowledge
Center for the detailed instructions, but in summary, follow these steps:

– Add {pluginClass=com.ibm.rules.hbr.smf.SMFPlugin,allowEmpty=NO} to the plug-ins
property for the XU (or allowEmpty=YES if empty SMF records are required)

– Add the Operational Decision Manager library to the LIBPATH for the JVM

– Add HBRSMFST100=YES to the JVM system properties

� For Java batch, set the property HBRSMFST100=YES in SHBRPARM(HBRBATCH), then
run the HBRCJCFG JCL to generate the ra.xml

Operational Decision Manager also reads the standard SMF INTVAL and SYNCVAL values to
decide at what time to output the SMF record. These are global SMF parameters defined in
the SMFPRMxx parmlib member. SYNCVAL defines what minute of the hour the intervals are
relative to and is normally set to zero. INTVAL defines the length of the SMF interval in
minutes. Operational Decision Manager uses the SMFINTVL macro to read the values of
INTVAL and SYNCVAL both at start and every time the writer thread wakes up to write the
next record. Therefore, it is not necessary to restart Operational Decision Manager if the
INTVAL is changed.

Note: TIMEUSED returns normalized CPU time. Some servers are configured with z
Systems Application Assist Processors (zAAPs) or IBM z Systems Integrated Information
Processors (zIIPs), which run at a faster speed than the normal CP processors. In this
case, zAAP time and zIIP time are normalized to the equivalent time that it takes to run on
a normal CP when accumulated into total CPU time.
218 Flexible Decision Management with Business Rules on IBM z Systems

16.6 Troubleshooting

Operational Decision Manager outputs various log messages, which may be useful in
diagnosing issues with SMF. You need HBRTRACELEVEL set to the appropriate level to see
these messages.

INFO: GBRZP8013I SMF recording is enabled

If you see this message, you know that SMF is enabled and everything is alright.

INFO: GBRZP8014I SMF INTVAL is 10 minutes and SYNCVAL is 0
minutes

This message provides confirmation of the INTVAL and SYNCVAL settings.

SEVERE: GBRZP8012E An error occurred while attempting to locate
libhbrsmf.so

Operational Decision Manager requires a native JNI library. And if you see this message, it
means that it has failed to find it, meaning that the LIBPATH is set incorrectly. This should not
happen for zRES and CICS because the LIBPATH is set automatically at installation time.
However, you might see this under WebSphere Application Server if the manual step to set
the LIBPATH is missed or done incorrectly.

SEVERE: GBRZP8001E The calling process is not permitted to the
BPX.SMF facility class

This means that the owner of this address space does not have the required RACF privileges
to write SMF records. Check that the configuration step is done to give the server READ
access to the BPX.SMF profile.

Additionally, if HBRTRACELEVEL is set to FINE or ALL, the following messages can also be
seen.

FINE: SMF Plugin rule '/MiniLoanDemoRuleApp/1.0/MiniLoanDemo/1.0'
elapsed time 6223us, cpu time 6202us

You can use this message to see the time taken for an individual ruleset invocation. The times
are in microseconds and the path varies according to the ruleset invoked.

FINE: SMF Writer successfully wrote SMF record

You see this message at the point where the SMF record is written.

16.7 Formatting SMF output

After configuring SMF and running some rule executions to produce SMF data, how do you
view the output? The format of the SMF records is published (see the structures referred to
earlier in this chapter, for example, SMFRecordHeader) so you can use the IFASMFDP
program with your own formatter if you want. However, most people use the IBM supplied
Chapter 16. Configuring Operational Decision Manager to collect execution data using SMF 219

sample programs, HBRSMFC and HBRSMFP. The code for these programs is provided if you
want to tweak the output.

The way these programs work is that the JCL is split into two parts. The first calls IFASMFDP
to extract the SMF data and the second part runs the formatting program on the extracted
data. For example:

//SMFDUMP EXEC PGM=IFASMFDP
//DUMPINA DD DSN=SYS1.MVTC.MANA,DISP=SHR,AMP=('BUFSP=65536')
//DUMPINB DD DSN=SYS1.MVTC.MANB,DISP=SHR,AMP=('BUFSP=65536')
//DUMPOUT DD DISP=(NEW,PASS),DSN=&&SMFDMP
//SYSIN DD *
 INDD(DUMPINA,OPTIONS(DUMP))
 INDD(DUMPINB,OPTIONS(DUMP))
 OUTDD(DUMPOUT,TYPE(120))
 START(0000)
 END(2359)
/*

Here, the IFASMFDP program is being called to extract the data. DUMPINA and DUMPINB
are the system-dependent SMF data sets (see your system administrator for details). The
START and END fields denote the start and end times that are required. Here, we are
requesting all records. The extracted data is output to the temporary data set denoted by
OUTDD -> DUMPOUT.

//SMFPRINT EXEC PGM=HBRSMFP,REGION=0M
//STEPLIB DD DISP=SHR,DSN=++HBRHLQ++.SHBRLOAD
//SMFIN DD DISP=SHR,DSN=*.SMFDUMP.DUMPOUT

In the second step, we run the IBM supplied HBRSMFP program to format the SMF records.
This reads from the SMFIN data set as follows (code simplified for clarity):

SMFIN = fopen("dd:SMFIN", "rb, type=record");
for (;;) {
 n = fread(smf, 1, 32756, SMFIN);
 if (n == 0) break;
 if (smf->SMFHeader.SMF120RTY == 120 && smf->SMFHeader.SMF120STY == 100 &&
smf->SMFHeader.SMF120HDV == 3) {
 printSMF120ST100(smf);
 }
}

This C code opens the SMFIN data set for binary reading in record-based format and then
processes each entry one record at a time. 32,756 is the maximum length of an SMF record.
(There is no support for Operational Decision Manager SMF records greater than 32,756 in
length). The “if” statement checks that this is an SMF Type 120 record, with subtype 100 and
version 3. All other records are ignored. If the record matches those criteria, it is printed.

