
Redbooks

Front cover

IBM CICS and Liberty:
What You Need to Know

Hernan Cunico

Andreas Hümmer

Jonathan Lawrence

Shayla Robinson

Andre Schreiber

Inderpal Singh

Prabhat Srivastava

Phil Wakelin

Dan Zachary

International Technical Support Organization

IBM CICS and Liberty: What You Need to Know

January 2016

SG24-8335-00

© Copyright International Business Machines Corporation 2016. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (January 2016)

This edition applies to V5R3M0 of CICS Transaction Server (product number 5655-Y04).

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks .x

IBM Redbooks promotions . xi

Preface . xiii
Authors. xiii
Now you can become a published author, too! .xv
Comments welcome. .xv
Stay connected to IBM Redbooks .xv

Chapter 1. Introduction. 1
1.1 What to expect from this book. 2

1.1.1 Intended audiences. 2
1.1.2 Scenarios . 2

1.2 What is Liberty? . 2
1.2.1 Java EE 6 . 3
1.2.2 Java EE 7 . 4
1.2.3 Additional resources . 4

1.3 Benefits of running web applications in CICS . 5
1.3.1 Skills . 5
1.3.2 Integration . 5
1.3.3 Performance . 6
1.3.4 Cost reduction. 6
1.3.5 Porting a web application . 6
1.3.6 Creating an integration logic interface. 8
1.3.7 Creating a Java business logic application . 8

1.4 What’s new in Liberty for CICS TS V5.3 . 9
1.4.1 Supported Liberty features . 9
1.4.2 CICS features . 13
1.4.3 Unsupported APIs . 13

Part 1. Technology essentials . 15

Chapter 2. Application development . 17
2.1 Application development . 18

2.1.1 Web invocation options. 18
2.2 Accessing CICS data . 19

2.2.1 CICS Java class library (JCICS) API . 19
2.3 Database access options . 20

2.3.1 JDBC access options . 20
2.3.2 Java Transaction API . 25
2.3.3 Access to non-SQL databases . 26

2.4 Optimizing static content . 27
2.4.1 Static content separation . 28
2.4.2 Dynamic caching. 29

2.5 Application deployment options . 32
2.5.1 Liberty deployment methods. 33
2.5.2 CICS deployment methods . 35
© Copyright IBM Corp. 2016. All rights reserved. iii

2.5.3 Deploying shared (middleware) bundle. 36
2.6 Application redeployment options . 39

2.6.1 Redeploy by using Liberty deployment methods . 39
2.6.2 Redeploy using CICS bundle deployment . 39

2.7 Migrating a Java EE application to Liberty . 42
2.7.1 Application validation . 42
2.7.2 Server environment migration. 43
2.7.3 External dependency migration . 44

Chapter 3. Workload management . 45
3.1 IP load balancing. 46

3.1.1 Port sharing. 46
3.1.2 Sysplex Distributor . 47

3.2 Web server plug-in . 48
3.2.1 Load balancing . 51
3.2.2 Failover . 51
3.2.3 HTTP session management . 52

3.3 CICSPlex SM workload management . 53
3.3.1 Workload balancing . 54
3.3.2 Workload separation . 55

Chapter 4. Security options . 57
4.1 Java Platform, Enterprise Edition security . 58

4.1.1 Deployment descriptor . 58
4.1.2 Key steps in security processing. 59

4.2 Confidentiality . 63
4.3 Security registries . 64

4.3.1 Basic user registry . 64
4.3.2 System Authorization Facility . 64
4.3.3 LDAP and distributed identities . 65

Part 2. Up and running . 67

Chapter 5. Developing and deploying applications . 69
5.1 Creating the development environment . 70

5.1.1 Installing the components . 70
5.2 Creating a HelloWorld application. 77

5.2.1 Local Liberty server. 91
5.3 Deploying the application to CICS . 91

5.3.1 Dropins directory. 91
5.3.2 Deploying to CICS as an EBA . 94
5.3.3 Deploy CICS bundle with CICS Explorer . 100
5.3.4 Using CICS Build Toolkit. 102

Chapter 6. Configuring a Liberty server in CICS . 103
6.1 Getting your CICS region ready . 104
6.2 zFS file system configuration . 104

6.2.1 zFS configuration files. 104
6.2.2 zFS output files . 105
6.2.3 zFS file permissions . 105

6.3 Setting up a Liberty JVM server . 105
6.3.1 JVM profile . 106
6.3.2 Tailoring the JVM profile . 106
6.3.3 Java home directory . 106
iv IBM CICS and Liberty: What You Need to Know

6.3.4 Time zone . 108
6.3.5 Liberty-specific options . 109
6.3.6 Creating a JVMSERVER. 110
6.3.7 Install a JVMSERVER. 111
6.3.8 Manually tailoring server.xml. 112
6.3.9 Adding new features . 113
6.3.10 Configuring the HTTP and HTTPS endpoint. 113
6.3.11 CICS bundle deployed applications . 114
6.3.12 Bundle repository . 114
6.3.13 Global library . 114
6.3.14 Liberty server application and configuration update monitoring 114
6.3.15 CICS default web application . 115
6.3.16 JTA transaction log . 115
6.3.17 Sample server.xml . 115
6.3.18 Check welcome page . 116

6.4 Defining and installing a CICS bundle. 117
6.4.1 BUNDLE resource definition . 117
6.4.2 Install a BUNDLE resource definition . 118
6.4.3 BUNDLE definition by CICS Explorer . 119
6.4.4 BUNDLE installation by CICS Explorer. 121

6.5 Verifying the configuration. 122
6.5.1 Log file analysis . 123

6.6 Setting up a Liberty JVM server using CICS Explorer. 124
6.6.1 CICS Explorer connection. 125
6.6.2 Locate the zFS directories . 125
6.6.3 Copy the JVM profile. 126
6.6.4 Edit the JVM profile . 126
6.6.5 Create the Liberty JVM server definition. 127
6.6.6 Install Liberty JVM server definition . 129
6.6.7 Liberty JVM server log files . 130

Chapter 7. Configuring the web server plug-in . 133
7.1 Configuring the web server plug-in . 134
7.2 Install the HTTP Server and plug-in . 135
7.3 Liberty server configuration. 135
7.4 Configure the plug-in. 137

7.4.1 Configure the plug-in to forward requests . 138
7.4.2 Merging plug-in configuration files . 140

7.5 Test the configuration . 140

Chapter 8. Implementing security options . 143
8.1 Start the angel process . 144

8.1.1 Copy and modify the angel process procedure. 144
8.1.2 Specify the user ID under which the angel process runs 145
8.1.3 Start the angel process and verify that it is up . 145

8.2 Server.xml security elements . 145
8.3 Set up the SAF unauthenticatedUser user ID . 146
8.4 SAF definitions and permissions. 148

8.4.1 Server class authorizations. 148
8.4.2 APPL class authorizations . 149

8.5 Web application security . 149
8.6 SAF authorization . 150

8.6.1 Set up EJBROLE profiles and permissions. 150
 Contents v

8.6.2 Set up a TCICSTRN profile and permissions for transaction CJSA 152
8.7 Liberty security-role authorization . 152

8.7.1 Deploying your web application in a CICS bundle . 153
8.7.2 Defining a web application in server.xml. 156

Part 3. Scenarios. 159

Chapter 9. Porting a web application . 161
9.1 Lifting or shifting an application to Liberty . 162
9.2 The migration process. 163

9.2.1 Validating the application for migration . 163
9.2.2 Using the dropins for validation. 164
9.2.3 Application Migration Toolkit . 165
9.2.4 Other migration considerations . 167

9.3 Configuring the Liberty environment . 167
9.3.1 Migrating Java Platform, Enterprise Edition resources . 167
9.3.2 External dependency migration . 169
9.3.3 Other configuration parameters . 170

9.4 Package and deploy the application . 171
9.5 Package the existing application WAR file and deploy . 171
9.6 Complete deployment and test the application . 175

9.6.1 Test the web application . 176

Chapter 10. Creating an integration logic application . 179
10.1 JSON and the json-1.0 feature . 180
10.2 RESTful and the jax-rs-1.1 feature . 180
10.3 Exposing GENAPP through a RESTful JSON interface . 181

10.3.1 Mapping a URI to your application . 182
10.3.2 Writing the application logic that handles the RESTful requests. 183

10.4 Package and deploy the application . 189
10.4.1 Testing the RESTful service . 189

Chapter 11. Creating a business logic application . 191
11.1 Using OSGi with Liberty in CICS. 192

11.1.1 Create an OSGi bundle project for ibmjzos.jar . 192
11.1.2 Convert the existing Java projects to OSGI . 195
11.1.3 Deploying the OSGi version to Liberty in CICS. 198

11.2 Extending the business logic application . 201
11.2.1 Adding new custom CICS programs. 201
11.2.2 Using the JCICS API. 204

11.3 Summary. 208

Part 4. Reference. 209

Chapter 12. Troubleshooting . 211
12.1 Diagnostics . 212
12.2 Messages and log files . 212

12.2.1 CICS logs . 212
12.2.2 Java logs. 212
12.2.3 Liberty Profile server logs . 213

12.3 Dumps and trace. 213
12.3.1 Java dumps and trace. 213
12.3.2 Liberty Profile server dumps and trace . 214
12.3.3 CICS dumps and trace . 215
vi IBM CICS and Liberty: What You Need to Know

12.4 Additional documentation . 215
12.4.1 CICS statistics. 216
12.4.2 Garbage collection data . 216

12.5 Debugging tools . 216
12.5.1 Execution diagnostic facility . 216
12.5.2 Java debugger . 217

12.6 JVM Health Center . 219
12.6.1 What the Health Center is . 219
12.6.2 Install and Configure the Health Center and CICS Explorer 220

12.7 Liberty debug tools . 223
12.7.1 Using the wlpenv script to run Liberty commands. 224

12.8 Symptoms and user actions . 224
12.8.1 Unable to start the Liberty JVM server . 224
12.8.2 Web application is not available after it is deployed to dropins directory 225
12.8.3 CICS CPU usage is increased after a Liberty JVM server is enabled 225
12.8.4 Application not available . 225
12.8.5 Web application is not requesting authentication . 225
12.8.6 Web application is returning an HTTP 403 error code 226
12.8.7 Web application is returning an HTTP 500 error code 226
12.8.8 Web application is returning an HTTP 503 error code 226
12.8.9 The web application is returning exceptions . 227
12.8.10 Error message CWWKB0109E. 227
12.8.11 JVM server set-up failures . 227
12.8.12 Deploying from Explorer SDK failures. 229
 Contents vii

viii IBM CICS and Liberty: What You Need to Know

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2016. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

CICS®
CICS Explorer®
CICSPlex®
DB2®
IBM®
IBM z Systems™

Language Environment®
MVS™
OMEGAMON®
RACF®
Redbooks®
Redbooks (logo) ®

System z®
WebSphere®
z Systems™
z/OS®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
x IBM CICS and Liberty: What You Need to Know

http://www.ibm.com/legal/copytrade.shtml

IBM REDBOOKS PROMOTIONS
Find and read thousands of
IBM Redbooks publications

Search, bookmark, save and organize favorites

Get personalized notifications of new content

Link to the latest Redbooks blogs and videos

Download
Now

Get the latest version of the Redbooks Mobile App

iO
S

Android

Place a Sponsorship Promotion in an IBM
Redbooks publication, featuring your business
or solution with a link to your web site.

Qualified IBM Business Partners may place a full page
promotion in the most popular Redbooks publications.
Imagine the power of being seen by users who download
millions of Redbooks publications each year!

