
Redpaper

Front cover

Automated Application
Delivery with OpenStack Heat
Patterns

Claudio Tagliabue

Esteban Arias

Ashok Iyengar

John L Hatfield

International Technical Support Organization

Automated Application Delivery with OpenStack Heat
Patterns

November 2016

REDP-5352-00

© Copyright International Business Machines Corporation 2016. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (November 2016)

This edition applies to IBM PureApplication Software V2.2.2.

This document was created or updated on November 17, 2016.

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

Contents

Notices .v
Trademarks . vi

Preface . vii
Authors. vii
Now you can become a published author, too . ix
Comments welcome. ix
Stay connected to IBM Redbooks . ix

Chapter 1. Automated application delivery with OpenStack Heat patterns 1
1.1 Patterns Overview. 2
1.2 Technologies for pattern creation . 6

1.2.1 OpenStack . 6
1.2.2 IBM Blue Box . 9
1.2.3 Docker. 10
1.2.4 SaltStack. 12
1.2.5 OpenStack Heat . 13
1.2.6 Zeron. 15

1.3 IBM PureApplication System products for OpenStack . 16
1.4 OpenStack Heat patterns . 18

1.4.1 OpenStack Heat patterns on IBM Bluemix Local System with PureApplication
Software . 21

1.4.2 OpenStack Heat patterns on IBM Bluemix . 22
1.5 Conclusions. 23

Chapter 2. Setting up IBM Bluemix Local System for OpenStack Heat patterns 25
2.1 Setting up OpenStack on Bluemix Local System . 26

2.1.1 Preparing Bluemix Local System . 26
2.1.2 Enabling OpenStack services . 28

2.2 Configuring Blue Box . 30
2.2.1 Verifying OpenStack services . 31

2.3 Sample OpenStack Heat patterns. 33
2.4 Using an alternative Git repository . 33

2.4.1 Stand up a new Git repository on Bluemix Local System 34

Chapter 3. Deploying sample OpenStack Heat patterns . 35
3.1 Verifying the installation of the sample patterns . 36
3.2 Installing OpenStack Heat pattern samples . 36

3.2.1 Deploying the WebSphere Application Server OpenStack Heat pattern 37
3.2.2 Deploying the DB2 Server OpenStack Heat pattern . 40

3.3 Managing the OpenStack Heat pattern deployments . 42

Chapter 4. Importing OpenStack Heat patterns . 47
4.1 Importing a simple Heat Orchestration Template . 48
4.2 Importing from a Git repository . 50

Chapter 5. Creating an OpenStack Heat pattern . 53
5.1 Creating a blueprint in UCD Blueprint Designer . 54
5.2 Defining a new OpenStack Heat pattern . 57
© Copyright IBM Corp. 2016. All rights reserved. iii

5.3 Adding SaltStack formulas to the OpenStack Heat pattern . 58
5.4 Committing and pushing the OpenStack Heat pattern to Git . 60
5.5 Deploying the OpenStack Heat pattern. 62

Chapter 6. Creating automation for OpenStack Heat patterns with SaltStack 65
6.1 SaltStack concepts . 66

6.1.1 Master and minion communication . 66
6.2 General SaltStack examples. 67

6.2.1 Remote execution . 68
6.2.2 Package installation . 68
6.2.3 SaltStack states . 69
6.2.4 Formula files . 69
6.2.5 Git repositories and SaltStack files . 70

6.3 Using SaltStack within OpenStack Heat patterns . 70
6.3.1 Deploying an OpenStack Heat pattern . 72
6.3.2 Starting Heat orchestration . 72
6.3.3 Deploying virtual machines and install minions. 72
6.3.4 Retrieving information and files from Git repositories . 72
6.3.5 Heat and SaltStack operations . 73
6.3.6 Running orchestration and running a formula . 73
6.3.7 OpenStack Heat pattern deployed . 74

Chapter 7. Zeron for OpenStack Heat patterns . 75
7.1 Zeron architecture . 76

7.1.1 Zeron terminology . 76
7.1.2 Security in Zeron. 77
7.1.3 Inside Zeron . 77

7.2 Zeron user interface . 78
7.2.1 Zeron UI for OpenStack Heat patterns on PureApplication Software 78

7.3 Zeron handlers . 82
7.3.1 Inventory handler type . 82
7.3.2 Logging handler type . 82
7.3.3 Monitoring handler type . 83
7.3.4 Operation handler type . 83

7.4 Developer Roles in Zeron . 85

Related publications . 87
IBM Redbooks . 87
Online resources . 87
Help from IBM . 88
iv Automated Application Delivery with OpenStack Heat Patterns

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2016. All rights reserved. v

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

Blue Box®
Bluemix®
Box Panel®
DB2®
developerWorks®

IBM®
IBM Blue™
IBM UrbanCode™
PureApplication®
Redbooks®

Redpaper™
Redbooks (logo) ®
UrbanCode™
WebSphere®

The following terms are trademarks of other companies:

SoftLayer, and SoftLayer device are trademarks or registered trademarks of SoftLayer, Inc., an IBM Company.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
vi Automated Application Delivery with OpenStack Heat Patterns

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redpaper™ publication focuses on demonstrating how to build, deploy, and
manage OpenStack Heat Patterns on IBM PureApplication® Systems. This paper addresses
the topic of automated application deployment and delivery through patterns. In particular, it
focuses on patterns based on open source technologies, primarily OpenStack.

Authors

This paper was produced by a team of specialists from around the world, working at the
International Technical Support Organization (ITSO), Raleigh Center.

Claudio Tagliabue is a certified IBM technical specialist,
focusing on software as a service (SaaS) and business
transformation (BT). He is excited by business change in the
21st Century and the consequent demands on technology.
Transforming the “complicated” into “business as usual” has
been Tag’s focus for the past 5 years. Through his work with
clients as a domain expert for IBM’s ground-breaking
PureApplication System, platform as a service (PaaS),
software as a service, and business process management
(BPM) technologies, Tag has gained significant insight into
today’s senior IT stakeholder motivations. Tag presented his
work at several conferences around Europe. Tag’s experience
goes outside the IBM Software world, with work on innovative
projects that involve open source technologies, such as
OpenStack and Docker.

Esteban Arias is a Software engineer with over 18 years of
experience, currently working for Data Analytics and Insights
as a service, and formerly for Advanced Cloud solutions. All of
this work was within IBM, mostly focused on leveraging current
technology to build environments for clients. He is a subject
matter expert (SME) in areas that include networking, storage,
servers, and integrating many products, such as VMware,
SoftLayer®, virtual storage area network (VSAN), VMware
NSX, IBM Cloud Orchestrator (IBM ICO), OpenStack in
general, and big data tools, using hybrid cloud models or
private clouds.
© Copyright IBM Corp. 2016. All rights reserved. vii

This project was led by Margaret Ticknor, an IBM Technical Content Services Project Leader
in the Raleigh Center. She primarily leads projects about WebSphere products and IBM
PureApplication System. Before joining IBM Technical Content Services, Margaret worked as
an IT specialist in Endicott, NY. Margaret attended the Computer Science program at State
University of New York at Binghamton.

Thanks to the following people for their contributions to this project:

Joe Wigglesworth
STSM, PureApplication Software Development, IBM Cloud

Majeed Arni
Senior Software Engineer, IBM PureApplication System development, IBM Cloud

Kenneth Chu
Software Developer, IBM Cloud

Radu Mateescu
Senior Software Engineer, IBM Cloud

Eugen Postea
Advisory Software Developer, IBM Cloud

Seth Peterson
Advisory Software Engineer, IBM Cloud

Thanks to the following people for their support of this project:
� LindaMay Patterson, IBM Redbooks® Technical Writer
� Ann Lund, IBM Redbooks Residency Administrator

Ashok Iyengar is an executive information technology (IT)
specialist at IBM based in San Diego, and has worked in the IT
industry for more than 30 years. He holds an MS degree in
Computer Science from North Dakota State University, Fargo.
In his spare time, Ashok loves to write. Among his works are
the popular IBM WebSphere® Portal Primer and WebSphere
Business Integration Primer. For the past several years, Ashok
has worked on cloud-based projects, completing proofs of
concept (POCs), pilots, architecture design, and
implementations.

John L Hatfield is a Managing Hybrid Cloud Consultant in the
United States. He has four years of experience in the cloud
computing field. He has worked at IBM for 38 years. His areas
of expertise include PureApplication System, IBM MQ,
WebSphere Message Broker, WebSphere Transformation
Extender, electronic data interchange (EDI), and data mapping.
viii Automated Application Delivery with OpenStack Heat Patterns

Now you can become a published author, too

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author, all at the same time. Join an ITSO residency project and help write a book in your area
of expertise, while honing your experience using leading-edge technologies. Your efforts will
help to increase product acceptance and customer satisfaction, as you expand your network
of technical contacts and relationships. Residencies run two - six weeks in length, and you
can participate either in person or as a remote resident working from your home base.

Learn more about the residency program, browse the residency index, and apply online:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form:

ibm.com/redbooks

� Send your comments in an email:

redbooks@us.ibm.com

� Mail your comments:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface ix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

x Automated Application Delivery with OpenStack Heat Patterns

Chapter 1. Automated application delivery
with OpenStack Heat patterns

This paper addresses the topic of automated application deployment and delivery through
patterns. In particular, it focuses on patterns based on open source technologies, and
primarily OpenStack.

In this context, a pattern completely defines the architecture of an application, and the
underlying infrastructure topology that is needed for the application to meet its non-functional
requirements. Typically, an enterprise application requires a set of core components to run,
such as an application server, a database server, and a web server.

A pattern is in essence a deployable artifact that is expected to take care of some key
high-level aspects of your development lifecycle:

� Install the operating system (OS) for each component of the application

� Integrate the application components

� Configure and tune the application

� Secure the application

� Monitor the application

� Manage the lifecycle of the application

Patterns bring together various pieces, such as operating system configurations that meet
organizational security checklists, integrated software components, and any needed agents
or configuration scripts. With knowledge of the roles that each component plays within the
pattern, monitoring and lifecycle management can be used to keep the deployment running
effectively.

Taking the manual work out of deployments speeds them up and makes it possible to quickly
create new deployments. Additionally, patterns can be extended and improved to capture
efficiencies, to lower costs and reduce the required resources. The repeatable nature of
patternized deployments reduces errors due to manual steps, and lowers the risk of failed
deployments.

1

© Copyright IBM Corp. 2016. All rights reserved. 1

1.1 Patterns overview

Patterns provide the capabilities that were described previously, along with pre-configured,
pre-integrated, and pre-tested tasks in a deployable form, enabling repeatable deployments
with full lifecycle management. Figure 1-1 defines the building blocks of a pattern.

Figure 1-1 Building blocks of a pattern

Historically, the Patterns of Expertise that were introduced by IBM were the first enterprise
implementation of this concept, and are today the primary deployment choice for complex
IBM middleware. Patterns of Expertise can be deployed using products that are part of the
IBM PureApplication System family of product offerings (described in 1.3, “IBM
PureApplication System products for OpenStack” on page 16), which are the orchestrators
and target for the deployment of this type of patterns.

A detailed description of the IBM Patterns of Expertise can be found in the IBM
developerWorks® article Discover PureApplication System patterns of expertise at the
following web address:

http://ibm.biz/PatternsOfExpertise

However, patterns based on open technologies could provide some key advantages over
Patterns of Expertise:

� Higher levels of portability, because open technologies are adopted widely and are
available for use on many systems.

� Higher speed of innovation, because open technologies are supported by a vast
community.
2 Automated Application Delivery with OpenStack Heat Patterns

http://ibm.biz/PatternsOfExpertise

� Lower cost of entry, because open technologies are typically free to use.

� Easier integration between open technologies, because they are often developed to work
together.

� Consistency to the user experience for open technologies.

Since the introduction of IBM Patterns of Expertise, several technologies, primarily open
source, have become popular, tackling one or more of the aspects that a pattern should
address. The most popular of those technologies can be grouped in the seven layers that are
depicted in Figure 1-2.

Figure 1-2 Seven layers of capabilities that deliver key aspects of a pattern

Figure 1-2 defines seven layers of technologies that can be used for pattern creation,
deployment, and management, based on the role that they play within the pattern
components and orchestration. The numbers in the following list correspond to the ones in
Figure 1-2. The seven layers are described from the bottom up:

� Infrastructure (layer 1)

Although typically a physical component, software-defined infrastructure and infrastructure
as a service (IaaS) are today the main building blocks for private and public clouds. The
most popular open source technology for software-defined, server-based computing is
OpenStack.1 OpenStack provides a set of software tools for building and managing cloud
computing platforms.

1 OpenStack https://www.openstack.org/
Chapter 1. Automated application delivery with OpenStack Heat patterns 3

https://www.openstack.org/

� Hypervisor (layer 2)

A layer that manages virtual machines, essentially enabling multiple operating systems to
share infrastructure hosts:

https://en.wikipedia.org/wiki/Hypervisor

The following examples of hypervisors are well-known:

– VMware ESXi:

http://www.vmware.com/

– KVM:

http://ibm.biz/Kernel-basedVM

� Operating System (layer 3)

Open source operating systems have become significantly popular with the extensive
adoption of Linux. Linux is available across a wide variety of processor architectures, and
there are several popular open source distributions to choose from:

– Red Hat Linux is widely adopted in many enterprises:

https://www.redhat.com

– openSUSE Linux is based on the SUSE Linux professional distribution:

https://www.opensuse.org

– Ubuntu Linux has become the reference OS for both OpenStack and Docker
development:

http://www.ubuntu.com

� Software installation (layer 4)

Delivering software applications has been drastically changed by the increasing use of
container-based solutions. Conventional methods of delivering software in binary files or
standard software packages, requiring an installation program, are still popular and widely
adopted. However, delivering software in containers is simpler and faster. Additionally, the
results of container-based software delivery are usually more reliable, because of the
isolation enforced by container boundaries:

– Docker is the dominant container technology in the market:

https://www.docker.com

– Rkt (pronounced “rocket”) is a container technology that uses the Go programming
language:

https://coreos.com/rkt/
https://golang.org/

Note: As opposed to server-based IaaS, so called server-less computing provides a
new paradigm to use infrastructure and platform as a service (IaaS and PaaS). The
following players are the main players in this space:

� OpenWhisk:

https://developer.ibm.com/openwhisk/

� Amazon Web Services (AWS) Lambda:

https://aws.amazon.com/lambda/

Server-less computing is not covered in this paper.
4 Automated Application Delivery with OpenStack Heat Patterns

https://en.wikipedia.org/wiki/Hypervisor
http://www.vmware.com/
https://developer.ibm.com/openwhisk/
https://aws.amazon.com/lambda
http://ibm.biz/Kernel-basedVM
https://www.redhat.com
https://www.docker.com
https://coreos.com/rkt/
https://golang.org/
http://www.ubuntu.com
https://www.opensuse.org
https://aws.amazon.com/lambda/

However, Docker and Rkt are not the only players in this space. In order to prevent the
container world from fracturing into incompatible technologies, many organizations joined
forces to create the Open Container Initiative, and to establish standards regarding
container formats and runtimes:

https://www.opencontainers.org

� Automation scripting (layer 5)

Operating systems and applications usually need configuration before they become what
an organization needs. Traditionally, this automation is accomplished with batch files and
shell scripts, which are essentially simple lists of operator commands. Today, open source
technologies exist that raise the sophistication of scripting to become true desired-state
management systems.