HBRSMFC outputs each record in comma-separated value (CSV) format. The output from
HBRSMFP is more appealing and looks like this:

* SMFRecordHeader *

SMF120RTY = 120
SMF120SID = MVGA
SMF120STY = 100
SMF120HDV = 3
220 Flexible Decision Management with Business Rules on IBM z Systems

SMF120HDO = 32
SMF120HDL = 152
SMF120HDN = 1

* HBRSMF120ST100RecordHeader *

SMF120VER = 8.7.1.0
SMF120XUL = HBRS
SMF120XUT = zRule Execution Server
SMF120SDT = 11/18/14
SMF120STM = 1:40:00 PM
SMF120EDT = 11/18/14
SMF120ETM = 2:30:00 PM
SMF120EXO = 188
SMF120EXL = 672
SMF120EXN = 2

* HBRSMF120ST100RecordExec *

RULEXNUM = 3
RULEXBAD = 0
RULEXFSUM = 3
RULEXCALLS = 3
RULEXTIME = 1512617
RULEXTMAX = 1512073
RULEXTMIN = 252
RULEXCPU = 58826
RULEXCMAX = 58299
RULEXCMIN = 252
RULEXPATH = /reszminiloanApp/1.0/reszminiloan/1.0

* HBRSMF120ST100RecordExec *

RULEXNUM = 603468
RULEXBAD = 0
RULEXFSUM = 403467
RULEXCALLS = 603468
RULEXTIME = 23029544
RULEXTMAX = 19923
RULEXTMIN = 27
RULEXCPU = 22772739
RULEXCMAX = 13391
RULEXCMIN = 27
RULEXPATH = /MiniLoanDemoRuleApp/1.0/MiniLoanDemo/1.0

Most of the fields have already been described. This particular run was done on a system
with INTVAL set to 10 minutes. It might look odd that there is a 50-minute gap between
SMF120STM and SMF120ETM. But that is because in this case although the server was
started shortly after 1:40, there was no activity to record until the 10-minute interval leading
up to 2:30. If HBRSMFST100EMPTY=YES had been set, empty records with SMF120EXN=0
would have been output every 10 minutes.

There are two exec segments here, one for each of the rulesets executed in this 10-minute
period. The reszminiloanApp was called three times and MiniLoanDemoRuleApp 603,468
times. The RULEXTMAX value for reszminiloanApp might look unusually large, but because
that was run first, it is subject to the usual startup overheads. You can see that the actual CPU
Chapter 16. Configuring Operational Decision Manager to collect execution data using SMF 221

time is much smaller. In the second exec segment, RULEXFSUM is smaller than
RULEXNUM. That is because for Miniloan, not every call results in a rule firing. You can also
see that when the server is warmed up, nearly all of the elapsed time consists of CPU time
(on a busy machine this would not be the case).
222 Flexible Decision Management with Business Rules on IBM z Systems

Chapter 17. Problem determination

This chapter describes some common problems with Operational Decision Manager (ODM),
how to diagnose them, and if there appears to be a bug in ODM, what data to submit with a
problem management record (PMR).

The following topics are covered in this chapter:

� 17.1, “Performance” on page 224
� 17.2, “MustGather” on page 224

17
© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 223

17.1 Performance

Here are some tips on what to look for if it is suspected that there is a performance problem:

� COBOL copybook size. This should ideally be less than about 10 k in size. If it is more
than 1 MB, you likely see poor performance due to the cost of copying the parameters to
and from zRule Execution Server for z/OS (zRES). Consider whether the copybook can be
split so that you are only supplying the part of the copybook that is required by the
decision.

� Try to avoid doing an HBRCONN for every rule execution. There is an overhead that is
associated with HBRCONN and it is more efficient to make multiple HBRRULE calls for
every HBRCONN.

� Java heap size. Ensure that your heap is large enough to avoid excessive Garbage
Collection. Turn on -verbose:gc in your JAVA_OPTIONS and look at the trace to check
your heap occupancy (not described here because there is plenty of guidance on the
web).

17.2 MustGather

If you are unable to fix your problem and need to submit a PMR, perform the following steps to
supply IBM with the data needed to diagnose the problem:

1. Set HBRTRACELEVEL to FINE in the ++HBRWORKDS++.SHBRPARM(HBRCMMN)
member.

2. Stop the zRule Execution Server and restart it.

3. Re-create the problem encountered.

4. Provide all log files in the ++HBRWORKPATH++/logs directory.

5. Provide the SYSOUT, SYSPRINT, HBRPRINT, SYS00001, and SYS00002 job output
elements from the SDSF job logs for both the Master and Console address spaces. In the
case of an abend, also provide the SYSABEND element.

6. Provide all the members in the ++HBRWORKDS++.SHBRPARM data sets.
224 Flexible Decision Management with Business Rules on IBM z Systems

Part 3 Appendixes

Part 3 includes the following appendixes:

� Appendix A, “Calling out from a ruleset to a Virtual Storage Access Method file to augment
data” on page 227

� Appendix B, “Configuring runtime values by using variables defined in HBRINST” on
page 231

� Appendix C, “Additional material” on page 239

Part 3
© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 225

226 Flexible Decision Management with Business Rules on IBM z Systems

Appendix A. Calling out from a ruleset to a
Virtual Storage Access Method
file to augment data

Occasionally, you are required to call out from a ruleset to augment the data that is required to
make a decision. Only call out from a ruleset to augment data in the following circumstances:

� The data is not easily accessible to the application program.
� The decision cannot be made without the data.
� The data is required only in exceptional circumstances by the decision.

The JzOS libraries that come with IBM Java Runtime Environment 6 for z/OS provide a set of
classes that can be used to access a record from a VSAM file. The following code shows an
example of using the JzOS library classes to read a specified record from a VSAM file. You
can use this code within a business object module (BOM) method to augment the data that is
available to a decision. To use the JzOS classes within a BOM method, you must first copy
the JzOS library to your computer to make it available to the rule project in which you want to
author your rules.

The JzOS library is in your z/OS installation directory:

<JAVA6_INSTALL_ROOT>/lib/ext/ibmjzos.jar

A

© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 227

To allow these classes to be available to your BOM authoring, you must add this Java archive
(JAR) file as an external JAR to the Java Execution Model for your project. Use the project
Properties panel, as shown in Figure A-1.