®

®

Promote your business
in an IBM Redbooks
publication

ibm.com/Redbooks
About Redbooks Business Partner Programs

IBM Redbooks promotions

http://bit.ly/redbooksapp
http://bit.ly/1bvYuMM
http://bit.ly/1lCxuBG
http://ibm.co/1maZVrw

THIS PAGE INTENTIONALLY LEFT BLANK

Preface

This IBM® Redbooks® publication, intended for architects, application developers, and
system programmers, describes how to design and implement Java web-based applications
in an IBM CICS® Liberty JVM server. This book is based on IBM CICS Transaction Server
V5.3 (CICS TS) using the embedded IBM WebSphere® Application Server Liberty V8.5.5
technology.

Liberty is an asset to your organization, whether you intend to extend existing enterprise
services hosted in CICS, or develop new web-based applications supporting new lines of
business. Fundamentally, Liberty is a composable, dynamic profile of IBM WebSphere
Application Server that enables you to provision Java EE technology on a feature-by-feature
basis. Liberty can be provisioned with as little as the HTTP transport and a servlet web
container, or with the entire Java EE 6 Web Profile feature set depending on your application
requirements.

This publication includes a Technology Essentials section for architects and application
developers to help understand the underlying technology, an Up-and-Running section for
system programmers implementing the Liberty JVM server for the first time, and a set of
real-life application development scenarios.

Authors

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization (ITSO), Raleigh Center.

Hernan Cunico is a Senior Information and IT Architect at the ITSO, Raleigh Center. He has
over 18 years of experience in the consulting and development fields. His areas of expertise
include user experience design, information and application development, middleware,
portals, open source, cloud, mobile, and Agile development. He has written extensively on
commerce, portals, migrations, HR, and learning solutions.

Andreas Hümmer has been working as a Software Developer for IBM z Systems at DATEV
eG in Germany since 2009. During his apprenticeship, he visited the IT-Akademie Augsburg
(now European Mainframe Academie) and graduated as a z Systems™ specialist. After that,
he joined a team at DATEV, which is responsible for development tools and languages on IBM
z/OS®. The main area of his work is the integration of Java in z/OS Batch and CICS
environments, including interlanguage communication to legacy code. Besides his job as a
software developer, he supports an in-house network for young talents (under 30) working on
z Systems.

Jonathan Lawrence is a member of the CICS Level 3 service team at IBM Hursley in the UK.
He has over 15 years of experience working with CICS, as a designer, developer, technical
consultant, and service engineer. In his service role, he specializes in Java, Open Services
Gateway initiative (OSGi), Liberty and Dynamic Scripting, as well as CICS integration
technologies such as Web services, IBM MQ, and Link3270 Bridge.
© Copyright IBM Corp. 2016. All rights reserved. xiii

Shayla Robinson is a Software Support Specialist in CPSM Level II Technical Support at
IBM in Research Triangle Park, NC. She has worked for IBM for 18 years as a CICS Level 2
Support representative with the last eight years focusing on CPSM Level 2 Support. She
holds a Bachelor’s degree in Computer Science and a Master’s degree in Information
Systems. In addition to CICS and IBM CICSPlex® SM, her areas of expertise include Java,
OSGi, and Liberty.

Andre Schreiber is a System Programmer at Sparda-Datenverarbeitung eG in Nuremberg,
Germany. After graduation as an IT systems specialist, he joined the Mainframe department
as a CICS system programmer. He has three years of experience in CICS Transaction
Server, CICS Transaction Gateway on z/OS, and IBM OMEGAMON® XE on z/OS, with a
special focus on the integration of new workloads (especially Java) inside of CICS. In his role,
he specializes in Liberty, OSGi, and Axis2 Java based application server in CICS.

Inderpal Singh joined the IBM CICS Transaction Server development team in 2009. He has
worked as a software engineer in many areas, including CICS System Management, CICS
cloud enablement, and the CICS Transaction Server Feature Pack for Mobile Extensions. His
most recent role is as an evangelist for modernization of clients’ IBM z Systems™ assets,
where he focuses on helping clients of z Systems achieve the most business value out of the
technology. After studying at The University of Sheffield, Inderpal received a Bachelor of
Science degree in Computer Science and Artificial Intelligence.

Prabhat Srivastava is a System Programmer at Bankwest, Perth, Western Australia. He has
25 years of experience in mainframe systems programming area. His areas of interest are
z/OS, CICS TS, security, mainframe modernization, and web services. Recently, he
successfully completed a project to extend Bankwest’s core CICS applications to a digital
world by using CICS Liberty and is currently working on CICS web services.

Phil Wakelin works for CICS development at IBM UK in Hursley, and is a member of the
CICS strategy and design team. He has worked with many CICS technologies for the last 25
years, and is responsible for new functionality in the area of CICS Java support. He is the
author of many white papers, SupportPacs, and IBM Redbooks publications in the areas of
CICS integration and Java support.

Dan Zachary works for IBM with CICS support in Research Triangle Park, NC. He has 26
years of experience supporting CICS clients throughout the world. His favorite areas of CICS
are performance, languages, kernel, dispatcher, storage, monitoring, external resource
managers and, now, Liberty JVM server.

Thanks to the following people for their contributions to this project:

� Abigail Bettle
� Alexander Brown
� Adam Coulthard
� Mark Hollands
� David Roberts
� Melita Saville
� Matthew Wilson
xiv IBM CICS and Liberty: What You Need to Know

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

https://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
https://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html
https://twitter.com/ibmredbooks
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

xvi IBM CICS and Liberty: What You Need to Know

Chapter 1. Introduction

Our goal with this book is to provide the information necessary for you to understand and take
advantage of IBM WebSphere Application Server V8.5.5 Liberty (Liberty) within IBM CICS
Transaction Server (CICS TS) V5.3. You will find the use of Liberty advantageous whether
you intend to extend existing enterprise services hosted in CICS, or intend to develop new
services supporting new lines of business.

The following topics are covered in this chapter:

� What to expect from this book
� What is Liberty?
� Benefits of running web applications in CICS
� What’s new in Liberty for CICS TS V5.3

1

© Copyright IBM Corp. 2016. All rights reserved. 1

1.1 What to expect from this book

This book provides a technical introduction to many of the concepts surrounding Liberty,
including Java Enterprise Edition (Java EE) and the web profile. It then describes the steps
necessary to develop, configure, and deploy web applications into the Liberty server within
IBM CICS.

1.1.1 Intended audiences

This book provides information for a wide variety of roles from architects to application
developers and CICS system programmers, and assumes that you are familiar with the
basics concepts of CICS:

� Architects should review this chapter and all of the chapters in the technology essentials
section Part 1, “Technology essentials” on page 15.

� Application developers should refer to:

– Chapter 2, “Application development” on page 17
– Chapter 5, “Developing and deploying applications” on page 69
– Part 3, “Scenarios” on page 159

� System programmers should refer to Part 2, “Up and running” on page 67.

1.1.2 Scenarios

With this book, you can find example code to quickly get up and running with Java EE 6 web
applications and Liberty. Our main scenarios are based on the CICS general insurance
application (GENAPP) Support Pack (CB12), which you can download and try for yourself by
following examples in this book. Download it from the following website:

http://www.ibm.com/support/docview.wss?uid=swg24031760

1.2 What is Liberty?

Fundamentally, Liberty is a modular implementation (or profile) of WebSphere Application
Server technology. It is intended to provide a lighter weight and more dynamic runtime than
the classic WebSphere Application Server runtime. It provides support for most of the Java
Platform, Enterprise Edition technology previously supported in WebSphere Application
Server, but in a composable runtime using configurable components termed features. Liberty
is provided with WebSphere Application Server V.8.5 onwards, and runs on various
distributed platforms as well as on z/OS. It is also available for developers as a download from
the wasdev.net website.

A Liberty server can be provisioned with as little as the WebSphere Application Server kernel,
web container, and HTTP transport features for a servlet engine. If you require access to a
database, Liberty can dynamically initialize the Java Database Connectivity (JDBC) feature,
or if you require a RESTful interface, the JAX-RS feature could be initialized. The approach of
being able to select the features you require allows Liberty to initialize quickly with a basic
web application and have the smallest footprint as possible in the system. The initialization of
features and applications is achieved dynamically, meaning you are not usually required to
restart your Liberty server to add features. This can be particularly powerful in development
environments where developers need code changes to be reflected easily and immediately.
2 IBM CICS and Liberty: What You Need to Know

http://www.ibm.com/support/docview.wss?uid=swg24031760

Liberty is built by using Open Services Gateway initiative (OSGi) technology and concepts.
The fit-for-purpose nature of the run time relies on the dynamic behavior inherent in the OSGi
framework and service registry. As bundles are installed to or uninstalled from the framework,
the services that each bundle provides are added or removed from the service registry. The
addition and removal of services similarly cascades to other dependent services. The result is
a dynamic, composable run time that can be provisioned with only what your application
requires and responds dynamically to configuration changes as your application evolves.

The Liberty server in CICS is supplied with and licensed through the installation of CICS TS
for z/OS. It supplies the same Liberty technology as supplied with the IBM WebSphere
Application Server Liberty products, but with a set of CICS specific user extensions, which
provide for the integration with the CICS runtime.

1.2.1 Java EE 6

With Java EE 6 came the delivery of the Java EE 6 Web Profile. Much like the story of
WebSphere Application Server and Liberty, until the introduction of the profiles, the Java EE 6
Full Platform was a run time that implemented as many application use cases possible. This
approach of providing a large set of APIs meant that Java Platform, Enterprise Edition
application servers need to provide the full set of Java Platform, Enterprise Edition APIs,
although most applications would use only a small subset.

The introduction of profiles in Java EE 6 alleviates this issue by defining smaller subsets of
APIs that are focused on particular styles of application. The first such profile is the Java EE 6
Web Profile. The Java EE 6 Web Profile is a subset of Java EE 6 APIs that are targeted to the
creation of web applications.

Liberty inside of CICS TS V5.3 supports the Java EE 6 Web Profile and provides partial
support for Java EE 6 full platform. Table 1-1 shows the relationship between the supported
features of Liberty inside CICS and the corresponding Java Specification Request (JSR)
implemented in the profile. A JSR is a request to develop a new specification or the revision of
an existing specification that is delivered as part of Java. A list of all proposed and final JSRs
can be found at the Java Community Process website:

https://www.jcp.org/en/home/index

Table 1-1 Liberty-supported features and corresponding JSRs

Liberty feature JSR Description

Java EE 6 Web Profile beanValidation-1.0 JSR 303 Bean Validation

cdi-1.0 JSR 299 Contexts and
Dependency
Injection

ejbLite-3.1 JSR 318 EJB Lite subset of
the EJB 3.1
specification

jdbc-4.0 JSR 221 Java Database
Connector API

jpa-2.0 JSR 317 Java Persistence 2.0

jndi-1.0 JSR 316 Java Naming and
Directory Interface

jsf-2.0 JSR 314 JavaServer Faces
2.0
Chapter 1. Introduction 3

https://www.jcp.org/en/home/index

1.2.2 Java EE 7

Java EE 7 is the new evolution of the Java Enterprise Edition standard that embraces the
latest standards such as HTML5 and web sockets, as well as removing inconsistencies in the
existing standard and providing updates for most of the components. It is being rapidly
adopted by the Java Platform, Enterprise Edition application server marketplace and at the
time of writing is supported by the WebSphere Application Server Liberty FixPack6, and has
been announced for support in classic WebSphere Application Server. For more information,
see the following announcement letter:

http://www.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/4/897/ENUS215-
084/index.html

Building on this position, IBM announced the following statement covering upcoming Java EE
7 support for CICS TS V5.3: “IBM intends to deliver support for Java applications that exploit
Java EE 7 Full Platform features when running in the WebSphere Liberty profile that is
integrated with IBM CICS Transaction Server for z/OS (CICS TS).”

