Financial Transaction
Manager Technical
Overview

Understand how a Financial
Transaction Manager solution works

Create reusable patterns to
accelerate development

Learn by example with
practical scenarios

Craig Bryce
Sean Dunne
Prasad Edlabadkar
Peter McGrath
Sandesh Udupa

00KS

ibm.com/redbooks

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Financial Transaction Manager Technical Overview

March 2014

SG24-8187-00

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

First Edition (March 2014)

This edition applies to Financial Transaction Manager V2.1

© Copyright International Business Machines Corporation 2014. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents

NotiCes iX
Trademarks X
Preface e e Xi
AULNOIS . . e e e Xi
Now you can become a published author,too! Xiii
CommeNts WeICOME. o e e Xiii
Stay connected to IBM RedbOOKSt Xiii
Chapter 1. Anatomy of an IBM Financial Transaction Manager solution. 1
1.1 Financial Transaction Manager OVerviewttt 2
1.1.1 Businesschallenge. 2
1.1.2 Financial Transaction Manager. i 4
1.1.3 USaQge SCENAIOS oottt e 10
1.2 Financial Transaction Manager solution key concepts 13
1.2.1 Development methodology e 13
1.22 Datamodel 14
1.2.3 Transaction Processing Engine 29
1.2.4 Solution-specific artifacts 31
1.3 Processing a financial transaction. e 36
1.3.1 Importing a financial businessmessage. 38
1.3.2 Orchestrating the financial business process 40
Chapter 2. Design and development methodology overview 43
2.1 Capturing requirements.ot e 45
2.2 Architectural decisions e 47
2.3 Following the methodology 47
2.3.1 Design tasksot 48
2.3.2 Development and codingtasks. 54
2.3.3 Miscellaneous tasks e 55
2.3.4 Testing e 56
Chapter 3. Producing design artifacts by using Rational Software Architect. 57
3.1 Design levels. e 58
3.2 Model project Structure e 58
3.3 Functional use case diagrams e 63
3.4 High-level sequence diagrams e 65
3.5 Detailed sequence diagrams. 70
3.6 Objectlifecycle diagramsttt e 79
3.7 Object relationship diagrams. i 81
3.8 Finite State Machines e 84
Chapter 4. Mapping.t e 85
4.1 Internal standard format 86
411 ISF OVEIVIEW . . o o e 86
4.1.2 The 1ISO20022 standard it e 87
418 ISF StrUCIUrE o e e 90
4.1.4 Extensibility e 91
4.2 Design considerations.t 94

© Copyright IBM Corp. 2014. All rights reserved. iii

iv

4.2.1 GuidelinesforISFuUsage 95

4.2.2 Mapping level considerations i 100
4.3 Implementation considerations 104
4.3.1 Parsing 104
4.3.2 Mapping technologies. 109
4.3.3 Keydeliverables 127
4.4 Handling large files 129
Chapter 5. Using WebSphere Message Broker Toolkit to produce build artifacts .. 131
5.1 Workspace setupot 133
5.2 Wrapper flows 136
5.2.1 Physical transmission wrapperflow 137
5.2.2 Eventprocessingwrapperflow. 141
5.3 Action flows oo 142
5.3.1 Coding actions i e 143
5.3.2 Database persistence e 144
5.4 Mapper flows. e e 145
5.4 INPUEMaPPEr. . . e 145
5.4.2 OUIPUE MaPPErS . ..ttt e e 148
5.5 Emitter flows . ..o 149
5.6 Heartbeat flow. 149
5.7 MeSsage Sels e 150
5.8 Message flow templates 150
5.9 BARfilesand deployment. 151
Chapter 6. Userinterface 153
6.1 Introduction to the userinterface. 154
6.2 Financial Transaction Manager applications. 155
6.3 Working with operationaldata. 156
6.3.1 Physical Transmissions. i e e 160
B.3.2 Fragments. e 166
6.3.3 Batches. e 171
6.3.4 Transactions e 177
6.3.5 Resolving alerts and operator actions. oo, 188
6.4 Configuring Financial Transaction Manager it .. 192
6.4.1 Defininginterfaces e 194
6.4.2 Calendarsand Schedules. i 208
6.4.3 Configuring classifications. 209
6.4.4 Configuring Configuration Values. 210
6.4.5 User access PermisSSiONnSot e 210
Chapter 7. Housekeeping. 213
7.1 Database archive and purge. e 214
7.1.1 Identifying transactions 214
74.2 Archive . .. e 215
7.8 PUIGE .. 216
7.2 Backupandrestore e 216
7.3 Technical monitoring. e 217
7.4 MaintenanCeo e 218
Chapter 8. Deployment topologies 219
8.1 Infrastructure topologies 220
8.1.1 WebSphere Message Broker and WebSphere MQ 220
8.1.2 Database. e 224

Financial Transaction Manager Technical Overview

8.1.3 WebSphere Application Server. i e 229

8.2 Financial Transaction Manager componentst 229
8.2.1 Message flows e 229
8.2.2 Database schema configuration 235
8.2.3 Operations and Administration userinterface. 236

Chapter 9. Patterns 237

9.1 Creation of outbound message or filepattern. 238
9.1.1 High-level description e 238
9.1.2 Objects and object relationships. i 252
9.1.3 Detailed sequence diagramottt e 252
9.1.4 Objectlifecycle diagram 274
9.1.5 Finite state machine e 274
9.1.6 Process highlights. 274
9.1.7 Patterninteraction. e 280

9.2 Routing, IBM Operational Decision Manager rules, and multiple targets pattern 282
9.2.1 High-level description e 283
9.2.2 Objects and objectrelationships. i 287
9.2.3 Detailed sequence diagramt e 287
9.2.4 Objectlifecycle diagram i 289
9.2.5 Finite state machine e 289
9.2.6 Process highlights. e 291
9.2.7 Patterninteraction. e 293

9.3 Semantic validation pattern. 293
9.3.1 High-level description 295
9.3.2 Objects and object relationships. 299
9.3.3 Detailed sequence diagram e 299
9.3.4 Objectlifecyclediagram e 302
9.3.5 Finite statemachine 303
9.3.6 Process highlights. e 306
9.3.7 Patterninteraction. e 306

9.4 Enrichment pattern e 306
9.4.1 High-level description 307
9.4.2 Objects and object relationships. i 310
9.4.3 Detailed sequence diagram e 310
9.4.4 Object lifecycle diagram 313
9.4.5 Finite state machine e 315
9.4.6 Process highlights. 316
9.4.7 Patterninteraction. e 318

9.5 Transformation pattern e 318
9.5.1 High-level description e 319
9.5.2 Objects and objectrelationships. i 330
9.5.3 Detailed sequence diagramt 330
9.5.4 Object lifecycle diagram 335
9.5.5 Finite state machine 336
9.5.6 Process highlights. e 338
9.5.7 Patterninteraction. 338

9.6 Debulking pattern e 338
9.6.1 High-level description 339
9.6.2 Objects and object relationships. 340
9.6.3 Detailed Sequence diagram e 341
9.6.4 Object Lifecycle diagram. e e 342
9.6.5 Finite State Machine 344

Contents v

Vi

9.6.6 Process highlights. 346

9.6.7 Patterninteraction. 347
9.7 Bulking pattern 348
9.7.1 High-level description e 349
9.7.2 Objects and object relationships. i i 351
9.7.3 Detailed Sequence diagram e 352
9.7.4 Objectlifecycle diagram e 353
9.7.5 Finite State Machine e 356
9.7.6 Process highlights. 356
9.7.7 Patterninteraction. 357
9.8 Storeandrelease pattern e 358
9.8.1 High-level description e 359
9.8.2 Objects and objectrelationships. i i 363
9.8.3 Detailed sequence diagramttt 363
9.8.4 Object lifecycle diagram i e 366
9.8.5 Finite State Machine. i 366
9.8.6 Process highlights. e 368
9.8.7 Patterninteraction. 371
9.9 Starting external servicespattern 372
9.9.1 High-level description e 372
9.9.2 Objects and object relationships. 382
9.9.3 Detailed sequence diagram 383
9.9.4 Objectlifecyclediagram i e 390
9.9.5 Finite State Machine 392
9.9.6 Process highlights. e 392
9.9.7 Patterninteraction. e 393
9.10 Hosting services pattern 393
9.10.1 High-level description 394
9.10.2 Objects and object relationships. i i 399
9.10.3 Detailed sequence diagram e 399
9.10.4 Object lifecycle diagram e 402
9.10.5 Finite State Machine e 404
9.10.6 Process highlights. 404
9.10.7 Patterninteraction. e 404
9.11 Collating information from several sources pattern. 404
9.11.1 High-leveldescription e 405
9.11.2 Objects and object relationships. i i 409
9.11.3 Detailed sequence diagramt 410
9.11.4 Objectlifecycle diagram e 413
9.11.5 Finite State Machine 413
9.11.6 Process highlights. 414
9.11.7 Patterninteraction. 415
9.12 Scheduled activity pattern. 415
9.12.1 High-level description e 416
9.12.2 Objects and object relationships. 418
9.12.3 Detailed sequence diagram e 418
9.12.4 Objectlifecycle diagram i e 420
9.12.5 Finite State Machine e 420
9.12.6 Process highlights. e e 421
9.12.7 Patterninteraction. e 422
9.13 Scheduled expectationpattern 423
9.13.1 High-leveldescription e 423
9.13.2 Objects and object relationships. 425

Financial Transaction Manager Technical Overview

9.13.3 Detailed sequence diagramu ittt 425

9.13.4 Objectlifecycle diagram e 427
9.13.5 Finite State Machine e 428
9.13.6 Process highlights. 430
9.13.7 Patterninteraction. 430
9.14 Heartbeats monitoring (scheduling) pattern L. 431
9.14.1 High-leveldescription 432
9.14.2 Objects and object relationships. 433
9.14.3 Detailed sequence diagramt e 433
9.14.4 Objectlifecycle diagram i e 435
9.14.5 Finite State Machine e 436
9.14.6 Process highlights. e 438
9.14.7 Patterninteraction. e 438
9.15 Error handling and alerts patterning i 438
9.15.1 High-level description 439
9.15.2 Objects and object relationships. i 441
9.15.3 Detailed sequence diagramt 441
9.15.4 Object lifecycle diagrams i e 445
9.15.5 Finite State Machine e 447
9.15.6 Process highlights. 450
9.15.7 Patterninteraction. e 451
Related publications 453
IBM RedboOoKS e 453
ONliNE rESOUICES . . . oo e e e e e e 453
Help from IBM e e e 453

Contents vii

viii Financial Transaction Manager Technical Overview

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2014. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/Tegal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX® Parallel Sysplex® Tivoli®
DB2® Rational® WebSphere®
Global Business Services® Redbooks® z/OS®

IBM® Redbooks (logo) (@@ ®

The following terms are trademarks of other companies:

Connect:Direct, and N logo are trademarks or registered trademarks of IBM International Group B.V., an IBM
Company.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

X Financial Transaction Manager Technical Overview

http://www.ibm.com/legal/copytrade.shtml

Preface

Authors

Dramatic forces of change continue to sweep the financial services industry. The age of the
empowered customer is here and are changing the way financial products are delivered, sold,
and serviced, which are making relationships more complex than ever. The explosion of data
and intense competition, which is combined with slow or inconsistent economic conditions,
makes it imperative for financial institutions to find new and cost effective ways to increase
market share, renew customer trust, and drive profitable growth.

In this new business environment, the transaction processing arm of the industry is facing
increased pressure to reduce float, better manage liquidity, and provide regulators and clients
with increased transparency. At the same time, the industry must effectively manage the risks
that are associated with introducing customer-focused and regionalized products and
services.

Adding complexity are the many interfaces that financial institutions must accommodate, from
customers and Business Partners to regulators and third-party service providers. Additionally,
customer information might be in many different systems. Different lines of business, within a
financial institution, serve the same customer but might not share data. The inability to use
information effectively across the enterprise can keep financial institutions from providing the
most optimal customer experience.

These situations call for ensuring that Enterprise Resource Planning (ERP) systems can
create direct transactions with partners while processes take place, and track processes at
any step during a transaction processing lifecycle. Yet, in cost-conscious environments,
eliminating inflexible, complex operations and siloed data cannot be accomplished by
complete replacement of existing systems.

Financial Transaction Manager enables the management, orchestration, and monitoring of
financial transactions during their processing lifecycle. Financial Transaction Manager
provides the capability to integrate and unify financial transactions in various industry formats
(including ISO 20022, SWIFT, NACHA, EDIFACT, ANSI X12 and others). By using Financial
Transaction Manager, financial institutions gain visibility into message processing, balance
financial risk, and facilitate effective performance management.

This IBM® Redbooks® publication outlines how Financial Transaction Manager is deployed to
realize the benefits of transaction transparency, increase business agility, and allow for
innovation that is built on a robust and high-performance environment.

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Raleigh Center.

Craig Bryce is a Client Solution Profession in the United Kingdom. He has over 16 years of
experience in various organizations from software vendors to consultancies. He specialized in
core banking, financial messaging, and transaction banking. He holds a degree in Chemistry
with Medicinal Chemistry and studied for a PhD in Organic Chemistry.

© Copyright IBM Corp. 2014. All rights reserved. Xi

Xii

Sean Dunne is the worldwide lead architect for Financial Transaction Manager and is based
in Dublin, Ireland. He has more than 35 years of experience in software development, mostly
for the financial industry. He holds a degree in Science from University College Dublin. His
areas of expertise include data communications, messaging, integration solutions, and
payments. He worked with the Financial Transaction Manager development team from
concept, and led the design for many customer solutions that are based on Financial
Transaction Manager.

Prasad Edlabadkar is an IT Integration Architect with IBM Global Business Services® in
India. He is an IBM Certified SOA Solution Designer and has over 10 years of experience in
Information technology area with over seven years in building enterprise integration solutions
for large banks and insurance companies. He has worked at IBM for five years. His areas of
expertise include Enterprise Integration and Business Process Management that uses IBM
SOA Foundation products and technologies. He holds a Bachelor of Engineering in
Electronics and Telecommunications from Pune University, India.

Peter McGrath is a Technical Solutions Architect in the Financial Transaction Manager
Development team in Dublin, Ireland. He has worked for IBM in Ireland for 17 years. He has
extensive industry knowledge and hands-on project experience in the banking sector. In
addition to Financial Transaction Manager, his areas of expertise include IBM WebSphere®
Message Broker and WebSphere MQ, working on the IBM AIX®, Linux, and IBM z/OS®
platforms. He has worked on numerous services engagements with Financial Transaction
Manager in some of the largest banks in the US, Canada, and Europe. He also is the scrum
leader of the development team, working on the next release of Financial Transaction
Manager base.

Sandesh Udupa is a Software Architect in Singapore. He has over 15 years of experience in
the software industry and has worked at IBM for more than two years. His area of expertise in
the Banking and Financial Markets sector include systems that are related to payments
processing and channel applications.

Thanks to Manoj Puthenveetil, IBM Program Director, Portfolio Strategy Leader, Financial
Solutions, who is the sponsor of this project.

This project was led by the following people:

» Deana Coble, IBM Redbooks Technical Writer
» Martin Keen, IBM Redbooks Project Leader

Thanks to the following people for their contributions to this project:

Paul Hanily, IBM Product Manager, Financial Transaction Manager

Alan Fitzpatrick, IBM Development Manager, Financial Transaction Manager
Colin Stringer, Jeeten Shah, and Subramaniam Sundaram, Lloyds Banking Group
Martin Flint, IBM Financial Transaction Manager Architect

Frank Byrne, IBM Financial Transaction Manager Lab Services Manager

Criostoir Hyde, IBM Technical Solution Architect

Gerardo Mara, IBM Industry Products

Debbie Willmschen, IBM Redbooks Technical Writer

vVVyYVYyVYVYVYYVYY

Financial Transaction Manager Technical Overview

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at
this website:

http://www.ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or

other IBM Redbooks publications in one of the following ways:

» Use the online Contact us review Redbooks form that is found at this website:
http://www.ibm.com/redbooks

» Send your comments in an email to:
redbooks@us.ibm.com

» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099

2455 South Road

Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

» Find us on Facebook:
http://www.facebook.com/IBMRedbooks

» Follow us on Twitter:
http://twitter.com/ibmredbooks

» Look for us on LinkedIn:
http://www.1linkedin.com/groups?home=&gid=2130806

» Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?0penForm
» Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html

Preface xiii

http://www.ibm.com/redbooks/residencies.html
http://www.ibm.com/redbooks/residencies.html
http://www.ibm.com/redbooks
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks

http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

http://www.redbooks.ibm.com/rss.html

Xiv Financial Transaction Manager Technical Overview

Anatomy of an IBM Financial
Transaction Manager solution

In this chapter, we dissect Financial Transaction Manager and describe some of the key
internal concepts.

The chapter starts with an overview of Financial Transaction Manager, then we explain the
business context and introduce it from that perspective. Later, we highlight some of the usage
scenarios. Finally, we describe the key internal components and explain how each of these
components interact to provide a solution.

This chapter includes the following sections:

» Financial Transaction Manager overview
» Financial Transaction Manager solution key concepts
» Processing a financial transaction

© Copyright IBM Corp. 2014. All rights reserved. 1

1.1 Financial Transaction Manager overview

In this section, we introduce Financial Transaction Manager and give an overview of the
business challenges that it helps address and some of the usage scenarios.

1.1.1 Business challenge

Dramatic forces of change continue to sweep the financial services industry. Figure 1-1
shows the forces and their effect on the industry participants.

‘e(\o\l L’QU Id/ l‘y

6(\%9‘3

Regulation

<X

e CNAPS2
e International ACH Transaction

e Global regulatory reform e.g. Basel II
e Same day ACH settlement

e Regionizional e.g. Gulf States

e Faster Payments (UK)

e SEPA
Traditional Sellers/
Buyers/ Payers Payments Collectors
Players

* Cost efficiencies e Commerdcial banks * Cost efficiencies and effectivness
e Real time processing e Central banks * Float
e Management information e Third party processors (CLS) e Competition
e ERP INtegration — E2E solutions e New product development
e Improved reconciliation e Technology
e Improved transaction tracking e Profit margins
e Self-service (e.g. mobile) e Management information

eTransaction transperacy in e Self-Service

fees, risk and other

New Entrants/
Disruptors

Figure 1-1 Forces affecting financial industry participants

The age of the empowered customer is here and is changing the way financial products are
delivered, sold, and serviced, which makes relationships more complex than ever. The
explosion of data and intense competition, which is combined with slow or inconsistent
economic conditions, makes it imperative for financial institutions to find new and cost
effective ways to increase market share, renew customer trust, and drive profitable growth.

In this new business environment, the transaction processing arm of the industry is facing
increased pressure to reduce float, better manage liquidity, and provide regulators and clients
with increased transparency. At the same time, the industry must manage (effectively) the
risks that are associated with introducing customer-focused and regionalized products and
services.

2 Financial Transaction Manager Technical Overview

Adding to this complexity are the many interfaces that financial institutions must
accommodate, from customers and Business Partners to regulators and third-party service
providers. Customer information can be in many different systems. Different lines of business
within a financial Institution serve the same customer, but might not be sharing data. The
inability to use information effectively across the enterprise can keep financial institutions
from providing the best experience for customers.

These situations call for ensuring that Enterprise Resource Planning (ERP) systems can
create direct transactions with partners while the processes take place. The ability to track
processes at any step during a transaction processing lifecycle also must be ensured. Yet,
eliminating inflexible, complex operations and data silos in cost-conscious environments
cannot be accomplished by complete replacement of existing systems.

The reality for many financial institutions is dynamic. Transaction processing environments
might evolve through a combination of organic development, mergers, or acquisitions. Many
times, case-by-case projects drove point-to-point implementations with the following
characteristics:

Diverse transaction formats

Varying processing rules and requirements
Many-to-many connections

Broad combinations of technology stacks and platforms

vyvyyy

This change is consistent with observations that were made by many market research
organizations, such as Gartner and IDC. IDC Financial Insights noted in their report Business
Strategy: Defining Enterprise Payments:

“Back in 2004, we wrote ‘payment systems today are a mess.’ To a large extent, this
remains true. Having grown up in different product silos over many years, payment
systems are duplicative, needlessly complex, and uncoordinated. However, banks are also
loath to tamper with systems that have been functioning reliably for decades and are
critical to their existence.”

In this environment, financial institutions must now track, manage, and report on transactions
while facing the challenges of changing business requirements that demand rapid extension,
and expansion for more capability.

These environments resist change because they have the following attributes:

v

Complex and costly to maintain

Incompletely documented

Duplicated services, data, processes, and functions
Controlled by different organizations within the institution

vvyy

To get out of this conundrum, the need of the hour is an architecture that can manage the
following critical functions:

Enables a streamlined environment that is easier to maintain
Increases transaction visibility

Facilitates reuse of services, data, and processes

Improves agility to respond to changing business requirements

vVvyyvyy

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution 3

Figure 1-2 shows an architecture that enables transaction environment transformation.

Applications
Channels

Simplified and Streamlined Processing

Figure 1-2 Transaction processing transformation

In their report, The Payment Hub Evolves Into the Payment Services Hub: Banks' Most
Critical Payment Innovation, Gartner describes such an architecture and calls it the Payment
Services Hub. A Payment Services Hub includes the following main components:

» A workflow system that can define and monitor payment processes.

» Standardized interfacing from the origination of the payment to its integration with the
customer accounts and relevant channels.

» Rules-based validation, repair, enrichment, routing, and so on.

1.1.2 Financial Transaction Manager

4

There is need for an architecture that allows standardizing and streamlining financial
transaction processing. IBM developed Financial Transaction Manager for that purpose.
Financial Transaction Manager is a framework for integrating, orchestrating, and monitoring
financial transactions. It creates and collects the state of financial transactions while providing
integration capability that includes common data and canonical message models.

Financial Transaction Manager focuses specifically on the challenges that are faced by
financial institutions when they are attempting to manage integration in complex
environments between several systems, both internal and external. It addresses the following
issues and requirements:

» Environments with diverse formats and many-to-many connections

» The need to track and manage the progress of business transactions through a series of
asynchronous interactions

» The ability to extend the business transaction processing by adding interfaces
» Support for batches that contain multiple transactions with independent processes

» Non-functional requirements, such as availability, security, reliability, scalability, auditability,
and traceability

Financial Transaction Manager Technical Overview

Financial Transaction Manager provides a framework through which management of the

integration of existing and new applications and services can be achieved through a “financial

transaction-aware” integration platform. Financial transaction aware implies that the
integration platform has a knowledge and context of the financial transaction.
Financial Transaction Manager supports the following services:

» Makes accessible services that can be reused for many processes

» The incorporation of a comprehensive set of accelerators that enables rapid assembly,
integration, and modification of business processes

» The maximization of IBM market-leading service-oriented architecture (SOA) foundation
products

Financial Transaction Manager is built on the following key pillars that can help realize the

goals of the wanted architecture:

» Canonical format to represent a business transaction

This pillar for financial transaction processing includes interfacing to multiple systems with

disparate formats. As shown in Figure 1-2 on page 4, when the number of channels (c)

and applications (a) increase, the complexity of integration increases correspondingly (¢ x

a). The only way to simplify this complexity is to transform from the source formats to a
canonical format that represents the business transaction and then to transform from the
canonical to the target format. This shift simplifies the integration to a more manageable
level (c + a).

Financial Transaction Manager provides this canonical format that is called infernal
standard format (ISF). This format is based on the financial industry standard 1SO 20022.

By using this format, a comprehensive set of business objects for financial markets can be
made available and used to integrate with other interfacing systems. When mapped to ISF,

the message can be transformed to any interface for any business purpose.
» Model-based transaction processing engine to streamline integration

This pillar for financial transaction processing includes exchange of business messages
between the interacting systems, mostly in an asynchronous fashion. Traditionally, this
interaction was point-to-point, where individual systems are coupled to each other, which

causes the processes to become rigid because of the interdependencies and at the same

time, difficult to trace.
Financial Transaction Manager provides the Transaction Processing Engine that

automatically orchestrates the financial business process by referring to a defined process
model. The process model is based on the concept of Finite State Machines (FSM) and is

modeled by using IBM Rational® Software Architect’s state machine diagrams. As the
transaction processing engine drives the lifecycle of the business process, it tracks the
process state in a data model, thereby inherently providing process state visibility.

Financial Transaction Manager is composed of the following core components:

Internal standard format

Data model

Model-based Transaction Processing Engine

Operations and Administrative Console (browser-based user interface)
Prebuilt message transformations (such as, SWIFT to or from ISF)

Set of services to expedite financial process orchestration

Prebuilt business activity monitoring dashboards

Preferred practices, development methodology, and programming guide
Sample applications that show the framework

VVYyYVYVYYVYVYYVYY

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution

High-level architecture
For further understanding of the architecture, consider the high-level diagram of Financial
Transaction Manager that is shown in Figure 1-3.

WebSphere Message Broker Toolkit Rational Software Architect
Action Flows Maps Process models Configurations
Deploy Export
4
__-_-—\ Config Data
WebSphere Application Server
PBZ . Opterational Operations and Administrative Console
Configuration, Dot >
Process models etc. Monitoring, Management, Configuration
Transaction (ISF) —>
Audit etc.

©
S IBM Business Monitor
o Operator
2 Business Monitor Dashboard
OO- Commands
y q
KPI Events STP Rates, Hosted Service KPI etc.

WebSphere Message Broker

Transaction Processing Engine

Channels

Lifecycle management, Event processing,
Transactions, Actions, Routing, Rules etc.

! ! !

Bank Internal
Systems

CSM
Shared Services SWIFT

Figure 1-3 Financial Transaction Manager architecture

Data store (DB2)

In Figure 1-3, the data store is an IBM DB2® database (but it also can be Oracle or other
database) that is based on the Financial Transaction Manager Data Model. It is used to store
operational and configuration data.

For more information about the data model, see 1.2.2, “Data model”’ on page 14.

Transaction Processing Engine that is running on WebSphere Message Broker

The main transaction processing is centered around the Transaction Processing Engine,
which runs on WebSphere Message Broker and is responsible for the following processing:

» Receiving all business transactions (messages, files, and so on)
» Persisting operational data to the data store

» Orchestration of the process for the business transactions (by using a Finite State
Machine model that is created in RSA)

» Producing outbound messages, files, and so on

6 Financial Transaction Manager Technical Overview

The Transaction Processing Engine consists of a combination of Financial Transaction
Manager core components and solution-specific components. Although the core components
are shipped without modification, the solution-specific components are developed as part of
the solution development.

For more information about Transaction Processing Engine, see 1.2.3, “Transaction
Processing Engine” on page 29. For information about the design and development of a
Financial Transaction Manager solution, see Chapter 2, “Design and development
methodology overview” on page 43.

WebSphere Application Server and Operations and Administrative Console

Operations and Administrative Console (OAC) is a web application that is deployed on
WebSphere Application Server. It provides a user or operator view of the Financial
Transaction Manager database. OAC can be used to monitor, configure, and control any
number of deployed Financial Transaction Manager applications.

IBM Business Monitor and Business Monitor Dashboard

Business Monitor Dashboard, which is running on IBM Business Monitor, is a business
activity monitoring dashboard and is used for monitoring key performance indicators of the
Financial Transaction Manager system.

WebSphere Message Broker Toolkit
WebSphere Message Broker Toolkit is used to develop build artifacts and deploy to broker.

For more information about WebSphere Message Broker Toolkit, see Chapter 5, “Using
WebSphere Message Broker Toolkit to produce build artifacts” on page 131.

Rational Software Architect

Rational Software Architect is used to create design artifacts to build the process model (as a
set of Finite State Machines), and to prepare configuration data, which can be exported as
scripts that are ready to deploy to the database.

For more information about Rational Software Architect, see Chapter 3, “Producing design
artifacts by using Rational Software Architect” on page 57.

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution 7

Sample payment scenario
Consider the following sample payment scenario.

Note: This payment scenario is used only as an example. You can also use Financial
Transaction Manager to process other types of financial transactions.

Figure 1-4 shows the sample payment scenario. In this scenario, Internet Banking Channel
system starts a payment by starting the Credit Transfer Process use case. This use case,
which is implemented in Financial Transaction Manager, interacts with the Core Banking
System and a payments gateway to complete the functionality.

Core Banking
Request

Core Banking
System

Credit Transfer Orgination Credit Transfer

Process

>
>

Gateway Request

Internet Banking
Channel

Gateway

Figure 1-4 Sample payment scenario use case diagram

8 Financial Transaction Manager Technical Overview

Figure 1-5 shows the sequence of execution that occurs to complete the use case. Internet
Banking Channel starts a single credit transfer request, which is a service that is made

available by the Credit Transfer Process.

Internet Banking Channel o iCredit Transfer Process % iCore Banking System /% (Gateway

1: Process credit transfer

L.1: Map IB channel format to ISF

{Processing status = Transaction Mapped}

21 walidate And Send To Core Banking
I]

| 2.1 Validate

]_

I

3

Malidation = Successful}

2.2 Map I5F to Core banking format

Il

2.3: 5end to Care banking system

{Processing status = Waiting For Core Banking Response}

3: Care banking response

3.1: Map Core banking format to ISF

: |
4: Route And Send To Gateway
]

|

4.1 Get Gateway routing taken

4.2 Map ISF to Gateway format

1

4,3 Send to Gatewway

{Pracessing status = Waiting For Gateway Response}

5 Gateway response

5.1: Map Gateway format to ISF

6: Send Payment Report
- |
6.1: Map I5F £to IB channel format
—

6.2: 5end to IE channel

{Processing status = Completed}

Figure 1-5 Sample payment scenario sequence diagram

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution

This service is hosted in Financial Transaction Manager and runs the processing for the
payment by using a Finite State Machine that models the orchestration. The processing starts
with Financial Transaction Manager mapping the incoming payment business message from
the Internet Banking Channel’s format to Financial Transaction Manager’s canonical format
ISF. At this time, it also stores the incoming transaction in its data store. ISF holds all the data
that is possible for any type of payment and, therefore, is the canonical format.

Note: The service is made available be using ISF. The use of the service requires
transforming from the consumer’s format to ISF only (which is a key benefit) because the
service is not coupled to the channel. It is easy to make the service available to other
channels and realize the goal of standardized interfacing.

Financial Transaction Manager is based on Events Driven Architecture (EDA). After the input
message is imported, it continues processing the transaction by raising events and then
handling them appropriately by performing business logic as defined in the Finite State
Machine. As the processing continues, the processing state is maintained and tracked in
Financial Transaction Manager’s data store.

After mapping the incoming business message, Financial Transaction Manager then validates
the message and, on successful validation, sends a request to the Core Banking System.
This is done automatically after mapping the business transaction’s ISF that is stored in the
Financial Transaction Manager’s data store to the Core Banking System’s format.

Starting any business function is done by transforming from ISF. This standardized interfacing
decouples the process from the participating interfaces and the interface can be reused
across other services, which allows for the creation of reusable utility services. Financial
Transaction Manager then waits for the Core Banking System to return the response and, on
receipt of the response, again maps the incoming message and continues processing, as
shown in Figure 1-5 on page 9.

Part of the response is the automatic correlation of the response to the request and the
original Credit Transfer Process. This automatic correlation allows tracing between the
different legs of processing. Thus, Financial Transaction Manager can automatically process
a financial transaction as defined by its Finite State Machine model and automatically
integrate with the interfacing systems.

1.1.3 Usage scenarios

10

In this section, we describe some of the usage scenarios of Financial Transaction Manager.
The scenarios that are described are a summary of the more common scenarios.

Payments Bus

Simplifying and standardizing payments across the many lines of businesses (LOBs) is a
significant challenge for many large financial institutions across the world.

As financial institutions become regional or global, the number of payment types that they
must provide to their customers (such as, the local country-specific low value ACH or the high
value RTGS schemes) increase. Then, as the services across the LOB converge, it becomes
imperative that these payment services are available for all customers.

Hence, a common requirement that is emanating is the ability to centralize the payment
processing in one infrastructure that makes available all the payment services.

Financial Transaction Manager Technical Overview

Figure 1-6 shows the concept of Payments Bus, which is based on Financial Transaction

Manager.
o Payment Processors
g
Regional / LOB JV)_' Low Value Payment Processors Regional
Systems é @= I
Local ACH
Internet § High Value Payment Processors Scheme
Banking
) 9}
Branch Bankin s} Local RTGS
9 ‘?, SWIFT Processor e
Corporate B2B ‘2 O=
Integration] Payments Bus (Finandal Transaction Manager)
|9}
9)
S Logging Authentication Vef'(i)fl;cr:giiton Dléphl(':cite
<:> SWIFT
Canonical Bulking and . .
e Debulking Orchestration Routing
Format
Transformation Protocols

A

Regional / LOB Systems

Other Back Office

Core Banking Systems

General Ledger

Figure 1-6 Payments Bus architecture

In Figure 1-6, the Payments Bus Platform that is built on Financial Transaction Manager forms
the heart of payment processing and acts as the financial transaction-aware integration layer.
This layer makes available the payment services that allow the channel applications to use
them, which is indicated as Collection Service and Payment Service of the left side of the
figure. In essence, this layer makes available the transaction processing as SOA services.

This layer can provide cross cutting functionality, which is needed by all payment types, such
as logging, bulking, debulking, routing, orchestration, protocol, and format conversions, while
making use of payment processors, which can provide the actual processing of the payment
types. The payment processors can be part of this same layer or used from existing
applications or other investments.

The advantage of this kind of architecture is that although the Payments Bus Platform
provides the integrated, unified base set of reusable services, the actual payment type
processing can be done by specialized payment processors.

This architecture provides the following key features:

» Interfacing by using a Canonical Format (ISF), which allows the payment services to be
made available to any channel and, at the same time, allows for the reuse of existing
services and utilities for channels and payment types

» Fit for purpose payment processor, which can be procured off the shelf, built bottom up, or
used from existing investments

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution 11

» End-to-end payment process tracking capability

» Architecture can be rolled out in a phased approach, which transforms payment type by
type or according to any other priority

Modernizing MERVA processing

Since the 1980s, many financial institutions all over the world are using IBM Message Entry
and Routing with Interfaces to Various Applications (MERVA) for business-critical applications
in their financial transactions and messaging solutions infrastructure. SWIFT gateway and
enterprise application integration (EAI) are two of the primary use cases of MERVA. However,
since the retirement of X.25 protocols, MERVA was not adapted for the newer SWIFTNet IP.
Many financial institutions are contemplating modernizing their MERVA platform.

Although there are many strategies for modernizing MERVA, we describe in this section a
solution that is known as SWIFT Hub. Financial Transaction Manager forms a key component
of this solution.

Figure 1-7 shows the high-level architecture of the SWIFT Hub solution.

I Hub { SWIFT Gateway - SWIFT

| ! CBT, Messaging interface |

| 1 |

! Liquidity | |

I Management ! IBM WBI-FN !

| 1 |
5| IBMFTM Duplication | 11 BN e |
® | T Detection | | _—
= | B] | Pt A\,
‘S P Orchestration DS : L \
% ! [O 5 Message E Interact {e+ SAG <—H SIPN i]
o |! — Entry { I\ f_,,f
S | ' : i
@ || | Business Message — FileAct e |

I Monitor "| Repair | |

| | \

[v i |

I +—> RMA — |

ALl 8/ | L Printing i |

[i |

| | \

| 1 |

i | \

| 1 |

! | 1

Figure 1-7 SWIFT Hub solution architecture

The solution replaces the following key MERVA components:

» Enterprise application integration
» SWIFT gateway
» Message entry and repair

This architecture includes the following key features:

» Financial Transaction Manager delivers the EAI capabilities and provides the hub notion to
the solution.

A request that is exchanged over SWIFT needs a business process as any other business
request that is exchanged over another network. In this context, it provides the process
orchestration, business insight in processing state, and integration and message
management capabilities (such as, fraud detection, syntax validation, and message
creation and repair) to implement business process.

12 Financial Transaction Manager Technical Overview

» IBM WebSphere Business Integration for Financial Networks provides the gateway aspect
for the solution by supporting the SWIFT messaging services FIN, InterAct, and FileAct. In
addition, it provides other features, such as relationship management, adherence to the
SWIFT business standards, and message entry and repair.

1.2 Financial Transaction Manager solution key concepts

In this section, we describe the development methodology for Financial Transaction Manager
at a high level to highlight important components. These concepts are described in greater
detail in later sections.

In this section, we describe the following topics:

Development methodology
Data model

Transaction Processing Engine
Solution-specific artifacts

vyvyyy

1.2.1 Development methodology

In this section, we describe the development methodology at a high level to introduce the
important concepts, which are used in subsequent sections.

The Financial Transaction Manager Development Methodology provides a formal
methodology to follow for the design and development of a Financial Transaction Manager
solution. It addresses activities around the production of the design and development artifacts
that make up a Financial Transaction Manager solution.

Design activities center around the following tasks:

» Capture interface details and map formats to the ISF.

» Capture use case details, which are represented as sequence diagrams, from which the
process model design is refined to produce details of the operational data objects and a
Finite State Machine model.

Development activities center around the following tasks:

» Develop mappers to transform between external formats and the ISF.

» Develop WebSphere Message Broker artifacts, which are deployed within the Transaction
Processing Engine for processing business logic.

For more information, see the following resources:

» For more information about the development methodology, see Chapter 2, “Design and
development methodology overview” on page 43.

» For information about process and configuration modeling, see Chapter 3, “Producing
design artifacts by using Rational Software Architect” on page 57.

» For more information about mapping and the ISF, see Chapter 4, “Mapping” on page 85

» Chapter 5, “Using WebSphere Message Broker Toolkit to produce build artifacts” on
page 131.

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution ~ 13

1.2.2 Data model

14

Financial Transaction Manager is a financial transaction orchestration framework and
depends on its data model to run the processing.

Data model is composed of the following types of data:

» Configuration data
» Operational data

Configuration data composes mainly the following attributes:

» Configuration details of interfaces, formats, schedules, parameters, and so on
» Process and event metadata (Finite State Machine)

These configurations are modeled in Rational Software Architect and then exported by using
export wizards that are ready for deployment to the data store. At run time, Transaction
Processing Engine reads this data and runs the processing and back-end integrations. Apart
from this, configuration data (except process and event metadata) can also be managed by
using Operations and Administrative Console.

Operational Data contains the runtime process transaction information that is called process
instance data. The following types of operational data are available:

» Operational objects (such as Transaction, Transmission, Batch, and Fragment) that are
used to persist the details of messages and transactions that are being processed and to
track the status of these objects through their lifecycle

» Events instance data that record milestones that are met through the process
orchestration (not all events are recorded and this is configurable by event type)

» Relationship data and other information, such as logging and error information

This data is created and updated as part of transaction processing in the Transaction
Processing Engine. Operations and Administrative Console provides read-only access to this
data for monitoring, transaction inquiry, and drill down.

Multiple application and versioning support

Before wed describe the data model, it is important to understand how the data is partitioned
in the database instance. Financial Transaction Manager supports partitioning of data into a
“scope” that is called Application (table name: APPLICATION).

All of the Configurational and Operational data is “scoped” under an Application. This process
allows the creation of multiple Financial Transaction Manager applications (such as
Remittance application, and Trade Finance application) in the same database instance. All of
the data that is related to the applications is segregated from each other because of this
notion of scope.

In addition to scoping by applications, Financial Transaction Manager supports Versions
(table name: APP_VERSION) to control changes to the configuration data. By using Versions,
configuration data is further scoped so that at any point, only one version of the configuration
is effective. The effective configuration version is explicitly chosen as part of runtime
configuration of WebSphere Message Broker flows. This process allows a phased approach
when the configuration changes are rolled out.

As Financial Transaction Manager’s transaction orchestration framework runs, which is based
on the data model, it must be parameterized to choose the best application and version.

Financial Transaction Manager Technical Overview

Figure 1-8 shows the concept of multiple applications and versions.

Financial Transaction Manager Database Instance

Application 1

Version 1 |
Version2 | Application 2
Version 3 -
Confid (Effective) 4 Version1 | |
V, rcinn 2
— :é Configuration Col Varsian 2 |
A ation Version 4
V= @ @ - Co (Effective)
H Co
I — - .
Operatid Operati _ Configuration
Data Operatid]_&jl_l @

Data

Datd Operational

Data .
Dperati(.
Data Operatig Operatid
L1 Data “P Datd Operational
Data

Figure 1-8 Applications and versions

In Figure 1-8, there are two applications (Application 1 and Application 2) that scope all their
data underneath them.

The operational data that is shown in the figure indicates all of the data that is related to a
process run, including the ISF data of the messages. This data is scoped directly inside the
application and is insulated from other applications. Applications can also be used as a filter
criteria to restrict access rights to data for the users of the Ul.

The processing configuration data (such as the Finite State Machine and the interface
configuration) are all further scoped inside versions. A single version is considered effective
at any one point (Version 3 for Application 1 and Version 4 for Application 2). The version
configuration entries permit further controls; for example, enabling and scheduling for the
runtime configuration, data cache refresh, and overrides for event logging.

For more information about multiple applications and version support, in the Financial
Transaction Manager 2.1 Information Center, browse to Financial Transaction Manager
overview — Data model overview — Multiple applications and versions section.

Interface Configuration

As part of transaction processing, Financial Transaction Manager uses configuration data to
acquire details about each interface that the Transaction Processing Engine uses to manage
the interaction with back-end applications.

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution 15

Figure 1-9 shows interface configuration.

Service Participant
(Core Banking)

Input Output
Fomat Format
o [o)
g £
|5 g
O 2
3 3
2 s
- @)
Map Map
ISF ISF
e © N
Service é—g Input Channel | &)
Participant |~ L
(Intemet
Banking = .
a ol Service
I g% O Sl el CEG & (Payment Service)
L

Figure 1-9 Financial Transaction Manager interface configuration concepts

Figure 1-9 shows the following concepts about interface configurations:
» Service

Service (table name: SERVICE) corresponds to a service that is provided by Financial
Transaction Manager; for example, Payment Processing and Remittance Processing. It
provides a mechanism to group the interfaces that are involved in the provision of that
service. It groups the service participants.

» Service participant

Service participants (table name: SVC_PARTICIPANT_BASE and OBJ_BASE) abstract a
single logical interface that participates in a Financial Transaction Manager service. It
signifies the typical characteristics of an interface (for example, the logical role that is
played by the interface, such as Gateway and Payment Source) and the rank of the
interface (primary or secondary). These characteristics play an important role during
routing.

Because the state of the service participant can change over time (such as scheduled
opening and closing times), it facilitates the semantics of a lifecycle object. This object is
controlled by a Finite State Machine, which models its behavior over time. It also groups
the input and output channels that are associated with the interacting interface.

16 Financial Transaction Manager Technical Overview

» Channel

Channels (table name: CHANNEL) abstract the unidirectional physical details of an
interface. For example, the physical communication protocol and format of the endpoint. It
associates information that is related to the format of the endpoint and the mapper. This
information is used to convert between the endpoint format and ISF. Details about both
input and output channels are specified for a service participant.

» Format

Formats (table name: FORMAT) abstract the format of an endpoint and is associated with
a Channel. While mapping into ISF during the mapping process, this information is used to
parse the input message and feed into the Inbound Mapper. Similarly, when mapping from
ISF during outward mapping process, this information is used to build an output message
to be sent to the external service participant.

» Mapper

Mappers (table name: MAPPER) abstracts the mapper that is required to transform
between the endpoint format and ISF. They identify a real WebSphere Message Broker
deployed mapper artifact and the framework uses this information to automatically start
the mapper at run time. Mappers can be inbound or outbound and, depending on
direction, either inbound or outbound mappers are started.

» Involved Parties (table name: PARTY), which are not indicated in the diagram, identify any
individual, organization, organizational unit, or a system about which the financial
institutions want to keep information. Typically, a channel is associated with a party and all
messages that are emanating from the channel are automatically associated with the
party. Based on this, user access control rights can be defined when operational data is
accessed in the Operations and Administrative Console.

Figure 1-10 shows the relationship between the various interface configuration concepts.

«datalypes
Service

1

w

«dataTypex
Service Participant

1 1

Input Channel OQutput Channel

0.1 0.1

«dataTypex
Channel

1 1

1 1

«dataTypex adataTypes
Format Mapper

Figure 1-10 Interface configuration class diagram

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution 17

18

Additional configuration information, which is related to the calendar (working days and
holidays) and schedules that are associated with the Parties, can also be configured.

Calendar Group (table name: CALENDAR_GROUP) abstracts a calendar that groups the
calendar days or schedules with the details stored in Calendar Entry (table name:
CALENDAR_ENTRY) and Schedule Entry (table name: SCHEDULE_ENTRY) records.

These calendar groups can then be shared with the parties by using Calendar Group Party
Relationships (table name: CAL_PARTY_REL).

Schedules can also be shared with activities that must be performed at specific times. Such
activities are represented by Scheduled Tasks (table name: SCHEDULER_TASK_BASE) and
the relationship that is maintained in table CAL_OBJ_REL.

For more information about scheduled activities, see 9.12, “Scheduled activity pattern” on
page 415.

Finally, Financial Transaction Manager allows the storing of parameter data as Values (table
name: VALUE) and Classifications (table name: CLASSIFICATION). Values are used for
storing configuration values and name-value pairs by categories. Classification identifies a
value or qualifier that is a member of a category of data.

For more information about configuration data, see the Financial Transaction Manager 2.1
Information Center at this website:

http://www-01.1ibm.com/support/docview.wss?uid=swg27038668

Browse to Financial Transaction Manager overview — Data model overview —
Configuration Data.

Finite State Machine configuration

Finite State Machine (FSM) is a computational model that is used to define the lifecycle of
objects. FSM models are modeled in Rational Software Architect as State Machine Diagrams
and then exported and deployed to the data store. The models are then read by the
Transaction Processing Engine for running the process model. For more information, see
1.2.3, “Transaction Processing Engine” on page 29.

For more information about modeling FSM by using Rational Software Architect, see
Chapter 3, “Producing design artifacts by using Rational Software Architect” on page 57.

Finite State Machine (table name: FSM), at a high level, is composed of a set of States (table
name: FSM_STATE_REL) and state changes called Transitions (table name:
FSM_TRANSITION). Transitions specify how the state, of the lifecycle object, transitions.

Transitions are composed of the following items:

» Specifications of a from state and a to state of a lifecycle object
» The event that causes the transition to occur
» The Actions that are to be started on completion of the state transition

Financial Transaction Manager Technical Overview

http://www-01.ibm.com/support/docview.wss?uid=swg27038668

Figure 1-11 shows an FSM State Machine Diagram for the example that was shown in

Figure 1-6 on page 11.

a5 _Mapped

E MpInTxLMapped

@@ o validatesndsendToCoreBanking

L 5 WaitingForCoreBankingResponse

E C0reBankingJResponseRecei\ted
@ 2 RoutetndsendToGateway

L 5 WaitingForGatewayResponse

E GatewayRJsponseReceiued

'—ﬁA_SendFlaymentRepnrt

5 _Completed

Figure 1-11 Finite State Machine sample

In Figure 1-11, the following states, events, and actions are displayed:

» S Mapped, S WaitingForCoreBankingResponse, S WaitingForGateway, and S_Completed
are the different states of the payment process for which the FSM was defined.

» E MpInTxnMapped, E_CoreBankingResponseReceived, and E_WaitingForGatewayResponse

are the associated events that trigger state transitions, as in the FSM.

» A ValidateAndSendToCoreBanking, A RouteAndSendToGateway, and A _SendPaymentReport

are the various actions that are run by the Transaction Processing Engine after the state

transitions.

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution

19

Figure 1-12 shows the class diagram that explains the relationship between the following
related concepts:
» FSM
» FSM state
» Transition
» Eventtype
«dataTypex
FSM
1 1
- W
. 1 Current State 1)
«dataTypex «dataTypex «dataTypex
FSM State 1 1 Transition)) Event Type
Target State

Figure 1-12 FSMe-related configurations class diagram

20

FSM aggregates FSM states and transitions. In addition, it has a key property that is used
during FSM processing called object selection template. Object selection template stores an
SQL statement. The statement retrieves the subset of lifecycle objects that must undergo
state transitions (as defined by the FSM) with the column data for FSM processing.

Tra

nsition features associated current states, target states, and event types that trigger the

transition. In addition, it has the following key properties that are used during FSM
processing:

>

>

Override Selection stores an SQL statement, which is meant to override the Object
Selection Template. Generally, it is expected that although both Object Selection Template
and Override Selection fetch the same set of lifecycle objects, Override Selection is more
specific in terms of the column data that is fetched as compared to Object Selection
Template. Typically, this is used to select alternative column data or to join other tables for
specific transitions.

Event Filter is a WebSphere Message Broker ESQL boolean expression that might
reference the Event Instance context data. This data is evaluated to determine whether
the event might cause the transition to process.

Object Filter is a set of other predicates that are in the WHERE clause. This clause is
used to match the objects that are transitioned based on the event instance context data.
Obiject Filter is combined with the effective Object Selection Template or Override
Selection to produce an SQL statement to retrieve the objects that are transitioned by the
event.

FSM Action is the name of the action that must be run after the transition is processed.

Financial Transaction Manager Technical Overview

Configuring a state to an alertable state: A state can be configured to be an alertable
state. In this situation, when a lifecycle object transitions to such a state, the object is
flagged automatically to the operator in Operations and Administrative Console. Optionally,
a state can also be configured to allow operator controls for the object, such as resolution
actions.

Events

Financial Transaction Manager is based on events-driven architecture and events form the
lifeline of business message processing. Practically, events are lightweight messages that
conform to common base events XML schema and are fired during the business message
processing. They mark that something significant occurred. Typically, events are a milestone
in the processing and are modeled to reflect that occurrence (such as Transaction Mapped
and Gateway Response Received).

Financial Transaction Manager classifies Events as the following types:

» Internal events drive the business processing. They are fired and placed on an events
queue from where the event processing flow processes them.

» External events are typically published to external agents, such as business activity
monitoring agents; for example, IBM Business Monitor. They are triggered by an internal
event, for which a publication rule was included in the event metadata and published.
These triggered events are then handled by the external applications.

For more information about publishing external events, see the Financial Transaction
Manager 2.1 Information Center and browse to Application programming — External
Event Publishing.

Internal events

In this section, we describe internal events. Event instances, which are individual event
messages, store the following data:

» Event type, which specifies what milestone occurred
» Event context, which specifies the context information that is related to the milestone
» Time stamp, which specifies when the milestone occurred

Within the event processing flow, events provide the triggers to transition objects (update
status) and perform business processing. Event data is typically used to filter events and to
identify the lifecycle objects for processing. Although events are a runtime concept, Financial
Transaction Manager also stores event-related data in the data model.

The following information is stored in the data model:

» Event configuration data
» Event instance data, which forms part of the operational data

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution 21

22

Figure 1-13 shows the various events-related concepts that pertain to both configuration and
operational data. The publication rules are not shown.

Configuration Data

«datalypes adataTypes
Event Type | - . L Event Expected Context

Operational Data

adataTypes State Change Cause adataTypes
Event | N Object Base

Figure 1-13 Events-related concepts

Figure 1-13 shows the following concepts:

» Event type
» Event expected context
» Event

Typically, event type and event expected context are modeled as part of the Rational Software
Architect modeling and is exported into the data model by using export wizards.

Event type specifies the type of the event and includes configuration for some of the following
key characteristics of events processing:

» FEvent logging specifies whether the event instances of this type are logged as operational
data.

This is a fine-grained configuration at the level of individual event types. However, this
property setting can be overridden by the event logging override setting at the
configuration version level, which provides an override setting for all the event types.

» Render As Message specifies how the event is processed by the events processing flow.
For example, should it be processed inflow with the current run or separately by placing
the message on an events queue and processing it subsequently.

If its value is true, the messages are put on the events queue, which is then picked up by
the events processing flow as part of a separate unit of work. However, if it is false, the
event is processed inflow as part of the current unit of work.

» Aggregate Threshold specifies the maximum number of event instances that can be
aggregated to a single event.

Event expected context specifies the type of context data that can be contained in the event
instance. In addition, it has another key property that affects the characteristics of event
processing, called aggregatable flag.

Aggregatable flag specifies whether values of the event context data can be aggregated.
Aggregation is a mechanism that allows two or more events that are raised to be merged into
one for more efficient processing, the threshold of which is controlled by the aggregate
threshold property of event type.

Financial Transaction Manager Technical Overview

Events that are raised during the run of an application usually contain multiple pieces of
context data that provide detailed information about the context in which the event instance
was raised. When many events are raised together, they often contain the same information
with just one or two context values being different. In such situations, these events can be
aggregated if the aggregatable flag is set for the context elements for which the values differ.

Figure 1-14 shows the event aggregation concept.

<cbe:CommonBaseEvent locallnstanceld="E_MpInIxnMapped®>
<cbe:contexcDacaElements name="TRANSACTICN™ type="IL">
<chbe:contextValue>1001</che:contexcValue>
</chbe:contexcDataElementa>
<fche:ConmonBaseEvent >

<cbhe:CommonBaseEvent locallnstanceld="E MpInTxnMapped™>
<chbe:contextDataElements name="TRANSACTION™ type="I0">
<cbe:;contextValue>l002</cbe:contextValue>
</cbe:contextDataElements>
</cbe:CommonBaseEvent>

<cbe:CommonBaseEvent locallnstanceld="E MpInTxnMapped™>
<cbe:contexcDacaElements name="TRANSACTICN®™ cype="IL">
<cbe:contextValue>1002</che:contexcValue
</echbe:contexcDataElementay
</che:CommonBaseEvant>

<cbe:CommonBaseEvent localinscanceld="E MpInTxnMapped®>

<cbe::concextDataElements name="TRANSACTION™
</cbe:contexcValue>
</cbe:contextValue>
)3</cbe:concexcValue>

<cbe:contexcValue>10
<cbe:contextValue>
<cbe:concextValue>100
</cbe:contexctDataElementas>
</cbe:CommonBaseEvent>

type="IL">

Figure 1-14 Event aggregation

For more information about event aggregation, see the Financial Transaction Manager 2.1
Information Center. Browse to Designing applications — Application analysis and design
tutorial > Event Aggregation.

Figure 1-14 also shows the event operational data (event instances) that are logged. Event
logging maintains a relationship to all the lifecycle objects that changed their state because of
the event instance. This information can be viewed by the operator by using the Operations
and Administrative Console (OAC). For performance reasons in a production environment,
the events that occur during normal processing should not be logged.

Operational data

At run time, Financial Transaction Manager creates operational data to process the financial
business transactions and messages.

This data is used for tracking the following items:

» The raw data transmissions between the financial service and the external systems that
uses the various types of physical communication mechanisms (such as, WebSphere MQ
queue, and file transfer)

» Optionally, business content that can be contained in batches

» Individual business content

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution 23

Figure 1-15 shows a scenario that reflects operational data.

Batch n

Transaction

Transmission

Map
ISF

Input
Format

Service Input Channel
Participant E
(Intemet

Banking
Channel)

Output Channel Service

(Payment Service)

Output
Format
Map
ISF

Figure 1-15 Transmission, batches and transaction

24

Financial Transaction Manager abstracts the following concepts, as shown in Figure 1-15:

» Transmission represents a unit of raw data interchange with external systems for a
particular business purpose. For example, a message on WebSphere MQ queue. It
optionally stores the raw data that is exchanged.

» Batch represents an optional logical grouping of transactions that are exchanged within
the same transmission.

» Transaction represents a single unit of business activity that corresponds to a business
message for a business purpose. For example, payment, order, remittance, and
acknowledgement.

These operational data is created and updated as the transaction processing flow runs.
Typically, a service is composed of many legs of related business message exchanges with
the service participants and the transaction or transmission corresponding to the master
transaction or transmission. The master transaction or transmission is the first business
message that starts the service.

Operational data can be inquired about and tracked from the Operations and Administrative
Console.

Financial Transaction Manager Technical Overview

Figure 1-16 shows the relationship between the following transactional concepts:

» Object base
» Transmission
» Transaction and its sub types, payment, and securities transactions
» Batch
» Fragment
» Service participant
wdataTypes
Object Base
|
«dataTypes) wdatalypes ocdata:l'ype» -xdlataType:o - sdatalypes
[Service Participant [©7] Transaction L } [Transmission , . Batch Fragment
R 1 *
‘ :
«dataTypé» -xdataTStpe»
Payment Securities

Figure 1-16 Main operational data class diagram

Object base

Financial Transaction Manager abstracts any object that requires Finite State Machine
processing by an object called Object Base (table name: OBJ_BASE). Inside Object Base,
Financial Transaction Manager stores the following information that is related to the current
state:

» Any operational data that requires state processing conceptually inherit from Object Base
and are considered lifecycle objects.

» Object base has a Type property that specifies the type of lifecycle object, such as
transmission, transaction, and batch. In addition, object base has another property that is
called Sub Type that denotes the business purpose of the lifecycle object. Typically, the
Sub Type determines the Finite State Machine that is used to process the operational
data.

» All the data that pertains to the object types (transmission, transaction, and batches) are
contained in the conceptual inheritance hierarchy, with object base containing the identity,
type, and state information. Object base also contains pertinent lower-level information
(raw data, ISF, and so on) that is contained in the transmission and transaction
respectively.

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution 25

26

Transmission

At run time, each message that arrives is recorded as a Transmission (table name:
TRANSMISSION_BASE and OBJ_BASE) for which there is one object base record and one
transmission record. If the Channel is configured to log raw data, the raw data of the message
is recorded in the transmission.

Batch

If an inbound or outbound physical transmission contains batches, there is an object base
and batch record pair for each batch that is contained in the physical transmission (table
name: BATCH_BASE and OBJ_BASE). Batch then aggregates all of the contained
transactions within it. Financial Transaction Manager also supports nested batches. Batch
summary information is also stored in the batch record.

Transaction

Each individual transaction in the physical transmission (or batch) is recorded by an object
base and transaction record pair (table name: TRANSACTION_BASE and OBJ_BASE).

A transaction includes the following key properties:
» ISF data that pertains to the mapped business message

» Financial Transaction Manager is a framework for processing financial data. To cover
financial information processing, it further extends the transaction concept by inheriting
from it and creating further sub concepts for the financial transaction areas, such as
payments and securities.

» For processing payment information, a sub concept that is called payments (table name:
TXN_PAYMENT_BASE) and derived from transaction is available. In addition to the
transaction information, it extracts payment-specific information from the mapped ISF
message (payment type, bank code, account information, amount of transfer, currency of
amount, and so on) and stores it in the table.

» Similarly, for processing security transactions, there is a sub concept called Securities
(table name: TXN_SECURITIES_BASE).

Service participant

Though service participant is not considered operational data, it is represented in Figure 1-16
on page 25 for completeness sake, as the service participant also implements lifecycle
semantics.

For more information about these concepts, see the Financial Transaction Manager 2.1
Information Center. Browse to Financial Transaction Manager overview — Data model
overview — Operational data types.

Relationships in operational data

Processing a financial business process involves the processing of many related business
messages. For example, consider the scenario that is described in Figure 1-4 on page 8.
Table 1-1 on page 27 summarizes the business messages that are exchanged between
Financial Transaction Manager (credit transfer process) and all the interfacing service
participants in the scenario.

Financial Transaction Manager Technical Overview

Table 1-1 Business message exchange between scenario participants

Source System

Target System

Business Message

Internet Banking Channel

Credit Transfer Process

Credit Transfer Request

Credit Transfer Process

Core Banking System

Core Banking Request

Core Banking System

Credit Transfer Process

Core Banking Response

Credit Transfer Process

Gateway

Gateway Request

Gateway

Credit Transfer Process

Gateway Response

Credit Transfer Process

Internet Banking Channel

Credit Transfer Process Report

The processing of the first message (Credit Transfer Request) is related to processing of all
the other messages and the relationships must be maintained. To complete the business
process that is started by Credit Transfer Request, all of the subsequent business messages
must be orchestrated and processed. Because the processing of each business message
translates to a transaction, Financial Transaction Manager creates transactions for every
business message. Financial Transaction Manager also maintains the business relationship
between these related transactions.

Figure 1-17 shows the various transaction and transmission objects and their business

relationships.

Credit Transfer Request

Transaction

Caused—
1

Caused

~Caused

Transmission

Caused

1

Credit Transfer Request _ Caused

Caused

Core Banking Response

Gateway Response

Core Banking Request Ack To
> 1
Gateway Request Ack To
1
Créﬂit Transfer Report
Core Banking Request Ack To
= 1
Ack To

Core Banking Response

Gateway Request

Cle;:lit Transfer Report

Gateway Response

Figure 1-17 Transaction and transmission relationships

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution =~ 27

28

The business relationship between these objects is maintained in Financial Transaction
Manager by using the concept of Object to Object Relationship (table name: OBJ_OBJ_REL).

In Figure 1-17 on page 27, Credit Transfer Request is the master transaction or transmission
and starts the processing of the business process. Consider the following key points:

» The relationship between an individual transaction and transmission is as in the
relationship that is shown in Figure 1-16 on page 25.

» FSM for Credit Transfer Request specifies the actual processing that must occur for the
process, and is as specified in Figure 1-11 on page 19.

» Processing for all other transactions (such as, sending of Core Banking Request, receipt
of the Core Banking Response, or sending of the Credit Transfer Report
acknowledgement) are standard and Financial Transaction Manager provides a generic
set of FSM for processing these types of transactions.

Audit trail
Financial Transaction Manager supports the audit trail feature by using the operational data

that can be tracked as the financial business process progresses. The audit trail is an
immense help during investigations.
The following information is recorded and available:

» Transmission, transaction, and batch objects that record the details of each message or
file that is sent or received.

» Transmission objects can optionally record the raw data that is received or sent.

» Transaction objects contain the ISF, which contains the business properties of the
transaction.

» Relationships between the various transmission, batch, and transactions and thereafter
between each of these for the different legs of processing.

» History table that records the status updates as objects progress through their process
lifecycle.

» Events that provide a record of those events that are configured to be logged.
» For configuration data, the history tables that provide audit of all the configuration
changes.

The audit trail is made available in the OAC and can be viewed by the operator. In addition to
the transaction, transmission, and batches, and their relationship, Financial Transaction
Manager supports audit trail by maintaining a set of history tables for each of the operational
data.

As the business process progresses (by running the Finite State Machine and the state
changes occurring), these changes are recorded in a history table. Operational data tables
and history tables maintain appropriate linkages to correctly associate the audit information.

As part of audit trail recording, there are several options available that can be selectively
enabled. The following levels of information can be included as part of audit information:
» Full operational data

» Operational data without LOB columns

» No detailed operational data recording, but only object base records (default)

» Only certain types of object records; for example, no history for objects of type Service
Participant

Financial Transaction Manager Technical Overview

In addition to the audit trail that is related to state changes, the feature can also be extended.
Tailor the audit trail feature to log only the required minimum amount of information. Extensive
audit trails can have a negative effect on performance.

Similar to operational data audit trail, history information that is related to configuration data is
also managed by Financial Transaction Manager.

For more information about history information, see the Financial Transaction Manager 2.1
Information Center. Browse to Designing applications — Application analysis and design
tutorial > Database Size.

1.2.3 Transaction Processing Engine

Transaction Processing Engine is at the heart of the runtime framework of Financial
Transaction Manager and is responsible for driving the solution, as shown in Figure 1-18.

Time
triggered | ___
events Configuration Data
Process models,
topology
configuration
| 1 1
I A 4 A4 |
Identify Source : : Outbound
TToEue Channel q Trang;orm and | | cfvent > EFSM q Actlonf (Bu)5|ness q Tradnsg‘torm - Transmission
Transmission] ore ueue ngine 0gIC, an ore
H . — ; .
Physical Transmission Flow Event Processing Flow
Transactional Data
Transmissions,
—
Batches,
Transactions,
Activity logs

Figure 1-18 Transaction Processing Engine

The Transaction Processing Engine features the following parts:

» Physical transmission flow
» Event processing flow

Physical transmission flow
Physical transmission flow loads the incoming business message into processing and
consists of the following components:

» Core physical transmission flow

» Solution-specific components that primarily include the physical transmission wrappers
and inbound mappers

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution 29

30

In its entirety, physical transmission flow is responsible for the following actions:

» Handling of all inputs from external interfaces, including receiving messages by using
different protocols, such as WebSphere MQ, HTTP, FTP, and email.

» Calling the appropriate mapper for handling the incoming message format and mapping to
ISF

» Persisting the relevant transmission, transaction, and batch objects

» Handing over the processing to event processing flow

Core physical transmission flow takes input from the physical transmission wrapper and starts
the configured inbound mappers. Starting the mappers is based on the identification of the
inbound channel, and after persisting the transmission object and optionally logging the raw
data. Channel identifies the inbound mapper and format. For more information about physical
transmission wrapper and inbound mappers, see 1.2.4, “Solution-specific artifacts” on

page 31.

After the mapping is complete, core physical transmission flow ultimately hands over the
processing to the event processing flow. Event processing flow then processes the message
that is based on the configured Finite State Machine. For more information about how
financial message is imported into the processing, see 1.3.1, “Importing a financial business
message” on page 38.

Event processing flow

The event processing flow implements the event driven orchestration of the business process
for the business message. Similar to physical transmission flow, it also consists of the
following components:

» Core event processing flow

» Solution-specific components that primarily include event processing wrapper, actions,
outbound mappers, and emitter flows

Event processing flow reads event messages from the event queue and uses the FSM
metadata. The metadata is used to identify objects whose business process relates to the
event, updates the status of those objects, or starts actions to run business logic. The result
of these actions can generate further events that are added to the event queue.

At a high level, event processing flow performs the following tasks when an event is handled:

» Identifies all the FSMs and the transitions that are associated with the event type of the
fired event instance.

» Determines whether the transition is to be processed. This is done by evaluating the event
filter that is associated with the transition against the context information in the fired event.
If the evaluation expression fails, the processing is discontinued.

» Gets all the affected lifecycle objects that pertain to the FSMs by evaluating the Object
Selection Template property of FSM or its override Override Selection that is configured at
transition.

» Evaluation of these SQL expressions retrieves all the lifecycle objects that must be
processed and the relevant column data that is needed for processing.

» The selected objects are further constrained by the Object Filter expression property in the
transition.

» After transitioning the states of the selected objects to the target state (as specified in the
transition), the action that is associated with the transition are started by passing to it the
objects and the chosen columns data.

Financial Transaction Manager Technical Overview

» Action then performs the specific business logic on the lifecycle object that uses the data
of the objects, which can also include the ISF data.

For more information, see the following sections:

» 1.2.4, “Solution-specific artifacts” on page 31 for information about event processing
wrapper and actions

» 1.3.2, “Orchestrating the financial business process” on page 40 for more information
about how messages are processed.

1.2.4 Solution-specific artifacts

In this section, we describe all of the solution-specific artifacts that must be developed to
complete the solution. These include the following artifacts:

» Transmission flow wrapper
» Event flow wrappers

» Actions

» Mappers

» Emitters

For more information, see Chapter 5, “Using WebSphere Message Broker Toolkit to produce
build artifacts” on page 131.

Physical transmission flow wrapper

Physical transmission wrapper is a concrete flow that must be developed to import the input
of a transmission from an external system.

It is responsible for the following actions:

» Handling the transport-specific physical details of the input mechanism, such as
WebSphere MQ input node, HTTP request, or a file access mechanism. The details
typically include a WebSphere Message Broker transport or adapter-specific input node
that is configured to receive from the interface.

» Identification of the channel that stores configuration of the inbound transmission, such as
mapper, format, and other configurations.

» Feeding the input transmission to the core physical transmission flow.
» Provide a real physical output (Event/Failed) for the physical transmission flow.

Typically, a physical transmission wrapper is defined for each interface. However, it is possible
to combine more than one interface with a single wrapper flow by including more than one
input node on the flow. The use of separate flows provides more flexibility to change the
deployment topology, more control over scalability, and more operational control to stop and
start individual interfaces.

The interface configuration data must be prepared and deployed to the data store. The
wrapper flow also packages appropriate outbound mapper flows and emitter flows. The
physical transmission wrappers are deployed to one or more WebSphere Message Broker
run groups.

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution 31

32

Event processing wrapper

Event processing wrapper is a concrete flow that must be developed to connect the core
event processing flow to the physical event WebSphere MQ queue. This wrapper flow
includes a WebSphere Message Broker WebSphere MQ input node and WebSphere MQ
output node that is configured for the event queue details. The wrapper flow then passes
control to the core event processing flow.

Typically, a separate instance of the event processing flow is built and deployed for each
deployed application. Separate Financial Transaction Manager applications use separate
event queues. The event processing wrappers are deployed to one or more WebSphere
Message Broker run groups and also package the relevant actions and outbound mappers.

Actions

An action is a WebSphere Message Broker sub flow that is started by the transaction
processing engine (when an FSM transition that specifies the action occurs). Actions provide
the means to perform business logic to be run as the financial business processing continues.
They are started in the context of those objects whose status was updated by the transition.
Any business logic that is run should be in this context. For example, validating the incoming
business message to comply with the business rules or starting to send another business
message to a service participant.

As described in “Event processing flow” on page 30, as FSM processing continues, event
processing flow runs the actions that are configured in the transitions. The action
configuration in the transition specifies only the name of the action that must be run, but the
actual run logic must be deployed in WebSphere Message Broker.

Financial Transaction Manager allows the development of actions as a business logic
component in WebSphere Message Broker. Financial Transaction Manager also provides
core framework components (BeginAction and EndAction) to integrate the developed logic
into the overall flow.

Figure 1-19 shows how an action implementation is integrated with BeginAction and
EndAction.

.

BeginAction Action Impl EndAction

Figure 1-19 Example of Financial Transaction Manager action

BeginAction extracts the name of the action so that event processing flow can start it. The
name must match the action name in the FSM transition. EndAction allows returning the
control back to the event processing flow on completion of the action.

When the event processing flow starts the action, it passes it the following context information
for use by the business logic in the action:

» The input message that contains the event instance detail.

» Information about the transition that is processed. This includes information, such as the
name of the Finite State Machine, the type of the object that is modeled by the FSM,
object selection template (or the override selection) value, object filter, event type of the
event instance, transition current and target states, and event filter.

» Set of the lifecycle objects and the retrieved column data fetched that uses the object
selection template or override selection template.

Financial Transaction Manager Technical Overview

For more information about developing actions, see 5.3, “Action flows” on page 142.

Mappers
A mapper is a WebSphere Message Broker sub flow that is started to transform between the
external format (that is, received or sent) and Financial Transaction Manager’s ISF.

For more information about ISF, see 4.1, “Internal standard format” on page 86.
For more information about developing Mappers, see 5.4, “Mapper flows” on page 145.

As described in “Interface Configuration” on page 15, mappers form part of the interface
configuration. Financial Transaction Manager’s runtime framework uses this information to
call the actual mapping logic. The interface configuration specifies only the name of the
mappers that must be run; the actual mapping logic is deployed in WebSphere Message
Broker.

Depending on the direction of the channel, the following types of mappers are available:

» Inbound mappers

Used to transform from an external format to ISF when a business message is received.
Inbound mappers are started by the physical transmission flow.

» Outbound mappers

Used when starting a business message to an external service. Outbound mappers are
started as a result of an action.

Financial Transaction Manager allows developing of mappers as mapping logic components

in WebSphere Message Broker. Financial Transaction Manager also provides core framework
components (BeginMapper, EndMapper, BeginboundMapper, and EndOutboundMapper) to

integrate the developed logic into the overall flow.

Inbound mappers
Figure 1-20 shows how an inbound mapper is integrated with BeginMapper and EndMapper.

»
- e

E e
BeginMapper RHR”‘HH ’1/ EndMapper
\H /
Tap @3E

FINToISFCommonMapper

Figure 1-20 Example of inbound mapper

BeginMapper includes the following responsibilities:

» Specify the name of the mapper as configured in the interface configuration to allow the
physical transmission flow to start the mapper. The name must match the name in the
mapper configuration entry.

» Parse the input message according to the format configuration of the associated channel
and input the parsed message into the mapping logic.

Note: The message might not be parsed yet. The broker parsing provides for
on-demand parsing. The begin mapper sets up the appropriate parser for the input
message and passes on the logical message to the body of the mapper flow.

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution 33

34

» Handle unexpected errors that arise out of the mapping logic and pass it appropriately to
EndMapper.

As part of mapper development, message sets that correspond to the formats might also
need to be developed. Message sets are WebSphere Message Broker artifacts that describe
format and are used to parse the incoming message. The name of the message set and other
parsing properties are provided in the format as configured in the channel.

The implemented mapping logic then uses the parsed input message from the BeginMapper
and then maps the message to ISF.

The mapping logic is coupled to the incoming message construct and, based on this, creates
the relevant Financial Transaction Manager objects, such as transactions or batches and
appropriately sets their properties. At this time, the ISF documents that pertain to the
transactions are also produced and stored with them. For more information about batching,
see 9.7, “Bulking pattern” on page 348.

Implementation the mapping transformation can use any of the standard transformation node
types that are provided by WebSphere Message Broker (including Compute node that uses
the ESQL language, Java Compute node, Mapping node, XSL Transform node, WebSphere
Transformation Extender Map node, and so on). In the case of the WebSphere
Transformation Extender Map node, Financial Transaction Manager provides a generic
mapper flow that can be configured to start an appropriate WebSphere Transformation
Extender map. The mapper then passes the mapped ISF and other information to
EndMapper.

EndMapper handles the output from the mapping logic and has the following responsibilities:

» Take input from the mapping logic and persists the transaction and optional batch lifecycle
objects. In addition, record any mapping errors and associate with the transaction or
batches.

» Raises the relevant mapping-related events, which are then used by the events processing
flow to continue processing the lifecycle objects that are created.

» Returns the control back to physical transmission flow.

Outbound mappers
Outbound mappers work in the reverse of inbound mappers.

Before the outbound mappers are called, it is required that the necessary outbound batches
and transactions are created in the operational data. Typically, this is done by the action that
is starting the outbound message. When these objects are created, the action raises relevant
events to start the sending of the request. For more information about sending an outbound
message, see 9.1, “Creation of outbound message or file pattern” on page 238.

As part of handling the generic FSM, event processing flow calls an action to start the
outbound mappers by using the format and mapper information. This information is gathered
from the channel object for the service participant to which the message is being sent.

Figure 1-21 on page 35 shows how an outbound mapper is integrated with
BeginOutboundMapper and EndOutboundMapper.

Financial Transaction Manager Technical Overview

/ST—"I’oFINMapN

o 9

g

BeginOutboundMapper EndOutboundMapper

Figure 1-21 Example of outbound mapper

In this context, BeginOutboundMapper has the following responsibilities:

» Specify the name of the mapper so that event processing flow can start the mapper. The
name must match the name in the mapper configuration entry.

» Retrieve the transaction and batch objects and their relevant information. Then, store it in
the message tree.

» Handle unexpected errors that arise out of the mapping logic.

This information is then passed into the actual mapper logic, which constructs the outbound
message by using the information that is stored by the BeginOutboundMapper. It then passes
the outbound message to the EndOutboundMapper.

In this context, EndOutboundMapper has the following responsibilities:

» Create the outbound bitstream by parsing the outbound message by using the format that
is configured for the service participant’s channel configuration. Then, send to the external
service participant.

» Create the corresponding transmission object and, if the raw message must be logged,
store of the message.

» Raise relevant mapping-related events.
» Return control back to the event processing flow.

Note: When handling large data and fragments, there are variations to this logic.

For more information about developing Mappers, see the Financial Transaction Manager 2.1
Information Center. Browse to Designing applications — Application programming —
Mappers.

Emitters

Financial Transaction Manager supports publishing of events automatically to external
systems, such as Business Activity Monitoring, that are based on publishing rules that are
defined for the internal events. To accomplish this, appropriate rules must be defined in the
event type configuration of the internal events. This detail includes the following information:

» Name of an emitter subflow, which creates the content of the external event

» Filter expression, which is based on the event context data to exclude publishing the
external events

» Location to which the external event needs to be published

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution 35

Financial Transaction Manager then automatically evaluates the publishing rules when an
internal event is fired and calls the emitter to get an appropriate external event. Financial
Transaction Manager then publishes the event to the location, as specified in the event
publishing rules.

Apart from the event type publishing rule configurations, the relevant emitter subflows must
be deployed into WebSphere Message Broker.

Emitters are subflows and are typically packaged with the physical transmission or event
processing wrappers.

For more information about publishing external events and emitter subflows, see the Financial
Transaction Manager 2.1 Information Center. Browse e to Application programming —
External Event Publishing.

For more information about publishing rules, browse to Appendixes — Appendix C. —
Rational modeling tools — Guide to FTM FSM modeling in Rational — Creating a
State — Creating an Event Publishing Rule.

1.3 Processing a financial transaction

In this section, we further consider the example that is shown in Figure 1-4 on page 8 and
describe how the sequence of steps (shown in Figure 1-5 on page 9) are realized in Financial
Transaction Manager by using the various concepts that were understood in 1.2, “Financial
Transaction Manager solution key concepts” on page 13. Some of the steps are simplified.
The idea is to provide only an overview of the processing and not the details.

This section describes the following topics:
» Importing a financial business message
» Orchestrating the financial business process

To give context for this example, see Figure 1-22. The figure shows the component model of
the example and the various interacting systems, their message exchange formats, and the
protocols of communication.

Core Banking System

h
Fixed Length Fixed Length
using MQ using MQ
v
Pain using File - Pacs using MQ
q »| Credit Tranfer Process
Integ:t Banlklng (Financial Transaction Gateway
annel MT 9xx using MQ Manager) Camt using MQ

Figure 1-22 Example’s component model

36 Financial Transaction Manager Technical Overview

For the purpose of this section, it is assumed that all of the interface configurations for the
example are created. The following list specifies the various created configurations:

»

Credit_Transfer Service is the Service that provides the credit transfer business
process.

IB Service Participant, CB_Service Participant and GW_Service Participant are the
configured service participants for the three interfacing systems.

IB_In_Channel, IB_Out_Channel, CB_In_Channel, CB_Out_Channel, GW_In_Channel, and
GW_Out_Channel are the various channels of the three interfacing systems.

IB_In_Channel’s master flag is set to true.

MT_Format, MX_Format and FL_Format are the three formats that are used to transform
when interacting with the system.

Pain_to_ISF ISF_to_MT, FL_Resp_to_ISF, ISF_to_FL_Req, ISF_to_Pacs and Camt_to_ISF
mappers are associated with the respective channels and their names correspond to the
deployed mapper subflow artifacts.

The following FSMs are used for processing of the different Transaction and Transmissions
and are described in Table 1-2.

Table 1-2 FSMs used for processing

Source System Target System Format Mapper Transaction FSM | Transmission FSM
Internet Banking Credit Transfer | MX_Format Pain_to_ISF Credit Transfer Inbound
Channel Process FSM Transmission FSM
(see Figure 1-11
on page 19)
Credit Transfer Core Banking FL_Format ISF_to_FL_Req | Outbound Request | Outbound
Process System FSM Transmission FSM
Core Banking Credit Transfer FL_Format FL_Resp_to_IS | Inbound Ack FSM Inbound
System Process F Transmission FSM
Credit Transfer Gateway MX_Format ISF_to_Pacs Outbound Request | Outbound
Process FSM Transmission FSM
Gateway Credit Transfer | MX_Format Camt_to_ISF Inbound Ack FSM Inbound
Process Transmission FSM
Credit Transfer Internet MT_Format ISF_to_MT Outbound Request | Outbound
Process Banking Channel FSM Transmission FSM

All of the following WebSphere Message Broker artifacts are assumed to be deployed:

>

Mappers Pain_to ISF, ISF to MT, FL_Resp_to ISF, ISF to FL Req, ISF_to Pacs and
Camt_to_ISF

Message Sets MT_Format, MX_Format and FL_Format

Actions A_ValidateAndSendToCoreBanking, A_RouteAndSendToGateway and
A_SendPaymentReport

Physical transmission wrapper flow wires the necessary WebSphere Message Broker File
Input Node and WebSphere MQ Input Node to the physical transmission core flow. For this
example, there are three separate physical transmission wrappers that implement the
instances of the physical transmission flow for each of the message sources.

Event processing wrapper flow wires the necessary WebSphere MQ Output Node
representing the event queue WebSphere MQ to the event processing core flow.

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution 37

Cached data: Financial Transaction Manager caches all the configuration data. In the
following section, configuration data is mostly fetched from the cache.

1.3.1 Importing a financial business message

38

The processes that are used to import financial business messages are primarily the
responsibility of physical transmission flow.

The following main steps are completed during this phase:

Inputting business message into processing

Creating a transmission object that is related to the message
Mapping incoming message to ISF

Creating the associated transaction objects

Creating the relevant events

Completing flow

2

Inputting business message into processing

Inputting the business message into processing is implemented with an input node on the
physical transmission wrapper flow. Various WebSphere Message Broker Input Nodes can be
used to take input of business messages for different protocols. Some of the different
protocols are WebSphere MQ Input Node, File Input Node, HTTP Input Node, and so on.

For this example, processing (as shown in Figure 1-5 on page 9), the Credit Transfer Request
business message in Pain MX format is input through a file interface. Physical transmission
wrapper flow uses a WebSphere Message Broker File Input Node to read the input message.

Physical transmission wrapper flow then determines the input channel for the

IB Service Participant and reads IB_In Channel. The channel properties determine the
format and the mapper to be used (which are MX_Format and Pain_to_ISF, respectively).
Physical transmission wrapper then determines what other transmission pertinent information
is required for storing the transmission. Other information includes the object unique identifier,
customer identifier, and other transport-specific information, such as the file name and file
address. Physical transmission wrapper then inputs this information into the core physical
transmission flow.

Creating a transmission object that is related to the message

Core physical transmission flow gathers the information that is needed for persisting the
transmission object. Most of this data comes from the information that is sent by the wrapper
flow. However, it also uses information from the input channel (IB_In Channel), such as the
Master Flag, Party Id, Character Code Set Id, Encoding, and Log Data flag.

Core physical transmission flow then creates a transmission object that is based on the
gathered information and persists it in the operational data. This provides a record of the
received data and its source for the audit trail. The record also might include an image of the
data received, depending on the channel configuration.

Mapping incoming message to ISF

Core physical transmission flow then retrieves the mapper and format names (Pain_to_ISF
and MX_Format, respectively) from the input channel (IB_In_Channel) and starts the mapper
by using the Route To Label WebSphere Message Broker Node.

Financial Transaction Manager Technical Overview

BeginMapper, which helps integrate the mapping logic, is labeled as Pain_to_ISF and starts
running. It first parses the input message by using the message set and message type as
identified by the MX_Format. It also uses other parsing options (such as character code set
and encoding) and whether the parsing is with or without validation from the channel
configuration IB_In_Channel.

BeginMapper sends the parsed output to the mapper logic. Mapper logic then constructs the
ISF message that is based on the parsed input. The messages in this example consist of a
single business transaction.

Mapper logic then gathers other transaction-pertinent information, such as the following
information:

» Transaction unique identification
» Transaction customer identification

» Transaction owner identification (Party owning the transaction that can be used for OAC
access control)

» Transaction type (Payment)

» Transaction sub type (Credit Transfer Request, which specifies the business purpose of
the transaction and controls the FSM selection)

It also extracts payment-specific information (such as payment type, bank code, account,
destination bank code, destination account, amount, currency, foreign exchange rate, book
date, and value date). This information, along with the ISF and the mapping results (mapping
errors, and so on), are then passed to the EndMapper.

EndMapper checks if the ISF must be syntactically validated by reading the input channel
configuration IB_In Channel’s Validate ISF Flag. If the flag is set, it syntactically validates
the ISF message.

Creating the associated transaction objects

EndMapper uses the information and creates the transaction record. EndMapper creates
error records for all the mapping errors that are associated with the mapping run and
associates them with the created transaction. EndMapper then sets the state of the newly
created transaction as S_Mapped and fires the relevant events.

Creating the relevant events

Events are created to record the process milestones that were achieved. In this case, the
creation of a transaction (E_MpInTxnMapped with the appropriate transaction identification in
the context of the event), and the arrival and completion of mapping of the transmission. The
new events are written to the event queue to be read by the orchestration step where the
events are used to trigger the start of the business process.

EndMapper passes the control back to physical transmission flow.

Completing flow
Physical transmission flow completes and awaits the arrival of the next message.

Note: There is optimization that is related to burst mode processing, which is not described
here.

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution 39

1.3.2 Orchestrating the financial business process

40

Financial business process orchestration is primarily Finite State Machine processing, which
is performed by the core event processing flow. It typically consists of the following actions:

FSM processing

Action invocation

Sending a request to external services
Correlation of response

vyvyyy

FSM processing

Event processing wrapper reads the event messages by using WebSphere Message Broker
WebSphere MQ Input Node. After the event messages are read from the events queue, the
messages are then input to the core event processing flow.

In this example, the first event is the E_MpInTxnMapped event from the completed import. The
event processing core flow gets the event type information (for the E_ MpInTxnMapped event
instance) and reviews the configuration data to find the matching associated transitions. It
then evaluates the event filter that is based on the event instance context data and precludes
any transition that fails the expression evaluation.

B using the effective of the transition’s FSMs object selection template and the transitions’s
override selection and further qualifying by the object filter, core event processing flow obtains
a list of all the objects for the transition that must undergo state change. This set of objects
includes the transaction object that was created.

Event processing core flow then transitions the state of all the selected objects to the
transition’s target state by updating the transaction record.

Core event processing flow then starts the action that is associated with the transition.

Action invocation

Core event processing flow then gets the name of the action for the transition, which must be
called (in this case, A_ValidateAndSendToCoreBanking). Then, by using Route To Label
WebSphere Message Broker Node, core event processing flow starts the action to pass the
following information:

» Input Message, which contains the event instance data

» Information about the transition, such as the name of the FSM, the type of the object that
is modeled by the FSM, object selection template (or override selection) value, object filter,
and event type of the event instance

» Set of transaction objects and their retrieved column data

Depending on the object selection template or override selection, ISF data of the transaction
can also be indicated, in which case the ISF data is also available as part of the column data.

BeginAction of the action identifies with the action name as specified in the transition. Action
is then started and passes control to the actual action logic. The started action logic can
perform any kind of business logic that is based on the transaction data and ISF; for example,
semantically validating the transaction and ISF data. After successfully validating the
transaction, the action (A_ValidateAndSendToCoreBanking) must send a request to the core
banking system.

Financial Transaction Manager Technical Overview

Sending a request to external services

All legs of the processing are considered as a separate transaction or transmission. Hence,
the core banking request must have its own transaction or transmission objects. However,
because the request-reply pattern is standard, the Outbound Transaction and Transmission
generic FSM is used for these objects.

The action (A_ValidateAndSendToCoreBanking) first creates the ISF message to send to the
core banking system. The ISF message to be created is based on the credit transfer request
transaction’s ISF data (and possibly with some other enrichment as needed for the core
banking request). It then creates a transaction object for the outward request to the core
banking system and appropriately sets the attributes (including the initial state
[S_OutTxnCreated], type, sub type, and ISF data appropriately). For choosing the outbound
transaction FSM, the action sets the 0BJ_CLASS field to OUT_TXN_WAIT.

The action then creates an object-to-object causal relationship between the credit transfer
request transaction and the outward core banking request transaction. This is done by
persisting the object-to-object relationship between the two transactions.

Finally, it raises the E_TxnOutCreated event, which is input into the events queue. This event,
in its context, contains the ID of the newly created transaction and can also contain the ID of
the service participant for the core banking system, to which the request must be sent. This

information is later used to route to the core banking system.

Note: This mechanism is not the only routing mechanism that is supported by Financial
Transaction Manager.

The action (A_ValidateAndSendToCoreBanking) then passes control to EndAction, which
returns control back to the event processing flow. After the current set of transition is run,
event processing flow checks if the current event instance that is processed must be
persisted. If it does, core event processing flow stores the event in the Operational Data. Core
event processing flow then loops back to the events queue and picks up the new event for
processing.

Event processing flow’s processing of this event causes it to evaluate the outbound
transaction FSM, and results in processing of the action A_RouteAndSendOutTxn. This is done
after transitioning the state of the outbound transaction to S_OutTxnAwaitingSend. This action
is supplied as part of Financial Transaction Manager to support the generic FSM.

A _RouteAndSendOutTxn, looks up the service participant for the core banking system,
CB_Service_Participant, which is based on the service participant ID in the event instance’s
context data.

It then gathers the outbound channel details (CB_Out_Channel) from which the format
(FL_Format) and outbound mapper (ISF_to_FL_Req) information is retrieved for sending
requests to the core banking system. A_RouteAndSendOutTxn starts the outbound mapper that
corresponds to ISF_to_FL_Req by using the Route To Label WebSphere Message Broker
Node.

BeginOutboundMapper identifies the actual mapper (as in the name) and runs the out
mapper. It fetches the information that is related to the transaction, including ISF, and makes
that available. BeginOutboundMapper then passes the information to the actual outbound
mapping logic. The mapping logic constructs the output message (based on the transaction
data and ISF) and passes the output message to EndOutboundMapper.

Chapter 1. Anatomy of an IBM Financial Transaction Manager solution 41

42

EndOutboundMapper uses the message set and message type (as specified in the format,
FL_Format) and writes the output bytestream to the core banking system. This is done by
looking into the WebSphere MQ configuration for the core banking system (WebSphere MQ
Queue Manager and WebSphere MQ Queue name) from the configured Channel object
(CB_Out_Channel).

EndOutboundMapper then creates the outbound transmission object. If the raw data must be
logged, EndOutboundMapper updates it. EndOutboundMapper then raises the relevant
events on receipt of the successfully sent events, the outbound transaction transitions to
S_WaitingForAck.

Correlation of response

When the core banking system’s response arrives, it is handled by the physical transmission
flow as any other incoming business message. A set of transmission and transaction objects
also are created.

The transaction that is created has 0BJ_CLASS set to one of the following values:

» IN_TXN_ACK_MQ1
» IN_TXN_ACK_MQ2
» IN_TXN_ACK CID

These values determine the correlation strategy that must be used to correlate the incoming
response message to the outgoing request message.

Based on this 0BJ_CLASS value, the response transaction is subject to Inbound
Acknowledgement Transaction generic FSM. When handling the E_MpInTxnMapped event per
inbound acknowledgement transaction generic FSM, event processing flow runs the action
A_CorrelateAndUpdateRel.

A_CorrelateAndUpdateRel correlates the incoming acknowledgement to the outgoing request,
which is based on the different correlation strategies, and after success, raises E_AckRecvd.
A_CorrelateAndUpdateRel also sets up the necessary causal relationship between the
response and request transactions.

At receipt of this event, inbound acknowledgement transaction generic FSM responds by
transitioning the response transaction to S_InTxnComplete. After this occurs, processing is
complete for the transaction.

After receipt of E_AckRecvd event, outbound transaction generic FSM responds by
transitioning the request transaction to S_OutTxnComplete. Outbound transaction generic
FSM then starts A RaiseOutTxnCompleteEvents action, which raises events that flag the credit
transfer request to continue with the credit transfer FSM (see Figure 1-13 on page 22).

Remaining processing continues based on this FSM. Thus, Financial Transaction Manager
completes the processing of the transaction.

Financial Transaction Manager Technical Overview

Design and development
methodology overview

This chapter provides a recommended approach to follow when you are designing and
developing Financial Transaction Manager solutions. The design and development of a
relatively complex Financial Transaction Manager application often is an iterative process.
The guidelines that are outlined in this chapter might require some customization that is
based on individual project requirements and setup. However, the template that is outlined,
which was honed through the use in numerous Financial Transaction Manager projects,
should provide assistance to anyone taking the first step in Financial Transaction Manager
solution design.

In general, when Financial Transaction Manager is introduced into an environment, it is
recommended that a progressive renovation approach is followed, that is, an avoidance of
trying to do too much too soon. Tasks should be undertaken in manageable increments,
which should lead to reduced risk and early proof of concept, with the overall target being an
early return on investment and increased confidence in the solution approach.

This design approach is not meant to replace existing IT leading practices but to enrich them.
Structured project management, identification of key roles and skills, the use of proven
technologies, configuration management, testing, and so on, should be used with this
approach to achieve a successful outcome.

The chapter covers the Financial Transaction Manager methodology and describes how a
solution can be designed from a set of Use Cases that describe the business requirements,
through to a set of High Level and Detailed Sequence diagrams that show the sequence of
interactions and processing steps that are involved with the application. This leads to a set of
Lifecycle diagrams that define a set of states for business objects, with the conditions and
triggers to move between those states and the activities to perform while doing so. This all
leds to a set of Finite State Machines that model the processes and can be imported into the
Financial Transaction Manager data model to drive the real-world functionality.

© Copyright IBM Corp. 2014. All rights reserved. 43

This chapter includes the following topics:

» Capturing requirements
» Architectural decisions
» Following the methodology

44 Financial Transaction Manager Technical Overview

2.1 Capturing requirements

Capturing requirements can be facilitated through a series of workshops. The goal of these
workshops is to capture solution requirements, produce an architectural overview, build a
solution outline, and design a set of functional use cases.

The workshop process often is an iterative one. When the key players are identified (for
example, Solution Architect, Financial Transaction Manager Architect, Interface Specialist,
and Subject Matter Experts), the workshop process facilitates the meeting of minds, sharing
of ideas, and knowledge transfer. It also facilitates the Financial Transaction Manager
Architects understanding of the proposed solution, and provides a forum for the Financial
Transaction Manager Architect to provide confirmations or propose amendments. The
workshop process also allows the business to explore Financial Transaction Manager
concepts with the Financial Transaction Manager Architect and to address any outstanding
architectural issues.

Use Cases are used as a means to translate business requirements into functional
requirements. Figure 2-1 shows a sample Use Case that was designed by using Rational
Software Architect.

Client

Liquidity FL'quest
‘ Liguidity Service

Credit Transfer Message

Credit Transfer P roc}ss

GatewT Request

Payment Gateway

Figure 2-1 Sample use case

When a high-level use case such as this is created, details of interfaces that are needed for
the solution become more apparent. From this, you can design an architecture overview and
solution outline. The architecture overview often is represented by a diagram that shows the
various high-level architectural components. The solution outline shows the interactions
between external systems and Financial Transaction Manager. A High Level Sequence
diagram is used to represent these interactions.

Chapter 2. Design and development methodology overview 45

46

Figure 2-2 shows the High Level Sequence diagram that was created in Rational Software
Architect for the Use Case as shown in Chapter 1, “Anatomy of an IBM Financial Transaction
Manager solution” on page 1.

iClient ETM : process Sndle Payment Liguidity Service {Payment Gateway

1} Payment Crigination

2: Vaidate Payment

2 Liguidity Request

4; Liguidity Resporss

5 Payment [nitiation

6 Gateway Acdnowledgement

71 Client Acknowledgement

Figure 2-2 High Level Sequence diagram

You produce a High Level Sequence diagram for all defined use cases. This type of diagram
is an easily understood way to represent Financial Transaction Manager regarding external
systems. In addition to outlining interactions over a period, these diagrams offer a method of
documenting internal actions that Financial Transaction Manager must take as part of the
process. These diagrams also feed into the creation of Detailed Sequence diagrams, as
shown in 3.5, “Detailed sequence diagrams” on page 70. Later sections In Chapter 3,
“Producing design artifacts by using Rational Software Architect” on page 57 we describe
how you can expand these diagrams to define a set of Lifecycle diagrams, and, ultimately, a
set of Finite State Machines, to model the processes. For information about how to physically
create these diagrams and models, see Chapter 3, “Producing design artifacts by using
Rational Software Architect” on page 57.