Figure A-1 Adding the JzOS JAR file to the project class path

The class ReadKsdsVsam has a constructor and one method on it (Example A-1). This class
is designed to read a single row from a key-sequenced data set (KSDS) format Virtual
Storage Access Method (VSAM) file, based on a supplied record key, and to return the
corresponding row as a byte array. By knowing the format of the record structure, the required
data can then be read out from the byte array and copied into local rule variables. The byte
array can be read simply by using Java substringing. Or if the record is more complex, the
byte array can be read by using the Java record framework tooling. The Java record
framework tooling is available in IBM Rational® Application Developer or
IBM Rational Developer for System z®.

Example A-1 ReadKsdsVsam.java

import java.io.UnsupportedEncodingException;
import com.ibm.jzos.ZFile;
import com.ibm.jzos.ZFileException;
public class ReadKsdsVsam
{

private ZFile zFile;
private String filename;
private String options;
private int lrecl;
private int keyLen;
private byte[] keyBytes;

public ReadKsdsVsam(String filenameInput, int lreclInput, int keyLenInput) throws
ReadKsdsVsamException
{

228 Flexible Decision Management with Business Rules on IBM z Systems

// Set the options to open the file as VSAM type file, read only
options = "rb,type=record";
this.filename = filenameInput;
this.lrecl = lreclInput;
this.keyLen = keyLenInput;
// Format the file name
if(!filename.startsWith("//"))
filename = "//" + filename;
try { // Check the file exists

if(!ZFile.exists(filename)) {
throw new ReadKsdsVsamException("File "+filename+" does not exist");

}
// Open the file
zFile = new ZFile(filename, options);

}
catch (ZFileException zfe)
{

throw new ReadKsdsVsamException(zfe);
}

}
}
public byte[] readRecord(String key) throws ReadKsdsVsamException
{

byte[] record = new byte[lrecl];
try {

keyBytes = key.getBytes(ZFile.DEFAULT_EBCDIC_CODE_PAGE);
boolean located = zFile.locate(keyBytes, 0, keyLen, ZFile.LOCATE_KEY_EQ);
if (!located) throw new ReadKsdsVsamException("Record: "+key+" cannot be

found");
zFile.read(record);

}
catch (ZFileException zfe) {

throw new ReadKsdsVsamException(zfe);
}

catch (UnsupportedEncodingException uee) {
throw new ReadKsdsVsamException(uee);

}
return record;

}
public void closeFile() throws ReadKsdsVsamException
{

try {
zFile.close();

}
catch (ZFileException zfe) {
throw new ReadKsdsVsamException(zfe);

}
}
}

Appendix A. Calling out from a ruleset to a Virtual Storage Access Method file to augment data 229

In Example A-1 on page 228, the constructor public ReadKsdsVsam(String filenameInput,
int lreclInput, int keyLenInput) throws ReadKsdsVsamException takes the following
arguments:

filenameInput The fully qualified name of the file to read
lreclInput The length of the record
keyLenInput The length of the record key

The constructor checks to see whether the supplied file exists and then opens the file for
reading. If any of these operations fail, it throws a ReadKsdsVsamException with the reason for
the failure. This method can be verbalized and called in the initial actions section of the
ruleflow.

To read a record from the VSAM file, you then use the following method:

public byte[] readRecord(String key) throws ReadKsdsVsamException

This method takes in the key of the record to read as a String and returns the contents of the
record (including the key) as a byte[] array in the code page in which it was read.

Finally, the close() method is called to close the file. This method can be verbalized and called
in the final actions section of the ruleset ruleflow.
230 Flexible Decision Management with Business Rules on IBM z Systems

Appendix B. Configuring runtime values by
using variables defined in
HBRINST

Operational Decision Manager (ODM) can be customized in the HBRINST member of the
++HBRHLQ++.SHBRPARM data set. Amending the variables in the member, when the
customizing job is run, results in the values that are in HBRINST being placed into the
customized members that are generated by the execution of the job.

Use the tables in the following sections, which group values into related areas, to amend the
HBRINST member variables to your system environment:

� B.1, “Rules z/OS” on page 232
� B.2, “CICS” on page 233
� B.3, “CICS JVM server” on page 234
� B.4, “IMS” on page 234
� B.5, “DB2 database” on page 234
� B.6, “WebSphere Application Server” on page 236
� B.7, “WebSphere Optimized Local Adapters script parameters” on page 237
� B.8, “WebSphere Application installation script parameters” on page 237
� B.9, “Subsystem ID used by COBOL management” on page 238
� B.10, “WebSphere Application Server Liberty Profile” on page 238

For more details about the HBRINST member and other members, see the z/OS
configuration variables topic in the IBM Operational Decision Manager IBM Knowledge
Center:

http://www.ibm.com/support/knowledgecenter/SSQP76_8.7.1/com.ibm.odm.zos.config/top
ics/con_ds_jcl_and_runtime_vars.html

B

© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 231

http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.0/com.ibm.odm.zos.config/topics/con_ds_jcl_and_runtime_vars.html
http://www-01.ibm.com/support/knowledgecenter/SSQP76_8.7.0/com.ibm.odm.zos.config/topics/con_ds_jcl_and_runtime_vars.html

B.1 Rules z/OS

Table B-1 lists the variables to create a new instance of Decision Server for z/OS.

Table B-1 Variables for rules on z/OS

Variable Example value Description

++HBRSSIDLIST++ HBR1,HBR2 A zRule Execution Server for z/OS server group
consisting of a list of 1 - 32 subsystem IDs separated
by commas, for example: HBR1,HBR2,HBR3.

The first ID in the list is the primary server, from
which you start the shared console. Rule execution
is routed to the first available server in the list. Other
servers execute rulesets only if rule execution is
transferred to them. To route rule execution to a
particular server, specify its ID first.

++HBRHLQ++ HBR.V871 High-level qualifier (HLQ) for Decision Server for
z/OS data sets. This value is the installation target
library from the product installation.

++HBRINSTPATH++ /usr/lpp/zDM/V8R7M1 This value is the root installation directory for the
Operational Decision Manager product in z/OS
UNIX System Services.

++HBRWORKPATH++ /u/HBR1 Working directory for the server instance.