The desired state of a system can be described in code, and if the system drifts away from
that state, commands run to bring it back to the desired state. Popular open source
technologies in this space include the following platforms:

– SaltStack:

https://saltstack.com

– Chef:

https://www.chef.io

– Puppet:

https://puppet.com

– Ansible:

https://www.ansible.com

� Orchestration scripting (layer 6)

An extra layer to orchestrate end-to-end the discrete components that are described in the
previous layers is usually required. This role is performed by orchestration scripts, or
templates, and the orchestration engines that interpret them. Orchestration scripts and
engines essentially replace instruction books and hours of manual labor, which would go
into connecting together all of the systems that make up the deployment of a complex
software application:

– One of the primary players in this space is OpenStack Heat, which provides both a
language to create orchestration templates and an orchestration engine to deploy them
onto the OpenStack infrastructure:

https://wiki.openstack.org/wiki/Heat

– When the only software delivery technology chosen by an enterprise is Docker, Docker
Compose can be used as the orchestration scripting technology. Conversely,
OpenStack Heat is able to work across different types of containers, virtual machines,
and bare metal deployments:

https://docs.docker.com/compose

� Post-deployment management (layer 7)

After a pattern is orchestrated and deployed, several actions can be performed to
automatically manage operations and monitoring of the pattern and its lifecycle. Examples
of these actions are monitoring, log collection, and application lifecycle management. In
essence, post-deployment management provides the operations part of pattern DevOps.2

2 For more information about the DevOps (development and operations) movement, watch the video at
http://ibm.biz/Dev-Ops and also so http://ibm.co/devopsfordummies
Chapter 1. Automated application delivery with OpenStack Heat patterns 5

https://www.opencontainers.org
https://saltstack.com
https://www.chef.io
https://puppet.com
https://www.ansible.com
https://docs.docker.com/compose
http://ibm.biz/Dev-Ops
http://ibm.co/devopsfordummies
https://wiki.openstack.org/wiki/Heat

Although automation scripts, orchestration scripts, and endpoint management systems
can be stretched to provide this capability at single virtual machine (VM) or container level,
not many mature end-to-end open source capabilities for post-deployment management
are available at the time this paper is written. For this reason, IBM created a framework to
manage post-deployment actions through the automation scripting technologies that were
described previously. This framework is called Zeron.

The remainder of this chapter describes the following topics:

� 1.2, “Technologies for pattern creation” provides information about some of the technology
choices behind the seven layers described in Figure 1-2 on page 3.

� In 1.3, “IBM PureApplication System products for OpenStack”, we describe the
PureApplication family, and how IBM Bluemix® Local System implements OpenStack.

� Finally, in 1.4, “OpenStack Heat patterns”, an alternative to IBM Patterns of Expertise is
introduced, based on open technologies: OpenStack Heat patterns.

1.2 Technologies for pattern creation

This section introduces in more detail some of the technologies that were mentioned so far, in
particular:

� 1.2.1, “OpenStack” and its IBM distribution: IBM Blue™ Box®
� 1.2.3, “Docker” on page 10
� 1.2.4, “SaltStack” on page 12
� 1.2.5, “OpenStack Heat” on page 13
� 1.2.6, “Zeron” on page 15

1.2.1 OpenStack

OpenStack is an open source software platform for building and managing cloud computing
platforms for public and private clouds, with the main goal of providing users with a system
that scales massively, runs in commodity hardware, and is loosely coupled across its
components, provided by services and can be deployed with simplicity. All of this functionality
is backed up by one of the largest open source communities, with over 50,000 individuals that
work actively in different areas of the platform lifecycle, including development, testing,
deployment, and integration.

OpenStack controls large pools of compute resources, storage endpoints, and networking
capable devices, all distributed in the data center, presented in a pay-as-you-order fashion
that enables the user to select what they need from the pool, use it, and release.

The OpenStack release cycle is approximately six months. A new version is published after a
series of upgrades and improvements, which might include new capabilities or integrate
current ones. At the time of the writing of this paper, the code name for the current stable
release is Mitaka.

OpenStack is in essence an infrastructure as a service (IaaS) solution, based on a model of
decentralized components and services. This model enables all of OpenStack’s components
to provide a single unit that can be deployed as part of a stack installation.
6 Automated Application Delivery with OpenStack Heat Patterns

Each project within the community is developed and controlled individually, providing a
functionality that complements and integrates with the rest of the OpenStack projects.
OpenStack projects can also be identified by the service that they provide. The main projects
are listed and described in Table 1-1.

Table 1-1 OpenStack projects and services

The number of OpenStack projects is constantly expanding as new projects are being
developed. The list of OpenStack projects and services is not exhaustive. The complete list
can be found at the following website:

https://www.openstack.org/software/project-navigator/

Name Service Use Description

Nova Compute Core It handles the lifecycle of virtual machines, with various operations,
such as creation, deletion, and resource scheduling.

Neutron Networking Core It handles networking operations and provides application
programming interfaces (APIs) for other OpenStack projects to
interact with the IaaS networking components. It typically integrates
with third-party vendors, such as Brocade or Cisco, to provide
software defined switches and routers.

Swift Object
Storage

Core It provides a Representational State Transfer (REST) interface to
store objects in virtual containers. It supports a horizontal scaling
architecture, and provides immediately available redundancy
mechanisms to replicate Object Storage.

Cinder Block
Storage

Core It provides persistent storage to the virtual machines, with a
pluggable architecture that interacts with major storage vendors,
such as EMC and VMware.

Keystone Identity
Service

Core It provides the main authentication mechanism for OpenStack.
Exposes APIs that allow the creation of users, projects, groups of
users and roles.

Glance Image
Service

Core It provides image cataloging capabilities, defining a registry and
repository where administrators can register the OS base images,
which are used at provisioning time.

Horizon Dashboard Optional It provides a web-based console for accessing and interacting with
all of the different components, mostly intended for administrators
and regular users.

Ceilometer Telemetry Optional It handles metering and telemetry services. These services enable
administrators to retrieve fine-grained information about resource
usage within the OpenStack cloud. Ceilometer can typically be used
for IaaS billing.

OpenStack
Heat

Orchestration Optional It orchestrates multiple composite cloud applications by using either
the Heat Orchestration Templates (HOT) format or the Amazon Web
Services (AWS) CloudFormation (CFN) template format, through
either an OpenStack-native REST API or a CloudFormation-
compatible Query API. OpenStack Heat is further described in 1.2.5,
“OpenStack Heat” on page 13.
Chapter 1. Automated application delivery with OpenStack Heat patterns 7

https://www.openstack.org/software/project-navigator/

Each OpenStack service provides an API that enables you to deploy infrastructure
components that combine only the projects that are required. Typically, infrastructure
deployments are controlled through a graphical user interface (GUI) called the OpenStack
Dashboard (provided by the Horizon project), shown in Figure 1-3, or a command-line
interface (CLI), shown in Figure 1-4.

Figure 1-3 OpenStack Dashboard GUI

Figure 1-4 OpenStack CLI
8 Automated Application Delivery with OpenStack Heat Patterns

1.2.2 IBM Blue Box

When working with an OpenStack cloud, one of the main architectural decisions involves the
deployment method:

� The version that is selected requires expertise to be installed properly and has a learning
curve for the organization.

� There are several turnkey solutions that include all that needs to be done to run
OpenStack as a private cloud as a service (PCaaS).

The latter is the case of IBM Blue Box, which provides a streamlined set of processes and
tools to deliver an enterprise-grade OpenStack runtime, on top of any layer of hardware and
data center type, with emphasis in the highest standards for security, redundancy,
compliance, and ease of use. An example of the Blue Box console that is used to manage an
OpenStack cloud is shown in Figure 1-5. For more information about IBM Blue Box, see the
following website:

https://www.blueboxcloud.com/

Figure 1-5 Blue Box OpenStack console
Chapter 1. Automated application delivery with OpenStack Heat patterns 9

https://www.blueboxcloud.com/

Figure 1-6 shows IBM Blue Box support for the following elements:

� OpenStack projects
� Hypervisors
� Operating systems

Figure 1-6 Blue Box supported OpenStack projects, hypervisors, and OS

IBM Blue Box is delivered in two main form factors:

� Blue Box dedicated

A deployment model aimed to provide the fastest path to get into an OpenStack cloud. It is
a single, dedicated customer environment, preconfigured and automatically deployed, that
provides resources for compute, storage, network, and security. Blue Box dedicated is
hosted in an IBM SoftLayer data center:

http://www.softlayer.com

� Blue Box Local

Deployed on dedicated hardware and networking infrastructure that is controlled by
customers within their premises. Blue Box local is remotely managed, meaning that IBM
can access and maintain the Blue Box component, leaving customers in control of the
deployed workloads.

The configurations for the Blue Box local deployment model are specific to the chosen
hardware. The main hardware choice for Blue Box local described in this publication is
Bluemix Local System, and information about it is provided in 1.3, “IBM PureApplication
System products for OpenStack” on page 16.

1.2.3 Docker

Docker is an open source container deployment and management technology. It enables
developers to build, send, and run applications, abstracting them from their runtime, such as a
notebook or a virtual machine. Docker can manage multiple software stacks, such as a data
center virtual machine (VM) or public or private cloud on PureApplication System offerings.
10 Automated Application Delivery with OpenStack Heat Patterns

http://www.softlayer.com

http://www.softlayer.com

During the build phase, developers can create an application by using a Docker container,
send it in a standard way (in Docker application format), and run workflows. Docker
containers can also be shared with other people and communities.

Docker is a lightweight alternative for running software in a portable, though less isolated,
virtual environment. Docker can run on a hypervisor or directly on the host OS. It is an
optional component. Figure 1-7 shows a high-level comparison of the traditional virtualization
approach with the Docker container approach.

Figure 1-7 Comparison between virtualization with virtual machines and Docker containers

Table 1-2 shows a high-level comparison of the traditional virtualization approaches with the
Docker container approach.

Table 1-2 High-level comparison between virtual machine and Docker containers

Table 1-2 is further explained in the following list:

� Startup time and performance

Faster in Docker because containers do not need a hypervisor. VMs always include the
necessary dependencies, such as the VM’s binary files, libraries, and the guest OS.

� Footprint

Docker does not have an OS dependency on deployment because it is on Linux
Containers (LXC) low-level functions. This approach yields a smaller footprint than VMs,
where middleware and application software link to the OS of each VM instance.

Attribute Virtual machine Docker container

Startup time and performance Slow (minutes to start) because
of the hypervisor processing
requirements

Fast (seconds to start): No
hypervisor processing

Footprint � Large (nothing is shared in
terms of software)

� One guest OS for each VM

Small (OS kernel is shared)

Portability Low High

Isolation and security High Medium

Resource constraints Yes Yes (CPU and memory)
Chapter 1. Automated application delivery with OpenStack Heat patterns 11

� Portability

Docker has a greater level of portability than VMs. VMs need to be customized by
separating the software installation from the configuration steps on a full operating system,
because applications and middleware are tied to the OS image in those cases.

� Isolation and security

Isolation by using VMs, based on hypervisor technology, is more secure than isolation
provided by Docker containers, because no OS-level or middleware-level sharing of
resources occurs.

� Resource constraints

Full OS and memory management are installed in VMs with the associated resources
required for virtual device drivers. This architecture causes more resource constraints than
Docker because Docker containers run with the Docker Engine rather than with the
hypervisor. Docker has resource constraints that relate to memory and CPU.

For more information about Docker and its applications in PureApplication Patterns of
Expertise, see the IBM Redbooks publication Establishing a Secure Hybrid Cloud with the
IBM PureApplication Family, SG24-8284:

http://www.redbooks.ibm.com/abstracts/sg248284.html

1.2.4 SaltStack

Handling communications across enterprise systems is a complex task, and doing it
effectively and quickly presents additional complexities. System administrators need tools that
enable them to create automations for repeatable tasks.

For operations of this nature, open source tools, such as SaltStack,3 provide a remote
execution engine that creates a bidirectional channel between a master server and a set of
slave servers. This engine provides configuration and application management capabilities.

The current version at the time of writing of this paper is Beryllium (2015.8.0). Full
documentation on this version is available at the following website:

https://docs.saltstack.com/en/latest/contents.html

To understand SaltStack, it is useful to define the concepts that are listed in Table 1-3.

Table 1-3 SaltStack concepts

3 SaltStack, https://saltstack.com

Concept Description

Master Main server that controls the infrastructure and SaltStack
application engine, working as a repository for data and control
point for operations between the Minions.

Minion System process that enables communication with the master and
the extraction of instructions that are received from the master. It
runs in a virtual machine or a container at the time of deployment.

State Set of rules and configurations that describe a desired state for
a particular minion.

Formula A collection of states. For example, the steps that need to be
followed to install a program. Each step is represented by a state.
12 Automated Application Delivery with OpenStack Heat Patterns

http://www.redbooks.ibm.com/abstracts/sg248284.html

https://saltstack.com
https://docs.saltstack.com/en/latest/contents.html
http://www.redbooks.ibm.com/abstracts/sg248284.html

Running individual functions is a manual process and doing it over and over in the entire
infrastructure would be impractical. For this reason, SaltStack provides a mechanism to apply
a desired configuration to a system. This mechanism is defined in Table 1-3 on page 12 as a
state. A state is a data structure of variables and values to be applied into a system, to
transition it into the desired configuration. The role of the minion is to bring the system where
it runs into the desired state, by using execution functions and modules.

SaltStack provides a ready-to-use set of execution modules for the master to interact with the
minions. Typical functionalities of these modules include the following tasks:

� Query information
� Apply configuration
� Install software on a minion
� Identify storage
� Setup network
� As mentioned, execution modules and functions can be extended by using reactors

SaltStack is further described in Chapter 6, “Creating automation for OpenStack Heat
patterns with SaltStack” on page 65.

1.2.5 OpenStack Heat

Heat is an OpenStack project that handles orchestration, aiming to provide interfaces to
control the entire lifecycle of infrastructure and application deployment. Heat allows users,
clients, and other OpenStack projects to use resources in a controlled fashion, with special
emphasis on templates that serve as the foundation for infrastructure deployment.

Orchestration entails a rich set of operations to be performed when deploying infrastructure
and applications, such as creation and configuration of virtual machines, storage
components, network components, and data injection.

Grain Interface to derive information about the underlying system where
a minion is hosted. This information is sent back to the master.
Most grains are auto configured: For example, the host name and
the default gateway of a system. It is also possible to create
custom grains.

Pillar Essentially the reverse of a grain: Information that is passed by a
master down to a minion. Minions cannot get pillar data from other
minions, Only from the master. There is no auto-configured pillar
data, only custom.

Execution Functions Commands running specific functions.

Execution Modules Groups of execution functions that are grouped by affinity.

Reactor A function that can be used to extend an existing execution
function or module, and which can be exposed as a REST API.
For example, a reactor to pass a key to a minion and make it
accept it automatically.

Mine A database that is running on the master to keep information
directly in the master. It is used for the kind of information that is
not yet available at the time of the minion deployment, which
would otherwise be part of the pillar data.

Concept Description
Chapter 1. Automated application delivery with OpenStack Heat patterns 13

To understand OpenStack Heat, it is useful to define the concepts that are listed in Table 1-4.

Table 1-4 OpenStack Heat concepts

The following list describes the main architectural components of OpenStack Heat:

� The heat-api

It provides a REST API that processes orchestration requests by sending them to the
heat-engine.

� The heat-api-cfn

It provides a query API compatible with AWS CloudFormation, and processes
orchestration requests by sending them to the heat-engine.

� The heat-engine

It performs the main work of orchestrating the launch of templates and providing events
back to the API consumer.

OpenStack Heat also provides capabilities for the scalability of a stack. It provides these
capabilities either vertically, where resources of a stack (such as memory or processors) are
augmented in capacity, or horizontally, where more resources are added into the stack in
quantity (such as increasing the number of virtual machines). This is attained through what in
OpenStack Heat concepts is defined as scaling policies and scaling groups.

Concept Description

Template Main building block of the Heat orchestration. It defines in text files,
following the format that is defined in the next row, all of the items that
create a stack, before its deployment.