By using the High Level Sequence diagram as a guide, you can begin a discussion to identify
and document interface and message types, and use details about protocols that are used
(for example, WebSphere MQ, SOAP, and FILE), formats that are required (for example,
ACH, SWIFT, and EDI), and message types that are needed (for example, EDI820, MT103,
and PACSO008).

Finally, you can discuss and document a set of non-functional requirements from the
workshops. You can cover topics, such as availability, disaster-recovery, performance, and
latency at this stage.

Financial Transaction Manager Technical Overview

2.2 Architectural decisions

From an early stage, it is important to think about key architectural strategies and decisions
that affect the current and future projects. It is imperative to keep the long-term strategic
vision and requirements in mind now because although decisions made at this stage might
suit the current iteration of the project, they might not meet the requirements of the overall
solution.

The Solution Architect can, with input from the Financial Transaction Manager Architect,
Interface Specialists, along with the Business Stakeholders, explore avenues of discussion
that pertain to hardware configuration, the Financial Transaction Manager environment, user
security, database architecture, and so on.

Non-functional requirements have a large bearing on some of the architectural decisions. For
example, requirements around High Availability, Scalability, and Performance can lead to a
decision to go with a multi-instance topology, running more than one Financial Transaction
Manager instance on one or more logical partitions, by way of data sharing.

In terms of hardware configuration, decisions on a range of topics, such as the platform to use
(if not already dictated), the type and size of storage that is used, the number of CPUs that
are needed to handle the software stack and the throughput, and the number and size of
logical partitions all must be made.

Financial Transaction Manager dictates a set of software prerequisites for it to run. These
should be discussed and decisions made on levels of software that is needed to integrate with
Financial Transaction Manager; for example, if integration with WebSphere Transformation
Extender and IBM Operational Decision Manager is needed.

Decisions can be made on the level of security that is necessary for users of the solution. The
number and type of interfaces can have a large bearing on these decisions. For example, if
customer on-boarding is part of the solution, some thought needs to go in to how to allow
external sources access only the parts of the application that are pertinent to them.

2.3 Following the methodology

The Financial Transaction Manager Methodology is a step-by-step guide to help solution
architects and developers design and develop a Financial Transaction Manager solution. The
methodology was born out of numerous Financial Transaction Manager customer
engagements and was proven to be an effective guide to assist with the creation of a solution.

The Financial Transaction Manager Information Centers already covers the Methodology in
detail, but in this section, we describe the steps that are involved and provide more guidance
where possible (or at least try to provide a fresh perspective to the steps).

Chapter 2. Design and development methodology overview 47

Figure 2-3 shows the design, development, and miscellaneous tasks that are involved in a
Financial Transaction Manager solution.

Interfaces

Processes

Deployment

Identify Interfaces
and Message Types

Define High Level
Sequence Diagrams

Build FTM
Environment (MQ,
DB2, WMB, WAS)

Y

Create Mapping
Specifications

Identify FTM Objects
& Design Detailed
Sequence Diagrams

Code Top Level Flows
(Integrate Mappers,
Actions with FTM

Framework)

Y

Extract and Deploy
FSM Model to FTM
Database

Y

Extract and Deploy
Configuration Data

Y

Create Message
Models for Formats

v

Code Mapper

Design Object
Lifecycle Diagrams

Build FSM Model
Subflows/WTX Maps to FTM Database Design Task
‘ y ‘ Coding Task
Code Action
Model Configuration Subflows/Emitter Deploy FTM
Data Subflows/ODM Application Flows Misc. Task

Business Rules

Figure 2-3 Financial Transaction Manager design and coding tasks

2.3.1 Design tasks

48

The following sections provide details about the methodology concerning the design tasks.

Define High Level Sequence diagrams

High Level Sequence diagrams show the interaction between the external systems and
Financial Transaction Manager. These diagrams also show the sequence of high-level
processing tasks, such as “Map To ISF” “Complete Routing Decision,” and “Log Physical
Transmission,” that happen internally in Financial Transaction Manager.

Define a set of these diagrams to cover all use cases, including positive and negative cases.
For more information about how to create these diagrams, see Chapter 3, “Producing design
artifacts by using Rational Software Architect” on page 57. High Level Sequence diagrams
are expanded to create Detailed Sequence diagrams. Therefore, try to keep a separation and
keep the diagrams at a high-level.

Remember: High Level Sequence diagrams are specific to individual customer solutions
and environments. The Solution Architect and the Financial Transaction Manager Architect
often are involved in creating these diagrams.

Financial Transaction Manager Technical Overview

Figure 2-4 shows a sample High Level Sequence diagram for Inbound Batch Debulking.

] High Level Sequence Diagram

2 :Client B £ :FTM spplication

1: Inbound Batch Msg

—1d] Log PT

=1

2: Parse and Map
to ISF

' [3iLob Batches

. 4: log Tens

Figure 2-4 Sample High Level Sequence diagram

Identify Financial Transaction Manager objects

Financial Transaction Manager objects are defined as objects that have a state and a
corresponding lifecycle that requires management within the solution. The Financial
Transaction Manager V2.1 Information Center lists the following types of Financial
Transaction Manager Objects:

Transmission
Fragment

Batch

Transaction

Payment Transaction
Securities Transaction
Service Participant
Scheduler Task
Activity

VVYyVYVYYVYVYYVYY

The Financial Transaction Manager Architect identifies these objects.

Transmission, Fragment, and Service Participant objects often are identified by looking at the
interfaces and interactions that are defined in the High Level Sequence diagram. A
Transmission object represents the actual physical message in or out of Financial Transaction
Manager. A Fragment object represents a means of breaking the transmission up into smaller
parts, if necessary, for parallel processing. A Service Participant object represents the
interface and contains information that pertains to the interface (such as, inbound or
outbound channels, open time, and close time).

Batch objects are identified by looking at the content of the transmission message and how it
is physically structured. A batch object directly relates to a physical batch in the transmission
message.

Chapter 2. Design and development methodology overview 49

Transaction objects are a single unit of business activity that is communicated within a
physical message. Payment Transaction and Securities Transaction objects are specific
transaction types for Payments and Securities. If these objects are not obvious upon
inspection of the message, a subject matter expert of the message format can help with
identification.

A Scheduler Task object is an object that represents a process that runs to a schedule. If
there are any tasks obvious at this stage that need to start at fixed times or at a specific time
interval, these should be categorized as Scheduler Task objects. The iterative nature of the
methodology allows for these objects to be identified later if they are not immediately obvious.

Finally, an Activity object represents a process that happens outside of Financial Transaction
Manager but must be tracked inside Financial Transaction Manager. Again, these objects
might not be immediately obvious, but the iterative process can mitigate this.

Design detailed sequence diagrams

Detailed sequence diagrams are more comprehensive versions of the High Level Sequence
diagrams. The identified Financial Transaction Manager object, along with external parties or
actors, can be represented as swimlanes in the diagram. In addition, the interactions between
the objects can be detailed for a specific use case scenario. For more information about
creating Detailed Sequence diagrams, see Chapter 3, “Producing design artifacts by using
Rational Software Architect’ on page 57. The use of Rational Software Architect is
encouraged because it allows for the easy addition and subtraction of interactions, as
needed. Again, the Financial Transaction Manager Architect is involved in creating these
sequence diagrams.

Figure 2-5 shows a sample Detailed Sequence diagram for Inbound Batch processing.

[a] :Ext Sys [a] :AInPT [l :Batch El InTxn [l :0utTen & :QutBatch [& :QutPT

1: Arrived - - - - - -
T f {S_InPTArrived} {5_InBatMapped} {S_InTxnMapped}

Log and Map Batch {Debulking)

—7: Validate
2.1: Txn Valid

{S_InPTValidating}
2,1.1: Txn Validation Complete®
o

2.2 Txn Valid

2.1.1: application speific... | [T 2.1: application specific....

3.1: Tun Routed [3: Txh Routed

Batch (Bulking)

[4: Qut Ten Complete

Send Qut PT [batch) - (Qutbound Msg or File)

5: RaisgIn Bat Txn Complete
5.1: Check all txns complete?| |

5.1.1:Baiselin Bat Complete
5.1.1.1:In Bat Complete i B

Figure 2-5 Detailed Sequence diagram sample

50 Financial Transaction Manager Technical Overview

Design object lifecycle diagrams

Examination of the Financial Transaction Manager object swimlanes that was created in the
Detailed Sequence diagram provides the basis for the Object Lifecycle diagrams. Starting
from the top and working down for each swimlane highlights the various states that the object
goes through and the high-level events that cause the object to move from one state to
another. If there are multiple Detailed Sequence diagrams for the same object (for example, in
the case of showing error conditions), these states and transitions are shown also on the

Lifecycle diagram for the object in question.

Figure 2-6 shows a sample Object Lifecycle diagram for Outbound Physical Transmissions.

[_* Outbound Physical Transmission

&0 Oubound Transmission Created

outbound fragment sent
@ Check all fragmentssent

outbound trar‘smission created
@ Map AnT Put To Queue

2 OQutbound Transmission Awaiting Send

all fragments sent

outbound map aborted

@@ Motify Operator

operator resend

rator resend

@@ Map And Put To Queue

outbound transmission failed 2P

@@ Notify Operator

@@ Map And PutT Queue

&2 All Fragments Sent 2 Qutbound Transmission Send Error

outbound transmission sent

operator verify ‘

2 Waiting for Operator

&2 Outbound Transmission Sent

defrag complete
@@ Raise Outbound Transmission Sent

@ Raise Outboun’d Transmission Failed

&2 Outbound Transmission Failed

operator verify

@ Raise Outbound Transmission Failed

Figure 2-6 Sample Object Lifecycle diagram

Build Finite State Machine model

The “Application analysis and design tutorial’ section of the “Designing Applications” chapter
of the Financial Transaction Manager V2.1 Information Center provide details about building a
Finite State Machine model that consists of a set of Finite State Machines from the previously

described diagrams.

A Finite State Machine is derived from an Object Lifecycle diagram because they both
describe the behavior of a Financial Transaction Manager object. Financial Transaction
Manager provides a Rational Software Architect plug-in as part of its core components. This
plug-in provides more UML extensions in the form of stereotypes and facilitates the extraction
of the Finite State Machine into an SQL script that can be run against a Financial Transaction

Manager database.

Chapter 2. Design and development methodology overview

51

With these other stereotypes, you can create the following components:

» An Object Selector that is an SQL query, which retrieves a set of Financial Transaction
Manager objects that are pertinent to the particular Finite State Machine.

Figure 2-7 shows a sample Object Selector that was taken from the Financial Transaction
Manager 2.1 Information Center.

SELECT

ID,

CURRENCY,

TRANSMISSION ID,

BATCH ID,

ISF_DATA
FRCM

$DBSchema. TXN PAYMENT V T [Mate 1]
WHERE

SUSTYPE.TYPE='PAYMENT ORIGINATION' AND

STATUS=? [Mate 2]

Figure 2-7 Object Selector

Note: Financial Transaction Manager replaces the context macro $DBSchema with the
database schema that is configured on the broker flow at run time.

The ? is replaced at run time by the start state of the transition or transitions that are
triggered by a received event.

» An Override Selector that allows for the retrieval of other database content that is
supplemental to the Object Selector for a transition. An example is BLOB or CLOB data
that you do not want retrieved for all transitions (for performance reasons) but that is
necessary for certain transitions. You can also use an Override Selector for a transition to
pull in data from other tables in the Financial Transaction Manager database (by way of a
database join).

» An Object Filter that allows further restriction of objects that are selected by an Object
Selector for a transition. Example 2-1 shows an example of an Object Filter.

Example 2-1 Object Filter

T.ID IN $Context{TRANSACTION}

At run time, the $Context macro is replaced by the TRANSACTION event context of the event
that triggered the transition. This event context can contain one or more transaction
identifiers, and the entire filter is then appended to the where clause of the object selector.

» An Event Filter that allows a transition to be ruled out when an event is raised and
transitions are evaluated for triggering. The filter is based on the events context data, and
the evaluation is done before any objects are selected through the Object Selector or
Override Selector, which reduces database hits. Example 2-2 shows an example of an
Event Filter.

Example 2-2 Event Filter

$ContextNULL{BATCH}

At run time, the $ContextNULL macro means that the event that has this filter applied to it is
not triggered if the events BATCH context is set to NULL (that is, if this event is applicable
only to transaction objects).

52 Financial Transaction Manager Technical Overview

After the Object States and Transitions are worked out, along with the events that trigger the
transitions, any actions that are necessary to be called between transitions can be added.

These actions are added as UML activities to the transitions. Document any pseudocode for
these actions in the model because this pseudocode is used when the actions are coded later
in the development process.

Important: Finite State Machines interact with each other. To model the process of a
message through Financial Transaction Manager involves the use of multiple Finite State
Machines that handle the orchestration of the various objects that are created as part of
the process, be it Transmissions, Batches, Transactions, and so on. The Financial
Transaction Manager Architect identifies these objects and creates (or is closely involved in
creating) the Finite State Machines.

Figure 2-8 shows a sample Finite State Machine for Inbound Acknowledgement Transactions.

) 5_TxnMapped

E_MpInTngappedwC

E_MpInTxnMapFailure
8 A_MotifyOps

Verify

w2 S_InTxnWaitingOpsVerify

IT.ID IN $Context{TRANSACTION}}

pntextIN{TXN_CLASS,

TN_TXM_ACK_MQ1", TN_TXN_ACK_MQ2','TN_TXN_ACK_CID')}]

& A_Correlatedn

dUpdateRel

{T.ID IN $Context{TRANSACTION}}

{SELECT ID, "UID", CID, S
2DBSchema. OBI_BASE T W,

BTYPE, OB]1_CLASS FROM
HERE OBJ_CLASS IN

CIN_TXM_ACK_MQT', TN_TEN_ACK_MQZ','TN_TXN_ACK

_CID') AND STATUS=7}

w2 5_Relupdating

E_RelUpdatingFail
& A_NotifyQps
—] {TID IN $Context{TRANSACTION}}

E_AckRecvd[$ContextIN{TXMN_CLASS,
("IM_TXN_ACK_MQ1",'IN_TXN_ACK_MQ2','IM_T

¥N_ACK_CID')}]
{T.ID IN SContext

{SELECT ID FROM SDBSchema| OBI_BASE T WHERE

OB]_CLASS IN

(IN_TXN_ACK_MQY', TN_TXN_ACK_MQ2','TN_TXN_ACK_CID")

AND STATUS=7}

TRANSACTION}}

5_InTxnComplete

2 5_RelupdateFailed

E_Opemtoﬁ‘e#rf$—€alﬁeﬁbH€:FH-H-dbt{TRANSACTION}]
8 A_Raiseln TxnFaile

{T.ID IN $Context{TRANSACTION}}

E_OperatorVerify[$ContextNOTHNULLY TRANSACTIONY]
@ A_RaiseInTxnFailed

{T.ID IN $Context{TRANSACTION}}

Verify

S_InTxnFailed

Figure 2-8 Sample Finite State Machine diagram

Chapter 2. Design and development methodology overview 53

Model configuration data

The Rational Software Architect plug-in that is provided with Financial Transaction Manager
also allows for the extraction of configuration data that is modeled by using UML in Rational
Software Architect. Configuration data, such as channel data, mapper data, formats,
scheduler task data, and value table data, can all be modeled and extracted. For more
information about how to create these structures, see the “Guide to Configuration Data
Modeling” section in “Appendix C. Rational Modeling tools” of the Financial Transaction
Manager V2.1 Information Center.

Identify interface and message types

Identifying interface and message types is a task that can be carried out though one of the
workshop iterations. Sometimes, a simple rough diagram can facilitate the identification of
interactions with Financial Transaction Manager and when identified, details about the
communication protocols, message formats, and message types can be hashed out. Each
interaction is represented by an interface, and with help from interface specialists, each
protocol, format, and message type should be identified and documented. Be as specific as
possible at this stage and include details, such as copybooks or XML schema that are used
for formats or versions of message standards used. The Solution Architect, Financial
Transaction Manager Architect, and Interface Specialists should be involved in this activity.

Create mapping specifications

For each of the interfaces that are identified, create a mapping specification document for
each message type, and map each field in the interfaces format to a field in the internal
standard format (ISF), for interfaces that are inbound to Financial Transaction Manager, and
from a field in the ISF to a field in the interfaces format, for interfaces outbound from Financial
Transaction Manager. The mapping specification usually is created as a spreadsheet with a
sheet that details the fields in the external format, a sheet that details the fields in the ISF, and
a sheet that details the mapping between them.

Note: After the mapping specifications are complete and signed off, they can be given to
developers to start work on implementing the mappers in parallel to the remainder of the
design process.

Business Analysts, Interface Specialists, and the Financial Transaction Manager Architect all
provide input into the creation of this document. For more information, see Chapter 4,
“Mapping” on page 85.

2.3.2 Development and coding tasks

54

In this section, we describe following the methodology regarding development and coding
tasks. The Financial Transaction Manager Developers is responsible for these tasks, with
input from the Financial Transaction Manager Architect, when needed. Experience in
WebSphere Message Broker is recommended for developers or experience in whatever
mapping technology is chosen for developing the mappers.

Create message models for formats

Depending on the software technology that is used for message transformation, usually some
sort of metadata model must be created that maps the structure of the format of the message.
For example, if native WebSphere Message Broker is used to handle your transformations,
you might need to create message sets or import XML schema. If WebSphere Transformation
Extender is used, you might need to create Type Trees to model the format.

Financial Transaction Manager Technical Overview

Code mapper subflows and WebSphere Transformation Extender maps
Coding the mappers can be carried out in parallel to the design tasks that were described in
2.3.1, “Design tasks” on page 48 after the mapping specifications are complete. Inbound and
Outbound Mapper Templates are included as part of the Templates package that is supplied
with Financial Transaction Manager. These templates are skeleton WebSphere Message
Broker message flows that contain the nodes and links that are necessary for a mapper
subflow and an ESQL template that provides the basic structure, including functions to call to
create an inbound or outbound mapper. For more information, see “Appendix |. Templates” in
the Financial Transaction Manager V2.1 Information Center.

If you are using WebSphere Transformation Extender to develop the maps, use the
WebSphere Transformation Extender Integration flows to integrate the maps with Financial
Transaction Manager. For more information about WebSphere Transformation Extender
integration, see “WebSphere Transformation Extender Mappers” in the “Application
Programming” section of the Financial Transaction Manager V2.1 Information Center.

Code action subflows, emitter subflows, and IBM Operational Decision
Manager Business Rules

As with the mapper subflows, templates are available to help with coding the action subflows
and the emitter subflows. These templates, along with the Finite State Machine pseudocode
created during the design stage, can make it relatively straightforward to code the actions.

Important: Actions can affect more than one object at a time, and so must be coded so. If
integration with IBM Operational Decision Manager is required, code any Business Rules
that are needed. An IBM Operational Decision Manager Rule designer is assigned this
task.

Code top level flows

Wrapper flows are needed to link to the Financial Transaction Manager core Physical
Transmission and Event Processing flows. Templates are provided for these flows in the
Financial Transaction Manager package. Some thought must go into the number and content
of the Physical Transmission Wrapper flows. Depending on the amount of traffic for a channel,
it is often useful to give a channel with particularly heavy traffic its own Physical Transmission
Wrapper. This method facilitates the ability to deploy the Wrapper flow to its own WebSphere
Message Broker execution group, which allows for better resource assignment flexibility.

2.3.3 Miscellaneous tasks

In addition to the Design and Coding tasks, you must complete some miscellaneous tasks to
get a successful Financial Transaction Manager application up and running.

Build the Financial Transaction Manager environment

Stemming from the design stage, decisions about hardware and hardware configurations
were made. These decisions must be put into action, and tasks (such as configuring the
hardware, installing the software stack to support Financial Transaction Manager, and
configuring said stack) must be undertaken. For example, you must create the Financial
Transaction Manager database, and create and configure WebSphere MQ queues that are
used. For more information, see the “Installing” section in the Financial Transaction Manager
V2.1 Information Center.

Chapter 2. Design and development methodology overview 55

Deployment

To get the Financial Transaction Manager application up and running, you must run the Finite
State Machine and Configuration data scripts that were extracted by using the Rational
Software Architect plug-in against the Financial Transaction Manager database. You also
must create and deploy the WebSphere Message Broker BAR files to the running WebSphere
Message Broker. Finally, you must install the Operations and Administration Console. For
more information, see the “Installing” section of the Financial Transaction Manager V2.1
Information Center.

2.3.4 Testing

56

When a Financial Transaction Manager solution is tested, follow a leading practice; for
example, record results, manage environments, and use meaningful test data. Draw up test
plans for integration, functional, and stress and performance testing, with test cases that use
the normal and failure use cases that are designed earlier in the process to provide full test
coverage. Use testing for reporting, tracking, and managing defects and issues, which can
facilitate resolution and retest and lead to an increase in execution maturity. Testing usually
requires a number of test phases, especially for larger solutions.

Financial Transaction Manager Technical Overview

Producing design artifacts by
using Rational Software
Architect

In this chapter, we describe a suggested approach for the use of Rational Software Architect
when a Financial Transaction Manager pattern or application is designed.

We describe, with examples, the various steps that are involved in creating the design
artifacts that are used in Financial Transaction Manager. The scope of the chapter covers the
design of a sample pattern, but the same concepts and design levels can be used when a full
application is designed.

This chapter includes the following topics:

Design levels

Model project structure
Functional use case diagrams
High-level sequence diagrams
Detailed sequence diagrams
Object lifecycle diagrams
Object relationship diagrams
Finite State Machines

VVYyVYyVYVYVYYVYYy

Note: This chapter is not meant to describe a rigid set of instructions about how to use
Rational Software Architect for Financial Transaction Manager design. Instead, it is meant
to complement existing established design structures that you might have in place.

It also is not meant to be a tutorial on Unified Modeling Language, although Unified
Modeling Language is used throughout the design.

For this chapter, Rational Software Architect Version 8 is used.

© Copyright IBM Corp. 2014. All rights reserved. 57

3.1 Design levels

The following suggested design levels are used during Financial Transaction Manager
Analysis and Design:

Functional use case diagrams
High-level sequence diagrams
Detailed sequence diagrams

Object lifecycle diagrams

Finite state machine diagrams

Object to object relationship diagrams

yVyVYyVvYyYVvYyy

A Financial Transaction Manager application is driven by a set of Finite State Machine
diagrams. The diagrams that are listed here should all help with the creation of the Finite
State Machines, but are not integral to their creation. With experience, a Finite State Machine
can be created from scratch, but the suggested approach can provide some aid to their
creation.

3.2 Model project structure

When a model project is created, consider the structure of the components within the project.
For example, the structure of packages can show the steps that are involved in the design
process for Financial Transaction Manager.

58 Financial Transaction Manager Technical Overview

Complete the following steps to create a model project in Rational Software Architect:

1. Click File - New — Model Project to open the Create Model Project window, as shown
in Figure 3-1.

{2) Model Project » [E=FER=

Create Model Project

Create a new model project.

Project name: F'atterns_MndeI|

Use default location
Ch\Users\IBM_ADMIN\IEMY rationalsdplworkspaceGenerichMe Browse...

Create new model from
I Create new model in project
1@ Standard template
() Bxisting model
Template description:

Creates a new model frem a standard template.

@ < Back Next > Finich

Figure 3-1 Create a Model Project

2. Enter a name for the project, and then click Next.

Chapter 3. Producing design artifacts by using Rational Software Architect 59

3. Select the Blank Design Package template, and enter the file name, as shown in
Figure 3-2. Click Next.

@ Madel Project | = [l =
Create Model
Create a new model frem a standard template.
Categories: Templates:
= Analysis and Design ®%u Blank Analysis Package
[= Basic Topologies s Blank Deployment Package
(= Business Modeling %% Blank Design Package
(= Business Process Modeling " Enterprise IT Design Package
(= C++ Development %% RUP Analysis Package
M =4 General 1% Service Design Package (deprecated)
& Eeqmlrements ®fn Simplified Blank Analysis Package
g Szzphes %a Simplified Blank Deployment Package
ches
Simplified Blank Design Pack
= UML Integrated Architecture (UPIA) Modeling 2 Simplified Blank Design Package
[Show All Templates
Template description:
Create a new blank UML design package. Only UML tools most suitable for design modeling are enabled. -
File name:
Patterns_PatternMame_Design
Destination folder
Patterns_ Model Browse...
@:I < Back ” Mext =] [Finish] ’ Cancel

Figure 3-2 Listing of available Model Project Templates

Select Model and click Finish.

Click the model, and in the Properties tab, ensure that the Capabilities match those that
are shown in Figure 3-3.

1 Properties E2 4 Search [L Problems =¥ =0
Ea <Model> Pattern_<PatternName>_Design

[7] Customize UL visibility for this model by selecting capabilities below

General
Profiles Capabilities:
Stereatypes » [7] Deployment Architecture Building Blocks :

& [] Infrastructure Deployment Technologies
» [] Logical Deployment Technologies

Documentation

Constraint: |
o > [Modeling :

Capabilities > [F] Physical Deployment Technologies

Relationships > [] UML Diagram Building Blocks

Language [E LIRAE Bl oo Decilolin s Bl .

Advanced Description: |

Figure 3-3 Model Capabilities

60 Financial Transaction Manager Technical Overview

6. Right-click the model (not the model project), and click Add UML — Package. Add
packages as needed. Figure 3-4 shows a suggested package naming convention.

= Patternz_Model
[g Diagrams
% Maodels
=1 Pattern_<PatternMame>_Design
£3 1. Functional Use Case Diagrams
3 2. High Level Sequence Diagrams
3 3. Detailed Sequence Diagrams
[0 4. Object Lifecycle Diagrams
E3 5. Object Relationship Diagrams
E3 6. Application Entities
) Main

Figure 3-4 Model Packages in a Rational Software Architect model

By numbering your package names, you can ensure that they appear in the correct order
in the model.

7. You can also import packages from outside the model on which you are working. For
example, a package that is called Common Pattern Entities that includes components that
are used by all pattern models is used in Chapter 9, “Patterns” on page 237. To include an
external package such as this package, click the Advanced tab in the Properties panel,
and then click the button that is beside the Packagelmport field, as shown in Figure 3-5.

| Properties &3 3" Search l'_ Problems ;'&% B~ .0
Es1 <Model> Pattern_<PatternName>_Design

=
Decumentation Property Value
Owner

Qwning Template Parameter

Constraints

Czenliifties PackegedElement

Relationships Packagelmport
Language PackageMerge /(B
Advanced ProfileApplication

Qualified Name 'S Pattern_<PatternName>_Design -

Figure 3-5 Advanced Properties Packagelmport

Chapter 3. Producing design artifacts by using Rational Software Architect 61

62

8. The Packagelmport Properties pane opens. Click the Insert New Package Import button,
as shown in Figure 3-6.

{23 Properties - I. = ﬁj
Packagelmport Packagelmport
Context Imported Package Importing Mames... o
?;;, Pattern_<Pattern.. =modellibrary= U... Pattern_<Patteri®. x

4 LI

@

Figure 3-6 Packagelmport Properties

You can then browse any models in the workspace to select the package that you want to
include. Figure 3-7 shows the Common Patterns Entities package in the
Patterns_Common model.

E=1 Patterns_Common
3 7. Common Patterns Entities
Y .
£ Main

B (UMLPrimitiveTypes)

Figure 3-7 Common Patterns Entities package import

Financial Transaction Manager Technical Overview

Figure 3-8 shows the final package structure for the patterns model, including package
includes.

1= Patterns_Model
(22 Diagrams
(2= Models
=1 Pattern_<PatternMame>_Design
E3 1. Functienal Use Case Diagrams
E3 2. High Level Sequence Diagrams
£3 3. Detailed Sequence Diagrams
E3 4. Object Lifecycle Diagrams
E3 5. Object Relationship Diagrams
F3 6. Application Entities
4 Main
a’; 7. Common Patterns Entities)
B2 (UMLPrimitiveTypes)

Figure 3-8 Patterns model package structure

3.3 Functional use case diagrams

Complete the following steps to create a functional use case diagram:

1. Right-click the Functional Use Case Diagrams package and then select Add Diagram —
Use Case Diagram.

2. Give the use case diagram a name. Figure 3-9 shows the components that are created
when a use case diagram is added to a package.

1= Patterns_Model
(22 Diagrams
(2= Models
=1 Pattern_<PatternMame:_Design
E3 1. Functienal Use Case Diagrams

£ Associations
' .
| Main

=k
"y <Pattern Name= Use case

Figure 3-9 Use case diagram in the Functional Use Case Diagrams package

Chapter 3. Producing design artifacts by using Rational Software Architect 63

3. Drag Actors, Use Case entities, and Directed Associations from the palette to the use
case diagram. Figure 3-10 shows an example of a simple use case diagram.

Transaction Origination

Process Transaction
Client

Transaction Initiation

Transaction Gateway

Figure 3-10 Actors, a Use Case entity, and Directed Associations

The Project Explorer view shows the individual Unified Modeling Language entities in the Use
Case package. For ease of reuse, items that are likely to be reused can be moved to their
own package within the Application Entities package.

Figure 3-11 shows the Unified Modeling Language Actors as they are created in the
Functional Use Case Diagrams package.

=1 Pattern_<PatternMame>_Design ®
£3 1. Functional Use Case Diagrams
24 Associations
: Main
3 <Pattern Mame> Use case
% Client
/% Transaction Gateway
2 Process Transaction

Figure 3-11 Unified Modeling Language Actor entities

64 Financial Transaction Manager Technical Overview

These entities can be dragged into the Application Entities package for reuse, as shown in
Figure 3-12.

=1 Pattern_<PatternMame>_Design ®
£3 1. Functional Use Case Diagrams
24 Associations
: Main
3 <Pattern Mame> Use case
> Process Transaction
£3 2. High Level Sequence Diagrams
£ 3. Detailed Sequence Diagrams
£3 4. Object Lifecycle Diagrams
£ 5. Object Relationship Diagrams
£3 6. Application Entities
3 Actors
£ Associations
: Main
% Client
% Transaction Gateway

Figure 3-12 Unified Modeling Language Actor entities after the move

You can create a use case diagram for all use case scenarios (both good and bad) and then
feed these use case diagrams into a use case document with descriptions of the use cases.
These uses cases are then used as a basis for the high-level sequence diagrams.

3.4 High-level sequence diagrams

Before a high-level sequence diagram is created, consider whether you want to group multiple
high-level sequence diagrams together and, if so, what package structure most suits the
grouping. This example creates a package that is called Patterns_<PatternName> under the
High-level sequence diagrams package with the intention that other high-level sequence
diagrams for other patterns can be added to their own package.

Complete the following steps to create a high-level sequence diagram:
1. Right-click the package and then click Add UML — Collaboration.
2. Right-click the Collaboration and then click Add Diagram — Sequence Diagram.

3. Rename the Interaction diagram that is created to High Level Sequence Diagram for
clarity. Rename the Sequence Diagram to something appropriate that reflects the use
case that you are representing. For this chapter, High Level Sequence Diagram is reused.

Figure 3-13 shows the package structure with the renamed Interaction and Sequence
diagram.

£3 2. High Level Sequence Diagrams
E3 Pattern_<PatternMName>
[E; Events
: Main
< Collaborationl
1 High Level Sequence Diagram
) High Level Sequence Diagram
[Main
'€ Main
B2 (UMLPrimitiveTypes)
Figure 3-13 Interaction and High Level Sequence Diagram

Chapter 3. Producing design artifacts by using Rational Software Architect 65

Next, you must add the Lifeline swimlanes for each Actor in the Use Case that you want to
represent and one for Financial Transaction Manager.

4. Double-click the Sequence diagram to open it. Then, drag a Lifeline from the palette to the
diagram.

5. Click the Select Existing Type option. Then, browse to the Actor in the Application
Entities package, and click OK. Figure 3-14 shows the Select Element pane that is used
when the Actor is selected.

EN

tl *<Pattern Name> Use

=5

O Select Element 22 I %84 *Patterns_PatternMam ﬁ *Main 3 *High Le|

'] High Level Sequence Diagram
Search Browse

| 5 Lifeline E Select an element:

1= FTM Fragmentation Sample Model -
1= FTM Generic Model
1= FTM Sample App Model
1= Patterns_Model
(% Models
E= Patterns_Common
=1 Pattern_<PatternMame>_Design *
?;;, 7. Common Patterns Entities)
£ 2. High Level Sequence Diagrams
3 6. Application Entities
£ Actors
% Transaction Gateway
% Client
3 1. Functional Use Case Diagrams
3 3. Detailed Sequence Diagrams
£ 4. Object Lifecycle Diagrams -

m

% . Client B
= Properties 2 " Search
OK] | Cancel i

<Sequence> Patterns_Pa Collaborationl::High Level Sequence Diagram:
General MName: High Level Sequence Diagram

Rulers & Grid Type: Sequence

Appearance

Advanced Description:

[I I | 2 label w 7 ¥¥ A By T oS =_—_— A= g o= =

Figure 3-14 Selecting an Actor to represent a Type for the Lifeline

You can make the types in the Lifeline more readable by deleting the representation that is
highlighted when the Lifeline is added. Clicking the delete button as this representation is
highlighted (usually a lowercase version of the Actor name) clears it and leaves the Type

name (in this case the Actor name).

6. Drag a Lifeline to represent Financial Transaction Manager. Then, create the Lifeline as an
Unspecified LifeLine.

7. Click the Type button in the Properties pane, and browse to the FTM Application
component in the Components package of the common entities model. The model in this
example is the Patterns_Common model. Figure 3-15 on page 67 shows the Select
Element pane when the FTM Application component is selected.

66 Financial Transaction Manager Technical Overview

=1,

t *=Pattern Mame> Use

(Q Select Element for Type

| |& :Client | | Property: |

'] High Level Sequence Diagral Search Browse

A Ml(@ *Patterns_Patternham

Select an element:

| Property:

(B Models -

= Patterns_Common
B2 (UMLPrimitiveTypes)
£3 7. Common Patterns Entities
3 Core
£ Generic
£33 Common Interactions
£3 Components
E Mg
| De-Fragmentor
| FTM Application
E MapperTolSF
E] Fragmentor
= PT Flow
= MapperFromIsF

e .
L1 Main -

m

1|

FTM Application

& Properties £2

Y <Lifeline> Patterns_ i

Qn Search

I

General
Stereotypes
Documentation

Constraints

Relationships

Appearance
Advanced

MName:

Type:

Visibility:

Represents: Property ’Cle,a.r] ISElect represents]

nMName = ::Collaboratiq

Select type ...

@ Public) Private () Protected) Package

Figure 3-15 Selecting a Component to represent a Type for the Lifeline

8. To emphasize the Lifeline as the Financial Transaction Manager Lifeline and to highlight
the primary flow of the design, you can drag a rounded rectangle from the Geometric
Shapes palette over the FTM Application Lifeline. When placed, clear the highlighted text
field because this field is not needed.

9. The rounded rectangle can be sent behind the Lifeline image in the diagram by selecting
Diagram — Order — Send to Back.

This step is optional and is meant only to improve the readability of the high-level
sequence diagram.

Chapter 3. Producing design artifacts by using Rational Software Architect 67

Figure 3-16 shows the Client and FTM Application lifelines in the diagram.

& :Client :FTM Application o Palette [
'] High Level Sequence Diagram) - [,\\) @, =
'3_9\ :Client | :FTM application E ———
B . T Sequence
< Geometric Sha...
< Oval
{3 Cylinder
& Rounded
Rectangle
+ B Palygol
/ Line

Figure 3-16 Client and FTM Application lifelines

10.Drag the remaining lifelines to the diagram and select the associated types (that is, for this
example, Transaction Gateway). Figure 3-17 shows all the lifelines that are used by this

example.
2] :Client :FTM Application [A] :Transaction Gateway
E% :Client =] :FTM Application E/% ‘Transaction Gateway

Figure 3-17 High-level sequence diagram with all the lifelines added

11.At a high level, you must represent the message flow throughout the process from the
Sequence palette. For this example, complete the following steps:

a. Click the Asychronous Call Message icon.

b. Click from where the initiator (Client) Lifeline that you want to start and drag to the FTM
Application Lifeline.

c. Enter an appropriate name for the Asynchronous Call Message to represent the type of
message. For this example, the name is left vague purposely (Inbound Txn Msg).

68 Financial Transaction Manager Technical Overview

Figure 3-18 shows the diagram after the Asynchronous Call Message is added.

B :Client B :FTM Application [:Transaction Gateway

E% :Client % :FTM Application E% :Transaction Gateway

1: Inbound Txn Msg

Figure 3-18 Lifelines with an Asychronous Call Message included

12.Add any high-level asynchronous call messages that are needed, including calls to the
external end-points. For internal calls within Financial Transaction Manager, you do not
need to drag the asynchronous call message. Click where on the FTM Application Lifeline
the call is being made, and the message routes back to the FTM Application Lifeline. Add
as many calls or signal messages that are needed to the diagram.

Chapter 3. Producing design artifacts by using Rational Software Architect 69

Figure 3-19 shows the completed High Level Sequence diagram that is created for this
example, including internal Asynchronous Call Message (Validate and Send)).

:Client [2] :FTM Application :Transaction Gateway

'] High Level Sequence Diagram

& :Client =l = :FTM Application % :Transaction Gateway

1: Inbound Txn Msg

_:I L:Ivalidate

c P: send
I 2.1: Qutbound Txn Msg

3: Client Ack

Figure 3-19 A completed High Level Sequence diagram

3.5 Detailed sequence diagrams

Detailed sequence diagrams represent the detailed flow and logic of an object through
Financial Transaction Manager. Creating detailed sequence diagrams is an iterative process.
In some circumstances, commonly reusable processes are easily recognized. In these cases,
the diagrams should be added to the common model. Other times, it is only after a number of
iterations through the creation of the Detailed Sequence diagrams that common processes
become apparent, and those processes can then be moved to the common model for reuse in
other Detailed Sequence diagrams.

It is also useful to create a package structure in your common model to hold any common
components that can be reused.

70 Financial Transaction Manager Technical Overview

Figure 3-20 shows an example of this approach for the Patterns_Common model.

4 (%2 Models
> E= Pattern_<PatternMame>_Design
a B2 Patterns_Commen
4 |F7 6. Common Patterns Entities
4 B3 Common Interactions
» B3 Inbound Transmission
» F3 Outbound Transmission
[Main
4 B3 Components
[Main
- & De-Fragmentor
. = Fragmentor
. & FTM Application
=] MapperFromISF
. & MapperTolSF
- Emq
- & PT Flow
4 £ Core
Datarmodel
Main
Batch
Fragment

» Transmission

4 B3 Generic
Transactions
Transmission

[Main

m

-

Figure 3-20 Package structure of the Patterns_Common model

An example of a common Detailed Sequence diagram that might be reused by other Detailed

Sequence diagrams is one modeling the logging and mapping of an Inbound Physical

Transmission.

Chapter 3. Producing design artifacts by using Rational Software Architect

71

Figure 3-21 shows this Detailed Sequence diagram that pulls in components and generic
data types from our package structure that was shown in Figure 3-20 on page 71.

'] Log and Map Single Txn

=l E :PT Flow

l 1: Arrived .

= E :MapperTolSF |

1,2 Map To ISF | Z|E [anxn
1.2.2: PT Mapped

1,2.3: Txn Mappe

|
|
|

Figure 3-21 Log and Map Single Txn Detailed Sequence diagram

72 Financial Transaction Manager Technical Overview

Figure 3-22 shows another commonly used Detailed Sequence diagram, in which an
outbound transaction is routed and the outbound transmission is created and sent to an
external system without expecting a reply.

1OutTom | |;| iMapperFromISF

15 0 thTI:n Created. |

1: Created

IS _DutTxnAwzitingSend

|
|
1.1: RiowteAndSendCutTon |
Diats fetched from ISF cache or
| Distsbass
|
|
|

.1.1: IdentifyChannel

1.1.2: MapFromISF

{5_DutPTSent

1.1.6: Cut PT Sent

1.1.7: Out Txn Sent
15_0utT

nicomplete’

| |
Figure 3-22 Send Txn (Fire and Forget) Detailed Sequence diagram

1.1.8: Out Txn Complete

By building up a repository of these reusable diagrams, you can expedite the creation of
larger, more complex detailed sequence diagrams by referencing reusable components. For
more information, see Appendix E. Generic Model section of the Financial Transaction
Manager V2.1 Information Center.

Chapter 3. Producing design artifacts by using Rational Software Architect 73

Create specific data types to be used in the Detailed Sequence diagram in a suitable
package. For this example, this information is included within the Application Entities
package. Figure 3-23 shows how you can create a relationship to a core data type in your

common model.

[2) Modeling - Main - Eclipse Platform ro Create Relationship |_§I§
File Edit Diagram Mavigate Search Project Run Modeling Window Help
Source Element:
= . O R
LI~ sl & Pattern_«<PatternMame>_Design::5. Application Entities:Generic TypestInbound <Pat
Tahoma 9 | = ~ g v ~ ‘| | ‘:’,E
= = Target Element:
B *Pros = = = 5w
3 *Project Explorer &3 = ‘ - W *High Level Sequence o | B
g client -
ET] Interactionl Select an element:
3 Detailed Sequence Diagram (2= Models -
) Main (= Patterns_Common
7 4. Object Lifecycle Diagrams %4 (UMLPrimitiveTypes)
E3 5. Application Entities E2 6. Common Patterns Entities
£ Actors E3 Core £
B3 Generic Types Batch
) Main Fragment
Inbound <Pattern> PT Object
T Main Transaction
k) Main L Transmission
?:;', (6. Common Patterns Entities) 1 PaymentTxn
?;:, (UMLPrimitiveTypes) SecuritiesTxn
E= Patterns_Common SvcParticipant
E3 6. Common Patterns Entities SchedulerTask
£3 Common Interactions : Main
3 Inbound Transmission |El Datamodel -
E3 Outbound Transmission —
™ . Transmission
.| Main
“2> Single Transaction
£ mapperFromISF Relationship Type:
E'] Send Txn (Expect Ack) " Expose -
® Sende'_-' (Bxpect Ack) / Generalization
=1} %;nd Txn (Fire a.nd Forget) 2 Instantiate
— . sendjlglthicand borg=t) “ Motivation Realization
el | Ma o= : Realization
c t [Properties &% 4 Search 2
= —.°mMp°.”e" : A Redefine -
ain
= <Data Type> Pattern
El De-Fragmentor
= Helationsh [K] | Cancel |
= Fragmentor [
FTM Application
% il Stereotvpes Nam———

Figure 3-23 Creating a relationship between the ‘Inbound <Pattern> PT’ data type and the core Transmission data type

To create a Detailed Sequence diagram (

create a package that is called Patterns_

as before with the High Level Sequence diagram),
<PatternName> under the Detailed Sequence

Diagrams package, with the intention that other detailed sequence diagrams for other
patterns can be added to their own package.

Complete the following steps to create a detailed sequence diagram:

1.
2.

Right-click your package and then clic
Right-click the Collaboration and then

Sequence Diagram for clarity.
Open the Detailed Sequence diagram

k Add UML — Collaboration.
click Add Diagram — Sequence Diagram.

Rename the Interaction and the Sequence diagrams that are created to Detailed

and complete the following steps:

a. Click the Lifeline icon in the Sequence palette and place the Lifeline in the Detailed

Sequence diagram.

b. Create the Lifeline as an Unspecified Lifeline and, when placed, clear the default
representation that is highlighted in the Lifeline.

c.
want to associate with the Lifeline.

74 Financial Transaction Manager Technical Overview

In the General tab of the Properties pane, click Type and select the data type that you

Figure 3-24 shows the package structure and data types that are used in this example.

/) *High Level Sequence !

General
Stereotypes
Documentation
Constraints
Relationships

Appearance

client:Client Inbou_
'] Interaction1
% client:Client | Inbou
|
|
|
|
|
|
|
|
|
|
|
al
E Properties &3 4 Search

MName:

Represents: Inbound <Pattern> PT [Clear] ’Select represents ...

Type:
Visibility:

@ Select Element for Type

5z | pnd Txn (Expect A

Search Browse

Select an element:

['E“ Maodels
Bz Patterns_Common
E=1 Pattern_<PatternMame>_Design ®
B (UMLPrimitiveTypes)
?;;, (6. Common Patterns Entities)
£3 2. High Level Sequence Diagrams
£3 5. Application Entities
o Actors
£ Generic Types
Inbound <Pattern> PT
Inbound <Pattern> Txn
External Service Req Txn
External Service Req PT
Transaction Gateway Txn
Transaction Gateway PT

=

L Main

m

Inbound <Pattern> PT

oK

|| Cancel

[Z_ Problems

Property

Select type ...

@ Public) Private () Protected () Package

5 <Lifeline> Pattern_<PatternName=>_Design::3. Detailed Sequence Diagrams::Pattern_<PatternName=>::(

Figure 3-24 Selecting a data type to use for a Detailed Sequence diagram Lifeline

If the Lifeline corresponds to a known, pre-existing Finite State Machine model (for example,
one of the Generic Finite State Machine models that accompany Financial Transaction
Manager), you can complete the following steps to add a stereotype to the Lifeline to reflect

this:

1. Click the Stereotypes tab of the Properties pane.

2. In the Keywords field, add the name of the Finite State Machine model that handles the

Lifelines process.

Chapter 3. Producing design artifacts by using Rational Software Architect

75

76

Figure 3-25 shows a Lifeline that has an assigned stereotype.

client:Client Inbound <Pattern> PT:Inbound < Pattern> PT
'] Interaction1
% client:Client «Generic Inbound PT=

[Inbound <Pattern> PT:Inbound <Pattern> PT

]
B Properties &3 %" Search IL Problems
' <Lifeline> «Generic Inbound PT= Pattern_<PatternName> |
General Keywords: Generic Inbound PT

Stereotypes Applied Stereotypes:

Documentation

Constraints Stereotype Profile Required

Relationships

A

Figure 3-25 Lifeline that is associated with the Generic Inbound PT Finite State Machine

After the Lifelines are created and linked to a Type, you can reference common Detailed
Sequence diagrams in the diagram by complete the following steps:

1. Click the Interaction Use icon in the Sequence palette. Then, place it on the Lifeline
where you want the reference to start.

2. Click Select Existing Element, and browse to the common Interaction you want to
reference.

Financial Transaction Manager Technical Overview

Figure 3-26 shows an example where you browse to the Log and Map Single Txn
Interaction in the Patterns_Common model.

= FTM Sample App Model
1= Patterns_Maodel
%‘ Models
= Pattern_<PatternMame>_Design ®
E= Patterns_Common *
F3 7. Common Patterns Entities
F3 Cemmen Interactions
3 Inbound Transmission

LE i J w@ LE *Inbound Ack P *Detailed Sequence Diagram 23 =5
E {2 Select Element | ‘Inbound <Pattern> FT "% Palette [>
— l ik eaaD-
. =1 UML Common
Select an element: I‘ ‘Inbound <Pattern= PT =
1= FTM Fragmentation Sample Model T Sequence “
1= FTM Generic Model 5 Lifeline

m

, & Synchronous
Message

tﬂ} Behavior
Execution
Specification

=, [s¢t] Option Cembined

Fragment

Interaction Use

1= Using R5A

E3 Outbound Transmission
1= Patternz__ Model

2 Inbound Mapping
F'] Log and Map Single Txn Ledesas !
< Acknowledgement

> Destruction Event

¢ State Invariant

Log and Map Single Txn

<> Geometric Shapes

N

— ki

g, Sketch Shapes

Figure 3-26 Referencing the Log and Map Single Txn Detailed Sequence diagram

3.

If the process spans more than one Lifeline (which is usually the case), drag the reference
box to include whichever Lifelines it affects. A window opens with a list of the Lifelines that
the reference spans, which can be selected as appropriate.

As with the High Level Sequence diagram, add any Asynchronous Messages that are
necessary, along with any further referenced Interactions

To emphasize any Financial Transaction Manager Lifelines/Components and to highlight
the primary flow of the design, use the rounded rectangle from the Geometric Shapes
palette as before. When placed, clear the highlighted text field because this information is
not needed.

Send the rounded rectangle behind the Lifeline/Component images in the diagram by
selecting Diagram — Order — Send to Back.

This step is optional and is meant only to improve the readability of the Detailed Sequence
diagram.

Chapter 3. Producing design artifacts by using Rational Software Architect 77

Figure 3-27 shows part 10of 2 of the Detailed Sequence diagram that was created for this
example.

'] Detailed Sequence Diagram

% :Client «Generic Inbound PT= | Inbound «Pattern= Txn ‘ aGeneric Jutbound Tans
:Inbound <Pattern> PT | ‘Transaction Gateway Txn

l:lnbound T%ﬁdjq
- Log and Map Single Txn

|
|
| |
J,Elidate Ten |
|
|
|
|

3: Send to Ten Gateway

3.1: Ten Gateway Msg Crglg ed |
]e
Send Txn (Fire
T
5.1: Client Ack Created
6: Client Ack

|
|
|
|
|
|
|
|
: lmtify Client
|
|
|
T
|
|
|
|

{

Figure 3-27 Part 1 of 2 of the Detailed Sequence diagram

78 Financial Transaction Manager Technical Overview

Figure 3-28 shows part 2 of 2 of the Detailed Sequence diagram that was created for our
example.

Note: This example shows two variations of detailed sequence diagrams. Some show
objects only and their interactions, and some show objects that interact with components.
The latter is used to show more fine-grained interactions but should be used with caution
as to not clutter up the diagram with components.

«Generic Outbound PT= zGeneric Outbound Txn= «eneric Outbound PT= % :Transaction Gateway
Transaction Gateway PT :Client Acknowledgement Txn :Client Acknowledgement PT

4: Txn Gateway Msg

and Forget)

Send Txn (Fire and Faorget]

Figure 3-28 Part 2 of 2 of the Detailed Sequence diagram

3.6 Obiject lifecycle diagrams

By following the Financial Transaction Manager methodology (see the Financial Transaction
Manager V2.1 Information Center Financial Transaction Manager section overview), the
Financial Transaction Manager objects and their states can be identified from the Detailed
Sequence diagram or diagrams. Appendix F. Reference Applications in the Financial
Transaction Manager V2.1 Information Center provides specific examples in two separate
applications about how to identify the objects and their states. You can use these examples
with the steps that are identified in the Detailed Sequence diagram to build an Object lifecycle
diagram for each of the Financial Transaction Manager objects by creating basic state
diagrams.

Chapter 3. Producing design artifacts by using Rational Software Architect 79

80

To start creating a state diagram, the examples in this section create a package that is called
Patterns_<PatternName> under the Object Lifecycle Diagrams package, with the intention
that other state diagrams for other patterns can be added to their own package.

Complete the following steps to create a state diagram:

1. Right-click the package and then click Add UML — Add Diagram — State Machine
Diagram.

2. Rename the created State Machine diagram to something appropriate.

3. Drag an Initial State, States, and Final States from the State Machine palette on to the
diagram and suitably name them.

4. Link the states by clicking the Transition icon in the palette and then clicking the state that
you want to begin with and drag the transition to the state to which you want to transition.

You are prompted to give the transition a name to indicate what is causing the transition
from one state to another; for example, transaction mapped. A convention that we use is to
not name the transition from the initial state to the first state.

5. To add an activity to a transition, right-click the transition and select Add UML — Effect —
Create Activity.

6. Enter a suitable activity name; for example, Validate Transaction.

Figure 3-29 on page 81 shows the complete Object Lifecycle diagram for this example.

Financial Transaction Manager Technical Overview

[#Inbound =Pattern= Txn Lifecycle

o Transaction Mapped

transaction rlapped
ﬁ‘u‘alidatr Transaction

= Validating Transaction

transaction validated
& Create External Sefvice Request Transaction

L Waiting for External Service Response

external service response received
@8 Create Transaction Gateway Transaction

& Waiting for Transaction Gateway Send Complete

transaction gateway send complete
@@ Create Client Acknowledgement Transaction

Inbound Transaction Complete

Figure 3-29 A completed Object Lifecycle diagram

3.7 Object relationship diagrams

Complete the following steps to create an Object Relationship diagram that shows the logical
relationship between Financial Transaction Manager objects:

1.

Create a suitable package structure as with the previous diagrams.

2. Right-click the created package and select Add Diagram — Class Diagram.
3.
4

. From the Patterns_Common or Application Entities packages, drag the Data Types that

Rename the diagram to something appropriate.

you want to show.

Figure 3-30 on page 82 shows some of the Data Types available in the Application Entities
package.

Chapter 3. Producing design artifacts by using Rational Software Architect 81

Pattern_<PatternName> Design * B
E2 1. Functional Use Case Diagrams
[2. High Level Sequence Diagrams
E3 3. Detailed Sequence Diagrams
2 4. Object Lifecycle Diagrams

m

B 5. Object Relationship Diagrams ~dataType~
£ 6. Application Entities Inbound =Pattern= PT
B3 Actors

B3 Generic Types
£ Associations
) Main
Client Acknowledgement PT
Client Acknowledgement Txn
Inbound <Pattern> PT
Inbound <Pattern> Txn
Transaction Gateway PT
Transaction Gateway Txn
[Main
) Main
B, (7. Commeon Patterns Entities) =
B (UMLPrimitiveTypes)

| «dataTypes
|' Inbound <Pattern> Txn
| S ————

Fm Rattorn Nebodline Recion *
. n 3 A

«dataTypes
Transaction Gateway PT

edataTypes
Client Acknowledgement PT

«datalypes
Client Acknowledgement Txn

=dataTypes
Transaction Gateway Txn

Figure 3-30 Drag Data Types on to the Class diagram

5. The Data Type stereotype can be removed (if wanted) by clicking Properties —
Appearance tab and by clicking Decoration in the Show Stereotype section.

Figure 3-31 shows the stereotype text removed for all objects in the diagram.

= Pattern_<PatternName>_Design * -
E3 1. Functional Use Case Diagrams
E3 2. High Level Sequence Diagrams
3 3. Detailed Sequence Diagrams
E2 4. Object Lifecycle Diagrams
E3 5. Object Relationship Diagrams
3 6. Application Entities
B3 Actors
3 Generic Types
(7 Associations
[Main
Client Acknowledgement PT
EE Client Acknowledgement Txn
nbound <Pattern> PT
nbound <Pattern> Txn
Transaction Gateway PT
Transaction Gateway Txn
[l Main
E Main
%{; (7. Common Patterns Entities) *
B (UMLPrimitiveTypes)

Fo Battmen Pabdbios Pocioe
< 1 +

m

Inbound =Pattern= PT

Inbound <Patterns Txn

4 Search |[Eli Problems [f&] Layers E= Outline | =1 Properties &%

<Data Type> Pattern_<PatternName>_Design::6. Application Entities::Generic Types::Transaction Gateway Txn

General Select an existing appearance: || Apply... Rasent Syl Show Stereotype:
Attributes Fonts: @ None None
TS Segoe Ul ~||8 = Neme et
Stereotypes S —— Qualified Name @ Decoration

A -
Documentation \i‘ m \—_/ Decoration and Text

Shape Image

Constraints Fill:
Relationships Color Transparency Show compartments Show compartment titles
Appearance &[] 0 H= Attribute Attribute
Advanced Operation Operation

Transaction Gateway PT

Client Acknowledgement PT

Client Acknowledgement Txn

-
Transaction Gateway Txn

Figure 3-31 Removing the stereotype text

6. Complete the following steps to link the objects by using an association:

a. Click the Association icon in the palette.

b. If you want to indicate that control flows from one object to another, you can choose a

Directed Association in the palette.

c. Click the object that you want to associate to another and drag the association to the

other object.

d. Give the association a suitable name; for example, Cause.

82 Financial Transaction Manager Technical Overview

e. Right-click the association and select Delete from diagram for any attributes on the
association that were created automatically that you do not want to show.

f. If you want to show multiplicity between the two objects, click the association and, in
the Properties — General tab, enter the Multiplicity entries as appropriate.

Figure 3-32 shows how to set the multiplicity on an association.

Eo Pattern_<PattemName» _Design * -
5 1. Functional Use Case Diagrams
3 2. High Level Sequence Diagrams
3 3. Detailed Sequence Diagrams
F 4. Object Lifecycle Diagrams
5 5. Object Relationship Diagrams
B3 6. Applicatien Entities
B3 Actors
E1 Generic Types
(4 Associations
™ Main
Client Acknowledgement PT
Client Acknowledgement Txn
bound <Pattern> PT
bound <Pattern> Txn
Transaction Gateway PT
Transaction Gateway Txn
[Main
) Main
27, (7. Common Patterns Entities) *
=0 (UMLPrimitiveTypes)

et
oy Dattmem Ml dlinn Meacic *

4 n b

m

" Search |[2! Problems | [Layers | 5= Outline |] Properties 53

/" <Directed Association> TRANSMISSION

[Inbound <Pattern= Txn

Inbound <Pattern= PT
1
TRANSMISSION

1

Inbound <Pattern> Txn

Transaction Gateway PT

Client Acknowledgement PT

Client Acknowledgement Txn

Transaction Gateway Txn

inbound <Pat

General 1
Stereotypes

Documentation Label: TRANSMISSION

Constraints Aggregation: @) None
Relationships Shared
Appearance *) Composite
Advanced

Role:
Multiplicity: |1
Is navigable: []

Aggregation:

Role:
- Multiplicity:

Change Direction | [s navigable:

@ None
) Shared
%) Composite
inbound <Pattern> PT2
1

Figure 3-32 Changing the multiplicity settings

Figure 3-33 shows the completed Object Relationship diagram for this example.

Transaction Gateway PT

Client Acknowledgement PT

Client Acknowledgement Txn

Cauk 1
Inbound <Pattern= PT
4 [Cause
1
1
TRANSMISSION
1
Cause
Inbound <Pattern= Txn 1
Cause
1 1

Transaction Gateway Txn

Figure 3-33 Completed Object Relationship diagram

Chapter 3. Producing design artifacts by using Rational Software Architect

83

3.8 Finite State Machines

84

By following the Financial Transaction Manager methodology with the diagrams that are
described in this chapter, you can create a set of Finite State Machines to describe and drive
your processes.

Creating the physical Finite State Machine diagrams stems directly from the basic Object
Lifecycle diagrams. You can copy a basic Object Lifecycle diagram and then refine the
diagram step-by-step by formalizing the State and Event names, with the addition of Object
Selectors, Override Selectors, Object Filters, Event Filters, Operator actions and alerts, and
pseudocode to describe each action or activity with the definition of Events, Action,
Configuration data, and so on, in their associated package structure.

All of these artifacts often are included within a separate Finite State Machine model and
creating such is described in the Appendix C. Rational Model Tooling section in the Financial
Transaction Manager V2.1 Information Center.

Financial Transaction Manager Technical Overview

Mapping

A mapper is a runtime component that is used by Financial Transaction Manager to transform
data that is received from an external source to Financial Transaction Manager’s internal
canonical format (inbound mapper). It also can be used to transform from Financial
Transaction Manager’s internal canonical format before it is sent to an external destination
(outbound mapper).

This chapter provides only a high-level overview about how mapping is done in WebSphere
Message Broker and WebSphere Transformation Extender. It is not meant to be a tutorial. For
more information about mapping techniques, see the respective product’s information center.

This chapter includes the following topics:

Internal standard format
Design considerations
Implementation considerations
Handling large files

\{

vvyy

© Copyright IBM Corp. 2014. All rights reserved. 85

4.1 Internal standard format

Over many years, the financial industry saw the proliferation of messaging standards and
formats varying by region, country, and business functions. These formats include SWIFT MT,
SWIFT MX, EDI, 1SO20022, and CHAPS with country specific and bank-specific formats.
Exchanging data in these formats can lead to complex architectures that contain
transformations that have the following challenges:

» Large in number
» Difficult to maintain and change
» Reduce possibilities of reuse across systems and processes

Financial Transaction Manager simplifies these architecture challenges by introducing a
canonical format called internal standard format (ISF). ISF represents financial transactions
for internal processing that is based on the ISO20022 standard. The use of a canonical
message format provides the following benefits:

» Simplified transaction processing

Financial Transaction Manger needs to work with a single format for the entire transaction
lifecycle and that format is isolated from the details of external formats and protocols.

» Reduced number of transformations

Transformations are reduced by avoiding end-to-end transformations for every
combination of input and output formats. The number of transformations is thus reduced to
the total number of input and output formats in the solution. This process also isolates the
change to a single transformation map for any standard, format, or regulatory change.

» Easily created shared services
Services can work with a single, consistent message format.
» Generic message processing

Allows processes or parts from one transaction to be reused in another without worrying
about external formats.

» Simplified monitoring

Provides a consistent view of transactions across different formats, protocols, and
processes on a central portal.

In the following sections, we describe the structure of ISF, its association with the 1ISO20022
standard, and extension points in ISF.

4.1.1 ISF overview

In Financial Transaction Manager, a transaction is a single unit of business activity that
changes a financial position or information base. A single message or interchange with an
external system can contain any number of transactions. Each transaction is distinguished by
a unique purpose, including the following business purposes examples:

» Payment origination
Payment instruction
Advice

Invoice
Acknowledgement

vyvyyy

86 Financial Transaction Manager Technical Overview

ISF defines a logical data model for the business content of a transaction and is implemented
as XML schema that defines the content and structure of an XML document. The transaction
that is represented by ISF is fully isolated from the details of external formats and protocols.

The ISF data model is extensible to support more application areas or requirements for a
specific solution.

Note: ISF is delivered in Financial Transaction Manager as a set of XML schema files and
an IBM WebSphere Message Broker message set.

4.1.2 The 1S020022 standard

In this section, we summarize information about the ISO0022 standard. For more information
about this standard, see this website:

http://www.is020022.0rg/

ISO20022 is an international standard, which is proposed by ISO, for financial messages that
includes the following components:

» A development methodology
» A registration process
» A central repository with a common data dictionary and business process catalog

The 1ISO20022 data dictionary defines a set of business components that represents a
business entity, such as payments and party. This data dictionary provides the logical model
on which the standard messages in the 1ISO20022 catalog of messages are based.

Important: The ISO20022 standard does not define any messages. Instead, it provides a
framework to define the messages. Within the governance of this framework, there are
special interest groups for different business domains that are responsible for defining the
message structures.

1ISO20022 data dictionary
Figure 4-1 on page 88 shows the conceptual model of the ISO20022 data dictionary.

Chapter 4. Mapping 87

http://www.iso20022.org/

88

ISO 20022 Data Dictionary

Message Concepts Data Types Business Concepts
Business Associations |
- 1 associates
traceability
Message Component =~~~ ~"~TTTTTTTT TS TS T s ss o e oS > Business Component
traceability)
| Message Elements R--—-=====-=—====-"—=—=-"=-"—-"--"-—--— Business Elements |
Z 5,
| Constraint | Oo y | Constraint |
2 Code [
1 value of
Data Type
l based on | Business Role |

Data Type Representation |

Figure 4-1 1S020022 data dictionary conceptual model

Business concept

Business concept acts a container for items that have a business meaning. It consists of
following key components:

>

Business component

Represents a unique business entity in the data dictionary. It consists of one or more
business elements. A business component can be associated with other business
components. A few examples of business components are Account, TradeTransaction,
Payment, CashEntry, and Party.

Business element

Defines the business level characteristic of a business component. It can be uniquely
identified within the context of the surrounding business component only. A few examples
of business elements are DealPrice (in TradeTransaction), SettledQuantity (in
SecuritiesTransfer), and Amount (in CashEntry).

Constraint

Defines specific rules or conditions that are applicable to a business component or its
associated business components. An example of business constraint is
ExchangeConversionRule (applied on the CurrencyExchange business component).

Business association

Defines the association or relationship between two business components and can be
uniquely identified in the context of two business components. Business associations are
characterized by Name, Direction, Multiplicity, and Simple versus Aggregation. A few
examples of business association are [1..n] Party is or are the AccountOwner of Account,
SettlementChain has ChainParty as ClearingBroker.

Business role

Defines a unique functional role that is played by an entity in a particular business process
or transaction. A few examples of business role are CreditorParty, DebitorParty, and
Financial Institution.

Financial Transaction Manager Technical Overview

Figure 4-2 shows terms that are related to the 1ISO20022 data dictionary.

=] Q PaymentExecution

| = Sequéﬁcewpe : SequenceTypeCode |

Business C-:-mp-:-nent Eg CreationDate : ISODateTime
) Ri= Identification : Max35Text
< = ; \ Business + PaymentExecutionl = Bricrity : PriorityCode |Business Element
S— Association 3 -
55 AcceptanceDateTime : I50DateTime l—l 1 + Prelvicls*
= «0pen» CategoryPurpose : PaymentCategoryPurposeCode | = / [
g, ChargeBearer : ChargeBearer TypeCode b Pa¥ment L1 o 0..1'¥ Next
[Cg CreditDebitIndicator : CreditDebitCode & E PaymentInstruction
i2g Curr=ncyOFTransfer ; CurrancyCode { g ProcessingvaltyTime : DateTmePeriod |
[E3, EndToEndIdentification : Max35Text 3 ¢ e
- : - =3 ClearingChargeAmount : CurrencyAndAmount
= EquivalentAmount : ImpliedCurrencyAndAmount -, K PRI - -
[E, GeographicalEnvironment : GeographicalEnvironmentCode gy yipetix InstictionForey Adsl 1 — : H
[Eg Seograp! iiaB00rap = ClearingSystemReference | Max35Text Business Constraint
3 Insti uckedAmount : CurrencyAndAmount =
=" «0Opens InstructionForCreditorAgent : InstructionCode
= «Op:en» LnstructionFm DebtorAgent : InstructionCode . &) | & Q RegulatoryReport
[, PoolingAdjustmentDate : ISODate - . + RegulatoryReport- e "
[E Priority : PriorityCode 1 e Date 1500ate.
=] RequestedCollectionDate : ISODateTime b
g, Type : PaymentTypeCode ; N [
5 Typ Y VP fe = | Role
A, - + Pajyment I

’JJ 1.¥ F‘artyRcIe
2

| —
+ReturnPaymént &1
1
F_Ei BulkPayment + Grou@ IndividualPayment | S BaupentibeRdice
1 *| Business Role | A
5l T) : . = =
| _ | | "L DebtorRole & = reditorRole
& E CreditTransfer & lEl DirectDebit | | Sch ; Identification : Sch
S = e e e S e —— S— g, Schemeldentification : Scheme
=) JstandingOrder : YesNoIndicator i_:I-E‘IRegistl'ation]dentification + Max35Text [i |
& FloorAmounRue () ' I8 PreNotificationDate : ISODate = - . —]
" = PreMetificationldentification : Max35Text | @ InitiatingPartyRole | @ Pay Fi ial ituti I

Figure 4-2 Dictionary components

Message concept

Message concepts are the dictionary items that are used in defining messages. Message
components are composed of the following key components:

» Message component

A reusable component for creating message definition. When you must convey certain
information about a business notion in a message, it is unlikely that you must convey all of
the information. Message components are derived from business components, but contain
only the information that is relevant for a particular use. Multiple message components can
be linked to the same business component.

In XML schema terms, message component is analogous to a complex type. A complex
type can be a sequence or a choice component. For example, a CreditTransferTransaction
message component can be derived from CreditTransfer business component. However,
the message component includes information that is necessary to define the
CreditTransferTransaction message component only.

» Message element
A characteristic of message component and is uniquely identified within the message

component. A message element can be repeated multiple times within a message
component. In such cases, multiplicity indicators [0..n] is added to the message element.

» Constraint

Defines specific conditions that are applicable to a message component. An example of

message constraint is the AmountsCurrencyRule (applied on the message component
SubscriptionCashFlow2).

Chapter 4. Mapping 89

Data types
Data types define sets of valid values of business elements or message elements. The data
types are available:

» Data type

Uniquely defines a set of valid values for business elements or message elements. The list
of valid values is defined by a data pattern or an enumeration of possible values.

» Data Type Representation

A category of related data types that is characterized by a set of technical information that
is required for the implementation.

Note: For more information, see 1ISO20022 business model and 1ISO20022 data dictionary
at this website:

http://www.is020022.0rg/

4.1.3 ISF structure

90

Financial Transaction Manager uses a canonical message model that is called internal
standard format (ISF) to represent transaction internally. In the following sections, we
describe the structure and extensibility options that are available with ISF.

Logical model

ISF defines a logical model that is used to define a canonical representation of the data that is
related to a business transaction. This model is provided as an XML schema that defines the
structure and semantics of that content, and an associated physical representation as an
XML document.

Each business transaction has associated with it a separate ISF transaction document that
captures the business data that is related to that transaction. Each transaction has an
associated business purpose. The business purpose of a transaction is recorded in the ISF
transaction document and in the database entry that is used to store the transaction.

ISF message defines a document structure that contains the following elements:
» Header

Contains information that is used within Financial Transaction Manager. In particular, the
element BusinessConcept specifies the business purpose of the transaction. The header
provides another placeholder for custom header elements where, for example,
solution-specific metadata can be added and can be accessed within Financial
Transaction Manager flows.

» Transaction data

Contains the structure and content that is applicable for the transaction’s business
purpose (BusinessConcept). The definition of the ISF message references an abstract
element that is called Transaction in this position. An actual ISF XML document contains a
substitute element in place of Transaction that defines the content that is applicable for the
transaction type. Such an element is referred to as a transaction element.

Typically, transaction elements are defined as part of an ISF extension to support the
transaction types that are defined by that extension. An ISF extension can be a standard
extension, such as the payments extension or a solution-specific extension.

Financial Transaction Manager Technical Overview

http://www.iso20022.org/
http://www.iso20022.org/business_model.page
http://www.iso20022.org/business_model.page

» Addenda

A placeholder for any other data that can be useful for a particular solution. The SWIFT
mapper pack in Financial Transaction Manager uses the Addenda section to store and
carry block 1, 2, 3, and 5 of the inbound SWIFT message, which can be reused in
outbound mapping.

The element SourceData provides a place to record information about the source
message that was mapped to the ISF document and can contain the complete content of
the original input message.

For more information about ISF structure, see the Financial Transaction Manager Information
center section by clicking Appendixes — Appendix D. ISF Version 3 — Structure.

Important: Addenda can contain any other elements that are qualified with a namespace
prefix. Such elements need not be defined in the schema and are not checked for validity
when the ISF document is validated to the schema.

XML schema structure

A complete ISF schema is made up of core schema files that define common structures and
extension schema files that add support for a specific application area (such as payments or
securities) or a specific solution (such as SEPA credit transfer or international payments).

Typically, ISF extensions are provided as separate schema files that provide a new top-level
schema file that imports the core schema files and imports or includes any other required
extension schema files. For more information about the structure of the Payments extension
and the sample application extension, see the Financial Transaction Manager information
center section by clicking Appendixes — Appendix D. ISF Version 3 — Exensibility —
Standard extensions.

Note: For more information about ISF structure, see Financial Transaction Manager
information center Appendix D.

4.1.4 Extensibility

The ISF Core schema is extensible by using various extension methods that are supported by
the XML schema standards. Typically, different application areas or specific solutions,
introduce new transaction types (which often requires special transaction data content).

Typically, an extension is structured as one or more extension schema files that import the
core schema and introduce other schema definitions, which define an ISF for a new domain.

Tip: When you are defining extensions, use a separate target namespace from the core
ISF namespace.

Although by using XSD schema you can extend almost any type definition, Financial
Transaction Manager defined standard extension points function, in the following ways, for
ISF:

» Transaction data content
» Use of derived types
» The transaction document root element

Chapter 4. Mapping 91

92

Transaction Data Content

The ISF core defines an abstract element that is called Transaction that is referenced in the
content of an ISFMessage. Each new extension often defines new transaction elements; that
is, substitute elements for a transaction that can then be used in an ISF XML document. Such
an element can use any business-component-based complex type as its type. Alternatively, it
can use any new type that is derived from such a complex type, or any new type that is
derived from an ISFBase.

Figure 4-3 shows an example of the transaction data extension point.

o
ISrbagse

Max 10T ext
SwiftMessage [:
Max33Text
[e] MessageType [2.1] Max10Text T
[8] TransactionReference [0.1] Max33Text T @
(] SwifthMessagel= [e] RelatedReference [0.1] Max35Text T -
[e] Currency [0.1] CurrencyCode T DecimalNumber
8] Amount [0.1] DecimalMumber T
Iﬂ Text :'..1] I:TEXtT:.pE] T |:TEXtT}r3E]
é| any [1.7] *

Figure 4-3 Transaction data extension point

In this example, a complex type is created that then extends the ISFBase called
SwiftMessage. A substitution element that is called SwiftMessage also uses the created
complex type.

Use of derived types

XML schema provides a mechanism to define a new type that is derived from an existing
type. The new type can be an extension or a restriction of the existing type. This construct is
used in the ISF Core schemas to reflect business components that are based on other
business components.

Figure 4-4 shows an example of derived types where two different extensions, CreditorRole
and DebtorRole, are created to extend PaymentPartyRole. These two extensions can be
used to override default behavior of the PaymentPartyRole.

PaymentPartyRole PaymentPartyRole

CashAccount [0.*] Cashfccount CashAccount [0.%] Cashbccount

(I | E—
A

Payrnent [0.7] ISFPayment Payrment [2.%] ISFPayment

CreditorRele DebtorRole

Schemeldentification [0.1] Scheme *l-

Figure 4-4 Derived types extension point

Financial Transaction Manager Technical Overview

In an XML instance document (such as a Transaction Document), it is permitted to override
the type of individual elements (by using the xsi : type attribute) to choose another type that is
derived from the type that is defined for the element. Example 4-1 shows a fragment of an
XML document.

Example 4-1 Derived types XML usage

<isf:CreditTransfer>
<ChargeBearer>DEBT</ChargeBearer>
<InstructedAmount Currency="USD">3.34</InstructedAmount>
<PartyRole xsi:type="isf:CreditorRole">

</isf:CreditTransfer>

The extension point also allows for new types to be defined as part of an extension that
extends or restricts types that are part of ISF. These extended types are then referenced in an
ISF instance document. Figure 4-5 shows a scenario where a new type is added as an
extension to an existing SWIFT Transaction.

SwifthMeszage

MessageType [0.1] Max10Text +
TranzactionReference [0.1] Max35Text +|-
RelatedReference [0.1] Max35Texdt l
Currency [0.1] CurrencyCode l
Amount [0.1] DecimalNumber l
Text [0.1] (TedType) J!r

MySwiftMessage
[e] MyCustemDatal Max128Text +
[&] MyCustemString1 string

[&] MyCustemAmeount DecimalMumber :

Figure 4-5 Extending existing transaction

In this case, three other elements are added to an existing SwiftMessage transaction without
creating a transaction. When the ISF document is created, this extension can be used by
extending the xsi:type attribute to SwiftMessage element at run time, as shown in

Example 4-2.

Example 4-2 Extending existing transaction in XML

<isf:ISFMessagexmlns:isf="http://www.ibm.com/xmlins/prod/ftm/isf/v3">

<isf:SwiftMessage xsi:type="myisf:MySwiftMessage"
xmins:myisf="http://www.ibm.com/xmIns/prod/ftm/isf/v3/myswift">

</isf:SwiftMessage>
</isf:ISFMessage>

Chapter 4. Mapping 93

Transaction document root element

The ISF core provides a single element (called ISFMessage) that is the root element of an ISF
XML document. However, another element of type ISFMessage (or of any new type that is
defined as a restriction of ISFTransactionDocument) can also be used. This pattern is most
likely to be of use when ISF is used as the basis for service interfaces.

Standard extensions

Financial Transaction Manager provides already created extensions for Payments
transactions with definitions of new transaction elements. They are called CreditTransfer,
DirectDebit, Acknowledgement, and SwiftMessage.

For more information, see the Financial Transaction Manager information center by clicking
Appendix D — Extensibility — Standard extensions.

4.2 Design considerations

94

Mapping design is the first step that is required to develop a mapper and is often performed
by somebody with business analyst skills. The result of the design is a mapping specification.
A mapping specification identifies the source format or target format and provides details
about its content (element names, description, cardinality, structure, and so on).

Mapping specifications state whether the format represents a single transaction or multiple
transactions. In the case of multiple transactions, the specifications provide further details.
The details that are needed are how the structure of the message or file relates to the
hierarchy of objects (BATCH and TRANSACTION that are related to the TRANSMISSION) in
the Financial Transaction Manager data model that represents the message or file content.
The specification provides details about values to populate columns in the Financial
Transaction Manager tables and views.

The specification provides mapping details for those elements in the message or file that are
mapped to the ISF content (path to element in ISF content and any relevant comments).
These further details include direction on the handling of recurring structures or elements in
the file or message. The details drill down further and include any information about
conversion of data types, merging or splitting of fields, and mapping of code values.

Finally, the mapping specification is supported by samples for the message or file and related
ISF documents (or EndMapper document for an inbound mapping).

In this section, the focus shifts to other aspects of mapping in Financial Transaction Manager.
Because ISF is generic in nature and provides extensibility options, it is important to manage
and govern the consistency of mapping for transactions that are created and mapped in
Financial Transaction Manager. Failing to do so results in a many duplicate and
unmanageable transaction types, which makes the overall solution less manageable and less
reusable.

Although Financial Transaction Manager supports mapping of the entire inbound message to
ISF, it is important to understand the performance implications of the mapping. In the
following sections, we describe the techniques that optimize the mapping performance in the
context of a solution.

Financial Transaction Manager Technical Overview

4.2.1 Guidelines for ISF usage

In this section, we describe the following guidelines:

YyVyVYyYVYVYYVYYY

Business component selection

Using type override in ISF document instance

Appropriate Type override for Party and Partyldentification elements
Ambiguous content duplication between base and extended types
Mapping BIC codes

Using extended Code Types

Using Genericldentification

Using Addenda

Business component selection

When you are choosing a business component for a new transaction type or element, the
following process is recommended:

»

Use an existing business component type wherever possible. Any other business
component type that is created adds to management and performance overhead.

If an existing business component provides a good match for the required content but is
missing content, create a type that extends the matching business component. For more
information about this extension mechanism, see “Use of derived types” on page 92.

If neither of these processes provide a good business component type match, create a
type that extends ISFBase to include the required content. Such a type often uses existing
business components as building blocks for the types of its elements. SWIFTMessage that
is provided as part of Financial Truncation Manager is an example of this scenario.

ISF provides various business components in its schema definition. When you are mapping a
new format to ISF, it is important to choose the correct business component for mapping. The
choice of business component should be considered in the following contexts:

>

Transaction level business component

This business component in ISF is for mapping at the business transaction level. Extra
attention should be given when there are multiple options available in ISF for a single
business component in the inbound business component.

The first decision to make when you are mapping to a new source or target format is to
choose the appropriate element (substitute for “Transaction” in ISFMessage) that contains
the business content of the transaction. If the format represents transactions are
payments, one of the elements CreditTransfer or DirectDebit (of type CreditTransfer and
DirectDebit, respectively) is likely to be appropriate.

If the format represents transactions are related to payments, such as payment status,
return, and recall, an element that uses the type (or extension of) Acknowledgement is
likely to be suitable. The acknowledgement structure provides the content to map the
relationship to the original payment together with status and reason information. Other
properties of the original payment can be mapped to elements, such as,
OriginalMessageStatusInformation, TransactionStatusInformation, and
OriginalTransaction.CreditTransfer.

The structure of the acknowledgement type can be used to represent status information
for a single transaction, a more complex batch of multiple transactions, or multiple batches
each with multiple transactions. The structure of the acknowledgement type can also be
suitable for the response (in the case of services that are based on request and response
messages).

In the case of formats that represent statements, credit and debit advice, and so on, the
element AccountReport (type ISFAccountReport) can be suitable.

Chapter 4. Mapping 95

96

In other cases, the first step is to see whether an ISF type, which represents a business
component in the ISO 20022 Data Dictionary, provides the semantics and content to
represent the format (such as, CashEntry, AccountEntry, and ISFInvoice). If no such type
exists, an extension to the ISF should be considered.

Finally, a general purpose (substitute for transaction) element (which is called wrapper) is
provided. This element, whose type ISFWrapper, is defined to contain wildcard content
and can be used to contain arbitrary elements as required. This can be useful when you
are mapping miscellaneous messages (where the content does not match a suitable ISO
20022 component and the explicit modeling of the content by an ISF extension is not
required).

» Solution level business component

It is important to maintain consistency of the ISF document across the interfaces and
transactions in Financial Transaction Manager. Choosing the same business component
for a particular business concept across the transactions ensures maximum reuse,
compatibility, and consistency. For example, Creditor Information in SWIFT MT103
messages and PAINOO1 messages should be mapped to same business component in
ISF. This allows consistent processing of transactions across the formats.

Using type override in ISF document instance
When you are constructing an ISF document, it might be necessary to override the type of an
element for the following reasons:

» To determine the semantic of an element. For example, in instances where you must
discern when to use which of the following options:

PartyRoleCreditTransfer.PartyRole[xsi:type=DebtorRole]...
CreditTransfer.PartyRole[xsi:type=CreditorRole]...

In such case, when you are accessing the content of an ISF document, it is necessary to
qualify the element to ensure that it has the appropriate type extension to interpret the
content correctly.

» To include subelements that are defined as part of the extended type. For example, when
you are considering PaymentExecution, as shown in the following example:

CreditTransfer.PaymentExecution[xsi:type=PaymentInstruction].SettlementInstruct
ion...

In such a case, when the content of an ISF document is accessed, the qualification is not
necessary; it is sufficient to be able to determine whether the subelement is present, as
shown in the following example

CreditTransfer.PaymentExecution.SettlementInstruction...

This is consistent with a path to access elements in the base type in a manner that is not
sensitive to whether a type extension was used. Consider the following for example:

CreditTransfer.PaymentExecution.Identification

For more information about the use of derived types, see Financial Transaction Manager
information center and click Appendixes — Appendix D. ISF Version 3 — Exensibility —
Use of derived types

Appropriate Type override for Party and Partyldentification elements

One of the key business components of ISF is Party.Properties of a party. They are often
stored in the ISF in the context of ...YyyyRole[xsi:type=XxxxxxxxRole].Player... with
more information in ...YyyyRole[xsi:type=XxxxxxxxRole].Player.Identification...

Financial Transaction Manager Technical Overview

Here, Yyyy, is any type of role, such as PartyRole, PaymentPartyRole, and Xxxxxxxx denotes
specific extensions, such as CreditorRole and DebtorRole.

If the party must be a financial institution (for example, XxxxxAgentRole), use
Financiallnstitution as the type for Player, and OrganisationIdentification for
Identification, as shown in the following syntax:

...YyyyRole[xsi:type=XxxxxAgentRole] .Player[xsi:type=Financiallnstitution].Identif
ication[xsi:type=OrganisationIdentification]...

If the party is a person (which means date of birth or passport number identification
information is specified), use Person as the type for P1ayer, and PersonIdentification for
Identification, as shown in the following syntax:

...YyyyRole[xsi:type=XxxxxAgentRole] .Player[xsi:type=Person].Identification[xsi:ty
pe=Personldentification]...

Otherwise, use Party as the type for Player (Organisation can also be used, but is unlikely to
be required), and Organisationldentification for Identification, as shown in the following
syntax:

...YyyyRole[xsi:type=XxxxxAgentRole] .Player[xsi:type=Party].Identification[xsi:typ
e=0Organisationldentification]...

In the case of ISO messages (such as pain.001), when mapping the party information that is
defined by the PartyIdentification32 type, the presence of the element
PrivatelIdentification can be used to denote that the party should represent a person.

Ambiguous content duplication between base and extended types

In many cases, there is ambiguity between whether to map content to an element in the
content of base type of an element or whether to map to an element that is introduced by an
extended type. Continuing with the example that was used in the previous section, following
syntax is used:

...YyyyRole[xsi:type=XxxxxxxxRole] .Player...

The element Player can be overridden to the type Party or other types, such as Person,
Organisation, or Financiallnstitution that extend Party. Party contains the element
(Identification) that is of type Partyldentification. Organisation includes all the elements of
Party and adds further elements, one of which is Organisationldentification (which is of type
Organisationldentification, an extension of Partyldentification). Similar patterns can be seen
in many other extended types. For example, Person, Financiallnstitution (which also extends
Party), CashAccount (which extends Account options of CashBalance and CashEntry as
opposed to Balance and Entry).

Generally, it is preferable to use the element that is provided in the base type and override the
type of that element, if appropriate. This means that the location of the basic properties is the
same, regardless of which type overrides are used.

For example, to locate the name of a party, see the following syntax:

...YyyyRole[xsi:type=XxxxxxxxRole] .Player.Identification.PartyName.Name

This location is consistent regardless of which overrides are provided for the type of the
elements Player.

Chapter 4. Mapping 97

98

Mapping BIC codes
The following syntax shows the preferred location for BIC code for a party that must be a
financial institution:

...YyyyRole[xsi:type=XxxxxAgentRole].Player[xsi:type=Financiallnstitution].Identif
ication[xsi:type=Organisationldentification].BICFI

The following syntax shows the preferred location for BIC code for a party that might or might
not be a financial institution (in ISO messages can be identified as BICOrBEI):
...YyyyRole[xsi:type=XxxxxAgentRole].Player[xsi:type=Party].Identification[xsi:typ
e=0Organisationldentification].AnyBIC

For completeness, many outbound maps check the preferred and non-preferred possible
locations for a BIC code that uses functions, such as COALESCE in ESQL. For example, the
following locations are checked for Party that must be a financial institution:

» ...Player.Identification.BICFI
» ...Player.BICFI

The following areas are checked for Party that might or might not be a financial institution:

» ...Player.Identification.AnyBIC
» ...Player.Identification.BICNonFI
» ...Player.Identification.BICFI

» ...Player.BICFI

Using extended Code Types

The ISF contains many simple types, which correspond to types in the ISO 20022 Data
Dictionary that define a finite set of enumerated values.

In many cases, an element of this type in the ISF content is the most logical mapping for an
element of similar semantics in a message or file format. However, the range of values in the
message or file format cannot be matched to the finite set of values that are defined in the
ISO 20022 Data Dictionary.

In such cases, the ISF often contains a replacement type definition that extends the original
type following a common pattern. The new type is defined as a union of the original code type
and Max35Text, with the addition of an attribute that is called CodeIssuer.

The union with Max35Text extends the value space to allow arbitrary code values. The
preservation of the original type in the union maintains the link that the new type is an
extension of the code type from which the set of enumerated values might be used by a
mapping tool. The attribute, Codelssuer, allows the value to be qualified.

Example1

Many ISO messages contain elements that contain code values, with separate sub elements
for code (of a specific enumerated type), and proprietary (unspecified value).

For example, in the pain.001 message, for the Locallnstrument code,
CstmrCdtTrfInitn.PmtInf.CdtTrfTxInf.PmtTpInf.Lc1Instrm.Cd (type:
ExternalLocallnstrument1Code) can be mapped to
CreditTransfer.PaymentExecution[xsi:type=PaymentInstruction].ProcessingInstruction
s.LocalInstrument and
CreditTransfer.PaymentExecution[xsi:type=PaymentInstruction].ProcessingInstruction
s.LocalInstrument.Codelssuer set to fixed value ExternallocallInstrument.

Financial Transaction Manager Technical Overview

Also, CstmrCdtTrfInitn.PmtInf.CdtTrfTxInf.PmtTpInf.LclInstrm.Prtry (type: Max35Text)
can be mapped to
CreditTransfer.PaymentExecution[xsi:type=PaymentInstruction].ProcessingInstruction
s.LocalInstrument.

The value set to the attribute, Codelssuer, is derived from the type name of the ISO message
element by removing the suffix nnCode.

For outbound mapping, the choice between mapping to the Cd or Prtry elements can be
made by checking whether the value matches a permitted value for Cd, or by the value of the
Codelssuer attribute.

Example2

In the Swift MT103 message, field 72 can specify sender to receiver information, which is
mapped to an instruction for the next agent. The field might contain fixed code values, such
as CHQB, HOLD, and PHOB. These are standard instruction codes and can be mapped to
CreditTransfer.PaymentExecution[xsi:type=PaymentInstruction].InstructionForNextAge
nt.Code.

Alternatively, the field can contain arbitrary bilaterally agreed codes, which might be mapped
as
CreditTransfer.PaymentExecution[xsi:type=PaymentInstruction].InstructionForNextAge
nt.Code with
CreditTransfer.PaymentExecution[xsi:type=PaymentInstruction].InstructionForNextAge
nt.Code.CodelIssuer set to fixed value SwiftF72.

The value set to the attribute, Codelssuer, indicates that the value relates to usage in the
context of the Swift message field 72.

Using Genericldentification

The ISF schemas provide a complex type (which is called Genericldentification) that is
derived from the business component of the same name in the ISO 20022 Data Dictionary.
This is used to represent arbitrary qualified identification information; for example, as part of
party identification and account identification.

Many ISO 20022 messages contain identification information that is based on the business
component. In each case, the identification information consists of some or all of the following
information:

» Scheme

Identifies the type of identifier to be specified. For example, in the case of a person, you
can use passport number, driving license humber, or national identity number. For an
organization, you can use tax identification number, employer identification number, and
S0 on.

» Issuer

Identifies the authority that issues the identifiers. This can be a country code (in the case
of passport numbers or tax identification numbers) or country code and district or state (in
the case of a driver license number).

» Identification

The actual identification value; for example, a driver license number.

Chapter 4. Mapping 99

The identification information can be mapped to the following subelements that are defined in
Genericldentification:

» Scheme can be mapped to ...Scheme.NameShort and set to a code value that identifies
the scheme; for example, DRLC for driver license number and CCPT for passport number.
This can be further qualified by ...Scheme.DomainValueCode, which can be set to a value
that identifies the set of codes to which the NameShort value belongs. For example, the use
of ExternalPersonldentification to identify the ISO 20022 external code list of person
identification codes or ExternalOrganisationIdentification to identify the ISO 20022
external code list of organization identification codes.

» Issuer can be mapped to ...PartyRole.OwnerCode
» Identification can be mapped to ...Identification

The following construct can also be used, for example, to represent the clearing system
member identification of a Financial Institution:

» Scheme can be used my setting .. .Scheme.NameShort to a value CHID.

» Issuer can be mapped to ...PartyRole.OwnerCode by setting the code to identify the
clearing system scheme. For example, GBDSC for the Bank Branch Code that is used in the
UK.

Note: The ISO 20022 external code list of External Clearing System Identification
Codes provides a list of codes for different clearing systems.

» Identification can be used by setting ...Identification to the identification value; for
example, the Bank Branch Code.

Using Addenda

Use the addenda section of the ISF document to store the data from the inbound message
that is either not part of the core business data or is not needed to be accessed by the
business process throughout the transaction lifecycle. This addenda is carried through the
transaction lifecycle and is available to all the actions and mappers in the solution. For
example, SWIFT mapper pack, in Financial Transaction Manager, uses addenda section to
store block 1, 2, 3, and 5 of the inbound SWIFT message. This information is available to the
outbound mappers if they need it.

Note: ISF is an XML document that is typically parsed in its entirety (but can be avoided
because of WebSphere Message Broker parsing on-demand capability). Adding content to
the addenda makes the ISF document larger and can add parsing overhead.

The SourceData element in the addenda can be used to store an XML rendering of (or string
values for) the content of the original message with information about the original format
(message type, message set name, and so on).

4.2.2 Mapping level considerations

100

In this section, we focus on various aspects that must be considered when the mapping
specification for an interface is created. Although industry-level interfaces are standard (such
as SWIFT and SEPA), financial institutions have their own set of requirements around these
interfaces.

Financial Transaction Manager Technical Overview

These requirements concern the following areas:
» Amount of processing to be done on a message.
» Amount of information to be monitored in a transaction.

» Frequency of messages; for example, steady load single transactions, burst load single
transactions, hourly batches, and end of day batches.

A financial transaction contains large amounts of information. However, in many cases, most
of this information is pass-through. Regarding Financial Transaction Manager, pass-through
means that only a few attributes of the inbound transaction are used for processing. The rest
of the information is sent to external interfaces without change. However, there are scenarios
where almost all the information that is present in the inbound transaction must be used
through the business process; for example, interactions with accounting systems and
compliance checks.

These scenarios require different levels of mapping from inbound message to ISF and from
ISF to outbound messages. The extensible nature of ISF provides multiple options to perform
in-depth or high-level mapping of an inbound message to ISF. Some of these mapping
techniques are described in the following section.

Consider an example scenario where Financial Transaction Manager receives SWIFT
messages from all the series (0 - 9) on a single channel. The following processing
requirements of these messages are needed:

» Financial Transaction Manager should consider only MT103, MT202, and MT942
messages for full lifecycle management.

» All of the remaining messages should be sent directly to the SWIFT gateway for
processing.

» Every transaction should be logged in Financial Transaction Manager database regardless
of SWIFT message type.

» SWIFT MT202 and MT942 messages should be routed to predefined system interfaces.
» SWIFT MT103 messages should be enriched based on certain fields of the message.

In the following section, we describe various mapping techniques in the context of these
requirements.

Pass-through mapping

Pass-through mapping is a concept that often applies to outbound mapping when the
message to be sent out is the same as the message that was received (no transformation).
The outbound mapping passes through the raw content of the original input message.
Pass-through mapping can be used with shallow or deep mapping at the inbound side.

Advantages
Pass-through mapping has the following advantages:

» Best mapping performance because there is virtually no data to map.
» Single mapper can be used for multiple formats.
» Minimal development and testing time.

Disadvantages
Pass-through mapping has the following disadvantages:

» Performance overhead of carrying original raw data with ISF document.

» Any modifications or enrichments that are made to the transaction data cannot be sent to
outbound systems.

Chapter 4. Mapping 101

102

Shallow mapping

In terms of runtime overhead and development effort, shallow mapping is lower in cost. It is
appropriate where format transformation or enrichment is not being used and only a part of
the message content is needed in the canonical representation. Shallow mapping can be
used with the storage of original message content within Addenda.

When shallow inbound mapping is used, pass-through outbound mapping can be used or
original message content (stored in Addenda) can be used by outbound mapping to efficiently
construct the outbound message.

In our example scenario, consider the requirement for processing SWIFT MT 202 and MT942
messages, which states that SWIFT MT202 and MT942 messages should be routed to
predefined system interfaces. To fulfil this requirement, these messages must be mapped to
ISF to use the lifecycle management capabilities of Financial Transaction Manager.