++HBRWORKDS++ HBR.WORKDS HLQ for the working data sets that contain
customized JCL for creating an execution
environment instance.

++HBRJAVAHOME++ /java/java7_64/J7.0_64 This value is the root location of the JVM on UNIX
System Services. (Java 7 is recommended; Java
6.0.1 is also supported).

++HBRSSPPORT++ 24114 Port number for a zRule Execution Server that is set
up in TESTING mode to use. This is used in Decision
Validation Service (DVS) testing. It can also be used
by Decision Center for running tests or simulations
against a decision service.

++HBRCONSOLEPORT++ 34114 This value is the port that is used for the zRule
Execution Server for the z/OS Execution Server
Console. This value is the port that you use to deploy
and view deployed artifacts.

++HBRCONSOLECOMPORT++ 44114 This value is the port that is used by the Console and
zRule Execution Server for z/OS instance to
communicate with each other.

++HBRCONSOLECOMHOST++ localhost Leaving this as localhost uses the default machine
address. For a cross-LPAR setup (see a later
section), this can be adjusted.
232 Flexible Decision Management with Business Rules on IBM z Systems

B.2 CICS

If you are configuring CICS to execute rules on an instance of zRule Execution Server for
z/OS, customize the variables that are listed in Table B-2.

Table B-2 Variables for CICS

++HBRMODE++ NORMAL, CONSOLE, NATIVE,
or TEST

The zRule Execution Server has four possible
configurations:
� In NORMAL mode, the server accepts a COBOL or

PL/I workload and processes it using its internal
Java virtual machine (JVM). The server settings
can be changed using the console. This mode is
used when executing and managing rules from a
mainframe.

� In CONSOLE mode, the server provides the Rule
Execution Server (RES) console web application
on the ++HBRCONSOLEPORT++ port.

� In NATIVE mode, the server does not start a JVM
to process rules.

� In TEST mode, the server provides testing and
simulation execution, for Decision Server and
DVS, on ++HBRSSPPORT++. It does not
accept connections from local COBOL or PL1
clients.

++HBRLANG++ En_US Language used by the server. The list of supported
languages is in the HBRCMMN data set member.
The default value is En_US.

++HBRTRACELEVEL++ ALL, FINE, INFO, WARNING,
SEVERE, or OFF

Trace level during execution:
� ALL: Logs all messages, including internal traces
� FINE: Logs debug messages, informational

messages, errors, and warnings
� INFO: Logs informational messages, errors, and

warnings
� WARNING: Logs errors and warnings
� SEVERE: Logs errors only
� OFF: No tracing

++HBRPERSISTENCETYPE++ DB2 or FILE Type of persistence layer that is used to store
deployed artifacts. Set this variable to DB2 or FILE.

Variable Example value Description

Variable Example value Description

++CICSHLQ++ CTS420.CICS This value is the HLQ for the CICS installation. Change this value to
match the CICS installation HLQ.

++CICSCSDDSN++ CTS420.APPLID.DFHCSD This value is the HLQ for the CICS region CICS system definition
data set (CSD) file. For each new region into which a zRule Execution
Server for z/OS is to be deployed, this value must be updated.

++CICSLIST++ DFHLIST CICS start group list that is specified for the GRPLIST parameter.
Appendix B. Configuring runtime values by using variables defined in HBRINST 233

B.3 CICS JVM server

If you are configuring an instance of zRule Execution Server for z/OS running on a CICS JVM
server, customize the variables that are listed in Table B-3. Some of these variables are
repeated from Table B-2 on page 233.

Table B-3 Variables for CICS JVM server

B.4 IMS

If you are configuring IMS to execute rules on an instance of zRule Execution Server for z/OS,
customize the variables that are listed in Table B-4.

Table B-4 Variables for IMS

B.5 DB2 database

If you are using a DB2 database as the persistence layer, customize the variables that are
listed in Table B-5.

Table B-5 Variables for DB2

Variable Example value Description

++CICSHLQ++ CTS420.CICS This value is the HLQ for the CICS installation. Change
this value to match the CICS installation HLQ.

++CICSCSDDSN++ CTS420.APPLID.DFHCSD This value is the HLQ for the CICS region CSD file. For
each new region into which a zRule Execution Server for
z/OS is to be deployed, this value must be updated.

++CICSLIST++ DFHLIST CICS start GRPLIST. List of groups containing the
resource definitions that are created when you run the
HBRCSD job.

++JDBCPLAN++ DSNJCC This value is the planned use for Java Database
Connectivity (JDBC) connections and CICS.

Variable Example value Description

++IMSHLQ++ IMS.V10.DBDC HLQ for the data sets of the IMS installation.

++IMSREGID++ IM0A ID of the IMS instance to be used.

++IMSREGHLQ++ IMSDATA.IM0A HLQ of the IMS region data sets.

Variable Example value Description

++DB2HLQ++ SYS2.DB2.V10R1 HLQ of the DB2 installation.

++DB2RUNLIB++ DSNV10GP.RUNLIB.LOAD DB2 runtime library.

++DB2SUBSYSTEM++ db2_subsystem_id DB2 subsystem name.

++DB2LOCATION++ DSNV10GP DB2 location name that is used to connect to this
DB2 subsystem.

++DB2VCAT++ DSNV10GP DB2 integrated catalog facility (ICF) catalog.
234 Flexible Decision Management with Business Rules on IBM z Systems

++DB2ADMIN++ DB2ADMINID User ID that is authorized to create Events DB2
databases.

++DB2SCHEMA++ ODMSCHMA The schema that is used to create and access
the DB2 artifacts.

++RESDATABASE++ RESDB1 Name of the database that is used by the zRule
Execution Server for z/OS instance.

++RTSDATABASE++ RTSDB1 Name of the database that is used by the
Decision Center instance.

++EVDATABASE++ EVDB1 Name of the database that is used by the Events
runtime.

++RESSTOGROUP++ RESSTG1 Name of the storage group that is used by the
zRule Execution Server for z/OS instance.

++RTSSTOGROUP++ RTSSTG1 Name of the storage group that is used by the
Decision Center instance.

++EVSTOGROUP++ EVSSTG1 Name of the storage group that is used by the
Events runtime instance.