For more information, see the following announcement letter:

http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=an&subtype=ca&supplier=897
&letternum=ENUS215-363

1.2.3 Additional resources

More resources are available to support development with Liberty. The following list provides
developer-focused community resources:

� WebSphere Application Server Liberty V8.5.5 IBM Knowledge Center

http://www.ibm.com/support/knowledgecenter/SS7K4U_8.5.5///com.ibm.websphere.wlp
.zseries.doc/ae/rwlp_prog_model_support_javaee6.html

jsp-2.2 JSR 245 JavaServer Pages
2.2

servlet-3.0 JSR 315 Java Servlet 3.0

webProfile-6.0 JSR 342 Java EE 6 Web
Profile

Java EE 6 full platform jaxb-2.2 JSR 222 Java Architecture for
XML Binding 2.0

jaxrs-1.1 JSR 311 Java API for RESTful
Web Services 1.1

jaxws-2.2 JSR 224 Java API for
XML-Based Web
Services 2.2

jca-1.6 JSR 322 Java EE Connector
Architecture 1.6

jms-1.1 JSR 914 Java Message
Service API 1.1

Liberty feature JSR Description
4 IBM CICS and Liberty: What You Need to Know

http://www.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/4/897/ENUS215-084/index.html
http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=an&subtype=ca&supplier=897&letternum=ENUS215-363
http://www.ibm.com/support/knowledgecenter/SS7K4U_8.5.5///com.ibm.websphere.wlp.zseries.doc/ae/rwlp_prog_model_support_javaee6.html
http://www.ibm.com/support/knowledgecenter/SS7K4U_8.5.5///com.ibm.websphere.wlp.zseries.doc/ae/rwlp_prog_model_support_javaee6.html
http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=an&subtype=ca&supplier=897&letternum=ENUS215-363

� Java Platform, Enterprise Edition 6 (Java EE 6) Specification

https://jcp.org/en/jsr/detail?id=316

� WASdev community

http://wasdev.net

The WASdev community is a hub for information about developing applications for
WebSphere Application Server, and using Liberty in particular. Articles, podcasts, videos,
and samples are refreshed regularly.

� WASdev forum

https://developer.ibm.com/wasdev

The WASdev forum provides an opportunity for users of Liberty to interact with each other
and with the IBM developers working on the product.

� Stack Overflow tags

http://stackoverflow.com/questions/tagged/websphere-liberty

Stack Overflow is a Q&A site that is no cost to use. It allows users to ask and answer
questions with built-in incentives to reward high-quality answers. Use the
websphere-liberty tags to ask or answers questions about Liberty.

1.3 Benefits of running web applications in CICS

So, what are the benefits of running web applications using Liberty in CICS? There are many
ways of analyzing this issue but stepping back, there are four key benefits that running web
applications in CICS provides: Skills, integration, performance, and cost reduction.

1.3.1 Skills

An important benefit of Liberty in CICS is that it opens to CICS a whole new world of
application development. The direction of training and skills growth today is moving towards
Java and Java EE web applications. With Liberty in CICS, you can develop Java EE web
applications in an integrated development environment (IDE) and then deploy them to CICS.
This allows Java web developers to participate in developing, extending, and updating
business applications for CICS. For instance, they can use a familiar Java API like JAX-RS to
build a new service interface for invoking existing business application programs. They can
use JSP technology or servlets to update the presentation interface for CICS transactions,
and they can use other features in the Java EE 6 framework to build new business logic
applications.

1.3.2 Integration

Integrating Java applications with existing CICS applications has been recognized by many
customers as a cost-effective way of modernizing business applications by exploiting the
mixed language application serving environment offered by CICS. Java components can run
alongside existing COBOL, PL/I, and assembler applications, with CICS providing the runtime
integration, without having to provide a dedicated new application server for the Java
components.
Chapter 1. Introduction 5

https://jcp.org/en/jsr/detail?id=316
http://wasdev.net
https://developer.ibm.com/wasdev
http://stackoverflow.com/questions/tagged/websphere-liberty

1.3.3 Performance

An inherent benefit of running your Java EE web applications in a Liberty Java virtual
machine (JVM) Server in CICS is the simplicity and speed of accessing CICS resources. A
request from a web client enters Liberty and runs on a Java thread just like on any Java EE
web server. However, the Liberty server is running within a JVM server in CICS. This results
in the Java thread being integrated with CICS in such a way that the request also runs as a
CICS transaction.

This means that access to CICS resources, such as a database or file, are highly optimized.
There is no need for requests to travel through an adapter and across a network because the
transaction has already begun. Put simply, it is generally faster to run your web application as
close as possible to your data.

1.3.4 Cost reduction

All Java applications on z/OS can benefit from the price advantages of IBM z Systems
specialty processors (IBM System z® Application Assist Processor (zAAP) or IBM System z
Integrated Information Processor (zIIP)). Specialty processors provide a way to lower overall
z Systems costs both in terms of hardware capital and in terms of software-based charging.
Put simply, any Java code executes on a speciality engine. For Liberty web applications, this
includes most of the Liberty server runtime, and any servlet or web-based components.
However, any calls to CICS either via JCICS, JDBC type 2 drivers, or JCA local ECI will only
run on a zIIP during the initial Java phase, as once within CICS workload will not be zIIP
eligible.

So Liberty in CICS offers the best of all worlds. It is Liberty, a Java EE application server
capable of hosting web applications built using Java EE 6 features and it is CICS, a familiar
and robust transaction processing server providing close integration with your data. This
combination offers opportunities to modernize presentation logic, leverage growing Java
development skills, integrate legacy business processes with new interfaces, simplify and
speed access to your data, and gain financially from running Java applications on zAAP
processors.

The following subsections introduce three scenarios that illustrate ways that you can benefit
from running web applications in a Liberty JVM server in CICS. In later chapters, each
scenario is detailed further.

� Porting a web application to Liberty in CICS
� Creating an integration logic interface for existing CICS business logic
� Writing new Java business logic applications

1.3.5 Porting a web application

Web applications written by using the features of the Java EE 6 Web Profile subset can be
hosted in CICS TS V5.3. This includes all of the core web container APIs, such as JSP and
servlets. It also includes many of the common Java EE API and capabilities such as JAX-RS
and JAX-WS and JDBC.

You might consider deploying existing web applications to CICS TS V5.3 for reasons of
convenience, consolidation, or flexibility. However, a particularly compelling reason to make
that move is for those applications that use the JCA ECI resource adapter to invoke a
program on CICS TS. Figure 1-1 on page 7 shows a web application hosted outside of CICS
and using JCA with CICS Transaction Gateway (CICS TG) to invoke a program on CICS TS.
6 IBM CICS and Liberty: What You Need to Know

Figure 1-1 JCA-based web application using CICS TG

The JCA ECI call shown in Figure 1-1 involves leaving the Java EE application server and
going out through the JCA resource adapter via a network to the CICS Transaction Gateway
and then on to a connected CICS region. If there are many such calls to CICS applications
within the web application, it might make more sense to move the entire web application to
the Liberty JVM server on CICS TS.

Figure 1-2 summarizes how the application might look after the web application is ported to a
Liberty JVM server in CICS TS V5.3.

Figure 1-2 JCA-based web application running in CICS

Figure 1-1 and Figure 1-2 show how you can consolidate the two halves of this type of web
application. The front-end web application runs in a Liberty JVM server in the same CICS
region as the program invoked through JCA. This “lift and shift” consolidation has the potential
to improve the performance of the web application by eliminating the network latency.
Improved performance is more likely to be realized in cases where the web application makes
frequent calls to the CICS COBOL program, or large amounts of data are transferred.

In Figure 1-2, notice that JCA straddles the boundary between Liberty and the JVM server
and CICS. This represents that the CICS implementation of the cicsts:JcaLocalEci-1.0 feature
treats the JCA ECI call in much the same manner as a local JCICS Program.link(). This
technique ensures that the call is highly optimized as well as provides the opportunity for the
Liberty JVM server to become a front-end liberty-owning region (LOR). The target programs
of the ECI calls could all be defined as dynamic and routed to a series of back-end
application-owning regions (AORs) using CICSPlex SM dynamic routing.

In addition to JCA ECI resource adapter calls, there are other ways that a web application can
invoke business logic applications in CICS TS. These include web requests via HTTP, web
services calls using XML and SOAP, and Java Message Service (JMS) applications. In many
cases, web applications that use these methods of communicating with CICS TS can also be
ported to a Liberty JVM server in CICS TS with little or no modification.
Chapter 1. Introduction 7

1.3.6 Creating an integration logic interface

A big benefit of Liberty in CICS is being able to take advantage of the existing and growing
pool of Java development skills. For example, those skills can be put to use developing a
RESTful (JAX-RS) or web service (JAX-WS) Java application that provides a new service
interface to an existing business logic program in CICS TS. Such an application can be
deployed directly into a Liberty JVM server collocated with the business logic program in the
same CICS region. Refer to Figure 1-3.

Figure 1-3 Integration with existing CICS business logic

Chapter 10, “Creating an integration logic application” on page 179 gives an example of
exposing existing COBOL business logic as a RESTful web service though a Liberty web
application.

1.3.7 Creating a Java business logic application

In the previous two sections, the web application was presented as a pass-through to the core
business logic contained in the COBOL program. The natural progression to this is to develop
new web applications that handle the business logic. With Liberty in CICS, Java EE
developers can use Java EE frameworks and APIs such as Enterprise JavaBeans (EJB),
Java Persistence API (JPA), Java Transaction API (JTA), and CDI Managed Beans to develop
such applications. These new applications can use the JCA local ECI resource adapter to
invoke CICS applications, the JCICS classes to access CICS resources such as VSAM files,
and JDBC data sources to access relational databases such as IBM DB2® or Derby
(Figure 1-4).

Figure 1-4 Java business logic applications in CICS
8 IBM CICS and Liberty: What You Need to Know

Chapter 11, “Creating a business logic application” on page 191 gives an example of creating
new Java business logic in a Liberty JVM server to supplement an existing COBOL business
application.

1.4 What’s new in Liberty for CICS TS V5.3

As with previous versions, CICS TS V5.3 delivers support for a new set of features in Liberty.
This now includes the Java EE 6 Web Profile, as well as a growing subset of features from
WebSphere Application Server Liberty V8.5.5.