The destinations of these messages are fixed at design time. Thus, every attribute in the
message might not be required for transaction processing. In such a scenario, mapping
specification should map only the key attributes of the inbound message to ISF. The
remaining information can be discarded or carried in the addenda section of the ISF
document to the output mappers where the original message can be re-created, if required.

Advantages
Shallow mapping has the following advantages:

» High performance maps, as limited information is mapped.
» Smaller development and testing time as compared to full mapping.
» Easy to upgrade to deep mapping pattern at a later stage if required with minimal impact.

» Transactions can be searched by using the Financial Transaction Manager user interface,
which is based on mapped attributes.

» Transactions can use the full lifecycle capabilities of Financial Transaction Manager.

Disadvantages
Shallow mapping has the following disadvantages:

Limited information is available for transaction processing.

Higher CPU and memory requirement for mapping than pass-through mapping.
Unlikely to use pre-made mappers from Mapper pack of Financial Transaction Manager.
Limited Key Performance Indicators (KPI) can be tracked.

vyvyyy

Note: For more information about and supported formats of Mapper pack, see
Appendix J in the Financial Transaction Manager information center.

Deep mapping

In our example scenario, consider the requirement that states that SWIFT MT103 messages
should be enriched based on certain fields of the message. To fulfil this requirement, each
attribute in the transaction must be mapped to ISF. Being mapped to ISF enables Financial
Transaction Manager to run enrichment rules against these attributes to decide which fields
must be enriched. Further, actual enrichment is done on certain fields of the message.

For commonly used SWIFT MT messages, Financial Transaction Manager already provides
ready-to-use mappers and their specifications. For other formats, mapping specification and
mapper code must be created. The Financial Transaction Manager information center
provides mapping specification for MT103 format, which can be taken as reference for
creating other mapping. The mapping is shown in Figure 4-6 on page 103.

Financial Transaction Manager Technical Overview

Status|Tag |Field Name|No|SWIFT Path (for lookup) ISF Comment

Sender's

CreditTransfer.PaymentExecution[xsitype=isf:Paymentinstruction]

M 20 |Reference | 1|Document.MT103.F20a.F20 |ldentification
Time
O,R |13C|Indication | 2|Deccument.MT103.F13a Repetitive field

Depending on code map
to: Combine Time, Sign
Document MT103.F13a.F13C and TimeOffset and
.Code convert to ISODateTime

Document MT103.F13a.F13C sitype=isf:Paymentinstruction] |RNCTIME -=
Timelndication on CreditDateTimelndic ation

Document. MT103.F13a.F13C |Cre on[xsitype=isf:Paymentlnstruction] [SNDTIME -=

Figure 4-6 Sample ISF mapping document

Advantages
Deep mapping has the following advantages:

» All the data from the inbound message is available for transaction processing.
» Full set of KPIs can be implemented.
» Transactions can use the full lifecycle capabilities of Financial Transaction Manager.

» Financial Transaction Manager Mapper pack can be used for some of the standard
formats.

Disadvantages
Deep mapping has the following disadvantages:

» Processor and memory intensive mapping.
» Higher effort in development and testing.

Metadata modeling and mapping

In many cases, financial institutions have their custom metadata as part of the inbound
message, which is essential to be carried forward to the outbound mapper. Arbitrary other
data that must be captured by the inbound mapper and passed to an outbound mapper can
be held in the Addenda section of the ISF document. The metadata concept is more for some
key properties of the message (for all or a set of message types) that can be used for
process, routing, and so on. Example key properties are an access key for outbound
interfaces, cryptographic keys, and queue information as part of RFH2 header in WebSphere
MQ message.

ISF does not have any placeholder for such non-business data or information. However, it
provides an extension point by using xsd:any element in the header to add solution-specific
attributes. The header does not contain any transaction information but is carried throughout
the transaction lifecycle. This extension point can be used to add solution-specific information
to the ISF document.

From the implementation perspective, any number of elements of any type can be appended

to the ISF header in the input mapper. This information is accessible to all of the components
in the Financial Transaction Manager.

Chapter 4. Mapping 103

Define a ComplexType and associated element definition for all the header elements. Then,
add this element to the header rather than adding individual elements. This approach
improves maintenance and reusability of the header across interfaces and message formats,
as shown in Figure 4-7.

ISFMessageHeader
[8] BusinessCencept [1.1] string
[e] MasterTransactionld [0.1] ISFObjectld [+
[e] RequestiD 0.1] string
[e] Tran=zactionld [0.1] ISFObjectld [+
[e] TranszactionRef [3.1] string
[8] Pricrity 0.1] string
[e] MeszageMame [3.1] string MyCustomHeader
[e] Sender 0.1] string] [e] AccessKey string
[e] Receiver [0.1] strin; /lﬂ f'vﬂ}-'CLIEtcmHeaclerl— eec| €] Encryptionkey hexBfnal}"
@ any [1.1] : [e] Queuelnfo string

Figure 4-7 Metadata modeling example

4.3 Implementation considerations

A mapper is a WebSphere Message Broker subflow that is started to perform the mapping.
The mapper subflow uses one or more nodes that are provided by WebSphere Message
Broker to perform the parsing and transformation of messages. For more information about
developing Mappers, see Chapter 5, “Using WebSphere Message Broker Toolkit to produce
build artifacts” on page 131.

In this section, we describe implementing mapping in Financial Transaction Manager by using
various options for mapping that is offered by the underlying WebSphere Message Broker
platform. Financial Transaction Manager also includes support for mapping by using
WebSphere Transformation Extender.

Each of these technologies has different parsing and mapping constructs. They also have
different artifacts that must be produced as part of the mapping.

4.3.1 Parsing

104

Parsing in Financial Transaction Manager refers to an activity where a physical wire format is
translated into a logical message tree. This tree can be validated against a message
definition and can be accessed by using expressions that are similar to XPath. WebSphere
Message Broker and WebSphere Transformation Extender have native supports for
modeling, parsing, and validating messages. These techniques are described in the following
sections.

Financial Transaction Manager Technical Overview

WebSphere Message Broker message sets

Messages can be modeled in WebSphere Message Broker by using message sets. A
message set for ISF is included with Financial Transaction Manager that can be imported into
WebSphere Message Broker Toolkit. Figure 4-8 shows the properties of the message set.

messageSet.mset (ISF_V32)

Properties Hierarchy Details
Message Set : : = S 7
= Default message domain I| KMLMSC ¢ For XML messages (namespace aware, validation, low memory use} -
4 XML Wire Formats -

KLY Supperted message domains WIMRM] [s04ap [] DataObject
Custom Wire Formats [E]XMLNS [F]IMSMap [F]IMSStream 150N

T |/Delimited String Formaty
2gged/melmited String Forma CIMIME - [T XML (deprecated) HIinoc (deprecated)

Use NaMmespaces

IMRM domain

Default wire fermat <ne default specified= -
IMessage set ID COVQOHI400200
IMessage set alias <Optional: set if you use Me

m

IMessage type prefix <Optional: set if you use Mes

Broker will treat Length facet as MaxLength

4 I »

Figure 4-8 ISF Message Set

The message set supports the following domains:
» XMLNSC

This is used in most cases as an XMLNSC parser in WebSphere Message Broker
because of its high performance.

» MRM

MRM domain is added to retain support for earlier versions of Financial Transaction
Manager.

For other inbound and outbound messages, WebSphere Message Broker provides a
capability to create message sets and definitions by importing message definitions in one of
the formats that are shown in Figure 4-9.

|g|\‘ C Header File

Fa, COBOL File

i, CORBA IDL File

@ Database Definition File
[:]‘ IBM Supplied Meszage
|‘?S‘ SCA Import or Export
&9, WSDL File

[6], XML DTD File

[5], XML Schema File

Figure 4-9 Message definition import options

The following options are available:

» C Header File

» COBOL File

» CORBA IDL File

» Database Definition File

Chapter 4. Mapping 105

IBM Supplied Message
SCA Import or Export
WSDL File

XML DTD File

XML Schema File

vyvyyvyyvyy

Additionally, message sets and definitions can be modeled manually by adding elements and
types by using Message Set Editor, as shown Figure 4-10.

ISFMessage (isf:ISFMessage)

Structure Type Min Ocecurs Max Occurs
L [,:;EI ISFDacumentCare_v3.muxsd

(&2 Meszages

Types

l|_| Groups
4 [@ Elerments and Attributes

B ISFMessage isf:ISFMessage _

[e] Header isf:lSFMeszag.. 0 1 Add Lecal Element
E.i—l izf:Tranzaction i=f:ISFBaze 0 1 Add Element Reference
[e] Addenda isf:lSFMeszag.. 0 1 Add Wildcard Elemnent
F‘El ISFMessages isf:lSFMeszages
[e] Wrapper isf:lSFWrapper Add Lecal Group
[e] ;ransactTlcn - F:::EESEEE Add Local Attribute
[] Request |an_-act|c_n = Add Wildeard Attribute
[e] ResponzeTransaction isfISFBase

Figure 4-10 Message set editor

Note: For more information about message set modeling, see the WebSphere Message
Broker information center by clicking Developing message flow applications —
Constructing message models.

After the message set is created, it can be used in multiple WebSphere Message Broker
nodes to parse and validate the message, such as the following constructs:

» Input nodes
» Reset content descriptor node (RCD node)
» ESQL function PARSE

Note: It is important to note that parsing and validating message trees is one of the most
CPU and memory intensive operations. Thus, message flows should be designed to
minimize parsing and validation operations.

For more information, see WebSphere Message Broker Support pack IP04: WebSphere
Message Broker: Designing for Performance for best practices, which is available at this
website:

http://www-01.1ibm.com/support/docview.wss?uid=swg24006518

106 Financial Transaction Manager Technical Overview

http://www-01.ibm.com/support/docview.wss?uid=swg24006518
http://www-01.ibm.com/support/docview.wss?uid=swg24006518
http://www-01.ibm.com/support/docview.wss?uid=swg24006518

WebSphere Transformation Extender type trees

Messages can be modeled in WebSphere Transformation Extender by using type trees to
define properties for text or binary data, different character sets, data structures, and
semantic validation rules. The resulting type definition is enforced, automatically and
transparently when the WebSphere Transformation Extender map runs. Included with
Financial Transaction Manager are type trees for various industry formats, including SWIFT
MT. Figure 4-11 shows a sample type tree structure.

§> &3
= & CopyBook

== Field
4 EMP_FIRST_NAME
4 EMP_HIRE_DATE
4 EMP_JOB_TITLE
4 EMP_LAST_NAME
4 EMP_SALARY_FIELD
4 EMP_TYPE
Group
Record
@ TP_EMPLOYEE

1]

i
o

Figure 4-11 Type tree structure

Chapter 4. Mapping 107

108

Similar to WebSphere Message Broker, WebSphere Transformation Extender supports
creating type trees by importing existing structural definitions by using multiple options.
Figure 4-12 shows the possible import options.

45 Extender Mavigator &3 Mavigator =08

=

=i

= [Redbook
=] Configuration Files
lg“ Database Files
(= DTD Files
(2 ICL Files
] Map Executables
=2 Map Files
(£ MAR Files
+-(Z= Misc
é Resource Files
+ é Schema Files
-2 System Definition Files
= Type Tree
45> EMPLY
<i» EMPL(, Impert P <i» COBOL Copybook
<E»EMPY] Expart | c:y compa DL

gﬁx TypeTree Script Files l_“ File System
= XML Files

Mew 4 |

1o IBM IMS TM Resource Adapter
[*] 18M WebSphere Adapter for Email
ftp IBM WebSphere Adapter for FTP
<i» Java Class

<i¥» Java Messaging Service {JMS)

i» PL/T Indude

i Text File

A

i» Type Library

- i» Type Tree Maker
o= Outline 23 Composition <& WSDL

#

An outline is not available.

#

> XML DTD
i» XML Schema

#

Figure 4-12 Create type tree by using import

More information: For more information about type trees, see the WebSphere
Transformation Extender information center, which is available at this website:

http://pic.dhe.ibm.com/infocenter/wtxdoc/v8r3m0/index.jsp

Inside WebSphere Transformation Extender, create the type trees by using XML schema
import feature when the format is XML (rather than native WebSphere Transformation
Extender type trees). This is true especially for WebSphere Message Broker integration
because it allows closer binding to the WebSphere Message Broker XMLNSC domain (which
is more efficient). However, in some circumstances, the XMLNSC binding can be
unsupported. Thus, the integration flows must support the BLOB and XMLNSC domain for
the ISF bindings.

Financial Transaction Manager Technical Overview

http://pic.dhe.ibm.com/infocenter/wtxdoc/v8r3m0/index.jsp

Java Validation Component

The Java Validation Component provides a framework for validating SWIFT messages within
WebSphere Transformation Extender.

The Java Validation Component can be used to check messages before they are transmitted
to the SWIFT network to ensure compliance. It provides a configurable validation framework
with error reporting functionality, which allows the source of the error to be quickly located.
The component is typically used when the requirement is to validate only the message rather
than transformation.

The Java Validation Component validates the following data in accordance with the latest
SWIFT standards:

» Message syntax (presence and order of fields and sequences)
Field syntax (size and data type)

Field and sequence cardinality (optional, mandatory, and repeating)
Code words

Network validated rules at both message and field level

Message envelope syntax (SWIFT header and trailer)

Market practice rules

vVvyvyvyYyy

Important: The Java Validation Component validates all user to user messages; that is, all
of the Category 1 (MT1nn) through Category 9 (MT9nn). However, Category 0 (MTOnn)
Service and System Messages are not validated by the Java Validation Component.

For more information about configuring Java Validation Component, see the Financial
Transaction Manager information center by clicking Application programming —
Mappers — WTX Mappers —» WTX SWIFT Maps — Java Validation Component.

4.3.2 Mapping technologies

The mapper in Financial Transaction Manager is responsible for conversion between the
external message format and the internal ISF. The input mappers transform external
messages into ISF Document and output mappers transform ISF Documents into external
format.

WebSphere Message Broker (optionally with WebSphere Transformation Extender) provides
various options to perform this transformation. Each of these options is described in this
section.

ESQL mapping

This is one the most common and frequently used mapping technologies in Financial
Transaction Manager. It involves adding a compute node and a corresponding ESQL module
to perform mapping to or from ISF to an external format, as shown in Figure 4-13.

BEginMapN /clf‘jappa
b

Map to ISF

Figure 4-13 ESQL mapper flow

Chapter 4. Mapping 109

110

The input message (ISF or external format) must be parsed to perform mapping. If not
already parsed, the ESQL module can use the PARSE function to construct the logical
message tree for mapping.

In ESQL, mapping involves the construction of the output tree by using a series of assignment
or create statements. These statements must be run such that the order of the elements in
the output tree matches the required structure that is defined by the message set or schema
(or any other format). You can achieve this output by using the following process:

1. Create empty elements in the correct order, including the creation of output message
skeletons without any values, such that the structure of the output matches the required
output format, as shown in Example 4-3.

Example 4-3 Create output structure in ESQL

CREATE LASTCHILD OF rIsfTxn AS rISFChequelIssue NAME 'CreditMethod';
SET rISFChequelIssue. (XMLNSC.Attribute){INMAP_XSI NS}:type='isf:Chequelssue’;

CREATE LASTCHILD OF rIsfTxn NAME 'EquivalentAmount';

CREATE LASTCHILD OF rIsfTxn NAME 'EndToEndIdentification';
CREATE LASTCHILD OF rIsfTxn NAME 'ExchangeRateInformation';
CREATE LASTCHILD OF rIsfTxn NAME 'InstructedAmount';

CREATE LASTCHILD OF rIsfTxn NAME 'InstructionForCreditorAgent';
CREATE LASTCHILD OF rIsfTxn NAME 'InstructionForDebtorAgent';

--Create CreditTransfer.PartyRole(xsi:type=DebtorRole) and keep the reference
CREATE LASTCHILD OF rIsfTxn AS rISFDebtorRole NAME 'PartyRole';
SET rISFDebtorRole. (XMLNSC.Attribute) {INMAP_XSI NS}:type='isf:DebtorRole’;

--Create CreditTransfer.PartyRole(xsi:type=CreditorAgentRole) and keep the ref.
CREATE LASTCHILD OF rIsfTxn AS rISFCredtAgtRle NAME 'PartyRole';

SET

rISFCredtAgtRle. (XMLNSC.Attribute) {INMAP_XSI NS}:type='isf:CreditorAgentRole';

--Create CreditTransfer.PartyRole(xsi:type=CreditorRole) and keep the reference
CREATE LASTCHILD OF rIsfTxn AS rISFCreditorRole NAME 'PartyRole';
SET rISFCreditorRole. (XMLNSC.Attribute) {INMAP_XSI NS}:type='isf:CreditorRole';

2. Populate the output values from input message. This output is the actual mapping phase
where mapping logic is applied to copy values from the input message to output message
per the mapping specification, as shown in Example 4-4.

Example 4-4 Populate output values in ESQL

DECLARE rInputPmtId REFERENCE TO rInputCdtTrfTxInf.*:PmtTpInf;
IF NOT LASTMOVE(rInputPmtId) THEN

MOVE rInputPmtId TO rInPmtInf.*:PmtTpInf;
END IF;

Financial Transaction Manager Technical Overview

SET rISFPaymInstr.Identification = rInputCdtTrfTxInf.*:PmtId.*:Instrld;
SET rISFPaymInstr.Priority = rInputPmtld.*:InstrPrty;
SET rISFPaymInstr.SettlementInstruction.PaymentTaxDetails = rInPmtInf.*:Tax;

3. Delete unused elements by removing the unused or unnecessary elements. This step
keeps the structure clean and reduces the overhead of carrying the empty elements in
subsequent flow, as shown in Example 4-5.

Example 4-5 Delete unused elements

--Remove empty fields

IF NOT EXISTS(rISFPaymInstr.ProcessingInstructions.ServicelLevel.*[]) THEN
DELETE FIELD rISFPaymInstr.ProcessingInstructions.Servicelevel;

END IF;

IF NOT EXISTS(rISFPaymInstr.ProcessingInstructions.*[]) THEN
DELETE FIELD rISFPaymInstr.ProcessingInstructions;
END IF;

IF NOT EXISTS(rISFPaymInstr.SettlementInstruction.*[]) THEN
DELETE FIELD rISFPaymInstr.SettlementInstruction;
END IF;

Note: You might need to break the process into multiple sections of the message to
achieve the most efficient method of mapping.

Additionally, the mapping logic might need access to Financial Transaction Manager
configuration data for conditional processing. Financial Transaction Manager provides a
number of ESQL helper functions to access the cached configuration data. For more
information, see the Financial Transaction Manager information center by clicking
Application programming — Static Data Cache.

Note: For more information about ESQL functions, see the Reference — Message flow
development — Transformation interfaces — ESQL section in the WebSphere
Message Broker information center.

Java mapping

The mapping can be implemented in Java if it is the enterprise-level technology choice. The
message tree that includes the environment tree can be accessed by using Java methods
that are provided by WebSphere Message Broker.

Note: There are no Java helper functions provided to access Financial Transaction
Manager configuration data. Therefore, manual coding or solution-specific functions must
be created to achieve the same.

Java can be used in WebSphere Message Broker by using one of the following methods:

» Calling out to a Java procedure from a compute node
» Use of Java code in a Java Compute node

Chapter 4. Mapping 111

112

Calling out to a Java procedure from a compute node

In ESQL, Java methods can be started by declaring them as external functions. However,
ESQL code can start only static methods that are defined in Java classes. The Java code
implementation for the methods can by deployed to the same run group that the ESQL is
deployed to or can be added as a shared library to the broker run time.

Example 4-6 shows a sample ESQL declaration for Java method.

Example 4-6 ESQL declaration of Java methods

CREATE FUNCTION MapTransaction_Java(IN root REFERENCE, IN env REFERENCE, INOUT
output REFERENCE)

RETURNS CHAR

LANGUAGE JAVA

EXTERNAL NAME "com.ibm.fxh.mapping.Mapper.MapTransaction";

When declared, the method can be called as any other ESQL function. WebSphere Message
Broker defines a mapping between ESQL and Java data types for arguments and return
types. For more information, see the WebSphere Message Broker information center.
Example 4-7 shows starting this method from ESQL code.

Example 4-7 Starting declared methods

SET STATUS = MapTransaction_Java(InputRoot, Environment, OutputRoot);

Using Java code in a Java Compute node

WebSphere Message Broker also provides a Java Compute where a Java module can be
assigned to the node. When a module is created, WebSphere Message Broker generates the
skeleton for the code to be written. Developers can then use the WebSphere Message Broker
Java method to browse the message tree and environment to perform mapping.

Important: When the flow that contains Java Compute node is deployed on WebSphere
Message Broker on z/OS, any work that is performed by the node can be offloaded to the
zSeries Application Assist Processor (zAAP), which helps reduce costs.

Figure 4-14 shows the example message flow that uses Java Compute node to map an
inbound external message to ISF.

BeginMapper / EndMapper

Map to ISF
Figure 4-14 Java compute node and message flow

Financial Transaction Manager Technical Overview

WebSphere Message Broker generates a skeleton for this Java Compute node, as shown in
Example 4-8.

Example 4-8 Java skeleton code for mapping

package com.ibm.fxh;

import com.ibm.broker.javacompute.MbJavaComputeNode;
import com.ibm.broker.plugin.*;

public class Java Mapping Sample MaptoISF extends MbJavaComputeNode {

public void evaluate(MbMessageAssembly inAssembly) throws MbException {
MbOutputTerminal out = getOutputTerminal("out");
MbOutputTerminal alt = getOutputTerminal("alternate");

MbMessage inMessage = inAssembly.getMessage();

// create new message

MbMessage outMessage = new MbMessage(inMessage);

MbMessageAssembly outAssembly = new MbMessageAssembly(inAssembly,
outMessage);

try {
// Add user code below

// End of user code

S —

// The following should only be changed
// if not propagating message to the 'out' terminal
out.propagate(outAssembly);

} finally {
// clear the outMessage
outMessage.clearMessage();

}

The input and output messages are referenced by using variables inMessage and
outMessage, respectively. The environment trees can be accessed by adding two more
variables in the code, as shown in Example 4-9.

Example 4-9 Access environment tree

MbMessage env = inAssembly.getGlobalEnvironment();
MbMessage localEnv = inAssembly.getLocalEnvironment();

Navigating the input message

The input message must be browsed to extract values from certain locations. WebSphere
Message Broker provides multiple methods to browse the input message. Example 4-10 on
page 114 shows a sample ISF XML fragment. The namespace declarations are removed
from the fragment for simplicity.

Chapter 4. Mapping 113

Example 4-10 Sample ISF Fragment for navigation scenario

<isf:ISFMessage>
<Header>
<BusinessConcept>PAYMENT ORIGINATION</BusinessConcept>
</Header>
<jsf:CreditTransfer>
<ChargeBearer>DEBT</ChargeBearer>
<InstructedAmount Currency="USD">3.34</InstructedAmount>
</isf:CreditTransfer>
<Addenda />
</isf:ISFMessage>

Figure 4-15 shows navigating this XML document by using WebSphere Message Broker Java

API.
(1 N:R (2)
{)’5| - oot 5 (Key
» Vi —
A (5) N = Name
V = Value
(1) = geFirstChild()
(2) = getLastChild()
N: Properties —(3)=—> n: MQMD €—(4)—— \: XMLNSC (3) > getNextSibling()
v: «—(4)— v —(3)—> v: (4) = getPreviousSibling()
I * | (5) = getParent()
(1) (50 (2)
{13 * I + {7)
(1) N: ISFMessage (2)
[» V
(5) > —(5)
| —e—)
N: Header (3) » N\: CreditTransfer (3) » - Addenda
B I S A ot
(1) (5) (2) (1) (5) (i?{i}
N: BusinessConcept N: ChargeBearer ———{3)— N: InstructedAmount —)
| ot T T
(1) {il {i? (i? (?) ﬁj (i){T
N: N: N: Currency —(3)=—>
V: PAYMENT_ORIGINATION V: DEBT V:uUSD «—(4)— V:3.34

Figure 4-15 Java logical message tree navigation

114 Financial Transaction Manager Technical Overview

There are five key methods to navigate the logical tree. Each of these methods returns an
element that is called MbElement. Example 4-11 shows the method usage for an ISF
document. The configuration data can be accessed from the environment tree in a similar
way.

Example 4-11 ISF document navigation in Java

MbElement root = assembly.getMessage().getRootElement();
MbElement isfRef = root.getlLastChild().getFirstChild();
MbElement header = isRef.getFirstChild();

MbElement eBusinessConcept = header.getFirstChild();

String businessConcept = eBusinessConcept.getValueAsString();

Additionally, XPath based methods can be used to navigate the message tree, as shown in
Example 4-12.

Example 4-12 XPath based method for navigation

MbMessage msg = assembly.getMessage();

List 1stBC = (List)msg.evaluateXPath("/CreditTransfer/Header/BusinessConcept");
MbETlement eBusinessConcept = (MbElement)1stBC.get(0);

String businessConcept = eBusinessConcept.getValueAsString();

Creating the output message

Similar to access methods, WebSphere Message Broker provides element and attribute
creation methods. These methods can be used to create elements in the output tree and set
values. Example 4-13 shows adding a new header element RequestID to ISF.

Example 4-13 Creating an element in Java

MbElement requestID = header.createElementAsLastChild(MbXML.ELEMENT,
"RequestID",
"Some Value");

Elements and attributes also can be created by using XPath expressions. WebSphere
Message Broker provides extension to XPath APIs to simplify the element creation process.
Example 4-14 shows the creation of the element RequestID by using XPath API.

Example 4-14 Using XPath API to create an element

MbMessage msg = assembly.getMessage();
msg.evaluateXPath(“/CreditTransfer/Header/?RequestID[set-value('Some Value')]”);

The ? before RequestID triggers the element creation rather than creating element access in
the XPath extension.

Note: For a full list of XPath API extensions, click Developing message flow
applications —» Transforming messages — Using Java — Writing Java —
Manipulating message body data — Using XPath in WebSphere Message Broker
information center.

Chapter 4. Mapping 115

116

XSLT mapping

WebSphere Message Broker provides support for XSLT-based transformation by using a
built-in node that is called XML Transformation node. The XMLTransformation node uses the
XALAN-4J engine as it base. XSL-Transform node is built as a Java plug-in node. If it is
working on the z/OS platform, processing can then be offloaded to the zAAP processor.

The node can be configured to pick up the stylesheet at design time by specifying XSLT path
on the node or (at run time) by overriding LocalEnvironment tree values. For more
information, see to the WebSphere Message Broker information center section Reference
Message flow development — Built-in nodes — XSLTransform node — Using local
environment variables to set properties.

For runtime selection of stylesheets, the node can pick up the XSLT file from one of the
following sources:

» Stylesheets on externally hosted server

The complete URL for the stylesheet can be provided in the LocalEnvironment tree,
including the protocol to fetch the stylesheet; for example,
http://url.to.my.server/xs1t/abc.xs1. The WebSphere Message Broker run time must
access this URL directly for the node to work correctly. This option is useful when there is
a separate team building the transformation maps on a different server.

Tip: To improve performance, cache the stylesheets that are fetched from the external
server by using XSLTransform node capabilities. However, the only way to clear the
cache when there are XSLT changes is to reload the run group or restart the broker.

» Deployed to local file system

The stylesheets can be deployed to local or network file system that is accessible to
WebSphere Message Broker. These stylesheets can then be accessed by the
XSLTransform node either by absolute or relative path.

In case of absolute path, the stylesheets can be deployed to any location of choice.
However, if a relative path is specified, WebSphere Message Broker resolves the root
directory for XSLT files to <MQSI_WORKPATH>/XSL/external, where <MQSI _WORKPATH> is the
directory that is defined by the MQSI_WORKPATH system environment variable. Thus, the
stylesheet must be deployed to this location. WebSphere Message Broker run time throws
an exception if it cannot locate the XSLT file.

The main advantage of this approach is that XSLT files are available to all the execution
groups with single deployment. However, this approach complicates the back out process
if deployment fails.

» Deployed to execution groups

Each execution group can host multiple stylesheets that can be accessed by
XSLTransform nodes. You must add the stylesheet to a BAR file and deploy the BAR file to
the execution group. Mentioned on the node property, stylesheets are picked up
automatically by the BAR builder. The advantage of the use of deployed stylesheets is that
the node manages them for you by backing out a deployment if things go wrong. The
disadvantage is that you must deploy a copy of the stylesheets to each execution group
that needs them.

Financial Transaction Manager Technical Overview

Map configuration access in XSLT

XSLT can work with only a single XML input, which, by default, is the actual payload. It does
not have access to the environment tree that holds the Financial Transaction Manager
configuration. Thus, it is important to create a wrapper that consists of the Financial
Transaction Manager configuration and payload information together. That wrapper can then
be accessed by XSLT. Also, the output of XSLT must adhere to the end mapper v2 structural
format. For more information about this format, see Chapter 5, “Using WebSphere Message
Broker Toolkit to produce build artifacts” on page 131. You must put a compute node before
the XSLTransform node to crate the wrapper structure, as shown in Figure 4-16.

BeginMapper EndiMapper

G—"' o
Create Wrapper Map to ISF
Figure 4-16 XSLTransform node-based mapping flow

The configuration data structure is shown previously in Figure 4-10 on page 106 and
Example 4-15. The compute node creates the structure that is similar to the structure that is
shown in Example 4-15.

Example 4-15 Sample wrapper XML

<wrapper xmins:cfg="http://www.ibm.com/xmlns/prod/ftm/MapConfig
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:isf="http://www.ibm.com/xmins/prod/ftm/isf/v3">
<cfg:inboundCfg>
<msgTypeCfg>
<class>0C_101</class>
<subType>BC_101</subType>
<bat>
<class>0C_101</class>
<subType>ST_101</subType>
</bat>
<pt>
<class>0C_101</class>
<subType>ST_101</subType>
</pt>
<type>FIN101</type>
</msgTypeCfg>

</cfg:inboundCfg>
<isf:ISFMessage>
<Header>
<BusinessConcept>PAYMENT ORIGINATION</BusinessConcept>
</Header>
<isf:CreditTransfer>
<ChargeBearer>DEBT</ChargeBearer>

</isf:CreditTransfer>
<Addenda />
</isf:ISFMessage>
</wrapper>

Chapter 4. Mapping 117

118

Graphical mapping

In WebSphere Message Broker, Mapping node provides graphical mapping capability to the
developers to map the fields of input message to output message or database. It reduces
development effort for mapping and allows the maps to build rapidly. When mapping node is
used, every message that must be mapped must have a corresponding message set. This
requirement applies to message body, environment, and local environment.

Note: For more information about mapping, see the WebSphere Message Broker
information center section Developing message flow applications — Transforming
messages — Using message mappings — Message mappings overview.

Mapping node supports the following message domains:

MRM
XMLNSC
XMLNS
MIME
SOAP
DataObject
JMSMap
JMSStream
XML

BLOB
IDOC

VVYVYYVYYVYYVYVYVYYVYY

Figure 4-17 shows a sample message flow that uses Mapping node.

BEginMapN EndMapper
L

Map To ISF
Figure 4-17 Flow with mapping node

Complete the following steps to get started with message mapping:

1. Double-click the mapping node to open the wizard for creating message mapping. In this
section, we describe mapping to ISF from external format. However, you can follow similar
steps to complete ISF to external format mapping by changing the source and target.

2. Select the source and target for the mapping, as shown in Figure 4-18 on page 119. For
the map source, select the root element of the external message. In this case, the external
format is a PAINOO1 message.

For the map target, choose txn, chunk, or abort (depending on the type of transaction).
For more information about these message types, see Chapter 5, “Using WebSphere
Message Broker Toolkit to produce build artifacts” on page 131. For this example, txn is
selected.

Financial Transaction Manager Technical Overview

Creates a map for a Mapping node. Properties, and opticnally headers and the LocalEnvironment can be mapped.
Select map sources

4[] B Messages

[l LF'E, CommoenBaseEvent [http:/Swwowibm.com/AC/ commonbaseevent]_0_1, CBE, FTIM Core CBE]

[l LF'E, CommoenBaseEvents [http:Swwowibm,.cem/AC/ commonbaseevent]_0_1, CBE, FTM Ceore CBE]

[5], Document [urn:iso:std:ise:20022:techixsd:pain.001.001.02, SWIFT pain.001.001.02, FTIM Sample App pain.001.001,
[&L Document [urn:isoistd:ise: 2002 2:techasd:pain,002,001.02, SWIFT pain.002.001.02, FTI Sample App pain.002.001,
[[BL 15FMessage [urnsww
[5] 1sFMessage [http:/ fwwwibm.cem/xmins/prod/fim/isf/v3, 1SF_V2, FTM Cere ISF for Payments V3]
[l 186 arrans Nirnnunn thin cammecafhuareenndcfa:? 0 1SE U SARD EThA Sananle Ann ISE 171

Select map targets

ribm.comisoftwareepprisfie2_0, ISF_V2, FTM Core I5F for Payments V2

o F‘E‘l ISFMessages [urniwww.ibm.conisoftwareeppisfivd 0, I5F_V2_SAMP, FTM Sample App ISF V2
o F‘E‘l ISFMessages [http:/ S wwwibm.com/=mins/prod/ftm/isfA3, 1I5F_V3_SAMP, FTM Sample App I5F V3]
o F‘E‘l abort [http:/Swwwibm.comsmins/prod/ftm/EndMapper, EndMapper, FTM EndMapper]
o F‘E‘l chunk [http/Swwwiibm.com/xmins/prod/ftm/EndMapper, EndMapper, FTM EndMapper]
F‘E‘l ten [http:/Swww.ibm.com/xmins/prod/ftm/EndMapper, EndMapper, FTM EndMapper]
[BLoB [

p-[C] 7= Data Targets

oK {| can

Figure 4-18 Mapping node choose source and target

3. Click OK.

The WebSphere Message Broker toolkit creates a blank mapping template for you that is
based on the source and target that is selected, as shown in Figure 4-19.

4 [8 Ssource - Message "tns1:Document” - a [Starget - Message "ermiben”, Parser "XIMLNSC"
|-[€] Properties (PropertiesType_tns1:Document} [-[8] Properties (PropertiesType_em:txn)
4 LF‘E, tnzl:Document (tns1:Document) 4 LF'E, emetxn (em:SingleTransaction)
4[] tnsl:CstrnrCdtTrfInitn (tns1:CustomerCreditTransferlnitiationV03) type (xsd:string)
[--[8] tnsl:GrpHdr (tnsT:GroupHeader3Z) failed (xsd:boolean}
4--[8] tns1:Pmtinf [1,unbounded] (tns1:Paymentinstructieninformatior £ failureCode (xsd:string)
[8] tns1:Pmtinfld (tns1:Max35T ext) 4[] cols[0,1] (em:Cels)
[8] tnsT:Pmthtd (tns1:PaymentMethod3Code) [F= cheoice [Qunbounded]
[e] tns1:BtchBookg [0,1] (tnsl:BatchBookingindicator) l---[€] objVal [0,unbounded] (em:ObjValue)
[B] tnsT:NbOfTxs [0,1] (tnsT:Max1SMNumericT ext) — b--[8] counter [0,unbounded] (en:Counter)
[B] tns1:CtrlSum [0,1] (tnsT:DecimalMumber) --[8] error [Q.unbounded] (em:Errer)
-[8] tnsh:PmtTpinf [0,1] (tns1:PaymentTypelnfarmation1d) [E“ specializations for pt (em:Object) (filtered)
[e] tnsT:ReqdExctnDt (tns1:IS0Date)
[E] tnsl:PoolghdjstmntDt [0,1] (tns1:ISODate)
[tns1:Dbtr (tns1:Partyldentification32) o

Figure 4-19 Mapping Editor

Next, complete the following steps to add an ISF document to the destination because this is
an abstract structure:

1. Drag the tnsl:Document element. Drag from the source panel into the wildcard element
under xml (or the element that is specified in the mapping), as shown in Figure 4-20 on
page 120.

Chapter 4. Mapping 119

120

4 [af Ssource - Message "tns1:Document”
[--[8] Properties (PropertiesType_tns1:Document)

[LF'E tn51:D0cument(tn:1:D0cumr:ntJ\

kool (em:ColBool)
date (em:CeolDate)
time (em:ColTime)}
datetime (em:ColDateTime)

I = T T
[l [[[a] [a]

xml (em:CalXml)
name (xsd:string}

fh tnsT:Docur®ent el DE
pe-[8] hex (em:ColH
[--[8] ehjVal [0,unbounded] (em:OhbjValue)
v =1 -

[N o NP SR PR I ST S

<)

Figure 4-20 Drag element to wildcard

2. The mapping editor prompts to choose the element as a substitution for the wildcard.
Select the ISFMessage element, as shown in Figure 4-21, and then click OK.

In croer to create a2 mapping, a defined item must be used in place of selected wildcards,

Select a defined item to replace the target wildcard:

[T [&] CreditTransfer [http:/Swww.ibrm.com/xmins/prad/ftm/isfA03, 1I5F_V3, FTM Core ISF for Paymen =
[T [&] CreditTransfer [http:/Swww.ibm.com/xmins/prod/ftm/isfA3, 1I5F_VI_SAMP, FTM Sample App |
[C] [e] Debitinvestigation [http://www.ibm.com/xmlins/prod/ftm/isf/v3, ISF_V3, FTM Core ISF for Payr
[[&] Debitinvestigation [http://www.ibm.com/xmlins/prod/ftm/isf/v3, ISF_V3_SAMP, FTM Sample &
[T [e] DirectDebit [http:/fwwwibm.cam/xmins/prod/ftm/isf/v3, ISF_V3, FTM Core ISF for Payments \
[[e] DirectDebit [http:/fwwwibm.cam/xmins/prod/ftm/isf/v3, ISF_V3_SAMP, FTM Sample App ISF'
0 F‘E Docurment [urniiso:steise:20022:technesd:pain.001.001.03, SWIFT pain.001.001.03, FTM Sample /[|
0 F‘E Document [urniisoistdiizo: 20022 techixsd:pain,002,001.03, SWIFT pain.002.001.03, FTM Sample /
0 F‘E ISFMessage [urnwwwiibmucomisoftwareieppisfoed 0, I5F_V2Z, FTM Core ISF for Payments V2]

0 F‘E ISFMessage [http:/ Swwwdibmucem/xmins/prod/ftn/isf A3, 1I5F_V3, FTM Cere [SF for Payments s
0 F‘E ISFMessage [urnwwwiibm.conmisoftwareieppisfoed 0, ISF_V2_SAMP, FTM Sample App I5F V2]

0 F‘E ISFMessage [http:/ Svwwiibmcem/xmilns/prod/ftm/isf 03, 1ISF_V3_SAMP, FTM Sample App ISF

0 F‘E ISFMessages [urniwww.ibm.conisoftwareieppiisfivd 0, 15F_V2, FTM Core ISF for Payments V2] —
F‘E ISFMessages [http:/fwww.ibm.com/xmins/prod/ftm/isf/v3, ISF_V3, FTM Core ISF for Payments
0 F‘E ISFMessages [urniwww.ibm.conisoftwareieppiisfivd 0, 1SF_V2_SAMP, FTM Sample App I5F V2]
0 F‘E ISFMessages [http:/ S wwowibm.com/=mins/prod/ftm/isf3, 1I5SF_V3_SAMP, FTM Sample App ISF
[T [e] LiguidityRequest [urnmwwwibm.comsoftwareeppisfivd_Qisample, ISF_V2_SAMP, FTM Sample.
[T [&] LiquidityRequest [http://www.ibm.com/xmins/prod/ftm/isf/v3/sample, I5F_VI_SAMP, FTM Sar
[[&] LiguidityRespanse [urnmwwawibm.comisoftwareeppiisfiva_Qisample, ISF_V2_SAMP, FTR Sampl
[T [e] LiquidityRespanse [http:/www.ibm.comfzmlins/prod/ftm/isfv3/zample, ISF_V3_SAMP, FTM 5
[[8] Payrent [urnowww.ibm.comisoftwareeppisfae_0, ISF_V2, FTM Care ISF for Payments V2] -7

n | »

OK l | Cancel

dec (em:ColDec <xsdidecimal xsdistring>)

Figure 4-21 Choose ISFMessage element

The WebSphere Message Broker toolkit creates a submap (with source as input message
and destination as ISF), as shown in Figure 4-22. You can now drag to create the required

mapping.
"l H cument | a (B Starget - isf:ISFMessages (isf:ISFMessages)
4 4--[8] Batch[1,unbounded] (isf:15FBatch)

iSs i
[B] tnsl:CstmrCdtTrilnitn (tns1:CustemerCreditTransferinitiatic
p--[@ tnsl:GrpHdr (tns1:GroupHeader3?)

[--[8] tns1:Pmtinf [1,unbeunded] itns1:Paymentinstructionln

|-[E] BatchHeader [0,1] isf:ISFBatchHeader)
4 choice
|--[e] Batch [1,unbounded] (isfISFBatch)
I Fé‘ isfilSFMessage [1,unbounded)] (isf:SFMessage)

Figure 4-22 Submap editor

Financial Transaction Manager Technical Overview

WebSphere Transformation Extender based mapping

A WebSphere Message Broker integration flow is required for inbound and outbound maps.
These integration flows are supplied as part of the Financial Transaction Manager Package.

Note: Financial Transaction Manager requires a broker subflow for each map that can be
started by Financial Transaction Manager. Use of these generic flows for WebSphere
Transformation Extender maps removes the need to create a separate mapper subflow for
each WebSphere Transformation Extender map.

The WebSphere Transformation Extender maps that are provided with Financial Transaction
Manager use configuration for some properties (such as validation option, business concept,
and values for object SUBTYPE and 0BJ_CLASS). This makes the maps more universally useful.
At a minimum, the generic mapper flows require the configuration information to identify the

WebSphere Transformation Extender map that is to run.

The generic flows that are provided for WebSphere Transformation Extender maps can also
be configured to allow for custom subflows. These subflows can be started before or after the
actual body mapping, pre-body mappers, and post-body mappers components. For more
information about pre-body mappers and post-body mappers, see the Financial Transaction
Manager information center by clicking Application programming — Mappers —» WTX
Mappers — WTX Integration in FTM.

Unlike WebSphere Message Broker, WebSphere Transformation Extender does not have
access to map configuration and output message domain details because Financial
Transaction Manager configuration data is stored in the WebSphere Message Broker
environment tree. The environment tree is not accessible inside WebSphere Transformation
Extender map. Thus, this data must be explicitly passed to the WebSphere Transformation
Extender map by using multiple input cards. Therefore, every WebSphere Transformation
Extender map must have three input cards with the same name and sequence (Config,
Source, and OutputMessageDomain), as shown in Figure 4-23.

4 g5 CommonMap

4 & CommonMap

F |

&> 1 Config

& 2 Source

& 3 OutputMessageDomain
g Output Cards
g Organizer
€} F_ApplicationHeader_Input
€} F_ApplicationHeader_Output
€} F_DLMfromAddenda
€} F_PDEfromAddenda
€} F_POMfromAddenda

Figure 4-23 WebSphere Transformation Extender input cards

These cards receive the following information:
» Config

Map configuration data. The inbound configuration allows the map to determine what
sub_type and class must be put in ISF for an inbound message. Based on the inbound
message format, the map should look up the configuration to obtain the values to be
populated.

Chapter 4. Mapping 121

122

Similarly, the outbound configuration allows the map to determine the outbound message
format for a sub_type and class so that appropriate transformation map is chosen.

» Source
The actual body of the message.
» OutputMessageDomain
The body domain in which output message must be parsed.

The WebSphere Transformation Extender Map node for WebSphere Message Broker accepts
multiple input cards by using the WebSphere Message Broker MessageCollection. For more
information about this process, see the WebSphere Transformation Extender information
center by browsing to WebSphere Transformation Extender for Integration Servers —
WebSphere Transformation Extender for Message Broker — Developing a message
flow — Using the WTX Map node within a message flow — Using the WTX Map node
with a source map and multiple inputs.

Some message formats, such as Swift MT, consist of a common envelope that contains
common message information (including message type and message body). The content of
the message body depends on the message type. A common mapper construct for such
formats (which are used by Swift MT maps that are provided with Financial Transaction
Manager) is to have a common driver map that understands the envelope, performs mapping
of any content in the envelope, and starts a separate run map that is specific to the message
type that understands and maps the message body.

For the structure of the message that arrives on the config card of the map, XSD schemas are
included with Financial Transaction Manager. These XSD schemas are for the XML
configuration information document for inbound and outbound maps. The document structure
allows for separate configuration information for different message types to be contained in a
single document. Typically, the configuration document contains information to identify maps
or submaps, set validation options, or provide values for the map to use. An example is the
value to set for the business concept of resulting transactions. For more information about the
structure of these configuration messages, see the Financial Transaction Manager
information center section Application programming — Mappers — WTX Mappers —
WTX Integration in FTM — WTX map configuration.

When the execution begins, the input data must first be validated to ensure that the data for
each input conforms to the definition of the corresponding type tree that is mentioned in the
input card. If invalid data is encountered, the map stops, unless you set a restart attribute
when the input data is defined. When the restart attribute is set, WebSphere Transformation
Extender continues parsing the input data even if it encounters errors. This feature is useful to
detect all the errors in the input message. Use of the REJECT function when you are mapping
the output data makes it possible to acquire the invalid data.

This mechanism also works for XML input data (by using the Xerces parser or a classic type
tree). It is not applicable when reading XML with a direct XML Schema Definition (XSD) input
card. That process is considered by using the XSD directly as a data definition. Because
there is no type tree, the RESTART flag cannot be set.

Use of the Audit log feature permits the capture of validation errors on input or output. If some
data does not meet the type tree definition (for example, if the type is not in a restriction list), it
is displayed in the data log part of the audit log. The audit log is used by Financial Transaction
Manager for error handling.

Financial Transaction Manager Technical Overview

Depending on different scenarios, you can choose to have these cards as part of the router

map. The router map then routes to the appropriate functional map or main map that is based
on configuration of content of the message. Alternatively, you can choose to directly map the
data to output cards. Figure 4-24 shows how the direct mapping scenario can be

implemented in WebSphere Transformation Extender.

~ Map

€ %ot X

Pfi\ 3= OutputMessageDomain (Blob Fields Generic) @ ﬁ

4 Outputhes

{2y 22 Source (X5D) &4

@ Source

@ misc (0:7)

sageDomain
[3% 12 Blob_72 (Blob SwiftRoute)

Output Rule
4 Blob_72 | =VALID{

@ prolog (0:1)

@ global

{2 12 Config (X5D) &

@ Config

& misc (0:1)

@ prolog (0:1)

@ global

[:,Q_ 10# SwiftMessage (Blob Fields Generic)

Elob_72

JEXIT("comiibm.fxhawteswiftmt. MapperUtili..,

Figure 4-24 Direct mapping from input cards to output cards

The output rule for output card 1 maps the required output. Example 4-16 shows a sample
mapping rule that can be put into WebSphere Transformation Extender.

Example 4-16 Sample mapping rule

=TEXT (COUNT (

EXTRACT (Entry:sequence2:Account:sequence3:AccountReport:choice:Transaction:sequenc
e:ISFMessage:sequence2:txn:choice:sequence2:pt:global:Source,

CreditDebitIndicator:sequence2:ISFReportCashEntry:choice:Entry:sequence2:Account:s
equence3:AccountReport:choice:Transaction:sequence: ISFMessage:sequence2:txn:choice

:sequence2:pt:global:Source="CRDT"

)

For simple mapping, WebSphere Transformation Extender also supports a drag interface. By
using this interface, you can drag a source field from one of the input cards to the target field

on output card.

After the map is built, it must be compiled as AlX or z/OS, depending on the target platform.

You can also compile the map for Microsoft Windows for testing purposes, as shown in

Figure 4-25 on page 124.

Chapter 4. Mapping

123

124

IO TS

[
422 Map Files

@ w Mew r
@ |SFteSWIF1
toSW en
@ |SFteSWIF1 Op
@ |SFteSWIF1 Open With 4

=| Copy Ctrl+C

¥ Delete Delete
Move...

Rename... F2

Import 2
Export 3

2 | Refresh F3

Build All Maps... 2 Microsoft Windows Ctrl+L

Run Maps... Ctrl+R
View Run Results

IBM ALK(TI]) (R5/6000 processor)
IBM(TM]) z/ 05
Linux (Intel processor)

Compare With 2 . o
HP-UX(TM] (ltanium processor)

Properties Alt+Enter Sun Solaris(TM} (SPARC processor)

zlinux

Figure 4-25 Build WebSphere Transformation Extender maps

After the maps are deployed to the target server, they can be started by mapper flows at run
time.

Note: For more information about development and testing techniques, see the
WebSphere Transformation Extender Information Center.

SWIFT MT message mapping

Financial Transaction Manager includes a custom plug-in WebSphere Message Broker node
that is called FxhStandardsProcessing node (SPN). The SPN nodes transforms SWIFT MT
FIN messages to SWIFT MT XML messages or vice versa. It also performs validation of the
SWIFT messages. This node is useful when SWIFT MT FIN messages are handled, which
are name-value pair messages and are difficult to model in logical message tree. By
converting them to MT XML, the overall processing of SWIFT messaging is simplified.

Example 4-17 provides a sample of an MTFIN representation of a SWIFT MT 999 message.

Example 4-17 SWIFT MT999 in MTFIN format

{1:FOIMYLOCALLTXXX0000000000}{2:19991BMADEFFAXXXN}{4:
:20:009

:79:009

-}

Financial Transaction Manager Technical Overview

In this example, the output of FxhStandardsProcessing node is an MTXML representation of
this SWIFT MT 999 message, as shown in Example 4-18.

Example 4-18 MTXML representation of SWIFT MT 999

<mtmsg:FinMessage

xmins:mt="urn:swift:xsd:fin.999.2011"
xmlns:mtmsg="urn:swift:xsd:mtmsg.2011">

<mtmsg:Blockl>

<mtmsg:Applicationldentifier>F</mtmsg:Applicationldentifier>
<mtmsg:Serviceldentifier>01l</mtmsg:Serviceldentifier>
<mtmsg:SessionNumber>0000</mtmsg:SessionNumber>
<mtmsg:SequenceNumber>000000</mtmsg: SequenceNumber>
<mtmsg:LogicalTerminalAddress>MYLOCALLTXXX</mtmsg:LogicalTerminalAddress>

</mtmsg:Blockl>
<mtmsg:Block2>

<mtmsg: Inputldentifier>I</mtmsg:Inputldentifier>
<mtmsg:MessageType>999</mtmsg:MessageType>
<mtmsg:MessagePriority>N</mtmsg:MessagePriority>
<mtmsg:DestinationAddress>MYREMOTEXXXX</mtmsg:DestinationAddress>

</mtmsg:Block2>
<mtmsg:Block4>
<mt :Document>
<mt :MT999>
<mt:F20a>

<mt : F20>009</mt : F20>

</mt:F20a>
<mt:F79a>
<mt:F79>

<mt:Narrative>

<mt:Line>009</mt:Line>

</mt:Narrative>

</mt:F79>
</mt:F79a>
</mt :MT999>
</mt :Document>
</mtmsg:Block4>
</mtmsg:FinMessage>

Each XML element of a message in this MTXML format belongs to one of the namespaces
that are shown in Table 4-1.

Table 4-1 Namespaces for the MTXML Format Prefix Namespace XSD file description

Prefix Namespace XSD File Description
mtmsg | urn:swift:xsd:mtmsg.year mtmsg.year.xsd This namespace represents the entire message.
mt urn:swift:xsd:fin.mt.year fin.mt.year.xsd This namespace represents the business data, which

corresponds to FIN block 4. You can integrate the
structure of the appropriate FIN message type into the
message.

Consider the following points concerning Table 4-1:

» In this table, mt is the message type to which the file applies; for example, 103 or 999.

Chapter 4. Mapping 125

126

In this table, year is the year of the SWIFTNet FIN message standard to which the file
applies.

As a result of this naming scheme, the name of the corresponding namespace changes
with each new release of the SWIFTNet FIN message standard.

FxhStandardsProcessing node processing
The following steps show how this node processes:

1.

The FxhStandardsProcessing node checks whether the result location of the message to
be processed contains the element ComIbmDni.MsgStandardInfo.Domain. If this element
contains the value DNIUNPARSABLE, the node performs no further processing and
propagates the message on the failure terminal.

The FxhStandardsProcessing node checks the information from the request folder in
LocalEnvironment. If no request data is available, the corresponding node property values
are used.

If transformation or validation is to be done, the FxhStandardsProcessing node
determines which message definition set is to be used. If the
<ResultLocation>.ComIbmDni.MsgStandardInfo.DefinitionSet element is specified, the
message definition set specified therein is used. Otherwise, the domain that is specified by
the <ResultlLocation>.ComIbmDni.MsgStandardInfo.Domain element is searched. Then,
the most recently activated message definition set that corresponds to the message type
of the input message is used.

If transformation or validation is to be done, the FxhStandardsProcessing node uses the
message type that is specified for the message to determine which message definition is
to be used.

If validation is to be done, the FxhStandardsProcessing node validates the message
according to the message definition set determined in step 3.

If transformation is to be done, the FxhStandardsProcessing node determines the
representation type of the input message. If the message body is provided by the

Root .XMLNSC element, the FxhStandardsProcessing node assumes that the message is an
MTXML message.

If the message body is provided by the Root.BLOB.BLOB element, the
FxhStandardsProcessing node checks the first character of the body of the input
message. If it is a left angle bracket (<), the message is assumed to be an MTXML
message. Otherwise, the message is assumed to be an MTFIN message.

Error conditions

If a processing error occurs and the failure terminal is connected, the Standards Processing
node throws an exception and propagates the message to the failure terminal. Otherwise, the
message is rolled back.

If an input message contains a non-well-formed XML message, the following process occurs:

>

»

If the XML message is in the Root.XMLNSC element, this is treated as a processing error.

If the XML message is in the Root.BLOB.BLOB element, the FxhStandardsProcessing node
routes the message to its parseError terminal and does not throw an exception. The
response folder of the message describes why the message was not parsed.

The following errors are caused by invalid input messages but are treated as parsing errors,
not as exceptions:

>

The input message is an MTFIN or MTXML message, but the time stamp (that is, the date
and time when the message was created) of the message cannot be identified.

Financial Transaction Manager Technical Overview

» The message type cannot be identified.

Note: For more information about Standards Processing Node, see the Financial
Transaction Manager information center by clicking Application programming —
Mappers — Creating Mappers for FIN MT Messages — FxhStandardsProcessing.

4.3.3 Key deliverables

In this section, we describe artifacts that often must be produced as part of the mapping
phase of the Financial Transaction Manager solution development. Consider this information
a guideline for delivery. You can customize it to suit specific solution needs.

The following key deliverables are part of the mapping phase:

Interface specification
Mapping specification
Message models
Mappers

vyvyyvyy

Interface specification

The interface specification provides a list of interfaces that the Financial Transaction Manager
solution supports. It acts as a starting point for further deliverables and captures the following
information:

» Protocol

Identifies the protocol that is going to be used for external message formats. In most
cases, the protocol is WebSphere MQ, File, or Webservices. However, WebSphere
Message Broker supports a various connectivity options. The protocol information is
useful for the mappers to understand the protocol headers. For example, an WebSphere
MQ RFH2 header can contain more technical information that must be carried throughout
the transaction and sent to outbound interfaces.

» Formats

Identifies the data exchange formats that are used (1ISO20022, Swift MT, custom, and so
on). Knowing the exchange format helps identify if there is a need to build message
models for formats that are not supplied with Financial Transaction Manager.

» Versions of formats

The formats keep evolving over time, and it is important to understand the exact version of
the format that is used. Financial Transaction Manager might not support all the versions
of a format. In such case, message models must be built to support a particular version.

» Message Type

Identify which message types are used by a particular interface (MT103, Pain.001.02, and
SO on).

Tip: It is useful to have samples for each message type with which the solution might
interface. It is easiest to acquire the sample message during the requirements gathering
phase of the project.

Mapping specification

Mapping design is the first step that is required to develop a mapper. This is a task often is
performed by someone with a business analyst skill set. The result of the mapping design is a
mapping specification.

Chapter 4. Mapping 127

128

A mapping specification should identify the source or target format and provide details of
mapping content (element names, description, cardinality, structure, and so on).

A mapping specification should state whether the format represents a single transaction or
multiple transactions. In the case of multiple transactions, it then provides details about how
the structure of the message or file relates to the hierarchy of objects (BATCH and
TRANSACTION related to the TRANSMISSION) in the Financial Transaction Manager data
model that represents the message or file content.

The specification should provide details about values to populate columns in the Financial
Transaction Manager tables and views.

The specification should provide mapping details for those elements in the message or file
that should be mapped to the ISF content (path to element in ISF content and any relevant
comments). This information should also include the direction on the handling of recurring
structures or elements in the file or message. It should further include any details about
conversion of data types, merging or splitting of fields, and mapping of code values.

Finally, the mapping specification should be supported by samples for the message or file and
related ISF document (or endmapper document for an inbound mapping).

Financial Transaction Manager provides mapping specification for formats that are supported
immediately. These specifications are available in the Financial Transaction Manager
information center under Appendix J.

Message models
Message models are the basis of creating mappers. The message models can be delivered in
the following forms, depending on the technology of choice:

» WebSphere Message Broker Message Sets
» WebSphere Transformation Extender Type trees

For more information about these deliverables, see 4.3.1, “Parsing” on page 104.

Mappers

Mappers are coding artifacts that map the two formats by using one or more options that are
described in 4.3.2, “Mapping technologies” on page 109. These mappers must be included in
the mapper flows that are described in Chapter 5, “Using WebSphere Message Broker Toolkit
to produce build artifacts” on page 131.

Financial Transaction Manager Technical Overview

4.4 Handling large files

The processing of large files presents many challenges that can be best addressed at the
design level instead of later during implementation. The following issues are particular to
large files:

» Require much memory to parse into a logical tree
» Create a large database unit of work during mapping
» Force serialized processing during mapping

It is possible to address some of these issues to some degree at implementation time by
using partial parsing with chunking and by making interim database commits. However,
Financial Transaction Manager also supports a concept that is called Fragmentation, which
can address these issues. For more information about handling large files, see the Financial
Transaction Manager information center section Designhing applications — Design for
large files.

Chapter 4. Mapping 129

130 Financial Transaction Manager Technical Overview

Using WebSphere Message
Broker Toolkit to produce build
artifacts

Development in Financial Transaction Manager is done by using the WebSphere Message
Broker Toolkit, which includes various different flows that are built by using the framework.
This chapter describes the steps to set up workspace in WebSphere Message Broker Toolkit
and the different types of message flows that must be built.

The following optional flows are available:

» Wrapper flows:

— Physical transmission wrapper
— Event processing wrapper

» Action flows
» Mapper flows:

— Input mapper
— Output mapper

» Emitter flows
» Heartbeat flows
Development cannot start before the analysis and design of the application is underway. The

design task does not need to be fully completed. In fact, as the analysis and design are
fleshed out, implementation of those artifacts can begin.

© Copyright IBM Corp. 2014. All rights reserved. 131

This chapter includes the following topics:

Workspace setup
Wrapper flows

Action flows

Mapper flows

Emitter flows

Heartbeat flow

Message sets

Message flow templates
BAR files and deployment

VVYyVYVYVYVYVYYVYY

132 Financial Transaction Manager Technical Overview

5.1 Workspace setup

The core components of Financial Transaction Manager are built by using WebSphere
Message Broker Toolkit and are deployed to WebSphere Message Broker execution groups.
In this section, we describe the steps that are used to set up the WebSphere Message Broker
Toolkit workspace and typical layout of the projects and their references. However, you must
set up the workspace that is based on the requirements and architecture for your project.

Complete the following steps to set up the workspace, import the Financial Transaction
Manager core projects, and add the required references to the Financial Transaction Manager
project:

1. Create a workspace and import the Financial Transaction Manager core component
projects in the workspace. Although not mandatory, create a workspace for every
Financial Transaction Manager project.

2. After the workspace is created, import the Financial Transaction Manager core
components. Figure 5-1 shows the menu option that is available in the WebSphere
Message Broker Toolkit for this task.

@ Broker Application Development - WebSphere
Edit Mavigate Search Project Run

Mew Alt+Shift+M
Open File...

& | Refresh F3
Convert Line Delimiters To 4
Switch Workspace 2
Restart

£ Export...
Exit

Figure 5-1 Import Projects menu

Chapter 5. Using WebSphere Message Broker Toolkit to produce build artifacts 133

134

After you make your selection, the WebSphere Message Broker Toolkit opens a wizard to
import the projects, as shown in Figure 5-2.

@Impnrt | (=0 S
Select
E\J]
Import a project and its dependent projects from a Zip file.

Select an import source:
type filter text

= General
= CVS
= EJB
= lava EE
= Plug-in Development
= Profiling and Legging
= Run/Debug
= Team
= Test
= Web
= Web services
= XML
= Other
=l Localized Medel

E"‘ Project Intr:lchange

B oo T e BT e BT e BT e BT e BT e BT e BT e BT e KT e KT e KT

@ | Mext = Cancel

Figure 5-2 Select Project Interchange

Financial Transaction Manager Core components for WebSphere Message Broker are
delivered as project interchange (Pl) compressed files that can be imported by using this
wizard to recreate the required project structure.

3. Choose the PI for Financial Transaction Manager core components and import the
projects. For more information about these steps, see the Financial Transaction Manager
Information Center section, which is available by clicking Installing — FTM installation —
Setting up FTM MQ and WebSphere Message Broker resources — Installing
message flows and message sets.

Financial Transaction Manager Technical Overview

4. After all of the required projects are imported, create a message broker or a message set
project, as shown in Figure 5-3.

Projects Quick Starts... &

122 FTM Core Flows

122 FTM Cere Flows Ext

I :u?E‘ FTM Core ISF for Payrments V2
I :u?E‘ FTM Core ISF for Payrments V3
b 12 FTM EndMapper

122 FTIM SWIFT MT Flows

122 FTM SWIFT MT Flows Current
122 FTIM SWIFT MT Flows fin2011

P12 FTIM SWIFT MT Flows fin2012

SN (eI
&% Mescage Flow Project

) Message Set

ﬁﬁ\tlapter Connection

T User-defined Nede Project

% Other... Ctrl+M
£y Import...
Ly Export...

Refrezh

Figure 5-3 New Message Flow Project

5. To ensure that this new project can access Financial Transaction Manager core
components, it is important to add reference to Financial Transaction Manager core
projects for this message flow or message set project. Figure 5-4 shows the menu in
WebSphere Message Broker Toolkit to perform this task.

Projects Quick Starts., &

b-le2 FTM Core CBE
pdz2 FTM Core Flows
[FTM Core F
bfi2 FTM Core |
b-fa2 FTM Core I
b-122 FTR Endiv; k& Convert to User-defined Mode Project
122 FTM SWIFT

b8 FTMswiFt| @ lnto

BTk FTM SWIFT Add or Remove Project References

122 FTIM SWIFT

PIEEE 1y FTIVI Pr R

Mew 3

Flows
Delete
Move...
Rename...

P PO

Figure 5-4 Add project references

Chapter 5. Using WebSphere Message Broker Toolkit to produce build artifacts 135

This option shows the list of available projects in the workspace, as shown in Figure 5-5.

@Acltl or Remove Project References X

Project references for My FTM Project:

7| EZFTM Core CBE
V| = FTM Core Flows
¥| == FTM Core Flows Ext
G2 FTM Core ISF for Payrments V2
7] 52 FTM Core ISF for Payments V3
7] LE2FTM EndMapper
1= FTM SWIFT MT Flows
= FTM SWIFT MT Flows Current
1= FTM SWIFT MT Flows fin2011
= FTM SWIFT MT Flows fin2012

Select All | | Deselect All

OK [Cancel

Figure 5-5 Project references

6. You must add the projects that are selected in Figure 5-5 as reference to the project. The
other projects mainly use the SWIFT message processing capabilities of Financial
Transaction Manager, which can be added if SWIFT processing is required. However,
these projects use Standards Processing Node (SPN) which must be installed in the
WebSphere Message Broker Toolkit. To install, complete the steps that are described in
the Financial Transaction Manager Information Center section, which is available by
clicking Installing — FTM installation — Setting up FTM MQ and WebSphere
Message Broker resources — Installing the FTM User-Defined nodes on the toolkit.

The message flow project that us created can now use core Financial Transaction Manager
components for building various message flows.

5.2 Wrapper flows

The Financial Transaction Manager core processing engine consists of the following key
components:

» Physical transmission flow: Manages the inbound message and starts mappers to
transform them into ISF.

» Event processing flow: Manages events that are raised by various activities in Financial
Transaction Manager.

These components are provided as WebSphere Message Broker subflows as part of
Financial Transaction Manager. Therefore, it is essential to write wrappers around these flows
by using wanted input and output transports.

136 Financial Transaction Manager Technical Overview

5.2.1 Physical transmission wrapper flow

All Financial Transaction Manager applications must have one or more physical transmission
wrapper flows. These wrappers accept real-world input from defined interface transports,
such as WebSphere MQ, File, and HTTP. They also provide control to physical transmission
flow for processing. A physical transmission wrapper flow has the following key
responsibilities:

Manage channel identification

Manage and log failed messages

Provide a deployment point for inbound mappers
Record transport information

Process messages in burst mode

vyvyyvyyvyy

Figure 5-6 shows a sample physical transmission wrapper flow. Various aspects of this
exampled flow are described in the following sections.

MOLIM.PmtT103 Chan PmtMT103 PhysicalTransmissienFlow MQ.OUT Events

- @

MappersTelsF

4)

a2 g al @]
LblLInputFailure Database MQ.OUT.FailPerChannel M. OUT Fail
Figure 5-6 Example physical transmission flow

Naming convention and broker schema

Typically, all the physical transmission wrapper message flows are named

PT Wrapper_ XXXXX.msgflow and are defined in the broker schema that is called
PhysicalTransmissionFlow. This structuring allows the ESQL code in the flow to access
ESQL constants and modules that are defined in the Financial Transaction Manager
framework without any schema prefix.

Channel identification

The responsibility of this part of the flow is to identify the Financial Transaction Manager
channel for the inbound message. The channel features linked configuration that is used for
the core flows to process the transaction. The subflow, which was shown in Figure 5-6, is an
example that was created as part of the sample application and is not part of the Financial
Transaction Manager core product. It is the responsibility of every physical transmission
wrapper flow to decide the logic for deriving the channel information from the inbound
transmission.

After the channel name is derived, the component must complete the following steps:

1. Load the channel configuration in the environment tree by using Financial Transaction
Manager Cache API for channel. A possible APl is shown in Example 5-1 on page 138.

Chapter 5. Using WebSphere Message Broker Toolkit to produce build artifacts 137

138

Example 5-1 Channel cache API

CREATE LASTCHILD OF Environment.PMP.Variables AS refChannel NAME 'Channel’;
CALL Cache.GetChannelByName(Cache.GetFlowInstanceCacheld(rEnv), Channel Name,
refChannel);

Note: For more information about the cache APIs that are available in Financial
Transaction Manager, see the Financial Transaction Manager Information Center by
browsing to Application programming — Static Data Cache.

The channel configuration provides the label name of the mapper that is to be used to
transform this message to ISF. The component should set this label in the
LocalEnvironment tree to be picked up by the RouteToLabel node later. This value is
available in Environment.PMP.Variables.Channel .MAPPER_NAME path.

2. If enabled, the component also must handle burst mode for the input messages, as
described in “Burst mode” on page 139.

3. If there is any failure, such as invalid channel information or technical errors, the flow
should route the control failed message processor section that is described in 9.1.6,
“Process highlights” on page 274. This can be achieved by using a RouteToLabel node to
route the control to the label that is attached to the failed message processor.

Physical transmission subflow

The physical transition subflow is part of the Financial Transaction Manager core components
and provides capabilities to log physical transmission, start ISF mapper, and raise necessary
events. (For more information about this subflow, see the Financial Transaction Manager
Information Center.) The subflow provides an output terminal that should be connected to an
MQOutput node to put message to the event queue. The MQOutput node acts as input to an
event processing wrapper flow that is described in 5.2, “Wrapper flows” on page 136.

Mappers subflows

The physical transmission flow gives control to one of the inbound mapper flows to map the
custom format to ISF. These mapper flows must be included in this wrapper flow. Typically, a
parent-level subflow (called a container flow), is created and added to the physical
transmission flow. This container flow holds various mapper subflows. The subflow, which is
indicated by label 3 in Figure 5-6 on page 137, is an example of a container flow that contains
multiple subflows for various mappers.

Failed message processing

When something goes wrong in the physical transition wrapper flow, the control is passed to
the label of the failure processing flow that can send it to a failure queue. However, the use of
this approach is optional. Different solutions can follow different error handling strategies.
Therefore, the failed message processing part is driven by project requirements and is not a
part of the Financial Transaction Manager core components.

In addition to these four aspects of the physical transmission flow, the following optional
aspects must be considered:

» Transport level information
» Burst mode

Financial Transaction Manager Technical Overview

Transport level information

By default, the physical transmission subflow uses information from the WebSphere MQ
header to log certain attributes of the physical transmission records to the database (such as
UID), which is populated from MQMD.MsgId by default. If the inbound transport is anything other
than WebSphere MQ, or the default header values must be overridden, the physical
transmission flow has a responsibility of specifying or overriding the values that are logged in
the Financial Transaction Manager operational database against the physical transmission.
These values are set in the environment tree (under
Environment.PMP.Variables.LogPT.DBRecord for a single transmission or under
Environment.PMP.Variables.LogFRAG.DBRecord for fragments) by the physical transmission
flow. The physical transmission flow typically uses the compute node and ESQL code for the
specification or overriding of values before passing the control to PhysicalTransmissionFlow
subflow.

For more information about the values that must be set, see the Financial Transaction
Manager Information Center by clicking Application programming — Physical
Transmission Wrapper — Physical Transmission Flow Persistence API.

Burst mode

By using burst mode, batch processing efficiencies can be used for single transaction
processing use cases. Aggregating events that relate to a group of single transactions
reduces overhead because there are fewer database and WebSphere MQ commit calls.

Burst mode can be enabled on any input channel where it is possible to proactively get the
next message from within a message flow. For example, when WebSphere MQ is used as an
input, the physical transmission flow is driven by an MQInput node. After processing the
WebSphere MQ message, it is possible to return and get the next message by using an
MQGet node. By using this technique, the physical transmission flow can get and process a
group of single messages in the same unit of work. Doing this allows the Send Event API call
to aggregate these events where possible.

To enable burst mode for a channel, the following tasks must be completed:

» Implement a transmission wrapper that is burst mode aware
» Include burst mode settings on the channel definition
» Review event metadata as part of a design for aggregation

Figure 5-7 on page 140 shows an example of a transmission wrapper that supports burst
mode.

Chapter 5. Using WebSphere Message Broker Toolkit to produce build artifacts 139

Input Identify Channel

b @

103 PhysicalTransmissicnFlow MCO.OUT.Events

[12)

l2E
PACLIN.PmtMT 103

2

MappersTelSF

e} Dfop—gp—ig}

LblInputFailure Database MOQ.OUT.FailPerChannel MQ.OUT. Fail
Figure 5-7 Burst Mode enabled Physical Transmission Wrapper

The compute identify channel should evaluate the burst parameters that are configured on
the channel to route the message to MQGet node to pick up more messages. Burst mode is
configured for a channel by using the parameters setting, which often is configured in
Rational Software Architect during the design phase, as shown in Figure 5-8.

] Properties &2

;Qn Search} E_l, Problemq il v =&

& <Class> «<EPP_Channel» FTM Sample App::Config:Interfaces::Channels::Payment Origination

[=
General Cueue Managern: | |
Attributes
Operations Cueue Mame: | FXH.SAMPT1.PAYVMENT_ORIGINATION |
w Sequence: |SD |
Documentation
Censtraints CCsID: | | [¥] MNull
Relationships e | | (W] Mull
FTM |
ke Validate Message: MNene « [Null
Validate I5F: Mone w [T Mull
Transport: [¥] MNull 3
Location: | | [&] Ml
Param: || BURST_LIMIT=100,BURST_WAIT= SDD,I:'T_T'\"PE: PAY_ORIG,COMFIG= MT_MAP_CFG_PA\"I\-| [+

Figure 5-8 Burst mode configuration in Rational Software Architect

140 Financial Transaction Manager Technical Overview

Table 5-1 shows the settings that are supported for burst mode.

Table 5-1 Burst mode settings

Parameter Name | Description

BURST_LIMIT The maximum number of messages to read in a unit of work.

BURST_WAIT The maximum time, in milliseconds, to wait for the next message.

Important: When burst mode is used, all of the messages in the single burst are
processed in a single unit of work. Therefore, if one of the messages fails during
processing, the entire batch is rolled back unless explicit commits are issued. Therefore,
transaction boundaries must be defined carefully when burst mode is used.

For more information, see the Financial Transaction Manager Information Center section by
clicking Application programming — Physical Transmission Wrapper — Burst mode.

Note: Burst mode might not be suitable for all input channels. Consider the business case
that is served on a channel in specific relation to latency of processing response. Some
channels might receive a few messages that are spread over a whole day, while other
channels might be subject to periodic bursts of messages.

5.2.2 Event processing wrapper flow

The event processing wrapper flow provides input and output queue points to the Financial
Transaction Manager event processing component and associated failures.
EventProcessingFlow subflow is part of core the Financial Transaction Manager product,
which is responsible for processing events that are raised by various components. Figure 5-9
shows a sample event processing wrapper flow.

P p——|E f
Hu // Trace FAILEE

EVEMNTS I

EventProcessingFlow EVENTS OUT

ActionsAndQuthoundMaps

Figure 5-9 Event processing wrapper message flow

As part of the event processing, Financial Transaction Manager run actions that are
associated with transitions. These actions are implemented as subflows (as described in
Section 5.3, “Action flows” on page 142). The event processing wrapper also acts as a
container for these action subflows. Also, the actions can route the control to outbound
mappers for sending a request to an external system. These outbound mappers are also
included in this subflow so that they are accessible to the action flows.

Chapter 5. Using WebSphere Message Broker Toolkit to produce build artifacts 141

Typically, a parent level subflow is created and added to an event processing wrapper flow.
This parent subflow holds various action subflows. The subflow that is indicated in Figure 5-9
on page 141 is an example of a parent wrapper flow that contains multiple subflows for
various actions and outbound mappers.

Similar to physical transmission wrapper flow, exception handling strategy is driven by
requirements. The example that is shown in Figure 5-9 on page 141 sends failed events to
the failure queue by default.

The EventProcessingFlow subflow, which is part of core Financial Transaction Manager
components, has two input terminals that are named Propagate Input and Main Input. The
propagate input terminal is used by PhysicalTransmissionFlow that is described in 5.2.1,
“Physical transmission wrapper flow” on page 137 to process events internally. The event
processing wrapper flow should always use the Main Input terminal.

The MQOutput node, which is named EVENTS OUT, puts the message on the same queue
as that of input queue when an event is raised by the action subflow (as described in 5.3,
“Action flows” on page 142) and the RENDER_AS_MSG attribute of the event is set.

5.3 Action flows

142

As part of the Finite State Machine creations, actions are defined as a result of state
transition. These actions are implemented as subflows in WebSphere Message Broker.

There is a standard template for action subflows; they must start with the BeginAction subflow
and end with the EndAction subflow. In between these start and end flows, any arrangement
of message broker nodes is possible, including the decision service node that was introduced
in Financial Transaction Manager 2.1. A single compute node is sufficient to be put between
these two subflows for processing to implement the required logic.

The BeginAction subflow is a single property under Financial Transaction Manager folder that
is called Label name. The value of this label must match the action name that is mentioned in
the Finite State Machine.

The EndAction subflow returns the control back to the event processing flow for further
processing and stops propagation of the message further in this subflow.

Figure 5-10 shows a typical action subflow implementation where the action is implemented
by using ESQL code in a compute node.

> B >
BeginAction Acticn Impl EndActicn

Figure 5-10 Action subflow implementation

Financial Transaction Manager Technical Overview

5.3.1 Coding actions

Within the action implementation, there is much information available in the message body or
in the environment tree; of particular interest is
Environment.PMP.Variables.Transition[].TransObjects.0Object[], which contains the
selected columns for the object that is affected by the event. The other main source of
information is held in the event that caused the transition. This is held in the environment and
should be indirectly referenced by using a locally defined REFERENCE variable that is
started by the following function:

Actions.CurrentEvent (INOUT rEnv REFERENCE)

Because of possible event aggregation or other object selectors that return multiple objects,
the action can be called to act upon multiple objects. Therefore, you can code actions for
multiple objects. Example 5-2 shows a sample skeleton for coding actions for multiple objects.

Example 5-2 Sample skeleton for coding actions

CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN
DECLARE refTransition REFERENCE TO
Environment.PMP.Variables.Transition[Environment.PMP.Variables.IterationCount];
DECLARE refObj REFERENCE TO refTransition.TransObjects.Object[1];

WHILE LASTMOVE(refObj) DO
-- ESQL Code to Perform Action on Object.

MOVE refObj NEXTSIBLING REPEAT NAME;
END WHILE;

RETURN TRUE;
END;

The exceptions in the action subflow are not handled by BeginAction or EndAction subflow.
Instead, they propagate back to the event processing flow where they are handled by using
generic error flow. In such a case, the generic error flow raises an E_UnexpectedError event
and rolls back all other database operations within that unit of work.

Raising events

There might be cases where action implementation wants to raise events to cause further
Finite State Machine transitions. Financial Transaction Manager provides the following
simplified ESQL APIs to raise events:

» CreateEvent: Builds an event message at a specified message location.
» SendEvent: Called to send a fully built event message.

Important: When the SendEvent function is called, the event is not sent immediately, but is
added to an event cache in the environment tree for processing. At the end of processing
the current action, all the events in the event cache are analyzed to see whether any of the
events can be aggregated to improve performance and are processed accordingly.
Additionally, events with RENDER_AS_MSG set are sent back to the event queue.

Chapter 5. Using WebSphere Message Broker Toolkit to produce build artifacts 143

Financial Transaction Manager provides other helper functions to combine the processing of
the two functions, CreateEvent and SendEvent. For more information about these APIs, see
the Financial Transaction Manager Information Center by clicking Application
programming — Instrumentation and Trace — API.

Access to ISF in action

ISF data can be made available to the action by specifying the ISF_DATA column on the
transition object selector (by using master selector or override). This data is stored as a CLOB
in the database and must be parsed by using the ESQL CREATE PARSE statement to be
accessible in the action.

It is recommended to parse ISF tree into the local environment instead of the environment.
This is because memory that is associated with parsers in the environment is not freed until
the flow ends. Memory that is associated with parsers in other areas, such as the local
environment, can be freed by using the ESQL DELETE FIELD command, where memory is
released on exit from the flow node. This is important when you are dealing with large
batches where injudicious coding can lead to a many unnecessary parsers that are occupying
message broker memory resources.

Attention: Selecting ISF data in action has performance implications. Therefore, every
attempt should be made to avoid selection of ISF data in action implementation.

Update ISF in action

If the action updates the ISF, it must also update the ISF_DATA column of the transaction
record. To do this, the ISF message tree, which is a parsed version of the ISF, first must be
written to a bitstream, as shown in Example 5-3.

Example 5-3 Converting ISF to bitstream

SET isfBlob = ASBITSTREAM(LocalEnvironment.PMP.ISF.XMLNSC
SET Common.MessageSet('ISF'));

The ISF_DATA column of the TRANSACTION table can then be updated with the isfBlob
value by using helper ESQL functions that are provided by Financial Transaction Manager.
For more information about these functions, see the Financial Transaction Manager
Information Center by clicking Application programming — Actions — Database
Persistence — Persistence ESQL API.

5.3.2 Database persistence

144

The logic in an action subflow often must create outbound transactions, physical
transmissions, and batch objects. Before Financial Transaction Manager V2.1, creating these
objects was done by using a PASSTHRU statement in ESQL to insert a single record at a time in
the Financial Transaction Manager database. Because the action subflow can work on
multiple transaction objects at a time, multiple insert queries are run against the database
with data differences. These insert queries might not be optimal from a performance
perspective. Since V2.1, Financial Transaction Manager introduces a Persistence API that
can insert multiple database rows in a single PASSTHRU call.

The use of Persistence APlIs provides the following benefits:
» Abstraction from database-specific syntax

» Configurable control of the rows per insert
» Configurable control of the number of rows to cache in memory

Financial Transaction Manager Technical Overview

» Ability to insert by using the insertable views
» Ability to insert direct to the tables

» Full Financial Transaction Manager instrumentation of all SQL that is issued through the
API

» Trace of SQL errors, including SQL state and error codes

For more information about APIs, see the Financial Transaction Manager Information Center
by clicking Application programming — Actions — Database Persistence.

Attention: Inserting multiple rows by using persistence APls is not available on z/OS at the
time of this writing.

5.4 Mapper flows

Mapper flows are WebSphere Message Broker subflows that plug in the mapping artifact that
you created in Financial Transaction Manager. These mapping artifacts are described in
Chapter 4, “Mapping” on page 85. You can create the following types of mapper flows:

» Input mapper to transform external message format into ISF
» Output mappers to transform ISF to external message format

5.4.1 Input mapper

Input mappers are built by using a pattern. They must start with a subflow that is called
BeginMapper and end with the EndMapper subflow, as shown in Figure 5-11.

BEginMapN /ﬂﬂ"dapper
b

Map to ISF

Figure 5-11 Typical Input mapper flow

The BeginMapper subflow also has exception handling capabilities as described later in this
section. For it to work correctly, the failure terminal of the BeginMapper node should be
connected directly to the EndMapper node terminal where the successfully mapped message
is propagated.

Between these two subflows, any combination of nodes that are available in WebSphere
Message Broker can be used for transformation. Additionally, for mapping SWIFT MT
message to ISF, Standards Processing Node (SPN) can be used to validate and transform
the SWIFT MT message to SWIFT MT XML format for easier mapping. For more information
about SPN processing, see Chapter 4, “Mapping” on page 85.

The BeginMapper node contains a property under Financial Transaction Manager folder that
is called Label Name. This value of this property must be same as the value that is configured
on Financial Transaction Manager channel in configuration database.

Chapter 5. Using WebSphere Message Broker Toolkit to produce build artifacts 145

The EndMapper subflow has the following main responsibilities:

» Store the mapped transactions, batches, mapping errors (if any) to the Financial
Transaction Manager database.

» Raise predefined mapping events to indicate the following information:

— Mapping success
— Mapping failed or was ended for any reason.

» Return control to the main physical transmission flow for further processing.

All inbound mappers should complete with one of the following results:
» Success: Mapping is completed with no known errors.

» Failure: Mapping completed, but some errors were encountered. The processing in this
case is similar to the success scenario. However, EndMapper subflow raises a different
event to indicate the failure status.

» Aborted: Mapping failed and transaction processing cannot continue. This status is set by
the exception handling part of the BeginMapper subflow that are described later in this
section.

EndMapper subflow has three input terminals. The first terminal is for using End-Mapper
Version 1 and other two terminals are for End-Mapper version 2. The features and benefits of
both versions are described next.

EndMapper version 1

EndMapper version 1 (V1) is a part of older, traditional implementations in which ISF is
propagated as OutputRoot and other column persistence information that is passed in the
WebSphere Message Broker environment. This version is deprecated for most of the use
cases and should be used only when the earlier code is migrated.

Database persistence

EndMapper is responsible for persisting all transactions and batches that are mapped into
ISF. In certain scenarios, there might be a requirement to store more information about a
transaction, such as database extensions. In such cases, the EndMapper provides an
environment tree-based interface for persisting more values in the Financial Transaction
Manager database. The root location for this APl is Environment.PMP.Variables.MapDBData.
It is the responsibility of the mapper implementation to set the appropriate values under this
path. It supports persistence of the following objects and their properties:

Transmissions
Fragments

Batches

Transactions (Batch)
Transactions (Non-Batch)
Securities Transactions
Payment Transactions

YyVVyVYyVYVYYVYY

For more information about the location of each object and its supported properties, see the
Financial Transaction Manager Information Center by clicking Application programming —
Mappers — Input Mappers — Input Mapper Subflows — EndMapper (v1) Data
Persistence Interface.

146 Financial Transaction Manager Technical Overview

Chunking

Typically, the output of input mapper is a single ISF document that represents the transaction.
When a batch that contains many transactions must be mapped in the input mapper, the
memory that is required to parse and process the message can grow substantially and can
cause execution group abends if it runs out of memory. To prevent this problem, Financial
Transaction Manager provides a mechanism that is called chunking, which allows input
mapper to propagate a large batch in smaller chunks and keeps the memory requirement
within limit.

To facilitate chunking, inbound mappers must use another header that is called BatchHeader.
However, this header should be added only to the last chunk of the batch. Earlier chunks must
not contain any BatchHeader.

The chunking mechanism also supports multiple batches to be mapped in a single mapper. In
such cases, BatchHeader must be included in the last chunk of any batch with the
MoreBatches element inside this BatchHeader set to Y. In the last chunk of the last batch, this
element can be set to N (an empty value) or omitted completely to end the processing.

For transactions that failed mapping, the mapper in each chunk should store the information
in the environment tree, as described in the Financial Transaction Manager Information
Center.

For more information about and samples of chunking, see the Financial Transaction Manager
Information Center by clicking Application programming — Mappers — Input Mappers —
Input Mapper Subflows — EndMapper v1 Chunking.

EndMapper version 2

EndMapper version 1 requires the database values to be stored in environment tree.
However, for mappers that are implemented by using technologies, such as WebSphere
Transformation Extender and XSLT, environment tree is not accessible. Thus, more
processing is needed in the mapper flow to set the database values in environment tree.
EndMapper version 2 solves these problems by providing XML document-oriented access for
database persistence. With this approach, the mapper provides an XML document that lists
the objects that must be persisted and column data that the mapper wants to persist. This
allows all the mapper technologies to use database persistence capabilities of EndMapper
without more processing.

The EndMapper version 2 document offers a choice of the elements that are shown in
Table 5-2.

Table 5-2 EndMapper elements

Element Name | Description

txn Used for mapping a transmission containing a single transaction.
chunk Used to map transmissions with multiple transactions.

abort Used to abort the mapping due to an unrecoverable problem.

For more information about XML structure of EndMapper V2 XML document, see Financial
Transaction Manager Information Center by clicking Application programming —
Mappers — Input Mappers — Input Mapper Subflows — EndMapper (v2) XML
Document Interface.

Chapter 5. Using WebSphere Message Broker Toolkit to produce build artifacts 147

Inbound mapper error handling

The inbound mapper can encounter expected or unexpected errors. In such cases, it is
important to log the error message to the Financial Transaction Manager database and raise
events to indicate failure. BeginMapper subflow provides an exception handling mechanism
that allows handling of such an exception in a consistent manner.

When it detects any exception, the subflow sets the mapping status to abort and then
propagates the message to the failure terminal (which should be connect to EndMapper
subflow) or throws again the exception to the physical transmission flow for processing.

5.4.2 Output mappers

The output mappers are called for as Finite State Machine actions. They are responsible for
mapping ISF transaction documents to an outbound physical transmission in the form of a
single transaction, batch, or fragment.

Output mappers are responsible for mapping ISF transaction documents to an outbound
physical transmission in the form of a single transaction, batch, or fragment. They always start
with the BeginOutboundMapper subflow and end with the EndOutboundMapper subflow that
is provided as part of Financial Transaction Manager components, as shown in Figure 5-12.
The failure terminal of the BeginOutboundMapper node must be connected directly to the
EndOutboundMapper node to allow error processing.

Map From I\

\

BeginQutboundMapper EndQuthoundMapper

Figure 5-12 Typical output mapper flow

The BeginOutboundMapper subflow has the following main responsibilities:

» Setthe valuein Label Name property. The subflow has a property that is called Label Name
under the Financial Transaction Manager folder that must be set to a value that matches
the name of a specific mapper that is configured in the configuration database.

» Fetch the ISF document. This can be done from ISF cache or from Financial Transaction
Manager database. The ISF document is parsed (if not already) before giving it to the
actual mapper. However, this behavior can be overridden to avoid fetching ISF in the
BeginOutboundMapper subflow. This feature is useful when a batch of transactions is
mapped, which can result in multiple ISF documents being fetched and increasing the
memory requirement.

» Handle any errors that are thrown by the mapper and set the mapping status to aborted.

The EndOutboundMapper subflow has the following main responsibilities:

» Serialize the logical tree for the physical message that can be sent to end systems.
» Update the physical transmission data in the database with this bitstream.

» Raise various mapper events.

» Return control to the main event processing flow to complete processing of the event that
is processed.

148 Financial Transaction Manager Technical Overview

Important: All output mapper subflows must be deployed as part of the message flow that
starts the mapping, which often is an event processing wrapper.

For more information, see the Financial Transaction Manager Information Center by clicking
Application programming — Mappers — Output Mappers.

5.5 Emitter flows

Events in Financial Transaction Manager can be configured to be external with a specific topic
by using the Publish-Subcribe feature of WebSphere Message Broker and WebSphere MQ.
The purpose of the emitter flow is to create the contents of the message that can be
published externally. Similar to action subflow, the emitter flows follow a template pattern that
begins with a BeginPublish subflow and end with the EndPublish subflow. A single compute
node often is used to write the logic for the emitter flow. However, any combination and
number of nodes that are available in WebSphere Message Broker can be used.

Figure 5-13 shows a typical emitter flow implementation.

vl g .
BeginPublish Compute EndPublish

Figure 5-13 Typical event emitter flow

The BeginPublish subflow provides a label that should be set to a value that is mentioned in
the emittername property of the external event in the Finite State Machine.

The responsibility of the EndPublish subflow is to return control to send the external event for
publishing.

For more information about External Event publication capabilities of Financial Transaction
Manager and emitter flows, see Financial Transaction Manager Information Center by clicking
Application programming — External Event Publishing.

5.6 Heartbeat flow

During transaction processing, there might be requirements to perform time-based
processing rather than having an external event, such as the following examples:

» Future dated payment processing
» Enable or disable processing in certain time windows
» Monitoring timeouts from the system

Such requirements can be achieved in Financial Transaction Manager by using a heartbeat
flow. The flow is implemented by using timer nodes that are provided in WebSphere Message
Broker. A sample heartbeat flow is provided with Financial Transaction Manager for reference.
The heartbeat flow raises the following events:

» E HeartbeatStart: This should be raised when the heartbeat flow starts for the first time.
This event is useful to trigger recovery operations if a broker restarts.

» E_Heartbeat: This event should be raised later at predefined intervals.

Chapter 5. Using WebSphere Message Broker Toolkit to produce build artifacts 149

These events should have the current time in the event context that can be used in the event
filter expression in the Finite State Machine to transition objects selectively.

For more information, see the Financial Transaction Manager Information Center by clicking
Application programming — Heartbeat.

Important: Pay attention to the number of instances that are deployed for this message
flow because each instance raises its own events, which can result in large number of
events being raised.

5.7 Message sets

Message sets in WebSphere Message Broker provide the structural layout for inbound and
outbound messages and for internal Financial Transaction Manager messages, such as ISF
and End-Mapper v2 structures. Financial Transaction Manager includes message sets for all
the internal formats. However, when you are dealing with external formats, it is important to
create a message set to represent the message and add its reference to the message flow
project. For more information about the steps to create a message set, see the WebSphere
Message Broker information center by clicking Developing message flow applications —
Constructing message models, and Chapter 4, “Mapping” on page 85 and “WebSphere
Message Broker message sets” on page 105.

5.8 Message flow templates

150

All the message flows that were described in this chapter follow a template pattern for
development. To further simplify the development and maintain consistency in the way
message flows are developed, FTM provides templates for all these message flows. These
message flows are packaged in a separate project and project interchange that can be
imported in the workspace. Figure 5-14 shows the layout of the template project.

Projects Quick Starts., &
4-1= FTM Templates =
42 Flows
B Actions

ER EventProcessingFlow L_
B3 InboundMappers

m

B OutboundMappers

Ef PhysicalTransmissicnFlow !
4 ESQLs

B Actions

Ef InboundMappers

B OutboundMappers

Ef PhysicalTransmissicnFlow -

Figure 5-14 Template project structure

Each broker schema contains flows and a corresponding ESQL template that can be pasted
into your project as a starting point. The ESQL code includes all of the best practices that we
described in this chapter. It is also recommended that the same broker schema names are
used in your projects.

Financial Transaction Manager Technical Overview

5.9 BAR files and deployment

A BAR file is a container for deploying message flows that are developed in WebSphere
Message Broker. Because most of the Financial Transaction Manager core components are
provided are subflows, a few flows can be deployed without any reference to an application.
The following flows can be deployed in the context of an application:

Physical transmission wrapper flows: One or more per application.
Event processing wrapper flows: One per application.

Message sets: Contains ISF and other custom message sets.
Heartbeat flows: Triggers time-based event, if required.

vyvyyy

The packaging of these flows in BAR files depends on the non-functional and scalability
requirements of the solution. Regardless of the requirement, it is recommended to start small
with all the message flows in a single BAR file and deploy to a single execution group, as
shown in Figure 5-15.

«ExecutionGroups
[F] default:ExecutionGroup

«MsgFlows= «MsgFlow=

PhysicalTransmissionWrapper

= additional instances = 0

EventProcessingFlow

= additional instances = 0

«MsgFlows=
HeartBeat

= additional instances = 0

«MsgFlows=
LogErrorFlow

= additional instances = 0

aMessageSetse
Message Sets

= additional instances = 0

Figure 5-15 Small step deployment

The performance of the solution then needs to be measured against the following information:

Transaction throughput
CPU usage

Latency

Memory usage

vyvyyy

There are various instrumentation points within Financial Transaction Manager and
WebSphere Message Broker that can provide a view on these factors per component. These
components can then be split into multiple execution groups or multiple brokers, depending
on WebSphere Message Broker deployment topology to achieve the required non-functional
requirements.

Important: Deployment of PhysicalTransmissionWrappers and EventProcessingWrappers
on separate execution groups need multiple deployments of message sets to both of the
execution groups. Consideration should be given to increasing memory requirements
because of this aspect while scaling.

Chapter 5. Using WebSphere Message Broker Toolkit to produce build artifacts 151

152 Financial Transaction Manager Technical Overview

User interface

In this chapter, we describe the Financial Transaction Manager user interface and how
business and technology users can use it.

For business users, we describe how to monitor, report, and search on transactions that are
being processed or completed processing. We also describe how to handle transactions that
require user intervention and how to monitor and resolve alerts.

For technology users, we describe how to use the Financial Transaction Manager user
interface to configure a solution to define interfaces, calendars, and schedules. We also
explain how to configure system variables that can affect transaction processing and how the
user interface displays data to the user.