++DB2TABLEBP++ BP1 Buffer pool name for the tables.

++DB2INDEXBP++ BP2 Buffer pool name for the indexes.

++DB2LOBBP++ BP3 Buffer pool name for large objects.

++DB2SAMPLEPROGRAM++ DSNTEP2 DB2 program name.

++DB2SAMPLEPROGRAMPLAN++ DSNTEP91 DB2 plan name.

++DB2BP4K++ BP4K Buffer pool name for 4 K objects.

++DB2BP8K++ BP8K Buffer pool name for 8 K objects.

++DB2BP32K++ BP32K Buffer pool name for 32 K objects.

++DB2GROUP++ ODMGROUP The RACF group that is granted access across
the ODM tables. Connect +++DB2USER++ to
this group.

++DB2USER++ ODMDBUSR User ID for accessing the DB2 database.

++DB2PSWD++ <your password> Password for accessing the DB2 database.

++DB2JARLOCN++ /usr/lpp/db2v10/classes Location of the DB2 classes in UNIX System
Services.

++DB2NATIVELOC++ /usr/lpp/db2v10/lib Location of the DB2 native library files.

Variable Example value Description
Appendix B. Configuring runtime values by using variables defined in HBRINST 235

B.6 WebSphere Application Server

If you are configuring Operational Decision Manager on WebSphere Application Server for
z/OS, customize the variables that are listed in Table B-6.

Table B-6 Variables for WebSphere Application Server

Variable Example value Description

++WASINSTPATH++ /WebSphere/V85IL2Z1/Appserver Installation directory of WebSphere Application
Server.

++WAS_HOME++ /WebSphere/AppServer/Profile WebSphere Application Server home directory. It
is unique for each server instance.

++SECURITYTYPE++ RACF Set to RACF if your WebSphere Application Server
system is configured to use RACF. Set to WAS if
your WebSphere Application Server system is
configured to use federated security.

++DMGRPATH++ /WebSphere/V8ILGDM The DManager path in a WebSphere Application
Server Network Deployment environment.

Important: After you run HBRUUPTI, check the
following data set members to ensure that the
DManager path length did not exceed the
permitted length and get truncated:
� HBRDSWAS
� HBRDCWAS
� HBRDSDVS

++WASSERVERNAME++ Serveril2Base WebSphere Application Server instance name.

++PROFILE++ default WebSphere Application Server profile. Set to
default on z/OS.

++CELLNAME++ cell01 WebSphere Application Server cell name.

++NODENAME++ node1 WebSphere Application Server node name.

++ADMINHOST++ washost.ibm.com Name of the host on which the WebSphere
Application Server is running.

++WASBOOTSTRAPPORT++ 1234 Boot strap port that is used by WebSphere
Application Server.

++ADMINUSER++ wasadmin Administration console user ID for the WebSphere
Application Server administration console.

++ADMINPSWD++ t0pS3cr3t Administration console user password for the
WebSphere Application Server administration
console for the preceding user ID.

++EJBHLQ++ CLID System Authorization Facility (SAF) prefix for
EJBROLEs. This might be blank.
236 Flexible Decision Management with Business Rules on IBM z Systems

B.7 WebSphere Optimized Local Adapters script parameters

If you want your COBOL applications to connect to a Rule Execution Server on WebSphere
Application Server through WebSphere Optimized Local Adapters (WOLA), customize the
variables that are listed in Table B-7. For specific details about WOLA configuration, see
Chapter 13, “Configuring IBM WebSphere Optimized Local Adapters support” on page 183.

Table B-7 Variables for WOLA script parameters

B.8 WebSphere Application installation script parameters

If you are configuring Operational Decision Manager for z/OS on WebSphere Application
Server using wsadmin scripts, customize the variables that are listed in Table B-8.

Table B-8 Variables for WebSphere Application installation script parameters

Variable Example value Description

++HBRWOLALOADLIB++ USER.WOLA.LOADLIB.WAS8 Load library that is selected as part of setting up WOLA.

++HBRTARGETRES++ WOLA Location for rules execution, in this case, WOLA.

++HBRWOLACELL++ CILK Short name of the WebSphere Application Server cell to
which to connect using WOLA.

++HBRWOLANODE++ NILK Short name of the WebSphere Application Server node to
which to connect using WOLA.

++HBRWOLASERVER++ WSVR01 Short name of the WebSphere Application Server for the
connection.

Variable Example value Description

++RESADMIN++ resAdministrators Administrator user group for the Rule Execution Server.

++RESDEPLOY++ resDeployers Deployment user group for the Rule Execution Server.

++RESMONITOR++ resMonitors Monitor user group for the Rule Execution Server.

++RESADMINUSER++ resAdmin Administration user for the Rule Execution Server.

++RESDEPLOYUSER++ resDeployer Deployment user for the Rule Execution Server.

++RESMONITORUSER++ resMonitor Monitor user for the Rule Execution Server.

++RTSADMIN++ rtsAdministrator Administrator user group for Decision Center.

++RTSCONFIG++ rtsConfigManager Configuration user group for Decision Center.

++RTSUSER++ rtsUser User group for Decision Center.

++RTSINSTALLER++ rtsInstaller Installer user group for Decision Center.

++RTSADMINUSER++ rtsAdmin Administration user for Decision Center.

++RTSCONFIGUSER++ rtsConfig Configuration user for the Decision Center.

++RTSUSERUSER++ rtsUser1 User for Decision Center.

++DB2NATIVELOC++ /usr/lpp/db2v10/jdb
c/lib

The location of the DB2 native library files.
Appendix B. Configuring runtime values by using variables defined in HBRINST 237

B.9 Subsystem ID used by COBOL management

If you are configuring an execution environment to run COBOL rule subprograms, customize
the variables that are listed in Table B-9.

Table B-9 Subsystem ID used by COBOL management

B.10 WebSphere Application Server Liberty Profile

If you are configuring Operational Decision Manager for z/OS on WebSphere Application
Server Liberty Profile, using wsadmin scripts, customize the variables that are listed in
Table B-10.

Table B-10 Configuration Variables for WebSphere Liberty Profile

++DB2SERVNAME++ myhost.ibm.com DB2 host name or IP address.