Format Heat supports two formats: Heat Orchestration Templates (HOT), which
are written in Yet Another Markup Language (YAML), and AWS
CloudFormation (CFN), which is written in JavaScript Object Notation
(JSON).

Stack Collection of objects that are being created by a heat template when
deployed. It might include networks, routers, ports, security groups, and
virtual machines.

Parameters Parameters enable you to specify information specific to a single stack in
order to customize a template. For example, if a stack uses a network, its
definition would include the parameter ID for the network.

Environment Collection of structured parameters that are grouped into a YAML file. This
file is applied to a template to customize it, therefore affecting the
deployment of a specific stack.

Resources Each stack, when created, contains several resources, which are the
items that have been provisioned, such as networks and virtual machines.

Scaling policy Defines scaling properties for a stack, or a part of a stack (a scaling
group).

Note: AWS CloudFormation support is not a focus of this paper.

Note: Typically, automated scaling in OpenStack uses the OpenStack Ceilometer project,
but this is not a requirement. For example, Zeron could be used instead, as detailed in
1.2.6, “Zeron” on page 15.
14 Automated Application Delivery with OpenStack Heat Patterns

1.2.6 Zeron

In a typical DevOps paradigm, post-deployment management provides a way of running and
administering operations on pattern instances and their components. Although performing
this type of operation manually is not a significant resource cost for a single virtual machine,
operations on complex topologies entail a high degree of complexity.

When dealing with patterns, the complexity and variety of the topologies that are specified by
the patterns can result in a significant management burden, if operations are performed
manually. The nature of this burden is in both the complexity of the manual operations
themselves and in the number of specific tools that are needed to perform those operations
on the single pattern components.

When dealing with OpenStack Heat patterns, the open source nature of the pattern element
is another driver to the number of tools that are needed for post-deployment operations. As an
example, in a pattern that runs a node.js application alongside an IBM DB2® component, two
different tools would need to be installed and configured to manage operations on the two
types of middleware.

To largely simplify the complexity of post-deployment operations, and to reduce the number of
tools that are needed to manage those operations to a minimum footprint, IBM designed
Zeron. Zeron is a lightweight, extensible, and pluggable lifecycle management framework
designed for post-deployment management of patterns, virtual machines, and containers. It is
specifically designed for OpenStack Heat patterns.

Zeron provides the following functionality for all virtual machines and containers in a pattern:

� Access to operations
� Consolidated logging
� Consolidated monitoring
� Fix management
� License tracking

The framework is designed to be extremely lightweight, with a footprint of about 5 megabytes
(5 MB). The lightweight nature of Zeron is due to the fact that the framework does not directly
provide the operations, but only a consolidated interface for those operations to be accessed
and triggered. In order for the framework to be functional, operations need to be exposed at
the pattern level.

Zeron is written in Python and can be extended through the creation of custom handlers. This
makes the framework open in nature.

In addition, Zeron relies on OpenStack to provide security and authentication, by leveraging
the OpenStack Keystone project. For more information about Keystone, see 1.2.1,
“OpenStack” on page 6 and the following website:

http://keystone.openstack.org

Zeron is described in further detail in Chapter 7, “Zeron for OpenStack Heat patterns” on
page 75.
Chapter 1. Automated application delivery with OpenStack Heat patterns 15

http://keystone.openstack.org

http://keystone.openstack.org

1.3 IBM PureApplication System products for OpenStack

The IBM PureApplication System family of product offerings is designed to accelerate the
deployment of enterprise applications. More information about the entire family of systems
can be found on the following web address:

http://www.ibm.com/software/products/en/pureapplication

There are four members of the PureApplication family, as shown in Figure 1-8:

� IBM PureApplication Software
� IBM Bluemix Local System
� IBM PureApplication System
� IBM PureApplication Service

Figure 1-8 IBM PureApplication System family members

PureApplication Software is the orchestration and management engine, which can be used
across different target hardware:

� On a pre-integrated system:

– x86 (Intel): Bluemix Local System
– Power8: PureApplication System

� On your own x86 or IBM Power hardware

� On SoftLayer’s PureApplication Service infrastructure

Each product offering has its own strength and each product complements the others to
provide a full approach to build a complex hybrid cloud solution. Whichever product you
choose, the user experience that is provided by PureApplication Software remains the same,
making the transition from one IBM PureApplication System product to another easy and
straightforward. At the time of writing of this paper, the current version of the PureApplication
Software is 2.2.2.

More information about the PureApplication family and its use can be found in Establishing a
Secure Hybrid Cloud with the IBM PureApplication Family, SG24-8284:

http://www.redbooks.ibm.com/abstracts/sg248284.html
16 Automated Application Delivery with OpenStack Heat Patterns

http://www.redbooks.ibm.com/abstracts/sg248284.html

http://www.ibm.com/software/products/en/pureapplication

http://www.ibm.com/software/products/en/pureapplication
http://www.redbooks.ibm.com/abstracts/sg248284.html

For the topics treated in this paper, we focus on PureApplication Software on Bluemix Local
System. Using PureApplication Software on Bluemix Local System delivers an application
platform in a rack form factor. It is a ready-to-use solution that merges the following
components:

� Pre-integrated infrastructure

� System management capabilities

� Patterns of Expertise, such as IBM WebSphere Application Server and DB2, created by
IBM and non-IBM vendors, and built-in tools to easily customize those patterns

At the infrastructure level, Bluemix Local System is a pre-integrated machine, which includes
compute nodes, storage, and networking. Since the inception of PureApplication, IBM
released three generations of pre-integrated systems, each with two choices of chipset
technology: Intel-based and Power-based. IBM Bluemix Local System is the third generation
of the Intel-based system.

In addition to the capabilities described previously, Bluemix Local System with
PureApplication Software delivers an OpenStack runtime, also known as OpenStack services,
using the IBM Blue Box technology described in 1.2.2, “IBM Blue Box” on page 9. It is in fact
possible to dedicate several compute nodes on a Bluemix Local System to what essentially
becomes a Blue Box local implementation of an OpenStack runtime.

More information around the setup for OpenStack service on Bluemix Local System using
PureApplication Software is provided in Chapter 2, “Setting up IBM Bluemix Local System for
OpenStack Heat patterns” on page 25.

In a similar way to OpenStack services, it is possible to reserve several compute nodes in a
Bluemix Local System to run a dedicated Bluemix Local partition, as shown in Figure 1-9.

Figure 1-9 IBM Bluemix Local System: A single platform for three runtimes

Note: It is important to note that OpenStack services on Bluemix Local System are a
managed deployment, completed in collaboration with Blue Box. This means that remote
access to the system must be granted to the Blue Box operations team.

Note: At the time of writing of this paper, OpenStack services are only available on
Intel-based Bluemix Local Systems, and not on Power-based PureApplication Systems.
Chapter 1. Automated application delivery with OpenStack Heat patterns 17

Bluemix Local on IBM Bluemix Local System is not treated as part of this paper. For more
information about this subject, see the following websites:

http://www.ibm.com/bluemix
http://www.ibm.com/bluemix/local

1.4 OpenStack Heat patterns

IBM Patterns of Expertise provide an enterprise-strong mechanism to deliver, deploy, and
manage complex applications and their topology. However, the key components of the
Patterns of Expertise are proprietary to IBM.

Based on the ever-growing popularity of open source technologies that deliver some of the
capabilities that are needed by a pattern, IBM introduced OpenStack Heat patterns, which
deliver the same capabilities, but are based on open source technologies.

OpenStack Heat patterns are based on OpenStack for the infrastructure layer. At the time of
writing of this paper, the only choice for the hypervisor layer is KVM.

OpenStack Heat patterns provide an end-to-end design, deployment, and lifecycle
management experience similar to the one available for the IBM Patterns of Expertise, which
none of the open source technologies described in this chapter can currently deliver in
isolation.

To run OpenStack Heat patterns, an OpenStack Heat pattern runtime is needed. The
OpenStack Heat pattern runtime implementation that is described in this paper makes
specific technology choices, alongside the OpenStack choice for the infrastructure layer and
the choice for the hypervisor layer. Those choices are described in the following list and
depicted in Figure 1-10 on page 19:

� Red Hat or Ubuntu for the OS layer

� Standard Software packages for software installations

� SaltStack for automation scripting

� OpenStack Heat for orchestration scripting on OpenStack infrastructure

� Zeron for post-deployment management

Note: At the time of writing of this paper, Bluemix Local is only available on Intel-based
Bluemix Local Systems.

Note: The OpenStack infrastructure and the hypervisor layer are not part of the OpenStack
Heat pattern runtime. However, they are part of the OpenStack-based deployment target
for the OpenStack Heat patterns. Deployment targets supported by the OpenStack Heat
pattern runtime are described in 1.4.1, “OpenStack Heat patterns on IBM Bluemix Local
System with PureApplication Software” on page 21 and 1.4.2, “OpenStack Heat patterns
on IBM Bluemix” on page 22.
18 Automated Application Delivery with OpenStack Heat Patterns

http://www.ibm.com/bluemix
http://www.ibm.com/bluemix/local

Figure 1-10 shows the technologies used in this paper.

Figure 1-10 OpenStack Heat pattern runtime implementation on OpenStack and chosen hypervisor

The OpenStack Heat pattern runtime that is described in Figure 1-10 uses technologies that
are tested, and are supported when using OpenStack Heat patterns. However, it might be
possible to extend some of these choices, and to use alternative technologies. It is important
to note that, although creating OpenStack Heat patterns using different technologies is
possible, this choice is not tested for the described runtime.

The following list describes the main layers where the OpenStack Heat patterns could be
extended:

� Operating System

Bringing Your Own OS (BYOOS), such as openSUSE and CentOS:

https://www.centos.org/

� Software installation

Using containers rather than standard software packages for the delivery of applications.
Patterns of expertise already provide support for Docker, and this is an area of current
development for OpenStack Heat patterns, as well.

� Automation scripting

In the same way that SaltStack agents communicate with the Salt master, different
desired-state management system agents can be used within OpenStack Heat patterns,
provided a central server is available in the organization. This could be done, for example,
by using desired-state management systems, such as Chef and Puppet. The same applies
to other systems, such as Ansible, which do not use agents.
Chapter 1. Automated application delivery with OpenStack Heat patterns 19

https://www.centos.org/

In addition to the set of open technologies that are listed in Figure 1-10 for the OpenStack
Heat pattern runtime, an overall OpenStack Heat pattern engine also needs to provide
capabilities to create and manage OpenStack Heat patterns at design time. The OpenStack
Heat pattern engine that is described in this paper provides two additional capabilities:

� A version control system for pattern artifacts, such as Heat templates and SaltStack
scripts. The technology used to implement this system is Git:

https://git-scm.com/

� A graphical pattern editor, to enable pattern developers to create OpenStack Heat
patterns that use all technology components. The pattern editor technology is based on
the IBM UrbanCode™ Deploy (UCD) Blueprint Designer.

The resulting OpenStack Heat pattern engine is illustrated in Figure 1-11.

Figure 1-11 OpenStack Heat pattern engine

After OpenStack Heat patterns are created, they can be deployed to a deployment target. The
idea behind the choice of OpenStack infrastructure at the base of a deployment target is that
OpenStack-based stacks can be created and deployed on any hardware. This gives the
OpenStack Heat patterns a unique portability across every type of infrastructure component,
and IaaS in general, that can be defined through OpenStack.

However, it is important to notice that for the OpenStack Heat patterns to able to run, a
pattern engine, such as the one described in Figure 1-12 on page 21, needs to be set up and
configured. The way a pattern engine is implemented is not mandated by IBM. If the key
technology choices described in Figure 1-10 on page 19 are followed, OpenStack Heat
patterns can be run and managed through any pattern engine implementation that uses an
OpenStack-based deployment target.

Note: The OpenStack Heat pattern engine includes the OpenStack Heat pattern runtime
and the additional capabilities that are listed in 1.4, “OpenStack Heat patterns” on page 18.
20 Automated Application Delivery with OpenStack Heat Patterns

https://git-scm.com/

This is a key strength of the OpenStack Heat pattern paradigm: Both the deployment target
and the engine are based on open source technologies. Therefore, if the open technologies
present in the OpenStack Heat patterns are used, the patterns can be deployed anywhere.

At the time of writing this publication, IBM has two platforms that, in addition to running
OpenStack-based stacks, provide a preconfigured pattern engine implementation, which
follows the technology choices that are described in Figure 1-11 on page 20. Those platforms
are described in the following list, and depicted in Figure 1-12:

� IBM Bluemix Local System with PureApplication Software
� IBM Bluemix (experimental service only)

Figure 1-12 Platform running a preconfigured pattern engine

These platforms are further described in the remainder of this chapter.

1.4.1 OpenStack Heat patterns on IBM Bluemix Local System with
PureApplication Software

In 1.3, “IBM PureApplication System products for OpenStack” on page 16, we described the
capability to run OpenStack services on IBM Bluemix Local System with PureApplication
Software. In essence, an IBM Blue Box local implementation can be set up on a Bluemix
Local System to create and manage an OpenStack runtime.

Because it delivers an OpenStack runtime, IBM Bluemix Local System can act as the
deployment target for OpenStack Heat patterns, as shown in Figure 1-10 on page 19.

Note: The implementation of the pattern engine differs slightly for the two platforms that
are shown in Figure 1-12.
Chapter 1. Automated application delivery with OpenStack Heat patterns 21

However, in addition to the OpenStack services, the PureApplication Software on Bluemix
Local System also makes available an implementation of the pre-configured pattern engine
described in Figure 1-12 on page 21.

The fundamental advantage of using this type of platform, such as Bluemix Local System for
OpenStack Heat patterns, is that most of the infrastructure and pattern prerequisites are
satisfied by the underlying converged infrastructure, enabling developers to focus on the
build-out and deployment of the patterns and the applications.

The main focus of this paper and the following chapters is on the creation and management of
OpenStack Heat patterns on Bluemix Local with PureApplication Software.

1.4.2 OpenStack Heat patterns on IBM Bluemix

Bluemix is the IBM cloud platform as a service PaaS) that offers mobile and web developers
access to IBM software for integration, security, transactions, and other key functions, and
software from IBM Business Partners:

http://www.ibm.com/bluemix

Bluemix provides several composable services for developers and businesses to create,
manage, and deploy their own applications in the cloud. Bluemix provides the following
features:

� A range of services to build and extend web and mobile apps quickly
� Processing power to deliver app changes continuously
� Fit-for-purpose programming models and services
� Manageability of services and applications
� Optimized and elastic workloads

For more information about Bluemix, see IBM Bluemix: The Cloud Platform for Creating and
Delivering Applications, REDP-5242:

http://www.redbooks.ibm.com/abstracts/redp5242.html

Bluemix offers two services that are particularly relevant to the topic described in this paper:

� The Bluemix Virtual Servers service:

http://ibm.biz/VirtualServers

� The Bluemix Pattern Engine service

The IBM Virtual Servers service enables you to create, run, and manage virtual servers and
virtual machines in public private clouds. This service is built on OpenStack, and can use
Heat templates.

Because it delivers an OpenStack runtime, the Virtual Server service on Bluemix can act as
the deployment target for OpenStack Heat patterns, as defined in Figure 1-9 on page 17.

The IBM Bluemix Pattern Engine provides an implementation of the pre-configured pattern
engine that is described in Figure 1-10 on page 19.

Note: The Virtual Servers service on Bluemix is in beta at the time of writing of this paper.

Note: The Pattern Engine service on Bluemix is an experimental service at the time of
writing of this paper. An experimental service is introduced for testing purposes only and
provides limited support.
22 Automated Application Delivery with OpenStack Heat Patterns

http://ibm.biz/VirtualServers
http://www.redbooks.ibm.com/abstracts/redp5242.html
http://www.ibm.com/bluemix

It is important to note that the OpenStack Heat pattern engine that is provided by the Pattern
Engine service is slightly different from the one provided by PureApplication Software, despite
making the same technology choices.