This chapter includes the following topics:

» Introduction to the user interface

» Financial Transaction Manager applications
» Working with operational data

» Configuring Financial Transaction Manager

© Copyright IBM Corp. 2014. All rights reserved. 153

6.1 Introduction to the user interface

154

The Financial Transaction Manager Operations and Administration Console is the primary
application that you use to monitor and manage transactions and configure the solution. Itis a
thin client application that is deployed in IBM WebSphere Application Server and accessible
through a web browser. Figure 6-1 shows the Operations and Administration Console and

menu items.
Application: Welcome =
=* ALL APPLICATIONS ™ - 4 ¢ -
Welcome to the FTM Operations and Administration console.
« T v || There are 2 applications.
2 - .
Menu Search 'q%' 1= B
N . Application Application Version Effective Date
(.= Favorites &' |FTM SEPA Credit Transfer Refarznce Application 210 Jun 25, 2013 5:18:42 AM
= Operational Data /' |FTM SERA Direct Debit Referance Application 210 Jun 25, 2012 £:32:35 AM
i Alerts Records 1to 2 0f2

+ Resolutions
* Physical Transmissions

4 Fragments

&} Batches

[E§ Transactions

& Payment Transactions

é Securities Transactions

g Events

=+ Configuration Data

Formats

}:v Mappers

{§ Involved Parties

(= Calendar Groups

[Scheduler Tasks

?:. Channels
Services

[C§ Service Participants

[Classifications

E_{ Configuration Values

i Authorizations

Figure 6-1 Operations and Administration Console Welcome window

The Operations and Administration Console is divided into the following main areas:
» Favorites

Frequently used, user-defined queries.
» Operational Data

Functions that are used to interact with operational transactional data and events.
» Configuration Data

Functions that are used to configure the solution.

By using the items that are under these categories, you can complete the following tasks:

» Monitor transactions and interfaces
Query the status of transactions as they are being processed and interfaces to ensure that
they are operating as expected.

» Manage transactions and alerts
Interact with transactions and alerts to take actions, such as releasing payments and
acknowledging alerts.

Financial Transaction Manager Technical Overview

» Configure the solution

Configure the solution by defining interfaces, involved parties, system variables, and so
on.

You can configure user access rights to ensure that users (or groups of users0 can work only
with functions and data to which they have permission. For more information, see 6.4.5, “User
access permissions” on page 210.

6.2 Financial Transaction Manager applications

Financial Transaction Manager can segregate processes by using the concept of
applications, which allow for differing transaction flows to be monitored and maintained in the
same user interface. The Financial Transaction Manager security model defines role-based
user access to these applications, where users can have access to one or more applications
as required.

Figure 6-2 shows an example of the user interface in which two applications are deployed into
this instance of Financial Transaction Manager.

Application: Welcome E

ALL APPLICATIONS Welcome to the FTM Operations and Administration console.

< m v+ || There are 2 applications.
B B g
¢ |50k
Menu Search @ = =%
Application Application Version Effective Date
(= Favorites " |FTM SEFA Credit Transier Reference Application 210 Jun 25, 2013 5:18:42 AM
+|] Operational Data ¢ |FTM SEFA Direct Debit Reference Application 210 Jun 25, 2013 5:32:25 AM

+|] Configuration Data Records 1102 of 2

Figure 6-2 Financial Transaction Manager with two deployed applications

Chapter 6. User interface 155

6.3 Working with operational data

156

The operational data within Financial Transaction Manager consists of the transactions that
are processed by the solution and any alerts or events that they might trigger. Figure 6-3
shows the options that are available in the Operational Data menu.

Menu Search

=5 Favorites
= Operational Data
I+ Alerts
v Resolutions
Physical Transmissions
4 Fragments
2 Batches
[ES Transactions
g Payment Transactions

E Securities Transactions

igy Events

Figure 6-3 Operational Data menu options

By using these options, you can perform the following tasks:

»

Alerts

Search for and resolve alerts that were raised.

Resolutions

Search for details of resolutions and show those details, such as assignee and status.
Physical Transmissions

Search for the processed raw transactional data by, for example, files or queues, received,
or emitted.

Fragments

Search for fragments that complete an individual physical transmission when they are
combined.

Batches
Investigate batches that are received or emitted in the physical transmission.
Transactions

Search and manage transactions that were processed or are being processed by
Financial Transaction Manager.

Payment Transactions

Search and manage transactions that were extended to show specific details of a payment
transaction.

Securities Transactions

Search and manage transactions that were extended to show specific details of a
securities trading transaction.

Financial Transaction Manager Technical Overview

>

Events

Search for events that were processed, which often are technical events, such as
heartbeat events and scheduled events.

The common functions that can be performed with Operational Data include searching for
transactions and physical transmission, finding the state of the object, and resolving or taking
actions on transactions and alerts that require user intervention, for example, authorizing a
payment.

Transactions are represented by the following different but inter-related objects within
Financial Transaction Manager:

>

Physical Transmission
The raw data that is received or transmitted.
Fragments

Two or more pieces of raw data that complete a physical transmission when they are
combined.

Batch (if present)

A collection of transactions.
Transaction

An individual transaction.
Extended Transaction

Transactions that are extended to cater for particular business areas, payments,
securities, and so on.

The relationships between these objects are maintained throughout the lifecycle of the
objects, as shown in Figure 6-4.

#:) master : Fragment 4] master : Fragment

FRAGMENT

#2) master : Transmission

TRAMNSMISSION TRAMSMISSION

) master: Batch == - -~~~ ce-z-soc oo 4] master : Transaction

Figure 6-4 Relationships between Financial Transaction Manager objects

Chapter 6. User interface

157

Each of the search panes for these objects differ; however, each search pane has the same
basic layout and appearance, as shown in Figure 6-5.

Application:

4 1

Menu

10:
Master:

-

Batch:

uiD:

Alternative ID:

Subtype:

Status:

FTM SEPA Credit Transfer Reference.

k

Search

Payment Transaction Search

Bl ™y ()
i *_J

m

Customer Reference:

Payment Transactions

ta BEEH

AK-GOOD-D0E-TXID-000114a

Payment Cancellation Request (to STEFZ)

COutbound Transaction Waiting for Completion

PRIMARYDSE30002

Ack to Qutgoing Txn from STEP2 [CVF)
Records 11013 0f 13

Cust. Ref. Master |Subtype Status
AK-GOOD-008-TXID-0001142 v Cutgoing Credit Transfer Recall Requested
C) AK-GOOD-008-TXID-000213 ./ Cutgoing Credit Transfer Received Transaction Settled
C) AK-GOOD-008-TXID-000314 ./ COutgoing Credit Transfer Received Transaction Settled
3 | AK-GOCD-D0B-TXID-0001142 Cutgoing Credit Transfer to STEPZ COutbound Transaction Complete
0 | AK-GOOD-D08-TXID-000243 Cutgoing Credit Transfer to STEPZ COutbound Transaction Complete
3 | AK-GOOD-D08-TXID-000314 Cutgoing Credit Transfer to STEPZ COutbound Transaction Complete
) | PRIMARYDOSS 2000 Ack to Qutgoing Txn from STEPZ (CVF) Inbound Transaction Complete
@ | K002 Ack to Qutgoing SCT Tan (pacs.002) CQutbound Transaction Complete
@ | X5002 Ack to Qutgeing SCT Tan (pacs.002) CQutbound Transaction Complete
@ | o0d002 BAck to Qutgoing SCT Txn (pacs.002) COutbound Transaction Complete
C) DSCT1307 26093708 ./ DRR from EBA STEP2 Inbound Transaction Complete
@

Inbound Transaction Complete

Figure 6-5 Example of a search pane within Financial Transaction Manager

158

Many common icons are displayed within the query selection criteria pane, as shown in

Figure 6-6.

oy
-

Reset

Search

E_? Configure Search Pane

Figure 6-6 Common icons in the query selection criteria pane

You can use these icons to complete the following tasks:

» Configure search pane

Choose which search fields to require as part of the search criteria and simplify the user

interface.

» Reset

Clear the search criteria.

» Search

Run the search.

The result of the search is shown in the pane on the right side, as shown in Figure 6-5.

Financial Transaction Manager Technical Overview

Figure 6-7 shows the common icons that are displayed within the search results window.

@l Export Table

%l Print Table

=k3 Pick Columns
k=

Add to Favorites
il Resolve
=

i;:;j_ Show SQL

Y

§'E1 Select for Resolution

Figure 6-7 Common icons that are shown in the search results window

You can use these icons to complete the following tasks:
» Export to Table

Export the results of the query to a comma-separated file, which can be imported into an

appropriate application, such as a spreadsheet editor.
» Print Table
Print the results of the query.

» Pick Columns

Add or remove columns from the query results pane with which you can customize the

data that is presented in the search list.
» Add to Favorites

Save the query to a favorites section.
» Resolve

Select a resolution to an alert or transaction that requires user intervention.
» Show SQL

Enabled and available only in development environments and shows the SQL statement

that was used to return the query results.
» Select for Resolution
Select multiple objects; for example, transactions and alerts for resolution.

Chapter 6. User interface

159

6.3.1 Physical Transmissions

You use the Physical Transmission function to review the raw data that is received from or
sent to the physical channel by Financial Transaction Manager. The Physical Transmission
object represents the external communication or message that is received by Financial
Transaction Manager from an external source. It is the first object that is created when data is
received into Financial Transaction Manager. This data contains many useful attributes,
including the file name and customer reference, that can be used to determine useful
information, such as whether a file was received or created, the status of customer files, and
the number of files that are received in a specific time frame.

The Physical Transmission function is primarily used to search for the raw data that is brought
into Financial Transaction Manager, for example client payment files.

Physical Transmission Search criteria
Figure 6-8 shows the Physical Transmission Search criteria pane.

4

Application:

FTM SEPA Credit Transfer Reference Application

111}

Menu Search

Physical Transmission Search

F.

ZEe)

%

Y

1D:
Master:

-
Customer Reference:
ulD:
Subtype:
Status:
Channel:
Involved Party:

-

Transmission Filename:
Created:

Last5 Minutes

Status Changed:
Between .

and

k

Figure 6-8 Search definition pane for Physical Transmissions

160

Financial Transaction Manager Technical Overview

This pane includes the following search fields:

»

ID

The identification that Financial Transaction Manager assigned to the physical
transmission

Master

Set to choose only master, only child, or all transmissions. Master transmissions are those
primary transmissions that are received that contain master transactions that start the
transaction processing flow.

Customer Reference
The customer reference for the transmission.
uiD

Another identification, which is set as required when the transmission is received,; for
example, a third-party application’s reference.

Subtype

The subtype of the transmission; for example, Customer Payment File and SEPA Input
Credit File.

Status

The status of the transmission; for example, Inbound Transmission Complete and
Transmission sent.

Channel

The channel that the transmission was received on; for example, Customer A file directory
or a third-party application’s integration queue. Channels are defined in the Configuration
Data section of the Operation and Administration Console. For more information, see 6.4,
“Configuring Financial Transaction Manager” on page 192.

Involved Party

The applications, customers, or networks that are linked with the transmission. Involved
Parties are defined in the Configuration Data section of the Operation and Administration
Console. For more information, see 6.4, “Configuring Financial Transaction Manager” on
page 192.

Transmission File Name

If applicable, the name of the file in which the physical transmission was received or
transmitted.

Created

The creation date and time of the physical transmission. This date and time can be set to
search in a time period or between two dates. The key word TODAY also can be used.

Status Changed

The date and time when the state of the physical transmission changed.

Physical Transmission search results

When a query is run, the Physical Transmissions Results (see Figure 6-9 on page 162) show
the physical transmissions that satisfy that query.

Chapter 6. User interface 161

Physical Transmissions

= i o) e
Bl = E

Records 1 to 20 of 20

] Customer Reference Master|Subtype Status Status Changed Created
D 80000 |AK-GOOD-00E-M5GID-D00114a ./ pacs.008.001.02 Inbound Transmission Complete [Jul 26, 2013 3:37:10 AM [Jul 26, 2013 3:36:04 AM
(0| 80002 |AK-GOOD-00E-MSGID-D00213 v pacs.008.001.02 Inbound Transmission Complete |Jul 26, 2013 3:37:10 AM |Jul 26, 2013 9:36:11 AM
(80004 |AK-GOOD-00E-MSGID-000314 v pacs.008.001.02 Inbound Transmission Complete |Jul 26, 2013 2:37:10 AM |Jul 26, 2012 %:26:1& AM
@& (81000 v Inbound Transmission Complete |Jul 26, 2013 3:36:46 AM |Jul 26, 2013 3:26:45 AM
)| 82007 |ID0B130726093646 Outgeing Credit Transfer to STEF2 Transmission Sent Jul 26, 2013 3:36:46 AM |Jul 26, 2013 3:36:46 AM
D BI000 |cfcBBETT-2e52-4T7 CVF: Credit Validation File Inbound Transmission Complete [Jul 26, 2013 3:36:47 AM [Jul 26, 2013 3:36:48 AM
C) BXO11 ACK_oUT Transmission Sent Jul 26, 2013 3:36:47 AM | Jul 26, 2043 9:26:47 AM
[]k ACK_oUT Transmission Sent Jul 26, 2013 S:36:47 AM |Jul 26, 2013 9:36:47 AM
@ |s2013 ACK_OUT Transmission Sent Jul 26, 2013 5:36:47 AM |Jul 26, 2013 3:36:47 AM
@|83002 |DSCT130726093703 v DRR: Daily Reconciliation Report Inbound Transmission Complete [Jul 26, 2043 $:37:10 AM [Jul 26, 2013 3:37:09 AM
D 81002 ./ Inbound Transmission Complete [Jul 26, 2013 3:37:52 AM [Jul 26, 2013 3:37:52 AM
@| 50004 |I056130807133600 Paymnet Cancellation Request [to STEP2)|Transmission Sent Aug 7T, 2013 1:36:00 PM |Aug 7, 2013 1:36:00 PM
56000 |003BULKSDDE2BI020081123AMSG001 |o” pacs.002 Inbound Transmission Processed [Jul 23, 2013 3:28:32 PM|Jul 23, 2013 32832 FM
(:) 81000 |Ba0B42H3-F431-40 CVF: Credit Validation File Inbound Transmission Complete |Aug 7, 2093 1:36:01 PM |Aug 7, 2043 1:36:01 PM
| 101000 v Inbound Transmission Complete |Aug 8, 2043 2:20:56 PM |Aug 8, 2013 2:20:56 PM
B2000 ./ I5F Validating Inbound Transmission [Jul 26, 2013 8:23:23 AM [Jul 26, 2013 §:23:23 AM
E7000 ./ ISF Validating Inbound Transmission [Jul 26, 2013 8:47:17 AM [Jul 26, 2013 8:47:17 AM
67002 v I15F Walidating Inbound Transmission |Jul 26, 2013 8:48:48 AW | Jul 26, 2013 4548 AM
T2000 v I15F Validating Inbound Transmission [Jul 26, 2012 5:05:21 AM |Jul 26, 2013 3:05:21 AM
TI000 v I15F Validating Inbound Transmission |[Jul 26, 2013 S:08:27 AM |Jul 26, 2013 3:08:27 AM

Figure 6-9 Physical Transmission search results

By using the Physical Transmission search, you can identify the health of the physical
transmission. A green dot denotes complete, an amber dot denotes warning, and a red
exclamation denotes an error.

Ordering: You can order the results by clicking the header titles; for example, you can
order by creation date.

You can configure the columns that display by using the Pick Columns option to add or
remove columns as required. You can also select the transmission that you want to review to
access the Physical Transmission Details.

Physical Transmission Details
The Physical Transmission Details (as shown in Figure 6-10 on page 163) display more
detailed information about the physical transmission. The top portion of the pane shows
expanded information about the attributes of the physical transmission. The lower portion of
the pane shows more details about the transmission, including more data, related objects,
and the state and lifecycle history.

162 Financial Transaction Manager Technical Overview

Physical Transmission Details '4%' @_,‘j E{' @

I 82007 Application FTM SEPA Credit Transfer Referenc ...
Customer Reference 1003130726093646 Subtype Outgoing Credit Transfer to STEP2
Status Transmission Sent Created Jul 26, 2013 9:36:46 AM
Status Changed Jul 26, 2013 9:36:46 AM Involved Party EBA STEPZ &
Channel ICFtoSTEPZ & CCSID 1208
Encoding 546 Data Size 3358
Transmission Filename S52025CTBANKDESDO08130726093646.1 Message ID O 0000000
Rel. Objects Audit Log Fragments Batches Securities Transactions Events Extd. Values Counters Errors Raw Data Higrarchy
] = i,
ID1 | Object Type | subtype | Relationship [in2 |object Type | subtype Start Date |Related 1D L

Figure 6-10 Physical Transmission Details

The top portion of the pane contains two active links to the channel and to the Involved Party.
These links take you to the relevant sections of the configuration data if you have appropriate
permissions to view this data.

The tabs in the lower portion of the pane show the following information that is related to the
processing of the physical transmission:
» Rel. Objects

Any related objects that the physical transmission caused to be created or that acted on it.
» Audit Log

The audit log, which includes the various states that the physical transmission passed
through and the events that caused the state change to occur.

» Fragments

Any fragments that were combined to create the physical transmission.
» Batches

The batches that were contained in the physical transmission.
» Securities

A paged list of security trading transactions that were contained within the physical
transmissions.

Security transactions are an expanded version of transaction objects with more attributes
for security trading data.

» Transactions
A paged list of the transactions that were contained within the physical transmission.
» Events
Any user events that acted upon the physical transmission; for example, user interactions.
» Extd Values
Any extended values for the physical transmission objects.
» Counters
Any counters that were created for the object.

Chapter 6. User interface 163

» Error

Any errors that the physical transmission encountered.

Errors include syntactical errors (such as mapping errors) or semantic errors (such as
currency not valid for payment type).

» Raw Data

The raw data or payload in the external format as received or transmitted.

» Hierarchy
The relations between the physical transmissions and its related objects; for example, the

transmission that it contains and any object it creates.

Audit Log tab
Financial Transaction Manager can log each state change that an object goes through and
the event that caused it to reach that state. It includes a time stamp to show when the state
change occurred. You can use the audit log to examine the physical transmissions process

flow to ensure that the physical transmission was processed correctly, which shows where the

process waited for a response from a third-party application or user.

Figure 6-11 shows the contents of the Audit Log tab.

Physical Transmission Details

1D 32007

Customer Reference 1008130726093646

Status Transmission Sent
Status Changed Jul 26, 2013 3:36:46 AM
Channel |CFtoSTEP2 &

Encoding 546

Transmission Filename 5$2025CTBANKDES0008130726093646.1

Rel. Objects

Fragments

Status

Batches Securities

Status Changed

Subtype Outgoing Credit Transfer to STEP2
Created Jul 26, 2013 9:36:46 AM

Involved Party EBA STEP2 &

CCSID 1208
Data Size 3858
Message ID

Tranzactions Events Extd. Values Counters

Event Type

Errors

S H°

Application FTM SEPA Credit Transfer Referenc ...

Raw Data Hierarchy
3 Sh)
8 =E
Obj. Rew. PT Rewv.

@ |Transmission Sent

Jul 26, 2013 5:36:46 AM

Qutbound Transmission Sent

3

HAwaiting Transmission

Jul 26, 2013 5:36:46 AM

QOutbound Fhysical Transmission Created

2

Cutbound Transmission Created

Jul 26, 2013 5:36:46 AM

Records 110 3of 3

Figure 6-11 Physical Transmission Details, Audit Log tab

164 Financial Transaction Manager Technical Overview

Batches tab

After the physical transmission is received and validated and after batch objects and

transaction objects are created, the relationship between these objects is maintained. By
using the user interface, you can switch between them by using active links. You can view
these objects within the Physical Transmission Details.

As shown in Figure 6-12, the Batches tab shows any batch objects that are associated with
the physical transmission and includes the high-level attributes, such as transaction count,
batch value, and batch status. The batch object is also an active link, which, takes you to the
Batch Details window when clicked.

Physical Transmission Details

D

Customer Reference

82007
10081307 26093646

Application
Subtype

Ch &l 3yl &

= H9 L
FTM SEPA Credit Transfer Referenc ...
Outgoing Credit Transfer to STEP2

Records 110 1 0f1

Status Transmission Sent Created Jul 26, 2013 9:36:46 AM
Status Changed Jul 26, 2013 9:36:46 AM Involved Party EBA STEPZ €
Channel ICFtoSTEP2 & CCSID 1208
Encoding 546 Data Size 3358
Transmission Filename 52025CTBANKDES0008130726093646.1 Mes=ssage ID 000000000
Rel Objects Audit Log Fragments Securities Transactions Events Extd. Values Counters Errors Raw Data Hierarchy
= (= i,
: L
B = [
Parent Sequence Batch Value Transaction Transactions
‘lD Batch D Number ‘Status Date Amount Chcatey SEE EITTTET Count Processed
| s2000| | |outtiound Batch Complete| | 25.005.00 [3u1 25. 2042 5:36:45 A] Jui 26. 2013 5:37:10 AM[3 B |

Figure 6-12 Batches tab

Transactions and Securities tabs

Similarly, the Transactions tab shows all of the transactions that are associated with the
physical transmission, as shown in Figure 6-13. The Transactions tab shows all the
transactions that are associated with the physical transmission, including the transaction’s
attributes, such as customer reference and status. Each of the transaction objects that are
shown are active links. If you click a link, the Transaction Detail window opens.

Physical Transmission Details

)

Customer Reference
Status

Status Changed
Channel

Encoding

Transmission Filename

82007 Application
10081307 26093646 Subtype
Transmission Sent Created
Jul 26, 2013 9:36:46 AM Involved Party
ICFtoSTEP2 € CCSID
546 Data Size
52025CTBANKDESODOS130726093646.1 Message ID

S@me
FTM SEPA Credit Transfer Referenc ...
Outgoing Credit Transfer to STEP2
Jul 26, 2013 9:36:46 AM
EBA STEPZ €@
1208
3858

Rel Objects Audit Log Fragments Batches Securities Events Extd. Values Counters Errors Raw Data Hierarchy
S &=
=
Sequence
Batch e ID (Type Status Status Changed Created Cust. Ref. Master|Subtype
| &2000 B2004 | TXN_PAYMENT | Outbound Transaction CompleteJul 26, 2043 8:37:10 AM| Jul 26, 2013 9:36:46 AM|AK-GCOD- Outgoing Credit Transfer to STEF2
D0E-TXID-D001 142
C) 82000 82005 | TXN_PAYMENT | Outbound Transaction Complete|Jul 26, 2013 2:37:10 AM|Jul 26, 2013 3:36:46 AM|AK-GOOD- CQutgoing Credit Transfer to STEPZ
03-TXID-D00213
@ |&2000 B2006 | TXN_PAYMENT | Outbound Transaction Complete [Jul 26, 2043 8:37:10 AM| Jul 26, 2013 8:36:48 AM|AK-GOOD- Outgoing Credit Transfer to STEF2
DOE-TXID-D00314

Records 1to 3 0f3

Figure 6-13 Transactions tab

Chapter 6. User interface 165

The Securities tab shows details that are similar to the Transactions tab, but other attributes

for securities trading also are included; for example, Instrument and Fund Manager. You can
use the Transactions tab on the Physical Transmission Details window to examine the details
of all of the transactions that are received within a customer file; for example, checking their

status or attributes, such as value date, currency, and amount.

Raw Data tab

By using the Physical Transmission Details, you can view the transaction data as it was
received in the original format. You can use this information to confirm that the transaction
data is being processed correctly and that it conforms to the data that was received. This
information is shown on the Raw Data tab, as shown in Figure 6-14.

Physical Transmission Details =S D
ID 32007 Application FTM SEPA Credit Transfer Referenc ...
Customer Reference 1003130726093646 Subtype Outgoing Credit Transfer to STEP2
Status Transmission Sent Created Jul 26, 2013 9:36:46 AM
Status Changed Jul 26, 2013 3:36:46 AM Involved Party EBA STEPZ &
Channel ICFtoSTEPZ & CCSID 1208
Encoding 546 Data Size 3858
Transmission Filename S52025CTBANKDES00031307260936446.1 Message 1D
Rel. Objects Audit Log Fragments Batches Securities Transactions Events Extd. Walues Counters Errors ; Higrarchy
= urn: fxsd SSCTIcBIkCredTri SCTIicfBIkCredTrf + = i’ﬁ Eﬂ -

schemalocation urn:S25CTIcfxed SSCTIcfBkCredTrf SCTIcTBIkCredTrixsd

: S25CTIcf Tri:Sndginst BANKDES0

‘Rcwvglnst ZYDOFRPO

‘FileRef 10081307280935458

Srvcld SCT

TstCode T

‘FType ICF

FDfTm 2013-07-26T09:35:45

‘NumCTBk 1

‘MumPCRBIk 0

‘MumRFRBIk 0

‘NumRQBK 0

“FMoFICstmrCdtTrf

08.001.02:GrpHdr

01.02Msgld PRIMARY00282000
01.0Z.CreDiTm 201 3-07-26T09:36:45
ZNbOfTxs 3

m

[0ZIntrBkSHimDt 2013-07-26
= 2 01.02:Sttlmin
.008.001.02:SttimMtd ~ CLRG

L. UMTCIS0 0: 20022 tech:

Figure 6-14 Raw Data tab

6.3.2 Fragments

Fragments within Financial Transaction Manager represent a piece or fragment of a larger
physical transmission that is split to facilitate processing; for example, salary files and pension
payment files. By using the Fragment function, you can search and monitor the reception and
creation of fragments.

166 Financial Transaction Manager Technical Overview

Fragment Search criteria
Figure 6-15 shows the Fragment Search pane.

Fragment Search

G
A

]

J

%,

1D

Customer Reference:

UlD:

Subtype:

Status:

Created:
Between. . -

and

Status Changed:
Between. . -

and

Figure 6-15 Fragment Search criteria pane

This pane includes the following search fields:
» ID
The identification that Financial Transaction Manager assigned to the fragment.
» Customer Reference
The customer reference for the fragment.
» UID

Another identification set as required when the fragment is received; for example, a
third-party application’s reference.

» Subtype
The subtype of the fragment.
» Status

The status of the fragment; for example, Inbound Transmission Complete and
Transmission sent.

» Created

The creation date and time of the fragment transmission, which can be set to search in a
time period or between two dates. The key word TODAY can be used.

Chapter 6. User interface 167

» Status Changed
The date and time when the fragment’s state changed.

Fragment Search Results

When a query is run, the Fragments Results show the fragments that satisfy that query. By
using the Fragments Results (see Figure 6-16), you can identify the health of a fragment. A
green dot denotes complete, an amber dot denotes warning, and a red exclamation denotes
an error.

Fragments E
B S
1] Application Subtype Status Data Size [Transmission | Sequence | Status Changed Created
0»[130001 | FTM Fragmentation Sample |FSYMENT Fragment Arrived %8330 130000 1 Aug 22, 2013 3:28:50 PM |Aug 22, 2013 3:28:50 PM
J»[130204 | FTM Fragmentation Sample |FAYMENT Fragment Arrived 98530 130203 1 Aug 22, 2013 3:30:56 PM |Aug 22, 2013 3:30:56 PM
J»[131502 | FTM Fragmentation Sample |DOMESTIC_CT |De-Fragmentation Complete 103871 13150 1 Aug 22, 2013 3:30:58 PM |Aug 22, 2013 3:30:57 PM
Records 110 3 0f 3

Figure 6-16 Fragments Search Results

You can configure the columns that display by using the Pick Columns option to add or
remove columns as required. You can also select the fragment that you want to examine to
access the Fragment Details.

Fragment Details

You can use the Fragments Details (see Figure 6-17) primarily to examine the fragment and
the states through which it passed and to examine the data that was received or transmitted.
The top portion of the pane shows expanded information about the attributes of the fragment.
The lower portion of the pane shows information that is related to details about the process
flow that it followed.

The top portion of the pane also contains an active link to the physical transmission that
includes the fragment.

Fragment Details '4%" @j @ C
1D 130001 Application FTM Fragmentation Sample
Customer Reference Physical Transmission 130000
Sequence Number 1 Subtype PAYMENT
Status Fragment Arrived Created Aug 22, 2013 3:28:50 PM
Status Changed Aug 22, 2013 3:28:50 PM CCSID 1208
Encoding 546 Data Size 98530

414051 2046544D5F514020202020 ...
Message ID ‘ = N

Rel. Objects Audit Log Physical Transmission Batches Events Extd. Values Counters Errors Raw Data Hierarchy

e I g .

y |s0k
H = =
D1 |Object Type | subtype |Relationship D2 |object Type Subtype start Date |retated 1D |

Mo Records Found

Figure 6-17 Fragment Details

168 Financial Transaction Manager Technical Overview

The following tabs in the lower portion of the pane show information that is related to the
processing of the physical transmission:

»

Rel. Objects

Shows any related objects that the fragment caused to be created or that acted on it. For
physical transmissions, this tab often contains no data.

Audit Log

Shows the audit log in the various states that the physical transmission passed through,
and the events that caused the state change to occur. You can configure the process flow
such that not all states are logged in the audit log.

Physical Transmission

Shows details of the physical transmission with which the fragment is associated.
Batches

Shows the batches that were contained in the fragment.

Events

Shows any user events that acted upon the fragment; for example, user interactions.
Extd Values

Lists any extended values that are saved with the fragment; for example, variables that are
to be used in mapping or downstream processing.

Counters

Lists any counters that created for the object.
Error

Lists any errors that the fragment encountered.
Raw Data

Shows the incoming or outgoing data in the format that it put to or was received from the
file, queue, and so on.

Hierarchy

Shows the relations between the fragment and its related objects; for example, the
physical transmission that contains it and any object it creates

Audit Log tab

The Audit Log tab shows each of the states that the fragment passed through during its
lifecycle, as shown in Figure 6-18 on page 170.

Chapter 6. User interface 169

=Y R e

Application FTM Fragmentation Sample

Fragment Details

]

Customer Reference

130001
Physical Transmission 130000

Sequence NHumber 1 Subtype PAYMENT

Status Fragment Arrived Created Aug 22, 2013 3:23:50 PM
Status Changed Aug 22, 2013 3:28:50 PM CCSID 1208
Encoding 546 Data Size 98530
414051 2046544D5F5140202020202...
Message ID 7 = N
Rel. Objects Audit Log Physical Transmisgion Batches Events Extd. Values Counters Errors Raw Data Hierarchy
{3} —| Eks
4 a8
= 2 B
| status | status Changed | obi. Rev. |
@ |Fragment Arrived [aug 22, 2013 3:28:50 P1E 1 |

Records 110 1 0f1

Figure 6-18 Audit Log tab

Physical Transmission tab

By using the Physical Transmission tab, you can access details about the physical
transmission of which this fragment is part, as shown in Figure 6-19. The tab also provides
details, such as the involved party and the channel on which the data arrived, which allows for

quick access to details.

Fragment Details '4% @ EE
I 130001 Application FTM Fragmentation Sample
Customer Reference Physical Transmission 130000
Sequence NHumber 1 Subtype PAYMENT
Status Fragment Arrived Created Aug 22, 2013 3:28:50 PM
Status Changed Aug 22, 2013 3:28:50 PM CCSID 1208
Encoding 546 Data Size 938530
414051204654405F514D202020202...
Message ID q, = b
Rel. Objects Audit Log Physical Transmission Batches Events Extd. Values Counters Errors Raw Data Higrarchy
ID 130000
Application FTM Fragmentation Sample
Customer Reference BBBB/M009253-CT/EUR/912
Subtype PAYMENT
Status Inbound Transmission Complete
Created Aug 22, 2013 3:28:50 PM
Status Changed Aug 22, 2013 3:28:55 PM
Involved Party Corporate Channel €
Channel Customer Payment Batch (MQ) £
CCSID 1208
Encoding 546
Data Size
Transmission Filename
Message ID FRAG_PT_TIMESTAMP '2013-08-22 15:28:50.237151"
Figure 6-19 Physical Transmission tab
170 Financial Transaction Manager Technical Overview

Raw Data tab
You can view the fragment’s raw data that is received on the channel by using the Raw Data
tab, as shown in Figure 6-20.

Fragment Details % @ D =
1D 130001 Application FTM Fragmentation Sample
Customer Reference Physical Transmission 130000
Sequence Humber 1 Subtype PAYMENT
Status Fragment Arrived Created Aug 22, 2013 3:28:50 PM
Status Changed Aug 22, 2013 3:258:50 PM CCSID 1208
Encoding 546 Data Size 93530
414D51204654405F5140202020202...
Message ID " T
3
Rel. Objects Audit Log Physical Transmission Batches Events Extd. Values Counters Errors Raw Data Higrarchy
<Document xmlns="urn:iso:std:iso:20022:tech:xsd:pacs.008.001.02"><FIToFICstmrCdtTri><GrpHdr><MsgId]

Figure 6-20 Raw Data tab

6.3.3 Batches

By using the Batches function, you can search for any batches that are received or
transmitted. The primary use of this function is to search for batches and to view their
attributes; for example, comparing the number of transactions that are contained within the
batch against the number processed.

Batch Search criteria
Figure 6-21 on page 172 shows the Batch Search criteria pane.

Chapter 6. User interface 171

172

Application:
FTM SEPA Credit Transfer Reference Application ~

Menu Search

Batch Search

e
1

1

J

%

1D

Parent Batch ID:

Batch Reference:

UlD:

Subtype:

Status:

m

Batch Date:

Created:

Between... -

and

Status Changed:
Between... -

and

’l 10 F

Figure 6-21 Search Definition pane for batches

This pane includes the following search fields:
» ID
The identification that Financial Transaction Manager assigned to the batch.
» Parent Batch ID
The identification of the batch that contained the batch.
» Batch Reference
The reference identification of the batch; for example, contained within the batch header.
» UID

Another identification that can be set as required when the batch is created with Financial
Transaction Manager; for example, a third-party application’s batch reference.

» Subtype
The subtype of the batch; for example, payroll and corporate payment instruction.

Financial Transaction Manager Technical Overview

Status

The status of the batch; for example, Waiting for Transactions to Complete and Batch
Validating.

Batch Date

The date the batch was created by a client or application, which is often contained within
the batch header.

Created

The creation date and time of the batch object within Financial Transaction Manager,
which can be set to search in a specific period or between two dates and can use the key
word TODAY.

Status Changed
The date and time when the physical transmission’s state changed.

Batch Search Results

When a query is run, the Batch Search Results show the batches that satisfy that query, as

shown in Figure 6-22. By using these results, you can view the status of the batch and view

the primary attributes of the batch. You can configure this view to add or remove columns by
using the Pick Column icon.

Batches
B
==
Value Transaction|Transactions
ID |Batch Reference Subtype Status Created
typ Amount Count Processed
J» 62000 | PRIMARYDOEEZ000 ‘Outgeing Credit Transfer to STEFZ ‘Outbound Batch Complete | 25,005.00 |Jul 26, 2013 9:36:46 AM |3 3
J» 20003 | PRIMARYDSE30003 Payment Cancellation Request (to STEF2)|Outbound Batch Complete (3,001.00 |Aug 7, 2013 1:36:00 PM (1 1
56001 (002BULKSDDBE2E3020081125AMSG0M | Inbound Direct Debit Instruction Batch Processed 400.00 Jul 25, 2013 5:28:52 PM(5 o

Records 1to 3 0f 3

Figure 6-22 Batch Search Results

The results that are shown are active links. Clicking a link takes you into the Batch Details.

Chapter 6. User interface 173

Batch Details

You can access the Batch Details from the Batch Results or from the Batches tab of the
Physical Transmission or Transaction Details. The Batch Details displays more detailed
information about an individual batch. The top portion of the pane shows expanded
information about the attributes of the batch, and the lower portion of the pane shows
information that is related to details about the process flow that it followed. Figure 6-23 shows
an example of the Batch Details.

Batch Details o)
1D 56001 Application FTM SEPA Direct Debit Reference Appl...
Parent Batch 1D Sequence Number
Batch Reference 003BULKSDDB2BS020051125AM SG001 Physical Transmission 56000
Fragment Subtype Inbound Direct Debit Instruction
Status Batch Processed Created Jul 25, 2013 5:28:52 PM
Status Changed Jul 25, 2013 5:28:52 PM Value Amount 400.00
Batch Date Monday, July 29, 2013 Transaction Count 5
Transactions Processed 0
Rel. Objects Audit Log Physical Transmission Fragments Batches Securities Transactions Events Extd. Values Counters Errors Hierarchy
= 1= "l
: L
B= E
D1 |Object Type | subtype Relationship D2 |object Type Subtype Start Date |Retated D

No Records Found

Figure 6-23 Batch Details

The top portion of the pane shows expanded information about the major attributes of the
batch; for example, batch reference, batch state, transaction count, and batch value. You can
ascertain where the batch is within its lifecycle and if the transactions it contains are
processed. It also contains an active link to the Physical Transmission, with which you can
access details about how the batch was received or created; for example, file name and
queue name.

The tabs in the lower portion of the pane show the following information that is related to
batch processing:
» Rel. Objects
Shows any related objects that the batch caused to be created or that acted on it.
» Audit Log

Shows the audit log with the various states that the batch passed through and the events
that caused the state change to occur.

» Physical Transmission

Shows the physical transmission in which the batch was received or transmitted.
» Batches

Shows any batches that were contained within the batch; for example, nested batches.
» Securities

Shows any security trading transactions that were contained within the batch.

Security transactions are an expanded version of transaction objects with other attributes
for security trading data.

» Transactions
Shows the transactions that were contained within the batch.

174 Financial Transaction Manager Technical Overview

» Events

Shows any user events that acted upon batch; for example, user interactions.

» Extd Values

Lists any extended values that are saved with the batch objects; for example, variables to
be used in downstream processing.

» Counters

Lists any counters that were created for the object.

» Errors

Shows any errors that are associated with the batch.

» Hierarchy

Shows the relations between the batch and its related objects; for example, the physical
transmission that it was part of or the transactions it contains.

The primary tabs that are used in this pane are the Audit Log tab, which shows the state
changes and any actions on the object; the Physical Transmission tab, which provides

information about how the batch was received, and the Transactions tab, which shows the
transactions that are contained within the batch.

Audit Log tab

Figure 6-24 shows the Batch Details Audit Log tab. This tab shows the states that the batch
passed through during its lifecycle and the events that caused that state change. A time

stamp is also logged with each audit entry. This information is useful for investigating any

unexpected issues that arise and identifying slow processes; for example, a response from a
third-party system might be slow.

Batch Details % E_?_;,j 2 =
ID 56001 Application FTM SEPA Direct Debit Reference Appl...
Parent Batch ID Sequence Number
Batch Reference 003BULKSDDB2BS020081125AM SG001 Physical Transmission 56000
Fragment Subtype Inbound Direct Debit Instruction
Status Batch Processed Created Jul 25, 2013 5:28:52 PM
Status Changed Jul 25, 2013 5:28:52 PM Value Amount 400.00
Batch Date Monday, July 29, 2013 Transaction Count 5
Transactions Processed 0
Rel. Objects Audit Log Physical Transmission Fragments Batches Securities Transactions Events Extd. Values Counters Errors Hierarchy
@ '4%' [z i.
Status Status Changed Event Type Obj. Rew. Bat. Rew.
Batch Processed Jul 25, 2013 5:28:52 FM E_PTValid: Physical Transmission Valid & 1
Batch Valid Jul 25, 2013 5:28:52 PM E_BatchValPass: Batch Header Validated 3 1
Validating Batch Jul 25, 2013 5:28:52 FM E_BatTxnValComplete: Batch Transaction Validation Complete 4 1
Batch Mapped Jul 25, 2043 5:28:52 PM E_MpinBatMapped: Batch Mapped 3 1
Batch Mapped Jul 25, 2013 5:28:52 PFM E_ValPass: Validation Passed 2 1
Batch Mapped Jul 25, 2013 5:28:52 PM 1 1

Records 1106 of &

Figure 6-24 Audit Log tab

Chapter 6. User interface

175

Physical Transmission tab

As shown in Figure 6-25, the Physical Transmission tab shows the attributes of the physical
transmission in which the batch was received or transmitted. It includes attributes, such as
status, file name, the involved party, and the channel that received or emitted the physical
transmission. By using the active links within the physical transmission details, you can
directly open the details of the involved party and channel.

Batch Details

(1]
Parent Batch ID
Batch Reference

56001

003BULK SDDB2B9020081125AM SG001
Fragment
Status

Status Changed
Batch Date

Batch Processed
Jul 25, 2013 5:28:52 PM
Monday, July 29, 2013

Transactions Processed 0

Rel. Objects Audit Log Physical Transmission Fragments Batches

D

Application
Customer Reference
Subtype

Status

Created

Status Changed
Involved Party
Channel

CCsID

Encoding

Data Size
Transmission Filename
Message ID

g

Application FTM SEPA Direct Debit Reference Appl...
Sequence Number
Physical Transmission 56000
Subtype Inbound Direct Debit Instruction
Created Jul 25, 2013 5:28:52 PM
Value Amount 400.00

Transaction Count 5

Securities Tran=sactions Events Extd. Values Counters Errors Hierarchy
56000

FTM SEPA Direct Debit Reference Application
003BULKSDDB2B9020081125AMSG001
pacs.003

Inbound Transmission Processed

Jul 25, 2013 5:28:52 PM

Jul 25, 2013 5:28:52 PM

Client ¢

DD Instruction from Client &

437

546

7225

414D051204654405F51402020202020201144F 1512001 DAOT

Figure 6-25 Physical Transmission tab

Transaction tab

As shown in Figure 6-26, the Transactions tab shows all of the transactions that are contained
in the batch. By using this tab, you can validate the number of transactions within the batch
with transaction count and examine the status of the transactions.

Batch Details

D

Parent Batch ID
Batch Reference
Fragment
Status

Status Changed
Batch Date

Transactions Processed

56001

003BULKSDDB2B90200811 25AM SG001

Batch Processed

Jul 25, 2013 5:25:52 PM
Monday, July 29, 2013
]

G885

Application FTM SEPA Direct Debit Reference Appl...

Sequence Number

Physical Tranzmiszion 56000

Subtype Inbound Direct Debit Instruction

Created Jul 25, 2013 5:28:

Value Amount 400.00

Transaction Count &

52 PM

Records 1to 5 of §

Rel. Objects Audit Log Physical Transmission | Fragments Batches Securities | Transactions Events Extd. Values Counters Errors Hierarchy
e
"N
| = =
Sequence

Batch Number D (Type Status Status Changed |Created Cust. Ref. Master| Subtype
SE001 |1 56002 THN_PAYMENT | Waiting To Be Accepted [Jul 26, 2013 B:31:06 AM|.JuI 25, 2013 5:28:52 PM | D03TXN SDDSD0OS0Z0081125AMMS GO0 | o Inbound Direct Debit Instruction
56004 |2 56002 [TXN_PAYMENT |Waiting To Be Accepted [Jul 26, 2013 8:21:06 AM|JuI 25, 2043 5:28:52 PM | D03TXN SDDSDDS020081 125AMMS G002 | o Inbound Direct Debit Instruction
6001 |3 56004 | TAN_PAYMENT |Waiting To Be Accepted |Jul 26, 2013 8:31:06 AM|JuI 25, 2013 5:28:52 PM | 003TXN SDD SDDS020081 125AMMSGOD3 | o Inbound Direct Debit Instruction
JE001 |4 36005 | TXN_PAYMENT | Waiting To Be Accepted [Jul 26, 2013 8:31:06 AM|JuI 23, 2013 5:28:52 PM | 003TXN SDD SDOS0Z0081125AMMS G004 | o Inbound Direct Debit Instruction
5600 |5 56006 [TXN_PAYMENT |Waiting To Be Accepted [Jul 26, 2013 8:21:06 AM|JuI 25, 2043 5:28:52 PM | D03TXN SDDSDDS020081 125AMMS GOD5 | o Inbound Direct Debit Instruction

Figure 6-26 Transactions tab

176

Financial Transaction Manager Technical Overview

The status of the transaction is shown in the Status field. However, similar to the Search
Results, the status indicator is shown in the first column. A green dot shows that the
transaction is complete, an amber dot shows that user interaction is required, and a red
exclamation mark shows that the transaction is in an alert state.

The transaction records are active links. Selecting a link opens the Transaction Details (or
Payment or Securities Transactions Details pane where appropriate).

6.3.4 Transactions

The most common use of the Financial Transaction Manager Operation and Administration
Console is to search for and interact with transactions. You can use the transaction search
functions, Transactions, Payment Transactions, and Securities Transactions to define search
criteria that find transactions and to understand the transaction’s state and other attributes.

Financial Transaction Manager orchestrates the entire transaction process lifecycle and holds
the state of the transaction, including interactions with external applications. Through this
process, you can identify whether actions must be taken in these systems; for example,
releasing transactions from a false positive from a watchlist checking application.

Each integration or output point creates a transaction that is to be emitted as a physical
transmission. These transactions are created as part of the original transaction’s lifecycle and
are related to it as child objects (the original transaction is the master transaction).

You can use the transaction search function to search for transaction objects and details. All
transactions that enter Financial Transaction Manager are represented by a transaction
object. The transaction search results show the related Financial Transaction Manager
objects. The Financial Transaction Manager transaction object is extended to include more
attributes for business concepts, such as payments and securities. These market-specific
objects have a payment or a security transaction and a core transaction object.

By using the Payment Transaction and Securities Transaction searches, you can search for
these transactions by using specific business attributes; for example, currency, amount, value
date, instrument, and fund manager.

Chapter 6. User interface 177

Figure 6-27 shows the three transaction search panes. These search criteria panes return
transactions with the Transactions, Payment Transactions, and Securities Transactions
results. These results also differ from the columns within the Payments and Securities results
and reflect other payments and securities information.

Payment Transaction Search |Securities Transaction Search

B O R

[
Maste =~ (Master
- - -
Batch: | Batch:
Customer Reference: | Customer Reference:

.

Subtype: Subtype: Subtype:

Status: Status: Status:
Customer:

Created: _ Bank Code:
Between... - |

Status Changed:
Between...

Payment Type:

PaymentMethod: TradeDate:

Value Date:

Currency:

Amount Min.:

Amount Max:

Amount Max.

Currency:

Created:

Lastb Mi
Status Changed:
Between...

Figure 6-27 Transaction Search panes

Hint: Searching for Master transactions simplifies only the results because child
transactions are not displayed in the results.

178 Financial Transaction Manager Technical Overview

Figure 6-28, Figure 6-29, and Figure 6-30 on page 180 shows these panes.

Transactions -
. : L
e [H| = =
Physical
1] Cust. Ref. Type Master|Subtype Status L Batch|Created Status Changed
Transmission
BOO0M AK-GOOD- Fayment Transaction (g Outgoing Credit Transfer Recall Requested 80000 Jul 26, 2013 2:36:04 AM|Jul 26, 2013 2:37:52 AM
D0E-TXID-000114a
{80003 |AK-GOOD- Fayment Transaction (g Outgoing Credit Transfer Received Transaction Settled 80002 Jul 26, 2013 9:36:11 AM|Jul 26, 2013 9:37:10 AM
DOE-TXID-000213
{80005 |AK-GOOD- Fayment Transaction (g Outgoing Credit Transfer Received Transaction Settled 80004 Jul 26, 2013 2:36:16 AM|Jul 26, 2013 2:37:10 AM
DOE-TXID-000314
| 81001 Transaction v Operator Command Inbound Transaction Complete B1000 Jul 26, 2013 2:36:46 AM| Jul 26, 2013 3:36:48 AM
(82004 |AK-GOOD- Payment Transaction Outgoing Credit Transfer to STEF2 ‘Outbound Transaction Complete 82000 |Jul 26, 2013 9:36:46 AM|Jul 26, 2013 9:37:10 AM
DDE-TXID-000114a
(82005 |AK-GOOD- Payment Transaction Outgoing Cradit Transfer to STERZ2 Outbound Transaction Complata 82000 |Jul 26, 2013 9:36:48 AM|Jul 25, 2013 5:37-10 AM
008-TXID-000213
»[B2006 |AK-GOOD- Payment Tranzaction Outgoing Credit Transfer to STEFZ? ‘Outbound Transaction Complete 82000 |Jul 26, 2013 9:36:46 AM|Jul 26, 2013 9:37-10 AM
DDE-TXID-D00314
(83001 | PRIMAR Payment Ti Ack to Outgoing Txn from STEFZ (CVF) |Inbound Transaction Complete 83000 Jul 26, 2013 9:36:46 AM|Jul 26, 2013 5:36:47 AM
(82008 |XO0N002 Payment Transaction Ack to Qutgoing SCT Txn (pacs.002) ‘Qutbound Transaction Complete s2011 Jul 26, 2013 5:36:47 AM|Jul 26, 2013 3:36:47 AM
@) 101001 Transaction v Operator Command Inbound Transaction Complete 101000 Aug 8, 2013 2:20:56 PM | Aug 8, 2013 2:20:56 PM
@ (82008 | X002 Payment Transaction Ack to Qutgoing SCT Txn (pacs.002) ‘Outbound Transaction Complete 82012 Jul 26, 2013 9:36:47 AM | Jul 26, 2013 9:36:47 AM
& [B2010 200002 Payment Transaction Ack to Qutgoing SCT Txn (pacs.002) ‘Outbound Transaction Complete 2012 Jul 26, 2013 8:36:47 AM|Jul 26, 2013 B:36:47 AM
»[31001 | PRIMARY Payment T Ack to Qutgoing Txn from STEF2 (CVF) Inbound Transaction Complete 91000 Aug 7, 2013 1:36:01 PM |Aug 7, 2013 1:36:01 PM
{|83003 |D5CT130726083708| Fayment Transaction gy DRR from EBA STEP2 Inbound Transaction Complete 83002 Jul 26, 2013 2:37:08 AM| Jul 26, 2013 2:37:10 AM
(81003 Transaction v Operator Command Inbound Transaction Complete 81002 Jul 26, 2013 9:37:52 AM | Jul 26, 2013 9:37:52 AM
B2017 AK-GOOD- Payment Transaction Payment Cancellation Request [to STEPZ)(O T Waiting for C 20003 |Jul 26, 2013 9:37:52 AM|Aug 7, 2013 1:36:01 PM
008-TXID-000114a

Records 1 to 16 of 16

Figure 6-28 Transactions results

The Transactions results show details of all transaction objects and their related objects; for
example, the physical transmission and status. All transactions are shown in this search.
Figure 6-28 shows the transaction types of Payment Transaction and Transaction because
both Payment and Securities Transactions are types of the more general Transaction type.

The payment results shows only transactions of type Payment Transaction, as shown in
Figure 6-29. The payment results columns show more payment-specific information, such as
accounts, currency, and amount.

Payment Transactions

hESs=EE

Cust. Ref. Master |Subtype Status Pay Type Bank Code |Account gi:'e BNk | pest. Account Currency |Amount g:i:e
AK-GOOD- v Outgeing Credit Transfer Recall Requested FIToFICstmrCdtTri | SWIINDB2AAA | GR3001720810005081023523510 | SWIINDC 1AM | LUS60019630373845000 | EUR 9.001.00 |Jul 26, 2013
008-TXID-000114a

O (AK-GOOD- Outgoing Credit Transfer Received Transaction Settled FIToFICstmrCdtTrf | SWIINDB2AAA | GRI001720810005081023929510 | SWIINDC 1AAA | LUSE0019630373849000 [EUR 8,002.00 [Jul 26, 2043
D08-TXID-000213

O (AK-GOOD- Outgoing Credit Transfer Received Transaction Settled FIToFICstmrCatTrf | SWIINDB2AAA | GR3004720810005081023523510 | SWINDC 1AAR | LUSS0013630373343000 |EUR 8.002.00 [Jul 26, 2043
008-TXID-000314

) | AK-GOOD- Outgeing Credit Transfer to STEF2 ‘Outbound Transaction Complete FIToFICstmrCdiTr | SWIINDBZAAR SUINDC 1ARA| EUR 9.001.00 |Jul 26, 2013
008-TXID-000114a

O (AK-GOOD- Outgoing Credit Transfer to STEP2 Outbound Transaction Complete FIToFICstmrCdtTri | SWIINDB2ZAAR SUIINDC1ARA | EUR 8.002.00 [Jul 26, 2013
D08-TXID-000213

)| AK-GOOD- Qutgoing Credit Transfer to STEF2 ‘Outbound Transaction Complete FIToFICstmrCdtTrf | SWIINDBZAAR SWIINDC 1AM EUR 8.002.00 [Jul 26, 2013
008-TXID-000314

{0} | PRIMARY0DBE2000 Ack to Qutgeing Txn from STEP2 (CVF) |Inbound Transaction Complete ZYDOFRPO BANKDE30

@ 20002 Ack to Qutgeing SCT Txn (pacs.002) ‘Outbound Transaction Complete FlToFIPmtStsRpt | ZYDOFRPO BANKDE30

O | HX002 Ack to Cutgoing SCT Txn (pacs.002) Outbound Transaction Complete FlToFIPmtStsRpt | ZYDOFRPO BANKDES0

O 2KX002 Ack to Qutgoing SCT Txn (pacs.002) ‘Outbound Transaction Complete FlToFIPmtStsRpt | ZYDOFRPO BANKDES0

)| DSCT130726083708 o DRR from EBA STEP2 Inbound Transaction Complete
(AK-GOOD- Payment Cancellation Request (to STEF2)|Outbound Transaction Waiting for Complation SWINDB2AA SUMINDC1ARA | EUR 8.001.00 |[Jul 26, 2013
008-TXID-000114a

() | PRIMARY0S650003 Ack to Qutgeing Txn from STEP2 (CVF) |Inbound Transaction Complete ZYDOFRPO BANKDE30

Records 110 1207 13

Figure 6-29 Payment results

Chapter 6. User interface

179

The Securities Transaction results columns show more securities trading-specific information,
such as accounts, quantity, and instrument, as shown in Figure 6-30.

Securities Transaction Search =
e Order : Trade
Application (ID Ref Master|Subtype Status Account Quantity [Instrument Date
Securities POC|(11207 |MT541- v Inbound Receive Against Payment|Waiting until Acceptance Sent |BS000- 4.00 EROD10206393 |14 Now
priv-cash1 BES000ABCD
Securities POC (112009 (MT541- v Inbound Receive Against Payment|Waiting Store Buy Order Details | B5000- 4.00 EROD10206298 |14 Nov
priv-cash1l BS000ABCD
)| Securities POC|11211|MT541- Inbound Store Buy Order Inbound Transaction Complete
priv-cash1
| Securities POC|11213|MT541- Outbound Processing Advice Outbound Transaction Complete | B5000- 4.00 BROD10206298
priv-cashl BS000ABCD
)| Securities POC|11216|MT541- Inbound Confirmation Of Trade Inbound Transaction Complete
priv-cash1
| Securities POC|11218|MT541- Inbound Confirmation Of Trade Inbound Transaction Complete
priv-cashl
Records 1 to 6 of 6

Figure 6-30 Securities results

By selecting a transaction in any of the results, the details that are appropriate for the
transaction are displayed. These details are similar and only the expanded data that is shown
in the top portion of the pane is different.

Figure 6-31, Figure 6-32 on page 181, and Figure 6-33 on page 182 show the transaction
details for transactions, payment transactions, and securities trading transactions.

Transaction Details '4% @:’ L) -
ID g1001 Application FTM SEPA Credit Transfer Referen ...
Customer Reference Alternative ID
Subtype Operator Command Batch
Sequence Number 1 Physical Transmission 21000
Status Inbound Transaction Complete Created Jul 26, 2013 9:36:46 AM
Status Changed Jul 26, 2013 9:36:46 AM Involved Party FTM &
ISF Format |SF v3 up
Rel. Objects Audit Log Physical Transmission Batch Events Extd. Values Counters Errors Raw Data ISF Hierarchy
= i (oo e
: L
B S =]
D1 |Object Type | subtype |Relationship |p2 |object Type |subtype |Start Date |RetatediD |
81001 | Transaction |operator Command [Targets [22 |service Participant | [ut 26, 2013 9:36:46 am |28 |

Records 1to 1 0f 1

Figure 6-31 Transaction Details

Transaction Details show the expanded details that are related to the specific Financial
Transaction Manager objects; for example, for incoming transmissions, the physical
transmission that contained the transaction, the format of the message that was received, and
the involved party from which it came. These details are useful to understand how the
transaction was received and how the raw data was mapped into the Financial Transaction
Manager’s internal standard format.

180 Financial Transaction Manager Technical Overview

Payments and Securities Trading Transaction Details show more business information
regarding the transaction. Figure 6-32 shows the Payment Transaction Details pane.

Payment Transaction Details

]

Customer Reference
Type

Sequence Number
Status

Status Changed
Payment Method
Book Date

Value Date

Bank Code [Account

80001

AK-GOOD-003-TXID-000114a
Cutgoing Credit Transfer
1

Recall Requested

Jul 26, 2013 9:37:52 AM

Friday, July 26, 2013

SWIHDB2ZAAA | GR300172081000505 ...

Application

Alternative 1D

Batch

Physical Transmission
Created

Payment Type
Involhved Party
Currency | Amount
Debit / Credit

Dest. Bank Code / Account

O G

=

FTM SEPA Credit Transfer Re
4 nr

AK-GOOD-008-M $GID-000114a

80000

Jul 26, 2013 9:36:04 AM
FIToFICstmrCdtTrf
Client €

Euro / 9,001.00

&= 5

feren ...

SWIINDCAAAA | LUBG001963037 3845000

4 T 3
ISF Format ISF Ui
Rel. Objects Audit Log Physical Transmisszion Batch Ewvents Extd. Walues Counters Errors Raw Data ISF Hierarchy
@' T [B

=

ID1 |Object Type Subtype Relationship |ID 2 |Object Type Subtype Start Date Related ID

81003 |Transaction ‘Operator Command Targets B0001 | Payment Transaction |Outgoing Credit Transfer Jul 26, 2043 8:37:52 AM |B1003

B0001 | Payment Transaction |Outgoing Credit Transfer |Cause of B2004 | Payment Transaction |Outgoing Credit Transfer to STEP2 Jul 26, 2013 9:36:46 AM | B2004

B0001 | Payment Transaction |Outgoing Credit Transfer |Cause of B2008 | Payment Transaction |Ack to Outgoing SCT Txn (pacs.002) Jul 26, 2013 9:36:47 AM | 82008

80001 | Payment Transaction [Outgoing Credit Transfer |Cause of 8217 |Payment Transaction |Payment Cancellation Request (to STEFZ) |Jul 26, 2013 8:37:5F AM |B2047

Records 1to 4 of 4

Figure 6-32 Payment Transaction Details

The top portion of the pane shows expanded payment information in addition to the expanded
core transaction information. These details show the primary payment attributes, amount,

currency, value date, accounts, and so forth. These details are used when you are integrating
to external systems; for example for liquidity checks and general ledger applications, and for
investigating customer inquiries.

Chapter 6. User interface

181

Figure 6-33 shows the Securities Transaction Details.

Securities Transaction Details qu Ef__;f:l Q@ [
ID 11207 Application Securities POC
Customer Reference MT541-priv-cashl Alternative ID
Inb d R ive Against Pay ...
Subtype :1 oun ecer:[e gainst Pay . Batch
Physical Transmission 11206 Status Waiting until Acceptance Sent
Created 3 Oct 2012, 17:52:10 Status Changed 3 Oct 2012, 18:06:53
Customer Instrument BRO0D103206398
Fund Manager Currency / Amount [
Quantity 4.00 Trade Date Mon, 14 Nov 2011
Account B5000-B5000ABCD Account Type
Account Holder Involved Party Non Resident Investor &
Book Date ISF Format Pain.002
uID
Rel. Objects | Audit Log | Physical Transmission Events Extd. Values | Counters Errors Raw Data ISF Hierarchy
- =| ” e
B S E
ID 1 (Object Type Subtype Relationship |ID 2 |Object Type Subtype
11211 |Securities Transaction |Inbound Store Buy Order Confirms 11207 |Securities Transaction |Inbound Receive Against Payment
11207 |Securities Transaction |(Inbound Receive Against Payment |Cause of 11212 |Securities Transaction |Outbound Processing Advice

Records 1to 2 of 2

Figure 6-33 Securities Transaction Details

182

The Securities Transaction Details shows the expanded securities trading information and the
core transaction details. This information is useful to examine the status of a securities
transaction or to inquire about the details of a trade. The lower portion of the pane shows tabs
that give more details about the transaction as it is orchestrated and processed by Financial
Transaction Manager.
The tabs provide the following information:
» Rel. Objects

Shows any related objects that the transaction caused to be created or that acted on it.
» Audit Log

Shows the audit log with the various states that the transaction passed through and the
events that caused the state change to occur.

» Physical Transmission

Shows the physical transmission that contains the transaction.
» Events

Shows any user events that acted upon the transaction; for example, user interactions.
» Extd. Values

Lists any extended values that are saved with the transaction object; for example,
variables to be used in downstream processing.

» Counter
Lists any counters that were created for the transaction.
» Errors

Shows any errors that are associated with the transaction.

Financial Transaction Manager Technical Overview

» Raw Data

Shows the raw data as received in the physical transmission and is present if the physical
transmission includes only one transaction.

ISF

Internal Standard Format (ISF) shows the structure of the Financial Transaction Manager
internal standard format representation of the transaction.

Hierarchy

Shows the relationship between the transaction and its related objects; for example, the
physical transmission of which it was part or the transactions it contains.

Note: These tabs are the same for all transaction types. The following examples use the
Payment Transaction Details.

Rel. Objects tab

The Rel. Objects tab (as shown in Figure 6-34) shows all of the related objects that are linked
to the transaction and the type of object and the relationship between them. This information
is used to examine which related objects were created; for example, messages that were

transmitted to external applications or responses from external applications or from example
result messages from a fraud detection system.

Payment Transaction Details

D

Customer Reference
Type

Sequence Number
Status

Status Changed
Payment Method
Book Date

Value Date

Bank Code [Account

80001

AK-GOOD-008-TXID-000114a

Cutgoing Credit Transfer
1

Recall Requested

Jul 26, 2013 9:37:52 AM

Friday, July 26, 2013

Physical Transmission

SWINDBZAAA [GRI00172081000508 ...

Dest.

{h &8l & =
e @ L

FTM SEPA Credit Transfer Referen ...

Application "

Alternative 1D
Batch

S0000
Created
Payment Type
Involved Party Client €
Currency | Amount
Debit | Credit

Bank Code / Account

Euro / 9,001.00

[Tl 3

AK-GOOD-008-M SGID-000114a

Jul 26, 2013 9:36:04 AM
FIToFICstmrCdtTrf

SVIINDC1AAA | LUBG001963037 3549000

4 T b
ISF Format ISF (1]1n]
Rel Objects Audit Log Physical Transmission Batch Events Extd. Values Counters Errors Raw Data ISF Hierarchy
e .
g |=ab
B =E]
ID1 |Object Type Subtype Relationship |ID 2 |Object Type Subtype Start Date Related ID
81003 |Transaction Operator Command Targets 80001 | Payment Transaction |Cutgoing Credit Transfer Jul 26, 2013 8:37:52 AM |B1003
80001 | Payment Transaction |Cutgoing Credit Transfer |Cause of 82004 | Payment Transaction |Cutgoing Credit Transfer to STEF2 Jul 26, 2013 9:36:46 AM | B2004
80001 | Payment Transaction |Cutgoing Credit Transfer |Cause of 82008 | Payment Transaction |Ack to Qutgoing 5CT Txn (pacs.002) Jul 26, 2013 9:36:47 AM | B2008
B0001 | Payment Transaction |Outgoing Credit Transfer |Cause of B2017 | Payment Transaction |Payment Cancellation Request [to STEF2) Jul 26, 2013 8:37:52 AM | B2MT

Records 1to 4 of 4

Figure 6-34 Rel. Objects tab

Chapter 6. User interface

183

Audit Log tab

The Audit Log tab (as shown in Figure 6-35) shows each state that the transaction passed

through during its lifecycle. It also shows the time stamp of the state change and the event

that caused the state change. This information is useful in understanding how a payment is
processed, the length of time it took for a process to complete interactions with external

systems,

and its actual status.

Payment Transaction Details

(]

Customer Reference
Type

Sequence Number
Status

Status Changed
Payment Method
Book Date

Value Date

Bank Code | Account

S0001
AK-GOOD-003-TXID-000114a
Outgoing Credit Transfer
1

Recall Requested

Jul 26, 2013 %:37:52 AM

Friday, July 26, 2013

SWINDB2ZAAA | GRIOMT2081000508 ...

Application

Alternative 1D

Batch

Physical Transmission
Created

Payment Type

Involved Party
Currency /| Amount

Debit | Credit

Dest. Bank Code / Account

Ch & =

= 7 L
FTM SEPA Credit Transfer Referen ...
AK-GOOD-005-M SGID-000114a

80000

Jul 26, 2013 9:36:04 AM
FIToFIC stmrCdtTrf
Client &

Euro [9,001.00

SWIHDC1AAA | LUSG0019630373549000

ISF Format 15F (1] 1n]
Rel. Objects Physical Transmission Batch Events Extd. Values Counters Errors Raw Data ISF Hierarchy
b) e
= =
Status Status Changed Event Type Pay. Rev.
Recall Requested Jul 268, 2043 5:37:52 AM Recall Requested 8 1
{ |Received Transaction Settled Jul 268, 2043 5:37:52 AM Operator Cancelled Fraudulent Transaction 7 1
{ |Received Transaction Settled Jul 26, 2043 5:37:10 AM Qutbound Transaction Complete [1
Waiting to be settled Jul 26, 2043 9:36:47 AM Qutgeing Transaction Accepted 3 1
Waiting to be accepted Jul 26, 2043 9:36:46 AM Outbound Batch Created for Transaction 4 1
Waiting to be Bulked Jul 26, 2013 9:36:04 AM Validation Passed 3 1
Validating Transaction Jul 26, 2013 9:36:04 AM Inbound Transaction Mapped 2 1
Inbound Transaction Mapped Jul 26, 2013 9:36:04 AM 1 1

Records 1to 8 of 8

Figure 6-35 Audit Log tab

184

Financial Transaction Manager Technical Overview

Physical Transmission tab

The Physical Transmission and Batch tabs (as shown in Figure 6-36) show the related

physical transmission and batch objects that are associated with the transmission. By using
these tabs, you can examine the batch (if it exists) of which the transaction was part and the
physical transmission that contained it. Through this information, you can examine a
transaction from reception to completion; for example, by investigating the batch of which the
transaction was part and then the customer file in which it was contained or the
channel-specific message that was transmitted.

Payment Transaction Details "1% @) -
1D 30001 Application FTM SEPA Credit Transfer Referen ...
Customer Reference AK-GOOD-003-TXID-000114a Alternative ID AK-GOOD-008-MSGID-000114a
Type Outgoing Credit Transfer Batch
Sequence Number 1 Physical Transmission S0000
Status Recall Requested Created Jul 26, 2013 9:36:04 AM
Status Changed Jul 26, 2013 9:37:52 AM Payment Type FIToFICstmrCdiTrf
Payment Method Involved Party Client &
Book Date Currency / Amount Euro /9,001.00
Value Date Friday, July 26, 2013 Debit / Credit
Bank Code / Account SWIINDB2AAA | GR3001T2081000508 ... Dest. Bank Code / Account SWIINDC1AAA / LUSG001963037 3549000
ISF Format ISF uip
Rel. Objects Audit Log Batch Events Extd. Values Counters Errors Raw Data ISF Hierarchy
I 30000
Application FTM SEPA Credit Transfer Reference Application
Customer Reference AK-GOOD-008-MSGID-000114a
Subtype pacs.003.001.02
Status Inbound Transmission Complete
Created Jul 26, 2013 9:36:04 AM
Status Changed Jul 26, 2013 9:37:10 AM
Involved Party Client €
Channel CreditTransfersAndReturnsFromClient €
CCSID 437
Encoding 546
Data Size 1349
Transmission Filename
Message ID 414D51204654405F51402020202020203033F25120008005
Figure 6-36 Physical Transmission tab

Chapter 6. User interface

185

Event tab

The Events tab (as shown in Figure 6-37) shows any logged events that acted on the
transactions. This tab shows the type of event that acted on the transaction, its severity, and
the action that raised the event. You can use this tab to examine user actions that were taken
on the transaction; for example, examining the time that was taken between the first and

second authorizer.

Payment Transaction Details

D

Customer Reference

80004
AK-GOOD-008-TXID-000114a

Application
Alternative 1D

=T R

FTM SEPA Credit Transfer Referen ...
AK-GOOD-003-M SGID-000114a

Records 110 2of2

Type Outgoing Credit Transfer Batch
Sequence Humber 1 Physical Transmission S0000
Status Recall Requested Created Jul 26, 2013 9:36:04 AM
Status Changed Jul 26, 2013 9:37:52 AM Payment Type FIToFICstmrCdtTrf
Payment Method Involved Party Client €
Book Date Currency / Amount Euro/9,001.00
Value Date Friday, July 26, 2013 Debit | Credit
Bank Code [Account SWINDBZAAA | GR3I0O0MT 2081000508 ... Dest. Bank Code [Account SWINDC1AAA [LUSS001963037 3849000
ISF Format ISF up
Rel. Objects Audit Log Physical Transmission Batch Extd. Values Counters Errors Raw Data ISF Hierarchy
Ee
1D Type Severity Priority Source Created
464 Recall Requested Information Medium A_ValidateForOut Jul 26, 2013 9:37:52 AM
463 Operator Cancelled Fraudulent Transaction Information Medium A_ProcessCmd Jul 26, 2013 9:37:52 AM

Figure 6-37 Events tab

186 Financial Transaction Manager Technical Overview

Raw Data tab

The Raw Data tab (as shown in Figure 6-38) displays only if the transaction is not part of a
batch, meaning it is a single transaction message. The tab also shows the format and
structure of the data as it was received, such as in a file and message queue. If the raw data
that is associated with the transaction is XML, it is shown in a tree type structure, as shown in
Figure 6-38; otherwise, it displays as text.

Payment Transaction Details % lf_;] @ a
1D 30001 Application FTM SEPA Credit Transfer Referen ...
Customer Reference AK-GOOD-008-TXID-000114a Alternative ID AK-GOOD-008-M SGID-000114a
Type OCutgoing Credit Transfer Batch
Sequence Number 1 Physical Transmission 30000
Status Recall Requested Created Jul 26, 2013 %:36:04 AM
Status Changed Jul 26, 2013 %:37:52 AM Payment Type FlIToFICstmrCdtTri
Payment Method Involved Party Client €
Book Date Currency / Amount Euro /9,001.00
Value Date Friday, July 26, 2013 Debit /| Credit
Bank Code [Account SWIINDBZAAA | GR300172051000508 ... Dest. Bank Code [Account SWINDC1AAA [LUSG0019630373849000
ISF Format |SF (1]1n]

Rel. Objects Audit Log Physical Transmission Batch Events Extd. Values Counters Errors

ISF Hierarchy

02:Document + 5 %EE;U -
[Z:FoFICstmrCdtTre

------------- 2022 tech: n 002.001

O2:Mzgld AK-GOOD-008-MSGID-000114a
1.02:CreDfTm 2013-07-26T16:19:30
02:NbOfTxs 1

= urn:iso:stdiiso.20022:tech:xsd pacs. 008.001. 02 THintrEkSHimAmME 5001.00

Figure 6-38 Raw Data tab

m

This information is useful when you are examining the fields and the data of the raw data and
to understand how the data is mapped into the internal standard format. This can be useful
when you are investigating why certain data is not being processed appropriately.

Chapter 6. User interface 187

ISF tab

The ISF tab (as shown in Figure 6-39) shows the ISF representation of the transaction. This
information is useful when new integration points are developed; for example, mapping
definitions or examining a transaction’s lifecycle to ensure that the correct data is present in

the ISF.
Payment Transaction Details '4% E.‘:;'j @ =
1D 30004 Application FTM SEPA Credit Transfer Referen ...
Customer Reference AK-GOOD-008-TXID-000114a Alternative ID AK-GOOD-008-MSGID-000114a
Type Qutgoing Credit Transfer Batch
Sequence Number 1 Physical Transmission 80000
Status Recall Requested Created Jul 26, 2013 2:36:04 AM
Status Changed Jul 26, 2013 9:37:52 AM Payment Type FIToFICstmrCdiTrf
Payment Method Involved Party Client &
Book Date Currency / Amount Euro/9,001.00
Value Date Friday, July 26, 2013 Debit / Credit
Bank Code [Account SWINDB2AAA [GR300172081000508 ... Dest. Bank Code [Account SWINDC1AAA / LUSG0019630373549000
ISF Format 15F Ui
Rel. Objects Audit Log Physical Transmission Batch Events Extd. Values Counters Errors Raw Data Hierarchy
= hittp:d .ibm.com/xmins/prod/ftmfisf/v3:ISFMessage H [i'ﬁ B i
=} Header |
\..BusinessConcept CT_OUT 1
\..Transactiond 20001
= : Libm.comixminsiprod/ ftimfis fiv3: CreditTrans fer
i...EndToEndidentification NOTPROVIDED
=- PartyRaole

Figure 6-39 ISF tab

6.3.5 Resolving alerts and operator actions

When a transaction enters an alert state or a transaction requires user intervention (for
example, authorization), a user selects the transaction and selects the resolve action. The
resolve action can also be used to manually trigger schedules.

The following types of objects require resolving:

» Objects in an alert state because of a failure; for example, mapping or validation failure
» Objects that require user intervention

188 Financial Transaction Manager Technical Overview

Alerts can be viewed in the Alert function. By using the search criteria, you can filter the
results that are based on object type, date alert that was raised, and so on. Figure 6-40
shows an example of the alert results.

Alerts e
e B S
Application ?Db]ect Object Type Subtype Status Created Status Changed Master
t |FTM Sample App|10024 |Physical Transmission|Payment Origination Inb dTr Failed|24 Sep 2012, 12:42:48 |24 Sep 2012, 12:42:49 |/ [1]
t |FTM Sample App|10072 |Physical Transmission|Payment Origination Inb d Tr Failed|2 Oct 2012, 15:07:23 |2 Oct 2012, 15:07:23 |/ [1]
t |FTM Sample App|10168 |Physical Transmission|Payment Origination Batch|Inb d Tr Failed|2 Oct 2012, 16:07:47 |2 Oct 2012, 16:07:47 |¢ [i]
t |FTM Sample App|10176 |Physical Transmission|Payment Origination Batch|Inb dTr Failed|3 Oct 2012, 16:09:01 |3 Oct 2012, 16:09:01 | [1]
t |FTM Sample App|10184 |Physical Transmission|Payment Origination Inb dTr Failed|3 Oct 2012, 16:09:47 |3 Oct 2012, 16:09:48 | [1]
t |FTM Sample App|102389 |Physical Transmission|Payment Origination Inb d Tr Failed|3 Oct 2012, 16:30:05 |3 Oct 2012, 16:30:06 | [1]
t |FTM Sample App|12149 |Physical Transmission|Payment Origination Inb d Tr Failed |13 Now 2012, 10:26:11|13 Nov 2012, 10:26:11 |3 [i]
t |FTM Sample App|12151 |Physical Transmission |Payment Origination Inb dTr Failed |13 Nov 2012, 10:42:36|13 Nov 2012, 10:42:37 |/ [1]
t |FTM Sample App|12159 (Batch Payment Origination Batch Validation Failure 12 Nowv 2012, 11:24:14(12 Nowv 2012, 11:24:15 [1]
t |FTM Sample App|14938 |Batch Payment Origination Batch Validation Failure 13 Nowv 2012, 11:30:59(13 Nov 2012, 11:30:59 [i]
t |FTM sample App|16168 |Physical Tr I ing Request Transmission Send Error 27 Feb 2013, 12:41:15 |27 Feb 2013, 12:41:15 o
t [FTM sample App|16173 |Physical Tr I ing Request Transmission Send Error 27 Feb 2013, 12:47:45 |27 Feb 2013, 12:47:45 o
t |FTM Sample App|16186 |Physical Transmission|Payment Origination Inb d Tr Failed|27 Feb 2013, 12:49:42 |27 Feb 2013, 12:40:42 |/ [1]
Records 1 to 13 of 13
Refresh Interval (SECS)D There are a total of 13 alerts for the selected applications. Refresh ino

Figure 6-40 Alert results

To open the objects details panel, select any alert. Then, go to the Errors tab, as shown in
Figure 6-41.

Physical Transmission Details

ID 10289

Customer Reference

Status Changed
Channel

Encoding

Inbound Transmission Mappi...

Status

546

10

3 0Oct 2012, 16:30:06
Payment Origination €&

r

SEFE

Application FTM Sample App

Subtype Payment Origination

Created 3 Oct 2012, 16:30:05

Involved Party Client ©
CCSID 437
Data Size 357
414D512046544D5F514D ...

Transmission Filename Message ID | = ;
In Alert State
4 nes Securities | Trade Finance | Transactions Events Extd. Values | Counters Errors Raw Data | Hierarchy hd
CISEy:
= a]
Component S
Type Component Type P Code |Description
Name
BIP2220 IN MAPPER MTToIlSFMapper Caught exception and rethrowing
BIP2488 IN MAPPER MTToISFMapper Error detected, rethrowing [PhysicalTransmissionFlow.EndMapper2_Com
BIP2034 IN MAPPER MTTolSFMapper Error occured in procedure [MapTxn]
BIP2488 IN MAPPER MTTolSFMapper Error detected, rethrowing [PhysicalTransmissionFlow.EndMapper2_Com
BIP2909 IN MAPPER MTTolSFMapper Exception creating element [PhysicalTransmissionFlow.EndMapper2_Con
BIP5009 IN MAPPER MTToISFMapper XML Parsing Errors have occurred
BIPSD25 IN MAPPER MTTolSFMapper A schema validation error has occurred while parsing the XML document
wvalid: The value "U51" is not valid with respect to the pattern facet for ty
fxmins/prod/ ftm/fisf/v3:CreditTransfer/ PaymentExecution/Settlemen

Records 1to 7 of 7

Figure 6-41 Errors tab

Chapter 6. User interface

189

The Errors tab lists all of the error messages that are raised against the object and
investigates the reason for the failure. The Errors tab shows the error type, the Financial
Transaction Manager component type that failed, and the name of the component, as shown
in Figure 6-42.

Payment Transaction Search

- - Trade
Application |ID Cust. Ref. |UID Master|Subtype Status .
{3|FTM Bank POC|5188146770730831209 | 10300001 MT1032 v Payment Qutbound |Waiting For User STP Authorization | MT102
(3| FTM Bank POC|57646075230342546098| 10200001 Liquidity Response |Qutbound Transaction Complete MT1032
{|FTM Bank POC|6917520027641101676| EME10300001 Embargo Check Outbound Transaction Complete MT103
{3|FTM Bank POC|8646911284551372143 | EMBE10200001|7493989779944525165 Embargo Response |Inbound Transaction Complete MT1032

Records 1 to 4 of 4

Figure 6-42 Payment requiring user intervention

Figure 6-43 shows the resolution icons.

Figure 6-43 Resolution icons

Click the Select for Resolution icon and select the transaction that requires resolution, as
shown in Figure 6-44.

Payment Transaction Search

CoEERBS

Records 1to 4 of 4

Bank Dest.
Application |ID Cust. Ref. (UID Master|Subtype Status Bank
Code

Code
/||y FTM Bank POC|51881467707320831209(10300001 MT102 v Payment Outbound |Waiting For User STP Authorization|IBMAFRPP|IBEMADEFF|
$»|FTM Bank POC|5764607523034254698 (10300001 Liquidity Response |Outbound Transaction Complete IEMAFRPP|IEMADEFF|
$»|FTM Bank POC|6917529027641101676| EMB10300001 Embargo Check Outbound Transaction Complete IEMAFRPP|IEMADEFF|
$|FTM Bank POC|8646011284551372143| EMB10200001|7493989779944525165 Embargo Response |Inbound Transaction Complete IEMAFRPP|IEMADEFF|

Figure 6-44 Payment that is selected for resolution

190

Financial Transaction Manager Technical Overview

Then, select the Resolve icon and choose an appropriate action to perform on the
transaction, as shown in Figure 6-45. Enter a narrative in the field to explain why the action
was taken and then confirm the action in the Comment field.

Allowable Actions =

Status Chg

Resolvable|ID Created

S

Status Subtype

Payment Transaction|Pavment Dntbonnd|18 Aug 2013, 16:21:21 (18 Aug 2013

Master| Type

5188146770720831209| Waiting For User STP Authorization| |10200001[y/
Records 1to 1 of 1
]

Allowable Actions:
Comment™

I Authorize

Reject

L)

Figure 6-45 Select resolution

You can also access the Resolution from the Transaction Details, as shown in Figure 6-46.

Payment Transaction Details

SE X

ID 5188146770730831209 Application FTM Bank POC
Customer Reference 10300001 Alternative ID
Type Payment Transaction Batch
Physical Transmission 4611686018427407720 Status \WaIting For User STP A”th"r'za"r'

Created 138 Aug 2013, 16:21:21 Status Changed 18 Aug 2013, 16:21:26

Message Type MT103

Involved Party Common System ©

Currency / Amount

Euro / 1,000.00

Payment Method
Book Date
Value Date

Debit / Credit Credit Bank Code / Account IBMAFRPP / 654321
Dest. Bank Code / Account IBMADEFF / 123456 ISF Format ISF
UID MT103
Rel. Objects = Audit Log | Physical Transmission Batch Events Extd. Values | Counters Errors Raw Data ISF Hierarchy
S
Status Status Changed Event Type Obj. Rev. (Pay. Rev.
{» |Waiting For User STP Authorization 18 Aug 2013, 16:21:26 User Input Requiraed i0 1
Processing STP Check 18 Aug 2013, 16:21:26 Route To Activity] 1
Processing Routing Slips 18 Aug 2013, 16:21:26 Process Next Activity a 1
Embargo Check Passed 18 Aug 2013, 16:21:26 Embargo Check Pass 7 1
Processing Embargo Acknowledgement 18 Aug 2013, 16:21:25 Transaction's Qutbound Transaction Complete G 1
Processing Embargo Check 18 Aug 2013, 16:21:25 Route To Activity 5 1
Processing Routing Slips 18 Aug 2013, 16:21:25 Transaction's Qutbound Transaction Complete 4 1
Processing Liquidity Update 18 Aug 2013, 16:21:25 Route To Activity 3 1
Processing Routing Slips 18 Aug 2013, 16:21:22 Inbound Transaction Mapped 2 1
Transaction Mapped 18 Aug 2013, 16:21:21 1 1

Records 1 to 10 of 10

Figure 6-46 Payments Transaction Details, awaiting user interaction

Chapter 6. User interface

191

When you select the Resolve icon, the Allowable Actions that are shown in Figure 6-47
displays. As with your previous actions, you must select an appropriate action to take, insert a
comment, and then confirm the action. When the action is confirmed, a command is placed
on the Financial Transaction Manager command queue and is processed by the Event
Processing flow.

Allowable Actions

ID 5188146770730831209 Application FTM Bank POC
Customer Reference 10300001 Alternative ID
Type Payment Transaction Batch
Physical Tr ission 4611686018427407720 Status ":"?iti"g For User”F'Tp A”th"rizaf"r'
Created 18 Aug 2013, 16:21:21 Status Changed 18 Aug 2013, 16:21:26

Message Type MT103 Payment Method

Involved Party Common System € Book Date

Currency / Amount Euro / 1,000.00 Value Date

Debit / Credit Credit Bank Code / Account IBMAFRPP / 654321
Dest. Bank Code / Account IBMADEFF / 123456 ISF Format ISF
UuID MT103
Allowable Actions: Authorize |L|

Comment™

Authori
TR

User Rejected due to invalid details

Figure 6-47 Payments Transaction Details, awaiting user interaction

For a user to take an action to resolve a transaction, the action first must be defined in the
finite state machine within Rational Software Architect. The actions are defined on the state
(for example, Awaiting Authorization) as a constraint, as shown in Figure 6-48. Therefore, it is
important to carefully consider user interaction points when the finite state machine is

designed.
General Owned Constraints:
AL Marne Type Modeling Level Language Body
SElEaiiRes Authorize Rule Model
Documentaticn Reject Rule Model
Constraints
Relationships
|Add...| Remove lavigate
=

Figure 6-48 Actions that are allowed on an object in a resolvable state

6.4 Configuring Financial Transaction Manager

The Configuration Data menu group includes functions that with which technical users can
view, create, modify, or delete configuration data within Financial Transaction Manager. These
functions include definition of interfaces, scheduled processes, and solution variables. This
menu group is accessible only to users with administrator privileges in the Financial
Transaction Manager Operation and Administration Console.

192 Financial Transaction Manager Technical Overview

Configuration data can be defined within Rational Software Architect as part of the finite state
machine mode and is extracted from there and loaded into the database. This method allows

for most of the configuration data to maintained and controlled by using standard source

control methodologies.

Many of the configuration objects are closely linked to the artifacts that are created within IBM
WebSphere Message Broker. For example, mappers within Financial Transaction Manager
must have the same name as the label name of the Mapper subflow.

Figure 6-49 shows the Configuration Data menu group.

= Configuration Data
Formats
Lo Mappers
i Involved Parties
(= Calendar Groups
i) Scheduler Tasks
?:. Channels
Services
Cg Service Participants
L[5 Classifications
ﬂf Configuration Values

ik

Authorizations

Figure 6-49 Configuration Data menu group

The Configuration Data menu includes the following items:

>

Formats

Defines the structure of the data that is received or transmitted from Financial Transaction

Manager.
Mappers

Defines the mapping component to be used when raw data is transformed to and from the

Financial Transaction Manager internal standard format.

Involved Parties

Defines the application, customer, or network that is involved in an interface.
Calendar Groups

Defines calendars, working days, and holidays.

Scheduler Tasks

Defines time triggered processes.

Channels

Defines the physical location on which data is received or transmitted.
Services

Defines the service to which service participants are attached.
Service Participants

Defines the service participant, including the incoming or outgoing channel that is
associated with it.

Chapter 6. User interface

193

» Classifications

Defines Financial Transaction Manager variables, including those that control how data is
shown within the user interface.

» Configuration Values

Defines variables that can be used in other components and processes.
» Authorizations

Defines group permissions that control user access to data and functions.

This section focuses on the configuration data that is used to define interfaces, calendars,
and system variables.

6.4.1 Defining interfaces

194

Interfaces to external systems and networks can be maintained within the Financial
Transaction Manager Operation and Administration console.

An interface consists of the following components:

» The definition of the incoming data format.

» The definition of the mapper that is used to transform the data to and from the Financial
Transaction Manager internal standard format.

» The physical data source from which the data is received or to which data is transmitted. In
Financial Transaction Manager, these data sources are defined as channels.

» The customers, applications, and networks that are involved in the interface.

Several common icons are used throughout the configuration panes, as shown in
Figure 6-50.

s

Figure 6-50 Common configuration icons

Financial Transaction Manager Technical Overview

Formats

By using the formats function within Financial Transaction Manager, users can specify the
format of messages that are received or transmitted on a Channel; for example SWIFT
MT103, EDI 820, and setr.010.001.003, as shown in Figure 6-51.

Format Details Ay R @ >
ID 1007 Description STEP2.5CT.ICF
Message Domain XMLHSC Message Set STEP2_SCT
Message Type SCTlcfBIkCredTrf Message Format XMLA1

FTM SEPA Credit Transf ...

7 = N Application Version 2.1.0

Application

SCRIPT:ConfigData_outp ...

Modifier |, R Last Modified Jun 25, 2013 5:158:27 AM
Deleted N
Mappers Channels History
2 b | s
4 L
H & = L=
] Name Description Inbound
2004 |5FTelCFMapper |5F T ICF M
2016 |CFTel 5SFMapper ICF to I15F ¥

Records 1to 2 0f 2

Figure 6-51 Format Details pane

The Format Details show the expanded details of the format and includes the following fields:

>

ID

The internal Financial Transaction Manager identifier for the format.
Description

User-defined description of the format.

Message Domain

The IBM WebSphere Message Broker domain that the format uses. This field is required
only if the format is described by a WebSphere Message Broker message set.

Message Set

The message set of the format as defined within WebSphere Message Broker sets. This
field is required only if the format is described by a WebSphere Message Broker message
set.

Message Type

The message type as defined within WebSphere Message Broker. This field is required
only if the format is described by a WebSphere Message Broker message set.

Message Format

The message format as defined within IBM WebSphere Message Broker. This field is
required only if the format is described by a WebSphere Message Broker message set.

Application

The application with which this format is associated.

Application Version

The version of the application with which this format is associated.

Chapter 6. User interface 195

» Modifier

The script or person that created or last modified the format.
» Last Modified

The date that the format was created or last modified.
» Deleted

A flag to indicate that the format was deleted and is no longer usable.

The lower portion of the pane shows the following tabs:

» Mappers: A list of the mappers that use this format.
» Channels: A list of the channels with which this format is associated.
» History: An audit log for the format.

Each of the records that display in these tabs are active and, when clicked, take you to the
appropriate details pane; for example, Mappers Details or Channel Details. These tabs are
useful to show the effect of any changes on other Financial Transaction Manager objects.

If you decide to create or maintain a format, the Edit Format pane displays, as shown in
Figure 6-52. There are no prompts in this pane because the details that must be entered are
from WebSphere Message Broker.

Edit Format B &

Description:
STEP2.SCTICF

WMessage Domain: KMLHSC
Meszage Set: STEFZ_SCT

Message Type: SCTcfBIkCredTrf
Message Format: KMLA

Figure 6-52 Edit Format pane

Formats also can be defined as an artifact within the model in Rational Software Architect, as
shown in Figure 6-53. These attributes can be exported as a SQL script and loaded into the
database.

<Class> <EPP_Format= FTM Sample App::Config:Interfaces::Formats:ISF

General Mame: BF
FTM
10 1002
Attributes
Operations Message Domain: AMLRSC
St
erectypes Message Set: ISF_V3_SAMP

Documentation

Constraints Meszage Type:
Relationships
Advanced

Message Format:

Figure 6-53 Format Configuration within Rational Software Architect

196 Financial Transaction Manager Technical Overview

Mappers

By using the mappers function in Financial Transaction Manager, you can search for, create,
and maintain mapper definitions. The defined mappers are directly linked to the mapper flows
that are created within WebSphere Message Broker. When a mapper is selected, the details
display, as shown in Figure 6-54.

Mapper Details “/) v 7] E;’j @ o
D 2012 Description DRR to ISF
Hame DRRTolSFMapper Format STEP2.SCT.DRR &
Inbound Y Subtype
o FTM SEPA Credit Transfer R ...
ISF Format 15F & Application o .
o i . SCRIPT:ConfigData_output_ ...
Application Version 2.1.0 Modifier ‘ == r
Last Modified Jun 25, 2013 5:18:27 AM Deleted M
Channels History
= it s
1 0k
B = =
] |Hame |Inbound |0pen |Eﬂec‘ti1.re Date |End Date |Queue Manager |Queue Name |De|eted |
4003 |DRRfromSTEFZ |¥ [[Mov 1. z010 10703 P00 | | |[FxascTsTEFZINDRR | |
Records 110 1 0f 1

Figure 6-54 Mapper Details

The Mapper Details pane includes the following information:
» ID
The internal Financial Transaction Manager identifier for the mapper.
» Description
User-defined description of the format.
» Name

The name of the mapper, which must be the same as the Mapper label name in
WebSphere Message Broker.

» Format
The format of the message that the mapper transforms to or from ISF.
» Inbound
Flag if the mapper is for inbound or outbound transformation.
» Subtype
The subtype, if any, of the message to be transformed.
» ISF Format
The version of the ISF that the mapper maps to or from.
» Application
The application with which this format is associated.
» Application Version
The version of the application with which this format is associated.
» Modifier
The script or person that created or last modified the format.

Chapter 6. User interface 197

» Last Modified

The date that the format was created or last modified.

» Deleted

A flag that indicates that the format was deleted and is no longer usable.

The lower portion of the pane shows the channels with which the mappers are associated
and the audit log of changes to the mapper.

Figure 6-55 shows the Edit Mapper pane. The mapper name must be the same as that
specified in the WebSphere Message Broker mapper subflow and the subtype. It also must
be selected by subtypes that are defined within Financial Transaction Manager.

Edit Mapper

Format:
Name:
Inbound:
ISF Format:
Description:

Subtype:

B %

STEP2SCT.DRR v
DRRTolSFMapper

Yas w» -

ISF -
DRR to ISF

Figure 6-55 Edit Mapper pane

Mapper configuration entries also can be created and maintained within the model in Rational

Software Architect, as shown in Figure 6-56.

B Properties 3

=+,

General

FTM

Attributes
Operations
Stereotypes
Documentation
Constraints
Relationships
Advanced

Q)J' Search | Bl Console

Marne:

1D:

Inbound:

Description:

Format:
ISF Format:

Physical Transmission Type:

s+ =Class> «EPP_Mapper» FTM Sample App::Config::Interfaces::Mappers::MT103TolSFMapper

MT103ToISFMapper

1001

Y -

FTM SAMP 1: MT103 te ISF

FTM Sample App:Config:Interfaces:Formats:FTM SAMP 1: Swift MT103
FTM Sample App::Config:Interfaces:Formats:FTM 5AMP 1: ISF

Payment Originaticn -

= | Create Mew
~ || Create New

Figure 6-56 Mapper Configuration within Rational Software Architect

When combined, the Format and Mapper objects define how messages are transformed to

and from the ISF.

198 Financial Transaction Manager Technical Overview

Involved Parties function

The Involved Parties function is used to create and maintain objects that represent the
systems, networks, and clients that receive data from or transmit data to Financial
Transaction Manager. Involved Parties are used to show ownership of messages and
channels. You can use this information to create data segregation and, with the Financial
Transaction Manager security model, control user access to data. Figure 6-57 shows the
Involved Parties Details pane.

Involved Party Details J {/ <) @j &) -
D & Name EBA STEP2
Type System External ID EBA_S52
Description EBA STEP2 Gateway Effective Date Sep 11, 2012 11:24:23 AM
End Date Parent

FTM SEPA Direct Debit Ref...

7 = - Application Version 2.1.0

Application

SCRIPT:ConfigData_output...

Modifier ¢ [T -

Last Modified Jun 25, 2013 5:32:24 AM

Deleted N

Calendar Groups Channels History

o) = ey Sl

gl [s0k 5 =

@l = | == =
] |Name |Description |Ftemove Calendar Group |
§ |Calendar Group EBA Step? 50D ‘ Sﬁ":' ‘

Records 110 1 of 1

Figure 6-57 Involved Parties Details pane

This pane displays the following details:
» ID
The internal Financial Transaction Manager identifier for the involved party.
» Name
The name of the involved party.
» External ID
The external identifier for the party; for example, customer name and application name.
» Description
Description of the involved party.
» Effective Date
The date on which this involved party becomes active.
» End Date
The date on which the involved party becomes invalid.
» Parent
The name of the parent-involved party; for example, a division in a financial institution.
» Application
The application with which this Involved Party is associated.
» Application Version
The version of the application with which this Involved Party is associated.

Chapter 6. User interface 199

» Modifier

The script or person that created or last modified the Involved Party.

» Last Modified

The date that the Involved Party was created or last modified.

» Deleted

A flag that indicates that the Involved Party was deleted and is no longer usable.