++DB2PORT++ 49100 DB2 connection port.

Variable Example value Description

Variable Example value Description

++R4CSSID++ SSID Variable to create a new subsystem ID for a COBOL rule subprogram.

Variable Example value Description

++EJBPROF++ BBGZDFLT The name of the Liberty started task.

++WLPHOME++ /usr/lpp/zWebSphe
re/liberty

The Liberty profile installation directory.

++WLPSERVER+ liberty1 The name of your Liberty server.

++LIBERTYPORT++ 20080 The HTTP port for your Liberty server.

++LIBERTYSECUREPORT++ 20443 The HTTP secure port for your Liberty server.
238 Flexible Decision Management with Business Rules on IBM z Systems

Appendix C. Additional material

This book refers to additional material that can be downloaded from the Internet as described
in the following sections.

Locating the web material

The web material that is associated with this book is available in softcopy on the Internet from
the IBM Redbooks publication web server:

ftp://www.redbooks.ibm.com/redbooks/SG248014

Alternatively, you can go to the IBM Redbooks website:

http://www.ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the IBM Redbooks
form number, SG248014.

Downloading the web material

Create a subdirectory (folder) on your workstation, and download the following file of the web
material:

INSDEMO.cpy

C

© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 239

ftp://www.redbooks.ibm.com/redbooks/SG248014
http://www.ibm.com/redbooks

240 Flexible Decision Management with Business Rules on IBM z Systems

ronyms
BAL Business Action Language

BEP Business Event Processing

BOM Business object model

BPM Business process management

DVS Decision Validation Services

HLQ High-level qualifier

IBM International Business Machines
Corporation

ITSO International Technical Support
Organization

IVP Installation verification procedure

JMS Java Message Service

JVM Java virtual machine

KPI Key performance indicator

RES Rule Execution Server

SSP Scenario service provider

XU Execution unit

zFS z/OS Distributed File Service

zRES zRule Execution Server for z/OS

Abbreviations and ac
© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved.
 241

242 Flexible Decision Management with Business Rules on IBM z Systems

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that publications referenced in this list might be available in softcopy only.

� Implementing Event Processing with CICS, SG24-7792

� Proven Practices for Enhancing Performance: A Q & A for IBM WebSphere ILOG BRMS
7.1, REDP-4775

� Making Better Decisions Using IBM WebSphere Operational Decision Management,
REDP-4836

� Patterns: Integrating WebSphere ILOG JRules with IBM Software, SG24-7881

You can search for, view, download, or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Other publications

These publications are also relevant as further information sources:

� Barbara von Halle, Business Rules Applied, Wiley, 2001, ISBN 978-0471412939

� Steve Craggs & Brian Safron, Operational Decision Manager for Dummies, Wiley, 2013,
ISBN 978-1118679784

http://www.ibm.com/software/de/beweglich-bleiben/pdf/IBM_ODM_for_Dummies.pdf

Online resources

These websites are also relevant as further information sources:

� IBM Operational Decision Manager product website:

http://www.ibm.com/software/decision-management/operational-decision-management
/websphere-operational-decision-management

� IBM WebSphere Operational Decision Management Version 8.6.0 IBM Knowledge
Center:

http://www.ibm.com/support/knowledgecenter/SSQP76_8.6.0

� Video: Optimizing Decision Management with IBM WebSphere and System z

https://www.youtube.com/watch?v=zc96l33NP_g
© Copyright IBM Corp. 2012, 2013, 2015. All rights reserved. 243

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/software/decision-management/operational-decision-management/websphere-operational-decision-management/
http://www.ibm.com/software/de/beweglich-bleiben/pdf/IBM_ODM_for_Dummies.pdf
https://www.youtube.com/watch?v=zc96l33NP_g

� Video: IBM Operational Decision Manager V8.5 demo

https://www.youtube.com/watch?v=NCPz-Lxicio

� WebSphere z/OS Optimized Local Adapters
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101490

� The ilog.rules.dvs.client package extensive online documentation with code samples that
explain how to use it:

http://www.ibm.com/support/knowledgecenter/SSQP76_8.7.1/com.ibm.odm.dserver.rul
es.ref.designer/html/api/html/ilog/rules/dvs/client/package-summary.html

� Decision Management: Enabling Faster, More Consistent Business Decisions in
Enterprise Applications

ftp://public.dhe.ibm.com/software/systemz/pdf/System_z_eBook_Decision_Managemen
t.Final.4.1.14.pdf

� CICS Explorer:

http://www.ibm.com/software/htp/cics/explorer

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Technology Services

ibm.com/services
244 Flexible Decision Management with Business Rules on IBM z Systems

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101490
http://www.ibm.com/support/knowledgecenter/SSQP76_8.7.0/com.ibm.odm.dserver.rules.ref.designer/html/api/html/ilog/rules/dvs/client/package-summary.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0/topic/com.ibm.wodm.dserver.events.admin/topics/zos_runningtechnologyconnectors.html
https://www.software.ibm.com/webapp/iwm/web/signup.do?source=swg-NA_LMI&S_PKG=ov23265
http://www.ibm.com/software/htp/cics/explorer
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://www.youtube.com/watch?v=NCPz-Lxicio
http://www.ibm.com/software/htp/cics/explorer
ftp://public.dhe.ibm.com/software/systemz/pdf/System_z_eBook_Decision_Management.Final.4.1.14.pdf
ftp://public.dhe.ibm.com/software/systemz/pdf/System_z_eBook_Decision_Management.Final.4.1.14.pdf
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101490
ftp://public.dhe.ibm.com/software/systemz/pdf/System_z_eBook_Decision_Management.Final.4.1.14.pdf
ftp://public.dhe.ibm.com/software/systemz/pdf/System_z_eBook_Decision_Management.Final.4.1.14.pdf

IS
B

N
 0738440728

S
G

24-8014-02

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Flexible Decision M
anagem

ent w
ith Business Rules on IBM

 z System
s

ibm.com/redbooks

SG24-8014-02

ISBN 0738440728

Printed in U.S.A.