1.4.1 Supported Liberty features

The following list describes the currently supported set of Liberty features supported in CICS
TS V5.3 along with the CICS user features that provide for integration with the CICS runtime.
This list is likely to be further extended during the lifetime of CICS TS V5.3. For the latest
information, see the CICS TS V5.3 IBM Knowledge Center at this location:

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/t
opics/liberty_features.html

appSecurity-2.0
The appSecurity-2.0 feature enables support for securing your server and applications. This
feature includes a basic user registry and allows the implementation of basic user name and
password authentication and Lightweight Third Party Authentication (LTPA) token
authentication.

beanValidation-1.0
The beanValidation-1.0 feature provides an annotation-based model for validation
JavaBeans. JavaBeans are classes that encapsulate many Java objects into a single object
known as a bean. The beanValidation-1.0 feature can be used to assert and maintain the
integrity of data as it travels through an application.

blueprint-1.0
The blueprint-1.0 feature enables support for deploying OSGi applications that use the OSGi
blueprint container application. The Blueprint Container Specification defines a dependency
injection framework for OSGi and provides a simple and easy programming model for
creating dynamic applications in the OSGi environment without adding complexity to the Java
code.

cdi-1.0 and managedBeans-1.0
The cdi-1.0 feature enables the context and dependency injection (CDI) platform for your
applications. When activated, it provides these benefits:

� Context management
� Type-safe dependency injection
� Decorators
� Interceptor bindings
� Event model
� Integration into JSF and JSP files using Expression Languages.
Chapter 1. Introduction 9

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/topics/liberty_features.html

The managedBeans-1.0 feature enables support for the Managed Beans 1.0 specification.
Managed Beans provide a common foundation for different Java EE component types that
are managed by a container. Common services provided to Managed Beans include resource
injection, lifecycle management, and the use of interceptors.

ejbLite-3.1
Enterprise JavaBeans (EJB) technology is the component architecture for developing and
deploying business logic applications in Java. EJB provides a set of features that allow
developers to produce transactional, secure, and portable applications. Because most
applications will not use the full set of features available with EJB, Ejblite was introduced to
provide a subset of the most common features of EJB without any of the remote Internet
Inter-ORB Protocol (IIOP) connectivity.

jaxb-2.2
The jaxb-2.2 feature enables support for the Java Architecture for XML Binding (JAXB) 2.2
specification. JAXB is a useful technology for developing Java web services and provides two
main features, the ability to serialize Java objects into XML, and the inverse, parsing XML into
Java objects.

jaxrs-1.1
The jaxrs-1.1 feature enables support for Java API for RESTful Web Services 1.1, and is the
key API for developing RESTful-based Java applications. It supports the use of annotations to
define web service clients and servers that utilize a Representational State Transfer (REST)
architectural style. In 1.3.6, “Creating an integration logic interface” on page 8, we utilize the
jaxrs-1.1 feature to expose an application as a JavaScript Object Notation (JSON) RESTful
web service.

jaxws-2.2
The jaxws-2.2 feature enables support for the Java API for XML-Based Web Services 2.2,
and is used together with JAXB to create Java web services. The feature allows
annotation-based handling of XML web services requests into applications.

jca-1.6
The jca-1.6 feature enables the development and use of the Java EE Connector Architecture
(JCA) resource adapters. JCA defines an architecture for connecting Java EE applications to
enterprise information systems (EISs) applications outside of Java. The jca-1.6 feature is a
requirement for the JCA local ECI resource adapter, which is provided by the
cicsts:jcaLocalEci0.1-0 feature.

jdbc-4.0
The jdbc-4.0 feature enables the use of Java Database Connectivity (JDBC) technology. The
feature enables the configuration of data sources to access databases. This is provided
through a Java API that provides querying and manipulating data in a database. This can be
used in CICS Liberty to access a remote data source using a type 4 JDBC driver. All access
to a local DB2 must use the cicsts:jdbc-1.0 feature and the DB2 type 2 driver.
10 IBM CICS and Liberty: What You Need to Know

jms-1.1, wasJmsClient-1.1, wasJmsServer-1.1, wasJmsSecurity-1.0
The Java Message Service (JMS) API is for creating, sending, receiving, and reading
messages between clients. The wasJmsClient-1.1 and wasJmsServer-1.1 features are
available for Liberty in CICS and provide access to WebSphere Application Server embedded
messaging clients running in Liberty or classic WebSphere Application Server. MQLink,
which allows IBM MQ and WebSphere Application Server messaging to interact, is not
supported within Liberty.

The wasJmsSecurity-1.0 feature enables the WebSphere Embedded Messaging Server to
authenticate and authorize access from JMS clients.

jmsMdb-3.1, mdb-3.1
Message-driven beans (MDBs) provide a means for the asynchronous inbound processing of
messages when using JMS.

jndi-1.-0
The jndi-1.0 feature enables the use of Java Naming and Directory Inventory (JNDI) to access
server-configured resources. JNDI is a Java API for a directory service that allows
applications to look up data and objects by using their name.

jpa-2.0, osgi-jpa-1.0
The Java persistence API specification is an API that provides a mechanism for managing
persistence and object-relational mapping and functions. Persistence is important to
enterprise applications because of the required access to relational databases. Until the EJB
3.0 specification, enterprise applications were required to manage persistence themselves or
use third-party solutions to handle database manipulation.

JPA represents a simplification of the persistence programming model. The JPA specification
explicitly defines the object-relational mapping, rather than relying on vendor-specific
mapping implementations.

json-1.0
The json-1.0 feature provides access to the JavaScript Object Notation (JSON4J) library, and
is used together with JAXRS to create RESTful services. The JSON4J library provides a Java
model for constructing and manipulating data to be rendered as JSON data. In 1.3.6,
“Creating an integration logic interface” on page 8, we utilize the json-1.0 feature to expose an
application as a JSON RESTful web service.

ldapRegistry-1.0
The ldapRegistry-1.0 feature enables support for using a Lightweight Directory Access
Protocol (LDAP) server as a user registry. LDAP is a lightweight application protocol used to
connect, search, and modify information about users, systems, and services. This information
can then be shared across all systems that are connected to the LDAP server. LDAP security
registries are supported in CICS Liberty with the cicsts:distributedIdentity-1.0 feature.

mongodb-2.0
MongoDB is a popular no-SQL database. MongoDB trades the traditional table-based
relational database structure with JSON-like documents. These JSON-like documents use
dynamic schema that can make integration of applications easy. The mongodb-2.0 features
enable the use of a MongoDB database on a remote system.
Chapter 1. Introduction 11

monitor-1.0, restConnector-1.0, and localConnector-1.0
The monitor-1.0, restConnector-1.0, and localConnector-1.0 features provide monitoring and
analysis capabilities for Java applications and components using Java Management
Extensions (JMX) Technology.

The monitor-1.0 features enable the monitoring support for the following user runtime
components:

� JVM
� Web applications
� Thread pool
� Session management
� Connection pools

The localConnector-1.0 feature provides the ability for local JMX client applications to access
this information using JMX and MBeans. The restConnector-1.0 feature provides remote
access to the MBeans using remote RESTful calls into the Liberty secure HTTPS listener.

osgiConsole-1.0
Eclipse Equinox provides an OSGi console that you can use for debugging your OSGi
runtime. It can be used to display information about bundles, packages, and services, which
can be useful when developing your own features for product extensions.

sessionDatabase-1.0
The database session persistence feature enables HTTP sessions to be stored in a locally
configured relational database. This allows servlet session persistence to be shared between
multiple Liberty servers and to be recovered across a Liberty server restart. This can be
utilized for HTTP connection balancing and high availability configurations. For more
information about high availability, see Chapter 3, “Workload management” on page 45.

servlet-3.0, jsp-2.2 and jsf-2.0
The servlet-3.0 feature enables support for HTTP servlets written to the Java Servlet 3.0
specification. The jsp-2.2 feature enables support for JavaServer Pages (JSP) that are written
in the JSP 2.2 specification. The jsf-2.0 feature enables support for web applications that use
the JavaServer Faces framework. These three technologies make up the foundation of the
web application framework for Java applications. For more information about these
technologies, see 2.1.1, “Web invocation options” on page 18.

ssl-1.0
The ssl-1.0 feature enables support for Secure Sockets Layer (SSL) connections. A secure
HTTPS listener is not started unless the ssl-1.0 feature is enabled.

wab-1.0
The wab-1.0 feature enables the use of web application bundles (WABs) in OSGi
applications. WABs are OSGi bundles that are internally structured the same way as a war file
and support the same web components. They are deployed in an enterprise bundle archive
(EBA) when deployed into a Liberty JVM server.
12 IBM CICS and Liberty: What You Need to Know

webcache-1.0 and distributedMap-1.0
The webcache-1.0 feature enables local caching of web application responses to improve
response times and throughput, by using the WebSphere DynaCache technology. It achieves
this by enabling and using the distributed-Map-1.0 feature, which provides a local cache
service.

1.4.2 CICS features

CICS provides a set of user feature extensions, which provide the integration between the
CICS runtime and Liberty.

cicsts:core-1.0
This is the core integration feature that provides the runtime integration, the JCICS API, and
the transaction support for JTA. It should always be configured.

cicsts:distributedIdentity-1.0
This provides support for distributed identity mapping of credentials from an LDAP registry.
This allows an external LDAP registry to be used for authentication, in conjunction with the
cicsts:security-1.0 feature and CICS transaction and resource security for authorization. This
feature is new in CICS TS V5.3.

cicsts:jcaLocalEci-1.0
This provides support for the locally optimized JCA ECI resource adapter in CICS. This
enables JCA-based applications developed using the CICS Transaction Gateway ECI
resource adapter to be deployed into CICS without modification.

cicsts:jdbc-1.0
This provides support for JDBC applications that need to use the CICS local DB2 attachment
facility via a data source definition and the JDBC type 2 driver.

cicsts:security-1.0
This is the core integration feature that provides the runtime integration, the JCICS API, and
the transaction support for JTA.

cicsts:zosConnect-1.0
This provides support for RESTful services deployed into CICS using z/OS Connect.

1.4.3 Unsupported APIs

There are several technologies categorized as optional in Java EE 6 that are not supported in
the WebSphere Application Server Liberty implementation, but were previously supported in
the classic WebSphere Application Server Java EE 6 runtime. The key technologies that you
might encounter are JAX-RPC 1.1, JAXR 1.0, and EJB Entity Beans. Here are some details:

� JAX-RPC: Java API for XML-based RPC (JAX-RPC) specification enables you to develop
SOAP-based interoperable and portable web services and web service clients. Its use for
web services has been superseded by JAX-WS, which is supported in WebSphere
Liberty.
Chapter 1. Introduction 13

� JAX-R: Java API for XML Registries (JAX-R). The Java Platform, Enterprise Edition (Java
EE) 6 platform began the deprecation process for JAX-R because it is based on Universal
Description, Discovery, and Integration (UD-DI) 2 technology, which is no longer relevant.
If your applications use JAX-R, you might consider using UDDI 3.

� EJB: EJB Entity Beans are declared optional in Java EE 6 specification and are not
supported in WebSphere Liberty. They provided a way of abstracting persistent data
maintained in a relational database. Their usage has largely been superseded by the Java
Persistence API (JPA) or third-party frameworks, such as Hibernate.

In addition, the EJB 1.1 and 2.0 interfaces are only supported by the JEE7 EJB remote
feature on Liberty. Therefore, the ejbLite-3.2 feature does not support deployment of EJB 1.1
and 2.0 components.

Migration tools
The WebSphere Application Server Migration Toolkit Version 8.5.5 can be used to help in
migrating your existing web applications to Liberty V8.5.5. This can be done by scanning the
source code or static binary files of your applications and provide you with information about
the preceding Java EE application API compatibility and highlight any changes that you might
be required to make when moving from one version of Liberty to another. It also highlights any
vendor-specific APIs that are not portable between Java Platform, Enterprise Edition
application server. The toolkit can also be used when moving from other Java EE servers to
Liberty.

For more information about the WebSphere Application Server Migration Toolkit, see 2.7,
“Migrating a Java EE application to Liberty” on page 42.
14 IBM CICS and Liberty: What You Need to Know

Part 1 Technology essentials

In this part, we provide essential technology information.

Part 1 contains the following chapters:

� Chapter 2, “Application development” on page 17

� Chapter 3, “Workload management” on page 45

� Chapter 4, “Security options” on page 57

Part 1
© Copyright IBM Corp. 2016. All rights reserved. 15

16 IBM CICS and Liberty: What You Need to Know

Chapter 2. Application development

In this chapter, we cover the key areas of concern when developing applications to run within
Liberty in CICS.

This chapter describes the following topics:

� Application development
� Accessing CICS data
� Database access options
� Optimizing static content
� Application deployment options
� Application redeployment options
� Migrating a Java EE application to Liberty

2

© Copyright IBM Corp. 2016. All rights reserved. 17

2.1 Application development

We begin by looking into the application invocation options. Then, we look into data
connectivity options, differences between JDBC driver types, and deployment and
redeployment options. Finally, we cover the different technologies that are available for
optimizing the serving of static data, and then look at the tools available for migrating existing
applications to Liberty.