The lower portion of this pane shows the calendars that are associated with this Involved
Party, which defines working days, holidays, and so forth. For more information, see 9.12,

“Scheduled activity pattern” on page 415.

Figure 6-58 shows the Edit Involved Party pane.

Edit Involved Party

MName: EBA STER2

Type: Application [System - *
External ID: EBA_S2

Description: EBA STEPZ Gateway

Parent: =

Figure 6-58 Edit Involved Party pane

In addition, you can create and maintain Involved Parties within the model in Rational

Software Architect, as shown in Figure 6-59.

E Properties 2 4" Search | E Console

General Marme: ETM
FTM

ID: 1000
Attributes
Operations Type: SYSTEM
Stereotypes Ref Id: —

Documentation

Relationships
Advanced

Parent Involved Party:

{§ <Class> <EPP_InvolvedParty» FTM Sample App::Config:Interfaces::Involved Parties::FTM

Conctraints Description: FTM SAMP 1: enterprise payments platform

= ¥ = 8

= || Create Mew

Calendar Groups:

Add... || Delete | | Navigate

Effective Date: 30 June 2010 = 12:14:28 =

-

Expiry Date: 31 December 9999 =~ 23:59:59

Figure 6-59 Involved Parties configuration within Rational Software Architect

200 Financial Transaction Manager Technical Overview

Channel

The Channel object describes how Financial Transaction Manager physically receives or
transmits data; for example, to or from files, queues, and web services. Channels are
unidirectional and do not define a complete interface, which often is bidirectional. Figure 6-60
shows the Channel Details pane.

Channel Details ‘//] [3‘_;,:') =
1D 4002 Involved Party Client €
Name CreditTransfersAndReturnsFromClient Description Credit Transfers And Returns from Client
Participant Inbound Y
Open Y Sequence 50
Format STEP2.PACSO04008 & Mapper Pacs004008TolSFMapper &
CCSID 1208 Encoding
Validate Message Validate ISF
Queue Manager Queue Name FXJ.SCT.CLIENT.IN.PAC 5004008
Effective Date Hov 1, 2010 1:07:19 PM End Date
Log Physical Transmission Y Log Raw Data Y
Log Transaction Y Log ISF Data Y
Master ¥ Transport MG
Location Parameters BURST_LIMIT=100,BURST_WAIT=50
Application ITM SEPA Credit 'I:;insfer Reference A "" Application Version 2.1.0
Modifier ftmadmin Last Modified Aug 19, 2013 3:15:09 PM
Deleted N
History
@ '4%' 'sqi =
Name r;:;ved Inbound|Master|Mapper Format Queue Hame #;gn:r:izi:ﬁ)ln Lo\?v 'II:;gnsac‘tion ILST:g Transport|Paramete
Data Data
CreditTransfersAndRetumsFromClient [Client | Yas [ves |Facs004008Tol SFMapper |[STERZ FACE004008 | FXJ SCT.CLIENTIN PACS004008| Yes [ves ves [ves] [sursT_LiMi

Records 1101 0f1

Figure 6-60 Channel Details pane

The Channel Details pane provides details about the physical location where data is received
from or transmitted to and the state of the channel. It includes the following fields:

» ID
The internal Financial Transaction Manager identifier for the involved party.
» Involved Party
The Involved Party that is associated with the channel; for example, a customer mail box.
» Name
The name of the channel.
» Description
A description of the channel.
» Participant
The participant that is associated with the channel.
» Inbound
A flag that identifies that the channel is inbound to Financial Transaction Manager.
» Open
A flag that identifies that the channel is available and accepting data.

Chapter 6. User interface 201

202

Sequence

The sequence of the channel, which can be used to define various channels that are
started based on its sequence; for example, if sequence number 1 fails, the channel with
sequence number 2 is started.

Format
The structure of the data that is received by the channel.
Mapper

The mapper to be used to transform received data to or transmitted data from the
international standard format.

CCSID

The character code setting ID of the data.

Encoding

The encoding of the data.

Validate Message

A flag that identifies whether a message is syntactically validated when it is received.
Validate ISF

A flag that identifies whether the ISF is validated for structure and content during the
mapper transformation.

Queue Manager

The IBM WebSphere MQ Queue Manager to which Financial Transaction Manager
connects to read or write data, if applicable.

Queue Name

The IBM WebSphere MQ Queue name that Financial Transaction Manager reads from or
writes to, if applicable.

Effective Date

The date from which the channel becomes active.
End Date

The date on which the channel becomes deactivated.
Log Physical Transmission

A flag that identifies whether physical transmissions are logged in the Financial
Transaction Manager database.

Log Raw Data

A flag that identifies whether raw data received is logged in the Financial Transaction
Manager database.

Log Transaction

A flag that identifies whether transactions that were created from the raw data are logged
in the Financial Transaction Manager database.

Log ISF data

A flag that identifies whether the internal standard format data is logged in Financial
Transaction Manager database.

Financial Transaction Manager Technical Overview

>

>

Master

A flag that indicates whether transactions are associated with the Channel are Master
transactions.

Transport

Defines the transport protocol that is used in the Channel; for example file, WebSphere
MQ, HTTP, and email.

Location

The location to which data is read from or written.

Parameters

Lists any channel-specific parameters; for example, burst mode and transaction subtype.
Application

The application with which this channel is associated.

Application Version

The version of the application with which this channel is associated.

Modifier

The script or person that created or last modified the channel.

Last Modified

The date that the channel was created or last modified.

Deleted

A flag that indicates that the channel was deleted by a user and is no longer active.

The channel attributes include options to turn off the syntactic validation of the ISF and the
received messages. You can use these options if a customer or external application sends
data that does not match the message definitions that are defined on the channel but if the
data should be accepted.

Four logging options also control whether the physical transmission, transaction, raw data, or
internal standard format is written to the database. You can use these options when it is not
necessary to log all the data; for example, if a copy of the transaction is kept in a third-party
system or if there is no business requirement to log the entire transaction. Raw data logging
can also be deactivated on a channel for performance reasons; for example, high-volume,
low-value payments might not need to be fully logged.

Chapter 6. User interface 203

Channels can be created in advance and activated when required; for example, when a new
customer or application is attached to Financial Transaction Manager. Channels also can be
maintained within Rational Software Architect, as shown in Figure 6-61.

General

FTM

Attributes
Operations
Stereotypes
Documentation
Constraints
Relationships
Advanced

E Properties 23

4" Search| El Console

Mame:

1D:
Description:
Involved Party:
Inbound:
Participant:
Open:

Master:
Format:

Mapper:

Queue Manager:

Queue Mame:
Sequence:
CCSID:
Encoding:

Log Raw Data:

FTM SAMP 1: Payment Origination

1000

Inbound Swift MT103 Payment Crigination

FTM Sample App::Cenfigtinterfaces:Involved Parties:Client

¥ -

= v =0

& <Class> <EPP_Channel- FTM Sample App::Config:Interfaces:Channels::FTM SAMP 1: Payment Origination

- [Cemenien]

Y -
Y -
FTM Sample App::ConfiguInterfaces:Formats:FTM SAMP 1: Swift MT103

FTM Sample App::Ceonfig:Interfaces:Mappers:MT103TolSFMapper

FXH.SAMPL.PAYMENT_CRIGINATION

50

¥ -

| Gt e

- et e

[#] Mul
[#] Mul

»

m

Figure 6-61 Channel configuration within Rational Software Architect

204 Financial Transaction Manager Technical Overview

Services and Service Participants

The Service object defines the service that Financial Transaction Manager is providing; for
example, Payment Processing and Securities Trading Processing. The Service object is
associated with a number of Service Participants and represents a bidirectional interface that
combines incoming and outgoing channels. Figure 6-62 shows the Service Details pane.

Service Details

A T-A

1D 5001 Service Name SEPA SCT
L FTM SEPA Credit Transfer Referen ... o _
Application 4 m b Application Version 2.1.0
- SCRIPT:ConfigData_output_FTM SE ... -
Maodifier " T » Last Modified Jun 25, 2013 5:18:30 AM
Deleted M
Service Participants History
@' T [= e
= ==
Tt Service Participant | Service
Application] pal Inbound Channel Outbound Channel Role
Name Name
FTM SEFA Credit Transfer Reference Application | 38| CCF Provider SEPA 5CT|CCFfromSTEF2 CCF Provider
FTM SEFA Credit Transfer Reference Application | 38| CRR Provider SEFA 5CT|CRRfromSTEP2 CRR Provider
FTM SEPA Credit Transfer Reference Application|27|CT And Return Provider | SEPA 5CT| CreditTransfersAndReturnsFromClient | PaymentStatusReportToBank | 004 008 CT And Return Provide
FTM SEPA Credit Transfer Reference Application|2%| CT Consumer SEPA BCT CreditTransfersToClient 008 CT Consumer
FTM SEPA Credit Transfer Reference Application|32| CVF Provider SEPA 5CT|CVFfrom STEPZ CVF Provider
T |FTM SEPA Credit Transfer Reference Application |35 DRR Menitor SEPA BCT DRR Menitor
FTM SEPA Credit Transfer Reference Application|33| DRR Provider SEPA 5CT|DRRfromSTEP2 DRR Frovider
FTM SEFA Credit Transfer Reference Application|28|ICF Consumer SEPA 5CT|ResponseFromWBI-FN ICFtoSTEP2 ICF Consumer
FTM SEPA Credit Transfer Reference Application|30| Return Consumer SEPA 5CT ReturnsToClient 004 Return Consumer
* | FTM SEPA Credit Transfer Reference Application|34| 5CF Monitor SEPA 5CT SCF Monitor
FTM SEPA Credit Transfer Reference Application|31| 5CF Provider SEFA S8CT| 5CFfrom STEFZ SCF Provider
FTM SEFA Credit Transfer Reference Application |37 | Unknown Type Provider | SEFA 5CT|Unknown from EBA STEF2 Unknown Type Provider

Records 110 12 0f 12

Figure 6-62 Service Details pane

The Service Details pane shows the Service Participants that are associated with the
Service. It also shows the history detail for the Service object. If a Service Participant enters
an alert state, a red exclamation mark is shown beside it. Figure 6-63 shows the Service
Participant Details pane.

. .. . Oh Al o =
Service Participant Details == ? & 9L
o FTM SEPA Direct Debit Referenc ...
D 49 Application " = P
Service Participant Name 003 Provider Service Hame SEPA Direct Debit Processing
Status Available Inbound Channel DD Instruction from Client ¢
Outbound Channel Payment Status Report to Client € Role 003 Provider
Rank Primary Processing Date
Open Time (HH:MM) 00:00 Close Time (HH:MM) 23:59
Correlation Scheme End Mapper Correlation H
o i . SCRIPT:ConfigData_output_FTM ...
Application Version 2.1.0 Modifier ‘ = p
Last Modified Jun 25, 2013 5:32:25 AM Deleted H
Rel. Objects Audit Log Events Extd. WValues Counters Errors History
e T B
8=
D1 |object Type | subtype |Relationship Dz |object Type Subtype Start Date |Related 1D

Mo Records Found

Figure 6-63 Service Participant Details pane

Chapter 6. User interface 205

206

The Service Participant Details pane provides the following information.

»

ID

The internal Financial Transaction Manager identifier for the Service Participant.
Application

The application that is associated with the Service Participant.

Service Participant Name

The name of the Service Participant.

Service Name

The name of the Service that is associated with the Service Participant.
Status

The status of the Service Participant; for example, Available.

Inbound Channel

The Channel on which transactions are received into Financial Transaction Manager from
the Service Participant.

Outbound Channel

The Channel on which messages are transmitted to the Service Participant from Financial
Transaction Manager.

Role

The role of the Service Participant within the Service.

Rank

The rank of the Service Participant, for example primary or secondary.
Processing Date

The processing date of the Service Participant.

Open Time

The time at which the Service Participant becomes active.

Close Time

The time at which the Service Participant deactivates.

Correlation Scheme

The name of the scheme used for correlation.

End Mapper Correlation

The name of the End Mapper used for correlation.

Application Version

The version of the application with which this channel is associated.
Modifier

The script or person that created or last modified the channel.

Last Modified

The date that the channel was created or last modified.

Deleted

A Flag that indicates that the channel was deleted by a user and is no longer active.

Financial Transaction Manager Technical Overview

You can create and maintain Services and Service Participants within Rational Software
Architect, as shown in Figure 6-64 and Figure 6-65.

General

FTM

Attributes
Operations
Stereotypes
Documentaticn
Constraints
Relationships
Advanced

E Properties &2

4 Search| & Console

<Class> <EPP_Service: FTM Sample App::Config::Interfaces::Services::FTM SAMP 1: PAYMENT PROCESSING

MName:

ID:

= ¥ = 0

FTh SAMP 1: PAYMENT PROCESSING

1000

Figure 6-64 Service configuration within Rational Software Architect

E Properties &2

General

FTM

Attributes
Operations
Stereotypes
Documentation
Constraints
Relationships
Advanced

‘C,JJ' Search | £l Console

MName:

Service:
Channell IM):
Channel(OUT):
Involved Party:

Role:

Rank:

Processing Date:

Open Time:
Close Time:
Ohj Status:
Ohbj Subtype:

Ohbj Class:

ID:

= 7 = F

FTM SAMP 1: Payment Originator
FTM Sample App:Config:Interfaces:Services:FTM SAMP 1: PAYMENT PROCESSING -
FTM Sample App::ConfiguInterfaces:Channels:FTM SAMP 1: Payment Origination -

Create New

FTM Sample App::ConfiguInterfaces: Channels:FTM SAMP 1: Client Ack -

- e

Create New

Payment Source -
Primary =

31 December 9999 Mull Date
00:00 (=

23:59 =

5_fAvailable

1000

Figure 6-65 Service Participation configuration within Rational Software Architect

Chapter 6. User interface 207

6.4.2 Calendars and Schedules

Many transactions can be processed only on working days or during specific time windows;
for example, currency cut-off times for payments. With Financial Transaction Manager, you
can create calendars and schedules that can hold details of working days, holidays, and
processing windows in the Calendar Group Details pane, as shown in Figure 6-66.

Calendar Group Details U'ZEI E} {/ i:'J @3)
1D 3002 Name Calendar Group EBA Step2 5CT
o o FTM SEPA Credit Transfer Refer ...
Description Application ‘ i ,
o i . SCRIPT:ConfigData_output_FTM ...
Application Version 2.1.0 Maodifier ‘ = ,
Last Modified Jun 25, 2013 5:18:28 AM Deleted N
Calendar Schedule History
Be =
(] Public Holiday Date Description Last Modified Deleted
™7 ./ Dec 26, 2013 Christmas Holiday Jun 23, 2013 5:18:28 AM M
T8 v Jan 1, 2043 New Years's day Jun 23, 2013 3:18:28 AM M
M9 v May 1, 2013 Labour Day Jun 25, 2013 5:18:28 AM M

Records 1fo 3 of 3

Figure 6-66 Calendar Group Details, Calendar tab

The Calendar Group Details Calendar tab shows the holidays that are entered as part of the
calendar group. These holidays can be used to validate payments or to release payments if
Financial Transaction Manager is configured with a payment warehouse.

The Schedule tab (as shown in Figure 6-67) shows the time when the various calendars are
active and which days are working days. Calendars can be linked to Involved Parties and can
define when those Involved Parties are active.

Calendar Group Details

BRI

D 3002 Name Calendar Group EBA Step2 SCT

e L FTM SEPA Credit Transfer Refer ...

Description Application ', = b

L . . SCRIPT:ConfigData_output_FTM ...

Application Version 2.1.0 Modifier | = N

Last Modified Jun 25, 2013 5:18:28 AM Deleted N
Calendar Schedule History
= | ks
1 0k
Bl > E]
Open Close
I [Time Time Monday | Tuesday |Wednesday| Thursday |Friday| Saturday | Sunday | Type Last Modified Deleted
(HH:MRT) | (HH:RIRD)

700 | 00:00 23:59 v v v v v EBA Banking Days Jun 25, 2013 5:18:28 AM|N
7002 | 20:00 20:00 v v v v v ICF Send Time Jun 25, 2012 5:18:28 AM[N
TO03|13:35 1335 v v v v v ICF Send Time Jun 25, 2013 5:18:28 AM (N
TO04 | 13:50 13:50 '/ ‘/ ‘/ '/ ‘/ EB& ICF Send Cutoff Time |Jun 25, 2043 5:18:28 AM (N
7005 (13:30 13:30 v v v v v Fayment Cutoff Time Jun 25, 2013 5:18:28 AM[N
7006 | 09:00 03:00 v v v v v SCF Receipt Time Jun 25, 2013 5:18:28 AM|N
7007 | 16:00 16:00 v v v v v SCF Receipt Time Jun 25, 2013 5:18:28 AM|N
7008 |16:00 16:00 v v v v v DRR Receipt Time Jun 25, 2012 5:18:28 AM[N

Records 1 to

gofd

Figure 6-67 Schedule tab

208 Financial Transaction Manager Technical Overview

6.4.3 Configuring classifications

You can use classifications within Financial Transaction Manager to control how data is
displayed within the Operation and Administration Console and when processing
transactions; for example, validation. The Classifications list (as shown in Figure 6-68) shows
variables definitions, the classification to which they belong, and their value.

The Code column reflects the value of the field as it is held in the Financial Transaction
Manager database. The Description column shows how that value is shown in the Operation
and Administration Console. For example, rather than displaying TXN_PAYMENT, the user
interface displays Payment Transaction.

Classifications

) L

m

Classification Scheme - Code Description EETIETER
Number
OBJTYPE THN_PRMENT FPayment Transaction 51
OBJTYPE BATCH Batch 1
OBJTYPE LOGICAL_UNIT Logical Unit 2
OBJTYPE SERVICE_PARTICIPANT Service Participant 4
OBJTYPE TRANSACTION Transaction 3
OBJTYPE TRAMSMISSION Physical Transmission 3
OBJSUBTYPE_TXN ACKFR_OUT_S52 File Reject for OQutgoing ICF from STEF2 [CVF)|210
OBJSUBTYPE_TXN ACK_OUT Ack to Qutgoing 5CT Txn (pacs.002) 10
OBJSUBTYPE_TXN ACK_OUT_FN WEI-FN Reply 610
OBJSUBTYPE_TXN ACK_OUT_52 Ack to Qutgoing Txn from S5TEF2 (CVF) 10
OBJSUBTYPE_TXN CAN_OUT CCF T0
OBJSUBTYPE_TXN CAN_OUT_S52 CCF from EBA S5TEP2 80
OBJSUBTYFE_TXN COMMAND Operator Command 390
OBJSUBTYPE_TXN CRR CRR 130
OBJSUBTYPE_TXN CRR_52 CRR from EBA STEP2 140
OBJSUBTYPE_THN CT_IN Incoming Credit Transfer 280
OBJSUBTYFE_TXN CT_IN_52 Incoming Credit Transfer from STEFZ 250
OBJSUBTYPE_THN CT_ouT Cutgeing Credit Transfer 50
OBJSUBTYPE_TXN CT_OUuUT_s2 Cutgoing Credit Transfer to STEP2 100
OBJSUBTYPE_TXN CVF CVF 130
OBJSUBTYPE_TXN DRR DRR 180

Figure 6-68 Classifications

Classifications also support multiple locales, which facilitates native language support.

You can add new classification variables by using the Edit Classification Item pane, as shown

in Figure 6-69.

Edit Classification Item

Classification Schems:

OBJTYPE
Code: THN_PAYMENT
Sequence Number: 50
Description: Payment [Transaction

Figure 6-69 Edit Classification Item pane

Chapter 6. User interface

209

6.4.4 Configuring Configuration Values

The Configuration Value function holds variables that are used during processing; for
example, setting the environment variable to production. These variables are loaded into
memory when WebSphere Message Broker begins.

Figure 6-70 shows the Configuration Values list.

Configuration Values

Category

Key

Configuration Value

COMPLETION_EVENT_FOR_TAN_TYPES

PI_OUT_PP_ACK_PI_OUT_PP

E_PIOutRejected

COMPLETION_EVENT_FOR_TXN_TYPES

PI_OUT_PP_F&_OUT_PP

E_FlOutAccepted

CORE PROFILING_FLAGS MAPPER =Y EVENT5=Y TRANSTION &=Y ACTION 5=¥ PUBLISH=Y 5QL=Y CU5TOI
CORE PROFILING_LEVEL o

DUP_CHECK_FTYPES CVF i

DUP_CHECK_FTYPES DRR N

DUP_CHECK_FTYPES SCF i

ENVIRONMENT EBA_PROD_BIC EBAPFRPA

ENVIRONMENT EBA_TEST_BIC ZYDOFRPD

ENVIRONMENT ENV_WMODE PRODUCTION

ENVIRONMENT PRIMARY_PROD_BIC BANKESHM

ENVIRONMENT PRIMARY_TEST_BIC BANKDESD

ENVIRONMENT

TEST_CODE_PROD

P

ENVIRONMENT

TEST_CODE_TEST

T

EVENT_FOR_I5F_COMMAND_TYPES

Accept

E_Operatorfccept

EVENT_FOR_ISF_COMMAND_TYPES

CancelAll

E_OperatorCancelAll

m

Figure 6-70 Configuration Values list

The configuration values are assigned to various categories and accessed by the key. The list
returns the value that is held in the configuration value. You can also group these values and
search on the values by category.

6.4.5 User access permissions

The Financial Transaction Manager security model controls user access and permissions by
using role-based access. Financial Transaction Manager is delivered with the following default
core roles:

» FTMAdmin: Administrator role for Financial Transaction Manager
» FTMCfg: Configuration role for Financial Transaction Manager

» FTMEdit: Editor role for Financial Transaction Manager

» FTMuUser: User Role for Financial Transaction Manager

210 Financial Transaction Manager Technical Overview

The permissions that are assigned to these roles can be viewed within the Authorizations list,
as shown in Figure 6-71. You can modify the name and nature of these roles as required to fit
your individual solution requirements.

Aunthorizations -
= 1 oo EE
ELSTE !
— Group RESOI:ITCIB Application I
Application Permission ID| Type|Resource Permission
Hame & D [[n]
FTH SEFA Credit Transfer Reference Application | FTMAdmin |4 23 4 |GUI |calendar_sntry delete
FTH SEFA Credit Transfer Reference Application | FTMAdmin |& 23 8 |GUI |calendar_group delete
FTM SEFA Credit Transfer Reference Application | FTMAdmin |12 23 12|GUl |channel delete
FTHM SEFA Credit Transfer Reference Application | FTMAdmin |16 23 16(GUI |involved_party delete
FTM SEFA Credit Transfer Reference Application | FTMAdmin |21 23 2M|GUl |classification delete
FTHM SEFA Credit Transfer Reference Application | FTMAdmin |25 23 23|GUl |format delete
FTHM SEFA Credit Transfer Reference Application | FTMAdmin |33 23 33|GUl (mapper delete
FTHM SEFA Credit Transfer Reference Application | FTMAdmin |37 23 IT|GUI |scheduler_task delete
FTM SEFA Credit Transfer Reference Application | FTMAdmin |41 23 41|GUI | schedule_sntry delete
FTM SEFA Credit Transfer Reference Application | FTMAdmin |46 23 46|GUI |value delete
FTHM SEFA Credit Transfer Reference Application | FTMAdmin |52 23 32{GUI |resclution_action |execute
FTHM SEFA Credit Transfer Reference Application | FTMAdmin |57 23 ST|GUl |service delete
FTH SEFA Credit Transfer Reference Application | FTMAdmin |61 23 61|GUI | service_participant|delete
FTHM SEFA Credit Transfer Reference Application | FTMAdmin |72 23 T2|GUI | dew-ibm dev-ibm
FTH SEFA Credit Transfer Reference Application | FTMCfg 2 23 2 [GUI |calendar_entry create
FTH SEFA Credit Transfer Reference Application | FTMCfg [23 & |GUI |calendar_group create
FTH SEFA Credit Transfer Reference Application | FTMCfg 10 23 10|GUI |channel create
FTH SEFA Credit Transfer Reference Application | FTMCfg 14 23 14|{GUl |involved_party create
FTH SEFA Credit Transfer Reference Application | FTMCfg 13 23 18|GUI |classification create
FTH SEFA Credit Transfer Reference Application | FTMCfg 7 23 T|GUl |format create
FTH SEFA Credit Transfer Reference Application | FTMCfg M 23 HM|GUl |mapper create
FTH SEFA Credit Transfer Reference Application | FTMCfg 35 23 35|GUI |scheduler_task create
FTH SEFA Credit Transfer Reference Application | FTMCfg -] 23 3B(GUl |schedule_entry create
FTH SEFA Credit Transfer Reference Application | FTMCfg 44 23 416U |value create
FTH SEFA Credit Transfer Reference Application | FTMCfg 56 23 |GUl |service create
FTH SEFA Credit Transfer Reference Application | FTMCfg &0 23 &0|GUI |service_participant|create
FTM SEFA Credit Transfer Reference Application | FTMEdit 3 23 3 [GUI |calendar_entry edit
FTM SEFA Credit Transfer Reference Application | FTMEdit T 23 T |GUl |calendar_group edit
FTM SEFA Credit Transfer Reference Application | FTMEdit 1M 25 11|GUI |channel edit

m

Figure 6-71 Authorizations list

You can link groups to Involved Parties and give fine-grained control of user access to
operational data. You cannot change the authorization details from within the Operation and

Administration console.

Chapter 6. User interface

211

212 Financial Transaction Manager Technical Overview

Housekeeping

Many standard database maintenance tasks should be carried out regularly, such as runstat
and reorg for DB2. However, these tasks are beyond the scope of this chapter.

The maintenance schedule for Financial Transaction Manager is dependent on many factors,
not all within the control of Financial Transaction Manager. These factors include complexity,
volume, and environment. Database administrators can monitor and adjust the schedule as
appropriate. These considerations are not unique to Financial Transaction Manager and are
common for all applications that persist data to a database.

In this chapter, we describe the housekeeping and maintenance considerations that are
important to ensure the sustainability of the Financial Transaction Manager solution.

This chapter includes the following topics:

» Database archive and purge
» Back up and restore

» Technical monitoring

» Maintenance

© Copyright IBM Corp. 2014. All rights reserved. 213

7.1 Database archive and purge

Financial Transaction Manager receives incoming and outgoing transactions from
applications, customer channels, networks, and so on. These transactions are persisted
within the Financial Transaction Manager database and can be stored with various other
pieces of data that can be used for querying, reporting, and so on. This data can include a full
audit trail, any messages that are created by the transaction, and a copy of the transaction in
its original format and in Financial Transaction Manager’s internal standard format. This
flexibility affects the frequency of database maintenance; for example, the greater the volume
of data, the more often the database must be maintained.

Therefore, you can purge transactions from the production database to keep its size at the
optimal level for the solution’s performance requirements. However, as transactions are
purged from the production database, do not merely delete them, but archive the salient data
from the transaction as well.

In the following sections, we describe the considerations when you are setting up an archive
and purging solution. For more information, see the Financial Transaction Manager 2.1
Information Center.

7.1.1 Identifying transactions

214

The first step in an archive or purge process is to identify the transactions to remove from the
production database. When you are identifying transactions to be archived, consider all of the
associated related objects of the transaction. These objects include physical transmissions,
batches, and child transactions.

Physical transmissions and batches can contain multiple transactions, and it might not be
possible to archive and purge these objects until all of the transactions that they contain are
completed and ready to archive. Similarly, do not archive and purge physical transmissions
until after all the contained batches and fragments are completed.

In addition, the Financial Transaction Manager data model contains a number of
dependencies that must be considered. For more information, see the Financial Transaction
Manager Information Center.

When you are identifying transactions that are candidates for archiving and purging,
remember the following considerations:

» Has the transaction completed processing?

The transaction’s state identifies whether the processing of the message was completed.
This should take into account receipt of acknowledgements. It is also important to
consider the transactions that are created by a master transaction. A master transaction is
not considered complete until all its child transactions are complete.

» Can the transaction be canceled or rejected?

In many payment schemes (for example SEPA), transactions can be returned or canceled
within a certain time period. A completed message should not be purged or archived until
after this period passes.

» Regulatory and reporting

Local reporting rules might require that data is kept in the production database until the
regulatory reports are submitted. Alternatively, it might be that reports that are created
from an archive database are permissible.

Financial Transaction Manager Technical Overview

» Business requirements

The length of time that a payment is kept in the production database might be defined by
business requirements; for example, for customer queries. Alternatively, an online archive
instance of Financial Transaction Manager might be permissible.

» Type of transaction

The type of transaction can have a direct effect on the archive and purge process. For
example, low-value, high-volume payments can be archived and purged more often than
high-value, low-volume payments.

After the transactions and associated objects are identified, the archive and purge process
can be done.

7.1.2 Archive

The archival of Financial Transaction Manager transactions can be performed by using the
following processes, depending on the archive requirements:

» Database backup

This type of archiving is the simplest of the archive processes and consists of taking a
backup of the Financial Transaction Manager database regularly before purging is done.
However, this method of archiving does not allow for easy access to the archived data and
requires that the data is restored to be viewed.

» Financial Transaction Manager archive database

This method consists of creating a separate Financial Transaction Manager database and
moving the archived transactions to that database. The archive database has the same
data model as the production database so no transformation is required. In addition, a
separate Operation and Administration Console can be configured to allow users to query
on transactions in the archive database. However, a separate purge process specifically
for the archive database is required to ensure that the archive database does not grow
excessively large.

» Non-Financial Transaction Manager archive database

This method consists of archiving the Financial Transaction Manager transactions to a
separate database with a different data model. This method requires some transformation
of the data. This method can be used when an existing archive process is in place and the
Financial Transaction Manager data should be moved to an existing archive database.

It might be that you use a combination of these methods; for example, a Financial Transaction
Manager archive database for operators to query and another archive database for regulatory
reporting.

If data is to be archived to an archive database (with or without the same data model),
consideration should be given to the information that should be recorded. Transactions within
Financial Transaction Manager can be stored with much detail; for example, each state
change, full audit, user actions, and raw data format. This volume of data might not be
required for archive purposes and a subset of the data can be used. For example, a
payment’s lifecycle can be monitored in Financial Transaction Manager and a payment
processing engine; therefore, it might not be necessary to store history within the Financial
Transaction Manager archive database. However, local regulations might dictate the minimum
information that is stored within the archive database and the duration that the information is
kept.

Chapter 7. Housekeeping 215

You can implement these archive processes by using the following methods:
» Scheduled database backups

The simplest archive process is to schedule regular backups of the Financial Transaction
Manager database. These backups can then be stored; for example, on optical disk.

» Database stored procedures

Stored procedures can be used to identify data and then archive it to the archive
database. These stored procedures might be triggered manually or automatically; for
example, by the use of a Scheduler Task

» Programmatically
A program might be written to identify and archive transactions.

It is likely that there are various archive requirements for different transaction types, different
departments, and so forth. Take care to ensure that this fact is not overlooked.

7.1.3 Purge

The purge process is complementary to the archive process and usually follows directly after
the archive process. In a production environment, it is unlikely that a purge occurs without the
archive process completed. The purge process removes transactions and associated objects
from the production database and frees up database space to ensure that the performance of
the solution is kept optimal.

In addition, the purge process ideally deals with the same record set as that of the archive
process, which ensures that only those records that are archived are removed. Therefore, it is
important to indicate that the archive completed successfully; for example, by the archive
process triggering the purge process after completion.

The major consideration when a purge process is created is to ensure that the process takes
into account the relationship between database objects; for example, foreign keys on
database tables, and, therefore, data might need to be purged in a certain order.

The purge process removes data from the database so care must be taken to ensure that this
is done at such a time during the day to ensure that the data is not locked by users or other
processes.

For more information, see the Financial Transaction Manager Information Center by clicking
Planning — Archive and Purge Guidelines.

7.2 Back up and restore

The backup of the database and restoration when required can be part of an archive process.
However, this section includes a more general description of a backup/restore strategy. The
backup of the Financial Transaction Manager database might be required for the following
reasons:

Financial Institution data policy
Business requirements

Local regulations

Disaster recovery requirements

vyvyyy

216 Financial Transaction Manager Technical Overview

http://www-947.ibm.com/support/entry/portal/overview/software/financial_operations/financial_transaction_manager

Database backups can be triggered to run automatically or manually started. When a backup
is to begin, it is important that there are no users or processes interacting with the data to
ensure that no database locks occur. The backups can then be stored on a network drive or
to media.

The backup contains a snap shot of the Financial Transaction Manager solution at a certain
time and is useful for restoring configuration that might be lost or changed. This can be used
for investigation and resolution of issues.

A database backup might be required for the following reasons:
» Restoration of lost configuration is needed.

» Recovery to the start of a process; for example, restoring to a situation before an external
batch process runs.

» As part of an archive process, restoration of a database for inquiry or reporting purposes.

» For testing purposes, restoration of live or pseudo-live data to a test or development
environment.

The restoration of the Financial Transaction Manager database needs a similar amount of
care as the backup process. The restore should be performed on a database that is not
locked by any user or process to ensure that no database corruption can occur.

In addition, if you are restoring a database from one environment to another (for example, the
production database to a test environment), care should be taken to ensure that any
production configuration data is corrected before the solution runtime components are
restarted.

Restoration of a database can be complete or partial, with the entire database or only certain
tables being backed up. In the case of a partial restoration, be careful to ensure that the
restoration of the data also takes any foreign key constraints into account.

7.3 Technical monitoring

Financial Transaction Manager can publish events that can inform the business user of the
health of the solution. This information includes key performance indicators, such as the
number of transactions that are processed successfully. The business user can monitor this
information within IBM Business Monitor, which is part of the Financial Transaction Manager
solution. However, monitoring the technical health of the system is also a common
requirement. Several solutions are available to perform this task and to inform a technical
user when there are problems, for example when disk space is decreasing. An example of
this type of solution is the IBM Tivoli® suite.

These solutions can be used to monitor the following technical resources:

» Free space within the file system
» Number of files within a folder

» Volume of messages on queues
» Memory usage

Monitoring this information can quickly show if there are issues in the solution. For example,
files accumulating in a folder can indicate that a process is not running. This issue potentially
allows the technical team to proactively investigate issues before they become critical.

Chapter 7. Housekeeping 217

7.4 Maintenance

The Financial Transaction Manager solution might require updates, including service packs
for the database or WebSphere Applications Server and upgrades to message definitions,
such as the annual SWIFT standard changes.

Maintenance requires that all or part of the Financial Transaction Manager is unavailable for a
short period as the patch or change is applied. The effect of this can be mitigated by
deploying flows with different characteristics; for example, geographical location and Financial
Transaction Manager applications in their own execution groups within IBM WebSphere
Message Broker. In addition, Financial Transaction Manager has the concept of applications,
which allow for distinct functionality to be segregated within the Financial Transaction
Manager database. This function allows for one application to be upgraded while other
applications are unaffected.

Interface Objects within Financial Transaction Manager (for example, channels and scheduler
tasks), also can be set to an inactive state, which ensures that they do not attempt to process
transactions or transmissions during the scheduled maintenance.

The deployment topology of Financial Transaction Manager also can facilitate maintenance. If
the solution was deployed with WebSphere Message Broker LPARS in an active-active or
active-passive configuration, one LPAR can be maintained while the other continues
processing. When the maintenance is complete, the inactive LPAR can be made active while
the second LPAR is upgraded. Schedule maintenance for times when transaction processing
is not critical or when few transactions are expected.

The following artifacts or systems might require maintenance or upgrades within the Financial
Transaction Manager:

IBM WebSphere Message Broker message flows and subflows.
IBM WebSphere Message Broker mappers

IBM WebSphere Message Broker message sets

IBM WebSphere Application Server

IBM WebSphere Transformation Extender (if used)

IBM Business Monitor (if used)

IBM DB2

IBM WebSphere MQ

Financial Transaction Manager Operation and Administration Console
IBM Financial Transaction Manager finite state machine model
IBM Financial Transaction Manager configuration model

YVVYVYYVYVYVYVYVYYY

218 Financial Transaction Manager Technical Overview

Deployment topologies

This chapter provides information about different deployment topology options that are
available in different Financial Transaction Manager components. It includes deployment
topologies for the following solutions:

v

WebSphere Message Broker
WebSphere MQ

Databases (IBM DB2 and Oracle)
WebSphere Application Server

vYyy

In this chapter, we also describe deployment topologies for the following Financial Transaction
Manager components:

» WebSphere Message Broker flows
» DB2 database
» Operations and Administration Console (OAC)

The options that are provided in this chapter do not provide an exhaustive list of deployment
topology options that are available with Financial Transaction Manager. Contact an
infrastructure specialist to choose the correct deployment topology for your requirements.
This chapter includes the following topics:

» Infrastructure topologies
» Financial Transaction Manager components

Terminology note: The term server is used in this chapter to represent a logical or
physical server on multiplatforms or an LPAR on z/OS.

© Copyright IBM Corp. 2014. All rights reserved. 219

8.1 Infrastructure topologies

In this section, we describe different topologies that can be deployed for various Financial
Transaction Manager components. The list of topologies that are described here is not
exhaustive. Consult an infrastructure specialist to choose the best topology for your solution.

Financial Transaction Manager consists of the following key infrastructure components:

» WebSphere Message Broker
» WebSphere MQ

» DB2 or Oracle database

» WebSphere Application Server

We describe topologies that can be deployed in Financial Transaction Manager.

8.1.1 WebSphere Message Broker and WebSphere MQ

220

WebSphere Message Broker and WebSphere MQ work together in Financial Transaction
Manager. However, these two components are independent components. Because they work
together in Financial Transaction Manager, we describe their topologies in this section.

Various deployment topologies that are described in High Availability in WebSphere
Messaging Solutions, SG24-7839. In this section, we describe the following key topologies:

» Active-active topology
» Active-passive topology

Active-active topology

In this topology, a network load balancer is used to spread the traffic across two or more
brokers that are deployed on the same or different servers. These brokers are deployed in an
active-active topology. On each broker, you can develop the flows to multiple execution
groups to safeguard against execution group failure. Overall, multiple copies of the flow are
listening for inbound message.

In the case of inbound HTTP(S) traffic, different HTTP ports for each execution group allow
the load balancer to spread the traffic across all the available instances of the message flows.

In the case of inbound files over FTP or the use of other managed file transfer products, such
as IBM Sterling Connect:Direct®, an NFS4 shared drive can be used as inbound directory.
The file nodes in WebSphere Message Broker can be configured to point to this inbound
directory. By using this topology, any available instance of the flow can pick up the file from
the shared location for processing. WebSphere Message Broker ensures that the file is
picked by only one instance of the flow.

In case of inbound WebSphere MQ traffic, you can use the following options, depending on
the platform that is chosen for deployment:

» Multiplatform

You can use WebSphere MQ clustered queues where the queue managers of each broker
are added to a cluster and the input queues of the message flows are defined in the
cluster. This method allows the WebSphere MQ cluster to load balance the request to one
of the available queue managers.

Financial Transaction Manager Technical Overview

» 2/0S

On z/OS, you can use the coupling facility (CF) technology to group queue managers of
each broker into queue sharing groups (QSGs). All queue managers in a QSG can access
shared message queues for sending and receiving messages. Unlike multiplatform, the
message can be picked by any message flow that is deployed on any broker.

For more information about this topology, see High Availability in WebSphere Messaging
Solutions, SG24-7839.

Effect on availability

Availability in this context is a measure of the accessibility of a system or application, not
including scheduled downtime. It can be measured as a ratio of expected system up-time
relative to the total system time, which includes uptime and recovery time when the system is
down, as shown in the following formula:

A = [MTBF/(MTBF + MTTR)] x 100%

The following definitions apply to terms in this equation:
» Mean Time Between Failure (MTBF) is the average elapsed time between failures.

» Mean Time To Recover (MTTR) is the average time that is required to recover from a
failure.

This topology provides a high availability configuration to the solution in which there are
redundancies within the same broker that uses multiple execution groups and further by using
multiple brokers on different servers.

If one broker fails, the system has only half the processing resource available. This event
must be factored in when the system is designed. In such cases, the system must be
provisioned with appropriate redundancies for high availability, or it must be deemed
diminished performance during the recovery time is acceptable.

In the case of WebSphere MQ clustering on multiplatform, a broker failure on a particular
server can lead to message pile-up if the queue manager that is associated with that broker is
not taken out of the cluster. For example, if the event processing wrapper flow has an
WebSphere MQ input node, failure of the broker can cause messages to pile up on the input
queue because the cluster queue manager is unaware of stopped broker. This event can
cause delay or failure in transaction processing and violate availability requirements.

This scenario can be avoided in z/OS where there is a provision to share the inbound queues
across broker instances. Failure of one broker in such case causes other brokers to pick up
the messages for processing.

One of the key benefits of the active-active topology is that there is always one instance
running to ensure high availability. However, the topology does not safeguard against failure
of all the active broker instances. In such a scenario, manual recovery processes must be
applied to get the system online.

Chapter 8. Deployment topologies 221

222

Effect on scalability

Scalability refers to the ability of the application to scale to increased or decreased load. The
active-active topology is easily scalable by adding more servers or brokers to the load
balancer, adding queue managers to the cluster on multiplatforms, and adding queue
managers to QSGs on z/OS. Such changes can also be performed during operational hours,
if required. The scalability can also be achieved by adding more execution groups to existing
brokers and deploying more copies of message flows. It makes no difference to the scalability
of Financial Transaction Manager message flows to deploy more execution groups on a single
broker against deploying multiple brokers on multiple servers.

Effect on operability

The operability in the case of the active-active topology can be challenging during
deployments. Consider a scenario in which message flows are deployed to a number of
execution groups across a number of brokers. Now, a patch must be deployed for this
message flow. All of the running instances of the message flow must be at the same patch
level. Therefore, if you deploy the changes to a running broker, it creates inconsistencies in
the execution group. Deployment in such cases can be challenging and might need an
outage, which might violate availability requirements. In such cases, phased deployments can
be performed.

For example, if there are four brokers that are running in the system, the following steps
ensure that there are no inconsistencies in deployed message flows and achieve minimal or
zero downtime:

1. Remove broker 1 and 2 from the network load balancer configuration and their
corresponding queue managers from WebSphere MQ cluster or QSGs. This method
ensures that no traffic is routed to these brokers while deployment is in progress.

2. Deploy the changes on these two brokers.

3. Remove broker 3 and 4 from the network load balancer configuration and their
corresponding queue managers from WebSphere MQ cluster or QSGs. At the same time,
add brokers 1 and 2 back to the load balancer and clusters. The new messages are how
routed to updated message flows.

4. Deploy the changes on brokers 3 and 4 and add them back in the cluster and load
balancer.

Note: In step 3, there is a short period where there are inconsistencies or total downtime of
the solution. However, if this step is done in parallel, this period can be made negligible.

Active-passive topology

The active-passive topology can be implemented by using multi-instance queue manager and
multi-instance broker capabilities. Figure 8-1 on page 223 shows the multi-instance broker
configuration.

Financial Transaction Manager Technical Overview

Server 1 Server 2

Active Message Broker | Failover S LA
Broker
Active MQ Queue Standby MQ Queue
Manager / Manager

MES4 Share
Figure 8-1 Multi-instance broker configuration

The multi-instance features WebSphere MQ and WebSphere Message Broker to provide a
software-based high availability solution. They allow you to define an active instance of the
queue manager and broker on one server and a standby instance on a secondary server. The
instances use shared storage for data and logs. The shared storage typically uses NFS4
shared mount. The first instance to be started becomes the active instance and obtains locks
on the shared files. Control switches to the standby instance when the currently active
instance releases its lock on the shared files. This can be started in a controlled switch-over
from the active node to the standby node or by automatic failover in the event of an unplanned
server outage. For more information about how to set up multi-instance broker, see High
Availability in WebSphere Messaging Solutions, SG24-7839.

When set up, the broker on server 2 runs in a standby mode and becomes active if the active
broker on server 1 fails. Because the repository that is used by both the queue managers and
brokers is the same, the failover is performed quickly. When the original broker comes online
again, it runs in a standby mode. Therefore, more commands must be run to make the broker
active again.

Effect on availability

The solution provides high levels of availability by using software technologies. However, a
specialized setup is required to achieve this configuration. Also, the solution does not
safeguard against failure of both active and passive broker instances. In such scenario,
manual recovery processes must be applied to get the system online. Moreover, there is a
small potential risk that the passive broker might not come up during the recovery phase,
which can severely impact the availability of the system.

Effect on scalability

The active passive solution can pose a negative effect on scalability. To scale this
configuration, add broker in pairs of active and passive. Therefore, the resource requirement
in case of horizontal scaling can be high. To mitigate this problem, you can use the
configuration that is shown in Figure 8-2 on page 224.

Chapter 8. Deployment topologies 223

Server 1 Server 2

Active Message Active Message
Broker 1 Broker 1

Active MQ Queue Active MQ Queue
Manager 1 Manager 1

Standby Message Standby Message
Broker 2 Broker 1
Standby MQ Queue Standby MQ Queue
Manager 2 Manager 1

Shared Storage for
QM1 and Broker 1

Shared Storage for
QM2 and Broker 2

NF54 Share

Figure 8-2 Scaling active-passive topology

In this topology, server 1 hosts the passive broker instance of server 2 and vice versa. A
network load balancer or WebSphere MQ cluster topologies that are described in
“Active-active topology” on page 220 can be used to distribute the traffic across two servers.
This provides maximum usage of the server from a scalability perspective, which maintains
the high availability aspects. Either of servers serve double the load if there is a broker
instance failure. Therefore, the capacity of each server must be adequate to cater to the load.

Effect on operability

The deployment process in an active-passive topology is relatively simple. Because the
standby broker shares the repository of the active broker, no separate deployment is needed
on the standby broker. If a configuration as shown in Figure 8-2 is used, it is effectively a
combination of active-active and active-passive topologies.

8.1.2 Database

224

The database is a critical component of the Financial Transaction Manager solution because
it stores configuration and operational data. Financial Transaction Manager supports Oracle
and IBM DB2 as the configuration and transaction database. Although the topologies that are
described here are for DB2 database, you can implement similar topologies for Oracle
database. For more information, see the Oracle database product guide, which is available at
this website:

http://docs.oracle.com/cd/E23943 01/core.1111/e12037/intro.htm

Financial Transaction Manager Technical Overview

http://docs.oracle.com/cd/E23943_01/core.1111/e12037/intro.htm
http://docs.oracle.com/cd/E23943_01/core.1111/e12037/intro.htm

Availability and performance of the database has a direct impact on the overall solution. It is
important to consider different deployment topologies for the DB2 database. In this chapter,
we do not describe various patterns that are available for availability, scalability, and
operability of DB2 database. These patterns are described in the DB2 Information Center,
which is available by clicking Database administration — High availability and Database
administration — Administration concepts — Databases — Database partitions —
Partitioned database environments.

Patterns also are described in DB2 UDB for z/OS: Design Guidelines for High Performance
and Availability, SG24-7134, and DB2 9 for z/OS Performance Topics, SG24-7473.

In this section, we describe the infrastructure decisions that are related to DB2 that affect
Financial Transaction Manager operations.

Note: The Oracle database is only supported on AlX platform and not on z/OS.

Single database instance

With this topology, a single instance of the database and database manager is created that
manages the Financial Transaction Manager database for configuration and operation data.
This database is accessed by all of the WebSphere Message Broker instances that are
configured for Financial Transaction Manager, as shown in Figure 8-3.

WebSphere Message Broker Servers

| |

WebSphere Message WebSphere Message
Broker Instance Broker Instance
DB2 Servers
Database |

DB2 Database
Manager Instance

Figure 8-3 Single database instance

This topology does not provide isolation of data across multiple applications. Although
Financial Transaction Manager supports role-based access where individual user groups can
be configured to access specific application records, this feature is applicable to the Financial
Transaction Manager Operations and Administration user interface only. It does not prevent
users with direct database access to view all the records.

Chapter 8. Deployment topologies 225

226

Effect on availability

In this topology, the database instance is shared across all the Financial Transaction Manager
applications that are deployed in one or more brokers. This introduces DB2 database as a
single point of failure for all the applications. Therefore, it is important to have high availability
strategies in place for single database manager configuration. The Information Center for
DB2 Version 9.7 for Linux, UNIX, and Windows section Database administration — High
availability — High availability strategies provides more information about strategies that
can be applied for high availability scenarios.

Effect on scalability

Because the database is shared across multiple Financial Transaction Manager applications,
scalability in this topology can pose problems when the database grows over time. The
contention in tables and indexes start to slow down the overall database. Moreover, in case of
the multiapplication scenario, if one application has heavy traffic compared to the other, the
less frequently used application might starve for resources and might lead to timeouts.
However, this situation can be avoided by implementing good housekeeping practices.

You can use the Data Partitioning Feature (DPF) in this case to implement a highly scalable
system. A partitioned database is a database that is created across multiple database
partitions. Each database partition has its own processes, memory, and data storage. You
can create these partitions on multiple servers. Queries that are submitted to the DB2
database are distributed to each database partition and processed in parallel. If there are
multiple processors in each database partition node, internal parallelism can be used to
achieve better performance.

Important: The DB2 Data Partitioning Feature (DPF) requires a separate other license
from that of the Enterprise Server Edition (ESE) license that is included with Financial
Transaction Manager.

Effect on operability

The topology is easy to manage because there is a single database and database manager
to maintain. However, offline backups need all the Financial Transaction Manager applications
to be brought down for the period of backup. This downtime can affect availability
requirements of a critical application. To prevent access of one application to the users of
another, configure Financial Transaction Manager security tables to manage role-based
access. This method adds an overhead of managing this configuration on an ongoing basis.

Financial Transaction Manager Technical Overview

Multiple database instances

With this topology, multiple database instances exist for multiple instances of the broker or for
multiple applications that are deployed on the same or different brokers, as shown in

Figure 8-4.

WebSphere Message Broker Servers

WebSphere Message WebSphere Message
Broker Instance Broker Instance

S -
e

e
g Database Database
c
[7]
0
o
m
O
DB2 Database DB2 Database
Manager Instance Manager Instance

Figure 8-4 Multiple database instances

Effect on availability

The availability of this topology is similar to what is offered by the single instance database
because each application or broker has its own database. However, because of multiple
instances, the probability of contention in tables and indexes is low. On multiplatforms, the
availability of the multiple database instances by using patterns is described in Information
Center for DB2 Version 9.7 for Linux, UNIX, and Windows section Database
administration — High availability — High availability strategies. Some of these
techniques include clustering and partitioning.

Effect on scalability

The solution is scalable by partitioning the Financial Transaction Manager database by using
multiple database instances. In such cases, there are two Financial Transaction Manager
databases running in parallel on two different servers that are used by applications that are
deployed on the same or different brokers. This is applicable to multiplatforms and z/OS
implementations. On z/OS specifically, each LPAR can have its own broker and its own
database in operation.

Chapter 8. Deployment topologies 227

228

Effect on operability

As the operational data is distributed across multiple databases, operability becomes a
challenge. The Financial Transaction Manager Operations and Administration console can
connect to only one JDBC data source for its functioning. Therefore, multiple copies of OAC
must be deployed to visualize the data. Therefore, a transaction must be searched for in
multiple OACs for diagnosis and reporting.

Additionally, it is critical to ensure that the complete lifecycle of a transaction is managed on a
server that is connected to same database where the transaction originates. Failing to do so
causes failures when Financial Transaction Manager tries to fetch transaction records from
the database as a result of an event. This method adds more complexity to the overall

solution design.

The decision to have single or multiple database managers can also affect operability of the
solution. In some cases, a single database manager can be selected to manage all of the
database instances, as shown in Figure 8-5.

WebSphere Message Broker Servers

WebSphere Message WebSphere Message
Broker Instance Broker Instance

Database Database

DB2 Servers

DB2 Database
Manager Instance

Figure 8-5 Multiple database instances with single database manager

However, the topology has an advantage when separate databases are created for separate
Financial Transaction Manager applications. In such scenario, this topology provides
complete isolation for the application data. Such a capability is useful when there is legal
requirement to isolate data for multiple applications.

Financial Transaction Manager Technical Overview

Data sharing groups

On z/OS, the data sharing function can be enabled to allow multiple applications to read from
and write to the same DB2 data concurrently. A collection of one or more DB2 subsystems
that share DB2 data is called a data sharing group. DB2 subsystems that access shared DB2
data must belong to a data sharing group. All members of a data sharing group share the
DB2 catalog and directory, and all members must be in the same IBM Parallel Sysplex®. A
Sysplex is a group of z/OS systems that communicate and cooperate with one another by
using specialized hardware and software. A Parallel Sysplex is a Sysplex that uses one or
more coupling facilities, which provide high-speed caching, list processing, and lock
processing for any applications on the Sysplex.

The DB2 for z/OS Information Center section DB2 administration — Data sharing —
Introduction to DB2 data sharing — Advantages of DB2 data sharing describes the effect
of data sharing groups on availability, scalability, and operability aspects of Financial
Transaction Manager database.

For more information about DB2 for z/OS scalability and performance, see DB2 UDB for
z/0S: Design Guidelines for High Performance and Availability, SG24-7134, and DB2 9 for
z/0S Performance Topics, SG24-7473.

8.1.3 WebSphere Application Server

WebSphere Application Server in Financial Transaction Manager hosts the Financial
Transaction Manager OAC application only. It does not participate in transaction processing.
Therefore, there are no significant non-functional requirements for this part of Financial
Transaction Manager. For more information about various topologies that can be
implemented by using WebSphere Application Server, see IBM WebSphere Application
Server V8 Concepts, Planning, and Design Guide, SG24-7957.

8.2 Financial Transaction Manager components

In this section, we describe the following components of Financial Transaction Manager:

» Message flows
» Database schema configuration
» Operations and Administration user interface

8.2.1 Message flows

Financial Transaction Manager includes the following key categories of message flows:
» One or more physical transmission wrapper flows

One physical transmission wrapper flow per external interface in each application in
Financial Transaction Manager.

» One or more event processing wrapper flows

One event processing wrapper flow for each Financial Transaction Manager application
that encapsulates the actions and mappers for the specific application.

» Heartbeat and error logging flows
A single copy of these message flows for the Financial Transaction Manager applications.

Chapter 8. Deployment topologies 229

230

These flows can be deployed together and to different execution groups, depending on the
requirements. Also, based on performance requirements, you can deploy other instances of
the message flows. Various deployment options are available with these flows and how they
affect availability, scalability, and operability of the Financial Transaction Manager solution are
described in this section.

This description does not include the complete list of options that are available to deploy the
message flows. Work with an infrastructure specialist to choose the best pattern for the set of
requirements.

Deploy to a single execution group

With this topology, all the message flows are deployed to a single execution group in
WebSphere Message Broker, as shown in Figure 8-6.

«ExecutionGroups=
[Z] default:ExecutionGroup

aMsgFlows «MsgFlows

PhysicalTransmissionWrapper

== additional instances = 0

EventProcessingFlow

== additional instances = 0

aMsgFlows
HeartBeat

== additional instances = 0

aMsgFlows
LogErrorFlow

== additional instances = 0

zMessageSetss
Message Sets

== additional instances = 0

Figure 8-6 Deployment to single execution group

You can use this topology when there is only one Financial Transaction Manager application
that is deployed and it has a few physical transmission wrapper flows. This topology is also

used in the initial phases of development to simplify deployments. A single BAR file often is

used to package all the flows for simpler deployments.

Effect on availability

Because the message flows are deployed to a single execution group in this topology, it is
prone to a single point of failure. Therefore, to ensure availability by using this topology, the
message flows must be deployed to another execution group on the same or different broker,
as shown in Figure 8-7 on page 231.

Financial Transaction Manager Technical Overview

Broker 1

«ExecutionGroups=

(&) EG1

«MessageFlows «hessageFlows
47 PhysicalTransmissionWrapper Flow 47 EventProcessingWrapperFlow

«MessageFlows= «MessageFlows:
42 Error Logging Flow ‘#2) HeartBeatFlow

«ExecutionGroups
(] EG2

«MessageFlows «hessageFlows
47 PhysicalTransmissionWrapper Flow 47 EventProcessingWrapperFlow

«MessageFlows= «MessageFlows:
42 Error Logging Flow ‘#2) HeartBeatFlow

Figure 8-7 Improving availability with single execution group

To further safeguard the Financial Transaction Manager application for availability, all of the
message flows can be deployed to an execution group that us running on a different broker on
a different server. However, deploying on a separate broker instance by using this topology
can lead to some operability issues.

Additionally, the message flows can be deployed to an execution group that is running on a
multi-instance broker. Although this configuration provides good availability features, it affects
scalability.

Effect on scalability

There are many ways to scale message flows, which are often performed in the following
order:

1.

Increase the number of other instances of the message flow that is deployed to the
execution group.

Although this option provides a simple form of scaling in a linear way, the benchmarking
results of Financial Transaction Manager show that the performance graph is linear only
up to some threads in the range of 10 - 15. Beyond this number, there are overheads on
inter-thread locking mechanisms that do not provide the required scalability.

Deploying to different execution groups.

As shown in Figure 8-7 on page 231, the message flows can be deployed to multiple
execution groups on the same broker to increase the number of active threads in the
system that is listening for input. However, care must be taken to carefully choose the
flows that are deployed to a different execution group. For example, the Heartbeat flow
should not be scaled beyond a single instance on a server; otherwise, it causes duplicate
heartbeat events to be triggered, which leads to unexpected or unintended behavior of the
system.

Chapter 8. Deployment topologies 231

232

3. Deploying to different broker.

When the capacity of a server is exhausted, more instances of the flows can be deployed
to a broker that is running on a different server. However, in such cases, the Financial
Transaction Manager database for both of the brokers must be the same. Having different
databases for different brokers has a negative effect on the operability of the solution.

The use of a multi-instance broker topology does not provide scalability because the second
instance of the broker is always on standby. Moreover, scaling a multi-instance broker
requires adding a minimum of two brokers for horizontal scaling.

Effect on operability

Operability refers to the ease of designing and managing the deployed solution. Although this
topology is easier to deploy, it becomes increasingly more challenging to manage if there are
more than one Financial Transaction Manager applications deployed. The ability to
incrementally deploy new applications is limited with ability to shut down a specific
application. Although WebSphere Message Broker allows starting and stopping of individual
message flows, it is more difficult to selectively control individual flows.

Further, a bad flow that is using full resources in an execution group can cause the remainder
of the flows in the same execution group to starve for resources, which means that one bad
application can affect a good application that is deployed in the same execution group.

Multiple execution group deployment

With this topology, the message flows can be split across multiple execution groups in
WebSphere Message Broker. Typically, physical transmission wrapper flows and event
processing wrapper flows are deployed to separate execution groups. Heart beat and error
logging flows are deployed to a separate execution group or combined with event processing
wrapper flows, a shown in Figure 8-8.

Broker 1
«ExecutionGroups «ExecutionGroups
EG1 (] EG2
«MessageFlows= «MessageFlows=
#7] PhysicalTransmissionWrapper Flow 47 EventProcessingWrapperFlow
«MessageFlows= «MessageFlows
#:) HeartBeatFlow #2) Error Logging Flow

Figure 8-8 Multiple execution group deployment topology

This topology often is chosen when there are many physical transmission flows in the solution
or these flows are added in incremental manner.

Effect on availability

Because a particular message flow is deployed to a single execution group in this topology, it
is prone to a single point of failure. However, because of multiple execution group
deployment, the probability of overall solution failure is relatively low. For example, failure of
the execution group that contains the event processing wrapper flow does not prevent
physical transmission wrapper flows from processing the inbound requests. In such a case,
event messages pile up on the event queue that is waiting to be processed. After this
execution group is recovered, the event processing begins as usual.

Financial Transaction Manager Technical Overview

Therefore, to ensure availability by using this topology, the message flows must be deployed
to another execution group on the same or different broker. By using this topology, different
availability requirements for different flows are available.

Additionally, the message flows can be deployed to an execution group that is running on a
multi-instance broker. Although this configuration provides good availability features, it affects
scalability.

Effect on scalability

Scalability by using this topology is similar to the one described in “Effect on scalability” on
page 231. However, this topology allows scaling of a physical transmission wrapper and event
processing wrapper separately, which provides better control over resource usage. Scaling by
using multiple execution groups on the same machine with large amounts of resources has
no significant effect as compared to scaling on a separate server. However, It does affect
availability and operability of the solution.

Effect on operability

This topology makes the deployment process complicated as message flows must be
deployed to multiple execution groups. Also, corresponding message sets must be deployed
to each execution group to enable Financial Transaction Manager to parse the message.
However, from a maintenance perspective, this topology provides better control over types of
flows as incremental deployments can be performed for both event processing wrappers (to
add new actions and mappers) and physical transmission wrapper flows (to add new
interfacing points)

Multi-application deployment

Financial Transaction Manager supports deployment of multiple applications to the same
runtime instance. This means that there are different physical transmission wrapper flows and
event processing wrapper flows for each application that can be deployed to same broker
instance. The multiapplication deployment topology provides isolation to these applications by
deploying them to a separate execution group. For each application, you can use the topology
that is described in “Deploy to a single execution group” on page 230.

Figure 8-9 on page 234 shows such a deployment topology.

Chapter 8. Deployment topologies 233

Broker 1
«ExecutionGroup» «ExecutionGroup»
[] EG1-App1 [] EG2-App1
«MessageFlow= «MessageFlow=
#7] PhysicalTransmissionWrapper Flow 47 EventProcessi ra Flow
«MessageFlows «hessageFlows
#:) HeartBeatFlow 42 Error Logging Flow
«ExecutionGroups= «ExecutionGroup=
[=] EG3-App2 [=] EG4-App2
«MessageFlows «MessageFlows
#7] PhysicalTransmissionWraj Flow 7] EventProcessingWrapperFlow
zMessageFlows zMessageFlows
#7] HeartBeatFlow #7) Error Logging Flow

Figure 8-9 Multi-application deployment topology

Further, applications can be deployed to separate brokers with their own databases to
achieve complete isolation, as shown in Figure 8-10.

Broker 1
«ExecutionGroups= «ExecutionGroup=
EG1-App1 (2] EG2-App1
aMessageFlows «MessageFlows DB1
7] PhysicalTransmissionWrapper Flow 7] EventProcessingWrapperFlow
xzMessageFlows «MessageFlows
#7) HeartBeatFlow %] Error Logaing Flow
Broker 2
«ExecutionGroups «ExecutionGroups
EG1-App2 EG2-App2
DB2
«MessageFlows: xzMessageFlows
%] PhysicalTransmissionWrapper Flow #7) EventProcessingWrapperFlow
«MessageFlows «MessageFlows
7] HeartBeatFlow %7 Error Logaging Flow

Figure 8-10 Muilti-application deployment with full separation

Effect on availability

With this topology, the availability of each application can be controlled separately. The key
benefit of this topology is that availability of each application can be addressed in an
independent manner.

234 Financial Transaction Manager Technical Overview

Effect on scalability

The scalability of this topology is similar to the one that is addressed in the previous
topologies. Similar to availability, this topology allows addressing scalability requirements of
each application in an independent manner.

Effect on operability

This topology provides strong operability of a solution. Each application can be deployed,
started, and stopped separately without affecting the other. However, the deployment of such
a solution is often complicated because there are multiple BAR files for multiple execution
groups.

8.2.2 Database schema configuration

In this section, we describe the choice of single or multiple schemas for the Financial
Transaction Manager database. This is different from single or multiple database instances as
described in 8.1.2, “Database” on page 224. In this case, you can create the schemas on a
single or multiple databases.

Single schema configuration

With this topology, there is only a single schema for the Financial Transaction Manager
configuration and operational database. This schema hosts data for all of the deployed
Financial Transaction Manager applications. This is the most commonly used pattern in
Financial Transaction Manager. However, adding entire operational data might cause
contention in indexes and tables over time. This topology provides the following benefits:

» A single OAC for all the applications because data is stored in a single schema.

» Operational data management is easier because data archival purging policies can be
applied easily.

However, separation of data for multiple applications must be achieved by using security
features of the OAC.

Multiple schema configuration

With this topology, multiple Financial Transaction Manager database schemas are created in
same database instance or different database instances. This topology features the following
key advantages:

» Distributed data for a single application reducing contention in tables and indexes.

The key problem in such cases is allocation of unique IDs for various transaction, physical
transmission, and batch records in the Financial Transaction Manager database. It is
critical to have unique ID across the databases to prevent conflicts, especially if multiple
databases must be consolidated into a single data warehouse. Financial Transaction
Manager allows allocating a range of IDs to a specific partition or database instance to
avoid such conflicts. For more information, see the Financial Transaction Manager
Information Center section Planning — ID Management.

» Physical separation of transaction data of multiple applications

However, with this configuration, a single OAC cannot be used to view the entire operational
data. Each schema has its own OAC instance that is deployed on WebSphere Application
Server.

Chapter 8. Deployment topologies 235

8.2.3 Operations and Administration user interface

The OAC does not participate in transaction processing. Instead, it provides a technical view
of Financial Transaction Manager operational data. Therefore, the non-functional
requirements of this component are not critical. However, there might be a requirement to
deploy multiple instances of the application if multiple schema or databases are deployed as
part of the solution. For more information, see the Financial Transaction Manager Information
Center by clicking Installing — Installing the FTM Operations and Administration
Console.

236 Financial Transaction Manager Technical Overview

Patterns

In this chapter, we describe a set of patterns for Financial Transaction Manager. A pattern is
an approach to the design and build process where areas of common functions are
addressed separately. This results in common, reusable assets that architects and
developers can use to provide acceleration and ensure consistency of design and build for
several projects.

Each of the patterns in this chapter shows this approach as a design exercise following the
Financial Transaction Manager methodology. Beginning with a description of a requirement,
the pattern section reviews the design steps by using Rational Software Architect to produce
a set of reusable design artifacts, such as sequence diagrams, lifecycle diagrams, and Finite
State Machine diagrams. Where appropriate, the pattern describes variants or options and
other patterns or artifacts on which the pattern relies.

This chapter includes the following topics:

Creation of outbound message or file pattern
Routing, IBM Operational Decision Manager rules, and multiple targets pattern
Semantic validation pattern

Enrichment pattern

Transformation pattern

Debulking pattern

Bulking pattern

Store and release pattern

Starting external services pattern

Hosting services pattern

Collating information from several sources pattern
Scheduled activity pattern

Scheduled expectation pattern

Heartbeats monitoring (scheduling) pattern

Error handling and alerts patterning

YVVYVYYVYYVYYYYVYVYVYVYYVYYY

© Copyright IBM Corp. 2014. All rights reserved. 237

9.1 Creation of outbound message or file pattern

This pattern describes how to produce an Outbound Message or File by using Financial
Transaction Manager. It describes the steps and components that are involved and the
scenario variants in getting Financial Transaction Manager to propagate a message to an
endpoint.

Figure 9-1 shows a high-level use case for the Creation of outbound message or file pattern.

External System

Transmission

Send Outbound Transmission

Send Outbound Transaction Send Batch Transmission Send Fragmented Transmission

Figure 9-1

Creation of outbound message or file pattern use case

9.1.1 High-level description

A Financial Transaction Manager Transmission object is made up of the following hierarchy of
logical objects:

» Fragment objects
» Batch objects
» Transaction objects

An outbound Transmission object is created through the calling of actions in Financial
Transaction Manager to group a set of possible Fragments, Batches, and Transactions
together by some set of criteria and associate them with a single Transmission object.

This pattern is supported by core Financial Transaction Manager flows and Generic Finite
State Machines. For more information, see the “Application Programming” and “Appendix E.
Generic Model” sections of the Financial Transaction Manager 2.1 Information Center.

238 Financial Transaction Manager Technical Overview

The use of the pattern relies on configuration data, such as Service Participants, Channels,
Mapper data, Formats, and Value table entries (for more information, see the “Data Model
Overview” section in the Financial Transaction Manager 2.1 Information Center), and mapper
flows (for more information, see the Application Programming — Mappers section of the
Information Center).

Creation of the outbound objects, including the outbound Transmission, should be handled
through the Persistence APIs that are supplied with Financial Transaction Manager. The use
of these APlIs can provide performance benefits in the form of multi-row inserts and in-lining
optimizations where physical records are not written to the Financial Transaction Manager
database that is based on configuration. For more information about the Database
Persistence, see the Application Programming section of the Financial Transaction Manager
2.1 Information Center.

When the creation of the Transmission object is deemed complete, routing decisions can be
made or worked out later to assign an outbound channel with which the Transmission is
associated. When Outbound Fragments or Batches are used, for example, routing decisions
must be made in advance of orchestrating outbound Physical Transmission.

When this object preparation step is complete, an event or events are raised to start the
orchestration of the objects. The action that raises this event is application-specific but is
usually the action that is tracking the completeness of the outbound objects. The event or
events are picked up by the Generic Outbound Physical Transmission Finite State Machine.
Then, by using the routing information, the Generic Outbound Finite State Machines
orchestrate the sending of the Transmission object to an action (in WebSphere Message
Broker) that handles the physical propagation of the Transmission object to an external
endpoint. This propagation is accomplished by using an outbound mapper component that
transforms the Transmission to a suitable format. This format is supported by the outbound
channel configuration.

The following high-level scenarios are involved in this pattern:

» Single Transaction Transmission
» Batch Transmission
» Fragmented Transmission

Which scenario is used is determined by the hierarchy of the objects that are contained within
the outbound Transmission. Each of these high-level scenarios has a successful,
map-aborted, and send-failed variant to them.

Chapter 9. Patterns 239

Single Transaction Transmission
Figure 9-2 shows a successful outbound Single Transaction Transmission.

'] High Level Seq - Single Txn Transmission (Qutbound)

&l =] :FTM Application & :External System

1: Ou.!;mhd Txn Created

2: Complete Routing Decision

- 3 Map Txn

- 4] Send

4.1: Transmission

- Sillog PT

Figure 9-2 Single Transaction Transmission (Outbound)

The successful outbound Single Transaction Transmission flow includes the following steps:

1. A Financial Transaction Manager action creates an outbound transaction object in the
Financial Transaction Manager database. This transaction object usually has an internal
standard format (ISF) message that is associated with it (created or passed from an
inbound transaction object).

2. When created, a “Transaction created” event is raised, sometimes with associated routing
information included.

3. This event is processed and, for this scenario, the Generic Outbound Transaction Finite
State Machine orchestrates starting the outbound mapper and passing the message to
the transport-based WebSphere Message Broker subflow for propagation to the required
endpoint.

4. If this step is successful, the outbound Transmission object is logged to the Financial
Transaction Manager database in the Sent state.

240 Financial Transaction Manager Technical Overview

Figure 9-3 shows an unsuccessful Outbound Single Transaction Transmission where the
mapping of the Outbound Transaction failed.

| High Level Seq - Single Txn Transmission (Outbound) - MapAbort

E% :Operator 2l Q :FTM Application % :External System

1: Oltbound Ten Created

2: Complete Routing Decision

- 3: Map Txn
31 Map Abort

3.1, 1:LoglPT [Error state)
31.1.1: Notify Operator

31.1.1.1: Verify
3111.2 Fesend

31.1.21.1: Resend

Figure 9-3 Single Transaction Transmission (Outbound), map aborted

The map aborted outbound Single Transaction Transmission flow includes the following steps:

1. A Financial Transaction Manager action creates an outbound transaction object in the
Financial Transaction Manager database. This transaction object usually has an ISF

message that is associated with it (created or passed from an inbound transaction object).

. When created, a “Transaction created” event is raised, sometimes with associated routing
information included.

. This event is picked up by the Event Processing core component in Financial Transaction
Manager, and by using the routing information that is provided in the event or routing
information that is determined by the type of message that us involved, the message is
propagated to the relevant outbound mapper.

. The outbound mapper takes the ISF message that is associated with the transaction and
attempts to transform it to the required external format (for more information about this
process, see 9.5, “Transformation pattern” on page 318). This step fails and a Map
Aborted event is raised.

. The outbound Transmission object is logged to the Financial Transaction Manager
database in an Error state.

Chapter 9. Patterns 241

6. The operator is notified by using the Financial Transaction Manager Operators and
Administration Console (OAC) and is given the choice to Verify or Resend the
Transmission.

7. If the operator verifies the Transmission, the Transmission stays in an error state.

8. If the operator chooses to resend the Transmission, it is changed to a Sending state and
then routed to the outbound mapper again.

Figure 9-4 shows an unsuccessful Outbound Single Transaction Transmission where the
sending of the Outbound Transaction failed.

'] High Level Seq - Single Txn Transmission (Qutbound) - SendFailed

H% :Operator = =] :FTM Application % :External System

1: Olfhound Txn Created

2: Complete Routing Decision

- 3 Map Txn

- 4 Send
4.1: Sknd Failed

4.1.1.1: Notify Operator 4.1.1:ToglPT (Error state)

411.1.1: Verify

41.1.1.2: Resend

41.1.21.1: Resend

Figure 9-4 Single Transaction Transmission (Outbound), send failed

The send failed outbound Single Transaction Transmission flow includes the following steps:

1. A Financial Transaction Manager action creates an outbound transaction object in the
Financial Transaction Manager database. This transaction object usually has an ISF
message that is associated with it (created or passed from an inbound transaction object).

2. When created, a “Transaction created” event is raised, sometimes with associated routing
information included.

242 Financial Transaction Manager Technical Overview

3. This event is picked up by the Event Processing core component in Financial Transaction
Manager, and by using the routing information that is provided in the event or routing
information that is determined by the type of message that is involved, the message is
propagated to the relevant outbound mapper.

4. The outbound mapper takes the ISF message that is associated with the transaction and
transforms it to the required external format (for more information about this process, see
9.5, “Transformation pattern” on page 318).

5. The outbound external format message is then routed by using an action to the required
endpoint. For more information about this process, see “Sending the transmission” on
page 277.

6. If message is not sent, the outbound Transmission object is logged to the Financial
Transaction Manager database in an Error state.

7. The operator is notified by using the Financial Transaction Manager OAC and is given the
choice to Verify or Resend the Transmission.

8. If the operator verifies the Transmission, the Transmission stays in an error state.

9. If the operator chooses to resend the Transmission, it is changed to a Sending state and
then routed to the outbound mapper again. Although this is the Send Failed scenario, the
outbound mapper is started again because the reason for the failure might be because of
an incorrect mapping. Because these “Send Failed” scenarios are so infrequent, the
performance overhead in calling the mapper again is deemed insignificant.

Batch Transmission
Figure 9-5 on page 244 shows a successful outbound Batch Transmission.

Chapter 9. Patterns 243

244

[:FTM Application :External System
| High Level Seq - Batch Transmission (Cutbound)

= Q :FTh Application % :External System

1: Outbodnd PT Created

2: Complete Routing Decision

3: Select Batches for PT

4@:TxnsforPT

—5: Mlap Txns

L=l Send

6.1: Transmission

Figure 9-5 Batch Transmission (Outbound)

The successful outbound Batch Transmission flow includes the following steps:

1.

A Financial Transaction Manager action creates an outbound Physical Transmission object
in the Financial Transaction Manager database.

As part of the Financial Transaction Manager application process, outbound batch and
transaction objects are created and associated with the outbound transmission object.

When all batch and transaction processing for the transmission is deemed complete, an
Outbound Transmission Created event is raised by an action, sometimes with associated
routing information included.

This event is picked up by the Event Processing core component in Financial Transaction
Manager, and by using the routing information that is provided in the event or routing
information that is determined by the type of message that is involved, the message is
propagated to the relevant outbound mapper.

The outbound mapper takes the ISF message that is associated with each batch
transaction in the transmission and transforms them to the required external format (for
more information, see 9.5, “Transformation pattern” on page 318).

The outbound transmission that contains all batches in the external format is then routed
by using an action to the required endpoint. For more information about this process, see
“Sending the transmission” on page 277.

If this process is successful, the outbound Transmission object is updated in the Financial
Transaction Manager database to the Sent state.

Financial Transaction Manager Technical Overview

Figure 9-6 shows an unsuccessful Outbound Batch Transmission where the mapping of the
Outbound Transmission failed.

] High Level Seq - Batch Transmission (Qutbound) - MapAbort

E/% :Operator il = :FTM Application & :Bxternal System

1: Cutbodnd PT Created

2: Complete Routing Decision

3: Select Batches for PT

4;mensforPT

= 5: Mlap Tens
5 1: Wap Abort
5.1.1.1: Motify Operator 5.1.L;L—g_g_|PT (Error state)

5.1.1.1.1: Verify
51.1.1.2: Resend

51.1.21.1: Resend

Figure 9-6 Batch Transmission (Outbound), map aborted

The map aborted outbound Batch Transmission flow includes the following steps:

1. AFinancial Transaction Manager action creates an outbound Physical Transmission object
in the Financial Transaction Manager database.

2. As part of the Financial Transaction Manager application process, outbound batch and
transaction objects are created and are associated with the outbound transmission object.

3. When all batch and transaction processing for the transmission is deemed complete, an
Outbound Transmission Created event is raised by an action, sometimes with associated
routing information included.

4. This event is picked up by the Event Processing core component in Financial Transaction
Manager, and by using the routing information that is provided in the event or routing
information that is determined by the type of message that is involved, the message is
propagated to the relevant outbound mapper.

5. The outbound mapper takes the ISF message that is associated with each batch
transaction in the transmission and attempts to transform them to the required external
format (for more information, see 9.5, “Transformation pattern” on page 318). This step
fails and a Map Aborted event is raised.

Chapter 9. Patterns 245

246

6. The outbound Transmission object is logged to the Financial Transaction Manager
database in an Error state.

7. The operator is notified by using the Financial Transaction Manager OAC and is given the

choice to Verify or Resend the Transmission.

8. If the operator verifies the Transmission, the Transmission stays in an error state.

9. If the operator chooses to resend the Transmission, it is changed to a Sending state and

then routed to the outbound mapper again.

Figure 9-7 shows an unsuccessful Outbound Batch Transmission where the sending of the
Outbound Transmission failed.

'] High Level Seq - Batch Transmission (Outbound) - SendFailed
E% :Operator 2l = :FTM Application % :External System

1: Qutbound PT Created

2: Complete Routing Decision

3: Select Batches for PT

4@:T}ms far PT

- % Map Txns

- &l Send
|51 Sknd Failed

6.1.1.1: Notify Operator 81.1:LogPT (Error State)
&L Verify
6.1.1.1.2: Resend

6.1.1.21.1: Resend

Figure 9-7 Batch Transmission (Outbound), send failed

The send failed outbound Batch Transmission flow includes the following steps:

1. A Financial Transaction Manager action creates an outbound Physical Transmission object

in the Financial Transaction Manager database.

2. As part of the Financial Transaction Manager application process, outbound batch and

transaction objects are created and are associated with the outbound transmission object.

Financial Transaction Manager Technical Overview

9.

When all batch and transaction processing for the transmission is deemed complete, an
Outbound Transmission Created event is raised by an action, sometimes with associated
routing information included.

This event is picked up by the Event Processing core component in Financial Transaction
Manager, and by using the routing information that is provided in the event or routing
information that is determined by the type of message that is involved, the message is
propagated to the relevant outbound mapper.

The outbound mapper takes the ISF message that is associated with each batch
transaction in the transmission and transforms them to the required external format (for
more information, see 9.5, “Transformation pattern” on page 318).

The outbound transmission that contains all of the batches in the external format is then
routed by using an action to the required endpoint. For more information about this
process, see “Sending the transmission” on page 277.

If the sending of the message fails, the outbound Transmission object is logged to the
Financial Transaction Manager database in an Error state.

The operator is notified by using the Financial Transaction Manager OAC and is given the
choice to Verify or Resend the Transmission.

If the operator verifies the Transmission, the Transmission stays in an error state.

10.If the operator chooses to resend the Transmission, it is changed to a Sending state and

then routed to the outbound mapper again. Although this is the Send Failed scenario, the
outbound mapper is started again because the reason for the failure might be because an
incorrect mapping. Because these Send Failed scenarios are so infrequent, the
performance overhead in calling the mapper again is deemed insignificant.

Fragmented Transmission

Fragmented Transmissions are used when you are dealing with large files; for example, those
files that contain 100,000 transactions. The outbound Transmission can be broken up into
many logical Fragments that can be processed in parallel in Financial Transaction Manager,
which provides performance optimizations.

Chapter 9. Patterns 247

248

Figure 9-8 shows a successful outbound Fragmented Transmission.

] High Level Seq - Fragmented Transmission (Qutbound)

2l Q :FTM Application % :External System

1: Optbodnd PT Created

2: Create Fragment Records

Repeats for
each fragment

3: Complete Routing Dedision

4: Select-Batdhes for Fragment

% Selﬁhs faor Fragment

_6: Mlap Txns

7: send tol Defragmentor

8: Dﬁfraﬁﬂwnt Complete

- 5] Send

9.1: Transmission

Figure 9-8 Fragmented Transmission (Outbound)

The successful outbound Fragmented Transmission flow includes the following steps:

1. AFinancial Transaction Manager action creates an outbound Physical Transmission object
in the Financial Transaction Manager database.

2. As part of the Financial Transaction Manager application process, outbound fragment,
batch, and transaction objects are created and associated with the outbound transmission
object. The outbound fragment objects are created by a Fragmenter, which is
application-specific (for example, a WebSphere Message Broker message flow and
WebSphere Transformation Extender Map) and is tailored (based on message format) to
break up the inbound message into fragments.

3. When all fragment, batch, and transaction processing for the transmission is deemed
complete, an Outbound Transmission Created event is raised by an action, sometimes
with associated routing information included.

4. This event is picked up by the Event Processing core component in Financial Transaction
Manager and a check is performed to see whether the Transmission is composed of any
Fragments.

5. For each Fragment in the Transmission, a Ready to Send Fragment event is raised.

Financial Transaction Manager Technical Overview

6. These events start the process of sending the Fragments to an outbound mapper where
the Transaction internal standard format (ISF) messages that are contained within each
Fragment are transformed to the required external format (for more information, see 9.5,
“Transformation pattern” on page 318).

7. When successful, the outbound mapper then routes the outbound external format
messages to a defragmenter.

8. The defragmenter checks if all Fragments within a Transmission were processed, and if
so, routes the Transmission to the required endpoint.

9. The defragmenter raises a “Defragment complete” event and the outbound Transmission
object is updated in the Financial Transaction Manager database to the Sent state.

Figure 9-9 shows an unsuccessful outbound Fragmented Transmission where the mapping of
the Outbound Transmission failed.

'] High Level Seq - Fragmented Transmission (Qutbound) - MapAbort

E% :0Operator 2l Q :FTM Application % :External System

1: Outhound PT Created

2: Cregte Fragment Records

Repeats for
each fragment

3: Complete Routing Decision

4: Select.Batdhes for Fragment

5: Selegt Txhs for Fragment

_&: Map Txns
&1 WMap Abort

6.1.1.1: Notify Operator 6.1.1: Lipdate PT [Error State]

b.I111: Venty
6.1.1.1.2: Resend

6.1.1.21.1: Resend

Figure 9-9 Fragmented Transmission (Outbound), map abort

Chapter 9. Patterns 249

250

The map abort outbound Fragmented Transmission flow includes the following steps:

1.

A Financial Transaction Manager action creates an outbound Physical Transmission object
in the Financial Transaction Manager database.

As part of the Financial Transaction Manager application process, outbound fragment,
batch, and transaction objects are created and are associated with the outbound
transmission object.

When all fragment, batch, and transaction processing for the transmission is deemed
complete, an Outbound Transmission Created event is raised by an action, sometimes
with associated routing information included.

This event is picked up by the Event Processing core component in Financial Transaction
Manager and a check is performed to see whether the Transmission is composed of any
Fragments.

5. For each Fragment in the Transmission, a Ready to Send Fragment event is raised.

6. These events start the process of sending the Fragments to an outbound mapper where

9.

the Transaction ISFmessages that are contained within each Fragment are transformed to
the required external format (for more information, see 9.5, “Transformation pattern” on
page 318). This step fails and a Map Aborted event is raised.

The outbound Transmission object is updated in the Financial Transaction Manager
database to an Error state.

. The operator is notified by using the Financial Transaction Manager OAC and is given the

choice to Verify or Resend the Transmission.

If the operator verifies the Transmission, the Transmission stays in an error state.

10.If the operator chooses to resend the Transmission, it is changed to a Sending state and

processing resumes from step 5.

Financial Transaction Manager Technical Overview

Figure 9-10 shows an unsuccessful outbound Fragmented Transmission where the sending
of the Outbound Transmission failed.

[2] :Operator [a] :FTM Application :External System
1: Clutbound PT Created

2: Create Fragment Records

Repeats for
each fragment

3: Complete Routing Decision

4: SelectBatdhes for Fragment

% Semhs faor Fragment

- 6 Map Tins

7: Send tol Defragmentor

8: Defragment Complete

- g} Send
[@1: Sknd Failed

9.1.1.1: Notify Operator 2.1.1: Updatle PT (Error State)
911112 Verty
91.1.1.2: Resend

91.1.21.1: Resend

Figure 9-10 Fragmented Transmission (Outbound), send failed

The send failed outbound Fragmented Transmission flow includes the following steps:

1.

A Financial Transaction Manager action creates an outbound Physical Transmission object
in the Financial Transaction Manager database.

As part of the Financial Transaction Manager application process, outbound fragment,
batch, and transaction objects are created and associated with the outbound transmission
object.

When all fragment, batch, and transaction processing for the transmission is deemed
complete, an Outbound Transmission Created event is raised by an action, sometimes
with associated routing information included.

This event is picked up by the Event Processing core component in Financial Transaction
Manager and a check is performed to see whether the Transmission is composed of any
Fragments.

For each Fragment in the Transmission, a Ready to Send Fragment event is raised.

Chapter 9. Patterns 251

6. These events start the process of sending the Fragments to an outbound mapper where
the Transaction ISFmessages contain within each Fragment are transformed to the
required external format (for more information, see 9.5, “Transformation pattern” on
page 318).

7. When successful, the outbound mapper then routes the outbound external format
messages to a defragmenter.

8. The defragmenter checks if all Fragments within a Transmission were processed, and if
so, routes the Transmission to the required endpoint.

9. If the defragmenter encounters an error during the sending of the Transmission, a
Fragment Send Failed event is raised.

10.The outbound Transmission object is updated in the Financial Transaction Manager
database to an Error state.

11.The operator is notified by using the Financial Transaction Manager OAC and is given the
choice to Verify or Resend the Transmission.

12.1If the operator verifies the Transmission, the Transmission stays in an error state.

13.If the operator chooses to resend the Transmission, it is changed to a Sending state and
processing picks up from step 5 on page 251.

9.1.2 Objects and object relationships

Identifying Financial Transaction Manager Objects that are used in the pattern and the
relationships between the objects is straightforward. A Transmission Object logically can be
made up of Fragments, Batches, and Transactions, and physically be made up of Batches
and Transactions.

Figure 9-11 shows the relationship between the objects in this pattern.

Qutbound Transmission 1

i TRANSMISSION Qutbound Fragment

TRANSMISSION

l“t
Outbound Batch

1
BATCH

1_”3
Outbound Transaction

Figure 9-11 Creation of Outbound Message or File Object/Object Relationship

9.1.3 Detailed sequence diagram

The Detailed Sequence Diagrams that go along with the pattern highlight the interactions
between the Financial Transaction Manager objects and components.

252 Financial Transaction Manager Technical Overview

As with the High-Level Sequence diagrams, the following scenarios are involved in this
pattern:

» Single Transaction Transmission
» Batch Transmission
» Fragmented Transmission

Each of these scenarios has a successful, map-aborted, and send-failed aspect. This section

further subdivides the map-aborted and send-failed aspects, depending on whether an

operator-verify or operator resend is submitted through the Operations and Administration

Console.

The successful scenarios that are described in this section also are described with more

detail in “Appendix E. Generic Model” of the Financial Transaction Manger 2.1 Information

Center.

Successful Single Transaction scenarios
Figure 9-12 shows a successful Single (Fire and Forget) Transaction transmission.

E :0utTun B :0OutPT :MapperFromIsF

1: Created

1.1: RouteAndSendOutTxn
Data fetched from ISF cache or
:l Database

= 1.1.1: IdentifyChannel

1.1.2: MapFromISF

L)

r 1

1.1.2.1: Select

1.1.2.2: Select m 3: Map

1.1.3: Map Success

..

1.1.4: Send

~1.1.5:LlogFT
1.1.5.1: Create

1.1.6: Qut PT Sent

1.1.7: Qut Txn Sent

1.1.8: Out Txn Complete

Figure 9-12 Single Transaction (Fire and Forget) Transmission

Chapter 9. Patterns

253

254

Figure 9-13 shows a successful Single (Expect Acknowledgement) Transaction transmission.

[:QutTen] :QutPT :MapperFromIsF

1: Created

= 1. 1: RouteAndSendQutTxn

= 1.1.1: IdentifyChannel

Data fetched from ISF cache or
Database
1.1.2: MapFromISF
F 7
.-"-‘.
-t ;
1.1.2.1: Select
1.1.2.2: Select ' S p = ep

1.1.3: Map Success

1.1.4: Send
:| 1.1.5: Log PT
L1, 5. 1= Cn_aahe
"""" 3 :OUtPT

1.1.6: Qut PT Sent

1.1.7: Out Txn Sent

Figure 9-13 Single Transaction (Expect Acknowledgment) Transmission

“Map Abort” Single Transaction scenarios

For the following Detailed Sequence diagrams that show how error situations are handled, the
Single Transaction (Fire and Forget) scenario is used. Error situations are handled identically
when both transaction types are sent.

Figure 9-14 on page 255 shows Part 1 of 2 of an unsuccessful Single (Fire and Forget)
Transaction transmission. In this scenario, the mapping fails and the operator verifies that the
Transmission should remain in the Failed state.

Financial Transaction Manager Technical Overview

'] send Txn (Fire and Forget) - MapAbort - OpVerify

| £ :MapperFromIsF % :Operatar

|
|
|
1. 1: RouteAndSendOutTxn |
|
|
|

1: Created

Data fetched from ISF cache or

=

|

|

|

Databaze |

]:l.l.l: IdentifyChannel :

| 1.1.2: MapFromISF |

/ |

1.1.2.1: Select |

|

""""""" L1225kt | - |

|

1.1.3: Map Failed |

--- I I
2

Figure 9-14 Unsuccessful single (fire and forget) transaction transmission, map abort, operator verify: Part 1 of

Figure 9-15 shows Part 2 of 2 of an unsuccessful Single (Fire and Forget) Transaction
transmission.

1.1.4L c}mmﬁng Operator Verification)

|
.4.1: Creg |
""" = 25 .outPT 1.1.4|.2: Motify Operator . |

=

1.1.4.2.1: Verify

ise Qut PT Failed

111.4.21.1.1: Out PT Failéc

1.1.5: Qut PT Failed

e

1.1.6: Out Txn Failed

Figure 9-15 Unsuccessful single (fire and forget) transaction transmission, map abort, operator verify: Part 2 of 2

Chapter 9. Patterns 255

Figure 9-16 shows Part 1 of 2 of an unsuccessful Single (Fire and Forget) Transaction

transmission. In this scenario, the mapping fails and the operator signals that the
Transmission should be resent.

'] send Txn (Fire and Forget) - MapAbort - OpResend

:OutTxn E] :MapperFromISF & :Operatar

1: Created

1.1: RouteAndSendOutTxn

Data fetched from ISF cache or
:I Database

= 1.1.1: IdentifyChannel

1.1.2: MapFromISF

L J

|

1.1.2.1: Select

1.1.2.2: Select

1.1.3: Map Failed

Figure 9-16 Unsuccessful single (fire and forget) transaction transmission, map abort, operator resend: Part 1 of 2

256 Financial Transaction Manager Technical Overview

Figure 9-17 shows Part 2 of 2 of an unsuccessful Single (Fire and Forget) Transaction
transmission. In this diagram, the mapping sequence where the transmission is mapped and
sent to the external system is shortened to improve readability.

| & :outTen | | & outPt || :MapperFromIsF | | :Operator |
1.1.4: Log BT (Waiting Operator Verification)
.1.4.1: Creg | |
""" = :OutPT 1.1.4|.2: Motify Operator |
| | 1.1.4.2.1: Resend
114,21 I-MapAndPutPTToQueue |
114.31% | This process is the
| same as above -
shortened for
| | readability

1.1 42015 Rhise Qut Txn Sent
#4.21.5.1: Out Ten Sent

=

1.1.4.2.1.6: Haise Out PT Sent
1.1.4.2.1.6.1: Cut PT Sen

1.1.7: Out PT Sent

1.2: Out Txn Sent

1.3: Out Txn Complete T

Figure 9-17 Unsuccessful Single (Fire and Forget) Transaction transmission, Map Abort, Operator Resend: Part 2 of 2

Chapter 9. Patterns 257

“Send Failed” Single Transaction scenarios

Figure 9-18 shows Part 1 of 2 of an unsuccessful Single (Fire and Forget) Transaction
transmission. In this scenario, the send fails and the operator verifies that the Transmission

should remain in the Failed state.

'] send Txn (Fire and Forget) - SendFailed - Opverify

(OutTxn Q :MapperFromIsF

1: Created

1.1: RouteAndSendOutTxn

Data fetched from ISF cache or
=1 Database
—1.1.1: IdentifyChannel
1.1.2: MapFromISF
-

-

1.1.2,1: Select

1.1.2.2: Select m'3: Map

1.1.3: Map Success

1.1.4: Send Failed

/% :Operator

Figure 9-18 Unsuccessful Single (Fire and Forget) Transaction transmission, Send Failed, Operator Verify: Part 1of 2

258 Financial Transaction Manager Technical Overview

Figure 9-19 shows Part 2 of 2 of an unsuccessful Single (Fire and Forget) Transaction
transmission.

mog PT (Send Error) | |

31 Crgate | |

e

: (0utPT 1.1.5|.2: MNotify Operator |

1.1.5.2.1: Verify

1.1.5{2

oL ise Out PT Failed
111.5.2.1.1.1: Qut PT {il d

lse Qut Txn Failed

1.1.6: Qut PT Failed

1.1.7: Out Txn Failed

Figure 9-19 Unsuccessful Single (Fire and Forget) Transaction transmission, Send Failed, Operator Verify: Part 2 of 2

Chapter 9. Patterns 259

Figure 9-20 shows Part 1 of 2 of an unsuccessful Single (Fire and Forget) Transaction
transmission. In this scenario, the send fails and the operator signals that the Transmission

should be resent.

'] send Txn (Fire and Forget) - SendFailed - OpResend

:CutTxn

1: Created

1.1: RouteAndSendCutTxn

= 1.1.1: IdentifyChannel

1.1.2: MapFromISF

Q :MapperFromISF

r

. |

1.1.2.1: Select

1.1.2.2: Select

1.1.3: Map Success

1.1.4: Send Failed

% :0perator

Data fetched from ISF cache or
Database

Figure 9-20 Unsuccessful Single (Fire and Forget) Transaction transmission, Send Failed, Operator Resend: Part 1of 2

260 Financial Transaction Manager Technical Overview

Figure 9-21 shows Part 2 of 2 of an unsuccessful Single (Fire and Forget) Transaction
transmission. In this diagram, the mapping sequence where the transmission is mapped and
sent to the external system was shortened to improve readability.