Back cover

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	IBM Redbooks promotions
	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Part 1 IBM z Systems with business rules
	Chapter 1. The case for IBM Operational Decision Manager
	1.1 What Operational Decision Manager is
	1.1.1 Common business decisions that require managing
	1.1.2 Where are most decisions made today?

	1.2 Operational Decision Manager for z/OS
	1.3 Where Operational Decision Manager for z/OS can be used
	1.4 Who deploys Operational Decision Manager for z/OS?

	Chapter 2. IBM Operational Decision Manager for z/OS
	2.1 Operational Decision Manager for z/OS overview
	2.1.1 Operational Decision Manager for z/OS capabilities

	2.2 Decision Center for z/OS
	2.2.1 Features
	2.2.2 Decision Center consoles

	2.3 Decision Server for z/OS
	2.3.1 Rule Designer
	2.3.2 Execution options for business decisions on z/OS

	2.4 New in Operational Decision Manager Version 8.7.1
	2.4.1 XOM and marshaller deployment through Decision Center
	2.4.2 Embedded mode
	2.4.3 Stand-alone console address space
	2.4.4 PL/I support
	2.4.5 Decision engine across the product
	2.4.6 Business console
	2.4.7 IMS preinitialization routine
	2.4.8 Extended COBOL and PL/I data types
	2.4.9 Enhanced execution monitoring
	2.4.10 Liberty support
	2.4.11 COBOL code generation deprecation

	Chapter 3. Getting started with business rules
	3.1 Overview of the example used in this chapter
	3.1.1 Business scenario
	3.1.2 Business model
	3.1.3 Scenario rule model
	3.1.4 Project structure of a business rule on z/OS

	3.2 Getting started from a COBOL copybook
	3.2.1 Scenario overview
	3.2.2 Creating a rule project
	3.2.3 Creating COBOL XOM from a COBOL copybook
	3.2.4 Creating a business object model from the Java XOM
	3.2.5 Declaring ruleset parameters
	3.2.6 Adding BOM methods and mapping them to the XOM
	3.2.7 Creating the ruleflow
	3.2.8 Authoring rules
	3.2.9 Preparing the rule execution
	3.2.10 Building a COBOL application for rule execution

	3.3 Getting started from an existing rule project
	3.3.1 Scenario overview
	3.3.2 Generating a copybook from the BOM
	3.3.3 Deploying rule artifacts to zRule Execution Server for z/OS
	3.3.4 Building a COBOL application for rule execution

	Chapter 4. Managing business decisions through the full lifecycle
	4.1 What is the lifecycle of rule artifacts in decisions
	4.2 Working with rules through the lifecycle
	4.2.1 Managing artifacts
	4.2.2 What roles are involved in the decision lifecycle

	4.3 Sharing decision artifacts between z/OS and a distributed environment
	4.4 Installation topologies for Decision Center
	4.4.1 Basic topologies

	4.5 Managing artifacts through the lifecycle
	4.5.1 Rule Designer
	4.5.2 Decision Center
	4.5.3 Business Console
	4.5.4 REST API
	4.5.5 Deployment scripts

	4.6 Usage of defined rules

	Chapter 5. Invoking Operational Decision Manager from COBOL and PL/I clients
	5.1 Designing the decision interface
	5.2 Coding the COBOL or PL/I client application
	5.2.1 HBRWS header structure
	5.2.2 HBRCONN API call
	5.2.3 HBRRULE API call
	5.2.4 HBRDISC API call

	5.3 Mapping from the COBOL copybook
	5.3.1 Structure of a COBOL-based rule project
	5.3.2 Supported COBOL and PL/I data types
	5.3.3 Creating custom converters
	5.3.4 Mapping level-88 constructs into BOM domain types

	5.4 Changing the client application to reach the rule server
	5.4.1 Batch application
	5.4.2 IMS application
	5.4.3 CICS application
	5.4.4 WebSphere Optimized Local Adapters batch application

	Chapter 6. Advanced topics for decision authoring
	6.1 Starting from an existing Java based BOM project
	6.1.1 Mapping Java data structures to COBOL

	6.2 Extending the capability of the rule execution with BOM methods
	6.2.1 Preferred practices for using virtual methods

	6.3 Augmenting ruleset parameters from external data sources
	6.3.1 Preferred for providing rule execution data
	6.3.2 Approaches to providing data from external sources

	6.4 Considerations for sharing rules between z/OS and distributed applications
	6.4.1 Sharing a COBOL or PL/I-based project with Java applications
	6.4.2 Sharing a Java BOM-based project with COBOL applications on z/OS

	6.5 Authoring considerations for performance

	Part 2 System configuration
	Chapter 7. Prerequisites and considerations before you start
	7.1 Runtime environments on z/OS
	7.1.1 Configuring the run times
	7.1.2 Prerequisite checklist

	7.2 Teams needed for installation and configuration
	7.3 Gathering the customizable information

	Chapter 8. zRule Execution Server for IBM z/OS stand-alone server
	8.1 Running on z/OS stand-alone
	8.1.1 Configuring the stand-alone zRule Execution Server for z/OS
	8.1.2 Creating data sets for the zRule Execution Server for z/OS instance
	8.1.3 Creating the working data sets using HBRUUPTI
	8.1.4 Creating the working directories in UNIX System Services

	8.2 Configuring the stand-alone zRule Execution Server for z/OS
	8.2.1 Defining a new subsystem for zRule Execution Server for z/OS
	8.2.2 Creating the started tasks (HBRXMSTR)
	8.2.3 Securing the zRule Execution Server for z/OS for z/OS resources
	8.2.4 Starting the new instance
	8.2.5 Logging on

	8.3 Setting up the database connection as a Type 2 connection
	8.3.1 Setting up a type 2 configuration for the console
	8.3.2 Updating the database parameters in HBRPSIST
	8.3.3 Setting up the DB2 identifying file
	8.3.4 Updating the PARM members

	Chapter 9. zRule Execution Server for z/OS embedded server
	9.1 Introduction to the embedded server
	9.2 Move the decisions to the data
	9.3 When to choose embedded over stand-alone server
	9.3.1 Other benefits of the embedded zRES

	9.4 Configuring zRES embedded
	9.4.1 Batch control statements
	9.4.2 Preparing the batch job for the embedded server
	9.4.3 Executing zRES embedded
	9.4.4 Troubleshooting