The main differences from the PureApplication Software OpenStack Heat pattern engine on
Bluemix Local System are listed as follows:

� Some of the OpenStack Heat and SaltStack configurations are different, because in the
Virtual Server service no direct access to the OpenStack Heat engine is permitted.

� OpenStack Heat patterns cannot be uploaded to the engine, only the sample ones can be
used.

� OpenStack Heat patterns cannot be edited.

� Because no pattern editing is possible, the IBM UrbanCode Deploy (UCD) Blueprint
Designer is not provided as part of the pattern engine.

OpenStack Heat patterns on the IBM Bluemix Pattern Engine are not described in further
detail in this paper.

1.5 Conclusions

In this chapter, we describe the key elements that are needed to create a pattern, together
with what makes a pattern reusable and portable. We provide a primary example of a good
pattern incarnation, in the IBM Patterns of Expertise.

Various technology choices, primarily open source, are provided for the implementation of the
key elements defined previously. Throughout the chapter, the most relevant of those
technologies are further described.

Therefore, we have introduced OpenStack Heat patterns: Patterns created primarily by using
open technologies, using OpenStack. We also define various concepts, such as a pattern
deployment target, an OpenStack Heat pattern runtime, and an OpenStack Heat pattern
engine. Finally, we describe the two IBM platforms that provide a deployment target and an
engine implementation for OpenStack Heat patterns: Bluemix Local System and Bluemix.

In the remainder of this paper, we describe in more detail OpenStack Heat patterns, focusing
in particular on PureApplication Software on Bluemix Local System:

� In Chapter 2, “Setting up IBM Bluemix Local System for OpenStack Heat patterns” on
page 25, we provide guidance about how to set up Bluemix Local System to provide an
OpenStack runtime by using IBM Blue Box.

� In Chapter 3, “Deploying sample OpenStack Heat patterns” on page 35, the deployment of
a sample OpenStack Heat pattern is described.

� In Chapter 4, “Importing OpenStack Heat patterns” on page 47, we describe how to import
a Heat template (HOT) and transform it into an OpenStack Heat pattern.

� In Chapter 5, “Creating an OpenStack Heat pattern” on page 53, the steps to create a new
OpenStack Heat pattern are detailed and described.

� In Chapter 6, “Creating automation for OpenStack Heat patterns with SaltStack” on
page 65, we provide further detail about SaltStack, and describe how it operates in the
context of PureApplication Software.

� Chapter 7, “Zeron for OpenStack Heat patterns” on page 75 provides an in-depth review
of Zeron and how it can be used to manage operations on OpenStack Heat patterns after
they are deployed.
Chapter 1. Automated application delivery with OpenStack Heat patterns 23

24 Automated Application Delivery with OpenStack Heat Patterns

Chapter 2. Setting up IBM Bluemix Local
System for OpenStack Heat
patterns

In Chapter 1, “Automated application delivery with OpenStack Heat patterns” on page 1, we
define the OpenStack Heat pattern runtime as the runtime implementation able to run
OpenStack Heat patterns based on specific technology choices. Additionally, we define the
OpenStack Heat pattern engine as a combination of the pattern runtime and a specific set of
tools for OpenStack Heat pattern editing, such as Blueprint Designer in IBM UrbanCode
Deploy (UCD), and version control system, such as Git.

When setting up IBM Bluemix Local System with IBM PureApplication Software, all the
constituents of the OpenStack Heat pattern engine are created, including the OpenStack
runtime, the Zeron framework, the SaltStack master, UCD Blueprint Designer, and the
necessary Git repositories. It is worth noting that, at the time this paper was written, the
OpenStack implementation that is used in Bluemix Local System, IBM Blue Box, does not
support the OpenStack Cinder project. Therefore, adding storage volumes to OpenStack
Heat patterns is not possible.

The OpenStack Heat pattern engine implementation in PureApplication Software gets created
at setup time on the IBM PureApplication System Manager (PSM) virtual machine (VM). This
VM contains the SaltStack master for the OpenStack Heat patterns, a web server for the
software binary files, and four Git repositories, which are as follows:

� Pattern repository, where OpenStack Heat patterns are stored
� Module repository, where SaltStack execution modules are stored
� Pillars repository, where SaltStack pillars are stored
� Formulas repository, where SaltStack formula are stored

The pattern repository is described in more detail in Chapter 5, “Creating an OpenStack Heat
pattern” on page 53, and the three repositories that are related to SaltStack are described in
6.2.5, “Git repositories and SaltStack files” on page 70.

This chapter describes the steps that are needed to set up the OpenStack Heat pattern
engine on Bluemix Local System for the first time.

2

© Copyright IBM Corp. 2016. All rights reserved. 25

2.1 Setting up OpenStack on Bluemix Local System

As mentioned in Chapter 1, “Automated application delivery with OpenStack Heat patterns”
on page 1, PureApplication Software V2.2.1 and later on Bluemix Local System provides an
OpenStack runtime. OpenStack Services are accessible from the System menu. Go to
System → System Settings to see the OpenStack Services, as shown in Figure 2-1.

Figure 2-1 System → System Settings → OpenStack Services menu option

This section describes the steps to enable OpenStack services on Bluemix Local System.

2.1.1 Preparing Bluemix Local System

In this section, we detail the steps that are needed to prepare Bluemix Local System before
enabling OpenStack services. To learn more about networking, and in particular virtual local
area networks (VLANs), Internet Protocols (IPs), and IP Groups, on Bluemix Local System
and PureApplication System, see the developerWorks articles at the following web address:

http://ibm.biz/NetworkDesign

Also, see Integrating IBM PureApplication System into an Existing Data Center, SG24-8285:

http://www.redbooks.ibm.com/abstracts/sg248285.html

Network VLAN Preparation
The following VLANs are needed, and are added to PureApplication Software by selecting
System → Network Configuration:

� Blue Box Public Network
� OpenStack External Management Network
� OpenStack Internal Management Network
� OpenStack Heat Patterns External Management Network
� Customer data (the same as PureApplication data VLAN)
26 Automated Application Delivery with OpenStack Heat Patterns

http://www.redbooks.ibm.com/abstracts/sg248285.html
http://ibm.biz/NetworkDesign

Figure 2-2 shows some of the VLANs listed.

Figure 2-2 Network Configuration

Additional resources
The following additional resources are needed to complete the setup:

� A dedicated IP group
� Dedicated compute nodes
� Additional network information

Dedicated IP Group
One of the requirements for running OpenStack Heat patterns is to have a dedicated IP
group, and then associate the data VLAN with this IP group and add at least 32 contiguous
IPs to that IP group.

Compute Nodes
OpenStack requires three compute nodes. Make sure that the Bluemix Local System has at
least three compute nodes available before configuring OpenStack.

Network information
The VLANs listed in the beginning of, “Network VLAN Preparation” on page 26 should be
configured with the network information that is related to your network environment. The
specifics depend on your environment and network.

Table 2-1 on page 28 shows an example with the following configuration:

� The network team provides the VLAN IDs.
� The Gateway information depends on your network environment.
� The subnet mask remains as shown in Table 2-1 on page 28.

Note: Currently, the requirement is to have exactly three compute nodes. This requirement
will be relaxed in the future to accommodate more compute nodes in the OpenStack cloud
group.
Chapter 2. Setting up IBM Bluemix Local System for OpenStack Heat patterns 27

Table 2-1 shows sample VLAN network information.

Table 2-1 VLAN network information

2.1.2 Enabling OpenStack services

A user must be assigned the hardware administration role with permission to manage
hardware resources (full permission) to perform the steps in the remainder of this section.
After logging in to the Console, go to the System menu to complete the following tasks to
enable OpenStack services:

1. Click System → System Settings.
2. To expand OpenStack Services, click the Plus sign (+).
3. Initially, the Services status should be Disabled, as seen in Figure 2-3 on page 29.
4. Click Deploy to initialize the OpenStack infrastructure.

VLAN VLAN ID Subnet MASK Gateway

Blue Box Public Network 0909 255.255.255.0 9.42.68.1

OpenStack External
Management Network

2251 255.255.255.0 172.19.251.1

OpenStack Internal
Management
Network

0999

OpenStack Heat patterns
External Management
Network

2250 255.255.255.0 172.19.250.1

Customer data VLAN 0629 255.255.248.0 172.17.56.1
28 Automated Application Delivery with OpenStack Heat Patterns

Figure 2-3 System menu showing OpenStack Services

5. Accept the license agreement for each of the images.
6. Enter the network information for each of the VLANs by using the information collected.
7. Select three available compute nodes from the list that is used for OpenStack Services.
8. Add the Data VLAN that is used for OpenStack Heat pattern deployment.
9. Enter the LDAP parameters. There are six entries, which are shown in Table 2-2, that

need to be modified. The rest of the parameters should already have values.

Table 2-2 LDAP parameters

Parameter Value

chase_referrals false

tls_req_cert never

page_size 10

user_pass_attribute password

group_member_attribute member

salt_master_access_group salt
Chapter 2. Setting up IBM Bluemix Local System for OpenStack Heat patterns 29

10.Click OK to start the OpenStack configuration task.

You can navigate to the System Job Queue to check whether the OpenStack job is
completed. When the job has completed, you should see the OpenStack Service fully
enabled, as seen in Figure 2-4. This screen is accessible from the System menu option
(System → System Settings → OpenStack Services).

Figure 2-4 OpenStack services enabled

2.2 Configuring Blue Box

At this point, when the OpenStack services are in place, the environment is handed over to
the IBM Blue Box team to set up Blue Box. That task is started by opening a support ticket
from the management portal, which is called IBM Box Panel®. The ticket includes a
JavaScript Object Notation (JSON) file with all of the details to deploy the environment.

The Box Panel login page can be accessed at the following web address:

https://boxpanel.bluebox.net
30 Automated Application Delivery with OpenStack Heat Patterns

https://boxpanel.bluebox.net

2.2.1 Verifying OpenStack services

There are two menu items that can be viewed to verify that OpenStack services have been
configured properly.

Catalog → OpenStack Heat Patterns
On the Catalog menu, under OpenStack Heat patterns, you should see OpenStack Heat
patterns Binaries, as shown in the Figure 2-5.

Figure 2-5 Catalog → OpenStack Heat patterns menu
Chapter 2. Setting up IBM Bluemix Local System for OpenStack Heat patterns 31

Patterns → OpenStack Heat patterns
You should see OpenStack Heat patterns and OpenStack Heat pattern Instances under
the Patterns menu, as shown in Figure 2-6.

Figure 2-6 Patterns → OpenStack Heat patterns menu

If you click OpenStack Heat patterns you should see the sample OpenStack Heat patterns
that are available, as shown in Figure 2-7. Deployment of sample OpenStack Heat patterns is
described in Chapter 3, “Deploying sample OpenStack Heat patterns” on page 35.

Figure 2-7 Available OpenStack Heat patterns on PureApplication Software
32 Automated Application Delivery with OpenStack Heat Patterns

2.3 Sample OpenStack Heat patterns

As mentioned in Chapter 1, “Automated application delivery with OpenStack Heat patterns”
on page 1, PureApplication Software V2.2.2 includes the sample OpenStack Heat patterns of
IBM WebSphere Application Server and IBM DB2. After logging in to the console, go to the
Patterns menu and select OpenStack Heat patterns to verify. If the sample patterns are not
there, complete the following steps to import them:

1. Issue the following CLI command:

pure.cli/bin/pure -h <PureApp_IP> -u <USER_ID> -p <PWD> -a
deploy-er.openpatternbinaries.ImportBinaries("<openpattern_binary_folder>/rdsDB
2Binary.tar.gz", True)
deployer.openpatternbinaries.ImportBinaries("<openpattern_binary_folder>/rdsDB2
Binary.tar.gz", True)

2. Import the setup archive compressed file and the DB2, WebSphere Application Server,
and Salt minion installation files. This is done from the Patterns → OpenStack Heat
patterns menu.

3. Click Import, select initial_import.zip, and then click OK.

4. Click Import, select ibm_db2_openpattern.zip, and then click OK.

5. Click Import, select ibm_websphere_openpattern.zip, and then click OK.

Deployment of the sample OpenStack Heat patterns is covered in 3.2, “Installing OpenStack
Heat pattern samples” on page 36, the creation of new OpenStack Heat patterns is explained
in Chapter 4, “Importing OpenStack Heat patterns” on page 47 and Chapter 5, “Creating an
OpenStack Heat pattern” on page 53.

2.4 Using an alternative Git repository

Optionally you might choose to set up and use a Git repository for storing your OpenStack
Heat patterns, alternative to the internal pattern repository available on PSM. This can be
done using any of the following methods:

� Point to an existing remote Git repository.
� Stand up a new Git repository on PureApplication System.
� Stand up and point to a remote Git repository on another system.

In this IBM Redbooks publication, there are references to “standing up” a Git repository. This
section describes how to set up one.

In 4.2, “Importing from a Git repository” on page 50, we describe how OpenStack Heat
patterns stored in an alternative Git repository can be used.

Note: If you have PureApplication Software V2.2.1, the sample pattern binary files must be
downloaded from the IBM support site and imported by using the command-line interface
(CLI) command. The authors assume that readers are familiar with setting up the
PureApplication CLI utility.
Chapter 2. Setting up IBM Bluemix Local System for OpenStack Heat patterns 33

2.4.1 Stand up a new Git repository on Bluemix Local System

To stand up a new Git repository, we need a Red Hat Linux VM:

1. Deploy a simple VM with IP tables disabled.

2. Next, use the Red Hat Satellite service or yum to install the software. Issue the following
commands:

yum -y install git
yum -y install git-daemon

To start the Git Server, perform the following steps:

1. Create a folder, or a location, that will be the root of all repositories, for example /git.

2. Start the Git daemon as follows:

git daemon --reuseaddr --base-path=/git --export-all --verbose
--enable=receive-pack &

Because you disabled the firewall when you deployed your Red Hat instance, you do not need
to open port 9418. If you did not stop the IP tables with the deployment, use the following
commands to disable the firewall:

service iptables save
systemctl stop iptables.service
systemctl disable iptables.service
systemctl status iptables.service
34 Automated Application Delivery with OpenStack Heat Patterns

Chapter 3. Deploying sample OpenStack
Heat patterns

IBM PureApplication Software v2.2.2 provides two sample OpenStack Heat pattern types:
IBM WebSphere Application Server (WAS) and IBM DB2. This chapter will describe the
deployment of these two sample patterns.

3

© Copyright IBM Corp. 2016. All rights reserved. 35

3.1 Verifying the installation of the sample patterns

To verify the sample pattern installations, complete the following steps:

1. Sign on to the IBM Bluemix Local System console, then go to Patterns → OpenStack
Heat patterns, as shown in Figure 3-1.

Figure 3-1 Opening the OpenStack Heat patterns

2. This action brings you to the OpenStack Heat pattern catalog, showing all of the sample
patterns that are preloaded on Bluemix Local System using PureApplication Software, as
shown in Figure 3-2.

Figure 3-2 Listing of OpenStack Heat patterns on Bluemix Local System

If the list is empty or it is not available, check with your Bluemix Local System administrator
to see if the system has been “OpenStack enabled”.

3.2 Installing OpenStack Heat pattern samples

In this section, the installation of two sample OpenStack Heat patterns is described:

� WebSphere Application Server sample OpenStack Heat pattern

� DB2 sample OpenStack Heat pattern
36 Automated Application Delivery with OpenStack Heat Patterns

3.2.1 Deploying the WebSphere Application Server OpenStack Heat pattern

Next, we deploy the IBM_WebSphere_ND_v855_Standalone OpenStack Heat pattern, which
creates a stand-alone WebSphere Application Server Network Deployment cluster:

1. From the home page, select Patterns → OpenStack Heat patterns. You should be
presented with a listing of all OpenStack Heat patterns.