2.1.1 Web invocation options

Many options are available when it comes to the invocation of Liberty web applications when
running within CICS. You can run your applications with servlets running presentation logic, or
you can expose services using applications that focus on integration logic, using web services
technologies.

The following sections explore the technologies that are available when choosing how you
invoke your applications.

Servlets
Liberty is, at its heart, a web container that can run lightweight Java servlets, JavaServer
Pages (JSP), and JavaServer Faces (JSF). This allows developers to use features of the Java
servlet and JSP specifications to write modern interfaces running on Liberty in CICS. Java
servlets can be produced by using the Java Servlet API, which enables the development of
dynamic web content.

JavaServer Pages (JSP)
JSP extends the Java Servlet API by providing a document-centric or page-centric solution for
dynamically generating content for web user interfaces. JSP allows Java code to be written
into static web content. This code is then translated into a servlet and executed in the server
to generate an output document that is sent to the requesting client.

JavaServer Faces (JSF)
JSF is also an extension of the Java Servlet API. They provide a component-based
model-view-controller (MVC) framework. JSF is a Java framework that is designed for
enterprise web application development. In particular, JSF removes the need for developers
to provide functions in their applications that handle HTTP request parameters, or that
convert or validate input.

Web services
Presentation logic applications are not the only type that can be used to interact with CICS.
Applications can be written that interact with CICS and Liberty in CICS through integration
applications. Two technologies that are available are SOAP web services and
Representational State Transfer (RESTful) web services.

SOAP web services
SOAP is a simple XML-based protocol for applications to exchange information over
application layer protocols such as HTTP. SOAP can be used to create request-response
interactions. SOAP is a protocol that is independent of platform, operating system, and
method of transport.
18 IBM CICS and Liberty: What You Need to Know

This XML-based protocol consists of the following three parts:

� An envelope that defines what is in the message and how to process it
� A set of encoding rules for expressing instances of application-defined data types
� A convention for representing procedure calls and responses

The most common method of exchanging SOAP messages uses HTTP. However, SOAP can
be used with various transport protocols, such as Simple Mail Transfer Protocol (SMTP), File
Transfer Protocol (FTP), or Java Message Service (JMS).

For more information about CICS SOAP web services, see Implementing CICS Web
Services, SG24-7206 at this location:

http://www.redbooks.ibm.com/abstracts/SG247206.html

SOAP web services can also be enabled through Liberty in CICS with the jax-ws-1.0 feature.

RESTful web services
In CICS TS V5.3, you can deploy RESTful web services and SOAP web services. For
information about RESTful and JavaScript Object Notation (JSON), see Chapter 9, “Porting a
web application” on page 161.

For information about the use of RESTful and JSON in CICS or Liberty in CICS, see
Implementing IBM CICS JSON Web Services for Mobile Applications, SG24-8161:

http://www.redbooks.ibm.com/abstracts/sg248161.html?Open

2.2 Accessing CICS data

There are three key ways for web applications to access the data from CICS applications:

� JCICS
� JCA
� JDBC

In addition, Liberty provides access to non-relational databases, such as the non-SQL
database MongoDB.

2.2.1 CICS Java class library (JCICS) API

CICS includes the JCICS, the Java equivalent of the EXEC CICS API. By using JCICS, you
can write Java applications that access CICS resources and integrate with programs written
in other languages. Most of the functions of the EXEC CICS API are supported. The library is
supplied in the com.ibm.cics.server.jar file with CICS and the IBM CICS Explorer®
software development kit (SDK). JCICS provides the ability to link to any other CICS
applications, and to directly access VSAM files or CICS managed temporary storage or
transient data queues.

Java EE Connector Architecture (JCA)
The JCA APIs are used to connect enterprise systems, such as CICS, to the Java EE
platform. CICS TS V5.3 provides a local implementation of the JCA ECI resource adapter that
was previously only provided by the CICS Transaction Gateway.
Chapter 2. Application development 19

http://www.redbooks.ibm.com/abstracts/SG247206.html
http://www.redbooks.ibm.com/abstracts/sg248161.html?Open

The support of JCA inside of CICS allows you to migrate Java Platform, Enterprise Edition
applications from other application servers into CICS without modification. An example of this
would be an enterprise who hosts their presentation logic on a distributed application server,
which uses JCA ECI calls into CICS to access business logic. In most cases this application
can be moved from the distributed application server to run inside of Liberty in CICS. You
might choose to do this if you require resources through CICS access and need to reduce the
number of tiers in your architecture for ease of maintenance or to gain potential operational
savings.

2.3 Database access options

There are a number of ways available to access data depending on your needs. Namely, local
IBM DB2, remote relational DB, or document-oriented databases. For example:

� Traditional local DB2 via the DB2 attachment facility.

� Remote database using a JDBC type 4 driver. This can be either a remote DB2 or another
relational database with a type 4 driver, such as the Apace Derby database.

� MongoDB using the MongoDB API.

2.3.1 JDBC access options

You can define data sources using driver type 2 or type 4. The main difference between these
two drivers is that, with type 2, you use a database-specific API to make the calls and then
access the data. With type 4, you simply use Java libraries to connect directly to the
database.

Figure 2-1 on page 21 illustrates in more detail some scenarios with two different driver types
within a Liberty environment. Some additional information, such as EXEC SQL or the
distributed data facility (DDF), is included in the graphic as a general sample, although not
expanded on in this book.
20 IBM CICS and Liberty: What You Need to Know

Figure 2-1 JDBC type 2 and type 4 drivers

When it comes to creating the actual data source for Liberty, you would do all of this
configuration in the server.xml file. The following subsections describe in more detail the
implementation differences between these driver types.

JDBC type 2
As mentioned earlier, type 2 driver connections require a database-specific driver to connect
to a particular local database. The driver provides the APIs and is compiled for a specific
platform. Being database-specific, the connection parameters might differ between data
sources. From here on, we focus on DB2.

Before moving forward with the creation of a CICS DB2 JDBC type 2 driver data source, you
first need to configure your CICS region to connect to DB2 in the same manner as though you
were using a traditional CICS COBOL program issuing SQL commands. When defining a
CICS DB2 connection, set the global attributes for that connection, the relationship between
CICS transactions and DB2 resources, among other items.

For more information about how to define the CICS DB2 connection, refer to the Defining the
CICS DB2 connection portion of the IBM Knowledge Center at this location:

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhtk/
topics/dfhtk2c.html
Chapter 2. Application development 21

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk2c.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk2c.html

After you have the CICS DB2 connection defined, creating a type 2 driver data source
requires that you edit the server.xml file. Some of the elements that need to be updated to
define a type 2 driver data source include:

1. Add the cicsts:jdbc-1.0 feature to the featureManager element. This enables use of the
cicsts_jdbcDriver and cicsts_dataSource elements that are used later in the server.xml
file.

<featureManager>
 <feature>cicsts:jdbc-1.0</feature>
</featureManager>

2. Add a cicsts_jdbcDriver element. This enables support for access to JDBC type 2 driver
data sources using either java.sql.DriverManager or javax.sql.DataSource. The
cicsts_jdbcDriver element must refer to a library definition that specifies the library from
which the JDBC driver components (the DB2 JDBC .jar and native .dll files) are to be
loaded. Typical definitions might look like this:

<cicsts_jdbcDriver libraryRef="defaultCICSDb2Library"/>
<library id="defaultCICSDb2Library">
 <fileset dir="/usr/lpp/db2v11/jdbc/classes" includes="db2jcc4.jar

db2jcc_license_cisuz.jar"/>
 <fileset dir="/usr/lpp/db2v11/jdbc/lib" includes="libdb2jcct2zos4_64.so"/>
</library>

3. If just java.sql.DriverManager support is required, the preceding steps are sufficient. To
access DB2 connections using data source definitions, a cicsts_dataSource element is
required for each data source for which access is to be defined. A cicsts_dataSource
specifies a jndiName attribute. This defines the Java Naming and Directory Interface
(JNDI) name that is a reference used by your application program when establishing a
connection to that data source. A definition might look like this:

<cicsts_dataSource id="defaultCICSDataSource"
jndiName="jdbc/defaultCICSDataSource"/>

4. Optionally, you can set properties for the cicsts_dataSource element using a
properties.db2.jcc element. The following example shows how to do this:

<cicsts_dataSource id="defaultCICSDataSource"
jndiName="jdbc/defaultCICSDataSource">

 <properties.db2.jcc currentSchema="DB2USER"
fullyMaterializeLobData="true" />

</cicsts_dataSource>

Not all properties permitted in the properties.db2.jcc element are appropriate for JDBC
type 2 driver data sources. The inappropriate properties are ignored.

Note: Only one cicsts_jdbcDriver element is required. If more than one is specified,
only the last in the server.xml file is used and the others are ignored.

Note: The data source class used is com.ibm.db2.jcc.DB2SimpleDataSource that
implements javax.sql.DataSource.
22 IBM CICS and Liberty: What You Need to Know

The Liberty server, when started, is configured to allow access to DB2 databases using a
JDBC type 2 driver connection.

JDBC type 4
Unlike the type 2 driver that we just analyzed, the DB2 JDBC type 4 driver data source does
not use the CICS DB2 connection resource.

DB2 JDBC type 4 driver data source can also be manually enabled via the server.xml
configuration file. This allows the establishment of connections to remote DB2 databases.
Because updates made to a DB2 database using a JDBC type 4 driver do not use the CICS
DB2 connection resource, they are not part of the CICS unit of work unless they are made
within a JTA user transaction. See Java Transaction API (JTA).

Here are some of the elements that you need to update to define a Type 4 data source:

1. Add the jdbc-4.0 feature to the featureManager element. This enables use of the
dataSource and jdbcDriver elements that are used later in the server.xml file.

<featureManager>
 <feature>jdbc-4.0</feature>
</featureManager>

2. Add dataSource and jdbcDriver elements. The dataSource element must refer to a library
definition that specifies the library from which the JDBC driver components (the DB2
JDBC .jar and native .dll files) are to be loaded. Typical definitions might look like this:

<dataSource jndiName="jdbc/defaultCICSDataSource">
 <jdbcDriver libraryRef="db2Lib"/>
 <properties.db2.jcc driverType="4"
 serverName="winmvs2c.hursley.ibm.com"
 portNumber="41100"
 databaseName="DSNV11P2"
 user="DBUSER"
 password="{xor}Lz4sLCgwLTs="/>
</dataSource>

<library id="db2Lib">
 <fileset dir="/usr/lpp/db2v11/jdbc/classes" includes="db2jcc4.jar
 db2jcc_license_cisuz.jar" />
</library>

Not relevant properties: Unrecognized properties are ignored. The following
properties are not relevant for the CICS JDBC type 2 driver support:

� driverType
� serverName
� portNumber
� user
� password
� databaseName

If specified, they are also ignored and a warning message issued.