	9.5 Not connecting to a console

	Chapter 10. Configuring IBM CICS to work with Operational Decision Manager
	10.1 Configuring CICS to invoke a stand-alone zRule Execution Server for z/OS
	10.1.1 Creating working data sets for CICS
	10.1.2 Defining the required resources
	10.1.3 Updating the GRPLIST parameter
	10.1.4 Updating the CICS JCL
	10.1.5 Starting zRES and CICS
	10.1.6 Installing HBRGROUP
	10.1.7 Testing the configuration
	10.1.8 Automatically connecting CICS to a running zRES instance
	10.1.9 Deploying and running the installation verification program

	10.2 Configuring zRES to run in a CICS JVM server
	10.2.1 Creating working data sets for CICS
	10.2.2 Submitting jobs within the SHBRJCL working data set
	10.2.3 Adding ++CICSLIST++ to the CICS system initialization table
	10.2.4 Setting the JVMPROFILEDIR
	10.2.5 Changing the CICS region JCL
	10.2.6 Providing a console for the zRule Execution Server
	10.2.7 Scenario for installation verification
	10.2.8 Security for the zRES on CICS JVM server
	10.2.9 CEDA installation of HBRGROUP resources
	10.2.10 Database connect for the CICS region
	10.2.11 Initializing the zRES in the CICS JVM server
	10.2.12 Deploying the installation verification program

	10.3 Working with multiple CICS JVM servers
	10.3.1 Using the same JVM profile and working directory

	10.4 Rule-owning regions and application-owning regions
	10.4.1 Cost effectiveness
	10.4.2 Create working data sets for the AOR region
	10.4.3 Define the required CICS connection resources
	10.4.4 Customize the HBRCSD JCL to use a remote server program
	10.4.5 Define the required resources
	10.4.6 Edit the HBRCICSZ file to specify a remote target Rule Execution Server
	10.4.7 Updating the GRPLIST parameter
	10.4.8 Updating the CICS JCL
	10.4.9 Installing HBRGROUP
	10.4.10 Testing the configuration
	10.4.11 Further information about configuring an AOR and ROR

	Chapter 11. Configuring IBM IMS to work with Operational Decision Manager
	11.1 IMS and Operational Decision Manager
	11.2 Configuration
	11.2.1 BMP and DL/I
	11.2.2 Message processing region

	11.3 IMS and Rule Execution Server on WebSphere Application Server for z/OS

	Chapter 12. Liberty Application Server on IBM z/OS
	12.1 Introduction
	12.2 Liberty on z/OS and Java
	12.2.1 Reasons to use Java on z/OS
	12.2.2 Collocation
	12.2.3 Management
	12.2.4 Security
	12.2.5 Transactions

	12.3 Operational Decision Manager running on Liberty on z/OS
	12.3.1 Capabilities that can run in Liberty on z/OS

	12.4 Installation and configuration of Liberty
	12.4.1 A couple of subdirectories of interest
	12.4.2 Useful environment variables
	12.4.3 Creating the server
	12.4.4 The directory structure
	12.4.5 Liberty configuration files

	12.5 Running Liberty
	12.5.1 Using started tasks
	12.5.2 Starting and stopping a Liberty Server as a started task

	12.6 Configuring Operational Decision Manager to run with Liberty
	12.6.1 Configuration jobs
	12.6.2 The server.xml file
	12.6.3 Security profiles for Operational Decision Manager on Liberty
	12.6.4 Connecting to the persistent store
	12.6.5 Enabling the Operational Decision Manager applications in Liberty

	Chapter 13. Configuring IBM WebSphere Optimized Local Adapters support
	13.1 Overview of WebSphere Operational Local Adapters
	13.1.1 Configuring WOLA
	13.1.2 JCL variables for using WOLA

	13.2 Configuration of WebSphere Application Server to use WOLA
	13.3 Batch programs and Rule Execution Server using WOLA on z/OS
	13.4 CICS and Rule Execution Server using WOLA on z/OS
	13.5 IMS and Rule Execution Server using WOLA on z/OS

	Chapter 14. Configuring Decision Warehousing
	14.1 Introducing the Decision Warehouse
	14.2 Configuring the Decision Warehouse
	14.2.1 Setting up the database resources
	14.2.2 Enabling ruleset monitoring

	14.3 Viewing the results of running with Decision Warehousing enabled
	14.3.1 Execute the appropriate ruleset
	14.3.2 Viewing the results

	Chapter 15. Configuring the Rule Execution Servers for IBM z/OS console with virtual IP addressing
	15.1 Overview of a multiple LPAR environment
	15.1.1 Hot deployment of rules in Operational Decision Manager
	15.1.2 Cold deployment of rules in Operational Decision Manager

	15.2 Using virtual IP addressing to allow more than one zRules console to be used
	15.2.1 What happens if the LPAR that hosts the zRules console fails
	15.2.2 Using virtual IP addressing
	15.2.3 How VIPA maintains hot deployment

	Chapter 16. Configuring Operational Decision Manager to collect execution data using SMF
	16.1 Overview
	16.2 Operational Decision Manager use of SMF
	16.3 Record format
	16.3.1 SMF header
	16.3.2 ODM header
	16.3.3 ODM exec segment

	16.4 Implementation
	16.5 Configuration
	16.6 Troubleshooting
	16.7 Formatting SMF output

	Chapter 17. Problem determination
	17.1 Performance
	17.2 MustGather

	Part 3 Appendixes
	Appendix A. Calling out from a ruleset to a Virtual Storage Access Method file to augment data
	Appendix B. Configuring runtime values by using variables defined in HBRINST
	B.1 Rules z/OS
	B.2 CICS
	B.3 CICS JVM server
	B.4 IMS
	B.5 DB2 database
	B.6 WebSphere Application Server
	B.7 WebSphere Optimized Local Adapters script parameters
	B.8 WebSphere Application installation script parameters
	B.9 Subsystem ID used by COBOL management
	B.10 WebSphere Application Server Liberty Profile

	Appendix C. Additional material
	Locating the web material
	Downloading the web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	Help from IBM

	Back cover