2. Click IBM_WebSphere_ND_v855_Standalone to see the pattern information, as shown
in Figure 3-3.

Figure 3-3 Select the IBM_WebSphere_ND_v855_Standalone OpenStack Heat pattern

3. When you have selected the pattern, you can select the Deploy button. This action opens
the deployment page shown in Figure 3-4.

Figure 3-4 Deployment of WebSphere Application Server Standalone

The deployment page contains approximately forty deployment parameters, which need to
be set prior to the deployment. These parameters can be saved in what is called an
Environment, which is specific to a single OpenStack Heat pattern. Environments can be
used to populate the required parameters for successive deployments of the same
pattern.
Chapter 3. Deploying sample OpenStack Heat patterns 37

If an Environment is available for the sample pattern, it can be used to pull in the values for
this deployment. A description of all of the values needed for this sample pattern is shown
in Table 3-1.

4. Notice at the bottom of this list a Save as a new environment button is present. Click
Save as a new environment if you want to save the parameter values for future use.

Table 3-1 Parameters for the WebSphere Application Server sample OpenStack Heat pattern

Host Name Parameters Description

was_vm_name Name of the virtual machine to deploy.

Image Parameters

Flavor OpenStack Nova concept to define the size of a virtual
server. A full list of standard “flavors” can be found on the
following website:
http://docs.openstack.org/admin-guide/cli_manage_f
lavors.html

SSH Key name A Secure Shell (SSH) key paira to access the virtual
machines’ operating system (OS) when deployed.

Availability OpenStack Neutron concept, defined at the time Bluemix
Local System is set up for OpenStack using IBM Blue Box.
Additional availability zones can be defined in the
OpenStack dashboard.

OS Image OS Image to deploy onto.

Password (virtuser) This is the password for the virtuserb user of the system.

Password (root) This is the password for the root user of the system.

Yum Proxy URL Uniform Resource Locator (URL) of the proxy to utilize. If
no proxy is needed then leave blank.

Yum repository URL URL to point to yum server.

Software Repository URL Software repository URL.

Network OpenStack Neutron concept, defined at the time Bluemix
Local System is set up for OpenStack using Blue Box.
Additional networks can be defined in the OpenStack
dashboard.

Salt Parameters

Saltmaster address Host/Internet Protocol (IP) address of the Salt Master. It
can be found in System → System settings →
Openstack services.

Saltmaster API port Salt Master port. It can be found in System → System
Settings → OpenStack services.

Salt API user The user connecting to Salt application programming
interface (API).

Salt API password Password for connection to Salt API.

WebSphere Parameters

WAS OS user OS Username for the WebSphere operation system user.

WAS OS group OS Group for the WebSphere operation system user.
38 Automated Application Delivery with OpenStack Heat Patterns

http://docs.openstack.org/admin-guide/cli_manage_flavors.html

WebSphere Parameters (cont.)

WAS OS Users password OS Password for the WebSphere operation system.

WAS Console user Admin user login to WebSphere Application Server.

WAS Console password Admin password login to WebSphere Application Server.

WAS Install directory Install directory of WebSphere Application Server.

WAS Profile directory Profile directory of the WebSphere Application Server
node.

Enable custom log location Select enable for alternate directory for server logs.

Custom log directory To specify an alternate directory for server logs.

Enable java Select whether to enable Java 7.

WAS fixpack version Was fixpack version, 2 digits only.

Java fixpack version Java fixpack version.

Enable 32-bit SDKc Software development kit (SDK) feature, can select 32-bit
or 64-bit option.

Enable 64-bit SDK SDK feature, can select 32-bit or 64-bit option.

WAS Standalone profile name Standalone profile name.

WAS Standalone cell name Standalone cell name.

WAS Standalone node name Node name.

WAS Standalone server name Server name.

IBM Installation Manager

IBM Installation Mgr Install Mode Instructs how Installation manager should be installed
(admin, user, or group). Normally admin.

IBM Installation Mgr Install User The OS user selected to install Installation Manager.

IBM Installation Mgr Install Group The OS group selected to install Installation Manager.

IBM Installation Mgr Install directory Install directory of Installation Manager.

IBM Installation Mgr Shared Location Shared directory of Installation Manager.

IBM Installation Mgr Repository Path Installation Manager repository path.

Zeron Parameters

openstack_keystone_url OpenStack Keystone URL can be found in System →
System settings → OpenStack Services and is usually
in the following location:
https://<openstack_external_hostname>:5000/v3/

a. Key pairs need to be stored in the OpenStack runtime. To do that, from the OpenStack dashboard, go to Project →
Compute → Access & Security → Key Pairs. Here key pairs can be imported or generated. The Key Pair Name
value is the one to be used for this parameter.

b. The virtuser ID is a generic user ID that is created for you with the deployment. You can only set the password.
c. An SDK is a set of software development tools that allows the creation of applications for a certain software

package, software framework, hardware platform, computer system, video game console, operating system, or
similar development platform.

Host Name Parameters Description
Chapter 3. Deploying sample OpenStack Heat patterns 39

3.2.2 Deploying the DB2 Server OpenStack Heat pattern

Deploy the IBM_DB2_Standalone OpenStack Heat pattern, which stands up a stand-alone
DB2 server:

1. From the home page, click Patterns → OpenStack Heat patterns. You are presented
with a listing of all OpenStack Heat patterns.

2. Click IBM_DB2_Standalone to see the pattern information, as shown in Figure 3-5.

Figure 3-5 Select the IBM_DB2_Standalone OpenStack Heat pattern

3. Click Deploy to open the deployment panel, with its parameter options, as displayed in
Figure 3-6.

Figure 3-6 Deployment parameters for DB2 OpenStack Heat pattern
40 Automated Application Delivery with OpenStack Heat Patterns

A description of all of the values need for this sample pattern is shown in Table 3-2.

Table 3-2 Parameters for the DB2 sample OpenStack Heat pattern

DB2 Database Parameters Description

Instance owner username Instance owner username.

Fenced user username Fenced user username.

Instance port number Instance port.

Database name Name of the database to be created.

Data mountpoint Mountpoint for the database within the instances.

Codeset Specifies the code set to be used for data entered
into this database. After you create the database,
you cannot change the specified code set.

Territory Specifies the territory identifier or locale identifier.

Collation The type of collating sequence to be used for the
data.

Pagesize Page size of the default buffer pool along with the
initial table spaces (SYSCATSPACE, TEMPSPACE1,
USERSPACE1) when the database is created.

Host Name Parameters

Server hostname DB2 Server hostname.

Image Parameters

Flavor OpenStack Nova concept defines the size of a
virtual server. The full list can be found at the
following web address:
http://docs.openstack.org/admin-guide/cli_
manage_flavors.html

SSH Key name An SSH key paira to access the virtual machines’
operating system when deployed.

Availability zone OpenStack Neutron concept, defined at the time
Bluemix Local System is setup for OpenStack
using Blue Box. Additional availability zones can
be defined in the OpenStack dashboard.

OS Image OS Image to deploy onto.

Password (virtuser) This is the password for the virtuser user of the
system.

Password (root) This is the password for the root user of the
system.

Yum Proxy URL URL of Proxy to utilize, if no proxy is needed then
leave blank.

Yum repository url URL to point to yum server.

Software Repository URL Software repository URL.
Chapter 3. Deploying sample OpenStack Heat patterns 41

http://docs.openstack.org/admin-guide/cli_manage_flavors.html

3.3 Managing the OpenStack Heat pattern deployments

In order to manage the OpenStack Heat pattern deployments, complete the following steps:

1. Go to Patterns → OpenStack Heat pattern Instances, as shown in Figure 3-7.

Figure 3-7 Go to OpenStack Heat pattern Instances in Order to Manage

Network Parameters

Network OpenStack Neutron concept, defined at the time
Bluemix Local System is set up for OpenStack
using Blue Box. Additional networks can be
defined in the OpenStack dashboard.

Salt Deployments

Saltmaster address Hostname/IP address of the Salt Master. It can
be found in System → System Settings →
OpenStack services.

Saltmaster API port Salt Master port. It can be found in System →
System Settings → OpenStack services.

Salt API user The user connecting to Salt API.

Salt API password Password for connection to Salt API.

Zeron Parameter

openstack_keystone_url OpenStack Keystone URL can be found in
System → System Settings → OpenStack
Services, usually in the following location:
https://<openstack_external_hostname>:5000
/v3/

a. Key pairs need to be stored in the OpenStack runtime. from the OpenStack dashboard, select Project →
Compute → Access & Security → Key Pairs. Here key pairs can be imported or generated. The Key Pair Name
value is the one to be used for this parameter.
42 Automated Application Delivery with OpenStack Heat Patterns

A list of OpenStack Heat pattern deployments will be displayed, as shown in Figure 3-8.

Figure 3-8 Instances that are deployed

2. To select the deployment that you want to manage, click it, as shown in Figure 3-9.

Figure 3-9 Select the standalone WebSphere Application Server deployment

The important information is the Status and the Outputs. The green arrow on the Status
line means a successful deployment. A red arrow would mean there was an issue with
the deployment.
Chapter 3. Deploying sample OpenStack Heat patterns 43

3. On the Outputs line notice the blue link to the WebSphere Application Server console.
Click the link to go to the WebSphere Application Server console, shown in Figure 3-10.

Figure 3-10 WebSphere Application Server console

4. If you click the Manage button as shown in Figure 3-7 on page 42, it is also possible to
access the Zeron user interface (UI) for this OpenStack Heat pattern instance. More
information about Zeron and its UI are provided in Chapter 7, “Zeron for OpenStack Heat
patterns” on page 75.
44 Automated Application Delivery with OpenStack Heat Patterns

5. An alternative view of the deployed OpenStack Heat pattern instance is also available
from the OpenStack dashboard (Project → Orchestration → Stacks), as shown in
Figure 3-11.

Figure 3-11 WebSphere Application Server Deployment from the OpenStack dashboard
Chapter 3. Deploying sample OpenStack Heat patterns 45

46 Automated Application Delivery with OpenStack Heat Patterns

Chapter 4. Importing OpenStack Heat
patterns

In this chapter, we look at importing OpenStack Heat patterns into IBM PureApplication
Software on IBM Bluemix Local System. You can write your own OpenStack Heat patterns or
start from an existing Heat Orchestration Template (HOT).

4

© Copyright IBM Corp. 2016. All rights reserved. 47

4.1 Importing a simple Heat Orchestration Template

To import a HOT, the YAML file that describes the template must first be obtained. For this
example, perform the following steps:

1. Go to the OpenStack Community App Catalog at the following web address:

http://apps.openstack.org

2. Download the sample “Hello World” HOT example.

3. From the link (in step 1), select HEAT TEMPLATES to display the catalog.

4. Select the Hello World pattern and download it.

5. With the file downloaded, look inside this simple hello_world.yaml file, shown in
Example 4-1.

Example 4-1 Hello_world.yaml

#
This is a hello world HOT template just defining a single compute
server.
#
heat_template_version: 2013-05-23
description: >
 Hello world HOT template that just defines a single server.
 Contains just base features to verify base HOT support.

The Hello_world.yaml is a simple text file in YAML format. It starts off with some
comments (the ones with a Number sign (#) in front of them) and includes the heat
template version. Next is a short description.

For more information about the file format, see the following website:

http://www.yaml.org/start.html

Now import this YAML file into IBM PureApplication Software and perform the following steps:

1. Access the OpenStack Heat pattern catalog, as shown in Figure 4-1.

Figure 4-1 Access OpenStack Heat pattern catalog
48 Automated Application Delivery with OpenStack Heat Patterns

http://www.yaml.org/start.html

http://apps.openstack.org

2. Select the OpenStack Heat patterns, as shown in Figure 4-2.

Figure 4-2 OpenStack Heat patterns page with focus on the Import button

3. After you select Import, a new dialog box displays, as shown in Figure 4-3. Browse to the
file location of the YAML file and import the file. Select OK.

Figure 4-3 Import Pattern Screen

Importing the OpenStack Heat pattern adds and converts the HOT into a basic OpenStack
Heat pattern, and then makes the pattern available in the catalog, as shown in Figure 4-4.

Figure 4-4 Imported OpenStack Heat pattern in system

Now you can use PureApplication Software to edit, enrich, deploy, and manage the newly
created OpenStack Heat pattern.

Note: IBM PureApplication Software accepts files in YAML format only with a .yaml or a
.yml extension.
Chapter 4. Importing OpenStack Heat patterns 49

4.2 Importing from a Git repository

Another option for importing OpenStack Heat patterns into PureApplication Software is
directly from a Git repository. To do this, you must first set up a link to the repository from
PureApplication Software:

1. Go to the OpenStack Heat patterns page, as shown in Figure 4-5.

Figure 4-5 OpenStack Heat pattern Page with Import Repository

2. Click Import Repository to open the dialog that is shown in Figure 4-6.

Figure 4-6 Import Repository from Git Repository

3. Complete the Remote Git repository URL and a Local name that you want to give to the
repository. These two names are used to import the OpenStack Heat patterns that are
contained in the Git repository into the OpenStack Heat pattern catalog. Click OK.

4. Using the Manage repository button shown in Figure 4-7, you can at any point reload the
repository, so that the most up-to-date patterns are made available in the OpenStack Heat
pattern catalog.

Figure 4-7 Manage Git Repositories

Note: All patterns that are found in the Git repository are brought into PureApplication
Software at the same time.
50 Automated Application Delivery with OpenStack Heat Patterns

5. When a repository is no longer needed, you can delete it. These two actions (update and
delete) are available for each linked Git repository, as shown in Figure 4-8.

Figure 4-8 Manage Git repositories

Note: When a new OpenStack Heat pattern is added to the linked repository, it does
not get directly imported in the OpenStack Heat pattern catalog. The reload action
must be performed for a new OpenStack Heat pattern to get imported into the
OpenStack Heat pattern catalog.
Chapter 4. Importing OpenStack Heat patterns 51

52 Automated Application Delivery with OpenStack Heat Patterns

Chapter 5. Creating an OpenStack Heat
pattern

In Chapter 4, “Importing OpenStack Heat patterns” on page 47 we described the following
topics:

� How to work with the OpenStack Heat pattern samples that are provided in IBM
PureApplication Software on IBM Bluemix Local System

� How to import an OpenStack Heat orchestration template (HOT), and use it as the base of
an OpenStack Heat pattern

In this chapter, we describe how to create a new OpenStack Heat pattern.

The sample we use is a simple Ubuntu image with an Apache web server installed on it.

There are several fundamental steps that developers need to follow to create an OpenStack
Heat pattern on PureApplication Software:

1. Create a blueprint in the IBM UrbanCode Deploy (UCD) Blueprint Designer.

2. Define the OpenStack Heat pattern in UCD Blueprint Designer.

3. Add SaltStack formulas to the OpenStack Heat pattern (optional).

4. Commit and push the OpenStack Heat pattern to Git.

After the pattern is created, in can be deployed, accessed, managed, and monitored by
completing steps similar to those described in the previous chapters of this IBM Redbooks
publication.

This chapter describes the previous for a sample OpenStack Heat pattern, as well as taking
the reader through the deployment and verification of the sample pattern.

5

© Copyright IBM Corp. 2016. All rights reserved. 53

5.1 Creating a blueprint in UCD Blueprint Designer

Complete the following steps to create a blueprint in UCD Blueprint Designer:

1. Go to Patterns → OpenStack Heat patterns, as shown in Figure 5-1.

Figure 5-1 Access OpenStack Heat patterns

This page shows the OpenStack Heat patterns that are contained in the Git repository part
of the PureApplication Software OpenStack Heat pattern engine. An example is shown in
Figure 5-2.