Note: Dynamic updates of the CICS data source and its components are not supported.
Updating the configuration while the Liberty server is running can result in DB2 application
failures. Be sure to recycle the server to activate any changes.
Chapter 2. Application development 23

The dataSource element specifies a jndiName attribute. This defines the JNDI name that is a
reference used by your application program when establishing a connection to that data
source. The required properties are set in the properties.db2.jcc element as follows:

� driverType

– Description: Database driver type, must be set to 4 to use the pure Java driver
– Default value: 4
– Required: false
– Data type: int

� serverName

– Description: The host name of the server where the database is running. This is the
SQL DOMAIN value of the DB2 DISPLAY DDF command

– Default value: localhost

– Required: false

– Data type: string

� portNumber

– Description: Port on which to obtain database connections. This is the TCPPORT value
of the DB2 DISPLAY DDF command

– Default value: 50000

– Required: false

– Data type: int

� databaseName

– Description: Specifies the name for the data source. This is the LOCATION value of the
DB2 DISPLAY DDF command

– Required: true

– Data type: string

� user

– Description: The user ID to connect to the database
– Required: true
– Data type: string

� password

– Description: The password of the user ID to connect to the database. The value can be
stored in clear text or encoded form. It is recommended that you encode the password
by using the securityUtility tool with the encode option

– Required: true

– Data type: string

For more information about the Liberty profile securityUtility command, see the IBM
Knowledge Center at this location:

http://www.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.wlp.z
series.doc/ae/rwlp_command_securityutil.html

The Liberty server, when started, is configured to allow access to DB2 databases using a
JDBC type 4 driver connection.
24 IBM CICS and Liberty: What You Need to Know

http://www.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_command_securityutil.html
http://www.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_command_securityutil.html
http://www.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_command_securityutil.html
http://www.ibm.com/support/knowledgecenter/SS7K4U_8.5.5/com.ibm.websphere.wlp.zseries.doc/ae/rwlp_command_securityutil.html

2.3.2 Java Transaction API

The Java Transaction API (JTA) is used to coordinate transactional updates to Java based
resource managers in the Liberty JVM server environment. This includes XA-based data
sources, such as type 4 driver data sources, a remote transactional JCA resource adapter, or
third-party resource managers.

When using a type 4 JDBC driver, the Liberty transaction manager is the transaction
coordinator and the CICS unit of work is subordinate, as though the transaction had
originated outside of the CICS system.

When using a type 2 JDBC driver, all requests flow through the CICS DB2 attachment facility.
Therefore, it is not necessary to use JTA to coordinate with updates to other CICS resources,
as the CICS recovery manager is the transaction coordinator.

In JTA, you create a UserTransaction object to encapsulate the global transaction. This
provides two key methods begin() and commit(), which demarcate the transactional scope of
the work performed.

The following code fragment illustrates how to control a User Transaction:

InitialContext ctx = new InitialContext();
UserTransaction tran =
 (UserTransaction)ctx.lookup("java:comp/UserTransaction");

DataSource ds = (DataSource)ctx.lookup("jdbc/SomeDB");
Connection con = ds.getConnection();

// Start the User Transaction
tran.begin();

// Perform updates to CICS resources via JCICS API and
// to database resources via JDBC/SQLJ APIs

if (allOk) {
 // Commit updates on both systems
 tran.commit();
} else {
 // Backout updates on both systems
 tran.rollback();
}

Unlike a CICS unit-of-work (UOW), a UserTransaction must be explicitly started by using the
begin() method. Invoking begin() causes CICS to commit any updates that might have been
made before starting the UserTransaction. The UserTransaction is terminated by invoking
either of the commit() or rollback() methods, or by the web container when the web
application terminates.

While the UserTransaction is active, it is not possible to issue a CICS synncpoint command,
from either the JCICS API or linked to programs that issue EXEC CICS commands. The
effect of this means that the Java program cannot invoke the JCICS Task Task.commit() and
Task.rollback() will not be valid within a JTA transaction context. If either is attempted, an
InvalidRequestException will be thrown.

Note that if a Liberty JVM server fails during two-phase commit processing of a Java
transaction, and the Java transaction is left in doubt, CICS initiates transaction recovery as
Chapter 2. Application development 25

soon as the Liberty JVM server initialization is complete. If the JVM server is installed as
disabled, recovery runs when it is set to enabled.

2.3.3 Access to non-SQL databases

Document-oriented databases, such as MongoDB, are increasing in popularity. You query
these databases by using custom C++ syntax as opposed to SQL queries. In these non-SQL
databases, the data is stored in BSON files, which are a binary representation of JSON files.
A typical BSON entry looks like this:

{
 ID: 6535435
 name: CICS
 area: TP
}

At the time of this writing, MongoDB is available for distributed platforms and
Linux on z Systems. The mongodb-2.0 driver is available to allow for remote database
instances to be configured in the server configuration. Applications would interact with these
databases through the MongoDB APIs.

You must download the MongoDB driver from GitHub at this location:

https://github.com/mongodb/mongo-java-driver/releases

After the driver is downloaded, place the driver in a directory where the CICS Liberty JVM
server can access it.

Similarly, as with the JDBC drivers, MongoDB connections are defined in the server.xml file.
The following are some of the elements that you need to update to enable MongoDB:

1. Add in a shared library reference to the MongoDB Java driver that was just downloaded:

<library id="MongoLib">
 <file name="${server.config.dir}/lib/mongo-java-2.11.1.jar" />
</library>

2. Configure a library reference for each application that uses MongoDB:

<application name="MyApp1" location="MyApp1.war">
 <classloader commonLibraryRef="MongoLib"/>
</application>

3. Enable the MongoDB feature and, if required, the JNDI feature:

<featureManager>
 <feature>mongodb-2.0</feature>
 <feature>jndi-1.0</feature>
</featureManager>

JNDI is only required if you are planning to use the JNDI lookup method of accessing
MongoDB.

4. Configure a reference to the MongoDB database:

<mongo id="mongo" libraryRef="MongoLib" hostNames="winmvsXX.myserver.com"
ports="27017"/>

The values in hostNames and ports must point at the user’s instance of MongoDB.

5. Configure a reference to MongoDB for use within the application itself:

<MongoDB jndiName="mongo/testdb" mongoRef="mongo" databaseName="db-test" />
26 IBM CICS and Liberty: What You Need to Know

https://github.com/mongodb/mongo-java-driver/releases

The jndiName is used within the application to gain reference to MongoDB. The mongoRef
attributes reference the ID of the mongo tag in server.xml.

Accessing MongoDB from your web application
Update your application web.xml file to match the MongoDB references just defined in the
server.xml file:

<resource-env-ref>
 <resource-env-ref-name>mongo/testdb</resource-env-ref-name>
 <resource-env-ref-type>com.mongodb.DB</resource-env-ref-type>
</resource-env-ref>

The resource-env-ref-name matches the value of the jndiName that you defined in the
server.xml file.

You can now make use of MongoDB in your web application. There are two main supported
ways of doing this:

� Resource injection works by adding the following to the top of your Java class:

@Resource(name = "mongo/testdb")
protected DB testdb;

� A JNDI lookup can be used by adding the following to a method of your Java class:

DB lookup = (DB) new InitialContext().lookup("java:comp/env/mongo/testdb");

Limitations
For the MongoDB feature, the following restrictions apply for WebSphere Liberty Profile:

� There is no integration with Java transaction or CICS recovery, as there is no transactional
access to the database.

� MongoDB is not supported on IBM z/OS. Therefore, connections must be made to a
remote database, such as Linux on z Systems or a distributed platform.

� Only versions 2.10.0 and later are supported for the Java driver.

For more information about the current level of support, see the MongoDB website:

https://www.mongodb.com/press/mongodb-announces-support-for-ibm-z-systems-mainfram
e-solutions

2.4 Optimizing static content

Caching the static content is a key technique for improving application performance. It can be
used to host internal or external websites. Caching static content at the edge, like images and
scripts, is only the beginning as far as offloading requests. For a typical web application,
caching can take place at several different layers:

� At the web client or browser
� In a caching proxy set-up in front of the Liberty profile in CICS
� In an HTTP web server
� In the application server in DynaCache
� In the back-end database tier
Chapter 2. Application development 27

https://www.mongodb.com/press/mongodb-announces-support-for-ibm-z-systems-mainframe-solutions

2.4.1 Static content separation

The content of a web application can consist of two types: Dynamic or static. The dynamic
runtime components are those that require some type of processing to be generated (such as
servlets, JSP, and PHP scripts). The static content are the pieces that will never, or only
occasionally, change (such as HTML files, graphic images, audio files, or style sheets).

When developing Java Platform, Enterprise Edition web applications, the easiest approach is
to deploy the entire application onto the application server. But, with this approach, both the
static and runtime components of the application are deployed to the application server, the
Liberty Profile running in CICS. Some of these static elements can be large and frequently
requested, so for performance reasons, especially in a high workload environment, the
preference is for static content to be served from a dedicated web server rather than a fully
functional application server.

Optimizing static data in CICS
In the CICS Liberty JVM server, by default, all HTTP requests run as CICS transactions on a
T8 task control block (TCB). However, requests to serve static data, such as .gif or .jpeg files,
do not need the security or transaction environment this provides. Therefore, as an
optimization, you can use the following JVM system properties to ensure that requests for
static data run as Liberty threads only, and do not run as CICS transactions. This will both
improve the efficiency of the requests and reduce queuing for CICS tasks:

� com.ibm.cics.jvmserver.wlp.optimize.static.resources={true|false}

Enables CICS to use fewer transactions to satisfy a request by using static resource
optimization. The following types of file are recognized as static: .css, .gif, .ico, .jpg, .jpeg,
.js, and .png.

� com.ibm.cics.jvmserver.wlp.optimize.static.resources.extra=

If com.ibm.cics.jvmserver.wlp.optimize.static.resources =true, you can provide a
custom list of extra static resources for optimization. Items must be comma-separated, and
begin with a period, for example: .css, .gif, .ico.

Using a dedicated web server
In the Servlet 2.2 specification, Sun introduced the web archive (WAR) file that can contain all
of the compiled Java code that makes up a web application. It can contain servlets, JSP
pages, utility classes, static documents, client-side applets, beans and classes, and metadata
that ties everything together. However, if the static content within an application is to be
served separately from the dynamic content, a simple way is to ensure the images are not
deployed within the WAR using a local reference (such as src="images/images1.gif") but
instead referenced using absolute paths to remote URLs on a dedicated web server from
where the static data can be cached.

Figure 2-2 shows a topology where the static content is serviced within the web server and
the dynamic content is serviced on the server side in the Liberty profile. This configuration is
a way to separate the static and dynamic content, but it is not necessarily the best way. For
instance, you need to use a separate host name and port number for each server.
28 IBM CICS and Liberty: What You Need to Know

Figure 2-2 Serving static content in web server and dynamic content in back-end

Using the web server plug-in
Another option is to use the WebSphere Application Server to provide a way to let the web
server instance know about all the applications that are running within the Liberty Profile in
CICS and how to access them. The configuration in Figure 2-3 shows that all requests are
received by the web server, which allows the web server plug-in to forward any requests to
the Liberty Profile in CICS, depending on how it is configured. This allows the web server to
serve the static content without having to send the request to the back end for servicing. In
addition, the dynamic content can still be served by the back end. The user in this case will
only be aware of the host name and port number of the web server. This configuration also
provides easier scalability if wanted.

Figure 2-3 Using a web server plug-in to forward request to Liberty in CICS

Many web browsers and intermediate servers cache web content to help speed up its delivery
and display. This is useful for servicing static data, the unchanging content such as HTML,
graphics, and JavaScript files. But what about dynamically generated web content?

2.4.2 Dynamic caching

Static caching is a valuable benefit. However, dynamic caching is much more useful, as it
provides caching of HTML pages based on its request path, query strings, cookies, and
request headers. Dynamic requests tend to use far more enterprise resources in building a
response, so dynamic caching can dramatically enhance performance.

Caching the output of servlets, commands, and JavaServer Pages (JSP) improves
application performance by serving requests from an in-memory cache. Cache entries
contain servlet output, the results of a servlet after it runs, and metadata. The Liberty Profile
uses a service called dynamic caching to consolidate these caching activities. Dynamic
caching (or DynaCache) is an in-memory cache with the ability to offload the content on
disks. Dynamic caching is more complex than static caching and requires detailed knowledge
of the application. You must consider the candidates for dynamic caching carefully, because
dynamically generated content can be different based on the state of the application.
Therefore, it is important to consider under what conditions dynamically generated content
can be cached to return the correct response. This requires knowledge of the application, its
possible states, and other data, such as parameters that ensure the dynamic data is
generated in a deterministic manner. A good candidate for dynamic caching is any data that is
dynamic and, at the same time, is stable long enough for it to be reused.
Chapter 2. Application development 29

The concept behind dynamic caching is to store results of a first execution of a dynamically
generated web page. Any subsequent requests made to the same page go to cache. This
helps to avoid the overhead incurred by executing an application that renders output that does
not change. The dynamic cache service of the Liberty Profile allows you to cache the output
of servlets and JSP files.