:Operator

Bl :QutTen 3] :OutPT :MapperFromISF
i_ 5: log PT (Send Error) | |
.1.5.1: Creg | |
....... - -OuteT]_.]_.51.2: Motify COperatar |
1 :
| 1.1.5.21: Resend
1.1.5.21. - MapandPutPTToQueue This process s the
11.5.21L%5 PT Awaiting Send

1.1.5
5.2.1.5.1: Out Ten

=

shortened for

| same as above -
| readability

2115 Rhise Out Ten Sent
Sent

1.1.
1.1.5.21.6.1: Qut PT

2,.1.6: Haise Out PT Sent
n

..:

1.1.3: Qut PT Sent

..:

1.2: Out Txn Sent

1.3: Out Txn Complete T

Figure 9-21 Unsuccessful Single (Fire and Forget) Transaction transmission, send failed, operator resend: Part 2 of 2

Chapter 9. Patterns

261

Successful Batch scenario
Figure 9-22 shows a successful Batch transmission.

| 1.1.4: Send

|E :Transmission | |E :Batch | |E :Transaction | | = :MapperFromISF
{S_OutP‘I‘|Created} | {S_WaitOut?atComplete} |
. 1: Created [Resend
{S_OutPTAwpitingSend} | | |
1.1: MapAndPutToQueuJ | |
= | | |
_ 1.1.1: Identify Char|1r1e| | |
[F | 1.1.2: Map FFOJ'I ISF |
| i 1.2.1: Select
ket I
|
LJ J 1.2.2: Select
... "—;'J.
] 1.1.2.3: Select
|
| 1.1.2.4: Select
............................... ':9.
| .5 Map
| |
| 1.1.3: Map Su:!cess
ot LIIEIELITIITLLL [---------------------- -I ----------------------------------

1, 1.5 Out PT Sent

!
|
|
1.1.6: Qut PT Sent L

{S_OquSent}

1.6.1: Complete

.[L.6.1.1: Qut Batch Complellze

63, 1.1 Complgty ¢ 5 4 4 1 out Tun Complete

Figure 9-22 Successful Batch transmission

262

Financial Transaction Manager Technical Overview

“Map Abort” Batch scenarios

Figure 9-23 shows Part 1 of 2 of an unsuccessful Batch transmission. In this scenario, the
mapping fails and the operator verifies that the Transmission should remain in the Failed
state.

'] send Out PT (batch) - MapAbort - OpVerify

‘E‘:Transmission ‘ |E| [:Batch ‘ |E| [:Transaction | |E| E:MapperFromISF H /% :Operator

{S_OutPTCreated} | {S_'\-‘-."aitOutEFatCDmpIete}-
. 1: Created [Resend _
{S_OutPT AppitingSend}

|
|
|
1.1z Map.-'—\ndF‘utToQueuJ | |
|
|
|

= | |
1.1, 1: Identify ChaTneI |

1.1.2: Map Frorl‘u ISF

|

|

[
|

U J 1.2.2: Select)
] 1.1.2.3: Select -.

|
|
| = .5 Map
|
|

1.1.3: Map Fa||ed

o e o e e o o e o e e o e e
Figure 9-23 Unsuccessful Batch transmission, mapping failed, operator verify: Part 1of 2

|
|
|
|
|
|
|
J. 1.2.1: Select |
|
|
|
|
|
|
|
|
1

Figure 9-24 shows Part 2 of 2 of an unsuccessful Batch transmission.

1.1.4: Updat P]immg Operator Verification)

4.1.4.1: Maotify Operataor
| 11411 Verify
|
|
|
|
|

ise Out PT Failed

1.4.4: Qut PT Failed

11.4 ise Out Bat Failed

T.1.4.4.1.1: Out Bat Failedl

t Txn Failed

A Out Txn Failed .

Figure 9-24 Unsuccessful Batch transmission, mapping failed, operator verify: Part 2 of 2

Chapter 9. Patterns 263

Figure 9-25 shows Part 1 of 2 of an unsuccessful Batch transmission. In this scenario, the
mapping fails and the operator signals that the Transmission should be resent.

'] send Out PT (batch) - MapAbort - OpResend

|E|:Transmission | ‘E‘ [:Batch ‘ ‘E‘ [:Transaction | |EI] :MapperFromIsF H % :Operator

{5_OutPTCreated} {S_WaitOutBatComplete}

1: Created / Resend] | T

®) | |
|

|

|

{S_OutPTAwgitingSend}
1.1 Map.ﬂ\ndPutToQueuJ
1.1.1: Identify ChaTneI

1.1.2: Map FI'DI'I'I ISF

.1.2.1: Select

|

|

|

|

|

|

| |
| 1 |
T i |
U J.I.Z.Z: Select) |
""""""""""" [s |
| |
| |
| |
| |
| |
.

.5t Map

1.1.3: Map Falled

S — fr=====mm===m-=-esseemeee——ee——ea-

t
Figure 9-25 Unsuccessful Batch transmission, mapping failed, operator resend: Part 10f 2

Figure 9-26 shows Part 2 of 2 of an unsuccessful Batch transmission.

1.1.4: Updatd iting OperatorVeJification] 1,1,4,1: Motify Operator

i 11411 Resend

. This process is
1.1.5: Map Fro I5F the same as

I
I
|
1 above -
| shortened for
1.1.6: Map Schess readability

1,1.9: Qut PT Sent

I S_O\'A-;i TSenth

191 1.1: Complete
1.1.9.1,1.1.1: Qut Txn Complete

{S_OutTxnComplete}

Figure 9-26 Unsuccessful Batch transmission, mapping failed, operator resend: Part 2 of 2

264 Financial Transaction Manager Technical Overview

“Send Failed” Batch scenarios

Figure 9-27 shows Part 1 of 2 of an unsuccessful Batch transmission. In this scenario, the
send fails and the operator verifies that the Transmission should remain in the Failed state.

'] Send Out PT (batch) - SendFailed - OpVerify

‘EI:Transmission | ‘EI [:Batch ‘ |E| [sTransaction ‘ ‘E‘ =] :MapperFromISF H % :Operator

{S_0utPTCreated} {S_waitOutpatComplete}

| }
1: Created / Resend _
® -- | |
|
|
|

{S_OutPTAWwpitingSend}
1.1 MapAndPutToQueuJ
—

|
1.1.1: Identify ChaTneI

1.1.2: Map FI'OI'I'I ISF

1.2.1: Select

|

|

|

|

|

| |

| i |
| |

| |

_____________________ biazsder |

] 1.1.2,3: Select |

|

|

|

|

|

|

|

.9 Map

Figure 9-27 Unsuccessful Batch transmission, send failed, operator verify: Part 10f 2

Figure 9-28 shows Part 2 of 2 of an unsuccessful Batch transmission.

s ‘tme i=EetiEreT] .1: Motify Operator

5

1.1.5.1.1: Verify [J
|
|
|
|

ise Out PT Failed

1.5.4: Qut PT Failed

L
|
|
|
|
|
|

11.5 jse COut Bat Failed

T.1.5.4.1.1: Qut Bat Failed|

11.54. Out Txn Failed

: e Ou
- 1.1.541.1.1.1: Out Txn Failed

Figure 9-28 Unsuccessful Batch transmission, send failed, operator verify: Part 2 of 2

Chapter 9. Patterns 265

Figure 9-29 shows Part 1 of 2 of an unsuccessful Batch transmission. In this scenario, the
send fails, and the operator signals that the Transmission should be resent.

'] send Out PT (batch) - SendFailed - OpResend

‘E:Transrnission ‘ ‘E [:Batch | ‘E [:Transaction ‘ |E| =] :MapperFromIsF || % :Cperator

I5_OutPTCreated} 15 _WaitD thT atComplete}

1: Created Resend . |
o 7] | |

|

|

{5_OutPTAwgitingSend} |
L1 MapAndPutToQueunJ | |
|

|

|

= | |
1.1.1: Identify ChaTneI |

1.1.2: Map FrorL ISF

J.:l.z.:l: Select

.1.2.2: Select

— e
-
e
O
[T
[
o
i
L
— "
V'

.5 Map

Figure 9-29 Unsuccessful Batch transmission, send failed, operator resend: Part 1 of 2

Figure 9-30 shows Part 2 of 2 of an unsuccessful Batch transmission.

-
L.45: Updae PT (Send Erron 1.5.1: Notify Operator |

I

i Jil1.1.5.1.1:R‘.E!ss!r‘ll‘d | =

| | J

| |
| |
| |
' |

|

1.1.5 date PT (Awaiting Se"ld]

Processing
from here as |
from the top

1.1.5.4: Send

| 1.1.5.5: Out PT Sent | : .
1.1.5.6: Out FT Sent | E

. : Complete |
.15.6.1.1: Out Batch Compllete

\ rL_.6.1. 1: Complete
11.56.1.1.1.1: Qut Ten Complete

Figure 9-30 Unsuccessful Batch transmission, send failed, operator resend: Part 2 of 2

266 Financial Transaction Manager Technical Overview

Successful Fragmented scenario
Figure 9-31 shows Part 1 of 2 of a successful Fragmented transmission.

I
F :Fragment ” r - Batch LH ‘Transaction LU r E :MapperFromISF | F':E :De-Fragmentor

iTransmission

{S_OL|tF'T| Created} | £ S_OutFngCre ated}

; Repeated for each Fragment ea‘lﬂ in 3 seperate LUOW
{S_V altOutPratCDmplete

| |

| |

| | | |

1.1.1.1: Map Fer ISF | |

| | 1111, 1: Select |
| " i |
| u 1 L 1.1.2: Select) |
N) R T iiiimseea |
	1	
	1.1.1.1.4 Select)	
I	1.1.1.5: Map	
	1.1.1.2: Map Subcess	
I [[

Figure 9-31 Successful Fragmented Transmission: Part 1 of 2

Figure 9-32 shows Part 2 of 2 of a successful Fragmented transmission.

Q

1.1.1.4{ Frag Sent 1.1.1.3: Send

|
u {S_OutEF«gSent}

|
|
|
| |
| 'Sent, 'Out Batch Complete’ |
and 'Out Transaction level’
| notifications may be used to k. |
trigger further application
| . processing |~ |
| - N
|
|
|

|
|
|
|
|
|
| 2: defragment
.1t Send
‘ : 2,1: Sen . .
|
|
|
|

4

{S_OutFragComplete} 2.\2: Defragment Complete

2‘3.2.11: PT Sent

.1-.
2.3.1: OutPT Sent |

N 23 Defragmeljlt Complete

=
2.3.2.1.1: Compléte_ |
= .2.1.1. 1: Qut Batch Complete

2ttt Complete

{5_OutPTSent}

.3.2: Sent

{S_OutTxnComplete}

Figure 9-32 Successful Fragmented Transmission: Part 2 of 2

Chapter 9. Patterns 267

“Map Abort” Fragmented scenarios

Figure 9-33 shows Part 1 of 2 of an unsuccessful Fragmented transmission. In this scenario,
the mapping fails and the operator verifies that the Transmission should remain in the Failed
state.

'] Send Fragmented PT - MapAbort - OpVerify

:Transmisswon | & :Fragment ” F :Batch LU ‘Transaction LU F E :MapperFromISF | F’E:De-ﬁagmenmr | | % :Operator ‘

. | Repeated for each Fragment ea\l-u in a seperate UOW
e_S_'\-‘-."aitOthEfatCompIete_-

|
@7 ST eotetiReserd 1 | | |
|

{S_OutPTCreated} {S_OutFrFque ated}

{S_OutFraghyvaitingSend}

1.1.1.1: Map Fer ISF

l.ll‘l.l.l: Select

1.1.1.5: Map

|
|
|
|
|
|
|
|
L ‘k 1.3: Frag Out Map Abor

D | |

2 Ra PT Send Abort | |
21 PT (Send Error) | | |
1.1.2: Update Ffa ting Operatar Velification] | |

| | |

| | |

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
1.1.1.1.4: Select | |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

Figure 9-33 Unsuccessful Fragmented transmission, Mapping Failed, Operator Verify: Part 1 of 2

Figure 9-34 shows Part 2 of 2 of an unsuccessful Fragmented transmission.

T veEnfy

2.1.1.2: Verify

I2.1‘1: Motify Operator
I
|
|
I I

320 'EOutPTFai\Ed|

u

21.2.2: qutP‘rFaned

| 21.2\12 i 'eOutBatFai\ed|
21.2.24 1'OutBatFaind

|

: |
21.2.211.1: Rhise Out Txn Failed |
|

|

J— JJ]IH-OuthnFaii

'

Figure 9-34 Unsuccessful Fragmented transmission, Mapping Failed, Operator Verify: Part 2 of 2

268 Financial Transaction Manager Technical Overview

Figure 9-35 shows Part 1 of 2 of an unsuccessful Fragmented transmission. In this scenario,
the mapping fails, and the operator signals that the Transmission should be resent.

'] send Fragmented PT - MapAbort - OpResend

] :MapperFromisF

| FE:DE-Fragmentor || % :Operator |

:Transmlssnon | ’E:Fragment ” F [=) :Batch Lu:Transanmn Lu F

{S_OutPTCreated} {S_OutFr[agCre ated}

tead R

; Created /R d
‘rea ;"e_sanll: =

{S_OutFrag|

.1.3: Frag Out Map Abor|

nd (1. n

21 ! PT (Send Error}

1.1.2: Update Fra

PT Send Abort

|
{S_'\-‘-:aitOthE[atComplete}

|

|

1.1.1.1: Map Fer ISF

Repeated for each Fragment ea\lﬂ in a seperate UOW

l.ll.l‘l.l: Select

ting Operator Ve*ification]

1.1.1.1.4: Select

........................... =

1.1.1.2: Map F*iled

_ 111.1.1.5: Map
|
|
|
!
|
\

Figure 9-35 Unsuccessful Fragmented transmission, Mapping Failed, Operator Resend: Part 1 of 2

Figure 9-36 shows Part 2 of 2 of an unsuccessful Fragmented transmission.

1.1: Notify Operator

211.1:Resend

2121

21.221;

|

I
DL Frag ReadytoLend
1.2.2: Ready to Send

Frag [Awating Se

-5

dj

!2.
|
|
|
|
|
|
|

B

Send Fragmented FT Mormal

Figure 9-36 Unsuccessful Fragmented transmission, Mapping Failed, Operator Resend: Part 2 of 2

Chapter 9. Patterns

269

Send Failed Fragmented scenarios

Figure 9-37 shows Part 1 of 2 of an unsuccessful Fragmented transmission. In this scenario,
the send fails and the operator verifies that the Transmission should remain in the Failed
state.

'] send Fragmented PT - SendFailed - OpVerify

2{1: Send Faileﬁ

2.3 Out Frag Send Failed
|
[

r r r
{Transmission F :Fragment ” F :Batch LU ‘Transaction LU F E :MapperFromISF | F':E :De-Fragmentor | % :Operator
| | | = |
{S_0L|tF'T|Created}- {S_OutFrFqueated}- | {S_'\‘-,-'aitoutEfatCmﬁET:taEd SRR T s | |
‘:reated ! Re_slehnldl: CreatefResend (L R | | | | |
{S_OutFraé RilvaitingSend) | | | | |
1.1.1.1: Map FrJlm ISF ! | |
| 1 ll. 1.1.1: Select | |
i
| | |
| 1 L 1.1.2: Select | |
--- =
[1.1.1.1.3: Select		
1		
. s s		
- 1.1.1.5: Map		
1.1.1.2: Map SuL:cess		
D A [iiamsed		
i défragment		
2.!2: Out Frag Send Failed		
I
[T |

T §

Figure 9-37 Unsuccessful Fragmented transmission, Send Failed, Operator Verify: Part 1 of 2

270 Financial Transaction Manager Technical Overview

Figure 9-38 shows Part 2 of 2 of an unsuccessful Fragmented transmission.

| & :Transmission | | :Fragment | |® :Batch | | B :Transaction | | = :MapperFromISF | |Bl:De-Fragmentor || :Operator |

| |
T
3: Raisz Out PT Send Abort

3.1} Update PT (Send Error)
2.21:|Updatd Frag (Send Error}

3.1.1.1: Venify

3.1.1.2: Verify

|
|
|
|
|
|
|
|
|
IL.l.l: Motify Operator
[
|
|
|
T
|

vl (20 'eOutPTFaiIed|
3.1.2.2: Out PT Failed

ul

|
i Raise Out Bat Failed| |
A1.2.2.1.1: Out Bat Faileld |
|
|
|

3.1.2.2.1.1L.1: RRise Out Txn Failed
.1.2.2.1.1.1.1: Qut Txn Fail

Figure 9-38 Unsuccessful Fragmented transmission, Send Failed, Operator Verify: Part 2 of 2

Chapter 9. Patterns 271

Figure 9-39 shows Part 1 of 2 of an unsuccessful Fragmented transmission. In this scenario,
the send fails and the operator signals that the Transmission should be resent.

'] send Fragmented PT - SendFailed - OpResend

: :
‘Transmission | = [:Fragment H |E :Batch Lu:Transacﬁon Lu |E =] :MapperFromIsF | IEQ :De-Fragmentor | | & :Operatar |

{S_OthF"I'|Cre ated} {S_OutFngCreated}

.) Repeated for each Fragment ea‘lﬂ in & seperate UOW
{S_‘.-'JaltOL|tEfatC0m|J\ete‘>

; Created [Resend
.1: Created/Resend (1..n

{S_OutFragpyaitingSend}

1.1.1.1: Map Fer ISF

1 ll. 1.1.1: Select

i —1]1.1.1.5: Map
| 5
1,1.1.2: Map SuL:cess
"""""""""" U tiissed
|
|
|
!
|
T
!
1

=
—=— L

|
|
|
|
|
|
.1.1.2: Select |
|
|
|
|
|
|
|

J,j' defragment

2: Send Failei

|
|
|
2.|L: Cut Frag Send Failed

2.3 Out Frag Send Failed
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i

= —

Figure 9-39 Unsuccessful Fragmented transmission, Send Failed, Operator Resend: Part 1 of 2

272 Financial Transaction Manager Technical Overview

Figure 9-40 shows Part 2 of 2 of an unsuccessful Fragmented transmission.

| = :Batch

| & :Transaction | =

:MapperFromISF

| :De-Fragmentor || :Operator |

Frag (Send Error)

3.1.1.1: Resend

| & :Transmission | |E :Fragment
3: Raise FT Send Abort
3.1 U FT (Send Errar)
2,217

|
[
|
[

5.1.2.1: Ralse FragReadytoISend
1.2.2: Ready to Send

31221:U d

|

Frag [Awaiting Serd]

|
|
|
|
|
|
|
|
|
IL.l.l: Motify Operator
[
|
[
|
|
|
|
|
|
|

e

Send Fragmented PT Normal

Figure 9-40 Unsuccessful Fragmented transmission, Send Failed, Operator Resend: Part 2 of 2

Chapter 9. Patterns

273

9.1.4 Obiject lifecycle diagram

Figure 9-41 shows the Object lifecycle diagram for Outbound Transmissions. The diagram
shows the various states that a Transmission object (Fragmented, Batch, or Transaction),
transitions through, the events that cause those transitions, and actions that manipulate the
Transmission.

[_* Outbound Physical Transmission

&0 Oubound Transmission Created

outbound fragment sent
@@ Check all fragmentssent

outbound trar‘smission created
@ Map And Put To Queue

2 OQutbound Transmission Awaiting Send

outbound map aborted

all fragments sent
@ Motify Operator

| operator resend
@@ Map And Put To Queue

rator resend
@@ Map And PutT Queue

outbound transmission failed 2P

@@ Motify Operator

0 Waiting for Operator

L0 All Fragments Sent o 0 Qutbound Transmission Send Error
outbound transmission sent

operator verify ‘

operator verify

@@ Raise Outboungd Transmission Failed

@ Raise Outbound Transmission Failed
&2 Outbound Transmission Sent

Helaglcamplete (& Outbound Transmission Failed
% Raise Cutbound Transmission Sent

Figure 9-41 Outbound Transmission Lifecycle diagram

For more information about the Object lifecycles of Fragments, Batches, and Transactions,
see “Appendix E. Generic Model” of the Financial Transaction Manager 2.1 Information
Center.

9.1.5 Finite state machine

For more information about the differences between the Object Lifecycle diagrams that were
described in 9.1.4, “Object lifecycle diagram” on page 274 and their corresponding Finite
State Machines, see “Appendix E. Generic Model” of the Financial Transaction Manager 2.1
Information Center.

9.1.6 Process highlights

In this section, we describe the steps that are involved in processing outbound transaction,
batch, and fragmented transmissions. This assumes that the Financial Transaction Manager
V2.1 Generic Finite State Machines are used to orchestrate the process. The descriptions
that are used in this section are from the point of view of a single object for readability
purposes (for example, one transaction, one batch, and one fragment). However, events are
aggregated in Financial Transaction Manager and object selectors usually return more than
one object, so these processes tend to affect multiple objects at the same time.

274 Financial Transaction Manager Technical Overview

For Single Transaction Transmissions, the following process highlights cause an outbound
message or file to be transmitted:

1.

Through application processing, an outbound transaction record is created in the Financial
Transaction Manager database and the event E_TxnOutCreated is raised.

This event is picked up by the Financial Transaction Manager Event Processing
component (WebSphere Message Broker message flow) and, by using metadata from the
Generic Outbound Transaction Finite State Machine, calls the action
A_RouteAndSendOutTxn.

This action checks if routing data is passed with the event in the form of PARTICIPANT or
PARTICIPANT_RANK context. This context can be used to point to a Service Participant
object to be used by the outbound transaction. The Service Participant has an outbound
channel that is associated with it, and this is the outbound channel to which we want the
transmission to be propagated.

If the PARTICIPANT context is not set, the action can also point to a Service Participant by
performing a lookup of the Financial Transaction Manager database VALUE table by using
the outbound transaction SUBTYPE and the VALUE table CATEGORY
ROLE_FOR_TXN_TYPE and the PARTICIPANT_RANK if set in the context of the event.

When the outbound channel is identified through the Service Participant, the outbound
mapper to use and the outbound transport method is known.

The action can then call the outbound mapper to transform the ISFmessage that is
associated with the transaction to the external format that is required by the channel.

The outbound transport method on the channel (for example, WebSphere MQ, FILE,
HTTP) is used by the EndOutboundMapper component of the outbound mapper as a
means of routing the transformed message to a message flow that handles the physical
propagation of the message to an external endpoint. This is handled by a RouteToLabel
node in the EndOutboundMapper component, so this functionality is extensible by adding
a custom transport method on the outbound channel that matches a Label node in a
deployed message flow. For more information, see “Sending the transmission” on

page 277.

When the message is physically propagated successfully by the message flow that is
handling this process, an E_OutTxnSent event is raised to progress the outbound
transaction orchestration, the outbound transmission object is created in the
S_OutPTSent state (if it was not created earlier by the application), and an E_OutPTSent
event is raised to progress the outbound transmission orchestration (if the transmission
was created earlier by the application).

If the message cannot be physically propagated for any reason, the message flow that is
handling the physical propagation creates the outbound transmission in the
S_OutPTAwaitingSend state (if it was not created earlier by the application), and an
E_OutPTSendFailed event is raised to progress the outbound transmission orchestration
(which move the transmission to the S_OutPTSendError state and notifies the operator).

For more information about these processes, see the “Designing Applications” section in the
Financial Transaction Manager 2.1 Information Center.

For Batch Transmissions, the following process highlights cause an outbound message or file
to be transmitted:

1.

Through application processing, an outbound batch record with associated outbound
transaction records is created in the Financial Transaction Manager database and an
event is raised to indicate as such. The application should also coordinate the creation of
the outbound transmission that is associated with the batch in the S_OutPTCreated state,
and as part of that creation, the outbound channel to use should be determined.

Chapter 9. Patterns 275

276

2. These is no Generic Outbound Batch Finite State Machine that is provided with the
Financial Transaction Manager Core components, so one must be created to orchestrate
the outbound batch process. This Finite State Machine transitions on the event that is
raised and must check when all batches for an outbound transmission are complete and
the outbound transmission is ready for physical propagation.

3. When the outbound transmission is ready, the Finite State Machine raises an
E_PTOutCreated event.

4. This event is picked up by the Financial Transaction Manager Event Processing
component (WebSphere Message Broker message flow) and, by using metadata from the
Generic Outbound Physical Transmission Finite State Machine, calls the action
A_MapAndPutPTToQueue.

Note: Although Queue is included in the name of this action, this naming is used for all
transport types, not only for message queues.

5. As part of the object selector for the Outbound Physical Transmission Finite State
Machine, the outbound channel identifier for the transmission is returned. The
A_MapAndPutPTToQueue action can use this to determine the outbound mapper to call.

6. Processing continues as before with the Single Transaction description that was described
detailed earlier in this section.

7. The created Outbound Batch Finite State Machine can transition on the E_OutPTSent
event that was raised by the Generic Outbound Physical Transmission Finite State
Machine to progress outbound batch orchestration. The Outbound Batch Finite State
Machine can then orchestrate the raising of outbound batch complete events to progress
outbound transaction orchestration (the Generic Outbound Transaction Finite State
Machine is not used for outbound Batch Transaction processing).

For Fragmented Transmissions, the following process highlights cause an outbound message
or file to be transmitted:

» As with the Batch Transmission case, through application processing, outbound fragments
(which are created in the S_OutFragCreated state), and associated batch and outbound
transaction records are created in the Financial Transaction Manager database. The
application should also coordinate the creation of the outbound transmission (which are
created in the S_OutPTCreated state) that are associated with the fragments. As part of
that creation, the outbound channel to use should be determined. This outbound channel
should point to a defragmenter component, such as the one that was used in the
Fragmentation Sample (for more information, see Financial Transaction Manager 2.1
Information Center Appendix F).

» When a Fragment is ready for transmission, an E_OutFragReadyToSend event is raised
that triggers a transition in the Generic Outbound Fragment Finite State Machine, which
calls the A_MapAndPutFragToQueue action.

» As part of the object selector for the Generic Outbound Fragment Finite State Machine,
the outbound channel identifier for the fragment is returned. The
A_MapAndPutFragToQueue action can use this to determine the outbound mapper to call.

» The outbound mapper retrieves all the ISFmessages that are associated with the fragment
and transforms them to the external format that is associated with the outbound channel.
When complete, the outbound mapper then routes the transformed message to the
defragmenter, as pointed to by the outbound channel.

Financial Transaction Manager Technical Overview

» As used in the Fragmentation Sample application, the defragmenter puts the transformed
fragment to a FileOutput node. This node has a “Stage in mgsitransit directory and move
to output directory on Finish File” property, which means the file is not written until all the
fragments are de-fragmented. After the fragment is successfully put to the FileOutput
node, the defragmenter raises an E_OutFragSent event.

» This event triggers a transition in two Finite State Machines: a transition in the Generic
Outbound Fragment Finite State Machine to move the fragment object to a
S_OutFragSent state, and a transition in the Generic Outbound Physical Transmission
Finite State Machine that calls the action A_UpdateFragCounter, which checks whether all
fragments for the transmission were processed.

» After this action confirms that all fragments for the transmission were processed, it raises
an E_AllIFragSent event, which transitions the transmission to a S_AllFragSent state.

» As the defragmenter puts the last fragment to the FileOutput node, it raises an
E_DefragComplete event.

» The E_DefragComplete event also triggers a transition in two Finite State Machines. It
triggers a transition in the Generic Outbound Physical Transmission Finite State Machine
that raises the E_OutPTSent event and moves the transmission object to a S_OutPTSent
state. It also triggers a transition in the Generic Outbound Fragment Finite State Machine
that raises the E_OutFragComplete event and moves the fragment object to a
S_OutFragComplete state.

» As before, the Outbound Batch Finite State Machine can transition on the E_OutPTSent
event that was raised by the Generic Outbound Physical Transmission Finite State
Machine to progress outbound batch orchestration. The Outbound Batch Finite State
Machine can then orchestrate the raising of outbound batch complete events to progress
outbound transaction orchestration.

Sending the transmission

A key concept in this pattern is the actual sending of the physical message to its final
endpoint, whether it be a WebSphere MQ queue, file on a file system, or web service. This
process is done in an extensible way to facilitate more endpoint protocols and is described in
this section.

One of two Generic Actions is used in the sending of a physical outbound message,
A_RouteAndSendOutTxn or A_MapAndPutPTToQueue. These actions are functionally
similar to A_RouteAndSendOutTxn being used for single transactions and
A_MapAndPutPTToQueue being used for transmissions that contain batches. The exception
to this is when resending single transaction transmissions when A_MapAndPutPTToQueue is
also used. The layout of both message flows is identical.

Figure 9-42 shows the layout of the A_MapAndPutPTToQueue action message flow.

of B o R [of
Begin&ction - A_MapAndPutPTTeQueue FlowOrder Action Impl - A MapAndPutPTToQueue RouteTolabel
EndAction

Figure 9-42 A_MapAndPutPTToQueue

Chapter 9. Patterns 277

When an outbound message is ready for transmission, one of the actions are called. The
mapper name of the mapper to be used to transform the ISFmessage to the necessary
outbound format is retrieved from the outbound channel definition and assigned as a
destination label for the RouteToLabel node to use to route the outbound message.

Figure 9-43 shows a portion of the esql code that is used in the action.

CREATE LASTCHILD OF CutputLocalEnvironment.Destination.Routerlist NAME 'DestinationData’:;

S5ET OutputLocalEnvironment.Destination.RouterlList.DestinationDacal«<].labelname = rChannel.MAPPER_ NARME;
—— FTM Core EndCutboundMapper expects calling action to hawve set appropriate 'return' label

SET rMapperParams.MapperReturnlabelName = 'MapperCutReturn ' || rChannel.TRANSPORT:

Figure 9-43 A_MapAndPutPTToQueue esql code snippet

The transport method is also retrieved from the outbound channel definition and is appended
to a hardcoded MapperOutReturn_ value and stored in the MapperReturnLabelName portion
of the environment for later use. The message is then routed to the outbound mapper. After
the ISF transformation is complete, the EndOutboundMapper component of the mapper is
called.

Figure 9-44 shows the EndOutboundMapper component message flow.

@p—— &

Input Compute RouteTolabel

Figure 9-44 EndOutboundMapper

This flow uses the MapperReturnLabelName value that was set earlier to assign a destination
label for the RouteToLabel node in the EndOutboundMapper component to use to route the
outbound message.

Figure 9-45 shows a portion of the ESQL that was used in this component.

CREATE LASTCHILD OF CutputLocalEnvironment.Destination.RouterList NAME 'DestinationData’';
IF EXISTS (rMapperParams.MapperReturnlLabelName[]) THEN
SET CutputLocalEnvironment.Destination.RouterlList.DestinationData[«].lakbelname = rMapperParams.MapperReturnLabelName;

ELSE

Figure 9-45 EndOutboundMapper esql code snippet

The MapperReturnLabelName matches to a label that is defined in the
OutboundTransmissionHandler message flow (for channel transports of WebSphere MQ,
FILE, or HTTP), which is included in the FTM Generic Model Actions project or matches to a
label that is defined in a message flow that is bespokely created as part of the application.

278 Financial Transaction Manager Technical Overview

Figure 9-46 shows the OutboundTransmissionHandler message flow that is supplied with the
FTM Generic Model Actions project.

¢4 5o Palette
YT A
L Favorites
[y WebSphere MQ o
[ims JIM5
[z HTTP

MapAndPutPTToQueue Failed

L% Web Services

)5cA —.. @ ﬂ

- WebSphere Adapt
i YYERSPMETE Adapters Set_MQ_Destination Ll

0
Put Fail
L+ Routing
155 Transformation 3
[Construction
L Database ab— fp—" f@

i s

L2 File HTTP Return Set HTTP_Destination HTTP Reply Put Success

L Email

(L TCPIP

Lz CORBA = ~ 3% . PH
L

bigs CICS
?I_Es File Return Set_File_Destinaticn FileOutput
Lims IMS

[Validation

L Security a
L@ Timer = MapAndPutPTToQueue_Success
Graph | User Defined Properties

= Properties 2 [£¢ Problems | B Deployment Log e Progress EZE Unresolved Rules
‘0 Label Node Properties - MQ Return

Description

Basic Label name* MapperOutReturn_MQ
Menitaring

Figure 9-46 OutboundTransmissionHandler message flow

In the case of a message flow that was created to handle transport protocols other than
WebSphere MQ, FILE, or HTTP, the flow starts with a label node (as shown in Figure 9-46)
with the label name set to MapperOutReturn_ and with the alternative transport protocol that
is defined on the outbound channel appended.

The following label nodes are used in the OutboundTransmissionHandler message flow:

» MapAndPutPTToQueue_Success
» MapAndPutPTToQueue_Failed

These label nodes are included as hooks for any bespoke transport-based message flows to
return to after success or failure of the message transmission.

Chapter 9. Patterns 279

9.1.7 Pattern interaction

Each of the subpatterns within this section (Transaction, Batch, and Fragment) can be
extensively incorporated into any larger process that includes outbound message handling. In
this section, some examples of this some of the Detailed Sequence diagrams are references
that were described for other patterns in this chapter. For more information about these
scenarios and the diagrams, see “Appendix E. Generic Model” of the Financial Transaction
Manager 2.1 Information Center.

Figure 9-47 shows how the Single Transaction (Fire and Forget) Transmission Detailed
Sequence diagram can be referenced into a larger process, which shows the interactions with
the Financial Transaction Manger Application and an External System.

| Outbound single t<n No Resp

=l Q :FTM Application PLGeneric Outhound Txns Pl Generic Outbound PT» =l % :Ext Sys
:OutTxn :0utPT

:l 1: Application spedfic...

2: SendToExtSys
:l 2.1: Create

[S_OutTxnCregted}

2.2: Created

TS_OutTxnAwaitingSend}

3: Send

S _OutPTSent}

j

4 Qut Txn Complete

Send Tun (Fire and Forget)

=1 s5: Applicatioh specific...

{S_OutTxnComplete}

Figure 9-47 Outbound Single Transaction (No Response)

280 Financial Transaction Manager Technical Overview

Figure 9-48 shows how this pattern can be integrated with the Debulking and Bulking patterns
in a larger Batch process, which shows the interactions with the Financial Transaction Manger
Application and an External System.

[:Ext Sys [:AnPT [l :Batch El :InTxn [l :OutTxn [&] :0utBatch [&] :0utPT

1: Arrived - : - _ - -
—— {S_InPTArrived} {S_InBatMapped} {S_InTxnMapped}

Log and Map Batch (Debulking)

— 2: Validate
2.1: Txn Valid

{S_InPTValidating}
2.1.1: Txn Validation Complete®

2.2t Twn Valid

2.1.1: application specific... | [T 2.1: application spedific...

3.1: Ten Routed [3:Txh Routed

Batch [Bulking)

[4: Out Txn Complete

Send Cut PT (batch] - (Cutbound Msg or File)

5: RaisgIn Bat Txn Complete
5.1: Check all txns complete?| |

5.1.1:Baiselln Bat Complete
51.1.1:In Bat Complete T s

Figure 9-48 Batch Pattern Interaction

Figure 9-49 on page 282 shows how the Fragmented Transmission Detailed Sequence
diagram can be referenced into a larger process, which shows the interactions with the
Financial Transaction Manger Application and an External System.

Chapter 9. Patterns 281

'] outbound fragments

= =] :FT™ Application = :Transmission = :Fragment = :Batch E :Transaction = =] :De-Fragmentor

1t Create

[S_OutPT|Cleated}

2: Create (1..n)

{S_OutFrggCreated}

3: Create (1..n)

4; Create (1..n)

{S_WaitOufBatComplete}

The process andjor order in which Txn, Batch, Frag & FT objects are created is application dependent.

The main point is that these objects must all exist and be correctly related via FKs at the database prior to
further activity.

5: Created

{S_OutFragSent}
Send Fragmented PT Mormal

7: Out PT Sent

{S_OutPTSent} {S_OutFragComplete} {S_OutTxnComplete}

= % :Ext Sys

6: Send

Figure 9-49 Outbound Fragments

9.2 Routing, IBM Operational Decision Manager rules, and

multiple targets pattern

In this section, we describe the pattern that routes transactions to their destinations by using

the integration points within Financial Transaction Manager.

The destination for a transaction can be identified by the following components:

» Attributes of its data
» Business defined rules in IBM Operational Decision Manager

» Defaulted by Financial Transaction Manager

Figure 9-50 on page 283 shows the use case for this pattern.

282 Financial Transaction Manager Technical Overview

Transmit Transaction

External Application 1

Transmit Transaction

Transaction Processing Qutbound Identify Channels
Transactions
Created
External Application 2

Transmit Transaction

External Application 3

Figure 9-50 Routing high-level use case

9.2.1 High-level description

Transactions that are processed by Financial Transaction Manager and identified for
transmission to an external application, network, and so on, must be associated with the
outbound channel that was defined for that application.

This identification can be done based on data within the transaction. A payment transaction
(for example, as defined by the transaction subtype) can be defaulted to a payment gateway.
It can also be identified by interaction with an external business rules solution (for example,
IBM Operational Decision Manager), which returns the outputs that are required for the
transaction type.

In Financial Transaction Manger, integration to external systems is defined by the following
Financial Transaction Manager objects, configuration data, and the relationship between
them:

» The Format configuration data defines the data structure that is required by the external
application.

» The Mapper, which defines how the transaction should be transformed for the ISF to the
format that is required by the external application. This makes use of the format
configuration data.

» The Involved Party configuration data, which describes the external application within
Financial Transaction Manager.

» The Channel Object that defines how data is transmitted to the external application. This
brings together the Format, the Mapper, and the Involved Party. The channel also defines
the transport mechanism that the outbound message is written; for example folder,
message queue, and web service. The channel does not identify messages within
Financial Transaction Manager that it should transmit, only the physical delivery of the
data.

Chapter 9. Patterns 283

» The Service Participant Object represents an interface from and to Financial Transaction
Manager and the attributes that link messages within Financial Transaction Manager to
the channels that are used to transmit or receive them. The Service Participant Object
also defines the role and rank of the service participant; for example, the role that service
participant plays within the Service (Payment Gateway, General Ledger Application, and
so on). These roles can be used to link transactions to the service participant; for example,
payment transactions can be linked to the Payment Gateway service participant. Rank is
used if more than one service participant plays the same role; for example, service
participants with the Payment Gateway role, one for international payments and one for
local payments (in this case, Rank can be used to distinguish between them).

» The Financial Transaction Manager Value table can be used to hold variables that link the
transaction type to the Service Participant Role.

IBM Operational Decision Manager can be used to show routing rules to business users, with
which they can maintain and create rules to decide the destinations of transactions.

In this pattern, we consider the following use cases:

» Identify outbound destinations from within Financial Transaction Manager
» Identify outbound destinations by using Operational Decision Manager

284 Financial Transaction Manager Technical Overview

Figure 9-51 shows the high-level description for the first use case.

El] :FTM Application

Transaction Processing

p 1: Determine Cutbound Subtype

2: Create outbound transaction

3: Identify role by transaction type

4: Identify rank by transaction data

il

) 5: Identify Service Participant by role and rank

6: Retrieve Qutbound Channel from Service Participant

7: Retrieve Mapper from Channel

: Retrieve outbound location from channel

9: Map transaction to external application format

10: Transmit Message

I e ¥ B R

Continue processing

Figure 9-51 High-level description for routing to external application

IBM Operational Decision Manager can be used to externalize the routing decisions so that
business users can maintain where transactions are routed; for example, routing certain
product types to a credit check application.

Chapter 9. Patterns 285

The high-level description diagram for this use case is shown in Figure 9-52.

el Q :FTM Application | il Q :Operational Decision Manager

Transaction Processing

i 1: Identify outbound destinations

1.1: Request outbound destinations

ol
1.2: Request outbound destinations 'u

) 2: Add Routing Slip to message addenda

b A

3: Create outbound transaction based on Routing Slip dat|a

il

4: Identify role by transaction type

.
.L 5: Identify rank by transaction data

e &: Identify Service Participant by role and rank

) 7. Retrieve Outbound Channel from Service Participant
.

_L §: Retrieve Mapper from Channel

%}: Retrieve outbound location from channel
".-.

.L 10: Map transaction to external application format

11: Transmit Message
-

-

Continue processing ‘
I

Figure 9-52 High-level description for routing to external application with business rules

In both of these use cases, multiple output destinations can be identified and the process that
is repeated for each.

286 Financial Transaction Manager Technical Overview

9.2.2 Objects and object relationships

The object relationship diagram for this pattern is shown in Figure 9-53.

Service Participant

Ny

References
1
Master Transaction &5} Qutbound Transaction(s) w’ e e
l 1_”3 l l

Figure 9-53 Object/object relationship diagram for routing

9.2.3 Detailed sequence diagram

The detailed sequence diagram for this pattern shows the interaction between the Financial
Transaction Manager objects, the master transaction, the outgoing transaction, and the
transmission.

The pattern features the following use cases:

» Identify destinations by code or variables.

» Identify destinations by business rules in IBM Operational Decision Manager.

The detailed sequence diagram for the first use case is shown in Figure 9-54.

el InTxn = :OutTxn

1: Create

2: Obtain rale and rank from transaction
3: Look up Service Participant by role and rank

4: Identify Channel from Service Participant

Create and Transmit Qutbound Transmissiaon

Figure 9-54 Routing by transaction attributes or variables

Chapter 9. Patterns 287

Figure 9-55 shows the detailed sequence diagram for routing by using Operational Decision
Manager.

2l E :Operational Decision Manager

= :InTxn ‘

1: Identify Destinations

&l :QutTxn |

3: Create

|

I |
l_ 4: Obtain role and rank from translaction
|
|

T
| 5: Look up Service Participant by r:ile and rank
L
T
|

|
- '
&: Identify Channel from Service Pa|rticipar1t
|
|
|

Create and Transmit Cutbound Transmission
I

Figure 9-55 Routing by using Operational Decision Manager

288 Financial Transaction Manager Technical Overview

9.2.4 Obiject lifecycle diagram

Figure 9-56 shows an example of an object lifecycle diagram for an outbound transaction for
this pattern.

Transaction

(]
Created

autbound Trangaction Created
@& Identify Odtbound Channel

failed to identify Channel

Identifyi Raise Alert Failed to
= CTEL}:;I:IQ = &2 identify
Channel

create outbound|transmission
@ Transmit to Ttemal application

Transmitting
= to
Application
autbound transmission failed outbound transmission successful
@ Raise Ale @ Complete Transaction
Transmissian Transaction
(=] =
Failed Completed

Figure 9-56 Routing Object Lifecycle Diagram

The lifecycle diagram in Figure 9-56 shows the states that an object goes through as it is
being sent. In the situation where more than one destination was identified, this lifecycle is
repeated with different outbound transmissions being created and sent.

In addition, there might be the requirement to wait for acknowledgements from the external
application before transaction continues to be processed. This issue is not covered in this
pattern because this pattern deals only with identifying destinations.

9.2.5 Finite state machine

The following types of finite state machines that can be defined for this pattern are available:

» Routing that is decided within Financial Transaction Manager

» Routing that is decided by using external business rules that are defined in IBM
Operational Decision Manager

The finite state machine examples that are presented in this section are concerned with
incoming transactions to Financial Transaction Manager.

Chapter 9. Patterns 289

The finite state machine for the first scenario is simpler and shown in Figure 9-57.

“PMP_States
a1 5_TxnValidating

«PMP_Transition:
E_valPass[$ContextMULL{BATCH}]

«FMP_ObjFilters
IT.ID TN $Context{TRANSACTION}}

& A_DoSendToAppl

<PMP_States
=0 5_SendingToAPP1

«PMP_Transitions
E_TxnOutTxnComplete[$ContextEq{OUT_TXN_TYPE,'APP1_TRANS'}]

.| «PMP_obiFilter=
{T.ID TN SContext{TRANSACTION} AND T.BATCH_ID IS NULL}

& A_DoSendToApp2

“PMP_Statex |
@ 5_SendingToAPP2

«PMP_Transition:
E_TxnOutTxnComplete[$ContextEq{OUT_TXM_TYPE,'APP2_TRANS'}]

| «PMP_obiFilters
{T.ID TN 2Context{TRANSACTION} AND T.BATCH_ID IS NULL}

«PMP_Transition»

«PMP_ObijFilter =
<PMP_State» | {T.ID IN SContext{TRANSACTIOM} AND T.BATCH_ID IS NULL}
0 5_SendingToAPP3

@ A_RaiseInTxnComplete

«PMP_Transition»
E_TxnOutTxnComplete[$ContextEq{OUT_TXN_TYPE, 'APP3_TRANS'}]

«PMP_OhjFilters
IT.ID TN $Context{TRANSACTION} AND T.BATCH_ID IS NULL}

& A_RaiseInTxnComplete

«PMP_Statex

@ A_DoSendApp3 E_CompleteTransaction[$ContextEq{OUT_TXN_TYPE,'APP2_TRANS'}]

Figure 9-57 Finite state machine for routing within Financial Transaction Manager

290 Financial Transaction Manager Technical Overview

The finite state machine for routing with Operational Decision Manager is shown in
Figure 9-58.

«PMP_Transition»

<PMP_States
95_TnMapped

«PMP_Transition»
E_MpInTxnMapped[]

<PMP_ObjFiter
{T.IDIN $Context{TRANSACTION}}

«PMP_Transiticns
E_RouteToActivity[SContextEQ{ACTIVITY, 'Appl

@ A_DoApplUpdate

T =PMP_ObjFilters P
«PMP_Staten | 1D I SContextTRANSACTION;) @ A_GetRoutingSip
95 SendingToAppl T «PMP_Transitions

E InTinProcessed
«PMP_OjFilter>

T — P, {TID 1N SContextTRANSACTION} PP States
g g - = N . 5_InTxnC lets
%Txn0uthnCump\etE[SCuntExtEQ{OUT_TXN_TVPE, ‘Appl . & _InTxnComplete
® A ProcessNextActivity «PMP_Transition»
| f E_RouteToActivity[SContedEQIACTIVITY, 'SEND_TO_TARGET']]
«PMP_ObjFilters | @ A_SendTolnguirySystem

{TID IN SContextTRANSACTION} | " PP ObjFilter
| | {T.ID TH $ContextTRANSACTION

| «PMP_Transition»
E_TxnOutTxnComplete[SContetEQ{OUT_TXN_CLASS, ‘OUT.TXN_NOWAIT'}]

@ A_ProcessNextActivify

«PMP_Transitions

<PMP_Transitions .
E_RouteToActivity[SContedEQIACTIVITY, 'SEND_TO_PRINTER }]| - vgg:';ff:;mm E_TxnOutTxnComplete[SContextEQ{OUT_TXN_CLASS, 'OUT_TXN_WAIT'}]
- «PMP_ObjFilters 1 -
@ A_SendToPrinter R émtmmANSA coony | | [sPmP_obiFilters @ A_CreateQutboundick
| {T.ID IN SContext{TRANSACTION}}
«PMP_ObjFilters
«PMP_Transition» {T.ID IN SContext{TRANSACTION}}
E_TxnSent

«PMP_States
G 5_SendingToPrinter PMP_ObjFilter
{TID I $ContextTRANSACTION;}

=PMP_States
G 5_WaitApp2Response

Figure 9-58 Finite State Machine for routing transactions with Operational Decision Manager

In this finite state machine, Operational Decision Manager was queried and a routing slip was
added to the incoming transaction’s addenda that contain a list of the destinations to which

the transaction should be sent.

Financial Transaction Manager then creates an outbound transaction for each target, which is
then transmitted to the third-party application by an appropriate Finite State Machine; for
example, the Generic Outbound Transaction Finite State Machine.

9.2.6 Process highlights

In this process, Financial Transaction Manager identifies the output destinations for a
transaction and then creates an outbound transaction for each destination with appropriate
subtype, which then creates an outgoing transmission.

The interfaces between Financial Transaction Manager and the target destinations are
defined by Service Participant, which can be identified by transaction type and that uses
variables within Financial Transaction Manager. The variable that is used is
ROLE_FOR_TXN_TYPE, as shown in Figure 9-59 on page 292.

Chapter 9. Patterns 291

Configuration Value Search J 3
B
=1
.. .. . Configuration
Application Application Version |Category Key Value
FTM Sample App|1.0.1 ROLE_FOR_TXN_TYPE|BATCH_ACK BATCHSDURCE
FTM Sample App|1.0.1 ROLE_FOR_TXN_TYPE|LIQUIDITY_REQUEST|LIQUIDITY
FTM Sample App|1.0.1 ROLE_FOR_TXN_TYPE|PAYMENT_ACK PAYMENTSOURCE
FTM Sample App|1.0.1 ROLE_FOR_TXN_TYPE|PAYMENT_INS PAYMENTGW
FTM Sample App|1.0.1 ROLE_FOR_TXN_TYPE|REPAIR_REQUEST |REPAIR
Records 1to S of 5

Figure 9-59 Configuration Values for role for transaction types

This table matches the transaction type (subtype); for example PAYMENT_INS, to the Service
Participant role, PAYMENTGW. Figure 9-60 shows the Service Participant details.

In Figure 9-60, the value of PAYMENTGW does not display because values in the
Classification Values table overwrite the PAYMENTGW code with the Payment Gateway

value.

Service Participant Search

) E

Service Participant

Records Lto 6 of 6

Name Service Name Inbound Channel Outbound Channel Role Rank

Batch Payment Originator| PAYMENT PROCESSING | Payment Origination Batch |Client Batch Acknowledgement|Batch Payment Source|Primary|
Liquidity Service PAYMENT PROCESSING |Liquidity Response Liquidity Request Liquidity Service Primary|
Manual Intervention PAYMENT PROCESSING|Command Ops Admin Primary|
Payment Originator PAYMENT PROCESSING|Payment Origination Client Ack Payment Source Primary|
Payments Gateway PAYMENT PROCESSING|Payment Gateway Response|Payments Gateway Payment Gateway Primary|
Repair Service PAYMENT PROCESSING|Repair Response Repair Regquest Repair Service Primary|

Figure 9-60 Service Participant Definitions

The entry is shown in Figure 9-61.

Classification Item Search J =
B S
Application Classification Scheme |Code Description
FTM Sample App |SP_ROLE BATCHSOURCE Batch Payment Source
FTM Sample App |SP_ROLE LIQUIDITY Liguidity Service
FTM Sample App |SP_ROLE OP_COMMAND Ops Admin
FTM Sample App |SP_ROLE PAYMENTGW Payment Gateway
FTM Sample App |SP_ROLE PAYMENTSOURCE Payment Source
FTM Sample App |SP_ROLE REPAIR Repair Service
Records 1to 6 of 6

Figure 9-61 Classification Item view for Service Participant roles

The master transaction creates outbound transactions of the appropriate type as it follows its
lifecyle, which is sent to the destination by using the channel that is defined in the Service
Participant.

292

Financial Transaction Manager Technical Overview

Figure 9-60 on page 292 also shows the Rank of the Service Participant, which can be used
to distinguish between Service Participants with the same Role.

It is also possible to use business rules (such as those that are defined in IBM Operational
Decision Manager) to identify the destinations for a transaction. In this case, artifacts (such as
decision tables) can be created, as shown in Figure 9-62.

P
o0 BN SN W N

b
E STl S

15

Message

type

MT103

Receiver Liquidity Duplicate STP Inquiry
BIC Manager Check Check System

BANKFRPP v v
BANKGRAA
EUR BANKBEPP v
BANKGBZL
Otherwise L
BANKFRPP
BANKGRAA v
usD BANKBEPP
BANKGBZL v v
Otherwise v
BANKFRPP Ld
BANKGRAA
CHF BANKBEPP
BANKGBZL
Otherwise

Currency Embargo

AR A
LRSI HIRRR] RS

LAY IA SIS
LAY AR

W

Figure 9-62 Example of a decision table in Operational Decision Manager

In this example, the destinations that a transaction is sent to is identified by the original
message type, currency, and receiver bank. These destinations are added to the master
transaction object’'s addenda and are used to identify that outbound transactions that must be
created for these destinations.

9.2.7 Pattern interaction

This pattern interacts with patterns that deal with transmitting transactions to external
applications, such as those that are described in 9.1, “Creation of outbound message or file
pattern” on page 238, 9.7, “Bulking pattern” on page 348, and 9.5, “Transformation pattern”
on page 318.

9.3 Semantic validation pattern

When a transaction is received by Financial Transaction Manager, it is validated to ensure
that it has the correct syntax. This syntactical validation is performed as the message is
parsed within the inbound mapper and checks that the data matches the defined format; for
example, the WebSphere Message Broker Domain/Message Set and the WebSphere
Transformation Extender maps. This also includes validating that the data values match the
defined data types, such as the numeric values for numeric data types and the correct
delimiters or record lengths. In the case of XML data that is received, the validation ensures
that the document is well-formed.

Chapter 9. Patterns 293

The Financial Transaction Manager Channel also might be configured by using a channel
property to cause other validation to occur; for example, validating the message against the
message set or schema constraints to check the presence of elements against cardinality
constraints (such as optional/mandatory/repeating), or value ranges. Similarly, validation
against message set or schema constraints might be configured as a channel property for
outbound messages. This is a technical validation that ensures that the data is in the
expected format, the mandatory fields are present, and the data within the fields conform to
the field definitions.

Syntactical validation also occurs if the transactions are received within a file to ensure that
the file format matches that defined, which ensures that all transactions in the file are of the
format expected (for example SWIFT) or ensuring that the file delimiter is as defined.

However, it is common for financial organizations to require that the received transaction also
passes validation that is defined by networks (such as SWIFT cross field validation), business
rules (such as the customer is authorized to use a particular financial product), and so on.

Semantic rules for file validation can be used to verify that the data that is presented as part
of afile is correct; for example, by ensuring the count and total value of transactions in a file or
batch matches that of the header record. This type of semantic validation is performed
against the ISF representation of the message and usually occurs near the beginning of a
message’s lifecycle.

The semantic validation processes are defined as actions within the finite state machines and
correspond to WebSphere Message Broker subflows where the process is defined. Semantic
validation can be driven by the following components:

» Header or footer information within a file
» Data within the transaction; for example value date, currency
» Metadata of the transaction; for example originating customer or application

» Variable-driven or business-facing business rules; for example, by using IBM Operational
Decision Manager

» Network defined rules; for example, SWIFT cross-field validation

Leading Practice: Semantic validation routines might need to be updated regularly; for
example, in response to annual SWIFT changes. Therefore, they should be implemented
in a modular, non-intrusive way. This decreases the effect on the overall solution, which
decreases regression testing, and so on.

294 Financial Transaction Manager Technical Overview

Figure 9-63 shows a high-level use case for the Semantic Validation Pattern.

Co_r[trn ue Processing

| Validation Passed
Validation Passed

—{

Transaction Valrd%tron Validation Fail

J — I I
Validation Fail

Receive Transactions Syntax Validation Map to ISF File Validation Exception P -
ception Processing

Investigaiton and Resolution

QOperations

Figure 9-63 Semantic validation high-level use case

In this use case, the following steps occur:
1. A transaction is received individually or as part of a batch.

2. Financial Transaction Manager validates the syntax of the transaction to ensure that it
matches the message or file definition.

3. If the syntax validation is successful, the transaction is mapped into the Financial
Transaction Manager ISF.

4. If the transactions were received in a file, Financial Transaction Manager validates any
header or footer information against the actual transactions that are received.

5. If file validation passes, the transaction processing continues.

6. If the validation fails, the batch and its associated transactions are placed in an exception
state. In this use case, an alert is raised to an operator for investigation; however, an
alternative is to send a negative response to the originator with no operator alert.

7. The transaction is then validated against the business and network rules.
8. If validation is successful, the transaction continues processing.

9. If validation fails, the transaction is placed in an exception state. In this use case, an alert
is raised to an operator for investigation; however, an alternative is to send a negative
response to the originator with no operator alert.

9.3.1 High-level description

The following use cases are considered:

» Successful receipt and validation of a batch and enclosed transactions.
» Semantic validation failure of a transaction.

» Semantic validation failure of a batch.

Chapter 9. Patterns 295

296

» Successful receipt and validation of a batch and enclosed transactions by business rules
that are published in WebSphere Operational Decision Manager.

» Semantic validation failure transactions by business rules that are published in
WebSphere Operational Decision Manager.

Each of these use cases is started by the receipt of a file or transaction from a client or
application. The file or transactions are received into Financial Transaction Manager and, if in
a batch within a file, debulked into individual transactions. For more information, see 9.6,
“Debulking pattern” on page 338.

Successful receipt and validation of a file and transactions

This use case considers the receipt of a file that contains one or more transactions that are
successfully validated by the semantic validation rules.

The semantic validation rules can be defined within Financial Transaction Manager artifacts
and use external data sources, such as databases and web services. In addition, variables
that are defined within Financial Transaction Manager can be used within the validation
routines. Business facing routing rules that are defined within Operational Decision Manager
can also be used to perform semantic validation.

Figure 9-64 shows the high-level process flow for this use case.

= £ :FTM Application

Receive and Debulk Pattern

1: Semantic Validation of Transaction

] 2: Transacton Semantic Validation - Pass

) 3: Batch Semantic Validaiton - Pass

Continue Processing

Figure 9-64 High-level process diagram, successful processing

This process flow shows the following steps:

1. Thefile is received and the Receive and Debulk Pattern processes the file and creates the
batch and transaction objects.

2. The transactions are validated against the semantic validation rules and are marked as
awaiting the successful validation of the batch object. As each transaction is processed,
counters can be updated, which are used as part of batch validation; including transaction
count, total amount, and so on. The validation rules can be defined within Financial
Transaction Manager or within Operational Decision Manager.

Financial Transaction Manager Technical Overview

3. When the transactions are successfully validated, the batch object is then validated.

4. When the batch passes validation, the individual transactions continue to be processed.

Semantic validation failure of transactions

In this use case, the file and transactions are received and successfully pass syntactical
validation. The batch is debulked into individual transactions, which are validated against the
semantic validation rules.

In this use case, a transaction fails semantic validation and an alert is raised to inform an
operator. The batch and its contained transactions are inter-related so that when a
transaction within a batch fails validation, they both are shown in an alert state.

Figure 9-65 shows a high-level process flow that describes this use case.

= Q :FTM Application = % :Operator

Receive and Debulk Pattern

) 1: Semantic Validation of Transaction

] 2: Transacton Semantic Validation - Fail

§ 2.1: Motify Operator

2.1.1: Alert

Exception Processing

Figure 9-65 High-level process diagram transaction validation fails

The following steps occur in this process flow:

1. The Receive and Debulk Pattern creates the Financial Transaction Manager transaction
and batch objects.

2. The transactions are validated against the semantic validation rules and are marked as
awaiting the successful validation of the batch object. As each transaction is processed,
counters can be updated that are used as part of batch validation, including transaction
count, total amount, and so on. The validation rules can be defined within Financial
Transaction Manager or within Operational Decision Manager.

3. One or more transactions fail semantic validation and are placed in an alert state. As one
or more transactions are in an alert state, the batch is also placed in an alert state.

4. When a validation failure occurs, an alert is raised to inform an operator that manual
intervention is required to resolve the issue.

5. The operator investigates and resolves the validation failure, as described in 9.15, “Error
handling and alerts patterning” on page 438.

Chapter 9. Patterns 297

298

In this use case, an alert is raised to the operator and processing is paused until the
exception is resolved. However, alternative variations of this pattern can be implemented if
one or more transactions fail validation, such as the batch or file can be rejected or the
transactions that pass validation can continue processing.

Semantic validation failure of a batch

In this use case, the file and transactions are received and successfully pass syntactical
validation. However, the file fails semantic validation (for example, because of header
information not matching with transactional data) or batch details are invalid because of
business rules (for example, the file is not expected or allowed at reception time).

Figure 9-66 shows a high-level process flow that describing this use case.

2l Q :FTM Application = % :Operator

Receive and Debulk Pattern

) 1: Semantic Validation of Transaction

] 2: Transacton Semantic Validation - Pass

) 3 Batch Validaiton - Fail
) 3.1: Notify Operator

3.1.1: Alert

Exception Processing

Figure 9-66 High-level process diagram batch validation fails

The following steps occur in this process flow:

1. The Receive and Debulk Pattern creates the Financial Transaction Manager transaction
and batch objects.

2. The transactions are validated against the semantic validation rules and are marked as
awaiting the successful validation of the batch object. As each transaction is processed,
counters can be updated, which are used as part of batch validation, including transaction
count, total amount, and so on. The validation rules can be defined within Financial
Transaction Manager or Operational Decision Manager.

3. All transactions pass validation.

4. The batch fails validation and is placed in an alert state. When a validation failure occurs,
an alert is raised to inform an operator that manual intervention is required to resolve the
issue. The transactions that are associated with the batch also are placed in an alert state.

5. The operator investigates and resolves the validation failure, as described in 9.15, “Error
handling and alerts patterning” on page 438.

Financial Transaction Manager Technical Overview

In this use case, an alert is raised to the operator and processing is paused until the
exception is resolved. However, alternative variations of this pattern can be implemented if
one or more transactions fail validation (for example, the batch or file can be rejected) or the

transactions that pass validation can continue processing.

9.3.2 Objects and object relationships

The relationship between the objects in this pattern is shown in Figure 9-67.

#2] master: Transmission

TRANSMISSION

Figure 9-67 Object/Object Relationship

9.3.3 Detailed sequence diagram

The detailed sequence diagrams for this pattern show the interaction between the Financial
Transaction Manager objects that are used in this pattern.

There are two variations of the semantic validation pattern: the use of validation that is within
Financial Transaction Manager or the use of the rules that are defined within IBM Operational

Decision Manager.

The semantic validation variation for internal validation is shown in Figure 9-68.

el InTxn
Semantic Validation

i 1: Walidation

Semantic Validation

Figure 9-68 Semantic validation with rules that are internal to Financial Transaction Manager

The semantic validation variation that uses rules that are defined within Operational Decision
Manager is shown in Figure 9-69 on page 300.

Chapter 9. Patterns 299

2l :InTxn ‘EE :Operational Decision Manager

Semantic Validation

1: Validation

1.1: Business Rules Service Call
|

1.2: Business Rules Service Call '|_|

Semantic Validation

Figure 9-69 Semantic validation with rules in IBM Operational Decision Manager

The detailed sequence diagram for successful semantic validation of a transaction and batch
is shown in Figure 9-70.

| 1: Mapped
] [H !

Receive and Debulle:' 23 Lt : |

3: Count Transactions

Semantic Validation Variation

4: Validation Passed

5.1: Validation Passed) 5: Validate Batch

|

|

|

|

|

|

|

|

|

> -

|

6: Validate
6.1: PT Walid

7: Batch Valid

|
|
|
|
|
|
:
.
1

| Continue Processing

Figure 9-70 Successful semantic validation of a transaction and batch

300 Financial Transaction Manager Technical Overview

The detailed sequence diagram for a transaction failing semantic validation is shown in

Figure 9-71.

el InFT

‘ el ‘InBat |

‘EI InTxn | |EI % :Operatar ‘

! 1'LMlapped

M|

Receive and Debul|(—

|
2: Mapped |

|
i

3 CountTransactioLs

semantic Validation YVariation

4: Validation Failed

1 4.1: Motify Operator
4.1.1: Raise Alert

:

Exception Processing

Figure 9-71 Transaction fails semantic validation

Chapter 9. Patterns

301

The detailed sequence diagram for a batch failing validation is shown in Figure 9-72.

&l [:InPT = [:InBat = JInTxn &l % :Operator

1: Mapped

Receive and Debulk 2 Mapped .

3: Count Transactions

Semantic Validation Variation

4: Validation Passed

) 6.1: Motify Operator

&6.1.1: Raise Alert

Exception Progessing

Figure 9-72 Batch fails validation

9.3.4 Obiject lifecycle diagram

The object lifecycle diagrams show the various states that each of the Financial Transaction
Manager objects pass through during this pattern. The interaction with Operational Decision
Manager is not shown in these lifecycle diagrams because this interaction occurs within the
validation action.

302 Financial Transaction Manager Technical Overview

Figure 9-73 shows the object lifecycle diagram for a transaction.

0 Transaction Mapped

transaction mapped
@ Validate Transaction

(&0 Waiting for Repair) single transaction invalid & Validating Transaction single transaction validated
h @ Move to repair @@ Initiate next action

batch transaction invalid

@ Set batch transaction as invalid batch transgction validated

(o Incoming transaction _ batch invalid 0 Awaiting Batch Validation | batch validated) =0 Continue Processing
failed h @ Set batch transactions invalid & Initiate next action ~

Figure 9-73 Object lifecycle for a successfully validated transaction

Batch object lifecycle diagram
The object lifecycle diagram for a batch object is shown in Figure 9-74.

. Batch Mapped

batch mapped
& Validate Batch

&2 Validating Batch batch invalid . e Batch Invalid
@ Raise alert and notify operator —

Batch validated
@3 Initiate Next Action

e Continue Processing

Figure 9-74 Object lifecycle for a successfully validated batch

9.3.5 Finite state machine

In Financial Transaction Manager, the finite state machine models the transactions process
flow, including each state that the transaction might go through, the events that cause the
change of state, and the actions that are started when that change occurs.

Semantic validation is a pattern that can be added to any finite state machine as part of a
larger validation process or stand-alone.

Chapter 9. Patterns 303

In this pattern, there are two finite state machines that interact; for example, the result of the
batch validation having a direct effect on the transaction’s finite state machine.

Figure 9-75 shows the finite state machine that, in this pattern, defines the process flow
through which a batch object follows, from mapping into the internal standard format to
passing or failing semantic validation.

0 «PMP_Transition:=
@ A_UpdateBatchCounts
«PMP_Transition= «PMP_ChjFilters
E_MpInBatMapped “ | {B.ID = SContext{BATCHY
«PMP_Transition= b ‘ «PMP_Transition:=
E_WalPass[SContextMOTNULL{BATCH]] T . b E_WalFail[SContextMOTMULL{BATCH}]
&% A_UpdateBatchCounter ~] «PMP_States [& A_UpdateBatchCounter
__—| &5 _BatMapped i

«PMP_ObjFilters TTTe— «PMP_CbjFilters:
{B.ID = SContext{BATCH]} {B.ID = SContext{BATCH]}

«PMP_Transition=

E_BatTxnValComplete
@3 A_ValidateBatch

«PMP_ObjFilters
{B.ID = SContext{BATCH}}

«PMP_CObjFilters
{B.ID = SContext{BATCH]} «PMP_State=
o 5_BatValidating

«PMP_Transition=
E_BatchValFail
@@ A_NotifyOps

«PMP_Statex
. 5_BatValidationFail

«PMP_Transition=
E_BatchValPas

«PMP_ObjFilters
{B.ID = SContext{BATCHY}

«PMP_States
0 5_BatValid

«PMP_Transition=
E_PTValid[SContextEQ{PTTYPE, PAY_ORIG_BATT]
@ A_RaiseBatchValidEvents

«PMP_ObjFilters
«PMP_Transitions {B TRAMSMISSIOMN_ID in SContext{TRANSMISSIOMN]}
E_BatInTxnComplete[SContextECQ) - .
{TXN_TYPE, PAYMENT_ORIGINATIOMN']] |

@ A_UpdateBatchCounter
«PMP_ObjFilters
{B.ID IM SContext{BATCH}}

Figure 9-75 Finite State Machine for Batch processing

«PMP_State=
0 5_BatProcessing

There are various interaction points from the transaction finite state machine that are used to
update counters in the batch objects. These counters can be used as part of the batch
validation process.

Note: When a batch fails validation, it raises the event E_BatchValFail. This also triggers
an action in the transaction’s finite state machine

304 Financial Transaction Manager Technical Overview

Figure 9-76 shows the transaction’s finite state machine for this pattern, from mapping to the
internal state machine to passing or failing validation. If a transaction is validated correcily, it
waits for the batch validation to be completed successfully. If the batch validation fails, the
transactions that are associated with that batch are placed in an alert state.

[= StateMachinel

«PMP_Transition=

<PMP_States
0 5_TwnMapped

«PMP_Transition»
E_MpInTxnMapped[$ContextEQ{TXN_TYPE, 'PAYMENT_ORIGINATION'}]

@ A_Doval

«PMP_ObjFilters
{T.IDIN $Context{TRANSACTION}}

«PMP_Transition=
E_ValFail[$ContextNULL{BATCH}]

@ A_Raise TxnRepair
«PMP_OhjFilter»

<PMP_States IT.ID IN SContext{TRANSACTION}} <PMP_States
@ 5_WaitingForRepair @ 5_TxnValidating

«PMP_Transition:
E_ValFai[$ContextNOTNULL{BATCH}] £ vap «gMi—ItﬂgﬁSBEL i
@ A_RaiseIn TxnFailed _ValPass[$Conte { 3|

iFil “PMP_OhbiFilters
«PMP_OhbiFilters |
{T.ID IN SContext{TRANSACTION}} {T.ID IN §Context{TRANSACTION}}

«PMP_Transition:
E_BatchvalFail

@ A_ProcessBatchvalFail

<PMP_OhjFilters
IT.BATCH_ID IN $Context{BATCH}}
<PMP_States

— — @2 5_AwaitingBatchVal

«PMP_Transition:»
E_TxnBatchvalid

@ A_ContinueProcessing

<PMP_ObjFilter»
{T.ID TN SContext{TRANSACTION}}

<PMP_States
2 5_ContinueProcessing

Figure 9-76 Finite State Machine for Transactions

Chapter 9. Patterns 305

9.3.6 Process highlights

This pattern is concerned with the semantic validation of batches and transactions in the
following modes:

» Semantic validation rules and decisions that are defined with the validation action

» Semantic validation rules and decisions that are defined within Operational Decision
Manager

The following Financial Transaction Manager objects are used in this pattern:

» Batch object

» Transaction object

In addition to these Financial Transaction Manager objects, the following messages are

created:

» Operational Decision Manager request message
» Operational Decision Manager response message
» Alert

9.3.7 Pattern interaction

The semantic validation of batches and messages can interact with various other patterns; for
example, in 9.1, “Creation of outbound message or file pattern” on page 238, this pattern can
be used to ensure that the message to be sent out is valid, or in 9.8, “Store and release
pattern” on page 358 to ensure that the transactions be released are still valid.

This pattern can be used with incoming and outgoing messages to ensure that the
transactions are valid for processing within an organization and for the outgoing network.

9.4 Enrichment pattern

306

Financial Transaction Manager can receive transactional data from many data sources,
applications, or client files. It is common that the transaction that is received must be
enhanced and enriched to allow for processes later in its lifecycle. This can be because of
data that is required for downstream mandatory fields is missing from the source message or
that other data is required because optional or conditional fields are present.

This pattern describes the means that the transaction can be enriched by supplementing the
received transaction with more data. Figure 9-77 shows the use case for this pattern.

Transaction Processing Enrichment Transaction Processing

Figure 9-77 Transaction Enrichment use case

In this use case, a transaction was received by Financial Transaction Manager and is being
processed. The transaction requires more data added to it for downstream processing or to
be sent to an external application and is enriched in a number of modes.

Financial Transaction Manager Technical Overview

In all modes, this enrichment is carried out by a WebSphere Message Broker subflow with an
ESQL or Java compute node, an external call node (for example, SOAP or WebSphere MQ)
or by a specialized node; for example, the Operational Decision Manager Decision Service
node.

The transaction is required to be enriched by business rules that were published to
Operational Decision Manager; for example, customer-specific details.

A WebSphere Message Broker subflow is started that creates and sends a request message
as expected by Operational Decision Manager. The published rules are triggered and the
resulting data is sent back to Financial Transaction Manager in a response message. The
data from this response message is then used to enrich the transaction.

After enrichment, the transaction continues to be processed

9.4.1 High-level description

In this pattern, the following modes of enrichment are considered:

» Enrichment that uses coding
» Enrichment that uses external data
» Enrichment that uses business rules that are defined in Operational Decision Manager

These modes can be combined within a transactions lifecycle such that a coded enrichment
can be followed by a look up to a database for further enrichment. This depends on
requirements.

Enrichment that uses coding

In this enrichment mode, the transaction is enriched within Financial Transaction Manager by
programming the addition of new data or by accessing Financial Transaction Manager
variables, as shown in Figure 9-78.

B C:FTM spplication

Transaction Procssing

1: Enrich Transaction

Transaction Processing

Figure 9-78 High-level interaction diagram for enrichment by using coding

In this enrichment mode, there is little or no interaction with other applications or data
sources. The transaction is enriched directly by coding; for example, for data that never or
rarely changes or by referencing Financial Transaction Manager variables.

Chapter 9. Patterns 307

308

The use of Financial Transaction Manager variables allows for more flexibility as the values of
these variables can be updated within the Operation and Administration Console, which
allows for changes to take effect when the cache is refreshed. These changes also should be
reflected in the configuration within Rational Software Architect.

Enrichment that uses external applications and data sources

In this enrichment mode, a transaction is required to be enriched with data that exists in
external applications or databases.

There are several ways that Financial Transaction Manager can access applications or data.
In this example, we focus on direct database access, web services, and message queuing.
The interaction between Financial Transaction Manager and the various interaction modes
are shown in Figure 9-79.

=l = :FTM Application & :Application Database % :Application Web Service & :Application API

Transaction Processing
1: Enrichment
1.1: QDBC/IDBC

1.2: ODBC/ADBC

L |

1.3: SOAP/HTTR

L |

1.4: SOAP/HTTR

1.5 IBM MQ

1.51: IBM MQ

Transaction Processing

Figure 9-79 High-level interaction diagram for enrichment with external data

In each case, Financial Transaction Manager creates the following query messages that are
to be transmitted:

» For JDBC/ODBC, this message is a stored procedure or a select statement.
» For web services, this message is based on a WSDL

» For message queues, this is a message in the format that is required by the application’s
APIs

Financial Transaction Manager Technical Overview

For enrichment by direct database connectivity or synchronous web services, the transaction
can be enriched immediately and processing is not paused. Web services can be
synchronous or asynchronous, depending on how long the process they start takes or how
reliable they are. Asynchronous web services require state management with Financial
Transaction Manager and can be thought of as analogous to IBM WebSphere MQ
messaging. This pattern focuses on synchronous web service interactions.

For enrichment by messages queues, such as IBM WebSphere MQ, this is an asynchronous
communication method and the transaction must wait before processing continues. In
addition, a new transaction and physical transmission is created to show that a message was
transmitted from Financial Transaction Manager and it is waiting for a response. This can be
used to monitor response times from the third-party application. When the response arrives,
the transaction can be enriched with the data.

Enrichment that uses Operational Decision Manager

When integrated with Financial Transaction Manager, IBM Operational Decision Manager
allows business users to control and alter rules that are used for validation, routing,
enrichment, and so on, which reduces the dependence on IT development.

Financial Transaction Manager is delivered with the capability to integrate with Operational
Decision Manager as part of the core delivery, as shown in Figure 9-80.

= Q :FTM Application — :Operational Decision Manager

Transaction Processing

1: Enrichment

1.1:|Operational Decision NManager Call

1.2:| Operational Decision NManager Call

Transaction Processing

Figure 9-80 High-level interaction diagram for enrichment with external data

In this mode of enrichment, Financial Transaction Manager creates the expected request
message for the Operational Decision Manager rule set within the WebSphere Message
Broker action subflow. This message then is transmitted by using the Operational Decision
Manager Decision Service Node to Operational Decision Manager synchronously.

The response message from Operational Decision Manager includes any enrichment data
that might be added to the transaction.

Chapter 9. Patterns 309

9.4.2 Objects and object relationships

Table 9-1 lists the Financial Transaction Manager objects that are created in this pattern.

Table 9-1 Objects

Physical Transmission Transaction
Application API Request Application APl Request
Application API Response Application APl Response

Figure 9-81 shows the object relationships.

Application API Request: QutTxn

Transmission 1

TRANSMISSION
Cause Of 1

1

TRANSMISSION Application API Request: OutPT
l“*].

Transaction Cayse Of
1 1

Application API Response: InPT

1 1
TRANSMISSION

1 1

Application API Response: InTxn

Enriches

Figure 9-81 Enrichment, object/object relationship

Enrichment by direct database connectivity or by using Operational Decision Manager does
not create Financial Transaction Manager objects because they are carried out
programmatically within the enrichment action subflow in WebSphere Message Broker.

9.4.3 Detailed sequence diagram

The enrichment pattern acts, in most modes, only on the transaction object within Financial
Transaction Manager. Enrichment that uses messaging queues to an application API is
different because this occurs in an asynchronous manner and the transaction is placed in
paused state until the response is received.

Figure 9-82 on page 311 shows the detailed sequence diagram for enrichment by code or
Financial Transaction Manager variables.

310 Financial Transaction Manager Technical Overview

=l [¥] Inbound Transaction:InTxn

Transaction Processing

1: Enrichment

:| 1.1: Enrichment with Reference variables

Transaction Processing

Figure 9-82 Detailed Sequence Diagram enrichment by using code or variables

In this mode, there are no objects that are created during the enrichment and no external
applications are queried.

Enrichment by direct database access or web services are similar in that the communication
is synchronous. Enrichment by direct database connectivity is shown in Figure 9-83.

2l Inbound Transaction:InTxn Q Application Database:

Transaction Processing

1: Enrichment
1.1: JDEC/ODBC

1.2: IDEC/ODEC

.)

Transaction Processing

Figure 9-83 Detailed Sequence Diagram enrichment by using database connectivity

In this mode, Financial Transaction Manager connects to a stored procedure or issues a
SELECT statement that returns a value or a record set. This call or statement is created as
part of the enrichment action within WebSphere Message Broker. The data is then used to
enrich the transaction.

Chapter 9. Patterns 311

312

Figure 9-84 shows enrichment by using a web service call.

E Inbound Transaction:InTxn Q Application Web Service:

Transaction Processing

1: Enrichment
1.1: Web Service

1.2: Web Service

L |

Transaction Processing

Figure 9-84 Enrichment that uses a synchronous web service call

In this mode, Financial Transaction Manager calls a web service that is based on the services
WSDL. This is part of the enrichment action subflow that is defined in WebSphere Message
Broker. Enrichment that uses business rules in Operational Decision Manager is similar to
enrichment that uses a web service, as shown in Figure 9-85.

Inbound Transaction:InTxn % :Operational Decision Manager

Transaction Processing

1: Enrichment
1.1: Business Rules Enrichment

1.2: Business Rules Enrichment

L |

Transaction Processing

Figure 9-85 Enrichment that uses Operational Decision Manager

Financial Transaction Manager calls the Operational Decision Manager Rules Execution
Service with a message that is constructed according to the specifications of the rules set.
The WebSphere Message Broker enrichment action subflow uses the specialized Operational
Decision Service node.

Enrichment that uses an application’s API by a message queue (for example, WebSphere
MQ) is different from the modes that were described previously. In this mode, a message is
transmitted to the application and Financial Transaction Manager holds the transaction in a
waiting state until the reply from the application is received, as shown in Figure 9-86 on
page 313.

Financial Transaction Manager Technical Overview

InboundTransaction:InTxn App\ication APT Request: QutTxn Applcation APT Request: QutPT Application APT Response:InTxn Application AP Response:InPT

Transaction Processing

1: Enrichment

Send Transmission [Asynchronous)

Receive Transmission [Asynchronous
2: Complete Enrichment

Transaction Processing

Figure 9-86 Enrichment using an Application API call

This mode causes the creation of Financial Transaction Manager objects, the Application API
transaction object, and the Application API transmission object. The transaction object is a
representation of the API request in Financial Transaction Manager’s internal standard format
while the physical transmission represents the actual data that is sent to the application.

9.4.4 Obiject lifecycle diagram

The object lifecycle diagrams in this pattern are straight forward. Enriching by code, direct
database connectivity, or web services have the same lifecycle, as shown in Figure 9-87.

("= Object LifeCycle Diagram

Transaction Processing

enriching transaction
@Enrich|Transaction

& Enriching

transaction enriched
@ Initiate next action

i

Continue
Processing

Figure 9-87 Object lifecycle for synchronous enrichment

These modes of enrichment have only one state and one action that is associated with their
lifecycle in this pattern.

Chapter 9. Patterns 313

Figure 9-88 shows the object lifecycle for asynchronous enrichment.

("= Object LifeCycle Diagram
Transaction Processing

enriching I.J(ansacticun
@Enrichl_Transaction

& Enriching

tranmitting |API request
@ Transmit API request

quaiting AT
Respaonse

receive APl respanse
@& Enrich transaction

Enriching
- transaction after
APl response

complete el‘lrichment
@Initiatl: next action

Continue
Processing

Figure 9-88 Object lifecycle for asynchronous enrichment

In this enrichment mode, the transaction passes through two other states as the transaction
sends then awaits the response from the external application. Multiple enrichment methods
might be required, which combines these modes into a more complex lifecycle.

314 Financial Transaction Manager Technical Overview

9.4.5 Finite state machine

The Finite State Machine fragment for synchronous enrichment of a transaction is shown in
Figure 9-89.

«PMP_States
0 5_TxnValidating

«PMP_ObjFilter»
{T.ID IN SContext{TRANSACTION}}

«PMP_Transition:»
E_WalPass[$ConflextNULL{BATCH}]

& A_DoEnrigh Transaction

«PMP_States
&2 5_Enriching Transaction

«PMP_Transition
E_EnrichmentiComplate

@@ A_DoMextAction

«PMP_OhjFilters
{T.ID IN $Context{TRANSACTION}}

«PMP_State»
o 5_ContinueProcessing

Figure 9-89 Finite State Machine for synchronous enrichment

Transaction enrichment by direct database connectivity, web services, or by using Operational
Decision Manager requires only one state because the action performs the call to the
appropriate data source. The action also raises the next event to continue processing.

The finite state machine for transaction that is enriched asynchronously is shown in
Figure 9-90 on page 316.

Chapter 9. Patterns 315

T

PMP_States
w2 5_TxnValidating

«PMP_ObjFilter =
IT.ID IN SContext{TRAMSACTION}}

«PMP_Transition
E_ValPass[$ContextNULL{BATCH}]

& A_DoEnrigh Transaction

<PMP_States
@2 5_Enriching Transaction

«PMP_ObjFilter =
IT.ID IN SContext{TRAMSACTION}}

«PMP_Transition:
E_EnrichViaApplication

@B A_SendTnAppIiGtinn

«PMP_States»
0 5_AwaitingApplicationF.esponse

«PMP_ObjFilter =
IT.ID TN SContext{TRANSACTION} AND T.BATCH_ID IS NULL}

«PMP_Transition:»
E_ReceiwveApplicgtionResponse
@ A_EnrichAftilerAppResponse

PMP_States
w2 5_EnrichingDataAfterAppResponse

«PMP_Transition=
E_TransactionEnriched

ﬁﬁ_Contil—lueProcessing

«PMP_State=
2 Continue Processing

Figure 9-90 Finite State Machine for asynchronous enrichment

In this state machine, the transaction is paused after the request is sent to the application API
and is released when the response is received. The transaction then is enriched by the next
action.

The event that resumes the transaction process is raised by a separate finite state machine,

which handles the reception of acknowledgements and responses; for example, the Generic
Inbound Acknowledgement Transaction Finite State Machine.

9.4.6 Process highlights

This pattern described various methods of enriching transactions as they are processed by
Financial Transaction Manager. There are several factors that should be considered when the
methods that are presented are used.

316 Financial Transaction Manager Technical Overview

Coded or variable-based enrichment

When you are enriching data by using code or Financial Transaction Manager variables,
consider the following points:

» For code-based enrichment, the regularity of changes to the enrichment data should be
low as the WebSphere Message Broker flow must be changed and compiled. A new BAR
file must be deployed and tested.

» For variable-based enrichment, the data that is held by the variables can be changed as
required; however, where the data is placed within the transaction is still controlled by the
action subflow. Financial Transaction Manager variables also are loaded into memory
when the Financial Transaction Manager message flow starts. This cache must be
refreshed manually or automatically before the variable’s new data can be used.

Direct database connectivity

Connecting directly to a database is often a quick and easy method for extracting data from
an application’s database table. However, the following points should be considered:

» This method requires an understanding of the application that is being connected to the
database, which might create dependencies between the enrichment code and the
database.

» Database changes might cause the enrichment process to become invalid (for example,
changes to fields, table names) or schemas unless a stored procedure is used and is kept
updated with the database changes.

» Database user names and passwords must be maintained

It is a better practice to connect to an external application by using its published APIs or web
services when they exist.

Web services

Enriching transactions by using web services is a common method for extracting data from
applications and multiple tables. The message that is required by the web service is defined
by the WSDL and this must be included in the deployed BAR file.

Enrichment that uses Operational Decision Manager

The IBM Operational Decision Server node is included within the Financial Transaction
Manager Package and allows WebSphere Message Broker flows to seamlessly integrate into
the rules environment.

The Financial Transaction Manager action subflow, which calls the rules environment, is
required to build a message that is based on the DecisionService schema. This XML
message contains a request message that is based on the Business Object Model that was
defined within Operational Decision Manager.

This message is transmitted to the Operational Decision Manager Rules Execution Server,
which returns the results of the rules. These results can then be used to enrich the message,
populating fields, updating existing data, and so on.

Consideration should be given to which type of enrichment data is maintained by business
users as opposed to technical users; for example, it might not be appropriate to give access
to data that can affect the technical routing of the transaction.

Chapter 9. Patterns 317

Application API

Application APIls are a more mature method of extracting data in an asynchronous method.
The time that is taken for the application to return the enrichment data should be considered
because it can affect on-time critical transactions.

Because transactions are paused while they wait on the reply from the application, a
secondary process must be in place to reactivate the payments and add the data manually if
the application is unavailable or the process is too slow.

9.4.7 Pattern interaction

Data enrichment can occur at any point in the flow or at multiple places in the flow. For
example, the transaction can be enriched after validation and then enriched later on for a
target application.

9.5 Transformation pattern

This pattern describes how Financial Transaction Manager can be used to accept inbound
physical transmissions in the form of a single transaction, batch, or a fragment and map it to
ISF transactions by using Financial Transaction Manager core components and generic
Process Inbound Transmission Finite State Machine and associated actions and events. The
ISF transactions can then be processed by Financial Transaction Manager to meet functional
requirements.

On the outbound side, the pattern demonstrates how Financial Transaction Manager can be
used to transform ISF transactions into physical transmissions of single transaction or batch
by using generic Outbound Transaction Finite State Machine and associated actions and
events.

The pattern also describes how transformation failures can be handled in a generic way for
most of the scenarios.

Figure 9-91 depicts the high-level use case diagram for transformation pattern.

’ Map' Batch
Send Batch Fragment
Fragment
ISF
Transaction
ISF Transformation Finatical Transaction
Send Single Transaction Manager Core
: Bitch Processing
Client
Send Batch Map Single Transaction

Figure 9-91 Transformation pattern use case diagram

318 Financial Transaction Manager Technical Overview

9.5.1 High-level description

In Financial Transaction Manager, the inbound physical transmission can be of three types:
Transaction, Batch, or Fragment. When Financial Transaction Manager receives either of
these transmissions, it must map individual transactions that are present in the physical
transmission to ISF by using the inbound mapper component for lifecycle processing. When
the mapping completes, Financial Transaction Manager raises multiple events, depending on
the following mapping status:

» Success: No known mapping errors were detected.

» Failure: Mapping errors were detected, but one or more transactions that were created by
the inbound mapper are in valid state. In this case, the business process must define the
recovery mechanism.

» Aborted: Mapping errors were detected and none of the transactions are in valid state. In
this case, operations personnel are needed to verify the transmission.

On the outbound side, ISF transactions must be mapped to an outbound physical
transmission that contains single or a batch of transactions by using the outbound mapper
component. Similar to inbound processing, Financial Transaction Manager raises multiple
events on completion of outbound mapping, depending on the status of mapping.

The state management for inbound and outbound processing is carried out in the Financial
Transaction Manager Generic Finite State Machine Process Inbound Transmission and
Outbound Transaction.

This pattern includes the following key high-level scenarios:

» Inbound Single Transaction

» Inbound Batch Transmission

» Inbound Fragment Transmission
» Outbound Transaction

These scenarios have Success, Failure, and Aborted aspects to them.

Successful inbound single transaction scenario
Figure 9-92 shows a successful inbound single transaction scenario.

'] Inbound Single Transaction Processing
% dientClient 2l £ ftm:FTM Application

1: Inbgund Txn Msg

) 1.1: Log PT
) 1.2 Map Txn
1.3: Log Transaction

1.4: Mapping Success

Figure 9-92 Successful inbound single transaction

Chapter 9. Patterns 319

320

Figure 9-92 on page 319 shows the following process:

1. The client sends a single transaction message to Financial Transaction Manager. The
client in this case can be an initiator of a transaction or a system that is sending a
response to a request.

2. Financial Transaction Manager logs the transaction with the Physical Transmission Arrived
state and maps the transaction to ISF by using an inbound mapper that is configured for
the channel.

3. When complete, the ISF transaction is logged to Financial Transaction Manager operation
database with the Transaction Mapped state.

4. A Transaction mapped event is raised with associated routing information.

5. This event is picked up by the Event Processing core component in Financial Transaction
Manager and the transaction is processed further according to Finite State Machine
configuration.

Aborted inbound single transaction scenario
Figure 9-93 shows a single transaction where ISF mapping is aborted.

'] Inbound Single Transaction - Map Abort
% dient:Client @ftm:l—"l'm Application % operator:Operator

1: Inbound Txn Msg

) 1.1: Log PT
) 1.2 Map Txn

2: Map Failed

Figure 9-93 Aborted inbound single transaction

Figure 9-93 shows the following process:

1. The client sends a single transaction message to Financial Transaction Manager. In this
case, the client can be an initiator of a transaction or a system that is sending a response
to a request.

2. Financial Transaction Manager logs the transaction with the Physical Transmission Arrived
state and maps the transaction to ISF by using an inbound mapper that is configured for
the channel. This step fails.

3. A Transaction Mapping Aborted event is raised with the associated routing information.

4. This event is picked up by the Event Processing core component in Financial Transaction
Manager and the state of inbound physical transmission is changed to Physical
Transmission Mapping Failed. It is then assigned to operations personnel to investigate
who can cancel the transaction processing.

Financial Transaction Manager Technical Overview

Failed inbound single transaction scenario
Figure 9-94 shows a single transaction in which ISF mapping reported a failure.

| Inbound Single Transaction - Map Failure

% dient:Client @ftm:f-‘rm Application

1.1: Log PT
1.2 Map Txn
) 1.3: Log Transaction

1.4 Mapping Failure

1: Inbound Txn Msg

Figure 9-94 Failed inbound single transaction

Figure 9-94 shows the following process:

1. The client sends a single transaction message to Financial Transaction Manager. In this
case, the client can be an initiator of a transaction or a system that is sending a response
to a request.

2. Financial Transaction Manager logs the transaction with the Physical Transmission Arrived
state and maps the transaction to ISF by using an inbound mapper that is configured for
the channel. This step reports the mapping status as Failure.

3. In this case, the ISF transaction is logged to the Financial Transaction Manager operation
database with the Transaction Mapped state.

4. A Transaction Mapping Failed event is raised with the associated routing information.

5. This event is picked up by the Event Processing core component in Financial Transaction
Manager and the transaction is processed further according to Finite State Machine
configuration.

Chapter 9. Patterns 321

322

Successful inbound batch scenario
Figure 9-95 shows a successful inbound batch scenario.

'] Inbound Batch and Fragment Processing

& client:Client @ batch:FTM Application

1: Send Batch

) 1.1: Log PT
1.2: Map Batch
1.3: sLog Batch

®
0.1 1: Log Transaction

1.4: Mapping Successful

Figure 9-95 Successful inbound batch

Figure 9-95 shows the following process:

1. The client sends a batch that contains multiple transactions to Financial Transaction
Manager. In this case, the client can be an initiator of a transaction or a system that is
sending a response to a request.

2. Financial Transaction Manager logs the batch with the Physical Transmission Arrived state
and maps each transaction in the batch to ISF by using an inbound mapper that is
configured for the channel.

3. When complete, Financial Transaction Manager logs a batch record with a status Batch
Mapped to the operational database.

4. Each transaction in the batch is logged to the Financial Transaction Manager operation
database with the Transaction Mapped state.

5. A Batch Mapped event is raised with associated routing information.

6. This event is picked up by the Event Processing core component in Financial Transaction
Manager and the transaction is processed further according to Finite State Machine
configuration.

Financial Transaction Manager Technical Overview

Aborted inbound batch scenario
Figure 9-96 shows an aborted inbound batch scenario.

| Inbound Batch and Fragment Processing - Map Aborted
% dient:Client @ batch:FTM Application % operator:Operator

1: Send Batch

' 1.1: Log Batch
1.2: Map Batch

1.3: Batch Failed

Figure 9-96 Aborted inbound batch

Figure 9-96 shows the following process:

1. The client sends a batch that contains multiple transactions to Financial Transaction
Manager. In this case, the client can be an initiator of a transaction or a system that is
sending a response to a request.

2. Financial Transaction Manager logs the transaction with the Physical Transmission Arrived
state and maps the transaction to ISF by using an inbound mapper that is configured for
the channel. This step fails.

3. A Transaction Mapping Aborted event is raised with the associated routing information.

4. This event is picked up by the Event Processing core component in Financial Transaction
Manager and the state of inbound physical transmission is changed to Physical
Transmission Mapping Failed. It is assigned to operations personnel to investigate who
can cancel the transaction processing.

Chapter 9. Patterns 323

324

Failed inbound batch scenario
Figure 9-97 shows a failed batch scenario.

| Inbound Batch and Fragment Processing - Map Failure

% dient:Client @ batch:FTM Application

1: Send Batch

» 1.1: Log PT
1.2: Map Batch
) 1.3: Log Batch

®
0.1 1: Log Transaction

2: Batch Failure

Figure 9-97 Failed inbound batch

Figure 9-97 shows the following process:

1. The client sends a batch that contains multiple transactions to Financial Transaction
Manager. In this case, the client can be an initiator of a transaction or a system that is
sending a response to a request.

2. Financial Transaction Manager logs the batch with the Physical Transmission Arrived state
and maps the transaction to ISF using an inbound mapper that is configured for the
channel. This step reports the mapping status as “Failure”.

3. Inthis case, Financial Transaction Manager logs a batch record with a status Batch
Mapped to the operational database.

4. Each transaction in the batch is logged to the Financial Transaction Manager operation
database with the Transaction Mapped state.

5. A Batch Mapping Failed event is raised with the associated routing information.

6. This event is picked up by the Event Processing core component in Financial Transaction
Manager and the transaction is processed further according to Finite State Machine
configuration.

Financial Transaction Manager Technical Overview

Successful inbound fragment scenario
Figure 9-98 shows a successful fragment scenario.

'] Successful Fragment

% dient:Client @fragment:l’rm Application

1: Send Fragment

1.1: Log PT

B 1.3: Map Fragment
1.4: Log Batch

) 1.2: Log Fragment

1.7
) 1: Log Transaction

1.5 Fragment Mapped]

Figure 9-98 Successful inbound fragment

Figure 9-98 shows the following process:

1.