Figure 5-2 OpenStack Heat pattern catalog
54 Automated Application Delivery with OpenStack Heat Patterns

2. To create a new OpenStack Heat pattern, click Create New on the page shown in
Figure 5-2 on page 54.

This opens the UrbanCode Deploy (UCD) Blueprint Designer, as shown in Figure 5-3, in a
separate browser tab. The OpenStack Heat pattern engine implementation in
PureApplication Software uses UCD Blueprint Designer for pattern creation and editing. In
UCD Blueprint Designer, patterns are called blueprints.

Figure 5-3 Blueprints in UrbanCode Deploy Blueprint Designer

Note: It is important to note that UCD Blueprint Designer is an offline authoring
environment. Therefore, all changes that are made to patterns are only saved to a local
Git repository. Changes need to be manually pushed to the PureApplication Software
pattern repository, still based on Git, in order for the new patterns, or new versions of
the patterns, to be available in the OpenStack Heat pattern catalog. For more
information, see 5.4, “Committing and pushing the OpenStack Heat pattern to Git” on
page 60 for details.
Chapter 5. Creating an OpenStack Heat pattern 55

3. From the UCD Blueprint Designer, click New to create a new blueprint. This opens the
wizard that is shown in Figure 5-4.

Figure 5-4 UCD Blueprint Designer: New blueprint wizard

4. Complete the parameters, as shown in Figure 5-4. Remember to select the correct
Repository where the OpenStack Heat pattern template will be saved. This is called
patterns for the internal UCD Blueprint Designer Git repository. Type should be Blueprint,
and no Clone needs to be selected, because we are starting from an empty canvas.

5. Clicking Save opens the pattern editor page. This page has two tabs:

– Diagram, where a pattern can be created through a graphical user interface (GUI)

– Source, where the Heat template source statements are automatically generated
based on the Diagram, and can be manually edited

In this example, we use the Diagram view to create a pattern by using the available artifacts in
the palette on the right side of the Blueprint Designer, which is shown in Figure 5-5. The
editing experience is based on dragging components to the canvas, and wiring them together,
which is similar to the editing experience for PureApplication Patterns of Expertise.

Figure 5-5 UCD Blueprint Designer: Artifacts palette
56 Automated Application Delivery with OpenStack Heat Patterns

The palette in Figure 5-5 lists seven categories, which are explained in the following list:

� Components are the SaltStack formulas that can be used within an OpenStack Heat
pattern.

� Images are the available operating system (OS) images, such as Red Hat 7.2 and Ubuntu
14.04. OpenStack Glance underpins this category.

� Networks define network segments within the pattern. They are useful when assigning IPs
to the OpenStack Heat pattern components. OpenStack Neutron underpins
this category.

� Security enables you to define and associate security groups with OpenStack Heat
patterns and their components. OpenStack Keystone underpins this category.

� Storage contains storage volumes, which can be associated with patterns. OpenStack
Cinder1 underpins this category.

� Policies enable you to create and apply policies, such as auto scaling and load balancing.
Polices are underpinned by different OpenStack projects, such as Heat, Ceilometer, and
Neutron.

� Templates are template instances for Heat resource types, if already available. These
templates are typically not used when designing OpenStack Heat patterns. OpenStack
Heat underpins this category.

5.2 Defining a new OpenStack Heat pattern

To define the sample OpenStack Heat pattern, complete the following steps:

1. Go to the Diagram tab for the pattern that was created through the wizard shown in
Figure 5-4 on page 56.

2. Drag an Ubuntu image on to the canvas from the Images category, as shown in
Figure 5-6.

Figure 5-6 Add Ubuntu image to the sample OpenStack Heat pattern

1 At the time of writing of this paper, OpenStack Cinder is not supported on Bluemix Local System. Therefore,
adding storage volumes to OpenStack Heat patterns is not a viable operation.

Tip: At any point during this process, you can switch to the Source tab to see the HOT
getting populated with the components that get added to the diagram.
Chapter 5. Creating an OpenStack Heat pattern 57

3. Add a network to the canvas from the Networks category. In this example, a network
called internal is already defined and available in the Networks tab.

4. Connect the network to the image, as shown in Figure 5-7.

Figure 5-7 Connect network to image

5. Save the OpenStack Heat pattern by selecting Save.

5.3 Adding SaltStack formulas to the OpenStack Heat pattern

So far, we created a simple OpenStack Heat pattern with a single virtual machine (VM),
containing an Ubuntu OS, connected to a network. As described in Chapter 1, “Automated
application delivery with OpenStack Heat patterns” on page 1, to add a software component
to the image, OpenStack Heat patterns leverage SaltStack scripts, or formulas.

In a similar fashion to Patterns of Expertise scripts, SaltStack formulas are not created directly
on the UCD Blueprint Editor, but need to be manually uploaded to the OpenStack Heat
pattern repositories to appear in the palette. This procedure is explained in Chapter 6,
“Creating automation for OpenStack Heat patterns with SaltStack” on page 65 of this paper.

In the same way that scripts are added to Patterns of Expertise, it is possible to drag
SaltStack formulas from the palette onto images. For the sample OpenStack Heat pattern
described in this chapter, we use an existing formula available in the palette: One that installs
an Apache web server.

Note: Networks and availability zones are defined at the time that Bluemix Local
System is set up for OpenStack by using IBM Blue Box. Additional networks can be
defined through the OpenStack dashboard, which you can reach from the Console by
selecting System → System Settings → OpenStack Services →
OpenStack management dashboard.
58 Automated Application Delivery with OpenStack Heat Patterns

To add this formula, complete the following steps:

1. Add the SaltStack formula to the OS component. The formula that is used in this paper is
called apache. This prompts a request to select the desired SaltStack state: In essence,
which Apache component should be installed. To learn more about SaltStack states and
formulas, see Chapter 6, “Creating automation for OpenStack Heat patterns with
SaltStack” on page 65. In this case, we choose the full apache installation, as depicted in
Figure 5-8.

Figure 5-8 Adding the SaltStack formula, which installs Apache, to the sample OpenStack Heat pattern

2. Save the OpenStack Heat pattern by selecting Save.

The creation of the pattern is complete, even if the pattern is still only saved to the local Git
repository. Now the automatically generated Heat Orchestration Template can be reviewed,
and edited if necessary, by clicking the Source tab.

Note: At the time of writing of this paper, dragging a SaltStack formula onto the
blueprint does not automatically generate the full set of resources that are needed to
install the required component. To add the missing resources and lines of code, you
must manually edit the generated Heat Orchestration Template in the Source tab shown
in Figure 5-8.

Note: The OpenStack Heat pattern engine implementation in PureApplication Software
uses SaltStack in the background to install Zeron and its agents. Although this is not done
explicitly, it is sufficient to add any SaltStack formula to the OpenStack Heat pattern, for
Zeron to be deployed together with the OpenStack Heat pattern instance.
Chapter 5. Creating an OpenStack Heat pattern 59

5.4 Committing and pushing the OpenStack Heat pattern to Git

To make the newly created OpenStack Heat pattern available in the pattern catalog in
PureApplication Software, the pattern needs to be committed to the local repository present
in UCD Blueprint Designer, and then pushed to the PureApplication pattern repository. Both
repositories are based on Git. To commit then push the pattern, complete the following steps:

1. Access the repositories view in UCD Blueprint Designer, and specifically the patterns
repository, as shown in Figure 5-9.

Figure 5-9 Repositories view in UCD Blueprint Designer

2. In the right section of the window, select the YAML file that describes the sample that we
created, and commit the changes to the repository, as shown in Figure 5-10.

Figure 5-10 Commit the sample OpenStack Heat pattern
60 Automated Application Delivery with OpenStack Heat Patterns

After changes are committed to the local repository, they can be pushed to the
PureApplication repository.

3. In the left section of the window, select the commit that is related to the sample, and push
the changes to the repository by selecting Push, as shown in Figure 5-11.

Figure 5-11 Push the sample OpenStack Heat pattern

This makes the OpenStack Heat pattern sample available in the OpenStack Heat pattern
catalog that is shown in Figure 5-2 on page 54.
Chapter 5. Creating an OpenStack Heat pattern 61

5.5 Deploying the OpenStack Heat pattern

When the OpenStack Heat pattern is present in the OpenStack Heat pattern catalog, it can be
deployed to Bluemix Local System. The pattern is deployed in a similar fashion to the
deployment of Patterns of Expertise, and as described in Chapter 3, “Deploying sample
OpenStack Heat patterns” on page 35, for the WebSphere Application Server and DB2
example.

To deploy the sample pattern that we created in this chapter, complete the following steps:

1. Select it and click Deploy. This opens the deployment page shown in Figure 5-12.

Figure 5-12 Deployment page for the sample pattern

The parameters in Figure 5-12 are the same as those that are present in the automatically
generated HOT described in 5.3, “Adding SaltStack formulas to the OpenStack Heat
pattern ” on page 58.
62 Automated Application Delivery with OpenStack Heat Patterns

Table 5-1, Table 5-2, Table 5-3, and Table 5-4 show the parameters, their description, and
how to populate them, for the SaltStack formula, the image, the network, and the
SaltStack components (in order) of the sample OpenStack Heat pattern.

Table 5-1 Software repository and Image parameters for the sample OpenStack Heat pattern

Table 5-2 SaltStack master parameters for the sample OpenStack Heat pattern

Table 5-3 Zeron parameters for the sample OpenStack Heat pattern

Table 5-4 Network parameters for the sample OpenStack Heat pattern

Parameter Description Value

Software Repository URL Software repository URL. Automatically populated

flavor OpenStack Nova concept to define the size of a virtual
server. A full list can be found on the following website:
http://docs.openstack.org/admin-guide/cli_manage_
flavors.html

For example: m1.medium

key-name A Secure Shell (SSH) keya to access the virtual
machines’ OS when deployed.

a. Key pairs need to be stored in the OpenStack runtime. To do that, from the OpenStack dashboard, go to Project → Compute →
Access & Security → Key Pairs. Here key pairs can be imported or generated. The Key Pair Name value is the one to be used for this
parameter.

Key that is generated in the
OpenStack dashboard

availability_zone OpenStack Neutron concept, which is defined at the time
that Bluemix Local System is set up for OpenStack by
using Blue Box. Additional availability zones can be
defined in the OpenStack dashboard.

Corresponding value that
is defined in OpenStack

Parameter Description Value

Saltmaster address SaltStack master URL Can be found in System → System
Settings → OpenStack services

Saltmaster API port SaltStack master port Can be found in System → System
Settings → OpenStack services

Salt API user User credential for the SaltStack master Automatically retrieved from the Lightweight
Directory Access Protocol (LDAP)

Salt API password Password credential for the SaltStack server Automatically retrieved from the LDAP

Parameter Description Value

openstack_keyston_url OpenStack Keystone URL Can be found in System → System
Settings → OpenStack services.

zeron-administrators List of users who can access Zeron and its
Instance Console after pattern deployment.

To be added manually. Typically includes
the user who deploys the pattern.

Parameter Description Value

network-id__for__internal ID of the network Automatically generated

subnet_id ID of the subnet Automatically generated
Chapter 5. Creating an OpenStack Heat pattern 63

http://docs.openstack.org/admin-guide/cli_manage_flavors.html
http://docs.openstack.org/admin-guide/cli_manage_flavors.html

2. When the parameters are completed, click Validate to confirm that the OpenStack Heat
pattern sample is ready to be deployed.

3. Next, click Deploy.

4. The OpenStack Heat pattern instance view shown in Figure 5-13 (accessed by selecting
Patterns → OpenStack Heat pattern Instances) shows the successful deployment of
the OpenStack Heat pattern sample.

Figure 5-13 OpenStack Heat pattern Instances view

5. By clicking Manage after the sample pattern deployment, it is possible to access the
Zeron user interface (UI) for this OpenStack Heat pattern instance. For more information
about Zeron and its UI, see Chapter 7, “Zeron for OpenStack Heat patterns” on page 75.

The sample pattern that is described in this chapter also creates a link to the Apache web
server landing page, which can be selected to test the success of the deployment.

Note: These parameters can be saved as an Environment, which is specific to a single
OpenStack Heat pattern. Environments can be used to populate the required
parameters for successive deployments of the same OpenStack Heat pattern. Multiple
environment objects can be defined for the same pattern to represent different
deployment configurations, for example, test and development configurations.

Note: There are two other ways to deploy OpenStack Heat patterns:

� From the UCD Blueprint Developer

� From the OpenStack dashboard

Those additional methods are not described in this paper.
64 Automated Application Delivery with OpenStack Heat Patterns

Chapter 6. Creating automation for
OpenStack Heat patterns with
SaltStack

SaltStack is a suite of tools that provides the following benefits:

� Automation for enterprise information technology (IT) operations
� Event-driven data center orchestration
� A flexible configuration management for DevOps at the scale needed

This chapter provides some usage examples for SaltStack, independent from its use within
OpenStack Heat patterns, to successively focus on the role that is played by SaltStack
orchestration within OpenStack Heat patterns, specifically in IBM PureApplication Software
on IBM Bluemix Local System.

6

© Copyright IBM Corp. 2016. All rights reserved. 65

6.1 SaltStack concepts

In Chapter 1, “Automated application delivery with OpenStack Heat patterns” on page 1, a
few key SaltStack concepts were introduced. They are listed in Table 6-1.

Table 6-1 SaltStack concepts

In the following sections, we further describe some of these concepts.

6.1.1 Master and minion communication

A SaltStack master and SaltStack minions communicate by using Transmission Control
Protocol (TCP) through ports 4505 and 4506.

The configuration files in SaltStack define the names for master and minions by using an
Internet Protocol (IP) address, or a Fully Qualified Domain Name (FQDN).

Concept Description

Master Main server that controls the infrastructure and SaltStack application
engine, working as a repository for data and a control point for operations
between the minions.

Minion System process, which enables communication with the master and the
ability to run instructions received from the master. It runs in the virtual
machine or the container to be configured at the time of deployment.

State Set of rules and configurations that describe a desired state for a particular
minion.

Formula A collection of states, for example, the steps that need to be followed to
install a program. Each step is represented by a state.

Grain Interface to derive information about the underlying system where a minion
is hosted. This information is configured on the minion and sent back to the
master. Most grains are auto configured: For example, the host name and
the default gateway of a system. It is also possible to create custom grains,
such as the roles that a container or virtual machine (VM) fulfills.

Pillar Essentially the reverse of a grain: Information that is passed by a master
down to a minion. A minion cannot get pillar data intended for other
minions, only for itself. There is no auto-configured pillar data, only custom.

Execution Functions Commands running specific functions.

Execution Modules Groups of execution functions that are grouped by affinity.

Reactor A function that can be used to extend an existing execution function or
module, and which can be exposed as a REST API on the master. For
example, a reactor to pass a key to a minion and make it accept it
automatically.

Mine A database that is running on the master to keep information directly in the
master. It is used for the kind of information that is not yet available at the
time of the minion deployment, which would otherwise be part of the pillar
data. For example, the dynamically assigned IP addresses for all minions.
66 Automated Application Delivery with OpenStack Heat Patterns

Key exchange
When the configuration files described previously are defined, and the SaltStack services
(specifically master and minions) are started, SaltStack initiates a process of key exchange,
in which the minions send their keys to the master to be accepted.

A trust relationship is established between master and a minion when the master accepts an
Advanced Encryption Standard (AES) key that is sent from that minion. This secures the
channel, ensuring that no form of tampering with the data can be performed.

Example 6-1 shows the list of keys that are received by the master and waiting to be
accepted. Note that the command-line argument -L is used to list them all.

Example 6-1 Key management, List keys

[root@master ~]# SaltStack-key -L
Unaccepted Keys: alpha bravo charlie delta
Accepted Keys:

A SaltStack command can be triggered either automatically or manually, for the master to
accept the keys that were sent to it.