The caching service works within the application server process. It is invoked before a
service() method call of a servlet. The service can either execute the service() method and
save the output in the cache or directly serve cached content and avoid a call to the service()
method. Because Java Platform, Enterprise Edition applications have high read/write ratios
and can tolerate small degrees of latency in the currency of their data, the dynamic cache can
create an opportunity to improve server response time, throughput, and scalability.

To cache the servlets and JSP, when the application server starts and a targeted servlet or
JSP is called for the first time, no cached entry is found and so the service() method of the
servlet is called. The DynaCache web container intercepts the response from the service()
invocation and caches the results as shown in Figure 2-4.

Figure 2-4 Before caching, a request must traverse all layers

The next time that the servlet is called and a match is found in the caching rules engine, the
cached results are returned and the service() method is not called. This bypasses all of the
processing that would have been done by the servlet, resulting in a substantial performance
boost. However, if there is no cache entry for this ID, the service() method is run as normal,
and the results are caught and placed in the cache before they are returned to the requester.

Figure 2-5 on page 31 illustrates how DynaCache increases performance by bypassing the
service() method call entirely whenever a cache hit occurs.
30 IBM CICS and Liberty: What You Need to Know

Figure 2-5 A cache hit means the servlet and business logic are not called

Servlets and JSP are configured for caching with entries in the cachespec.xml file. In Liberty,
this file has to be packaged within the application, either in WEB-INF or META-INF. The file
defines the structure and elements for cachespec.xml. This is in dev/api/ibm/schema.

DynaCache stores objects in a JVM heap or on disk. It later retrieves and serves them from
its cache based on data matching rules. It creates a unique user-defined key in which to store
and retrieve cache items.

With the Liberty profile, caches are defined in the server.xml file. To enable caching, add the
webCache-1.0 feature to the list of enabled features in the server.xml file. In Liberty, there is
no distinction between servlet cache instances and object cache instances. All cache
instances are a distributed map. Applications can include a cache-spec.xml file to customize
the response caching.

To define the cache, use the distributedMap element:

<featureManager>
 <feature>webCache-1.0</feature>
</featureManager>

<distributeMap id="baseCache" jndiName="services/cache/baseCache">
 <diskCache/>
</distributeMap>

When you enable the webCache-1.0 feature, the following caches are configured and
created:

� basecache with JNDI name services/cache/basecache
� default with JNDI name services/cache/distributedmap
Chapter 2. Application development 31

The messages.log file shows the following messages for the cache initialization:

DYNA0053I: Offload to disk is enabled for cache named baseCache in directory
/u/reds10/cicsts53/workdir/CREDS10A/DFHWLP/wlp/usr/servers/defaultServer/workarea/
_dynacache/baseCache.
DYNA0061I: Flush to disk on stop is disabled for cache name baseCache.
DYNA0059I: The disk cache configuration for cache name baseCache. The
configuration is: DiskCacheSize=100000 DiskCacheSizeInGB=3
DiskCachePerformanceLevel=3 DelayOffload=true DiskCacheEvictionPolicy=1
DiskCacheHighThreshold=80 DiskCacheLowThreshold=70 DataHashtableSize=477551
DepIdHashtableSize=47743 TemplateHashtableSize=1031
DYNA1001I: WebSphere Dynamic Cache instance named baseCache initialized
successfully.
DYNA1071I: The cache provider default is being used.
DYNA1056I: Dynamic Cache (object cache) initialized successfully.
DYNA1055I: Dynamic Cache (servlet cache) initialized successfully.

By default, this cache is in the server workarea directory, as shown in Figure 2-6.

Figure 2-6 Directory structure containing the cache

2.5 Application deployment options

In Java EE applications, modules are packaged based on their functionality. There are three
key archive types supported for deployment into Liberty in CICS:

� Web archive (WAR)

This is used to package a dynamic web project containing servlets, JSP files, supporting
files, gif, and HTML pages. This is the simplest form of archive, and is best used when
either simple web applications with limited external dependencies or when migrating a
web application from another server.

� Enterprise archive (EAR):

This is used to package enterprise applications containing EJB beans and one or more
web applications. This is the best archive to use when deploying EJB applications
because Liberty does not support EJB in Open Services Gateway initiative (OSGi).

� Enterprise bundle archive (EBA):

This is used to deploy OSGi application projects containing OSGi bundles and web
enabled OSGi bundles (WABs). This is the archive type to use for modular OSGi
application development, allowing you to share OSGi bundles between components in the
same runtime.
32 IBM CICS and Liberty: What You Need to Know

When dealing with Liberty applications running in CICS, several ways are available to deploy
applications as an archive file (WAR, EAR, or EBA). The first set of options uses Liberty
deployment methods. You can deploy an application either by dropping it into a previously
defined dropins directory or by adding an application entry to the server configuration. In
addition to this mechanism, you can use the CICS deployment method, which enables you to
package Liberty applications inside CICS bundles. In addition, you can share common utility
bundles between multiple applications when needed. This section provides an overview of
these options.

Figure 2-7 demonstrates the various ways a web application can be deployed to the Liberty
Profile in CICS.

Figure 2-7 Various ways to deploy a web application

2.5.1 Liberty deployment methods

The Liberty Profile supports two models for deploying applications. By default, Liberty looks
for applications in two directories: The apps and dropins directories in the server
configuration directory. By using the Liberty runtime, web applications can be copied into the
server dropins directory to be deployed, or they can be specified directly as applications
within the server.xml configuration file.
Chapter 2. Application development 33

Deploy to the dropins directory for a quick start
In a development environment, running your application in an expanded format is common.
The quickest way to do this is to use the dropins deployment method because this
automatically deploys your application. This method uses a predefined dropins directory that
is periodically scanned by Liberty. If any new applications are in this directory, the Liberty
configuration is updated with the changes so that the new application is deployed. Your
application can be packaged as an archive file, a directory, or as a loose application where
files are in multiple locations. When you use this model, CICS is not aware of the web
application that is running in the Liberty JVM server.

With this approach, there is no application specific entry in the server.xml file, so you do not
have as much control over certain aspects. Applications that are deployed by this method do
not benefit from additional qualities of service, such as security, and always run under the
CJSA transaction.

To automatically deploy applications using the dropins method, all you need to do is to enable
the feature in the applicationMonitor element. Then, just copy the application files in binary
mode to the ${server.config.dir}/dropins folder:

1. Verify application monitoring is defined in the server.xml, and update as needed.
Here is an example of the applicationMonitor element.

<applicationMonitor dropins="dropins" dropinsEnabled="true" pollingRate="5s"
updateTrigger="disabled"/>

The dropins property specifies the name of the directory used as the dropins directory.

The dropinsEnabled property determines whether the applications in the dropins
directory are deployed. In CICS by default, this is set to false.

The pollingRate property determines the interval amount and the unit of time (such as ms
for milliseconds, s for seconds, and so on).

The updateTrigger property specifies whether the Liberty server should monitor for
application updates. It has three possible values:

polled The runtime environment scans the server.xml file for changes
using the timing interval specified by the monitorInterval property
on the <config../> element.

Mbean The runtime environment only looks for updates when prompted to
do so through a call to an MBean. This is the mode that is used by
the developer tools to update the server.xml file, unless you
override it.

disabled The updates are not dynamically applied.

2. Copy the file in binary mode to ${server.config.dir}/dropins.

There are several options for placing applications in the dropins directory. Each provides a
way for the server to determine the application type.

Note: By default, in CICS, this deployment option is turned off. If you accept the defaults
provided by CICS, which specifies -Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true in
the JVM profile, the dropins directory is not automatically created or monitored by the
Liberty JVM server.
34 IBM CICS and Liberty: What You Need to Know

The following list describes the placement options:

� Place the archive file with its identifying suffix (ear, war, eba, and so on) directly in the
dropins directory: ${server.config.dir}/dropins/myApp.war

� Extract the archive file into a directory that is named with the application name and the
identifying suffix: ${server.config.dir}/dropins/myApp.war/WEB-INF/...

� Place the archive file or the extracted archive into a subdirectory that is named with the
identifying suffix: ${server.config.dir}/dropins/war/myApp/WEB-INF/...

If you put your applications in the dropins directory, you must not include an entry for the
application in the server configuration file or deploy the application in a CICS bundle resource.
Otherwise, the server tries to load the application more than once and an error might occur.

Deploy to the apps directory for more control
In certain situations, the preference might be to deploy an application to Liberty with more
control. As an alternative to using the dropins mechanism, you can manually define your
application in the server configuration and use the apps directory. This method consists of a
set of statements that locate the application and define its properties. This allows you to
specify additional properties, such as the context root, alter application start behavior, and so
on. You can use the <application…/> element, which supports the following attributes:

� ID: Must be unique and is used internally by the server.
� Name: Must be unique and dependent on the application.
� Type: Specifies the type of application; supported types are WAR, EBA, and EAR.
� Location: Specifies the path to the application; this can be an absolute path or URL.

The location attribute is the only required attribute for a declared application. The location can
be on the file system or at a URL.

The steps provided here show how to configure an application in the server configuration:

1. Define the application to the server configuration (server.xml)

<application id=myApp type="war" name="myApp" location="myApp.war"/>

2. Copy the file in binary mode to ${server.config.dir}/apps

Type-specific application elements can be used to simplify the declaration of applications:

� <republication.../>
� <osgiApplication.../>
� <enterpriseApplication.../>

These elements are used in a manner identical to the generic <application.../> element, but
eliminate the type attribute because the application type is built into the shorthand of the
element.

2.5.2 CICS deployment methods

CICS TS allows you to package web applications inside a CICS bundle project where you
have to reference the Liberty applications (WARs, EARs, or EBAs) as components. The
BUNDLE resource represents the application so you can also manage its availability by
enabling and disabling it in CICS. It is a collection of CICS resources, artifacts, references,
and a manifest that you can deploy into a CICS region to represent all or part of an
application.
Chapter 2. Application development 35

Deploy as a CICS bundle to manage application lifecycle
When you have created a CICS bundle project in CICS Explorer, you must export it to a CICS
region. You can either export the project directly to zFS (or any server with an FTP daemon),
or you can use the CICS build toolkit on a build machine to automate this function. You must
also define and enable a BUNDLE resource for the CICS bundle project. CICS then creates
the Bundle project resources dynamically for you. The CICS bundle deployment process from
CICS Explorer automates the creation of the Liberty application reference using the
installedApps.xml configuration file, which is included from server.xml. This approach is best
suited to a production environment.

The steps presented here show how to deploy the application in a CICS bundle resource:

1. Verify that the following line is in server.xml. This file is used to define CICS Bundle
deployed applications.

<include location="${server.output.dir}/installedApps.xml"/>

2. Create a CICS bundle definition to control the lifecycle of the application.

3. Add the application reference to the CICS bundle.

4. Export the CICS bundle project to a zFS location.

5. Create and install the CICS BUNDLE resource definition.

The installedApps directory is used to define CICS bundle deployed applications. This
include is added automatically if -Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true is
specified in the JVM profile.

2.5.3 Deploying shared (middleware) bundle

OSGi applications can share many common bundles. To simplify maintenance, an application
does not have to include its own copy of each bundle. Instead, bundles can be shared from a
bundle repository or a shared library. You can deploy the shared bundles in various ways
depending on how it is supplied, as DLL files, JAR files, or OSGi bundles.