The client sends a fragment that contains multiple transactions from one or more batches
to Financial Transaction Manager. In this case, the client can be an initiator of a
transaction or a system that is sending a response to a request.

Financial Transaction Manager logs the fragment as physical transmission with the
Physical Transmission Arrived state and as a fragment with the Fragment Arrived state. It
then maps the transaction to ISF by using an inbound mapper that is configured for the
channel.

When complete, Financial Transaction Manager logs a batch record with a status Batch
Mapped to the operational database.

Each transaction in the batch is logged to the Financial Transaction Manager operation
database with the Transaction Mapped state.

5. A Fragment Mapped event is raised with associated routing information.

6. This event is picked up by the Event Processing core component in Financial Transaction

Manager and the transaction is processed further according to Finite State Machine
configuration.

Chapter 9. Patterns 325

Aborted inbound fragment scenario
Figure 9-99 shows an aborted fragment scenario.

| Inbound Fragment - Map Aborted
% dient:Client @fragment:l’rm Application % operator:Operator

1: Send Fragment

1.1: Log PT

1.2 Log Fragment
1.3: Map Fragment

1.4: Map Aborted

Figure 9-99 Aborted inbound fragment

Figure 9-99 shows the following process:

1. The client sends a fragment that contains multiple transactions from one or more batches
to Financial Transaction Manager. In this case, the client can be an initiator of a
transaction or a system that is sending a response to a request.

2. Financial Transaction Manager logs the fragment as physical transmission with the
Physical Transmission Arrived state and as a fragment with the Fragment Arrived state. It
then maps the transaction to ISF by using an inbound mapper that is configured for the
channel. This step fails.

3. A Transaction Mapping Aborted event is raised with the associated routing information.

4. This event is picked up by the Event Processing core component in Financial Transaction
Manager. The state of inbound physical transmission is changed to Physical Transmission
Mapping Failed and is assigned to operations personnel to investigate who can cancel the
transaction processing.

326 Financial Transaction Manager Technical Overview

Failed inbound fragment scenario
Figure 9-100 shows a failed fragment scenario.

| Inbound Fragment - Map Failure

% dient:Client @fragment:l’rm Application

1: Send Fragment

1.1: Log PT
~ 1.2: Log Fragment
B 1.3: Map Fragment

1.4: Log Batch

1.7
) 1: Log Transaction

1.5: Fragment Failure

Figure 9-100 Failed inbound fragment

Figure 9-100 shows the following process:

1.

The client sends a fragment that contains multiple transactions from one or more batches
to Financial Transaction Manager. In this case, the client can be an initiator of a
transaction or a system that is sending a response to a request.

Financial Transaction Manager logs the fragment as a physical transmission with the
Physical Transmission Arrived state and as a fragment with the Fragment Arrived state. It
then maps the transaction to ISF by using an inbound mapper that is configured for the
channel. This step reports the mapping status as “Failure”.

In this case, Financial Transaction Manager logs a batch record with a status Batch
Mapped to the operational database.

Each transaction in the batch is logged to the Financial Transaction Manager operation
database with the Transaction Mapped state.

5. A Fragment Mapping Failed event is raised with the associated routing information.

6. This event is picked up by the Event Processing core component in Financial Transaction

Manager and the transaction is processed further according to Finite State Machine
configuration.

Chapter 9. Patterns 327

Successful outbound transaction mapping scenario
Figure 9-101 shows a successful outbound transaction mapping scenario.

'] Successful Qutbound Transaction

% outbound:FTM Application

1: Qutbound Txn Created

4: Physical Transmission Created

Figure 9-101 Successful outbound transaction mapping

Figure 9-101 shows the following process:

1. A Financial Transaction Manager action creates an outbound transaction object in the
Financial Transaction Manager database.

2. When created, a Transaction created event is raised with the associated routing
information.

3. This event is picked up by the Event Processing core component in Financial Transaction
Manager. The message is propagated to the relevant outbound mapper by using the
routing information that is provided in the event or routing information that is determined by
the type of message that is involved.

4. The outbound mapper takes the ISF message that is associated with the transaction and
transforms it to the required external format.

5. The outbound mapper logs the created physical transmission with the Outbound Physical
Transmission Created state.

6. The mapper raises the Physical Transmission Created event with the associated routing
information.

7. This event is picked up by the Event Processing core component in Financial Transaction
Manager and the transaction is processed further according to Finite State Machine
configuration.

328 Financial Transaction Manager Technical Overview

Outbound transaction mapping failure scenario

Figure 9-102 shows a failed outbound mapping for an outbound transaction. This scenario
covers Failure and Aborted aspects.

| Outbound Transaction - Map Aborted

@ outbound:FTM Application /% operator:Operator

1: Qutbound Txn Created
) 2: Map Txn
3: Log PT

4: Motify Operator

Figure 9-102 Outbound transaction mapping failure

Figure 9-102 shows the following process:

1. A Financial Transaction Manager action creates an outbound transaction object in the
Financial Transaction Manager database.

2. When created, a Transaction created event is raised with the associated routing
information.

3. This event is picked up by the Event Processing core component in Financial Transaction
Manager. The message is propagated to the relevant outbound mapper by using the
routing information that is provided in the event or routing information that is determined by
the type of message that is involved.

4. The outbound mapper takes the ISF message that is associated with the transaction and
transforms it to the required external format. This step fails.

5. Financial Transaction Manager logs the error with the Outbound Physical Transmission
Waiting for Operator state and assigns it to operation personnel.

Chapter 9. Patterns 329

9.5.2 Objects and object relationships

The Financial Transaction Manager objects that are identified and used in this pattern and
their relationship with each other are shown in Figure 9-103.

#7] InboundTransmission : INPT |- --------=-=-===smmmmmoaoao.

TRANSMISSION :
i TRANSMISSION 1o ishission

#7) SingleTransaction : InTXn |- - - -~ - -=- - 5| %o Batch:InBatch | | %) Fragment : InFragment
Cause
#:) QutboundTransaction : QutTxn - -- TRANSMISSION -] #:] QutboundTransmission : QutPT |- .. . __ ;

Figure 9-103 Financial Transaction Manager object-to-object relationship

A transmission object can consist of a transaction, batch, or fragment. However, from the
lifecycle perspective, a physical transmission is a transaction or a batch of transactions.
Therefore, there is no direct dependency relationship between batch and fragment.

9.5.3 Detailed sequence diagram

The detailed sequence diagrams in this pattern demonstrate the interactions between the
Financial Transaction Manager objects and components. Similar to high-level sequence
diagrams, this pattern includes the following scenarios:

» Inbound Single Transaction

» Inbound Batch Transmission

» Inbound Fragment Transmission
» Outbound Transaction

Each of these scenarios has a successful, map-aborted, and map-failed aspect to them. For
more information about the successful scenarios that are described here, see “Appendix E.
Generic Model” of the Financial Transaction Manger V2.1 Information Center.

330 Financial Transaction Manager Technical Overview

Inbound single transaction
Figure 9-104 shows a successful log and map single transaction.

£ Log and Map Single Transaction

=] :PT Flow] :MapperTalsF

1: Arrived

'''''''''''''''''''''''''''''''''' > :InPT

{5_InPTArrived}

1% MapTolsfF || N
- InTxn
1.2,2: PT Mapped i {S_InTunMapped}

1.2.3: Tun Mapped

Figure 9-104 Log and Map Single Transaction

Figure 9-105 shows a scenario in which inbound mapper reports the map status as Aborted.

E Log and Map Single Transaction - Map Aborted
@ pT Flow:PT Flow @ mapperTolSF:MapperTolSF /% operator:Operator

1: Arrived

—_—

{5 InPT&rrived}

1.2: Map To ISF 1.2.1: Map Aborted

15_InPTMapFailed}

1.2.2: Notify/ Operator

1.2.2.1: Cancel Processing

{5 InPTFailed}

Figure 9-105 Log and Map Single Transaction: Map Aborted

In the case of an aborted map, no transaction object is created. The physical transmission
object is moved to the Map Failed state S_InPTMapFailed and an operator is notified. The
operator can cancel only the transmission that moves the physical transmission object to its
final state S_InPTFailed.

This detail sequence diagram also applies to batch and fragment processing.

Chapter 9. Patterns 331

Figure 9-106 shows a scenario where inbound mapper reports the map status as Failure.

'] Log and Map Single Transaction - Map Failed

% pT Flow:PT Flow % mapperTolsF:MapperTolSF
1: Arrived
R
. 1.1: Log PT
i 1.1.1: Create
"""""""""""""""""""""""" | B2 InPT |15 InPTArrived]
1.2.1: Create
1L.2:MapToISF | [r---mmmmmmmmmms el eeeed 2 InTen fo_InTxnMapped}

1.2.2: Map Failed

{5_InPTValidating}
1.2.3: Map Failed

Figure 9-106 Log and Map Single Transaction: Map Failed

In the case of a map failure status, the object lifecycle is similar to a success scenario.
However, the event that is raised by Finite State Machine is different from a success event so
that an application-specific Finite State Machine can perform different processing in case of
success and failure.

Inbound batch transmission
Figure 9-107 on page 333 shows a successful log and map batch transmission.

332 Financial Transaction Manager Technical Overview

E"] Log and Map Batch

|IE| = :PT Flow ‘

. 1: Arrived

‘E] :MapperTolsF ‘

1.2.3: PT Mapped

"""""""" - {S_InF'T;larri'.fed}
7)

1.2.1: Create [11..r1

- :!InBatch

1.2.4: Batcp Mapped

|
i

1.2.5: T}f]n Mapped
T

15_InBatMapped}

Figure 9-107 Log and Map Batch transaction

Figure 9-108 shows a scenario in which inbound mapper reports the map status as Failure.

EE 'PT Flow
. 1: Arrived

|EE :MapperTolSF |

1.1: Log PT
1.1.1: Create

1.2: Map To ISF

1.2.3: Batch Failure |

122 CrTate (1..n)

i

1.2.4: Bateh Fafilure

|
|
|
| T

1.2.5: Txn Mal:lped

Figure 9-108 Log and Map Batch transaction: Map Failure

Chapter 9. Patterns 333

In the case of a map failure status, the object lifecycle is similar to a success scenario.

However, the event that is raised by the Finite State Machine is different from a success event
so that the application-specific Finite State Machine can perform different processing in case
of success and failure. The generic Inbound Physical Transmission Finite State Machine does
not differentiate between success and failure status of the map, which means the next state in

both the cases is the same.

Inbound fragment transmission

Figure 9-109 shows a scenario of a successful inbound fragment transmission.

] Log and Map Fragment

@ :PT Flow % :MapperTolSF
1: Arrived
= 1.1: Log PT

1,1.1: Cregte

..

ESi il 1.3(1: Create [1..n]

1.3.2: Create (1..n)

1.3.3: PT Mapped

_— e

1.3.4: Fragment Mapped

1.3.5: Batch Mapped

15_InFragArrived}

= :InBatch

"""""""""""""""""""""""""""""" & AnTen | {5_InTxnMapped}

1.3.6: Txn Mapped

{5_InBatMapped}

Figure 9-109 Log and Map Fragment transmission

Figure 9-110 on page 335 shows the scenario in which an inbound map reports the mappings

status as failure.

334 Financial Transaction Manager Technical Overview

] Log and Map Fragment - Map Failure

@ :FT Flow @ :MapperTolSFE

-. - 1.1: log PT

1.1.1: Create

= :InFragment | {5_InFragArrived}

SR 1.3.1: Create [1..n}

B R [= .InBatch | 15_InBatMapped}

1.3.2: Create {1..n)
""""""""""""""""""""""""""""""""" - dAnTxn [{5_InTxnMapped}
1.3.3: PT Mapped

D

1.3.4: Fragment Failure

1.3.5: Batch Failure

1.3.6: Txn Failure

Figure 9-110 Log and Map Fragment: Map Failure

In the case of a map failure status, the object lifecycle is similar to a success scenario.
However, the event that is raised by the Finite State Machine is different from a success event
so that the application-specific Finite State Machine can perform different processing in case
of success and failure. The generic Inbound Physical Transmission Finite State Machine does
not differentiate between the success and failure status of the map, which means that the next
state in both the cases is the same.

Outbound transaction

For more information about detailed sequence diagrams for outbound transaction mapping,
see Section 9.1, “Creation of outbound message or file pattern” on page 238.

9.5.4 Obiject lifecycle diagram

The object lifecycle diagram that is shown in this section shows a portion of entire object
lifecycle that is specific to the transformation pattern. For more information, see the Financial
Transaction Manager Information Center’s “Appendix E. Generic Model” section.

Figure 9-111 on page 336 show the lifecycle of the physical transmission object that is
involved in this pattern.

Chapter 9. Patterns 335

("= Inbound PT Txn Lifecycle

Mapping Aborted L 5_InPTMapFailed

=2 5_PTArrived

. . Operatar Verify
mapping failure

mapping successful

@ 5_InPTValidating 5_InPTFailed

Figure 9-111 Physical Transmission object lifecycle

The lifecycle of other objects in the context of this pattern have only one state as indicated in
the detailed sequence diagram in red. For more information about the Object lifecycles of
these objects, see “Appendix E. Generic Model” of the Financial Transaction Manager
Information Center.

9.5.5 Finite state machine

For more information about the differences between the Object Lifecycle diagram that was
described in 9.5.4, “Object lifecycle diagram” on page 335 and their corresponding Finite
State Machines, see “Appendix E. Generic Model” of the Financial Transaction Manager
Information Center.

Figure 9-112 on page 337 shows a snapshot of the Generic Process Inbound Transmission
Finite State Machine and Figure 9-113 on page 337 shows a snapshot of Generic Outbound
Physical Transmission Finite State Machine.

336 Financial Transaction Manager Technical Overview

<PMP_Transition»

E_MpInTxnMapped[$ContextNULL{BATCH}]

<PMP_Transition»

<PMP_ObjFilter

{T.IDIN SContext{TRANSMISSION}}

|

<PMP_ObjectSelectar>

{SELECT ID FROM $DBSchema.0B] EASET
WHERE STATUS =2}

—

<PMP_States ‘
G 5_InPTArrived

«PMP_Transitions

<PMP_Transition»
W A_DoVallnPT

W

5 MpInTngapfamfre
<PMP_ObfFiters

<PMP_Transition»

@ A_NotifyOps
[

m:H}]

DI xuuaextmmswssmm} L‘

<PMP_ObjectSelectors

{SELECT ID FRU!“I SDBSdEma OBJ_BASET
WHERE FFATUSﬁ

-

P—hjFilter
{T.ID TN SContext{TRANSMISSION}} j
<PMP_Transitions

_ E_MpinFragBatMapped

\
_ObjFiters-

‘ <PMP_ObjFitters

{T.IDIN SContext{TRANSMISSI N}} \

<PMP_Transition»
E_ValFai[$ContextAND{SContexthULL,

@ A_DaVallnPT

<PMP_ObiFitters
{T.ID TN $Context{TRANSMISSION}}

«PMP_Transitions

@ A_DoVallnPT
«PMP_ObjFilter

{T.IDIN $Context{TRANSMISSION}} |

<PMP_Transition» [
E g scomtexEQDEVO!
A DovaltneT b

«PMP_ObFilter>

=2

Figure 9-112 Process inbound transmISSIon Finite State Mach/ne snapshot

\
\
{T.IDTH SContext{TRANSMISSION}}
<PMP_Transition» <PMP_ObjectSelectors
| ~plhBatiepped {SELECT ID FROM $DBSchema.OBJ_BASE T
i | < WHERE STATUS=7}
{Tranition» ~
N \ Tran <PMP_ObjFilter»
N E_MplngatiigpFailure IT.IDTIN SContext{TRA oN}
\ \
\ \ <PMP_ObiFilters
\ \ {T.ID TN $Context{TRANSMISSIONY} «PMP_Obijecisfelector»
N\ \ {SELECT ID FHOM $DBSchema.OBJ_BASE T
N\) i WHERE STATUS=7} \
«PMP_ObjectSelectors
{SELECT ID FROM $DBSchefna,0B]_BASE T
\ WHERE STATUS=7}
9 \
\ ,

\
-~ %PMP_Transition»

\
" @ A_DoVallnPT

- e
— {r.IofI

\
\
\

Fnhﬂ:er»

\T I"‘.

N $Context{TRANSMISSION}}

¥
| {T.IDIN $Context{TRANSMISSION}}

| cancel

«PMP_Resolution»
|
«PMP_Transitions

o\
\
d
o erTEAb
[<eve cbriters

T
|

‘ <PMP_State, PMP_Alert>
‘ 5 _InPTMapFailed

—

(% Regionl
E_QutPTSent : Filter an
SContextMULL{EXPECT _ACK} is
used here to exdude transitions
when using short lifecyde.
A_MapAndPutToQueue does not
use this context,

A_RouteAndSendQutTxn does

«PMP_Transition=

“PMP_States
L0 5_CutPTCreated

«PMP_Transition
E_PTOutCreated

@ A_MapAndP

PMP_ChjFilters
{T.ID IN SContext{TRANSMISSION}}

UEPTToQueue

«PMP_States
&0 5_OutPTAwaitingSend

«PMP_Transition=»

«PMP_Transition»
d
] A_Nut':gops

. T [PMP-ChiFilers
N {T.IDIN 5Context{TRnN5M15510N}}>
.,
", “

T A_\NDtEDps

«PMP_ObiFilters-._

_‘

Rezend

/ {T.IDIN 5Context{TR.\'—\NSMISSION}}
Figure 9-113 Outbound physmal transm:ss:on Finite State Machine snapshot

«PMP_Resolution:

Chapter 9. Patterns 337

9.5.6 Process highlights

This pattern assumes and encourages the use of a generic Finite State Machine that is
provided as part of Financial Transaction Manager. The Finite State Machine should cater to
most of the inbound and outbound transformation Finite State Machine requirements. If this is
not the case and the requirements mandate that a custom Finite State Machine is created for
inbound and outbound transformation process, the states and events that are raised by the
Financial Transaction Manager core framework do not change. Therefore, a custom Finite
State Machine must be modeled with the same state and event names that are mentioned in
the generic Finite State Machine. The detailed sequence diagrams that are provided in 9.5.5,
“Finite state machine” on page 336 indicate the name of the states that Finite State Machine
uses. The following events are raised by Financial Transaction Manager core framework in
the context of this pattern:

» E_MpInTxnMapped: When inbound transaction mapping is successful.

» E_MplinTxnMapFailure: When the inbound mapper reports transaction mapping status as
Failure.

» E_MplinBatMapped: When inbound batch is successfully mapped.

» E_MplinBatMapFailure: When the inbound mapper reports batch mapping status as
Failure.

» E_MplnFragBatMapped: When the inbound fragment is successfully mapped.

» E_MpInMappingAborted: When the inbound mapper reports transaction mapping status
as Aborted.

» E_TxnOutCreated: When outbound transaction is created and is ready to be mapped to
outbound physical transmission.

9.5.7 Pattern interaction

This pattern can be used with the pattern that is described in 9.1, “Creation of outbound
message or file pattern” on page 238 for sending outbound physical transmissions.

For more information about the use of this pattern, see the Financial Transaction Manager
Information Center by clicking Appendixes — Appendix E. Generic Model —> Scenario
Descriptions — Process Inbound Transmission.

9.6 Debulking pattern

338

Debulking refers to breaking down batch messages into individual transactions, which can
then be processed independently through Finite State Machine orchestration.

In Financial Transaction Manager, debulking occurs during Inbound Mapping in which
mappers parse the input message that identifies batch and transaction-level message
elements. For each of these messages, relevant batch and transaction objects are persisted
to the Financial Transaction Manager database.

Figure 9-114 on page 339 shows the basic Use Case for this pattern. It also shows the Batch
message that is parsed and mapped into Batch Objects, the processing of which is handled
by Batch level Finite State Machines. Also shown are Transaction Objects that each contain
an ISF message, the processing of which is handled by Transaction Finite State Machines.

Financial Transaction Manager Technical Overview

Batch Lifecycle

Batch Objects

Receive Batch Message Parse and Map to I%F

Batch Message

Transaction Objects

Client

Transaction Lifecycle

Figure 9-114 Debulking Pattern Use Case

9.6.1 High-level description

Figure 9-115 on page 340 shows the High-Level Sequence diagram for the Debulking
pattern. Financial Transaction Manager receives an inbound batch message, creates an
inbound Physical Transmission record in the Financial Transaction Manager database, and
then calls an inbound mapper that is based on channel data. The inbound mapper parses the
message into batch and transaction objects, and these objects are written to the Financial
Transaction Manager database as Batch and Transaction records.

Chapter 9. Patterns 339

] High Level Sequence Diagram
S :Client B £ :Fm application

1: Inbound Batch Msg

1.1} Log PT

2: Parse and Map
to ISF

' [3i Lob Batches

- 4: llog Tens

Figure 9-115 Debulking pattern High-Level Sequence diagram

9.6.2 Objects and object relationships

The Financial Transaction Manager Objects that are used in this pattern are objects that are
logical representations of message elements in the physical message (for example, a
Transmission Object can be broken down into Batch and Transaction Objects), or a Fragment
Object, which is different in that it is an object that exists in the Financial Transaction Manager
datamodel to streamline processing (for example, Fragments are a Financial Transaction
Manager concept rather than a concept from the message).

Figure 9-116 shows the relationship between the objects in this pattern.

B [InPT . \

)
TRANSMISSION InFragment

I}
TRANSMISSION
]_“a

&l InBatch

fl InTxn

Figure 9-116 Debulking object and object relationship

340 Financial Transaction Manager Technical Overview

9.6.3 Detailed Sequence diagram

The primary Detailed Sequence diagram that describes this pattern is the Log and Map Batch
Detailed Sequence diagram from “Appendix E. Generic Model” in the Financial Transaction
Manager 2.1 Information Center.

Figure 9-117 shows the Log and Map Batch Detailed Sequence diagram, which shows the
interactions between the Financial Transaction Manager objects and key components.

1: Arrived

'] Log and Map Batch

Q :PT Flow Q :MapperTolsF

:PT Flow :MapperTolSF InPT :Batch AInTxn

1.1.1: Create

:InPT

[S_InPTWrrived}
1.2: Map To ISF

1.2.1: Create(1..n)]
"""""""""""""""""" > :Batch
[S_InBatMapped]}

1.2.2: Create(1..n)
:InTxn

1.2.3: PT Mapped o :
{S_InTxnMapped}

1.2.4: Bat Mapped

1.2.5: Txn Mapped

Figure 9-117 Log and Map Batch Detailed Sequence diagram

For large inbound messages that contain large batches (for example, when the transaction
count approaches the 100,000 mark), the inbound message can be split into fragments,
which map to Fragment objects in the Financial Transaction Manager database.

Figure 9-118 on page 342 shows the Log and Map Fragmented PT Detailed Sequence
diagram as described in “Appendix E. Generic Model” of the Financial Transaction Manager
2.1 Information Center.

Chapter 9. Patterns 341

'] Log and Map Fragmented PT

=] :PT Flow =] :MapperTolsF

1: Frag Arrived

=1 1i:logPT

1.1.1: Create(0. 1)

| BlaGeneric Inbound PT>

NPT
[S_InPT Arrived}
1.1.2: Create (1)
--- =& ‘Fragment
1.2:MapToISF {5_InFragArrived}
1 1.2.1: Create(0..n)
"""""""""""""""""""""""""""""""""""" =[x ‘Batch
1.2.2: Create(1..n) {5_InBatMapped}

1.2.3: PT Mapped

“| B & nTsn

{S_InTxnMapped}

1.2.4: Frag Mapped

1.2.5: Frag Bat Mapped

1.2.6: Txn Mapped

Figure 9-118 Log and Map Fragmented PT Detailed Sequence diagram

9.6.4 Obiject Lifecycle diagram

The Object Lifecycles diagrams for this pattern are simple. Each object (Transmission, Batch,
and Transaction) goes from an Arrived or Mapped starting state to a Validating state after the
Inbound Message is parsed and corresponding events are raised.

Figure 9-119 shows the Object Lifecycle for Inbound Physical Transmission Object.

(s Inbound Debulking PT Lifecycle

2 Inbound Transmission Arrived

batch|mapped

& Inbound Transmission Walidating

Figure 9-119 Inbound Debulking PT Lifecycle

342 Financial Transaction Manager Technical Overview

Figure 9-120 shows a typical Object Lifecycle for an Inbound Batch Object. In this example,
the Check txn validation counters keeps a count of the number of transactions that passed
or failed validation when the batch txn pass or batch txn fail events are triggered. Then,
for these two events and the batch mapped event, it checks the sum of these numbers against
the total number of transactions for the batch, which are calculated and stored in the

database during mapping. If equal, it transitions the batch to the next state by raising the

batch txn validation complete event.

[# Inbound Debulking Batch Lifecycle

batch mapped

batch tkn pass |
@ Check tun|validation counters \ _J,

& Inbound Batch Mapped

I batch tin fail

@ Check ten validation counters

batch txn \raliLation complete

.J_.

o Inbound Batch Validating

@ Check ten validation counters

Figure 9-120 Inbound Debulking Batch Lifecycle

Figure 9-121 shows a typical Object Lifecycle for an Inbound Transaction Object.

["# Inbound Debulking Txn Lifecycle

& Transaction Mapped

transaction Japped
tﬁ-VaIidaT Transaction

e Transaction Validating

Figure 9-121 Inbound Debulking Txn Lifecycle

Chapter 9. Patterns

343

At the time of this writing, it is not deemed necessary to have an Object Lifecycle for Inbound
Fragments in Financial Transaction Manager. The Fragment is created in the Arrived state
and does not transition to another state.

9.6.5 Finite State Machine

The Finite State Machines that are linked to the Debulking pattern in terms of the Generic
Finite State Machines and those that are supplied with the Sample Applications are described
in the Financial Transaction Manager 2.1 Information Center. Sections of the Finite State
Machines are included in this section to highlight the transitions and states that are involved.

Figure 9-122 shows a highlighted section of the Generic Inbound Physical Transmission
Finite State Machine in which the E_MpInBatMapped and E_MplInBatMapFailure events
(which are raised by the inbound mapper) cause the Inbound Physical Transmission object to
transition to an S_InPTValidating state.

TCH}]

@ S_InPTArrived

ATCHY

E_MpInTngangilur’é'r R E_MplnFragBatMapped

‘ ITIDIN xonmg;{m’ﬁr\lsmssxow}} ‘—‘

‘ {T.ID IN SCortest{TRANSMIS

{SELECT ID FROM $DBSchema.0B1_BASE T
WHERE STATUS=7} -

{SELECTI
WHERE 5T
Xt TRANSMISSION}

L‘ E_MpInBati

rerl ECT 10 FHOM 2nEschems OB BASE T
[SELECT ID FAOM $DBSchema.OBJ_BASE
VWHERE STATYS =7}

" E InBatFailed
; a8 A_DoValnPT

-
-~

.____,..--"'1--.{“I'.ID|IN &Context{TRANSMISSION}

E MpInMappingAborted
&8 A_MotifyOps

| {T.ID IN SContext{TRANSMISSION}}

Figure 9-122 A section of the Generic Inbound Physical Transmission Finite State Machine

344

Financial Transaction Manager Technical Overview

Figure 9-123 shows a highlighted section of a sample Inbound Batch Finite State Machine in
which the E_MpInBatMapped (which is raised by the inbound mapper), E_ValPass, and
E_ValFail events (which are raised by the transaction validation action) cause the Inbound
Batch object to transition to an S_BatValidating state after the A_UpdateBatchCounter action
confirms that all transactions within a batch are validated. For more information, see the
Sample Application that accompanies Financial Transaction Manager 2.1.

E_WValPass[$ContextNOTHMULL{BATCH}]

= A_UpdateBatchCnuTm

; 0 5_BatMapped

E_MnInRatManned
@ A UpdateBatchCounter

=g b+ TS
B.ID = SContext{BATCH}}

i TCH}Y]
@ A_UpdateBatchCounter

~+ Yy L
tgxt{BATCH} ;

alComplete
idateBatch

M AT

tBATCH}}

l e 5_Batvalidating I

Y

Figure 9-123 A section of the Inbound Batch Finite State Machine from the Sample Application

Figure 9-124 on page 346 shows a highlighted section of a sample Inbound Transaction
Finite State Machine in which the E_MpInTxnMapped event that is raised by the inbound
mapper causes the Inbound Transaction object to transition to an S_TxnValidating state. For
more information, see the Sample Application that accompanies Financial Transaction

Manager 2.1.

Chapter 9. Patterns 345

2 5_TxnMapped

E_MpInTxnMapped[$ContextEQ{ TXN_TYPE, 'PAYMENT_ORIGINATION'}]

E_WalPass[$ContextMOTHULLLBA

{T.ID TH $Context{TRANSACTI]

@@ A Doval

'I-E_'-.-'aIPas5[$CD ntextMULL{BATCH}]

& 5_TxnValidating

T HTFIRIM. SContext{TRANSACTION}}

@ A_DoSendToLigMar

E_ValFail[$ContextMULL{BATCH}] -
Figure 9-124 A section of the Inbound Transaction Finite State Machine from the Sample Application

As with the Object Lifecycle section, the Finite State Machine for Inbound Fragments in
Financial Transaction Manager is simple at the time of writing. The Fragment is created in the
Arrived state and does not transition to another state.

9.6.6 Process highlights

In this section, we describe the process highlights in debulking a message in Financial
Transaction Manager. We also describe the steps that are involved in normal batch
processing and highlight what can be done to facilitate large file batch processing.

The following steps are involved in the process of receiving a batch message in Financial
Transaction Manager and debulking it into its component parts:

1. The Financial Transaction Manager application Physical Transmission Wrapper
(WebSphere Message Broker message flow) starts on the receipt of a batch message and
by using some criteria (for example, Channel_Name User-Defined Property set on the
Physical Transmission Wrapper), retrieves the inbound channel to be used for this
message from the cache.

2. After the inbound channel is identified and the channel data is retrieved from the cache,
the message is sent to the Financial Transaction Manager core PhyscialTransmissionFlow
message flow. This message flow writes the inbound message to the Financial
Transaction Manager database in the form of a Transmission object.

3. By using the retrieved channel data, the message flow then starts the inbound mapper for
this message.

4. The inbound mapper is composed of a number of components: the BeginMapper
message flow core component, which performs the initial parse and syntactic validation of
the message; the Mapper, which receives the parsed message from BeginMapper and
loops through the batches that are contained within while mapping individual transactions
to the ISF and identifying the values for the object tables (for example, batch and
transaction) in the Financial Transaction Manager database, and the EndMapper, which
handles database persistence and raising of events.

346 Financial Transaction Manager Technical Overview

For more information about design and implementation considerations, see Chapter 4,
“Mapping” on page 85.

5. For every batch object that is persisted to the database, the EndMapper component raises
an E_MplInBatMapped event. For every transaction object that is persisted, the
EndMapper component raises an E_MpInTxnMapped event.

6. These events are processed by the inbound batch and transaction Finite State Machines
in parallel.

When you are handling large files, there are some considerations to take into account. If the
batch size is expected to be over a few thousand transactions, the inbound mapper can be
implemented so that it splits the batches into logical chunks. These chunks can then be
propagated to the EndMapper component, which facilitates low memory usage of the
WebSphere Message Broker parsers.

If we are dealing in the range of 100,000 transactions in a file, Fragmentation of the message,
is a method to consider, as described in this section.

For more information about large-file handling in Financial Transaction Manager, see
Chapter 4, “Mapping” on page 85, or the “Mapping Large Input Batches” section in the
“Mappers” chapter of the Financial Transaction Manager 2.1 Information Center.

For more information about Fragmenting an Inbound Physical Transmission, see the “Design
for large files” section of the “Designing Applications” chapter of the Information Center.

9.6.7 Pattern interaction

The Detailed Sequence diagrams that were described earlier in 9.6.3, “Detailed Sequence
diagram” on page 341 can be extensively incorporated into a larger process.

Figure 9-125 shows how the Log and Map Fragmented PT Detailed Sequence diagram can
be referenced into a larger process that shows the interactions between the External System,
Fragmentor, WebSphere MQ, and Financial Transaction Manager components.

'] Fragment

% :Ext Sys

Q :Fragmentor Q MQ sGeneric Inbound PT» szeneric Inbound FT= «Application: «Applications
NPT :Fragment :Batch :InTxn

1: Arrived

_:i 1: Fragment

111z Put

— {S_InPTArrived} {S_InFragArrived} {S_InBatMapped} {S_InTxnMapped}
2: Frag Arrived{1)
Log and Map Fragmented PT

— 3 Validate
3.1: Txn Valid

{S_InPTValidating} 3.1.1: Tun Validation Complets?

3.2t Tn Valid

3.41: application specific,.T 3-.1‘:“31_3]_3"53110” spedific...

Figure 9-125 Inbound Fragmented Transmissions

Chapter 9. Patterns 347

Figure 9-126 shows how the Log and Map Batch Detailed Sequence diagram can be
referenced into a larger process that shows the interactions between the External System
and Financial Transaction Manager Components.

| Batch

szeneric Inbound PT= sApplications «Applications
:InPT :Batch InTxn
1: Arrived - - - - - -
— _ 'S _InPTArrived} {S_InBatMapped} {S_InTxnMapped}
Log and Map Batch
— 2 Validate
2.1: Txn Valid

{S_InPTValidating}
2.1.1: Tun Validation Complete?

2.2t Txn Valid

2.1.1: application specific... | [T ‘1-_\1: application spedific...

Figure 9-126 Inbound Batch Transmissions

For more information about these pattern interactions, see “Appendix E. Generic Model” of
the Financial Transaction Manager 2.1 Information Center.

9.7 Bulking pattern

348

Bulking refers to the batching of transaction messages into a single outbound transmission to
be sent to an external system. This pattern is a specialization of the Outbound message or
file pattern. Bulking involves the following tasks:

» Creating the outbound object hierarchy
» Triggering of the Bulking process

Bulking is handled by outbound mapping in Financial Transaction Manager where mappers
take a hierarchy of batch and transaction objects and generate a single bulk output in the
wanted format.

Creating the outbound object hierarchy is application-specific in that each Bulking use case
has its own requirements for the structure of the outbound object hierarchy, but consider the
following scenarios:

» Batch in/Batch out, where the structure of the outbound object hierarchy matches the
structure of the inbound object hierarchy. For example, for an inbound transmission object,
inbound batch objects, and inbound transaction objects, you have a corresponding
outbound equivalent that is created during application processing. A typical triggering
mechanism to kick off the Bulking process of the outbound objects might be when all
processing of the inbound objects is complete.

Financial Transaction Manager Technical Overview

» Single in/Batch out, where single inbound transactions are processed and outbound
transactions are created as part of this processing. Then, based on a threshold or time
trigger, the Bulking process creates the outbound batch object or objects and links the
outbound transactions to a batch that is based on the triggering criteria. For example, if
the trigger is “End of day,” the selection criteria is all outbound transactions in a certain
state with a creation date less than or equal to today.

The following triggers are available:

v

A schedule (for example, time of day, end of week, or end of month)
Inbound processing completion (for example, all inbound batches validated)
Threshold reached (for example, 1000 transactions validated)

Operator intervention (for example, the operator signals a Start Bulk action)

vYyy

Figure 9-127 shows the basic Use Case for this pattern.

Outbound Batch|Lifecycle Outbound Transaction Lifecycle
Batch Objects I
‘ TTnsadl'on Objects
Transmission Object Bulked Message

Retrieve ISF messages

‘Outbound Transmission Lifecycle Map to External Format

External System

Figure 9-127 Bulking pattern use case

9.7.1 High-level description

Figure 9-128 on page 350 shows the High-Level Sequence diagram of a Bulking scenario in
which the outbound Physical Transmission, Batch, and Transaction object hierarchy is built, a
mechanism is triggered to indicate that the objects are ready for bulking, an event is raised to
indicate this readiness, and a batched transmission is sent to an external system. The
diagram references a High-Level Sequence diagram that is used in the Outbound Message or
File Pattern. Error scenarios for this pattern are also covered in the Outbound Message or
File Pattern.

Chapter 9. Patterns 349

| High Level Seq - Batch Transmission (Bulking Outbound)

=l = :FTM Application % :External System

1: Build Ohject Hierarchy

2: Trigger Mechanjzm (&)l Outbound Batches Ready)

3: Raise PT Created Event

High Level Seq - Batch Transmission (Outbound)

Figure 9-128 Bulking pattern High-Level Sequence diagram (Batch)

Figure 9-129 on page 351 shows the High-Level Sequence diagram of a Bulking scenario in
which the outbound Physical Transmission, Fragment, Batch, and Transaction object
hierarchy is built, a mechanism is triggered to indicate that the objects are ready for bulking,
an event is raised to indicate this readiness, and a fragmented transmission is sent to an
external system. The diagram references a High-Level Sequence diagram that is used in the
Outbound Message or File Pattern. Error scenarios for this pattern are also covered in the
Outbound Message or File Pattern.

350 Financial Transaction Manager Technical Overview

&l £ :FTM Application

1: Blild Object Hierarchy

3: Rajse PT Created Event

E High Level Seq - Fragmented Transmission (Bulking Outbound)

% :External System

2: Trigger Mechanisp (Al Outbound Fragments Ready)

High Level Seq - Fragmented Transmission (Qutbound)

Figure 9-129 Bulking pattern High-Level Sequence diagram (Fragment)

9.7.2 Objects and object relationships

Figure 9-130 shows the Financial Transaction Manager Objects and Object relationships that

are used for this pattern.

Bl [OutPT

Bl [QutTxn

I
TRAMNSMISSION

EIfE| QutFragment

Figure 9-130 Bulking Object/Object Relationship

Chapter 9. Patterns

351

9.7.3 Detailed Sequence diagram

There are two primary Detailed Sequence diagrams that are shown in this pattern. The Batch
Detailed Sequence diagram shows the creation of a bulked message from inbound batches
ingestion that is mapped through to an outbound batch transmission object. The Fragment
Detailed Sequence diagram shows the creation of a bulked message from inbound batches
ingestion that is mapped through to an outbound fragmented transmission object. Creation of
the outbound object hierarchy is application-specific and what is shown here is a method that
is used that is similar to that used in the Fragmentation Sample Application for Financial
Transaction Manager. For more information about the Fragmentation Sample, see “Appendix
F. Reference applications” in the Financial Transaction Manager 2.1 Information Center.

The trigger mechanism that starts outbound batch processing in this scenario is the
monitoring of the Txn Routed events. A count of routed transactions is kept in the COUNTER
table for each batch. When the number of valid transactions (which is calculated earlier in the
process) in the batch matches this count, this signals that the batch is ready for outbound
processing. Trigger mechanisms can be based on a schedule when input is finished
processing, when a certain threshold is reached, or on operator intervention, and so on.

Error scenarios for this pattern are already covered in the Outbound message or file pattern.

Figure 9-131 shows the Batch Detailed Sequence diagram that shows the interactions
between the Financial Transaction Manager object and components.

| Batch
& % iExt Sys Pl generic Inbound PT» B applications 2 appiication :0utTen :0utBatch B :0utPT
:InPT :Batch :InTxn
1.1: application spedific... P 1: application spedific...
2.1: Tun Routed [2: Teh Routed

2.2:|Create Dutbound Batehy 4. - .

23 CLE_BIEJ Qutbound Txn
23.1: Creat&s _\WaitOutBatComplete

2.1.1; ChecHd all tens routed?

2.1.1|1: Baise Dut Batch Created
2.11.1.1: Qut Batch Created

[S_OutBdicte
2201

Figure 9-131 Bulking Pattern Batch Detailed Sequence diagram

352

Financial Transaction Manager Technical Overview

Figure 9-132 shows the Fragment Detailed Sequence diagram that shows the interactions
between the Financial Transaction Manager object and components.

'] Fragment

B2 Etsys B Generic Inbound PT> B eapplications B aapplications :0utTxn
InPT :Batch :InTxn

1.1: application spedific... - 1: application spedific...

2.1: Txn Routed [Z: Txh Routed

2.2:|Cigate Dutbound Batdh, |, o000

:0utBatch E :OutFragment

fS_OutBa{Created)

23: dreatd Outbound Ten
2.3.1: Create

2.1.1; EhecH all bens routed?

21.1.1: Raise Dut Batch Created
2.1.1.1.1: Qut Batch Created

{S_WaitQutatComplete}

repeats

22110 Gthound F t
REankiter o
[pALLLL Created,

a

2,211 Crepte Outbound AT

2.21.13:|Created

:OutPT

Figure 9-132 Bulking Pattern Fragment Detailed Sequence diagram

9.7.4 Obiject lifecycle diagram

The Object lifecycle diagrams for this pattern are largely based on what is modeled in the
Finite State Machines for Outbound Fragments and Outbound Transactions in the Financial
Transaction Manager Generic Model. The Object lifecycle for Outbound Batches is largely
application-specific. The Outbound Physical Transmission Object lifecycle is described in 9.1,

“Creation of outbound message or file pattern” on page 238.

For the Batch Obiject lifecycle, an approach that is similar to that used in the Fragmentation

Sample Application is shown as a guide.

Chapter 9. Patterns 353

Figure 9-133 shows the object lifecycle for an Outbound Fragment Object. For more

information, see Appendix
Information Center.

E. Generic Model of the Financial Transaction Manager 2.1

(C» Outbound Fragment

‘ &2 5_OutFragCreated ‘

d

Queue

Frag Ready to Sen
@ Map and put Frag to

Frag Ready to Send
& Map and put Frag to Queue

€9 5_OutFragAwaitingSend _| &5 5_OutFragWaitingOpsverify
[=1
Map Aborted
.._._____.?_end Failed Operator| Verify
qoolne s Frag Re.ﬁ"d',ktu_.Send
@ Map and put Frag to Queus
@ 5_OutFragSent | T~ \
S — ~~Send.Abort _ ~
L @ Undo Frag Pot——__ - S,
) _:"‘ &2 5_0OutFragSendError
Defrag Complete "--l
@@ Motify Frag Complete peratorVer
@ 5_OutFragComplete _|
Frag Ready to Send
@ Map and put Frag to Queue 5_OutFTFailed

Figure 9-133 Outbound Fragment Lifecycle

354

Financial Transaction Manager Technical Overview

Figure 9-134 shows a possible object lifecycle for an Outbound Batch Object. The Outbound
Batch object is created in the S_OutBatchCreated state. When all transactions for the batch
are ready to be processed, an “outbound batch Created” event is raised to signal the creation
of an Outbound Physical Transmission (or Fragment). After the Outbound Physical
Transmission is processed, an Outbound PT Sent event is transitioned to complete outbound
batch processing process.

(& Outbound Batch

e 5_OutBatchCreated

outbound Balch created
@ Create Optbound Batch Transaction

&0 5_WaitingPTSend

Cutbound PT Sent
& OutbounT Batch Complete

5_OutBatComplete

Figure 9-134 Outbound Batch Lifecycle

Figure 9-135 on page 356 shows the object lifecycle for an Outbound Transaction Object. The
Outbound Transaction object is created in the S_WaitOutBatComplete state. When the
outbound batch is processed, the outbound batch orchestration can raise “outbound batch txn
complete” events to signal that the Outbound Transactions can move to a complete state, or
in the case of a batch failure, an “outbound batch failed” event is raised and the Outbound
Transactions moves to a failed state.

Chapter 9. Patterns 355

("= Qutbound Transaction

o 5 WaitOutBatComplete

outbound batch failpd outbound batch txn complete

5_CutTxnFailed

S_OutTxnComplete

Figure 9-135 Outbound Transaction Lifecycle

9.7.5 Finite State Machine

For more information about the Generic Outbound Fragment and Outbound Transaction
Finite State Machines that are used by this pattern, see “Appendix E. Generic Model” in the
Financial Transaction Manager 2.1 Information Center.

The Finite State Machines for the Outbound Batch Object as described in 9.7.4, “Object
lifecycle diagram” on page 3583, is straightforward and is described in “Appendix F. Reference
Applications” section of the Financial Transaction Manager 2.1 Information Center.

Processing of the Outbound Batches is application-specific; therefore, no Generic Outbound
Batch Finite State Machines are available to handle the orchestration of these objects for the
Bulking pattern.

9.7.6 Process highlights

356

The Bulking pattern is a specialization of the Outbound Message or File pattern. The Bulking
pattern includes the following main tasks:

» Creating the outbound object hierarchy
» Triggering the outbound orchestration

After these tasks are complete, the Outbound Message or File pattern takes over to handle
the process of passing the outbound physical transmission to an endpoint.

Creating the outbound object hierarchy is largely application-specific. Application design
highlights the object relationships from inbound to outbound and, depending on the use case
requirements, a set of outbound transaction objects of a certain subtype are created in the
Financial Transaction Manager database, which is linked by a foreign key to a set of outbound
batch objects of a certain subtype that also are created in the database. These outbound
batch objects can be linked to an outbound fragment object or objects (depending on size)
and are linked to an outbound physical transmission object through a foreign key relationship.

Financial Transaction Manager Technical Overview

Careful thought must be applied to the triggering mechanism for the outbound bulking
process. The process is started by the E_PTOutCreated event (if the Generic Outbound
Physical Transmission is used) and the raising of this event, which is coupled with the correct
Event Context data, starts the processing of the outbound physical message. It is important to
ensure that all outbound batches and transactions that are related to this outbound physical
transmission are in the correct state for sending (whatever state that is) and that the process
that is controlling the triggering mechanism must cater for this.

If the trigger is based on a schedule, the Scheduler Task object tables should be used to
support this configuration. For more information, see the Scheduled Activity and Scheduled
Expectation patterns that are decribed in 9.12, “Scheduled activity pattern” on page 415 and
9.13, “Scheduled expectation pattern” on page 423.

If the trigger is based on the completion of inbound or outbound processing or based on some
threshold being reached, the COUNTER table can be used to track the number of a particular
transaction event that is raised against transactions in a batch (by using the TRANSACTION
event context). This can be checked against a count of the number of transactions in a batch,
as used in the Fragmentation Sample Application.

9.7.7 Pattern interaction

This pattern interacts with the Outbound Message or File pattern, which handles the actual
propagation of physical outbound message. As part of a larger process, it can be coupled
with many of the other patterns to produce an end-to-end design for a solution. For example,
the Debulking pattern with Transformation, Semantic Validation, and Enrichment patterns all
can be coupled with some application-specific orchestration, and the Scheduled Activity or
Scheduled Expectation pattern and this Bulking pattern to describe a complete object
lifecycle process.

Chapter 9. Patterns 357

Figure 9-136 shows an example of these interactions, which combine the Debulking, Bulking,
and Outbound Message or File Patterns.

[:Ext Sys [:AnPT [l :Batch El :InTxn [l :OutTxn [&] :0utBatch [&] :0utPT

1: Arrived

{S_InPTArrived} {S_InBatMapped} {S_InTxnMapped}
Log and Map Batch (Debulking)

—2: Validate

2.1: Txn Valid

{S_InPTValidating}
2.1.1: Txn Validation Complete®

1

2.2t Twn Valid

2.1.1: application specific... | [T 2.1: application spedific...

3.1: Ten Routed [3:Txh Routed

Batch [Bulking)

EleuginiEompiet Send Out PT (batch] - (Qutbound Msg or File)

5: Raisg In Bat Txn Complete
5.1: Check all txns complete?| |

5.1.1:Baiselln Bat Complete
51.1.1:In Bat Complete i s

Figure 9-136 Pattern Interactions

9.8 Store and release pattern

It is common for applications to create forward-dated transactions that should be stored in a
transaction warehouse until they are released on a certain date and time. In addition, a
number of clearing and settlement mechanisms allow only the transmission of messages to
them in a specific time window during a working day; transactions must be stored until this
window opens.

Financial Transaction Manager can perform this task by using routing and scheduler objects
that allow the date information of a transaction (for example, a payment’s value date) to define
the release date for the transaction and then transition them to an Awaiting Release state at

the appropriate date or time.

358 Financial Transaction Manager Technical Overview

The use case for this pattern is shown in Figure 9-137.

Transaction cannot be sent

Store transaction

Schedule triggered

Transaction Check date and|time
Reception

Transaction can be sent

Continue processing

Figure 9-137 Store and release pattern use case

9.8.1 High-level description

In this pattern, a transaction within Financial Transaction Manager is ready to be transmitted.
However, Financial Transaction Manager was configured to examine the date information of
this transaction. If the date of the transaction indicates that it cannot be sent, the transaction
is transitioned to an Awaiting Transmission state. This decision is taken and makes reference
to the calendar group that is associated with the service participant that is used to transmit
the transaction.

A Service Participant within Financial Transaction Manager is an object; therefore, it has a
state and can be included in a finite state machine. This allows for events to act on the
Service Participant, which allows for state changes and actions to be triggered (in this case,
to release payments at the appropriate time). The event that is used is the E_Heartbeat
event, which is raised periodically as part of the Heartbeat flow. When IBM WebSphere
Message Broker is started, an E_HearbeatStart is emitted, which starts the Scheduler Task
object and sets the next run date and time.

The following use cases are identified for this pattern:

» Transactions are ready to transmit and can be released.
» Transactions are ready to transmit but should be held.
» Transactions are in an Awaiting Transmission state and are sent.

Note: There can be a number of transactions that are candidates to be released. In this
case, an event is raised for each transaction instead of for the group.

It might be required to wait for an acknowledgment from the application that is receiving the
transaction before processing the master transaction continues. However, this pattern
assumes that no acknowledgements are required.

This pattern is closely associated with 9.2, “Routing, IBM Operational Decision Manager
rules, and multiple targets pattern” on page 282, which describes how a transaction is routed
to an output destination.

Chapter 9. Patterns 359

Scenario 1
Figure 9-138 shows the high-level description for scenario 1.

=l = :FTM Application ‘

Transaction Processing ‘

e 1: Identify outbound destinations

L

2: Create outbound transaction
e

s 3: Check Time and Date

3.1: Transaction can be sent

4: Identify role by transaction type
-

5: Identify rank by transaction data
e

&: Identify Service Participant by role and rank
7: Retrieve Outbound Channel from Service Participant

8: Retrieve Mapper from Channel
: Retrieve outbound location from channel

10: Map transaction to external application format

11: Transmit Message

Continue processing ‘

Figure 9-138 High-level description for transactions that can be sent

il W M il e

360 Financial Transaction Manager Technical Overview

In this scenario, the following process occurs:

1.
2.
3.

A transaction is received and processed.
A destination is identified and an outbound transaction is created.

The Scheduler Task is prompted by the Heartbeat event and starts an action, which
identifies the transactions that can be released.

An appropriate event is raised for each transaction as defined within a Finite State
Machine, which causes a state change and an action to be performed.

The transaction is sent, as described in 9.2, “Routing, IBM Operational Decision Manager
rules, and multiple targets pattern” on page 282.

Scenario 2
Figure 9-139 shows the high-level description for transactions that are held.

=l £ :FTM Application

Transaction Processing

1: Identify outbound destinations

) 2: Create and store outbound transaction

: 3: Check Time and Date

. 3.1: Transaction cannot be sent

4: Continue to stare transaction

Figure 9-139 High-level description for transactions that cannot be sent

In this scenario, the following process occurs:

1.
2.

A transaction is received and is processed.

A destination is identified and an outbound transaction is created and stored in a state of
Awaiting Release.

The Heartbeat Event causes the Scheduler Task’s finite state machine to start an action
that attempts to identify all transactions (which can be transmitted) that is based on their
release date and time.

The outgoing transaction’s date information is outside the sending timescale and is not
identified as a transaction, which can be transmitted.

4. The outgoing transaction stays in an Awaiting Release state.

5. The original master transaction continues to be processed.

Chapter 9. Patterns 361

Scenario 3

The third scenario describes the release of the outgoing transaction from the Awaiting
Release state and is shown in Figure 9-140.

2l E :FTM Application |

| Transaction Held ‘

1: Hearbeat triggers Scheduler Task

2: List of transmittable tranasctions created

2.1: Raise release event against each transaction

2.1.1: Identify role by transaction type

2.1.2: Identify rank by transaction data

2.1.3: Identify Service Participant by role and rank

21.4: Retrieve Qutbound Channel from Service Participant

) 2.1.5: Retrieve Mapper from Channel

1.1.6: Retrieve outbound lacation fram channel

21.7: Map transaction to external application format

) 2.1.8: Transmit Message

Continue Processing ‘

Figure 9-140 High-level description for transmitting held transactions

362 Financial Transaction Manager Technical Overview

In this scenario, the following process occurs:

1.

2
3.
4

Outgoing transactions are held in an Awaiting Release state.

. The Scheduler Task is triggered by an E_Heartbeat event and performs an action.

The Scheduler’s Task change in transition starts an action.

. The action runs and retrieves a list of transactions that are associated with it that can be

released.

For each transaction that is retrieved, the action raises a release event against it, which
causes the transaction to be processed and transmitted.

9.8.2 Objects and object relationships

This pattern consists of the following objects:

| 4
>
>

Master transaction
Outbound transaction
Scheduler Task

The object relationship diagram is shown in Figure 9-141.

Master Transaction

TRANSMISSION

| CREATES - J Outbound Transaction

1 1.* 1 1 1

Outbound Transmission

REL ES
1
Scheduler Task

Figure 9-141 Object Relationship diagram for Store and Release

9.8.3 Detailed sequence diagram

The detailed sequence diagram for this pattern shows the interactions between the Financial
Transaction Manager objects.

In this pattern, the following use cases are identified:

» A transaction is to be transmitted and is allowed.
» A transaction is to be transmitted but is not allowed.
» Atransaction is in an Awaiting Release state and is released by the Scheduler Task.

Chapter 9. Patterns 363

Scenario 1

The detailed sequence diagram for the first scenario is shown in Figure 9-142. In this
scenario, a transaction’s due date is compared to the release rules that were created, the
date is found to be valid, and the transaction is transmitted.

= InTxn = :OutTxn

) 1: Identify Destinations

2: Create

~ 3: Check due date

4: Check Transmission allowed

] 4.1: Compare due date to release rules

) 5: Transaction can be sent

Create and send Transmisisan

Continue processing

Figure 9-142 Detailed Sequence Diagram: Transaction sent without hold

364 Financial Transaction Manager Technical Overview

Scenario 2

In the second scenario, a transaction is to be sent, its due date is compared to the release
rules that were defined, found to be invalid, and the transaction is moved to a state of Awaiting
Release. The detailed sequence diagram is shown in Figure 9-143.

= :InTxn &l :QutTxn

i 1: Identify Destinations

2: Create

~ 3: Check due date
4: Check Transmission allowed

] 4.1: Compare due date to release rules

) 5: Route to Awaiting Release state

Await Scheduler Task triggern

Figure 9-143 Detailed Sequence Diagram: Transaction Held

Scenario 3

In the third scenario, transactions are in an Awaiting Release state and the Scheduler Task is
triggered by a heartbeat event, E_Heartbeat. The Scheduler Task creates a list of the
transactions that are to be released and then raises a release event against each transaction.
The transaction is then transmitted, as shown in Figure 9-144.

= :OutTxn Bl @& :scheduler Task B @& :outer

Transaction awaiting release

1.1: Retrieve list of transactions ; LlbealBeattiGoes

1.2: Retrieve list of transactions

2: Raise event for each transaction

.:|3: Release transaction

Create and 5end Transmission

Figure 9-144 Detailed Sequence Diagram: Transaction Release

Chapter 9. Patterns 365

9.8.4 Obiject lifecycle diagram

This pattern includes the following objects:

» Master transaction
» Outbound transaction
» Scheduler task

In this pattern, the Scheduler Task lifecycle consists of one state and the master transaction’s
lifecycle are out of scope, so it is are not covered in this section. The lifecycle of the outgoing
transaction is shown in Figure 9-145.

Outbound
L Transmission
Created

check date vaIiLi
&8 Can transaction be sent

L) Checking Date Valid transaction may not be sent L Awarting Release

@ Hold transaction

transaction va be sent
& Map anc1 put ot queue

Sending transaction released
Transaction @ Triggered release of payment

outbound trar{smission sent

-~ Transaction
Complete

Figure 9-145 Object lifecycle diagram for outgoing transaction

9.8.5 Finite State Machine

In this pattern, there are two main Finite State Machines that are used, which does not
include the Heartbeat finite state machine that is described in 9.14, “Heartbeats monitoring
(scheduling) pattern” on page 431. The following Finite State Machines are available:

» Finite State Machine for the outbound transaction
» Finite State Machine for the Scheduler Task.

The Scheduler Task is a Financial Transaction Manager object and includes an associated
state. By using this configuration, it can be included within Finite State Machines, be affected
by events, and have actions run.

An example of a Finite State Machine for a Scheduler Task object is shown in Figure 9-146 on
page 367.

366 Financial Transaction Manager Technical Overview

«PMP_Transition»

- «PMP_Transition»
«PMP_Transition» | E_Heartbeat

E_HeartbeatStart T @ A_ReleaseHeld Transactions
@@ A_InitTransactionRelease <PMP_States

«PMP_ObjFilters

| 2 5_Available
7 - {8Context{NOW} »=TIMECQUT}

Figure 9-146 Finite State Machine for Scheduler Task

The Finite State Machine for the Scheduler Task object is straightforward; the service is
started by the E_HeartbeatStart when WebSphere Message Broker starts. The
A_initTransactionRelease action sets up several variables that are used while the service is
active; for example, the next run date and time.

The actual service is triggered by the E_Heartbeat event, which causes the
A_ReleaseHeldTransactions action to be run at the appropriate time.

This Finite State Machine triggers only the Payment Release service, as shown in the master
object selector panel in Figure 9-147.

General MasterObjectSelectorn SELECT ID, APP_ID, RESOURCE_REF PARTICIPANT_MAME, TASK_TIME
P FROM SDBSchema.SCHEDULER_TASK_V WHERE SUBTYPE = 'PAYMENT RELEASE SERVICE' AND
STATUS=7 AND APP_VERSION_ID=S5AppVerld
Rulers & Grid
Appearance
Advanced ObjectT}rpe: SCHEDULER_TASK -
Pricrity: 50

Figure 9-147 Master Object Selector panel for Payment Release Service Finite State Machine

The Finite State Machine for the outgoing transaction is shown in Figure 9-148 on page 368.

Chapter 9. Patterns 367

«PMP_T&Ensition»

«PMP_State=
0 5 OutTxnCreated

«PMP_Transition:»
E_CheckSchedule[T.ID IN $Context{ TRANSACTION}]
@@ A_CheckSchedule

«PMP_ObjFilters
[TID IN SContextTRANSACTION}

«PMP_Transition:

E_HoldTxn
=PMP_States — =PMP_States

05 CheckingDate <PMP_ObjFilters _‘ e 5_AwaitingRelease

{T.ID SContextTRANSACTION}

«PMP_Transition:»
E_SendTxn

@ A_SendToApp «PMP_Transition=

E_ScheduleTriggered
@ A _ReleaseTransaction

«PMP_ObjFilter
TID in SContestTRANSACTION]}

«PMP_ObjFilters
[TID in SContextTRANSACTION}

«PMP_States
a5 SendingTxn

«PMP_Transition:»
E_OutTxnQutiComplete
@ A_Raise OUETxnComplete

«PMP_State=
5_OutTxnComplete

Figure 9-148 Finite State Machine for Outgoing Transaction

In this Finite State Machine, the following process occurs:
1. The outgoing transaction is created with an initial state of OutTxnCreated.

2. The E_CheckSchedule event is raised and the transaction is moved to a state of
S_CheckingDate.

3. At the same time, the A_SendToApp action is started, which checks the due date of the
transaction and raises the appropriate event.

If the transaction’s due date falls outside of the transmission window, the transaction is
moved to the S_AwaitingRelease state.

If the transaction can be sent, the process continues and the transaction is sent.

4. When the Scheduler Task is triggered, it obtains a list of transactions that it can release
and raises a E_ScheduleTriggered event for each of them.

5. The held transaction is released and processed by the A_ReleaseTransaction action.
6. The transaction is transmitted.

9.8.6 Process highlights

368

This store and release of transactions is achieved within Financial Transaction Manager by
the creation and configuration of several objects. They can be created within the Operations
and Administration Console, as described in Chapter 6, “User interface” on page 153, or
within Rational Software Architect as part of the model.

Financial Transaction Manager Technical Overview

The detail of the objects and processes that are expected with Scheduled Activities is
described in 9.12, “Scheduled activity pattern” on page 415.

The Scheduler Task object is defined in Rational Software Architect, as shown in
Figure 9-149.

H <Class> <EPP_SchedulerTask= FTM Sample App::Config::Service Monitor:Scheduler Tasks::Payments Gateway

General

FTM

Attributes
Operations
Stereotypes
Documentation
Constraints
Relationships
Advanced

Mame: Fayments Gateway
Resource Ref: Payrnents Gateway
Resource Ref2:

Current 5c...ule Entry:

Task Time: 01 January 2000 = 00:00:00 - []Mull Date

Calendar Groups: | FTM Sample App:Config:Service Monitor:Calendars:Surmmary Monitor Schedule Group

Delete | | Navigate
Involved Party: A

Ohj Status: 5_Monitorictive
Obj Subtype: INVOKED_SERVICE_MONITOR
Ohbj Class:

Figure 9-149 Definition of Service Participant in Rational Software Architect

The definition of a Scheduler Task allows for a basic schedule to be defined (for example, a
task time) a link to an associated calendar, and so forth.

A Calendar Group object is defined within Rational Software Architect, as shown in
Figure 9-150.

£ Interfaces

F3 Calendar Groups

& «EPP_CalendarGroups Calendar Group EBA Step? SCT

=EPP_Calendar» 2012 Christrnas Day
=EPP_Calendar= 2012 Christmas Holiday
=EPP_Calendar= 2013 Christmas Day
=EPP_Calendar= 2013 Christmas Holiday
=EPP_Calendar» 2013 Easter Monday
| «EPP_Calendar» 2013 Good Friday
=EPP_Calendar= 2013 Labour Day
2 «EPP_Calendar» 2013 New Vears Day
[<EPP_Schedules DRR Expected
|- «EPP_Schedules EBA Cutoff
|:® =EPP_Schedule= Qpen Days

|:® =EPP_Schedules Payment Cutoff

|:® =EPP_Schedule= SCF Expected Cycle 1
|:® =EPP_Schedule= SCF Expected Final Cycle
|:® =EPP_Schedules Send ICF Cyclel

|:® =EPP_Schedulex Send ICF Final Cycle

Figure 9-150 Definition of a Calendar Group in Rational Software Architect

Chapter 9. Patterns 369

The Calendar Group object consists of the following types of entries:

» Calendars, which are used to define holidays
» Schedule, which is used to define the next activation time for a Service Participant

The definition of calendars is shown in Figure 9-151.

<Class> «EPP_Calendar- FTM SEPA Credit Transfer Reference Applid

General Mame: 2013 Mew Years Day
FTM I 7018
Attributes
Operations Holiday: ¥
Stereotypes
e Cal Date: Tuesday , January 01,2013 = [C]Null Date

Documentation
Constraints Description: Mew Years's day
Relationships

Type Code:
Advanced R

Figure 9-151 Definition of a Holiday in Rational Software Architect

As shown in Figure 9-151, the definition of a holiday within Rational Software Architect is
simple; the entry requires only the definition of the holiday date and a description.

The schedule that is associated with a Calendar Group is defined as shown in Figure 9-152.

<Class> =EPP_Schedule= FTM SEPA Credit Transfer Reference Application:

General Mame: Payrnent Cutoff
FTM

I 7005
Attributes
Operations Open Tirne: 13:30
St

sreotypes Close Time: | 13:30

Documentation
Constraints Man Flag: ¥
Relationships Tue Flag: Y
Advanced

Wed Flag: Y

Thu Flag: Y

Fri Flag: Y

Sat Flag: M

Sun Flag: N

Type: CUTOFF

Figure 9-152 Definition of a Schedule in Rational Software Architect

This shows the days and the time window in which the Scheduler Task is triggered for this
schedule. Multiple schedules for the same days but different time windows allow for the same
task to be run multiple times during the day.

370 Financial Transaction Manager Technical Overview

When WebSphere Message Broker starts, a E_HeartbeatStart is issued that causes an
action to be triggered to start the Scheduler Task. This action examines the Calendar Group
that is associated with the Scheduler Task and calculates the next date and time it should be
triggered. This value is stored with the Scheduler Task in the TIMEOUT field within the
Financial Transaction Manager database.

When the E_Heartbeat is issued (every 60 seconds by default), the Finite State Machine that
is associated with the Scheduler Task checks the TIMEOUT that is associated and if the date
and time that are held within the field was reached, the action that is associated with the event
is triggered. This is achieved with the Finite State Machine for the Scheduler Task by using
the $Context{NOW{ >= TIMEOUT object filter, as shown in Figure 9-146 on page 367.

This action then examines the transactions that are held in the Financial Transaction Manager
database in a S_AwaitingRelease state that is based on the selection criteria that is defined
within the action. The Service Participant then raises an E_ScheduleTriggered against each
of the transactions that are within the list.

9.8.7 Pattern interaction

This pattern interacts with the other scheduling patterns that are described in the following
sections:

» 9.12, “Scheduled activity pattern” on page 415
» 9.13, “Scheduled expectation pattern” on page 423
» 9.14, “Heartbeats monitoring (scheduling) pattern” on page 431

This pattern is also closely linked to identifying destinations for transactions, which is

described in 9.2, “Routing, IBM Operational Decision Manager rules, and multiple targets
pattern” on page 282.

Chapter 9. Patterns 371

9.9 Starting external services pattern

This pattern describes how Financial Transaction Manager can start a service that is hosted
by an external system. The service that is shown by the external system can be synchronous
or asynchronous in nature. Figure 9-153 shows a high-level use case for a business
transaction to make an external service invocation.

Client

External System

Response

Request

- Process Inhnum‘l= Transmission
Send Outbound Trans mission '

- ! ik i
«inclutdes include

Execute Business Transaction sincludes

correlate

Process Business Transaction Process Qutbound Transaction Process Response Transaction

External Service Invocation

Figure 9-153 High-level use case diagram of external service invocation

9.9.1 High-level description

372

Starting an asynchronous external service, involves calling it from an action within the Finite
State Machine processing of the business transaction.

Starting an asynchronous external service includes the following tasks:
» Sending the outbound transaction that corresponds to the request.

» Processing the incoming response and then correlating it to the outbound transaction.
Then, flagging the business transaction of the completion of the request.

The action processing for the business transaction creates the request transaction object for
the outbound external service. The processing then starts the request transaction object with
the ISF that corresponds to the invocation.

Financial Transaction Manager then processes the transaction by using the Generic
Outbound Transaction Finite State Machine.

After appropriately determining the routing, this processing calls the OutboundMapper to
convert the request ISF to the external service format. The processing then sends the
transmission to the external system. From then on, it creates and logs the request
transmission object for the outgoing transaction.

The external system then processes the received message and sends back the response
asynchronously.

Financial Transaction Manager Technical Overview

Financial Transaction Manager then receives the transmission and (after mapping and
creating the necessary response transmission and transaction objects) allows Generic
Acknowledgement Transaction Finite State Machine to process the response.

After the chosen correlation strategy is used, this processing correlates to the request
transaction and raises appropriate events.

Based on these events, the request transaction that was created earlier completes its

processing and raises further events. These raised events indicate the request completion for

the business transaction to continue.

In this section, we describe the high-level interaction between Financial Transaction Manager
and the external service for starting an external service. We describe the positive flow and the

following alternative scenarios:

» Response mapping that is aborted
» Response not arriving from the external system
» Response failed to correlate to the request

Figure 9-154 shows a high-level sequence diagram for sending the outbound transmission

that corresponds to the request to the external system.

(FTh &pplication :External System

1: Process Business Transaction

1

1.1: Process Business Transaction Action

i

1.1.1: Create Request ISF from Transaction ISF

i

1.1.2: Create Request Transaction

i

1.1.3: Qut Transaction Created

request is transmitted to the External System.

Please see Creation of autbound message or file pattern for further details on sending of the single transaction to the
External System, Please see the Single Transaction [Acknowledgement Expected) scenaio. By the end of this processing, the

Figure 9-154 Sending of request to the external system

The following details are shown in Figure 9-154:

1. The Financial Transaction Manager application is processing a business message in a
business transaction. As part of the action handling, it wants to make an asynchronous
invocation to an external service.

2. Financial Transaction Manager first creates an ISF that represents the external service
invocation request from the business transaction ISF and (optionally) enriches it.

3. It creates the request transaction that corresponds to the external service request and

raises an event to indicate the Out Transaction Creation.

Chapter 9. Patterns 373

374

4. The Generic Outbound Transaction Finite State Machine then takes over processing the
out transaction, as described in 9.1, “Creation of outbound message or file pattern” on
page 238.

For more information about sending the outbound transaction that corresponds to the
request, see 9.1, “Creation of outbound message or file pattern” on page 238.

In the remainder of this section, we describe processing the incoming response.

Figure 9-155 shows a sequence diagram for the successful processing of the response from
the external system.

El (FTH &pplication % :External System
I 1: Respaonse I

2 Process Response Transmission
|
2.1: Log Transmission
|

2,21 Map to ISF
i]
'_ 2.3: Log Response Transaction

|
2.4 Mapping Successful

3! Process Response Transaction

-

3.1: Process Successful Mapping
5 |

3.1.1: Correlate to Request Transaction

le |
| 312! Update Relationship

3.1.3: Correlation Successful

7 4 Process Request Transaction

|
d.1: Process Successful Carrelation

i 4.1.1: Request Campleted

4.1.2: Business Transaction Event

5 Process Business Transaction

|_5.1: Process Business Transaction Event

Figure 9-155 Successful receipt of the response processing

The following process is shown in Figure 9-155:

1. The external system sends the response to Financial Transaction Manager by using any of
the protocols that are supported by WebSphere Message Broker, such as WebSphere MQ
and JMS.

Financial Transaction Manager Technical Overview

2. Financial Transaction Manager processes the incoming response by using the physical
transmission flow and, after logging the incoming response transmission, maps the
incoming format to ISF. On successful mapping, Financial Transaction Manager raises the
mapping successful event. For more information about mapping, see 9.5, “Transformation
pattern” on page 318.

3. The response transaction (as it is associated with the response and the mapped ISF) is
also logged.

4. The Generic Acknowledgement Transaction Finite State Machine (which processes the
response transaction) correlates to the request transaction by using the appropriate
chosen correlation strategies.

For more information about the various correlation strategies, see the Financial
Transaction Manager 2.1 Information Center by clicking Application Programming —
External Service Interaction.

5. On successful correlation, the relationship between the request and response transactions
are updated and the Correlation Successful event is raised.

6. The Generic Outbound Request Transaction Finite State Machine, which processes the
original request transaction, raises the Request Completed event. By determining whether
any business events are associated with the request transaction’s successful completion,
it also raises them.

7. The Business Transaction Finite State Machine processes this business event and
progresses accordingly.

For more information about the input and output nodes, see the WebSphere Message Broker
7.0 information center by clicking Reference — Message flow development — Built-in
nodes.

Figure 9-156 on page 376 shows the mapping aborted scenario for the received response.

Chapter 9. Patterns 375

£ :FTM &pplication & iExternal System & i0peratar

1: Response

2i Process Response Transmission

i

215 Log Transmission

1

2,21 Map ta I5F

T

2.3 Mapping Aborted

2.4: Log Error

T

3: Process Failed Transmission

L

3.1: Process Mapping Aborted
3,11 Motify

I

4: Operator Cancels Failed Transmission

4.1: Update Transmission as Failed

4.2 Transmission Failed

5: Process Request Transaction

5.1: Pracess timeout

=1 5.1.1: Timed Out

5.1.2: Matify

6: Operator Cancel Request Transackion

6.1 Updates Transaction as Failed

6.2: Request Failed

7! Process Business Transaction

L

| T.l:_Process Request Failure
«—..4

Figure 9-156 Scenario where the response mapping is aborted

376

The following process is shown in Figure 9-156:

1.

The external system sends the response to Financial Transaction Manager by using any of
the protocols that are supported by WebSphere Message Broker, such as WebSphere MQ

and JMS.

The Financial Transaction Manager processes the incoming response by using the
physical transmission flow and (after logging the incoming response transmission), tries to
map the incoming format to ISF. This step fails, a Mapping Aborted event is raised, and an
error is logged. For more information about mapping, see 9.5, “Transformation pattern” on
page 318.

The Generic Incoming Transmission Finite State Machine, which processes the response
transmission, notifies the operator of the failed transaction.

The operator cancels the failed transmission by using the Operations and Administrative
Console (OAC). The transmission is updated as failed and the Failed Transmission event
is raised.

The Generic Outbound Transaction Finite State Machine (which processes the request

transaction) does not receive any correlation event. After a period, it processes the
timeout notification and notifies the operator.

Financial Transaction Manager Technical Overview

The operator cancels the request by using the OAC, which updates the transaction as
failed and raises the Request Failed event.

Business Transaction Finite State Machine processes these failure events and continues
processing accordingly.

Figure 9-157 shows the scenario in which no response is received.

Q (FTM Application % iExternal System % iDperator

Mo Response

L Process Request Transaction

" 1.1 Process timeout
s S 1.1.1: Timed Out

1.1.2: Motify

2t Operator Cancel Request Transaction

2.1 Updates Transaction as Failed

2.2: Request Failed

3i Process Business Transaction

)|
3.1 Process Request Failure

Figure 9-157 Scenario where no response is received from the external system

The following process is shown in Figure 9-157:

1.
2.

No response is received from the external system.

The Generic Outbound Transaction Finite State Machine, which processes the request
transaction, does not receive any notification. After a period, the timeout notification is
processed and the operator is notified.

The operator cancels the request, which updates the transaction as failed, and raises
request failed event.

Business Transaction Finite State Machine processes these failure events and continues
processing accordingly.

Figure 9-158 on page 378 shows response correlation failure scenario.

Chapter 9. Patterns 377

Q (FTM Application 7‘% External System % 1Cperatar
T 1 Respanse T T

21 Process Response Transmission

[

2.1: Lag Transmission

1

2.2 Map to ISF

2.3 Log Response Transaction

1

2.4 Mapping Successful

3 Process Response Transaction

[

3.1 Process Successful Mapping

1

" 3.1.1: Carrelate to Request Transaction

31,21 Correlation Failed

[4 Process Response Transaction

=

4.1: Process Correlation Failure

1

4.1.1: Motify

5 Operatar Cancels Response Transaction

‘5.1: Updates Transaction as Failed

F 5.2: Response Failed

6: Process Request Transaction

'_ 6.1: Process timeout
o 6,11 Timed Qut

6.1.2: Motify

T: Operator Cancel Request Transaction

7.1 Updates Transaction as Failed

- 7.2 Request Failed

[8: Process Business Transaction

- |
8.1: Process Request Failure

S

Figure 9-158 Response correlation failure to the request

The following process is shown in Figure 9-158:

1. The external system sends the response to the Financial Transaction Manager by using
any of the protocols that are supported by WebSphere Message Broker, such as
WebSphere MQ and JMS.

2. The Financial Transaction Manager processes the incoming response by using the
physical transmission flow and after the incoming response transmission is logged, maps
the incoming format to ISF. On successful mapping, it raises the Mapping Successful
event. For more information about mapping, see 9.5, “Transformation pattern” on

page 318.
3. The response transaction (as associated with the response and the mapped ISF) also is a
logged.

378 Financial Transaction Manager Technical Overview

4. The Generic Acknowledgement Transaction Finite State Machine, which processes the
response transaction, correlates to the request transaction by using appropriate chosen
correlation strategies. However, in this scenario, the correlation fails and raises the
Correlation Failure event.

5. The Generic Acknowledgement Transaction Finite State Machine processes the
correlation failure and notifies the operator.

6. By using the OAC, the operator cancels the response transaction. This process updates
the transaction as failed and raises the Transaction Failed event.

7. The Generic Outbound Transaction Finite State Machine, which processes the request
transaction, does not receive any correlation event. After a period, it processes the timeout
notification and notifies the operator.

8. By using OAC, the operator cancels the request, which updates the transaction as failed
and raises the request failed event.

9. Business Transaction Finite State Machine processes these failure events and continues
processing accordingly.

Invoking a synchronous external service

Starting a synchronous external service from an action includes the following considerations:

» Latency of the service
» Complexity of the signature of the service

Actions are called as part of the events processing flow and its processing should be as quick
as possible to not block the processing thread.

If the synchronous service is known to be short running and with a simple signature, it might
be practical to call it directly from the action. This is done by using the appropriate
WebSphere Message Broker Node, such as HTTP Request node or any other node that is
specific to the service protocol.

Otherwise, it is advisable to decouple the events processing flow thread (which is processing
the action) from the thread that is going to process the synchronous invocation.

Because invoking a simple, short-running service is trivial, this section focuses on invoking a
long-running synchronous service from an action. We describe the following scenarios in this
section:

» Calling a long running synchronous service with simple signature
» Calling a long running synchronous service with complex signature

Figure 9-159 on page 380 shows a sequence diagram for the successful processing of a high
latency synchronous service request invocation with simple parameters that do not require
any sophisticated mapping functionality.

Chapter 9. Patterns 379

380

El (FTM Application % :External System

L Process Business Transaction &ction
e |
1.1: Create Service Request Parameters

|- —

1.2: Put Service Request Parameters in MG Queue

o

2_:Pr0cess Service Request
| 2.1: Fead Service Request Parameters fram MO Queue

| =S

2.2 Make Synchronous Request

2.4 Put Service Request Return Walue in MO Queue

i

2,51 Service Call Completed

3 Process Business Transaction

i

3.1: Fead Return Walue from MQ Queue
Fam

3.2 Continue Processing

1

Figure 9-159 Synchronous invocation of simple high latency external service

The following process is shown in Figure 9-159:

1.

The Financial Transaction Manager application is processing a business message in a
business transaction. As part of the action handling, it wants to make a synchronous
invocation to an external service.

Although the synchronous invocation is expected to take some time to complete the
processing, it features a simple signature.

The action that is processing the business transaction first creates the Service Request
Parameters and stores that in a WebSphere MQ queue. That action then waits for another
flow to make the synchronous invocation.

The process service request is a WebSphere Message Broker flow, which is part of the
Financial Transaction Manager application. This request flow picks up the request
parameters from the WebSphere MQ queue, makes the synchronous service call to the
external service, and blocks the thread until the external service call returns.

On receipt of the return value, it stores those values in a WebSphere MQ queue and
raises events that are necessary for the business transaction to be notified.

On the receipt of the event, the business transaction processing reads the value from the
WebSphere MQ queue and continues its processing per its Finite State Machine.

Financial Transaction Manager Technical Overview

Because the request parameters and return value were simple, they were directly constructed

from the Business Transaction’s ISF. No sophisticated mapping was needed that used
Financial Transaction Manager’s mapper support.

The ability of the business transaction to wait for the process service request of WebSphere
Message Broker to make the invocation and obtain the return data is per the processing of its

Finite State Machine.

Figure 9-160 shows a sequence diagram for the successful processing of a high latency
synchronous service request invocation with complex parameters that require support of

Financial Transaction Manager’s Mapper framework.

=] :FTM &pplication & iBxternal System

1i Process Business Transaction
|

| |

1.1: Create ISF for Request
= 1

1.2: Create Request Transaction
1

1.3: Qutbound Transaction Created

2t Route and Send Transaction
]

| 2.1: Map Fram I5F
= 1
[2.2:5end Request

1

2,31 Create and Log Transmission

=1

3! Process Service Request

—

3.1: Read Service Request Parameters from MO Queue

i

3.2 Make Synchronous Reguest

3,40 Put Service Request Return Walue in MO Queue

4: Process Respanse Transmission

| I |

Processing of Response Transmission fram here on is similar to
asynchronous service request

Figure 9-160 Synchronous invocation of long running external service with a complex signature

Chapter 9. Patterns

381

The following process is shown in Figure 9-160 on page 381:

1.

The Financial Transaction Manager application is processing a business message in a
business transaction. As part of the action, handling wants to make a synchronous
invocation to an external service.

The synchronous invocation is expected to take some time to complete processing, has
complex request parameters and return values, and needs Financial Transaction
Manager’s mapper support.

. The business transaction makes a request transaction object in the same way that it

creates one for making an asynchronous request invocation. The only difference is that
instead of routing the request to the external application, the request is routed to an
intermediate WebSphere MQ queue.

The service participant that is abstracting the WebSphere MQ queue to which the request
is sent is a proxy for the external system.

The process service request (as in the previous case) is a WebSphere Message Broker
flow and is part of the Financial Transaction Manager application.

It picks up the message from the intermediate WebSphere MQ queue, which was
transformed by the outbound mapper that is associated with the request transaction and
sends to the external service synchronously (by using the WebSphere Message Broker
Nodes that is appropriate for the protocol of the service). After the reply arrives, it places
the reply value in a WebSphere MQ queue (where Financial Transaction Manager is
expecting the response). This WebSphere MQ queue also is part of the same proxy
service participant and the channel that is supporting this WebSphere MQ acts as the
inbound channel.

From the WebSphere MQ queue, processing of the reply value is done by Financial
Transaction Manager’s physical transmission flow. Further processing of the reply value is
similar to processing the incoming response as described for the asynchronous
invocation.

9.9.2 Objects and object relationships

Figure 9-161 shows the various Financial Transaction Manager objects that are created
during the invocation of the external service.

Business Transaction

Transmission

Business Transmission

Caused B
¥ Request Transaction Ack To Response Transaction
Transmission Transmission
Caused By o ..
Request Transmission Ack To Response Trans mission

Figure 9-161 Objects and their relationships that are created during an external service invocation

382

In Figure 9-161, the business transaction object indicates the business transaction, which
starts the external service invocation.

Request transaction is the transaction that is created for the external service invocation

cal

lout and its corresponding transmission is request transmission.

Financial Transaction Manager Technical Overview

The business transaction and request transaction have a business relationship, as shown in
Figure 9-161 on page 382.

The response transaction is the transaction that is created for the incoming service response
and it is an acknowledgement to the request transaction.

Note: All of the objects are created during all of the scenarios except for the synchronous
invocation for services with simple signature.

9.9.3 Detailed sequence diagram

The detailed sequence diagrams that correspond to the pattern highlight the interactions
between the Financial Transaction Manager objects and components.

Invoking an asynchronous external service

in this section, we describe the interaction between the various Financial Transaction
Manager’'s components to realize an asynchronous external service invocation.

As with the high-level interactions, for more information about sending the outbound
transaction that corresponds to the request, see 9.1, “Creation of outbound message or file
pattern” on page 238.

In the following sections, we describe the processing of the incoming response. Along with
the positive interaction, it shows the mapping that is aborted, no response from the external
service, and correlation failure scenarios.

The Finite State Machines control the processing of the objects in the following sequence

diagrams:

» Generic Outbound Transmission Finite State Machine for request transmission

» Generic Outbound Transaction Finite State Machine for request transaction

» Generic Inbound Transmission Finite State Machine for response transmission

» Generic Inbound Acknowledgement Transaction Finite State Machine for response
transaction

For more information about the Generic Model Finite State Machines, see the Appendixes —
Appendix E: Generic Model section of the Financial Transaction Manager 2.1 Information
Center.

Figure 9-162 on page 384 shows the sequence of interactions between the various Financial
Transaction Manager components to achieve successful receipt of the response of the
asynchronous external service invocation.

Chapter 9. Patterns 383

External System {PTF 1o :MapperTolsF ‘Respanse Transmission ‘Respaonse Transaction ‘Request Transaction :Business Transaction

1 Response e
4;3:’ 1.1: Create {5_WaitingFarAck}
28 DD (O 1P [5_InPTArrived)
1.2.1: Map to ISF
o
1.2.2: Create

1.2.3: E_MpInTsnMapped) {5 InTxMapped]

2: Process E_MpInTxnMapped

o
{5_RelUpdating}
2.1 8 CorrelateAndUpdateRel
=

2.1.1: Correlate

=1

2.1.2: Update Relationship to Request
Bodlodh E_AckRec\rd_

3 Process E_AckRecvd
PR
{S_InT=pComplete}

&' Process E_AckReowd

{S_OutTxnComplete}
4.1 & RaiseDutTxnCompleteEvents

4.1.1: E_OutT<nComplete

4.1.2: Business Events

5: Prrocess Business Event

Figure 9-162 Successful receipt of response to the asynchronous external service invocation

The following items are shown in Figure 9-162:

» The external system is the service from where the response is coming into Financial
Transaction Manager.

» PT Flow is Financial Transaction Manager’s physical transmission flow, which reads input
from the various protocols by using WebSphere Message Broker Input Nodes (such as
WebSphere MQ Input node). It also starts the creation processes for the Transmission,
Mapping to ISF, and Transaction objects.

» Mapper To ISF is the inbound mapper for the incoming response format. For more
information about the Mapping interaction, see 9.5, “Transformation pattern” on page 318.

» Response transmission, transaction, request transaction, and business transaction are the
Financial Transaction Manager objects, as described in 9.9.2, “Objects and object
relationships” on page 382.

Figure 9-163 on page 385 shows the sequence of interactions between the various Financial

Transaction Manager components for the mapping aborted case (during the receipt of the
response of the asynchronous external service invocation).

384 Financial Transaction Manager Technical Overview

% WQperator iExternal Systemn (PTFlow MapperTolsF (Responze Transmission ‘Request Transaction (Business Transzackion

{S_WaitingFarAck}

1 Response
—_— L1 Create
1.2 Map ta I5F {S_InFTArrived)
e
1.2.1: Map to ISF
12.2; E_MpInMappingdborted
1.2.3: Log Errors .
S 2! Process E_MpInMappingAborted
{S_InPTMapFailed}
2108 _MotifyOps
1
3t Cancel
{S_InPTFailed)
3.1: &_RaiseInPTFailed
[3.1.1: E_InPTFailed
4 Process E_HeartBeat
{5_WaitingFarAckTimeout
4.1: E_Timeouthotify
5: Cancel

[5_OutTAnFailed}
5.1: E_OutTznFailed]

6: Process E_OutTxnFailed

Figure 9-163 Mapping abort scenario during receipt of response to the asynchronous external service invocation

The following items are shown in Figure 9-163:

» The external System, PT flow, and the various transaction and transmission objects are as
described in the previous flow.

» Operator is a person who uses the OAC to interact with the processing.

» E HeartBeat events are fired by a heartbeat flow component of Financial Transaction
Manager.

For more information about Heartbeats, see the Application Programming — Heartbeat
section of the Financial Transaction Manager 2.1 Information Center.

The timeout processing on an object is started on receipt of the heartbeat event. The
criteria to process timeout is based on the timeout property setting on the object. The
criteria is evaluated based on the current time stamp, context data in the heartbeat event,
and timeout property of the object.

Figure 9-164 on page 386 shows the sequence of interactions between the various Financial
Transaction Manager components in which no response is received from the external service
after asynchronous external service invocation.

Chapter 9. Patterns 385

386

% :Operatar :Request Transaction :Business Transaction

{S_WaitingForAck}

Mo Response Received from the External System

1: Process E_HeartEeat
|

[S_WartingFonAckT imeout
1.1: E_TimeoutMotify

21 Cancel

{5_OutTxnFailed)
2.1 E_OutTxnFailed

3! Process E_OutTxnFailed

Figure 9-164 No response received scenario during asynchronous external service invocation

Objects and timeout information is the same as previously noted for the prior sequence.

Figure 9-165 on page 387 shows the sequence of interactions between the various Financial
Transaction Manager components in which the correlation of the response to the request fails
(during the receipt of the response of the asynchronous external service invocation).

Financial Transaction Manager Technical Overview

% {Dperator External System (PTFlow ‘MapperTolsSF ‘Response Transmission ‘Response Transaction ‘Request Transaction :Business Transaction

1: Response A — & [S_WaitingForAck}
|12 Map ta ISL {5_InRTArrived} e
121 Create
| 1.2.2: Map ta ISF {S_InT=fhapped}
e - P

1.2.3 E_MplnTxnMapped

2: Progess E_MpInT=nMapped

-

{5_RelUpdating}
|21 8 CorrelatesndUpdateRel
| —

2,11 Caorrelate

2.1.2: E_RelUpdatingFailed

3: Progess E_RelUpdatingFailed

L1
{5_RelUpdateFailed}

31 A MotifyOps
=1

4 Cancel

{3_InTAnFailed}
d.1: A _RaiselnTenFailed
=1

4.1.1: E_InTxnFailed

5: Pracess E_HeartBeat
{S_WaitingRorAckTimenut

5.1 E_TimeoutMotify

6 Cancel

[S_OutTknFailed)
6.1 E_CutTxnFailed

7 Process E_CutTxnFailed

Figure 9-165 Response to request failure during receipt of response to asynchronous external service invocation

As the response fails to correlate to the request, the request object times out waiting for
correlation, as shown in Figure 9-165.

Invoking a synchronous external service

In this section, we describe the interaction between the various Financial Transaction
Manager’'s components to realize a synchronous external service invocation.

Figure 9-166 on page 388 shows the sequence of interactions between the various Financial

Transaction Manager components in which the business transaction is making a simple and
long-running synchronous service invocation to an external system.

Chapter 9. Patterns 387

:Business Transaction Process Service Request External Swstem

1: Process E_SomeBusinessEvent
=1
1.1 A SomeBusinessBventProcessiction
|

1.1.1: Create Service Request Data friom ISF
=1

1.1.2: Put Service Request Data in an MO queue
|
21 Get Service Request Data from MO queue

L1

2.1 Make Service Request Call

2,31 Put Service Request Return Data into an MO queus

2.4k E_MyServiceRequestCompleted

3! Process E_MyServiceRequestCompleted

1

310 A MyServiceRequestCompletionAdction

1

3.1.1: Get Service Request Return Data from MO queue

i

3.1.2: Contiue Processing

i

Figure 9-166 Simple and long-running synchronous external service invocation

Figure 9-166 includes the following features:

» The business transaction is the Financial Transaction Manager transaction object that is
processing the business functionality that is interested in making the external invocation.
Its lifecycle is controlled by Finite State Machine, as shown in Figure 9-170 on page 391.

» The process service request is a WebSphere Message Broker flow that helps make the
synchronous invocation and communicates with the business transaction processing. To
use the synchronous invocation, the correct WebSphere Message Broker Node can be
used, depending on the protocol of the service. For example, if a Web Service must be
started, WebSphere Message Broker HTTPRequest Node can be used.

» The external system is the system that hosts the simple external service.
Figure 9-167 on page 389 shows the sequence of interactions between the various Financial
Transaction Manager components. Specifically, when the business transaction is making a

long-running synchronous service invocation to an external system with a complex signature
that requires the use of Financial Transaction Manager's mapping capabilities.

388 Financial Transaction Manager Technical Overview

(PTF oy :Business Transaction Process Service Request External Swstem

1: Process E_SomeBusinessBvent

i

1.1 A SomeBusinessEventProcessdction
|

il

1.1.1: Create Request Transaction ISF fram ISF

L

[1.1.2: Create Request Transaction

1

1.1.3: E_OutTxnCreated

Request Transaction Processing is as detailed in the Create outbound message
or file pattern’s Single Transaction [Expected Acknowledgerment] scenario, AL
the end of this processing, the external service request parameters are mapped
as perthe format expected by the External Service and is available in an
intermediate MO queue, which iz abstracted by a Service Participant acting as
a ‘proxy’ for the External Service,

2i Get Service Request Data From MO quele
|

2.1 Make Service Request Call

3i Process Service Request Response inthe MQ Queue

The Service Request Return Data is then treated as the Response for the Request Transaction and
the Physiclal Transmission Floww processes it like any incoming respanse triggering the Response
Carrelation to the Request Transaction and then firing of the business event to trigger the
Business Transaction to continue, Please see the Asynchrnonous response pracessing in the
prewious sub section for details.

Figure 9-167 Long-running synchronous external service invocation with a complex signature

As shown in Figure 9-167, the business transaction intends on making a synchronous service
request to the external service. The format of the service request is complex and uses the
Financial Transaction Manager’s mapping support; therefore, it treats the synchronous
service request as an asynchronous service by employing an intermediate proxy Service
Participant.

In the configuration data, service participant and channel definition are configured to the
proxy instead of the actual external service. The proxy processing is taken care of by the
process service request flow.

As shown in Figure 9-167, before process service request processing starts, the business
transaction treats the invocation as an asynchronous service and employs the interaction as
described for the asynchronous service request.

Chapter 9. Patterns 389

After the service request is mapped and delivered into the proxy, the process service request
flow then makes the actual synchronous service request call to the external service. The flow
then focuses on getting the reply data inputs into the channel for the proxy service participant.

Physical transmission flow then starts and completes the processing from the business
transaction perspective as though it was an asynchronous response that is received.

9.9.4 Obiject lifecycle diagram

The object lifecycle diagram that is shown in this section shows a portion of entire object
lifecycle that is specific to the processing of external service invocation.

More information: For more for information about the Generic Model Finite State
Machines, see the Appendixes — Appendix E: Generic Model section of the Financial
Transaction Manager 2.1 Information Center.

Figure 9-168 shows the lifecycle of the response transaction object, as indicated by the
sequence diagrams.

L 5_TxnMapped

E_MpInTznhapped
& 2 CorrelatesnddpdateRel

_E_RelUpdatingFail
@ A_NotifyCps

e 5_RelUpdating o 5_RelUpdateFailed

E_Cperataorverify
@@ A_RaizelnTxnFailed

E_AckRecyd

S InTenCamplete 5 _InTxnFailed

Figure 9-168 Response transaction object lifecycle

Figure 9-169 on page 391 shows the lifecycle of the request transaction object, as indicated
by the sequence diagrams for asynchronous requests shown earlier. As shown in

Figure 9-169 on page 391, the lifecycle pertains only to the response processing leg. For
more information about request processing, see 9.1, “Creation of outbound message or file
pattern” on page 238.

390 Financial Transaction Manager Technical Overview

L5 _OuT=nCreated

E TxnOutCreated
@@ 2 RoutetndsendOutTzn

L0 5_OutTzndwaitingSend

E_OutTxnSent

E_Heartheat
& A TirneoutMotify

L0 5 WaitingForick L 5 WaitingForAckTimeout

E AckRecwd E OperatorCancel
@@ A RaiseOutTznCompleteBvents & A ProcessOutTnFail

S_OutTznComplete .
5_OutTxnFailed

Figure 9-169 Response transaction object lifecycle

Figure 9-170 shows the lifecycle of the business transaction for the processing of a simple,
long-running synchronous service invocation to an external system.

0 5_PreviousBusinessState

E_SomeBusinessEvent
@@ 2 sSomeBusinessEventProcessackion

o 5 WaitingForServiceRequestCampletion

E MyServiceRaquestCompleted
& o MyServiceRequestCompletionfction

o 5_MextBusinessState

Figure 9-170 Business transaction lifecycle for simple, long running synchronous service invocation

Chapter 9. Patterns 391

In Figure 9-170 on page 391, S_PreviousBusinessState, denotes the state of the business
transaction before the external invocation was needed. As part of the E_SomeBusinessEvent
processing, the external system’s synchronous service is to be started. This is done as part of
the A_SomeBusinessEventProcessAction. When the synchronous request is being sent, the
business transaction moves into S_WaitingForServiceRequestCompletion (a waiting state).