Example 6-2 shows the command to accept all keys (command line argument -A) and the list
of keys after they are accepted.

Example 6-2 Key management - List keys

[root@master ~]# SaltStack-key -A
[root@master ~]# SaltStack-key -L
Unaccepted Keys:
Accepted Keys: alpha bravo charlie delta

After the keys are accepted, communication between master and minions is established. This
action enables the master to perform remote execution of modules, functions, orchestration
files, and configuration files onto the minions.

6.2 General SaltStack examples

This section provides usage examples for SaltStack, independently from its use within
OpenStack Heat patterns.

The examples included in this introduction are not extensive. SaltStack provides modules and
functions to perform various operations, such as checking service status, running custom
commands and programs, and querying information from the minions. For more information
about these and other examples, see the following website:

https://docs.saltstack.com/en/latest/
Chapter 6. Creating automation for OpenStack Heat patterns with SaltStack 67

https://docs.saltstack.com/en/latest/

6.2.1 Remote execution

The most basic form of command execution in a SaltStack installation is given in the
command (template) in the Basic operation template shown in Example 6-3.

Example 6-3 Basic operation template

sudo <Salt> <options> '<target>' <function> <arguments>

The elements are described in the following list:

Salt The name of the SaltStack execution program.

Options Includes specifics for debugging or verbose.

Target Identifies the target minion where the command is going to be run.
This field supports regular expressions to match minions’ names.

Function SaltStack execution function or module, as defined in Figure 6-1 on
page 66.

Arguments Data that is passed to the function or module as parameter.

An example of this command is given in Example 6-4.

Example 6-4 Using grain information to filter commands

sudo Salt -grain 'os_family:RedHat' test.ping
myminion: True

Details about these elements are described in the following list:

� -grain 'os_family:RedHat' indicates that we are filtering by using grain information:
Specifically, all minions that are running a Red Hat operating system (OS).

� test.ping runs a communication test with the target minions.

� The output myminion: True indicates a successful communication with the selected
minions.

6.2.2 Package installation

Following the template that is given in Example 6-3 on page 68, the command given in
Example 6-5 installs a nginx web server package into all minions. For more information, see
the nginx website:

https://nginx.org/en/

Example 6-5 Package installation command

sudo Salt ‘*’ pkg.install nginx

The elements are as follows:

� Salt is the name of the SaltStack execution program.

� '*' is a wildcard that selects all minions.

� The pkg.install module is the install function for Linux packages.

� nginx is passed as an argument to the pkg.install function, which is the package to
install.
68 Automated Application Delivery with OpenStack Heat Patterns

https://nginx.org/en/

6.2.3 SaltStack states

The examples given so far are single commands that implement a particular aspect of the
infrastructure or application automation. However, as mentioned in Table 6-1 on page 66,
SaltStack goes beyond single instructions and can provide a framework to create states that
are applied to minions. The minions use the state execution module that is defined within Salt
state files (files) to bring their host system into the desired state. Example 6-6 shows a
command run by a minion to reach the desired state.

Example 6-6 Applying a state to a minion

sudo SaltStack ‘*’ state.sls apache

The following list describes the elements in Example 6-6:

� state.sls identifies the Salt state file that contains the execution module.
� apache is the name of the state that is defined in the SLS file.

The state.sls file is a YAML file that is stored in the master, which could look like Example 6-7.

Example 6-7 The state.sls file in the SaltStack master

install_apache:
pkg.installed:
 - name: apache

6.2.4 Formula files

Formulas are a pre-written collection of states. Their capabilities are the same as the ones of
a state file, so they can, for example, install a package, configure, or control a service or an
OS task, and provide similar functions.

Formulas are defined in a top file, which has the following structure:

� Environment: A tree directory that contains a set of state files to configure systems
� Target: A group of hosts that are running minions, to which state files will be applied
� State files to apply to a target

An environment contains targets, and a target contains states.

The default name for top files is top.sls. Their name derives from the fact that they are
typically stored at the top of the directory hierarchy that contains state files. This directory
hierarchy is known as a state tree. Example 6-8 shows a formula that defines an environment
that is called “base”, with its target. The target is made up by the hosts that are running a
minion with an ID beginning with the word “web”. The state file called “apache” is applied to
the hosts in the target.

Example 6-8 SaltStack formula example

base:
'web*':

-apache

A repository of publicly available formulas is available within the SaltStack community at the
following Salt Stack Formulas website:

https://github.com/saltstack-formulas
Chapter 6. Creating automation for OpenStack Heat patterns with SaltStack 69

https://github.com/saltstack-formulas

https://github.com/saltstack-formulas

6.2.5 Git repositories and SaltStack files

Source control and repository operations are usually performed by using version control tools,
so that artifacts, such as formulas and states, can be reused. SaltStack provides interfaces to
connect to such tools, the most popular being Git.

Example 6-9 shows how a GitFS file server can be configured within the SaltStack
configuration files, to define endpoints from which SaltStack services retrieve states and
formulas. See the SaltStack website for details:

https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html#tutorial-gitfs

Example 6-9 Git repositories definition

Master config:
fileserver_backend: - git
gitfs_remotes:

- git://github.com/saltstack/salt.git
- git://github.com/saltstack/salt-states.git
- git://github.com/saltstack/salt-ci.git

6.3 Using SaltStack within OpenStack Heat patterns

This section explains in detail the interaction between SaltStack and OpenStack Heat
patterns in PureApplication Software. The core of the interaction happens when you provision
an OpenStack Heat pattern. The interaction is from the creation of the minions’ installation
and configuration, retrieving information from the relevant repositories, to the final report
when the orchestrated deployment completes.

Different from using SaltStack in isolation, within OpenStack Heat patterns some operations,
such as minion installation and key management, are performed automatically by the
OpenStack Heat pattern engine.

As mentioned in Chapter 2, “Setting up IBM Bluemix Local System for OpenStack Heat
patterns” on page 25, the OpenStack Heat pattern engine implementation in PureApplication
Software provides four Git repositories. These four repositories serve as version control tools
for OpenStack Heat patterns and SaltStack modules, pillars, and formulas:

� Pattern repository, where the OpenStack Heat patterns are stored

� Module repository, where the SaltStack execution modules are stored

� Pillars repository, where the SaltStack pillars are stored

� Formulas repository, where the SaltStack formulas are stored

The remainder of this section describes the workflow that is followed when deploying an
OpenStack Heat pattern instance. Particular attention is given to the role that SaltStack plays
within the orchestration, and in relation to OpenStack Heat.
70 Automated Application Delivery with OpenStack Heat Patterns

https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html#tutorial-gitfs

The deployment workflow is depicted in Figure 6-1.

Figure 6-1 End-to-end process for deployments that are supported by SaltStack in OpenStack Heat
patterns

The workflow of Figure 6-1 can be further expanded, as shown in Figure 6-2.

Figure 6-2 Expanded process for deployments that are supported by SaltStack in OpenStack Heat
patterns

Each step in the workflow that is represented in Figure 6-2 is explained in detail in the
following sections.
Chapter 6. Creating automation for OpenStack Heat patterns with SaltStack 71

6.3.1 Deploying an OpenStack Heat pattern

An OpenStack Heat pattern is typically deployed by following the method that is described in
Chapter 3, “Deploying sample OpenStack Heat patterns” on page 35 and Chapter 5,
“Creating an OpenStack Heat pattern” on page 53. Figure 6-3 shows the deployment from the
deployment page.

Figure 6-3 OpenStack Heat pattern deployment page

6.3.2 Starting Heat orchestration

When the Heat engine receives the template that is contained in the OpenStack Heat pattern,
it initiates the process to collect the infrastructure components by interacting with the rest of
the OpenStack services. For example, it retrieves the image file for the OS from OpenStack
Glance, or gathers the ID of the selected network from the OpenStack Neutron service.

6.3.3 Deploying virtual machines and install minions

The Heat engine also performs a critical step in the provisioning process: Loading and
installing the virtual machines to be deployed with the SaltStack minions.

6.3.4 Retrieving information and files from Git repositories

As mentioned before, SaltStack interacts with the Git repositories in the OpenStack Heat
pattern engine to store information about formulas, states, execution modules, and pillars.
After the virtual machines are deployed, as described in 6.3.2, “Starting Heat orchestration ”,
the SaltStack orchestration retrieves information from these repositories that is later used to
configure the minions, and to apply states and formulas to their hosts.
72 Automated Application Delivery with OpenStack Heat Patterns

6.3.5 Heat and SaltStack operations

This section describes the SaltStack master and minions activities.

Master and minions setup
The OpenStack Heat pattern engine implementations that are described in this IBM Redbooks
publication use only one SaltStack master. Moreover, they enforce a one-to-one relationship
between a minion and its host.

After the initial handshake between the master and the minions occurs, the master performs
the initial operations in the minions, such as registering their Secure Sockets Layer (SSL)
keys and setting up their names.

Assigning Roles
The next step in the workflow is the Heat engine creating grains to assign roles and
configuration values to the minions and their hosts.

Two main custom grains are assigned:

Stack ID Used to identify all minions that are hosted on virtual machines that
are part of the same OpenStack Heat pattern instance, or stack.

Role ID Used to define the purpose of the virtual machine that hosts the
minion within the OpenStack Heat pattern (for example, a web server
or a deployment manager).

Updating grains
The minions are updated with the custom grains that are created by the Heat engine.

Creating a pillar
In this step, the Heat engine creates a SaltStack pillar file that contains data specific to the
OpenStack Heat pattern to be deployed. The pillar file is then stored in the master, and the
data it contains is used by the minions during and after the deployment process.

6.3.6 Running orchestration and running a formula

At this point, the SaltStack formula is run in all minions, bringing them into their desired state.
In this phase, elements (such as middleware installation and configuration) are applied,
depending on the pattern definition. For example, the required software components are
installed in each host.

Every time a state is reached, the minions reply to the master with their status. The master, in
turn, updates the Heat engine with the results of the operations.

Note: These two custom grains enable identification of the correct virtual machines on
which to perform typical pattern operations, such as monitoring individual pattern
components.
Chapter 6. Creating automation for OpenStack Heat patterns with SaltStack 73

6.3.7 OpenStack Heat pattern deployed

When the SaltStack and Heat operations are completed, the OpenStack Heat pattern
instance is updated with all details regarding its different components. This process also
updates the OpenStack Heat pattern Instances page, where the successful deployment of the
pattern is displayed, along with the information relative to the deployed resources. An
example is shown in Figure 6-4.

Figure 6-4 OpenStack Heat pattern instance successfully deployed
74 Automated Application Delivery with OpenStack Heat Patterns

Chapter 7. Zeron for OpenStack Heat
patterns

Students of chemistry know that Zeron is a highly alloyed stainless steel. In the world of cloud
software patterns, Zeron is appropriately named because it tries to bridge the gap between
IBM PureApplication System patterns and OpenStack Heat patterns, from a lifecycle
management and operations standpoint.

As stated in Chapter 1, “Automated application delivery with OpenStack Heat patterns” on
page 1, IBM created a framework to manage post-deployment actions through the
automation scripting technologies. This framework is named Zeron and is written in Python.

The goal of Zeron is to provide a runtime for the complete lifecycle management of all
patterns. This lifecycle includes monitoring, shared services, operation, logging, patching,
and license management. Another tenet of Zeron is for it to be a lightweight pluggable runtime
that runs in virtual machines (VMs) and in software containers.

7

Tip: The maestro framework was used to manage PureApplication System patterns. The
Zeron framework is used to do the same thing with OpenStack Heat patterns.
© Copyright IBM Corp. 2016. All rights reserved. 75

7.1 Zeron architecture

The code and the infrastructure to run Zeron is less than 5 megabytes (MB), therefore
requiring a small footprint. This footprint means that it does not take up many resources:
processing (CPU), memory, or disk space. Zeron is designed to be a pluggable software
component. As mentioned, it provides monitoring, logging, patch management, and license
management by way of pluggable handlers.

The handler interface is simple and file-based. The default handlers provide basic
functionality, and even provide interfaces for middleware that is running in VMs or containers.

Figure 7-1 shows the Zeron topology with Zeron instances that are running in virtual
machines (VMs).

Figure 7-1 Zeron topology

Zeron can run both in IBM Bluemix Local System and in IBM Bluemix Cloud. It is worth noting
that there are handlers available for IBM Bluemix that provide logging and monitoring
services.

The following section defines in more detail Zeron’s terminology, security, and components.

7.1.1 Zeron terminology

The following terminology is used in Zeron:

� ServiceType

A set of services that are supported by Zeron. Each service has some configuration data
that needs to be provided by the service users. Each service can have multiple
implementations, but each has a default implementation that is provided by Zeron.

� Handler

A handler is piece of software that provides the implementation to the ServiceType. It must
implement a Python class with the name service.py in the top directory, along with its
code packaged as a .zip or .tgz file.
76 Automated Application Delivery with OpenStack Heat Patterns

The handler configuration file is in the following directory:

$ZERON_ROOT/services/handlers/<service_type>/<handler_name>/handler.json

For example: $ZERON_ROOT/services/handlers/logging/bluemix/handler.json

� SoftwareComponent

A piece of middleware component that needs to be installed in a VM or in a container. The
pattern developer has to provide the software component that gets deployed in each VM.
Each software component needs to provide information for each of the ServiceTypes that
it wants to use. The middleware provides the following JSON files: logging.json,
monitoring.json, operations.json, patches.json, license.json, and tracking.json.

These files get stored in the following directory structure:

$ZERON_CFG_ROOT/services/config/<service_type>/<software_type>/<software_name>/

For example, logging.json for WebSphere Application Server would be in the following
location:

$ZERON_CFG_ROOT/services/config/logging/was/dmgr/logging.json

7.1.2 Security in Zeron

From a security perspective, all of the user interfaces (UIs) and REST application
programming interface (API) endpoints are protected by authentication and role-based
access control (RBAC), and all communication is over secure Hypertext Transfer Protocol
(HTTP), specifically HTTPS. Zeron supports pluggable authentication backends, such as the
OpenStack Keystone when running within OpenStack, and a local Django database backend
for testing.

Users are grouped into three roles: Admin, Read Only, and Read-Write. Table 7-1 shows the
three user roles and their privileges.

Table 7-1 Zeron user roles

7.1.3 Inside Zeron

The Zeron software package contains the following items:

� Django, which is a Python-based web server.

� A set of files that defines interfaces.

� The peers.json file defines the set of Zeron nodes (VM or container) with their Internet
Protocol (IP) and port information.

� The handler.json file defines the details of a handler to perform one or more service type
implementations. For example, there are two handlers for license management: Default
and IBM License Metric Tool (ILMT).

� Each service implementation defines what it needs to configure.

� The inventory.json file enables each software component to announce its information to
Zeron.

Role Privileges

Admin Can perform only administrative work but no execution of operations

Read Only Can only view but cannot call operations or perform any changes

Read-Write Can perform Read Only tasks and can run operations (write)
Chapter 7. Zeron for OpenStack Heat patterns 77

� The <serviceType>.json file defines the service needed and provided by service software
defined in the handler.

� The logging.json file defines the set of directories and file patterns that middleware wants
the logging service type to show.

� The monitoring.json, operation.json, fixes.json, and license.json files are similar to
the logging handler.

� ZERON_ROOT, where the Zeron runtime is located.

� ZERON_CFG_ROOT, where software components declare their information for Zeron.

Section 7.3, “Zeron handlers”briefly describes the default handlers, with a sample listing in
7.3.4, “Operation handler type”.

7.2 Zeron user interface

The Zeron user interface has the same user functionality no matter where it runs. However, it
can be re-skinned to create a custom look. It can be accessed on port 8000:

https://<Server_IP>:8000/zeron/console

7.2.1 Zeron UI for OpenStack Heat patterns on PureApplication Software

After an OpenStack Heat pattern is deployed, as explained in Chapter 3, “Deploying sample
OpenStack Heat patterns” on page 35, you can go to the instance details and click Manage,
as shown in Figure 7-2.

Figure 7-2 Manage menu in a pattern instance

That action opens the Zeron UI in a separate web browser window, as shown in Figure 7-3 on
page 79. You will notice all the default handlers (Logging, Monitoring, Operations, License
Tracking, Fixes, and Links) as menu options, plus the Administration menu.

Figure 7-3 on page 79 also shows the Administration menu that has two sub-menus:
Handlers Configuration and Software Inventory. Note that the Logging handler is highlighted.
78 Automated Application Delivery with OpenStack Heat Patterns

Figure 7-3 Administration menu after logging in

There are four operations that can be performed on the Administration window:

� Disable: To disable the handler, click Disable.

� Download: To download the handler from that node, click the downward facing arrow icon.
As an example, the handler shown in Figure 7-3 is saved as logging_default.tgz.

� Uninstall: Click the trash can icon to uninstall the displayed handler.

� Install: Click the Plus sign (+) to install a new handler. Figure 7-4 shows the pop-up
window that you get when you choose to install a new handler. After you specify the
handler package file, click the Upload button to actually install the handler.

Figure 7-4 Pop-up window when installing a new handler in Zeron
Chapter 7. Zeron for OpenStack Heat patterns 79

Logging Menu
When you view the Logging option, you see the Default handler information as seen in
Figure 7-5. To download the log file, click the down arrow or expand the instance and view the
log in that window.

Figure 7-5 shows the server status log of the WebSphere Application Server pattern that was
deployed in Chapter 3, “Deploying sample OpenStack Heat patterns” on page 35.

Figure 7-5 Logging menu in Zeron

Monitoring Menu
Similarly, the Monitoring option displays the Default handler information, as shown in
Figure 7-6 on page 81. You can highlight the component on the left and view various resource
usage graphs in real time.

The resources that are displayed in digital or graphical form include the following information:

� Virtual CPUs
� Virtual Memory
� Storage Size
� System Health
� CPU Usage
� Memory Usage
� Root Disk Usage
� Network Received Byte
� Network Transmitted Byte
80 Automated Application Delivery with OpenStack Heat Patterns

Figure 7-6 Monitoring menu in Zeron

Operations menu
The Operations menu shows the contents of its Default handler. Highlighting a component on
the left displays information about it. Figure 7-7 shows details about the IBM Installation
Manager contained in the IBM WebSphere Application Server OpenStack Heat pattern.

Figure 7-7 Operations menu in Zeron

Operations depend on the software component. IBM Installation Manager can be used to
apply a maintenance fix or a package. Such operations can be run by choosing the type of
maintenance and clicking Execute Operation. You also have the option to install a new
operation by clicking the Plus sign (+) on the left.
Chapter 7. Zeron for OpenStack Heat patterns 81

If you install a new operation, the appropriate Operation Package must be supplied, as shown
in Figure 7-8.

Figure 7-8 Installing a new operation in Zeron

The remaining menu options, License Tracking, Fixes, and Links, work in a similar manner.

7.3 Zeron handlers

This section describes the main types of handlers used in Zeron.

7.3.1 Inventory handler type

This service lists all software that is installed on each VM or container in a pattern. Each
software component that expects to utilize Zeron creates an inventory.json file and stores it
in the following directory:

${ZERON_CFG_ROOT}/services/inventory/<sw_type>/<sw_name>/inventory.json

Each inventory.json file provides the following information:

� All the middleware software types and running instances

� Version of all software

� Any environment variables and their values

There is an inventory.json file for the Zeron node itself, which contains the Zeron node
name, and the location information for peers.json. It can be found in the following directory:

${ZERON_CFG_ROOT}/services/inventory/__node__/__node__/

7.3.2 Logging handler type

Zeron currently provides two logging handlers: Default and Bluemix. Each middleware
product provides a logging.json file. For example, WebSphere Application Server provides
the following file:

${ZERON_CFG_ROOT}/services/logging/wasnd/dmgr/logging.json

Like other handler JavaScript Object Notation (JSON) files, the logging.json file contains the
name, directory, and pattern of files that logs for its software instance.
82 Automated Application Delivery with OpenStack Heat Patterns

The Default handler shows the logs in the text area of fixed size. Users who have access also
have the ability to download the log file. The fixed format size is configurable by the Zeron
administrator.

The Bluemix handler pushes those logs to IBM Bluemix ELK1 logging service, Kibana. For
those unfamiliar with ELK, the ELK stack contains three components: Elasticsearch,
Logstash, and Kibana. For more information, see the following web address:

http://www.ibm.com/developerworks/library/ba-bluemix-elklog/index.html

Similar to what was shown in Figure 7-3 on page 79, the Zeron UI provides the Uniform
Resource Locator (URL) to log on to IBM Bluemix and view the Bluemix logs.

7.3.3 Monitoring handler type

Similar to logging, Zeron provides two monitoring handlers: Default and Bluemix. Each
middleware product provides a monitoring.json file with the file path where it stores
monitoring data. For example the operating system (OS) monitoring can be found at the
following website:

${ZERON_CFG_ROOT}/services/monitoring/system/os/monitoring.json

The monitoring handler supports multiple collector types, which are various sources,
including file, script, and REST API.

The default handler is read at periodic intervals, and it defines where to find the monitoring
data file. The Zeron UI shows data in graphical format, in addition to static information, as we
saw in Figure 7-6 on page 81.

The Bluemix handler installs a Grafana client to push data from the VM to the server. The
following login URL is available on IBM Bluemix to see the graphs and analysis:

https://logmet.ng.bluemix.net

For more information, see the following article:

https://developer.ibm.com/bluemix/2016/01/22/bluemix-monitoring-dashboard-quick-re
ference/

7.3.4 Operation handler type

Unlike logging and monitoring, Zeron provides only one handler for Operation, which is
Default. Each middleware product provides an operation.json file and the supported files,
such as a .tgz file. For example, WebSphere Application Server provides a file from the
following directory:

${ZERON_CFG_ROOT}/services/operation/wasnd/dmgr/operation.json

This file contains the list of operations, each with a set of parameters, scripts, and other
configuration information. Figure 7-7 on page 81 showed the window that displays when
installing a new Operation.

1 For more information about the Elastic Stack, see the following website:
https://www.elastic.co/products?camp=Branded-GGL-Exact&src=adwords&mdm=cpc&trm=elk%20stack&gclid=CPa
bx82jxs4CFcZbhgodLOYN8w
Chapter 7. Zeron for OpenStack Heat patterns 83

https://www.elastic.co/products?camp=Branded-GGL-Exact&src=adwords&mdm=cpc&trm=elk%20stack&gclid=CPabx82jxs4CFcZbhgodLOYN8w
https://www.elastic.co/products?camp=Branded-GGL-Exact&src=adwords&mdm=cpc&trm=elk%20stack&gclid=CPabx82jxs4CFcZbhgodLOYN8w
https://logmet.ng.bluemix.net
http://www.ibm.com/developerworks/library/ba-bluemix-elklog/index.html
https://developer.ibm.com/bluemix/2016/01/22/bluemix-monitoring-dashboard-quick-reference/

Example 7-1 is an example of the handler.json file for the default Operation handler. Notice
the three key/value pairs toward the end of the file: service_type, service_impl, and
django_app.

Example 7-1 The handler.json file for the Default Operation handler

{
 "enabled" : true,
 "configuration": {

 "MAX_RESULTS_DISK_SIZE_MB": {
 "default_value": "10",
 "description": "max_results_disksize_desc",
 "max_value": "512",
 "value": "",
 "min_value": "0",
 "is_required": false,
 "regexp": "",
 "type": "int",
 "name": "max_results_disksize_mb"
 },
 "MAX_DAYS_TO_KEEP_RESULTS": {
 "default_value": "365",
 "description": "days_keep_results_desc",
 "max_value": "3650",
 "value": "",
 "min_value": "0",
 "is_required": false,
 "regexp": "",
 "type": "int",
 "name": "days_keep_results"
 }

 },
 "version" : "1.0.0.0",
 "buid_date_time" : "",
 "service_type" : "operation",
 "service_impl" : "default",
 "django_app": "operation_default"
}

The default handler runs the pre-script, script, post-script, and undo script. The Zeron UI
shows the scripts to gather parameters needed with each operation.
84 Automated Application Delivery with OpenStack Heat Patterns

7.4 Developer Roles in Zeron

Development teams involved in the creation of solutions that need to run on multiple cloud
environments, such as OpenStack, PureApplication System products, Amazon Web Services
(AWS), Google Cloud, and others, have to focus on different areas. That is best done by
having developers in specialized roles, as described in the following list:

� Middleware Content Developer

A software developer who can create Python-based scripts for installation and
configuration; to run and apply fixes, patches, and upgrades; and for operations. Knows
how best to install, configure, and deploy middleware in an enterprise-ready manner.

� Application Developer

A software developer who builds applications that run on middleware. When the content is
developed, the developer passes it to a Pattern Builder Developer to package it for cloud
deployments. Knows about middleware and applications that run on it, but does not
necessarily need to know about Zeron or OpenStack.

� Pattern Builder Developer

A software developer who takes content scripts and creates custom Heat resources, such
as SoftwareConfig or SoftwareDeploment based on OpenStack. Builds content for Zeron
handlers, which this pattern needs to use. Uses content developed by the middleware
content developer and application developer.

� Pattern Deployer-Maintainer

Deploys the Heat YAML on OpenStack. Uses the Zeron UI to manage the pattern
instance. Maintains the running patterns by using the Zeron Administration Console to
maintain the pattern.

� Handler Developer

A software developer who creates a custom handler for one or more services, such as
Logging, Monitoring, Patches/iFixes, Upgrades, License Tracking, and Operations
(Service Types). This optional role is for teams who want to create new implementations of
the handlers.

Handler Developers, for example, can build and package the handler as a .zip or .tgz file,
which then gets installed on each Zeron node. The handler.json contains, at a minimum,
the name, version, django-app, build info, configuration, and enabled flag.
Chapter 7. Zeron for OpenStack Heat patterns 85

86 Automated Application Delivery with OpenStack Heat Patterns

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
description of the topics covered in this paper.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� Establishing a Secure Hybrid Cloud with the IBM PureApplication Family, SG24-8284

� Integrating IBM PureApplication System into an Existing Data Center, SG24-8285

� IBM Bluemix The Cloud Platform for Creating and Delivering Applications, REDP-5242

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� Ansible:

https://www.ansible.com

� Chef:

https://www.chef.io

� Discover PureApplication System Patterns of Expertise:

http://ibm.biz/PatternsOfExpertise

� Docker is the dominant container technology in the market:

https://www.docker.com

� Git:

https://git-scm.com/

� Hypervisor:

https://en.wikipedia.org/wiki/Hypervisor

� IBM Blue Box:

https://www.blueboxcloud.com/

� IBM SoftLayer datacenter:

http://www.softlayer.com

� KVM:

http://ibm.biz/Kernel-basedVM
© Copyright IBM Corp. 2016. All rights reserved. 87

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://ibm.biz/PatternsOfExpertise
https://en.wikipedia.org/wiki/Hypervisor
http://ibm.biz/Kernel-basedVM
https://www.docker.com
http://www.softlayer.com

https://www.chef.io
https://www.ansible.com
https://www.blueboxcloud.com/
https://git-scm.com/

� nginx web server:

https://nginx.org/en/

� openSUSE Linux:

https://www.opensuse.org

� Open Container Initiative:

https://www.opencontainers.org

� OpenStack infrastructure:

https://wiki.openstack.org/wiki/Heat

� OpenStack Keystone:

http://keystone.openstack.org

� Puppet:

https://puppet.com

� Red Hat Linux:

https://www.redhat.com

� Rkt:

https://coreos.com/rkt/
https://golang.org/

� SaltStack:

https://saltstack.com

� Vmware ESXi:

http://www.vmware.com/

� Ubuntu Linux:

http://www.ubuntu.com

� YAML format:

http://www.yaml.org/start.html

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
88 Automated Application Delivery with OpenStack Heat Patterns

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://www.opencontainers.org
https://coreos.com/rkt/
https://saltstack.com
https://golang.org/
http://www.vmware.com/
https://www.redhat.com
https://www.opensuse.org
http://www.ubuntu.com
http://keystone.openstack.org

https://wiki.openstack.org/wiki/Heat
https://nginx.org/en/
https://puppet.com
http://www.yaml.org/start.html

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738455725

REDP-5352-00

®

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Automated application delivery with OpenStack Heat patterns
	1.1 Patterns overview
	1.2 Technologies for pattern creation
	1.2.1 OpenStack
	1.2.2 IBM Blue Box
	1.2.3 Docker
	1.2.4 SaltStack
	1.2.5 OpenStack Heat
	1.2.6 Zeron

	1.3 IBM PureApplication System products for OpenStack
	1.4 OpenStack Heat patterns
	1.4.1 OpenStack Heat patterns on IBM Bluemix Local System with PureApplication Software
	1.4.2 OpenStack Heat patterns on IBM Bluemix

	1.5 Conclusions

	Chapter 2. Setting up IBM Bluemix Local System for OpenStack Heat patterns
	2.1 Setting up OpenStack on Bluemix Local System
	2.1.1 Preparing Bluemix Local System
	2.1.2 Enabling OpenStack services

	2.2 Configuring Blue Box
	2.2.1 Verifying OpenStack services

	2.3 Sample OpenStack Heat patterns
	2.4 Using an alternative Git repository
	2.4.1 Stand up a new Git repository on Bluemix Local System

	Chapter 3. Deploying sample OpenStack Heat patterns
	3.1 Verifying the installation of the sample patterns
	3.2 Installing OpenStack Heat pattern samples
	3.2.1 Deploying the WebSphere Application Server OpenStack Heat pattern
	3.2.2 Deploying the DB2 Server OpenStack Heat pattern

	3.3 Managing the OpenStack Heat pattern deployments

	Chapter 4. Importing OpenStack Heat patterns
	4.1 Importing a simple Heat Orchestration Template
	4.2 Importing from a Git repository

	Chapter 5. Creating an OpenStack Heat pattern
	5.1 Creating a blueprint in UCD Blueprint Designer
	5.2 Defining a new OpenStack Heat pattern
	5.3 Adding SaltStack formulas to the OpenStack Heat pattern
	5.4 Committing and pushing the OpenStack Heat pattern to Git
	5.5 Deploying the OpenStack Heat pattern

	Chapter 6. Creating automation for OpenStack Heat patterns with SaltStack
	6.1 SaltStack concepts
	6.1.1 Master and minion communication

	6.2 General SaltStack examples
	6.2.1 Remote execution
	6.2.2 Package installation
	6.2.3 SaltStack states
	6.2.4 Formula files
	6.2.5 Git repositories and SaltStack files

	6.3 Using SaltStack within OpenStack Heat patterns
	6.3.1 Deploying an OpenStack Heat pattern
	6.3.2 Starting Heat orchestration
	6.3.3 Deploying virtual machines and install minions
	6.3.4 Retrieving information and files from Git repositories
	6.3.5 Heat and SaltStack operations
	6.3.6 Running orchestration and running a formula
	6.3.7 OpenStack Heat pattern deployed

	Chapter 7. Zeron for OpenStack Heat patterns
	7.1 Zeron architecture
	7.1.1 Zeron terminology
	7.1.2 Security in Zeron
	7.1.3 Inside Zeron

	7.2 Zeron user interface
	7.2.1 Zeron UI for OpenStack Heat patterns on PureApplication Software

	7.3 Zeron handlers
	7.3.1 Inventory handler type
	7.3.2 Logging handler type
	7.3.3 Monitoring handler type
	7.3.4 Operation handler type

	7.4 Developer Roles in Zeron

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