When the synchronous service invocation is completed and E_MyServiceRequestCompleted
event is raised, the business transaction then moves to the next state (S_NextBusinessState).
Then, the received response is processed.

9.9.5 Finite State Machine

For more information about the differences between the object lifecycle diagrams that were
described in 9.9.4, “Object lifecycle diagram” on page 390 and their corresponding Finite
State Machines, see the Appendixes — Appendix E: Generic Model section of the
Financial Transaction Manager 2.1 Information Center.

9.9.6 Process highlights

392

This pattern is concerned with how a business transaction in Financial Transaction Manager
can make an external service invocation to a service hosted in an external system.

The external service invocation can be synchronous or asynchronous in nature.

Making an asynchronous invocation consists of the following parts:
» Making the outgoing request to the external system.

» Receiving the response from the external system, correlating it back to the outgoing
request, and flagging the business transaction object.

While making an asynchronous service invocation, the business transaction object that
represents processing the business message in Financial Transaction Manager interacts with
separate transaction objects. These transaction objects correspond to processing the
outgoing request and the incoming response that is referred to as the request and the
response transaction objects.

Processing the request and response transactions are specified by a set of Generic Finite
State Machines as provided by Financial Transaction Manager. The following Generic Finite
State Machines are available:

» Generic Outbound Transmission Finite State Machine for request transmission

» Generic Outbound Transaction Finite State Machine for request transaction

» Generic Inbound Transmission Finite State Machine for response transmission

» Generic Inbound Acknowledgement Transaction Finite State Machine for response
transaction

Making synchronous service invocations include some consideration because of their
blocking nature. It is not advisable to block the events processing flow that runs the actions as
part of business transaction processing. Therefore, if the synchronous invocation can have a
longer latency, it is advisable to decouple the business transaction processing in the events
thread to make the actual invocation.

By using appropriate Finite State Machine modeling, the business transaction processing can
wait for the synchronous invocation to complete.

Financial Transaction Manager Technical Overview

Depending on the complexity of the signature of the external service, it might be required to
use Financial Transaction Manager’s mapping facilities. If so, the synchronous service
invocation can be modeled as asynchronous (with an intermediate proxy service participant
making the actual invocation and adapting the asynchronous call to synchronous).

9.9.7 Pattern interaction

This patterns is used in the larger context of processing a business message in a business
transaction.

To make a request to an external system, it uses patterns that are described in 9.1, “Creation
of outbound message or file pattern” on page 238. After the message is processed by the
external system, this pattern explains the processing of the response.

In addition, as part of the mapping from ISF to the external system’s format (during the
request phase and on mapping from the external system’s format to ISF during response
processing), it uses the mapping pattern as described in 9.5, “Transformation pattern” on
page 318.

If the started external service expects batched transactions or returns a bulked response, this
pattern can use the pattern that is described in 9.6, “Debulking pattern” on page 338 and the
pattern that is described in 9.7, “Bulking pattern” on page 348.

9.10 Hosting services pattern

This pattern describes how Financial Transaction Manager can host a business service.
Depending on the business requirements of the hosted service, synchronous and
asynchronous services can be supported.

Chapter 9. Patterns 393

Figure 9-171 shows a high-level use case diagram of a service that is hosted in Financial
Transaction Manager.

Receive Request Trans mission

wintludes
Send Request !

Process Request Transaction
«in:clude:o
Client

T

Send Response :
Process Qutbound Response Transaction

ainfludes

Send Response Transmission

Hosted Service

Figure 9-171 Use case diagram of service hosted in Financial Transaction Manager

In Figure 9-171, client denotes the user of the service that is hosted in Financial Transaction
Manager.

The client starts the receive request transmission use case, which processes the received
request transmission and starts the processing of the request. The process ends with the
response transmission being sent back to the client.

9.10.1 High-level description

Hosting financial business services is the main purpose of Financial Transaction Manager.
Depending on the requirement of the hosted service, Financial Transaction Manager can
process the service in different ways, as defined by its Finite State Machine.

The following patterns of services can be hosted in Financial Transaction Manager:

» A service that accomplishes some business processing and sends back a response to the
client.

» A service that accomplishes some business processing and sends back multiple
responses to the client as the processing progresses.

394 Financial Transaction Manager Technical Overview

» A service that behaves in a “fire and forget” manner, which accomplishes some business
processing but does not respond back to the client with any further status.

» A service that might have batches of transactions and the business processing processes
the entire batch (and might send back a single response or a batch of responses).

The service processing can be a single step where some business logic is executed. As well,
it can be more complicated having multiple steps with many other outgoing external service
invocations.

In this section, a service that is hosted in Financial Transaction Manager (which performs
some business processing and sends back a response on completion to the client) is shown.

All other variations can be easily extended thereafter by studying this pattern and some other
related patterns, such as the pattern that is described in 9.7, “Bulking pattern” on page 348
and the pattern that is described in 9.6, “Debulking pattern” on page 338.

From a business perspective, the hosted service needs a synchronous or asynchronous
behavior. Though the processing of these scenarios are similar, some differences arise
because of the protocols that are used for synchronous or asynchronous communication.

For example, for a synchronous service call, Financial Transaction Manager might need to
support Web Services protocol. Therefore, Financial Transaction Manager must receive
inputs that use WebSphere Message Broker Nodes that are relevant to those protocols.
Thereafter, it must send back the response to the client, which ensures that the client receives
the response in its thread of invocation.

However, for an asynchronous service call, no such restrictions exist. By using WebSphere
Message Broker MQ Nodes, such a service can be easily implemented.

In this section, we describe high-level interactions between the client and Financial
Transaction Manager to host a service that processes the business logic and replies in the
following ways:

» Replies back to the client, the response asynchronously
» Replies back to the client, the response synchronously

In the sequence diagrams that are shown in this section, request transaction denotes the
incoming service invocation master transaction. The response transaction is the response that
is sent back to the client.

Chapter 9. Patterns 395

Figure 9-172 shows a high-level sequence diagram of a client making an asynchronous
invocation of a service that is hosted in Financial Transaction Manager.

(Client (FTM Application

1 Inwoke Hosted Service

2i Process Request Transmission

2.1 Read MQ

1

2,21 Log Transmission

T

2.3 Map to ISF

i

[Log Request Transaction

T

2.5 Mapping Successful

3! Process Request Transaction

\

3.1: Process Successful Mapping

]

3.1.1: Perform Service Business Logic

. 3.1.2: Create Respanse ISF fram Transaction ISF

——

_'3.1.3: Create Response Transaction

3.1.4 Qut Transaction Created

4: Process Response Transaction

1

4.1: Process Out Transaction Created

i

4.1.1: Idenitify Channel

T

4.1.2: Map From ISF

==
141,53 Output to MO

L1

4.1.4: Send Response

41,5 Log Respanse Transmissian

= |

4.1.6: Out Transackion Sent

4,17 Qut Transmission Sent

4.1.8: Out Transaction Completed

Figure 9-172 High-level sequence diagram of an asynchronous service hosted in Financial Transaction

Manager

The following process is shown in Figure 9-172:

1. The client starts a service invocation on a service that is hosted in Financial Transaction
Manager. This is done by sending a request that uses an asynchronous transport, such as

a WebSphere MQ queue.

396 Financial Transaction Manager Technical Overview

2. Financial Transaction Manager handles the incoming request transmission by first reading
it from the WebSphere MQ queue. The request is read by a WebSphere Message Broker
Node, such as MQInput. Then, a transmission object for the request is created, which is
called request transmission object. Then, the correct mapper (which is based on the
inbound channel definition) maps the transmission object to ISF. Thereafter, the
corresponding request transaction object also is created.

The request transaction object is the master transaction object and its Finite State
Machine determines the processing of the started service.

3. Depending on the Finite State Machine of the request transaction, the processing is
started. In Figure 9-172 on page 396, this processing is started on the completion of the
mapping when the Mapping Completed event is raised.

The request transaction processing can be as simple or as complex as possible. This is
dependent on its Finite State Machine.

4. After the business processing of the request transaction is completed, the request
transaction is ready to return the response to the client.

5. The request transaction processing creates the ISF for the response message and
constructs the response transaction object.

The response transaction object corresponds to the acknowledgement that must be
returned to the client. The response transaction’s processing is dependent on the Generic
Outbound Transaction Finite State Machine with Fire and Forget semantics.

Request transaction processing can further help in routing the response back to the client
based on the service participant configuration of the client. After all, the response must be
sent back to the originator of the request.

One way to do this is for the request transaction to link back to its request transmission,
which includes the ID of the configuration for the inbound channel. Based on this channel
configuration, the service participant ID of the client can be acquired.

The request transaction then raises the Out Transaction Created event, which sets the
service participant ID of the client as a context.

6. Generic Outbound Transaction Finite State Machine takes over the processing of the
response transaction. Based on the identified service participant (which is set in the
context of the incoming event), the out channel configuration is retrieved, from which the
outbound mapper information is acquired.

After mapping the response ISF to the external format, the outbound mapper sends the
transmission to the client. This is done by using an asynchronous transport, such as
WebSphere MQ queue that uses WebSphere Message Broker MQOutput Node.

The actual WebSphere Message Broker flow name (o send the actual outbound
transmission is configured by using the outbound channel’s transport property.
Thereafter, it raises the appropriate events. This sends the out transaction and
transmission and indicates the completion of the response transaction.

For more information about sending responses, see 9.1, “Creation of outbound message or
file pattern” on page 238.

For more information about mapping, see 9.5, “Transformation pattern” on page 318.

For more information about WebSphere Message Broker Nodes, see the Reference —
Message flow development — Built-in nodes section of the WebSphere Message Broker
7.0 information center.

Chapter 9. Patterns 397

398

Figure 9-173 shows a high-level sequence diagram of a client that is making a synchronous
invocation to a service that is hosted in Financial Transaction Manager.

:Client (FTM Application

1i Invoke Hosted Service

L1 Process Request Transmission

i

1.1.1: Read Web Services From HTTP Input

11.2: Log Transmission

L

1.1.3: Update Transmission with HTTP Request Id
|

1.1.4: Map to ISF

'1

1.1.5: Log Request Transaction

1.1.6: Mapping Successful

2 Process Request Transaction

i

2.1 Process Successful Mapping

|

[0

.
=

i Perform Service Business Logic

L

:

2.1.2: Create Response ISF from Transaction ISF

1

2.1.3: Create Response Transaction

2.1.4 Qut Transaction Created

3: Process Response Transackion

3.1: Process Out Transaction Created

|

3.1.1 Idenitify Channel

1

3.1.2: Map From ISF

il

3.1.3: Qutput to HTTP Reply using the Request Id from the original Transmission
3.1.4: Send Response =

1

3.1.5 Log Response Transmission

3.L6: QutTransaction Sent

3.L7: Out Transmission Sent

3.L8: Qut Transaction Completed

Figure 9-173 High-level sequence diagram of a synchronous service

In Figure 9-173, the processing is similar to the asynchronous case, except for the indicated
areas in the figure (blue boxes). The key points that are different are the protocols of the
transport (on which the invocation request arrives from the client and on which the response
is sent back). In the asynchronous case, WebSphere MQ queues were used; but for
synchronous service, Web Services over HTTP is used.

The following indicated areas are shown in Figure 9-173:

» Incoming transmission from the client is read by the WebSphere Message Broker HTTP
Input Node.

For more information about the handling of Web Services in WebSphere Message Broker,
see the Developing message flow applications — Connecting client applications —

Processing Web services messages section of the WebSphere Message Broker 7.0
information center.

Financial Transaction Manager Technical Overview

» The HTTP Request ID of the incoming HTTP message is stored with the request
transmission object in its UID property. This is needed later for correlation to the HTTP
request when the response is returned.

» Further processing is similar to the asynchronous case (until the point of returning the
response).

» The response must be returned by the HTTP Reply WebSphere Message Broker Node.
For the HTTP Reply Node to correlate to the original HTTP Request, it must be fed the
original HTTP Request ID. This ID can be retrieved through the association of the
response transaction to the request transmission.

» The HTTP Reply Node must be started to send the transmission. The outbound channel
has a configuration (which is called transport) that stores the name of the WebSphere
Message Broker Flows that are to be used to send the transmission. By choosing its value
as HTTP, the HTTP Reply Node can be chosen, which then sends the message back to the
client.

» Further processing in the sequence is similar to the asynchronous case.

9.10.2 Objects and object relationships

Figure 9-174 shows the various Financial Transaction Manager objects that are created
during the running of this pattern.

- Caused B -
Request Transaction ¥ Response Transaction
Transmission Transmission
o Caused By o
Request Transmission Response Transmission

Figure 9-174 Financial Transaction Manager objects and their relationships

In Figure 9-174, request transaction is the master transaction object, which processes the
hosted service. Its Finite State Machine drives the processing of the hosted service. The
request transmission is its transmission object.

The response transaction is the transaction object that corresponds to the response that is
returned to the client after the invocation completion of the hosted service. The response
transmission is the outgoing response transmission record. Generic outgoing
acknowledgement is responsible for processing the response transaction.

9.10.3 Detailed sequence diagram

The detailed sequence diagrams that correspond to the pattern highlight the interactions
between the Financial Transaction Manager objects and components.

Figure 9-175 on page 400 shows the low-level interaction between the Financial Transaction
Manager components to realize an asynchronous service hosting.

Chapter 9. Patterns 399

| (Client || PT Flowy || ‘Request Transmission || :Mapper Tao ISF || ‘Request Transaction || ‘Response Transaction || :Mapper Fram ISF || ‘Response Transmission

|1: Inputin MQ| |

21 Process Physical TraLsmlsslon

|

|

2 |
A MO T t Readi

nput Rea |nF |

|

|

|

© 2.2 Create

2.3: Log Transmission .
— (B TRBT Arrived)
N 2.4 h-ﬂ‘ap to ISF

I

-

2.4.1: Map to ISF

2,4.2: Create

L3 Log Transactlon-
{S_TxrpMapped]

244 E,MpInTngapPed
—=

3:-Pro!ess E_MpInTzntapped

|
|
|
|
|
|
|
|
|
|
|
T

{5_ExecutingBusinessProcess} |

3.1 &_BusinessProcessinglogic

{S_OutT=nCreated}
5.1.4 Log Transaction |

3.1.6: Get Client Service Participant Id
= 1

|
|
|
|
|
|
|
|
|
|
I i
i
|
|
f

317 E_TxnOutCreate
-@

| & Process E_TxnQutC reatel:!

{S_OutTxnjwaitingSend} |
4.1 A_RouteAndSendOLIJthn

411 Get Out Channel |

412 Map from I5F |

41,4 MQ Cutput |

4,1,5: Response (g
4.1.61 Create |
4.1.7: Lag Trsnsmission | [S_OuTP'II%r'eaTed}
(my 418 E_OutPTSErlt |

4.1.10: E_OutTXﬂCUITIlﬂEtE .

LT

5: Process E_OutPTSent |

|
|
|

_ |

{5_OutT=nidwaitingSend}

5.1 & RaiseQutTznSent |
|
|
|
|
|

S1LLE_O uthnSelLt
—@

|

|

|

|

|

|

|

|

|

| 4.1.9: E_TanuthnCorI‘nplete)
| =
|

|

|

|

|

| 6 Process E_OutTenSent
|

7: Process E_OuthFCUmple e

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L
?_
|
|
|
|
|
|
|
|
|
| |

_ |
5_OutToker omplete} |
|

{S_BusinessPr'ﬁuc-essCUmple‘red}

Figure 9-175 Sequence diagram depicting asynchronous service hosting

Figure 9-175 includes the following information:

» The client is the user of the service that is hosted in the Financial Transaction Manager
and sends the request.

400 Financial Transaction Manager Technical Overview

» PT Flow is the physical transmission flow that takes input from the physical input of the
message. This is done by using various WebSphere Message Broker nodes, such as
WebSphere MQ Input Nodes) to read the message from the client. The node then starts
the inbound mapper and the creation of the request transmission and transaction objects.

» The request transaction object is the Financial Transaction Manager transaction object
that is responsible for processing the service that is hosted. It also corresponds to a Finite
State Machine that determines the processing.

» After the business logic is completed, the request transaction object creates the request
response object for returning the response to the client. The response transaction object is
controlled by the Generic Outbound Transaction Finite State Machine.

» Request transaction helps route the response transaction by helping it determine the
service participant ID of the client. This ID is then passed in the context data for the
E_TxnOutCreated event. Routing logic reviews this service participant for outbound
channel definition, which is used to the determine the outbound mapper definition and
other relevant details.

For more information about Generic Outbound Transaction Finite State Machine processing,
see 9.1, “Creation of outbound message or file pattern” on page 238.

For more information about mapping, see 9.5, “Transformation pattern” on page 318.

Figure 9-176 on page 402 shows the low-level interaction between the Financial Transaction
Manager components to realize a synchronous service hosting.

Chapter 9. Patterns 401

iClient 1PT Floww :Request Transmission iMapper To ISF ‘Request Transaction :Response Transaction :Mapper From ISF ‘Respaonse Transmission

1iWWeb Serwices over HTTP Invocation
IS
L.1: Process Physical Trahsmission

P
1.1.1: HTTP Input

11.2: Create
2 oo
T
113 Updbeerribhtndedhe, | irmp Request i
| S|
1.1.4 Log Transmission
1.1.5: Map to ISF
- 1.1.5.1: Map to ISF

=1

1.1.5.2: Create

{5_T=niapped}
|1L.5.3: Log Transaction PP
=1
1.1.5.4: E_MpInTxnMapped
2i Process E_MplInTznMapped
g
{5_ExecuflingBusinessProcess)

Processing similar o the asynchronows invocation

{S_OutT=ndwaitingSend}
3t Process E_TenQutCreated

=

3.1 A RoutesndSendOutTan

1

3.1.1: Get Gut Channel

3.1.2: Map from ISF

|3.1.4: Get Request Transmission

=1
| 3.1.5: Get HTTP Request Id
o
| 3.1.6: HTTP Reply
317 Response 5
3.1 Create
3.1.9: Log Trsnsmissian {Siou-rPTCrgqud}

3.1.10: E_OutPTSent

3111 E_TenQutTxnComplete

3.1.12: E_OutTxnComplete

[4: Process E_OutPTSent

{5_OutT=nldwvaitingSend}
4.1: & RaiseQutTznSent

T 4.1.1: E_QutTznSent

S Process E_OutTxnSent

{5_OufTxnCamplete}
6! Process E_QutTznComplete

{5_BusinessProcessCompleted)

Figure 9-176 Sequence diagram depicting synchronous service hosting

In Figure 9-176, all of the objects and interactions are similar to the asynchronous case,
except for the indicated areas in the figure (blue box).

9.10.4 Obiject lifecycle diagram

The object lifecycle diagram that is shown in this section shows a portion of the entire object
lifecyle that is specific to the hosted service processing.

402 Financial Transaction Manager Technical Overview

Figure 9-177 shows the object lifecycle of the request transaction object that processes the
hosted service in Financial Transaction Manager.

L 5_Txnhapped

E MpInTLnMapped
&8 A_BusinesiProcessingloaic

L 5_ExecutingBusinessProcess

E_COutTxnCamplete

L 5_BusinessProcessCompleted

Figure 9-177 Request transaction lifecycle during the processing of the positive hosted service

Figure 9-178 shows the object lifecycle of the response transaction (during the processing of
sending the response back to the client as part of the hosted service invocation).

L 5_OutTznCreated

E_TxnCgtCreated
@@ 5 RouteAndiendOutTxn

L 5_OutT=nAwaitingsend

E OuJPTSent
& 2 RaizeQutTansent

E_OutTznSent

S_OutTxnCamplete

Figure 9-178 Response transaction object lifecycle as part of processing of the hosted service

Chapter 9. Patterns 403

9.10.5 Finite State Machine

For more information about the differences between the Object Lifecycle diagrams that were
described in 9.10.4, “Object lifecycle diagram” on page 402 and their corresponding Finite
State Machines can be found in the Appendixes — Appendix E: Generic Model section of
the Financial Transaction Manager 2.1 Information Center.

9.10.6 Process highlights

This pattern is concerned with how a client can start a service that is hosted in Financial
Transaction Manager. Hosting a financial business service is Financial Transaction Manager’s
purpose.

The hosted service can be of any complexity, such as the following complexities:

» Single step processing, which results in a single response back to the client

» Multiple step processing, with many further external service invocations (having single or
multiple responses back to the client)

» Processing batched transactions

The actual processing of the hosted service is controlled by the transaction’s Finite State
Machine model.

In addition, the hosted service can be synchronous or asynchronous (from the perspective of
the client that is making the invocation).

A service that is hosted by Financial Transaction Manager can be synchronous or
asynchronous, depending on the protocols that are used to access the service. For instance,
WebSphere MQ queues allow accessing the service asynchronously, whereas the service
can be designed as synchronous Web Services.

9.10.7 Pattern interaction

This patterns is used in the larger context of making financial business or utility functionality
available to the clients.

The clients can be the user applications (such as channel applications) or other business
services that use utility services.

This pattern can be composed by using many other patterns described in this book. Some of
the related patterns are the creation of outbound message or file, bulking, debulking, and
transformation.

9.11 Collating information from several sources pattern

404

In certain circumstances, a complete financial transaction can consist of data that originates
from separate applications, customers, networks, and so forth, and can arrive at different
times. This means that transactions must be paused and then waits for the entire data set to
be received, combined, and then released for further processing.

Financial Transaction Manager Technical Overview

The way this is achieved within Financial Transaction Manager is to designate the primary
message as a master transaction and the subsequent messages as child transactions. The
master transaction is updated with data from the child transactions and, when all of the child
transactions are received, they are released for further processing.

The use case for this pattern is shown in Figure 9-179.

Child No
Master Wait for
Transaction Master
Present Transaction

Yes - Prompt Master Transaction

Transaction
Receveived

Master No

All Child Wait for Child
Transactions Transactions
Present?

Yes - Consolidate Data in Master Transaction

Continue Processing

Figure 9-179 Collating Data use case

Common data: The Master and associated transactions must contain some common data
that can be used to link them.

9.11.1 High-level description

This pattern focuses on the interaction of the transactions that are received by Financial
Transaction Manager. The mechanism of receiving the data and physical transmission
processing is not described here.

This pattern includes the following scenarios:

» The master transaction arrives and all of the associated child transactions are present in
the Financial Transaction Manager Database.

» The master transaction arrives and not all of the associated child transactions are present
in the Financial Transaction Manager Database.

» An associated child transaction arrives and the master transaction is not present in the
Financial Transaction Manager Database.

» An associated child transaction arrives and the master transaction is present in the
Financial Transaction Manager Database.

Chapter 9. Patterns 405

Scenario 1
Figure 9-180 shows the high-level description for scenario 1.

el] :FTM Application

Log and Map Single

1: Master transaction mapped
2: Search far associated transactions

2.1: All assadated transactions found

) 3: Update master transaction

Continue Processing

Figure 9-180 High-level description for master transaction with all associated transactions

In this scenario, the following process occurs:
1. The master transaction arrives and an action searches for its associated transactions.

2. The action identifies that all of the transactions that are associated with the master
transaction are present, collects the required data, and updates the master transaction.

3. The master transaction continues processing.

406 Financial Transaction Manager Technical Overview

Scenario 2
Figure 9-181 shows the high-level description for scenario 2.

= £ :FTM Application

Log and Map Single

1: Master transaction mapped
2: Search for associated transactions

) 2.1: Associated transactions not found

3: Pause master transaction

Wait for associated transaction

Figure 9-181 High-level description for master transaction without all associated transactions

In this scenario, the following process occurs:
1. The master transaction arrives and searches for its associated transactions.
2. The master transaction does not find all associated transactions.

3. The master transaction moves to a waiting state until it is prompted by an event that is
raised by the arrival of an associated transaction.

Chapter 9. Patterns

407

Scenario 3
Figure 9-182 shows the high-level description for scenario 3.

= £ :FTM Application

Log and Map Single

i: Associated transaction mapped
2: Search for master transaction

) 2.1: Master transaction not found

3: Move to arrived state

Figure 9-182 High-level description for associated transaction without a master transaction

In this scenario, the following process occurs:

1. The associated transaction arrives and searches for the master transaction.

2. The master transaction is not present.
3. The associated transaction moves to an arrived state, waiting for the master transaction.

408 Financial Transaction Manager Technical Overview

Scenario 4
Figure 9-183 shows the high-level description for scenario 4.

el] :FTM Application

Log and Map Single

1: Associated transaction mapped

2: Search for master transaction

2.1: Master transaction found

3: Raise event to prompt master transaction

3.1: Move to arrived state

Figure 9-183 High-level description for associated transaction with a master transaction

In this scenario, the following process occurs:
1. The associated transaction arrives and searches for the master transaction.
2. The master transaction is present.

3. The associated transaction raises an event to prompt the master transaction and moves to
an arrived state.

4. The master transaction searches for associated transactions and, if all present, continues
processing. If not all of the associated transactions are present, it returns to a waiting
state.

9.11.2 Objects and object relationships

The Financial Transaction Manager objects that are identified in this pattern consist of the
master transaction and its associated transactions, as shown in Figure 9-184.

:“D:| Master Transaction
1
Completes
1*

‘0| Associated Transaction

Figure 9-184 Collating Data Object/Object Relationship

Chapter 9. Patterns 409

9.11.3 Detailed sequence diagram

This pattern includes the following scenarios:

The master transaction arrives and all of the associated child transactions are present.
The master transaction arrives and not all of the associated child transactions are present.
An associated child transaction arrives and the master transaction is not present.

An associated child transaction arrives and the master transaction is present.

vyvyyy

The detailed sequence diagram for scenario 1, a master transaction arrives and all
associated transaction are present, is shown in Figure 9-185.

P 5| MasterTxn:InTsn ChildTxn:InTxn

Log and Map Single

) 1: Search for Child Txn

1.1: Search and retrieve

L |

1.2: Search and retrieve

2: Update transaction

Continue Processing

Figure 9-185 Master transaction with all associated transactions

410 Financial Transaction Manager Technical Overview

The detailed sequence diagram for scenario 2, a master transaction arrives but some
associated transactions are missing, is shown in Figure 9-186.

B | MasterTxninTsn | ChildTxzn:InTxn

_Log and Map Single ‘

L 1: Search faor Child Txn

1.1: Search and retrieve

1.2: Search and retrieve

—

2: All Child Transactions not found
-

3: Wait for child transactions

T
Figure 9-186 Master transaction without all associated transactions

The detailed sequence diagram for scenario 3, an associated transaction arrives but the
master transaction is not yet present, is shown in Figure 9-187.

MasterTxn:InTxn

2] ChildTxn:InTxn

Eg and Map Single

1: Search for Master Txn

1.1: Search and retrieve

1.2: Search and retrieve 'U
2: Master transaction not found
e

L 3: Move to Arrived State

H

Figure 9-187 Associated transaction without master transaction

Chapter 9. Patterns 411

As shown in Figure 9-188, the detailed sequence diagram for scenario 4 shows that an
associated transaction arrives and the master transaction is present. Figure 9-188 also shows
the effect that the event that the associated transaction raises has on the master transaction.

MasterTxn:InTxn

2] ChildTxn:InTxn

Eg and Map Single

1: Search for Master Txn

1.1: Search and retrieve

1.2: Search and retrieve 'H
2: Master transaction found
_L.

3.1.1: Search and retrieve

3.1.2: Search and retrieve

o

4: Update transaction
'-..

Continue Processing
I

Figure 9-188 Associated transaction with master transaction

~ 3: Raise event to prompt master transaction
3.1: Raise event
I

412 Financial Transaction Manager Technical Overview

9.11.4 Object lifecycle diagram

The objects that are identified in this transaction (the master and associated transactions)
have different object lifecycles. The master transaction’s lifecycle is shown in Figure 9-189.

Master
L Transaction
Received

transaction ma;Jped
@& search for rhild transactions

Searching for
child transactions

child transactions arrived update Master transaction
& Search for child transactions @@ Combine master and child transaction data

na transactions found

[_]Waiting for child

transactions uUpdating Master

Transaction

data comblned
{alnitiatla next action

Continue
Processing

Figure 9-189 Master transaction object lifecycle diagram

The child transaction lifecycle is simpler, as shown in Figure 9-190.

Child
L Transaction
Received

transaction mapLed
@ Search for Tastertransaction

Checking faor

&2 Master
Transaction
. master transaction found
master transaction not foun @ Master Present - Raise event to prompt
o Arrived

Figure 9-190 Child transaction object lifecycle diagram

9.11.5 Finite State Machine

The Finite State Machine for the master and child transactions can be combined or be
separate. An example of a snippet of a Finite State Machine for the master transaction is
shown in Figure 9-191 on page 414.

Chapter 9. Patterns 413

«PMP_Transition:

PMP_State»
05 _TxnMapped

«PMP_Transition»
E_MpInTxnMapped

«PMP_ObjFiters
{T.ID IN $Context{TRANSACTION}}

@ A_DoGetChildTxns

«PMP_Transition:
E_AlTxnFound
@ A_UpdateMstrTxn

=PMP_Transition=

E_ContinueProcessing
@ A_ContinueProcessing

«PMP_ObjFilters
{T.ID N SContext{TRANSACTION]}

«PMP_ObjFilters
{T.ID N SContextTRANSACTIONS)

_‘

«PMP_States

PMP_Stat
« _otates = i S_ContinueProcessing

“PMP_States
L 5_UpdateMasterTxn

@2 5_RetrievingChildTxns

«PMP_Transition:
E_TxnMissed

«PMP_ObjFilters

\—“ «PMP_Transitions
T.ID TN SContextTRANSACTION]}

E_ChildTxnArrived
@@ A_DoGetChildTxns

«PMP_ObjFilters
[T.ID IN SContextTRANSACTION

«PMP_States
@2 5_WaitChildTxns

]

Figure 9-191 Finite State Machine for master transaction

The snippet of the finite state machine for the child transaction is shown in Figure 9-192.

«PMP_Transition:»

«PMP_States
2 5_TxnMapped

«PMP_Transition=
E_MpInTxnMapped[]

«PMP_ChjFilters
IT.IDIN SContext{TRANSACTION}}

8 A_CheckMasterTxn

«PMP_States
2 5_CheckingMstrTxns
«PMP_Transitions
E_MstrTxnPresent
@@ A_PromptMstrTxn

«PMP_Transition=
E_MstrTxnMissing

«PMP_ObjFilters
11D IN SContextTRANSACTION]) «PMP_States
= e 5_Arrived

«PMP_ObjFilters
[TID IN SContextTRANSACTION}

Figure 9-192 Finite State Machine for child transactions

The A_PromptMstrTxn action in this Finite State Machine raises the E_ChildTxnArrived
event, which prompts the master transaction to search for all associated transactions again.

9.11.6 Process highlights

The Collating Information pattern concerns gathering data from separate messages, which
originate from different applications or channels and create a combined message by updating
the master transaction.

This collation of data often occurs after the transactions was received and after, or during,
being mapped into the Financial Transaction Manager internal standard format.

414 Financial Transaction Manager Technical Overview

The transactions that are received wait for the complete set of transactions to arrive. There
can be a sizeable delay or the transaction might not arrive at all. In this case, a manual or
automatic exception process must be considered to raise an alert to an operator.

Another consideration is that the transactions must be linked during the mapping or
intrinsically in the data. It also must be possible to identify the number of associated
transactions from the received message; for example, a sequence number or by some other
method.

9.11.7 Pattern interaction

This pattern interacts with any pattern that deals with the reception of transactions, such as
the pattern that is described in 9.6, “Debulking pattern” on page 338 or how they are mapped,
such as the pattern that is described in 9.5, “Transformation pattern” on page 318.

If an associated transaction fails to arrive, this pattern might also interact with patterns that
are associated with alerts and errors, as described in 9.15, “Error handling and alerts
patterning” on page 438.

9.12 Scheduled activity pattern

Many applications require triggering activities at scheduled times, such as during the
following activities:

» Sending transmissions to a gateway at its cut-off time

» Sending heartbeat ping messages to an external system to monitor its availability

» Sending external events to a business activity monitoring component, such as IBM
Business Monitor

This pattern describes how Financial Transaction Manager can be used to start such
scheduled activities.

Figure 9-193 shows a simple use case diagram in which a scheduled activity is sending a
transaction to an external system periodically.

Send Transaction periodically

Scheduled Activity

External System

Figure 9-193 Use case diagram of a scheduled activity

Although the use case is indicating a specific activity (sending the transaction), this pattern
can be used for any scheduled task.

Chapter 9. Patterns 415

9.12.1 High-level description

416

As part of processing of financial applications, activities must be completed at scheduled
times or periodically. Financial Transaction Manager provides the following functions to allow
such processing:

» Scheduler tasks
» Heartbeat events and flows
» Schedule specifications

A scheduler task is an abstraction of any processing that must be performed according to
some schedule. Because the scheduler task is abstracting the processing, it is considered a
lifecycle object and implicitly has a Finite State Machine associated with it. The Finite State
Machine defines the actual activities that needs to be performed. In Financial Transaction
Manager, the scheduler task is represented as part of the operational data and has records
pertaining to it in the SCHEDULER _TASK_BASE table with corresponding associations to the
0BJ_BASE records.

This entity includes the following key attributes, which have significance during the scheduled
task processing:

» Task time, which indicates the time of the current task that was run
» Timeout (from 0BJ_BASE), which specifies the next scheduled time to perform the activity

Scheduler tasks that are related records are typically created when the scheduled activity is
installed, which can be performed as part of an application initialization script and run after all
the configuration data is imported.

Heartbeat events are the events that are based on the Common Business Event model and
are raised by Financial Transaction Manager by using a Heartbeat flow. The following kinds of
Heartbeat events are available:

» Heartbeat start events (E_HeartbeatStart)
» Heartbeat events (E_Heartbeat)

Heartbeat start events indicate the start of the scheduled processing. As part of processing
for this event, initializations for the scheduler tasks can be set up by an action at any time.

Heartbeat events are the periodic events that are sent by the heartbeat flow and as part of its
context and contains the current time stamp. Through Finite State Machine orchestration,
scheduler tasks can listen on these events and, based on some evaluation of criteria, perform
the actual scheduled activity.

Heartbeat flow is a WebSphere Message Broker flow that raises the Heartbeat events on a
regular basis. At the start of the flow, the Heartbeat flow raises E_HeartbeatStart. From that
point forward, it periodically raises E_Heartbeat. Financial Transaction Manager features a
sample heartbeat flow that raises the heartbeat events every 60 seconds.

For more information about Heartbeat events and flows, see the Financial Transaction
Manager 2.1 Information Center and browse to Application Programming — Heartbeat.

Schedule specifications are the schedule configuration information by which the scheduler
task evaluates and bases when to run the next activity. All the schedule specification is
abstracted under the concept of a calendar group that is held inside the configuration data as
part of CALENDAR_GROUP table. Scheduler task associates to this entity to obtain the schedule
configuration information at run time. Calendar group includes specifications of the individual
schedule entries that denote a specific schedule (including specific operating hours, the
period to wait till the next activity, and so on).

Financial Transaction Manager Technical Overview

The set up of the calendar group, scheduled entry, and so on, are done as part of
configuration modeling in Rational Software Architect and are exported into the configuration
data. By looking at the association of the scheduler task with its associated calendar group
and then choosing the best schedule entry, the time for the next scheduled action can be
determined.

Figure 9-194 shows a high-level interaction between an Financial Transaction Manager
application and an external system. In this case, the Financial Transaction Manager
application periodically sends the external system a transaction.

(FTR Application :External System

1: Process Heartbeat Generation

1.1: Heartheat Started

21 Process Scheduler Task

|
= |

2.1: Process Heartbeat Start
=1

| 2.1.1: Get Schedule Entry

1

[2.1.2: Determine Mext Activity Timestamp
er—]

[2.1.3: set Scheduler Task Timeout

L

3t Process Heartbeat Generation
=
I 3.1: Heartheat

4: Process Scheduler Task

|

4.1: Pracess Heartbeat [Timeout < Current Time)

=1
4,1.1: Create Request Transaction ISF

T

4.1.2: Create Request Transaction

T

4.1.3: Qut Transackion Created

Please see Creation of autbound messages ar file pattern for details.

4.2: Set Scheduler Task Task Time

| 43: Get Schedule Entry

4.4 Determine Mext Activity Timestamp
= 1

4.5: Set Scheduler Task Timeout

Figure 9-194 Application periodically performing an activity

Chapter 9. Patterns 417

Figure 9-194 shows the following activities:

» At the start of the Financial Transaction Manager application, the heartbeat flow is started
and the heartbeat started event is raised.

» On receipt of the heartbeat started event, the scheduler task processing (as defined by
its Finite State Machine) fetches the associated calendar group object. From the calendar
group event, the schedule entry is gathered. The scheduled entry defines the period or
frequency of performing the activity; in this case, sending the transaction to the external
system.

Based on the gathered period, the scheduler task is started so that the next transaction is
sent to the external system at the current time plus the period.

This logic can be anything to determine the next time when the scheduled activity must be
performed.

The time stamp is then stored in the scheduler task’s timeout property.

» From this point on, Heartbeat flow periodically generates the heartbeat event. Within the
heartbeat event is stored the current time in the event context named NOW.

» Scheduler task processing then handles the received heartbeat event and checks if the
timeout elapsed. If the timeout elapsed, scheduler task kick starts the periodic activity
processing; in this case, sending a transaction to an external system.

After performing the scheduled activity, it resets the timeout as earlier based on the
configured schedule entries.

This entire process repeats while the heartbeat messages are generated.
Stopping the Scheduler Task is possible based on the set up of its Finite State Machine.

9.12.2 Objects and object relationships

In this pattern, scheduler task is the main object and controls the processing of the scheduled
activity. A scheduler task object is similar to any other lifecycle object, such as a transaction or
a transmission, and has type and subtype attributes.

The Finite State Machines often are configured based on the type and subtype attributes.

9.12.3 Detailed sequence diagram

418

The detailed sequence diagrams that correspond to the pattern highlight the interactions
between the Financial Transaction Manager objects and components.

Figure 9-195 on page 419 shows the low-level sequence diagram. The diagram details the
interaction between the various Financial Transaction Manager components to realize the
scheduled activity pattern.

Financial Transaction Manager Technical Overview

‘Heartbeat Flows (Scheduler Task External System
1: Process Initialization

=1 11:E Heartbeatstart

2 Process E_HeartheatStart

1

L8 ProcessSchedulerTaskStart

Al

L1 Get Associated Calendar

i

2.1.2! Get Schedule Entry

i

2.1.3: Get Period from Schedule Entry

i

2.1.4 SetTimeout

H

3: Process Heartbeat Firing
e 1 34:E Heartbest

4: Process E_Heartheat

I

EN

1A ProcessSchedulerfctivity

AE

.1.1: Perfarm Periodic Activity

i

4.1.1.1: E_ActivityEvent

=

.12 Set Current Time as the Task Time

Al

1.3 Get Azzociated Calendar

i

414 Get Schedule Entry

i

4,15 Get Period from Schedule Entry

i

4.1.6: Set Timeout

i

Figure 9-195 Low-level sequence diagram detailing scheduled activity processing

The following activities are shown in Figure 9-195:

» Heartbeat flow is a WebSphere Message Broker flow that is started at the start of the
Financial Transaction Manager application. Heartbeat flow emits the E_HeartBeatStart
and E_HeartBeat events.

» Scheduler task is the scheduled activity processing object that processes according to the
Finite State Machine that is defined for it. Scheduler task is associated with a calendar
group and schedule entry configuration. Based on these associations, scheduler task
determines when it is appropriate to schedule the activity. At the scheduled time, it raises
E_ActivityEvent, which can then be handled to perform any scheduled activity, such as
sending a message.

Chapter 9. Patterns 419

» The processing is as defined in the sequence diagram. Scheduler task handles the
E_HeartBeat only if the current time in the event elapsed the configured timeout that was
set in it. The timeout process is not indicated in Figure 9-195 on page 419.

9.12.4 Obiject lifecycle diagram

Figure 9-196 shows the object lifecycle diagram of a scheduler task.

Starting Heartbeat
@ Initialize Scheduler Task

@ scheduled Task Active

Scheduler Trigger
@@ Initiate Scheduled Task

Figure 9-196 Object lifecycle of a scheduler task

The scheduler task has only a single state during which it processes the received heartbeat
events.

9.12.5 Finite State Machine

Figure 9-197 shows the Finite State Machine of the scheduler task object.

«PMP_Transition»
E_HeartbeatStart

@ A ProcessSchedulerTaskStart

«PMP_Transition:»

<PMP_States le——
o 5_ScheduledTaskActive - —

=

«PMP _ObijFilter= «PMP_Transitions»

{SContextNOW? == TIMEOUT} E_Heartheat
@ A_ProcessSchedulerActivity

Figure 9-197 Object lifecycle of the scheduler task

420 Financial Transaction Manager Technical Overview

Figure 9-198 shows the object selector for the Finite State Machine that is associated with the
scheduled task.

MasterObjectSelector: SELECT ID, APP_ID, RESOURCE_REF PARTICIPANT _NAME, TASK_TIME
FROM $DBSchema. SCHEDULER,_TASK_V WHERE SUBTYPE = 'SCHEDULED_ACTIVITY_TASK' AND STATUS=? AND
AFP_VERSIOM_ID =$4ppVerld

OhjectType: SCHEDIULER_TASK El

Priority: 50

Figure 9-198 Object selector for scheduler task Finite State Machine

Figure 9-198 shows the processing of the scheduled activity. It is a simple Finite State
Machine and reacts to E_HeartbeatStart and E_Heartbeat events, which runs the specified
actions appropriately.

The Finite State Machine is selected based on the subtype of the scheduler task object (such
as SCHEDULED ACTIVITY_ TASK).

The object filter that is associated with E_Heartbeat transition results in the processing of

A ProcessScheduledActivity only if the timeout that is set in the scheduler task elapsed. The
specified object filter compares the current time as configured in the event context of the
heartbeat event, with the timeout set for the scheduler task. Only after this criteria is satisfied
is the action then run as specified in the transition.

9.12.6 Process highlights

This pattern is concerned with how an application can perform scheduled activities as part of
financial transaction processing.

This pattern includes the following highlights:

» The scheduled activities can be triggered at specific times (such as to target cut-off times
of external systems or can be periodic, such as sending heartbeat ping messages).

» Scheduler task is the entity that abstracts the scheduled activity processing and is
controlled by its Finite State Machine. Any kind of scheduled processing can be modeled
by using the scheduler tasks.

» A heartbeat flow mechanism must be configured to raise heartbeat events. The scheduler
task Finite State Machine progresses based on the heartbeat events. The sample
application that accompanies Financial Transaction Manager demonstrates a heartbeat
flow for reference.

» To depict the schedule, configuration can be modeled in Rational Software Architect by
using configuration elements (calendar group and schedule entry). Then, the elements are
imported into Financial Transaction Manager configuration data.

» Scheduler tasks are associated with the schedule configurations and used at run time to
process the scheduled activities.

Chapter 9. Patterns 421

9.12.7 Pattern interaction

This pattern is one of the base patterns. Higher-level processing can be built by using this
pattern.

A pattern that often interacts with scheduled activity is the store and release pattern.

Figure 9-199 shows the sequence diagram and how scheduled activity can be used in
relation to the store and release pattern.

InT=n (OutTxn ServiceParticipant (OutPT sacheduler Task

1: Identify Destination

21 Create

Trasnsaction Held

3 Trigger Service Open

j

Triggering of Service Participant Open

Transaction Release

Figure 9-199 The use of scheduled activity in relation to the store and release pattern

422

Figure 9-199 shows the following actions:

» Transactions are started to be sent out as explained in the pattern (in this case, A
transaction is to be transmitted but is not allowed, from the store and release pattern, so
the transaction is held).

» The held transactions (warehoused transactions) are then triggered to be sent out when
the service participant is open. The service participant must be triggered to realize that it
is open and must run the transmission of its warehoused transaction.

» This triggering is accomplished by using a pattern as indicated in the sequence diagram.
When the service participant is open (cut-off time), these triggers are sent out of the
scheduled task pattern at scheduled times.

» After receiving the trigger, the service participant continues on with its processing, as
explained in the store and release pattern’s Transaction Release sequence diagram.

Financial Transaction Manager Technical Overview

9.13 Scheduled expectation pattern

This pattern describes the monitoring of a process that raises certain events to be issued at a
certain time. This type of pattern is common in settlement mechanisms; for example, awaiting
an end-of-day reconciliation file or the delivery of direct debit instructions. This pattern also

can be used to monitor client interfaces; for example, the delivery of a file at an expected time.

The timeout for the Scheduler Task is calculated with reference to any Calendar Group or
Schedule that was defined against it. If the expected event does not occur before the timeout
is reached, an alert is raised to the operator for investigation.

Figure 9-200 shows the use case for this pattern.

Set Next
Timeout

Event Occurs

Maonitor for Event

Event does not occur before timeout

Exception
Processing

Figure 9-200 High-level use case for scheduled expectation

9.13.1 High-level description

The high-level description for this pattern consists of the following use cases:

» Event that is monitored for is detected
» Event that is monitored for is not detected before the timeout

The Scheduler Task object is a Financial Transaction Manager object and can include finite
state machines that describe state changes, the events that cause them, and the action that
is triggered by them.

The Scheduled Task object is not dependent on any other Financial Transaction Manager
object; for example, Service Participant and transaction. It waits for a specific event only. The
event can be fine-grained, for example, for a particular file name, and a particular transaction
can be monitored for instead of every file or transaction.

Chapter 9. Patterns 423

The heartbeat event, E_Heartbeat is used in a similar way that is as described in 9.2,
“Routing, IBM Operational Decision Manager rules, and multiple targets pattern” on page 282
for the Service Participant object in that it monitors the timeout. Similarly, the
E_HeartbeatStart event is used to start the Scheduled Task object when IBM WebSphere
Message Broker starts by setting the timeout with reference to any Calendar Group that is
associated with it.

Scenario 1
Figure 9-201 shows the high-level description for the first scenario.

= £ :FTM Application

Waiting for Event

1: Heartbeat Event
1.1: Check Timeout

2: Monitared Event

- 2.1: Perform Action

21.1: Reset Timeout

Waiting for Event

Figure 9-201 High-level description for a successful Scheduled Expectation

In this scenario, the following process occurs:

1. The Heartbeat event is issued regularly and checks whether the System Objects timeout
was reached.

In this scenario, the timeout has not been reached.
2. The event that is monitored for is raised by another Finite State Machine.

3. The Scheduler Task object is triggered by the monitored event and performs an action as
defined within its Finite State Machine.

4. As part of the action, the Scheduled Events next timeout value is calculated.
5. The Scheduler Task object waits for the next monitored event.

424 Financial Transaction Manager Technical Overview

Scenario 2

In the second scenario, the Scheduler Task object’s timeout is breached, the high-level
description is shown in Figure 9-202.

= £ :FTM Application

Waiting for Event

1: Heartbeat Event
1.1: Check Timeout

2: Timeout Passed

i 2.1: Motify Operator

2.1.1: Raise Alert

Exception Processing

Figure 9-202 High-level description for a scheduled expectation with a breached timeout

In this scenario the following process occurs:

1. The Heartbeat event is issued regularly and checks whether the System Object’s timeout
was reached.

In this scenario, the Schedule Task object’s timeout passed.

2. This causes a state change for the Scheduler Task object and triggers an action that
raises an alert to notify an operator.

3. The Scheduler Task object is moved to an alert state.

9.13.2 Objects and object relationships
The only Financial Transaction Manager object that is identified for this pattern is the
Scheduler Task Object. The heartbeat event monitors the Scheduler Task object and triggers

an exception process if the timeout is breached. The monitored event triggers the Scheduler
Task object and causes it to perform an action.

9.13.3 Detailed sequence diagram

The detailed sequence diagrams for this pattern shows the interaction between the events
that are raised and the behavior of the Scheduler Task object.

Chapter 9. Patterns 425

The Scheduler Task object is triggered by an event that can be raised by any object that is
related to the finite state machine, such as a Transaction object or a Service Participant
object.

The following scenarios are being considered:

» The event that is monitored occurs before the Scheduler Task object’s timeout.
» The Scheduler Task object’s timeout is reached before the monitored event occurs.

Scenario 1
The detailed sequence diagram for the first scenario is shown in Figure 9-203.

= heartbeat:Event monitored:Event | [:SchedulerTask

Heartbeat Flow Processing
Manitor for Event

1: Timeaout not reached

L]

2: Timeaut not reached

i) 3.1: Perform Action
3.1.1: Reset timeout

3: Triggers

Heartbeat Flow
Processing

Manitor for Event

Figure 9-203 Detailed Sequence Diagram for a successful Scheduled Expectation

As shown in Figure 9-203, the Heartbeat event has no effect on the Scheduler Task object
because the timeout was not breached. However, the monitored event caused the Scheduler
Task to perform an action and to reset the timeout to the time that the next monitored event is
expected.

Scenario 2
In the second scenario, the timeout was breached, as shown in Figure 9-204 on page 427.

426 Financial Transaction Manager Technical Overview

= heartbeat:Event el :SchedulerTask

Heartbeat Flow Monitor for Event

1: Timeaut breached

2: Perform Action

2.1: Motify Operator
) 2.1.1: Raise Alert

Heatbeat Flow Exception Processing

Figure 9-204 Detailed Sequence Diagram for Scheduled Expectation with the timeout breached

As shown in Figure 9-204, the monitored event does not occur before the timeout. Therefore,
the Heartbeat event triggers a state change of the Scheduler Task object to an alert state and
notifies the operator. This action leads into the exception processing pattern, as described in
9.15, “Error handling and alerts patterning” on page 438.

9.13.4 Object lifecycle diagram

The Scheduler Task object is the only Financial Transaction Manager object that is identified
in this pattern. However, the actions that are performed by the Scheduler Task object in
response to its timeout being breached or the monitored event occurring affects other objects,
such as deactivating or activating a Service Participant object and triggering state changes in
a transactions lifecycle.

In the scenarios that were described in 9.13.1, “High-level description” on page 423, the only
state change that occurs for the Scheduler Task object is when its timeout is breached. There
is no state change when a monitored event is successfully processed. This can be seen in the
Finite State Machine for the Scheduler Task object (for more information, see 9.13.5, “Finite
State Machine” on page 428).

When a monitored event is not received when expected, a state change occurs and the object
has a lifecycle, as shown in Figure 9-205 on page 428.

Chapter 9. Patterns 427

| &2 Awaiting Event |

maonitored event timeout rLched operator verifies
@@ Perform Action and Reset Timout @@ Motify Operator @@ Perform Adtion and Reset Timeout
Timeout

Breached

Figure 9-205 Object Lifecycle Diagram for a Scheduled Expectation with a breached timeout

In this example lifecycle, when the timeout is reached, the Scheduler Task moves to an alert
state and the operator is notified. There are two ways to reset the Scheduler Task in this
example: by an operator action or by the monitored event occurring.

The ability for an operator to reset the Scheduler Task should always be present; however, it
might not be appropriate for the automatic reset of the timeout to occur when the next
monitored event occurs. This depends on the nature of the action that is performed; for
example, if the Scheduler task is performing a sequencing role, performing the action when
the next monitored event occurs might cause transactions to be processed in the wrong
sequence.

9.13.5 Finite State Machine

The Finite State Machine for a Scheduler Task varies depending on the role that this task is
performing, the event that is monitored, and the action that is performed, as shown in
Figure 9-206 on page 429.

428 Financial Transaction Manager Technical Overview

«PMP_Transitions=
«PMP_Transition» [~ - E_TransP TWalid[]
E_HeartbeatStart e - @@ A ProcessPTArmve

@ A_InitMonitor

“PMP_State»
2 5_WaitPTReceive

f

«PMP_Transition=» «PMP Transitions
E_Heartheat E_SchedReset
a8 A_TimeoutMotify <PMP_ObiFilter =

JPe— — I | 4P OBI_ID IN $Context{SCHEDULEDTASK}}

IsContext{NOW} »= TIMEQ

«PMP_Transitions
«PMP_Transitions E_TransP TValid[]
E_HeartbeatStart - & A_ProcessPTArrve

& A_InitMonitor

| «PMP_State, PMP_Alerts
o 5_WaitOverdue

«PMP_Transition:
————__E| OperatorVerify[$ContextNOTNULL{SCHEDULED TASK}]

Verify : ' &-A_ProcessP TArrive
«PMP_Resolution:

“PMP_ObiFilter =
{P.OBI1_ID IN $Context{SCHEDULEDTASK}}

Figure 9-206 Example Finite State Machine for Scheduled Expectations

The Finite State Machine that is shown in Figure 9-206 acts on a Scheduler Task object that
monitors for the reception of a valid physical transmission. The following process occurs:

1. If the physical transmission is received before the Scheduler Task’s timeout, the action
A_ProcessPTArrive is started.

2. If heartbeat event E_Heartbeat detects that the timeout was breached, it causes a state
change to S_WaitOverdue. This state is an alert state, as can be seen by the PMP_Alert
stereotype.

3. The A_TimeoutNotify action is started, which raises an alert to the operator.
4. There are two possible resolutions in this example:

a. The operator can take an action to Verify the alert. This causes the A_PtTArrive action
to occur, which resets the timeout and raises an event, E_SchedReset, to reset the
state of the Scheduler Task to S_WaitPTReceive.

b. The overdue event occurs and causes the A_PtTArrive action to occur, which resets
the timeout and raises an E_SchedReset event to reset the state of the Scheduler Task
to S_WaitPTReceive.

Note: The E_HeartBeatStart event acts upon the Scheduler Task in both states, which
causes the A_InitMonitor action to be started when WebSphere Message Broker starts
and ensures that the Scheduler Task is correctly started.

Chapter 9. Patterns 429

9.13.6 Process highlights

This pattern is concerned with the monitoring of events that are raised by other Financial
Transaction Manager processes and acting upon them when they are received.

The definition of a Scheduled Task within IBM Rational Software Architect is shown in
Figure 9-207.

General

FTM

Attributes
Operations
Stereotypes
Documentation
Constraints
Relationships
Advanced

H <Class> «<EPP_SchedulerTask= FTM Sample App::Config:Service Monitor::Scheduler Tasks:Payments Gateway

Marne: Payrnents Gateway
Rescurce Ref: Payments Gateway
Resource Ref:

Current 5c...ule Entry:

Task Time: 01 January 2000 - 00:00:00 == [C]Mull Date

Calendar Groups: ||-—I'M Sample App:Config:Service Monitor:Calendars:Summary Monitor Schedule Group
Add... || Delete | | Navigate

Involved Party: i

Ohj Status: 5_MonitorActive

Obj Subtype: INVOKED_SERVICE_MONITOR

Ohbyj Class:

Figure 9-207 Definition of a Scheduler Task in Rational Software Architect

In this example, the entry in the Resource Ref field is used to link the Scheduler Task to
another Financial Transaction Manager object. In this case, the object is a Service
Participant; therefore, the Scheduler Task is linked to an interface.

The Scheduler Task also is linked to a Calendar Group, which is used to calculate the initial
and subsequent timeouts.

For more information about the definition of Calendar Groups within Rational Software
Architect, see 9.8.6, “Process highlights” on page 368.

9.13.7 Pattern interaction

This pattern interacts with the following schedule-based patterns:

» 9.12, “Scheduled activity pattern” on page 415
» 9.14, “Heartbeats monitoring (scheduling) pattern” on page 431

In addition, this pattern can interact with any other patterns that raise events that might
require to be monitored. For example, with the pattern that is described in 9.2, “Routing, IBM
Operational Decision Manager rules, and multiple targets pattern” on page 282, monitor for
particular routing events or Service Participant Finite State Machine events. Similarly, this
pattern can be used to monitor for user actions or error events, as described in 9.15, “Error
handling and alerts patterning” on page 438.

430 Financial Transaction Manager Technical Overview

9.14 Heartbeats monitoring (scheduling) pattern

This pattern describes two monitoring scenarios: one in which Financial Transaction Manager
sends a periodic message (sometimes known as a technical heartbeat) to an external system
to let that system know that Financial Transaction Manager is still running, and another
scenario in which Financial Transaction Manager waits for a periodic message from another
system to indicate the system is still running. Because these scenarios rely on existing
patterns that were described in this chapter, for the purposes of this pattern, the first scenario
is known as the “Scheduled Activity monitoring” scenario and the second scenario is known
as the “Scheduled Expectation monitoring” scenario.

Figure 9-208 shows the use case for the Scheduled Activity monitoring scenario.

Heartbeat Message

Scheduled Activity
External System

Figure 9-208 Scheduled Activity monitoring scenario

Figure 9-209 shows the use case for the Scheduled Expectation monitoring scenario.

Set Next Ti t
Heartbeat Message received imeou

Maonitor for Event

Heartbeat Message not received before Timeout

Exception Processing

Figure 9-209 Scheduled Expectation monitoring scenario

Chapter 9. Patterns 431

9.14.1 High-level description

Figure 9-210 shows the High-level Sequence diagram for the Scheduled Activity monitoring
scenario.

El Monitoring - Scheduled Activity

el Q :FTM Application % :External System

L Application

Specific

2 Heartbeat Messa_ge

—

Scheduled Adtivity Pattern

Figure 9-210 High-level Sequence diagram for the Scheduled Activity monitoring scenario

Figure 9-211 shows the High-level Sequence diagram for the Scheduled Expectation
monitoring scenario.

] Monitoring - Scheduled Expectation

% :External System 2l Q :FTM Application

1] Heartbeat _;

Message Inbound Message Received

R
2 Link Channel ta
Interface

Scheduled Expectation Pattern

Figure 9-211 High-level Sequence diagram for the Scheduled Expectation monitoring scenario

432 Financial Transaction Manager Technical Overview

9.14.2 Objects and object relationships

As with the Scheduled Activity pattern, the Scheduler Task object is the main object and
controls the processing of the scheduled activity that creates the Heartbeat message for the
Scheduled Activity monitoring pattern.

Figure 9-212 shows the objects and object relationships for the Scheduled Expectation
monitoring scenario.

ko] InPT &
P =

SvcParticipant

1

Referances
B

1

SchedulerTask

Figure 9-212 Scheduled Expectation monitoring pattern object relationships

9.14.3 Detailed sequence diagram

The Detailed Sequence diagram for the Scheduled Activity monitoring scenario is based on
the Detailed Sequence diagram for the Scheduled Activity pattern. The Perform Periodic
Activity action in the Detailed Sequence diagram of the Scheduled Activity pattern creates the
outbound Heartbeat message transaction. This process involves linking the Scheduled
Activity to an outbound transaction type.

Chapter 9. Patterns 433

Figure 9-213 shows the Detailed Sequence diagram for the Scheduled Activity monitoring

scenario.
FE :Heartbeat Flow | F SchedulerTask | PG eneric Outbound Tans BliGeneric Outbound PTs % :External System
| | :0utTxn :OutPT

1: Process Initialization |

1.1: E HeartbeatStart) | 1.1.1: Process E_HeartbeatStart

1.1.1: A_ProcessSchedulerTaskStart
1.1.1.1.1: Get Associated Calendar

11.1.1.2: Get Schedule Entry

© 11.1.1.4: Set Timeout

|

|

| _

| 1.1.1.1.3: Get Period from Schedule Entry
|

|

|

2: Process Heartbeat Firing
2.1: E_Heartbeat

2.1.1: Process E_Heartbeat

|

|

|

|

|

|

|

|

|

|

|

21.1.1: A_ProcessSchedulerActivity |
..2.1.1.1.1: Create Outbound Heartbeat Message |

21.1.1.2: E_TunCutCreated o~
E=10y

3: Heartbeat I\dessage_
F—

1.3: Set Current Time as the CQutbound Message or File Pattern

Task Time
21.1.1.4: Get Associated Calendar

.1.1.1.5: Get Scheduled Entry

11.1.7: Set Timeout

T

|
|
|
21.1.1.6: Get Period from Schedule Entry |
|
|
|

Figure 9-213 Scheduled Activity monitoring scenario Detailed Sequence diagram

434 Financial Transaction Manager Technical Overview

Figure 9-214 shows the Detailed Sequence diagram for the Scheduled Expectation
monitoring scenario.

'] Monitoring - Scheduled Expectation

/% :External System B ;G eneric Inbound PTs = Q monitored: Event = :SchedulerTask
:InPT

A: Heartbeat
Message Sinbound Message Received

2: Retrieve Service
Participant using
Inbound Channel info

3 Link Scheduled
Activity to Service
Participant via
Resource Ref

;: Raise Event with

optional
SCHEDWULER_TASK
Caontext

41: Monitor Event

4]

Scheduled Expectation Pattern

Figure 9-214 Scheduled Expectation monitoring scenario Detailed Sequence diagram

9.14.4 Obiject lifecycle diagram

Figure 9-215 on page 436 shows the Object lifecycle diagram for the Scheduled Activity
monitoring scenario. This is the same Object lifecycle as the Scheduled Activity pattern. The
Initiate Scheduled Task action that is shown in the diagram is responsible for creating the
Heartbeat transaction that is sent to the external system.

Chapter 9. Patterns 435

Starting Heartbeat
@ Initialize Scheduler Task

@ scheduled Task Active

Scheduler Trigger
@@ Initiate Scheduled Task

Figure 9-215 Scheduled Activity monitoring Object lifecycle diagram

Figure 9-216 shows the Object lifecycle diagram for the Scheduled Expectation monitoring
scenario. This is the same Object lifecycle diagram as the Scheduled Expectation pattern.
The monitored event is triggered by the incoming Heartbeat message and, if it is not received,
the timeout reached event triggers the notification to the operator that the external system is

offline.

| &2 Awaiting Event

maonitored event timeout rLched operator verifies
@@ Perform Action and Reset Timout @@ Motify Operator @@ Perform Adtion and Reset Timeout

Timeout
Breached

Figure 9-216 Scheduled Expectation monitoring Object lifecycle diagram

9.14.5 Finite State Machine

Figure 9-217 on page 437 shows a typical Finite State Machine diagram for the Scheduled
Activity monitoring scenario. This is the same Finite State Machine diagram as the Schedule
Activity pattern. The A_ProcessSchedulerActivity action that is shown in the diagram is
responsible for creating the Heartbeat transaction that is sent to the external system.

436 Financial Transaction Manager Technical Overview

«PMP_Transition:»
E_HeartheatStart

& A_ProcessSchedulerTaskStart

«PMP_Transition»

«PMP_States fe——
| &5 5_ScheduledTaskActive | " —

«PMP_ObijFilters «PMP_Transition:»

TeContextiNOW} >=TIMEQUT} E_Heartbeat
@@ A_ProcessSchedulerfctivity

Figure 9-217 Scheduled Activity monitoring Finite State Machine

Figure 9-218 shows a Finite State Machine diagram that can be used to model the Scheduled
Expectation monitoring scenario. This Finite State Machine diagram was used in the
Scheduled Expectation pattern. The E_TransPTValid event is generated by the inbound
Heartbeat message that is received by the external system. The A_ProcessPTArrive action is
responsible for resetting the timeout the Schedule Task object.

«PMP_Transition=
«PMP_Transition» [~ E_TransPTValid[]

E_HeartbeatStart @ A_ProcessPTArTve

@ A_InitMonitor —~
=g “PMP_States le—"
22 5_WaitPTReceive

«PMP_Transition: «PMP_Transitions

E_Heartheat " E_SchedReset
@ A_TimeoutNotify «PMP_ObiFilters

JOBI_ID IN $Context{SCHEDULEDTASK}}

+

«PMP_ObiFilter=
{SContext{NOW} >=TIMEQUT}

«PMP_Transitions
«PMP_Transition» E_TransPTValid[]
E_HeartbeatStart |~ @ A_ProcessP TArrive
@ A_InitMonitor /

= «PMP_State, PMP_Alerts |-
o 5_WaitOverdue

«PMP_Transitions

Verify = ‘@ A ProcessPTArmve
«PMP_Resolutions —
5 «PMP_ObjFilters
{P.OBI_ID IN $Context{SCHEDULEDTASKY}

Figure 9-218 Scheduled Expectation monitoring Finite State Machine

Chapter 9. Patterns 437

9.14.6 Process highlights

For the Scheduled Activity monitoring scenario, a typical process is to create a Scheduler
Task to represent the scheduled activity processing of sending the periodic heartbeat
message. This is modelled in Rational Software Architect by using Calendar Groups and
Schedule Entry entries and imported into the Financial Transaction Manager database. A
Finite State Machine is created to model the process of the Scheduler Task, with an
E_HeartbeatStart transition to start an action that sets up the next timeout for the Scheduler
Task by using the Schedule Entry and Calendar Group information that is linked to the
Scheduler Task. Another transition that is based on the E_Heartbeat event is needed to
trigger when the Scheduler Task times out. This starts an action that creates an outbound
Heartbeat transaction, and the action raises an E_TxnOutCreated event by using the subtype
as context. This gets picked up per the Outbound Message or File pattern and the periodic
transmission is sent to the external system to indicate that Financial Transaction Manager is
still active.

For the Scheduled Expectation monitoring scenario, the initiator is an inbound Heartbeat
transmission from an external system. The message is received on a Financial Transaction
Manager inbound channel and an action is started to resolve the interface to a Scheduler
Task. This is done by using the inbound channel details to retrieve the Service Participant that
is associated with the interface. The Scheduler Task that is associated with the Service
Participant can be retrieved through the RESOURCE_REF field of the Scheduler Task. As
before, the Scheduler Task is modelled in advance of this in Rational Software Architect and a
Finite State Machine is created to model the process of the Scheduler Task that is waiting to
transition on an event that is caused by the incoming Heartbeat message that is arriving (for
example, E_TransPTValid in the Finite State Machine of the Scheduled Expectation pattern).
After this event is received and the transition triggered, the timeout value of the Scheduler
Task is updated. If a Heartbeat message is not received from the external system before the
next timeout, an error scenario is triggered.

9.14.7 Pattern interaction

The Scheduled Activity and Scheduled Expectation patterns are integral to this pattern. This
pattern also interacts with the Outbound Message or File pattern when the Heartbeat
Message is sent to the external system as part of the Scheduled Activity monitoring scenario.
The Scheduled Expectation monitoring scenario interacts with the Error handling and alerts
pattern when a Heartbeat message from an external was not received on time. This alerts the
operator of the timeout and possibly log an error in the Financial Transaction Manager
database.

9.15 Error handling and alerts patterning

438

This pattern addresses ways of investigating and resolving alerts and errors that can occur
during transaction processing within Financial Transaction Manager. The following main types
of errors can occur:

» Technical issues that cause the processing to stop or enter an alert state; for example,
mapping and unparseable data.

» Processing issues that arise because of design and are expected in certain
circumstances; for example, business validation failure or output destination that cannot
be found.

Financial Transaction Manager Technical Overview

In both cases, Financial Transaction Manager can notify an operator that an issue that
occurred and allow them to investigate and resolve the issue. For more information about the
resolution of the issue from within the Financial Transaction Manager Operation and
Administration Console, see 6.3.5, “Resolving alerts and operator actions” on page 188.

This pattern focuses on the alerts and issues that are raised as part of the processing flow.
The use case for this pattern is shown in Figure 9-219.

Issue Encountered Alert Operator

Transaction Tran ion
Processing Processing
Issue

Operatar

Operator Resubmit Operator investigates and takes action

ject in alert
state

Operator Cancels Operator Releases
Cancelled Continye
Processing

Figure 9-219 Use case for error handling and alerts pattern

9.15.1 High-level description

When a transaction that is processed within Financial Transaction Manager encounters an
error, an alert is raised and the operator notified. In addition, an event can be emitted to be
sent to a monitoring system, such as IBM Business Monitor, as shown in Figure 9-220 on
page 440.

Chapter 9. Patterns 439

440

2l Q :FTM Application Q :Manitoring Application % :Operator

Transaction Processing

1: Error
1.1: Motify Operatar

1.1.1: Emit Alert

1.1.1.1: Emit External Alert

¥

1.1.2: Raise Operator Alert

L |

Operator Investigation

2: Operator Action

|

Continue or Cancel Transaction Processing

Figure 9-220 High-level interaction diagram for alert and errors

At a high level, this process is the same for technical and processing errors. In Figure 9-220,
the following process is shown:

1.

A transaction or physical transmission encounters an issue while it is processed; for
example, a mapping error or business validation.

. The action that is processing the transaction or physical transmission issues an event that

moves the object to a state that is defined as an alert state.

This event also causes an action to be triggered, which causes an alert to be emitted to an
external monitoring application. The emitted event can be enriched with more detalil, if
required.

4. This action also notifies the operator that an alert occurred.

5. The operator investigates the cause of the error by using the Financial Transaction

Manager Operation and Administration Console.

After the investigation his complete, the operator resolves the transaction issue by taking
an action within the Financial Transaction Manager Operation and Administration Console.
For more information, see 6.3.5, “Resolving alerts and operator actions” on page 188.

Financial Transaction Manager Technical Overview

7. When a user takes an action, an event is raised that controls the state that the object is
moved to; for example, a Cancel resolution might cause the transaction to be placed in a
cancelled end state or a Resubmit might cause the transaction to be placed back in the
process flow.

9.15.2 Objects and object relationships

The Financial Transaction Manager Objects that are identified in this pattern for transactions
that enter an alert state are shown in Figure 9-221.

Inbound Transmission
1
TRANSMISSION
a.1
Inbound Batch
1
BATCH
1%
Inbound Transaction

Figure 9-221 Alerts and Errors: Object/Object Relationships

When a Financial Transaction Manager object enters an alert state, it can raise alerts that are
sent to external systems or to the operator. The operator can then take an action on the
affected object from within the Financial Transaction Manager OAC, which triggers further
processing; for example, cancelling the transaction or resubmitting it.

9.15.3 Detailed sequence diagram

The detailed sequence diagram describes the interaction between the objects within the
pattern. The following use cases were identified:

» A transaction encounters an error and the operator cancels it.
» Transmission or transaction encounters an error and the operator resubmits it.

These processes are similar with the exception that the first use case puts the transaction in
an end state and no further processing is carried out on it.

The detailed sequence diagram is shown in Figure 9-222 on page 442.

Chapter 9. Patterns 441

‘E‘ AInTxn | |EI :External Alert ‘ ‘E‘ Q :Monitoring Application ‘ ‘E‘ % :Operator |

Processing

1: Errar

] 1.1: Raise Ex'terralAIert

1.1.1: Create Ex'tFrnaI Alert
1.1.1.1: Send External Event

H

1.2: Raise Dper’atorAlert . Cl
1.2.1: Motify Operataor

7!

|
|
|
| Operator Investigates
|
|
|
|

LT
|
|
|

| 2: Operator Resolves Issue

3: Cancels ar CoFtinues Processing

Figure 9-222 Detailed Sequence Diagram: Transaction Failure

A batch object often is validated after the transactions within it are validated. The detailed
sequence diagram for a batch that encounters and error is shown in Figure 9-223 on
page 443.

442 Financial Transaction Manager Technical Overview

E/% operator:Operator

| inBat:InBat

Transaction Processing

1: Valid Transaction
t 1.1: Validation Passed

|
|
|
1]
2: Errar

2.1: Raise Alert

2.1.1: Notify Operator

TJ

]

Investigation

|
| 3: Operator Cancel

|

|

|

|

|

|

|

|

| :

| 4: Batch Failed

il |
|
|
I

5:|Batch Failed

] I |

Figure 9-223 Detailed Sequence Diagram: Batch Failure and Cancel

In this example, the operator cancelled the failed batch, which causes the transactions within
the batch and the physical transmission to be updated and moved to an alert state.

The detailed sequence diagram for a batch that encounters a failure and then is released (the
reason for the issue was resolved) is shown in Figure 9-224 on page 444.

Chapter 9. Patterns 443

InTun(l..nkInTxn inBat:InBat E% operator:Operatar

Transaction Processing

1: Valid Transaction
1: Validation Passed
=l
2: Errar
2.1: Raise Alert

2.1.1: Notify Operator

=

Investigation

3: Operator Releases

4: Batch Released

-

Continue Processing

Figure 9-224 Detailed Sequence Diagram - Batch Failure and Release

In this example, the processing of releasing the batch allows the transactions that is
contained within it to continue processing.

Physical transmissions often encounter errors before the creation of the subsequent batch or
transaction objects. Figure 9-225 on page 445 shows a detailed sequence diagram for a
physical transmission that encounters an error.

444 Financial Transaction Manager Technical Overview

Bl) cnet = % :Operatar

Transmission Processing

1: Errar
1.1: Raise Alert

1.1.1: Notify Operator

Investigation

2: Operator Action

Cancel ar Continue Processing

Figure 9-225 Detailed Sequence Diagram - Physical Transmission Failure

In this example, a physical transmission encountered an error (for example, a mapping or
syntax validation error) and raises an alert.

A user investigates and resolves the problem (for example, by correcting mapping parameters
or maps) and resubmits the physical transmission for processing or cancels the transmission.

9.15.4 Object lifecycle diagrams

The lifecycle of the objects for this pattern follows the same generic lifecycle in that the
following process occurs:

1. An object encounters an error.

2. An alert is raised and the operator is notified.

3. The operator investigates the cause of the alert and take one of the following actions:
a. The operator cannot resolve the issue and cancels the alert.

b. The operator resolves the cause of the issue and resubmits the object back into the
process flow at the point the issue occurred; for example, to revalidate.

c. The operator cannot resolve the cause of the issue, but the object can be processed
further. The operator can release the object back into the process flow after the point
that the issue occurred.

In this section, we use the example of a transaction failing a validation. The object lifecycle
diagram is shown in Figure 9-226 on page 446.

Chapter 9. Patterns 445

("#» Object Lifecycle Diagram

validation passes
| @ validating @ Continue Processing | o Continue Processing

operator repairs

validation fails operator verifies

@ Resubmit transaction Notify Operator @ Release transaction

L Awaiting Repair

operator cancels
@ Cancel Transaction

Transaction
=
Cancelled

Figure 9-226 Object lifecycle for an object entering an alert state

In this example, the following process occurs:
1. A transaction fails validation and moves into an alert state of Awaiting Repair.

2. At the same time, the Notify Operator action creates and sends an alert to an external
monitoring application and to the operator.

3. The operator logs into the Financial Transaction Manager Operation and Administration
Console and works with the transactions that have a state of Awaiting Repair.

4. The operator investigates the reasons why the transaction failed validation and then can
perform one of the following tasks:

a. Cancel the transaction and move it to a cancelled end state.

b. Resubmit the transaction to be revalidated; for example, validation failed because of
incorrectly set up data that was corrected.

c. Release the transaction for further processing as the validation failure is incorrect or
not appropriate for this transaction..

When a batch encounters an error, the object lifecycle of the transactions are affected, as
shown in Figure 9-227 on page 447.

446 Financial Transaction Manager Technical Overview

Validating
(]
Transactions

Awaiting
&2 Batch
Validation

operataor resubmits batch batch fE‘i|f!€||

transactions valid

& Wait for Batich Validation

Transaction
Invalid due
(=]
to invalid
batch

OpE"—‘*‘ eancals-batel

{ﬁ-Proces1 batch failure

I_op.uato:_:el.eases batch

57CancelTransactions

2 Cancelled

gﬂ.ContinT Pracessing

Continue
Processing

Figure 9-227 Object lifecycle for a transaction entering an alert state due to batch error

9.15.5 Finite State Machine

The Finite State Machines in this pattern define the process flow to be followed when an error
occurs and the attributes of the states. The state definitions contain the alert behavior and the

allowed actions on those states.

Figure 9-228 shows part of a Finite State Machine for a physical transmission.

«PMP_Transition:
E_PTValid

«PMP_ChjFilters
{T.ID TN SContext{TRANSMISSION}}

«PMP_ObjectSelectors

{SELECT ID FROM

$DBSchema.OBJ_BASE T WHE...
PMP_States

&2 S_InPTProcessing “PMP_States

— — —— @2 S_InPTValidating

«PMP_Transition:
E_MpInMappingAborted

«PMP_ObjFilters
{T.ID TN $Context{TRANSMISSION}}

@ A_MNotifyOps

«PMP_ Transition:
E_PTValFail
«PMP_ObiFilter
«PMP_Transition#~_
E_OperatorContinue[$ContextNOTHULLY TRANSM__ISSION}]

@ A_MNotifyOps

«PMP_ObjFilters
{T.ID TN $Context{TRANSMISSION}}

@ A_RaisePTValid)
PMP_State, PMP_Alerts
2 5_PTValidationFail

{T.ID TN $Context{TRANSMISSION}}

«PMP_Transition:

E_OperatorCancel[$ContextNOTHN...

«PMP_ObjFilters

{T.IDTN SContext{TRANSMISSION}}

Cancel
«PMP_Resolution:
&

<PMP_State, PMP_Alerts
@ 5_InPTMapFailed

«PMP_Transition:
E_OperatorCancel[$ContextNOTN...

«PMP_ObjFilters
{T.IDTN SContext{TRANSMISSION}}

@ A_RaiseInP TFailed

Cancel
«PMP_Resolution:
&

Continue
«PMP_Resolution:
&

@@ A_RaiseInP TFailed

«PMP_States
S_InPTFailed

Figure 9-228 Example of a finite state machine for a physical transmission

Chapter 9. Patterns 447

448

This snippet of a Finite State Machine for an incoming physical transmission shows the
validation section with two events being raised when an error occurs,
E_MpInMappingAborted and E_PtValFail. These events trigger the action A_NotifyOps. This
action causes an alert to be raised and the physical transmission moves to one of the two
alert states, S_InPTMapFailed or S_PTValidationFail.

It also shows the constraints that were added to these states. These constraints are available
in the Operations and Administration Console as user actions for objects in this state.

Both of these states are configured as alert states by adding the PMP_Alert stereotype to the
state properties, as shown in Figure 9-229.

& <State> «PMP_State, PMP_Alert> FTM Generic Model::Finite State Machines::Generic:Inbound Phy

General S |

FTM Applied Stereotypes:

Stereotypes

Documentation Stereotype Profile Required Marking Model

PMP_Alert PMP FSM Profile False FTM Generic Model
PMP_State PMP F5M Profile True FTM Generic Model

Constraints

Relationships

Al
SRSt Apply Stereotypes... Unapply Stereotypes
Advanced

Stereotype Properties:
Property Value
a PMP_Alert
CustomerhlertFlag False
OperationsAlertFlag True
4 PMP_State
Image 3 - Alert

ImageCustomFileMame

Figure 9-229 Finite State Machine: State Stereotypes Properties

Note: The PMP_Alert stereotype is used to identify alert states. The PMP_OpsControl
stereotype is used to identify states that are not alerts, but require user intervention.

Financial Transaction Manager Technical Overview

The PMP_Alert stereotype adds two flags that can be set to control the alerts that are raised.
They can be configured in the Financial Transaction Manager attributes, as shown in

Figure 9-230.

General

FTMm
Stereotypes
Documentation
Constraints
Relationships
Appearance

Advanced

& <State> «<PMP_State, PMP_Alert- FTM Generic Model::Finite State Machines::Generi

Mame: E_PTvalidationFail

Image: Alert -

ImageCustomFileMame:

CustomerAlertFlag:]
OperationsAlertFlag:
Classification Code Details
Description
Sequence

Mavigate

Figure 9-230 Finite State Machine: State FTM Properties

These properties also control how the state is displayed within the Operations and
Administration Console (in this case, the image is Alert). The actions that a user can take on
an object in this state is defined as a constraint, as shown in Figure 9-231.

& <State> «PMP_State, PMP_Alert> FTM Generic Model::Finite State Machines::Generic:Inbound Physical Transmission::Reg

General

FTM
Stereotypes
Documentation
Constraints
Relationships

Appearance

Owned Constraints:

Mame Type Modeling Level Language Body
{ Cancel Rule Model !

Continue Rule Model

Remaove Navigate
Advanced
Constrained By:
MName Modeling Level Owner
Cancel Model FTM Generic Medel:Finite State Machines:Genenc:Inbound Physical Transmission::Regionl:5_PTValidationFail
Continue Model FTM Generic Madel::Finite State Machines:Generic:Inbound Physical Transmission:Regionl:5_PTValidationFail
Mavigate
Figure 9-231 Finite State Machine: State Constraints Properties

Chapter 9. Patterns

449

In this example, only the Cancel or Continue options are available. An example of a Finite
State Machine for a transaction is shown in Figure 9-232.

ePMP_]‘mns'rtion»

<PMP_States
@ 5_TxnMapped

«PMP_Transition»
E_MpInTxnMapped[$ContextEQ...

<PMP_ObjFilter»
{T.ID IN $Context{TRANSACTION}}

@ A_Doval PMP_States

2 5_TxnValidating

«PMP_Transition:
E_ValPass[$ContextMULL{BATCH}]

<PMP_ObjFilters
{T.IDTN SContext{TRANSACTION}}

@ A_ContinueProcessing «PMP_States

<PMP_ObjFilters
{T.ID IN $Context{TRANSACTION}}

«PMP_Transition»
E_OperatorResubmit
@ A_Doval

“PMP_State, PMP_Alerts
L0 S_WaitingForRepair

<PMP_ObjFilter»
{T.ID IN $Context{TRANSACTION}}

«PMP_Transition:
E_OperatorCancel

Cancel Resubmit
«PMP_Resolution» «PMP_Resolution=
{Cancel} {Resubmit}

=k 5_ContinueProcessing

«PMP_Transition»
E_WalPass[$ContextNOTHMULL{BATCH}] T

| «PMP_ObjFilters
| IT.IDIN &Context{TRANSACTION}} |

«PMP_Transition:
E_TxnBatchValid

| «PMP_ObiFilters

{T.ID IN §Context{TRANSACTION}}

|
[@ A_DoContinueProcessing

«PMP_Transition:
E_WvalFaill $ContextMULL{BATCH}]

«PMP_ObjFilters
{T.ID TN $Context{TRANSACTION}}

«PMP_States
& 5_WaitingBatchCheck

@ A_Raise TxnRepair

_~&PMP_Transition»
E_BatchvalFail

“PMP_OhjFilters
{T.BATCH_ID IN $Context{BATCH}}

PP _States
“= 5_InTxnFailed

@ A_ProcessRepairFail -
@ A_ProcessBatchvalrail

Figure 9-232 Example of a Finite State Machine for a transaction

This example shows a Finite State Machine for a transaction. The S_WaitingForRepair state
is defined as an alert state by adding the PMP_Alert stereotype to it. It also has two possible
actions that can be taken (Cancel and Resubmit) both of which are defined as Constraints in
the state properties.

9.15.6 Process highlights

In any process, there are points where issues can arise and it is important to understand what
those errors are and how they can be resolved. There are several types of issues that can
arise, from purely technical issues (for example, receiving unparseable data) that require
resolution outside of Financial Transaction Manager, to business issues that can be resolved
within it. When a Finite State Machine is built, it is important to build into the design error
handling and resolution.

450 Financial Transaction Manager Technical Overview

The actions that a user can take within the Operation and Administration Console are defined
against the state in Rational Software Architect. However, a Financial Transaction Manager
action subflow also must be created to process the operator command and to raise the event
that causes the object to change state. In addition, errors and alerts might arise from the use
of applications, such as WebSphere Transformation Extender or Operational Decision
Manager.

WebSphere Transformation Extender issues are likely to be mapping failures. These can be
handled in the same way as described for a physical transmission, with the user canceling or
resubmitting to run the mapping again.

Operational Decision Manager can raise various issues, including validation errors or routing
target not being found. In both cases, the transaction should be moved to an alert state to
allow a user to resubmit the transaction to call out to Operational Decision Manager to cancel

the transaction or to release the message to continue processing without the data from the
rules.

9.15.7 Pattern interaction

This pattern can interact with all other patterns that might encounter an issue.

Chapter 9. Patterns 451

452 Financial Transaction Manager Technical Overview

Related publications

The publications that are listed in this section are considered particularly suitable for a more
detailed discussion of the topics that are covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide more information about the topics in this
document. Some publications that are referenced in this list might be available in softcopy
only:

» DB2 UDB for z/OS: Design Guidelines for High Performance and Availability, SG24-7134
» Patterns: Extended Enterprise SOA and Web Services, SG24-7135
» DB2 9 for z/0OS Performance Topics, SG24-7473

» Rational Application Developer for WebSphere Software V8 Programming Guide,
SG24-7835

» High Availability in WebSphere Messaging Solutions, SG24-7839

» IBM WebSphere Application Server V8 Concepts, Planning, and Design Guide,
SG24-7957

You can search for, view, download, or order these documents and other Redbooks,
Redpapers, Web Docs, draft, and additional materials, at the following website:

Finite State Machineibm.com/redbooks

Online resources

The following websites also are relevant as further information sources:

» IBM Financial Transaction Manager Information Center:
http://www.ibm.com/support/docview.wss?uid=swg27038668

» |IBM DB2 Database for Linux, UNIX, and Windows Information Center:
http://pic.dhe.ibm.com/infocenter/db2Tuw/v9r7/index.jsp

Help from IBM

IBM Support and downloads
http://www.ibm.com/support

IBM Global Services

http://www.ibm.com/services

© Copyright IBM Corp. 2014. All rights reserved. 453

http://www.ibm.com/support
http://www.ibm.com/support
http://www.ibm.com/services
http://www.ibm.com/services
http://www.ibm.com/support/docview.wss?uid=swg27038668
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp

454 Financial Transaction Manager Technical Overview

Ui

Redbooks

Financial Transaction Manager

Technical Overview

(1.0” spine)
0.875"<->1.498"
460 <-> 788 pages

Financial Transaction

Manager Technical Overview

Understand how a
Financial Transaction
Manager solution
works

Create reusable
patterns to accelerate
development

Learn by example
with practical
scenarios

Dramatic forces of change continue to sweep the financial services
industry. The age of the empowered customer is here and are
changing the way financial products are delivered, sold, and serviced,
which are making relationships more complex than ever. The explosion
of data and intense competition, which is combined with slow or
inconsistent economic conditions, makes it imperative for financial
institutions to find new and cost effective ways to increase market
share, renew customer trust, and drive profitable growth.

In this new business environment, the transaction processing arm of
the industry is facing increased pressure to reduce float, better
manage liquidity, and provide regulators and clients with increased
transparency. At the same time, the industry must effectively manage
the risks that are associated with introducing customer-focused and
regionalized products and services.

Financial Transaction Manager enables the management,
orchestration, and monitoring of financial transactions during their
processing lifecycle. Financial Transaction Manager provides the
capability to integrate and unify financial transactions in various
industry formats (including ISO 20022, SWIFT, NACHA, EDIFACT, ANSI
X12 and others). By using Financial Transaction Manager, financial
institutions gain visibility into message processing, balance financial
risk, and facilitate effective performance management.

This IBM Redbooks publication outlines how Financial Transaction
Manager is deployed to realize the benefits of transaction
transparency, increase business agility, and allow for innovation that is
built on a robust and high-performance environment.

SG24-8187-00 ISBN 0738439118

ln
o

L

(&)

Redhooks.

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you

implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Anatomy of an IBM Financial Transaction Manager solution
	1.1 Financial Transaction Manager overview
	1.1.1 Business challenge
	1.1.2 Financial Transaction Manager
	1.1.3 Usage scenarios

	1.2 Financial Transaction Manager solution key concepts
	1.2.1 Development methodology
	1.2.2 Data model
	1.2.3 Transaction Processing Engine
	1.2.4 Solution-specific artifacts

	1.3 Processing a financial transaction
	1.3.1 Importing a financial business message
	1.3.2 Orchestrating the financial business process

	Chapter 2. Design and development methodology overview
	2.1 Capturing requirements
	2.2 Architectural decisions
	2.3 Following the methodology
	2.3.1 Design tasks
	2.3.2 Development and coding tasks
	2.3.3 Miscellaneous tasks
	2.3.4 Testing

	Chapter 3. Producing design artifacts by using Rational Software Architect
	3.1 Design levels
	3.2 Model project structure
	3.3 Functional use case diagrams
	3.4 High-level sequence diagrams
	3.5 Detailed sequence diagrams
	3.6 Object lifecycle diagrams
	3.7 Object relationship diagrams
	3.8 Finite State Machines

	Chapter 4. Mapping
	4.1 Internal standard format
	4.1.1 ISF overview
	4.1.2 The ISO20022 standard
	4.1.3 ISF structure
	4.1.4 Extensibility

	4.2 Design considerations
	4.2.1 Guidelines for ISF usage
	4.2.2 Mapping level considerations

	4.3 Implementation considerations
	4.3.1 Parsing
	4.3.2 Mapping technologies
	4.3.3 Key deliverables

	4.4 Handling large files

	Chapter 5. Using WebSphere Message Broker Toolkit to produce build artifacts
	5.1 Workspace setup
	5.2 Wrapper flows
	5.2.1 Physical transmission wrapper flow
	5.2.2 Event processing wrapper flow

	5.3 Action flows
	5.3.1 Coding actions
	5.3.2 Database persistence

	5.4 Mapper flows
	5.4.1 Input mapper
	5.4.2 Output mappers

	5.5 Emitter flows
	5.6 Heartbeat flow
	5.7 Message sets
	5.8 Message flow templates
	5.9 BAR files and deployment

	Chapter 6. User interface
	6.1 Introduction to the user interface
	6.2 Financial Transaction Manager applications
	6.3 Working with operational data
	6.3.1 Physical Transmissions
	6.3.2 Fragments
	6.3.3 Batches
	6.3.4 Transactions
	6.3.5 Resolving alerts and operator actions

	6.4 Configuring Financial Transaction Manager
	6.4.1 Defining interfaces
	6.4.2 Calendars and Schedules
	6.4.3 Configuring classifications
	6.4.4 Configuring Configuration Values
	6.4.5 User access permissions

	Chapter 7. Housekeeping
	7.1 Database archive and purge
	7.1.1 Identifying transactions
	7.1.2 Archive
	7.1.3 Purge

	7.2 Back up and restore
	7.3 Technical monitoring
	7.4 Maintenance

	Chapter 8. Deployment topologies
	8.1 Infrastructure topologies
	8.1.1 WebSphere Message Broker and WebSphere MQ
	8.1.2 Database
	8.1.3 WebSphere Application Server

	8.2 Financial Transaction Manager components
	8.2.1 Message flows
	8.2.2 Database schema configuration
	8.2.3 Operations and Administration user interface

	Chapter 9. Patterns
	9.1 Creation of outbound message or file pattern
	9.1.1 High-level description
	9.1.2 Objects and object relationships
	9.1.3 Detailed sequence diagram
	9.1.4 Object lifecycle diagram
	9.1.5 Finite state machine
	9.1.6 Process highlights
	9.1.7 Pattern interaction

	9.2 Routing, IBM Operational Decision Manager rules, and multiple targets pattern
	9.2.1 High-level description
	9.2.2 Objects and object relationships
	9.2.3 Detailed sequence diagram
	9.2.4 Object lifecycle diagram
	9.2.5 Finite state machine
	9.2.6 Process highlights
	9.2.7 Pattern interaction

	9.3 Semantic validation pattern
	9.3.1 High-level description
	9.3.2 Objects and object relationships
	9.3.3 Detailed sequence diagram
	9.3.4 Object lifecycle diagram
	9.3.5 Finite state machine
	9.3.6 Process highlights
	9.3.7 Pattern interaction

	9.4 Enrichment pattern
	9.4.1 High-level description
	9.4.2 Objects and object relationships
	9.4.3 Detailed sequence diagram
	9.4.4 Object lifecycle diagram
	9.4.5 Finite state machine
	9.4.6 Process highlights
	9.4.7 Pattern interaction

	9.5 Transformation pattern
	9.5.1 High-level description
	9.5.2 Objects and object relationships
	9.5.3 Detailed sequence diagram
	9.5.4 Object lifecycle diagram
	9.5.5 Finite state machine
	9.5.6 Process highlights
	9.5.7 Pattern interaction

	9.6 Debulking pattern
	9.6.1 High-level description
	9.6.2 Objects and object relationships
	9.6.3 Detailed Sequence diagram
	9.6.4 Object Lifecycle diagram
	9.6.5 Finite State Machine
	9.6.6 Process highlights
	9.6.7 Pattern interaction

	9.7 Bulking pattern
	9.7.1 High-level description
	9.7.2 Objects and object relationships
	9.7.3 Detailed Sequence diagram
	9.7.4 Object lifecycle diagram
	9.7.5 Finite State Machine
	9.7.6 Process highlights
	9.7.7 Pattern interaction

	9.8 Store and release pattern
	9.8.1 High-level description
	9.8.2 Objects and object relationships
	9.8.3 Detailed sequence diagram
	9.8.4 Object lifecycle diagram
	9.8.5 Finite State Machine
	9.8.6 Process highlights
	9.8.7 Pattern interaction

	9.9 Starting external services pattern
	9.9.1 High-level description
	9.9.2 Objects and object relationships
	9.9.3 Detailed sequence diagram
	9.9.4 Object lifecycle diagram
	9.9.5 Finite State Machine
	9.9.6 Process highlights
	9.9.7 Pattern interaction

	9.10 Hosting services pattern
	9.10.1 High-level description
	9.10.2 Objects and object relationships
	9.10.3 Detailed sequence diagram
	9.10.4 Object lifecycle diagram
	9.10.5 Finite State Machine
	9.10.6 Process highlights
	9.10.7 Pattern interaction

	9.11 Collating information from several sources pattern
	9.11.1 High-level description
	9.11.2 Objects and object relationships
	9.11.3 Detailed sequence diagram
	9.11.4 Object lifecycle diagram
	9.11.5 Finite State Machine
	9.11.6 Process highlights
	9.11.7 Pattern interaction

	9.12 Scheduled activity pattern
	9.12.1 High-level description
	9.12.2 Objects and object relationships
	9.12.3 Detailed sequence diagram
	9.12.4 Object lifecycle diagram
	9.12.5 Finite State Machine
	9.12.6 Process highlights
	9.12.7 Pattern interaction

	9.13 Scheduled expectation pattern
	9.13.1 High-level description
	9.13.2 Objects and object relationships
	9.13.3 Detailed sequence diagram
	9.13.4 Object lifecycle diagram
	9.13.5 Finite State Machine
	9.13.6 Process highlights
	9.13.7 Pattern interaction

	9.14 Heartbeats monitoring (scheduling) pattern
	9.14.1 High-level description
	9.14.2 Objects and object relationships
	9.14.3 Detailed sequence diagram
	9.14.4 Object lifecycle diagram
	9.14.5 Finite State Machine
	9.14.6 Process highlights
	9.14.7 Pattern interaction

	9.15 Error handling and alerts patterning
	9.15.1 High-level description
	9.15.2 Objects and object relationships
	9.15.3 Detailed sequence diagram
	9.15.4 Object lifecycle diagrams
	9.15.5 Finite State Machine
	9.15.6 Process highlights
	9.15.7 Pattern interaction

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