Libpath
For middleware supplied as .dll files, copy the files to a directory that is referred to by the
LIBPATH_SUFFIX option of the JVM profile.

Bundle repository
For middleware supplied as OSGi bundle JAR files, you can share these common OSGi
bundles both locally or remotely so that your OSGi applications can access them. This can be
accomplished by placing them in a directory and configuring the bundleRepository element in
the server.xml.

Here is a local repository configuration:

<bundleRepository>
 <fileset dir="directory_path" include="*.jar"/>
<bundleRepository>

Note: You can export a Bundle directly to a zFS system only if your network is using
Internet Protocol version 4 (IPv4). The procedure does not work for IPv6 networks. The
port can be secured to accept Secure Sockets Layer (SSL) traffic. If this is done, CICS
Explorer detects this and switches to SSL mode so that no data flows decrypted. If an SSL
connection cannot be established, basic authentication is used.
36 IBM CICS and Liberty: What You Need to Know

The directory_path used to define a local OSGi bundle repository is the path to the directory
containing the common OSGi bundles.

Here is a remote repository configuration type:

<bundleRepository location="URL" />

The URL used to define a remote OSGi bundle repository defines the location of an OSGi
Bundle Repository XML file, and it supports HTTP, HTTPS, and file protocol types. You can
define a remote and local repository at the same time by using both a location attribute and
nested fileset tags within the same bundleRepository entry.

Shared libraries
Shared libraries provide a collection of classes that can be used by multiple applications or
data sources. You can use shared libraries and global libraries to reduce the number of
duplicate library files on your system. Libraries have three elements: <folder>, <file>, and
<fileset>. Copy the JAR files to a directory that is referred to in a global library definition in the
server.xml file:

<library>
 <folder dir="..." />
 <file name="..." />
 <fileset dir="..." includes="*.jar" scanInterval="5s" />
</library>

Where:

� <folder>: All resources under each configured folder will be loadable.

� <file>: Each configured file should be either a native library or a container for resources
(such as a JAR or a ZIP file). All resources within a container are loadable, and any other
file type that is specified will have no effect.

� <fileset>: Each configured fileset is effectively a collection of files. Each file in the fileset
should be a native library or a container for resources (such as a JAR or a ZIP file). All
resources within a container are loadable, and any other file type that is specified will have
no effect.

A library on the Liberty profile server is composed of a collection of file sets that reference the
JAR files to be included in the library.

There are three types of shared libraries in Liberty:

� Global shared libraries that allow all applications to share a common instance of the library

� Configured common libraries that allow specific applications to share a common instance
of the library

� Configured private libraries that allow specific applications to use private instances of the
library

A global shared library can be used by any application. The library is visible to all applications
deployed in the server. All applications access the same instances of those classes. The JAR
files are placed in a directory and then are specified in the class loader configuration for each
application. You can place global libraries in one of the following locations:

� ${shared.config.dir}/lib/global
� ${server.config.dir}/lib/global
Chapter 2. Application development 37

Using a global library can be useful in some situations, especially for CICS deployed WAR or
EAR components, but it does have drawbacks:

� All applications have visibility to the same static variables in the library classes (they are
not isolated)

� It is not possible to provide different versions of the same library for use by different
applications

When the application is started, if files are present in the global location, and that application
does not have a <classloader> element configured, the application uses the global libraries. If
a class loader configuration is present for the application, the global libraries are not used
unless explicitly referenced.

The following code shows a global library entry added to the server configuration (server.xml)
file:

<fileset dir="/u/myApp/shared" id="myappshare" includes="*.jar"/>
 <library filesetRef=" myappshare" id="global"/>

A configured library can be used in an application by creating a classloader definition for the
application in the server configuration. The application classloader can share the in-memory
copy of the library classes with other applications, or it can have its own private copy of the
classes that are loaded from the same location. A shared library can be used only by
applications that are explicitly configured in the server.xml file. Applications without
configuration, such as those placed in the dropins directory or those deployed using CICS,
cannot use a global shared library.

The following code shows a library entry added to the server configuration (server.xml) file
and applications using the classloader child element:

<library id="myLibrary">
 <fileset dir="${shared.resource.dir}/lib" includes="*.jar" />
 <file name="${shared.resource.dir}/App/app.jar"/
</library>

<application location="Application1.war">
 <classloader commonLibraryRef="myLibrary"/>
</application>

<application location="Application2.war">
 <classloader privateLibraryRef="myLibrary"/>
</application>

In this example, Application1 shares its copy of the myLibrary classes with any other
application that specifies it as a commonLibraryRef. Application2 has its own private copy of
the myLibrary classes. Common libraries are useful where different versions of a library
should be made visible to different applications, but the same instance of each version can be
safely shared by the consuming applications. This limits the memory use of the library
classes. Private libraries are useful where a shared library instance needs to be isolated for
each application, or if the library needs to be able to access the application classes.
38 IBM CICS and Liberty: What You Need to Know

2.6 Application redeployment options

When configuring the Liberty Profile to run in CICS, important considerations are the
methods for updating applications when you want to make changes. In the previous section,
we described the various methods for deploying applications to run in Liberty Profile. In this
section, we look at the ways to redeploy those applications so your changes are picked up.

2.6.1 Redeploy by using Liberty deployment methods

Within Liberty, three types of dynamic updates can be controlled through the configuration:

� Changing the server configuration
� Adding and removing applications
� Updating installed applications

For all deployed applications, you can configure whether application monitoring is enabled
and how often it should check for updates to applications. When deployed applications are
monitored for updates, the updates are dynamically applied to the running application. This
applies both to applications that are deployed from the dropins directory or applications that
are deployed through configuration entries in server.xml. In addition, for the dropins directory,
you can also configure the name and location of the directory and choose whether to deploy
the applications that are in that directory.

Within a CICS Liberty JVM server, application monitoring is turned off by default. So if you are
using the Liberty deployment methods to deploy your applications, you must enable
application monitoring by specifying the applicationMonitor element within server.xml. This
element defines how the Liberty server responds to application additions, updates, and
deletions. For example, the following line causes Liberty to scan the dropins folder every
5 seconds for any application updates, and for any applications that have been added or
removed. The pollingRate is applicable only when the updateTrigger is set to polled:

<applicationMonitor dropins="dropins" dropinsEnabled="true" pollingRate="5s"
updateTrigger="polled"/>

For applications that are deployed using the app directory, the config element can be used to
control how often the server.xml file is scanned for updates:

<config monitorInterval="5s" updateTrigger="polled"/>

For applications in the dropins directory, the file name and file extension are used by the
application monitor to determine the type of application, and to generate the application ID
and application name. Therefore, specifying the version number for the application by using
the file name or file extension is not possible. In a production environment, we suggest that
you not use the dropins directory.

2.6.2 Redeploy using CICS bundle deployment

Within a CICS environment, the preference is to deploy web applications using a CICS
bundle. This allows CICS to manage the lifecycle of the application so that updating and
managing are easier.
Chapter 2. Application development 39

There are three main methods for redeploying Liberty web applications when using a CICS
bundle project.

� Refresh the bundle in the Liberty JVM
� Create a version of the bundle with a new context root URI
� Use cloned JVM servers and set up load balancing

In this section, we look at each of these options. We also discuss the shared bundles and
what to consider for deployment.

Refresh the bundle
The first method that you can use to redeploy a CICS bundle is to replace the deployed CICS
bundle project completely with a new version of the project. This method can be used when a
server outage can be tolerated during the update process. No new CICS resources are
created, but you might need to update the existing CICS BUNDLE resource definition. To
replace an existing Bundle with a new version of the application, you can do the following
steps:

1. Create a new version of the web application.

2. Export to the same zFS location as the old version.

3. Disable the installed BUNDLE resource that represents the previous version. This
removes and stops the application.

4. Enable the installed BUNDLE resource. This reinstalls the application.

The new version of the application is now deployed to the Liberty server. This method is a
quick way of redeploying changes to an application, but has the disadvantage that it will
cause an outage in a production environment.

Version the bundle and context root
The next two methods allow you to maintain multiple versions of the bundle as one. Within
CICS, managing changes to CICS bundles is accomplished by using version control if
possible. Each CICS bundle project has an ID and version information that uniquely identifies
it. This means that the CICS bundle ID does not need to be unique because it is qualified by
the version. This allows you to have more than one version of the CICS bundle installed at the
same time.

The second approach to using version control is to create a new version of the bundle with a
new URL for the context root. Using this approach allows for two versions of the application to
be active at the same time. The application can then be switched between different versions
by updating the reference to the URL. Use the following steps to perform this process:

1. Create a new version of the web application with a new URI context root

2. Add the web application to a new version of your CICS bundle project (using the same ID
but a new version)

3. Export to a new location in zFS

4. Create a new BUNDLE resource referring to the new zFS location

5. Install new CICS BUNDLE, and the web application is enabled because the URL is unique

Note: At Step 2, you can optionally export to a different zFS directory, which would enable
you to roll back to the previous version more easily. However, if you do this, you need to
edit the BUNDLE resource to modify the BUNDLEDIR attribute to reference the new zFS
directory, and then discard and reinstall the BUNDLE resource.
40 IBM CICS and Liberty: What You Need to Know

The updated version of the bundle is deployed alongside the old version. This versioning
method results in no outage to the users, but since Liberty does not allow web applications
with duplicate URLs to be installed, it does require a different URL for the context root of the
new version. Therefore, you need some forwarding proxy to handle this externally to CICS.

When you are satisfied that the new version of the application is working, you can disable and
discard the BUNDLE resource for the old version of the application. In addition, to ensure that
the new version of the bundle is installed if a cold or initial start occurs, ensure that you
update any CICS group lists that reference the CSD groups that contain the BUNDLE
definition for the old version to reference the CSD groups that contain the new bundle
definition.

Table 2-1 shows a versioning scheme that can be used with a web application deployed in an
EBA in a CICS bundles project.

Table 2-1 Versioning scheme for CICS bundles with EBAs

Cloned JVM servers
The third method for redeploying your web applications is to use cloned JVM servers and use
a load balancing mechanism to distribute the web requests between the servers. An instance
of a JVM server can be easily created or cloned. The cloned JVM servers will appear identical
to the user. As users request a CICS web application, they will not distinguish what JVM clone
is servicing their requests.

Item Configuration
attribute

V100 V101

CICS bundle resource
definition

BUNDLE resource in
CSD

MYBUN100 MYBUN101

CICS bundle zFS
location

BUNDLEDIR attribute
on BUNDLE resource

mybundle.eba.cicsbun
dle_1.0.0

/mybundle.eba.cicsbu
ndle_1.0.1

CICS bundle ID cics.xml id= ""mybundle.eba.cicsbu
ndle

mybundle.eba.cicsbun
dle

CICS bundle version cics.xml
bundleMajorVer="1"
bundleMinorVer="0"
bundleMicroVer="n"

1.0.0 1.0.1

EBA symbolic name OSGi application
manifest:
Application-SymbolicN
ame:

mybundle.eba mybundle.eba

EBA version OSGi application
manifest:
Application-Version:

1.0.0 1.0.1

WAB bundle ID WAB MANIFEST.MF
Bundle-SymbolicNam
e:

mybundle.wab mybundle.wab

WAB bundle version WAB MANIFEST.MF
Bundle-Version:

1.0.0 1.0.1

Context root URI ibm-web-ext.xml
<context-root uri=" " />

app100 app101
Chapter 2. Application development 41

Start the newly cloned JVM server, and install the new version of your application. Meanwhile,
continue to run the old version in the old JVM server. When you are happy with the newly
cloned server and updated application, phase out the old JVM server.

This solution can handle an outage, although, during initialization of the Liberty JVM server,
there will be a period during which the HTTP listener is active and the web applications might
not yet have finished installing. In this case, Liberty returns the error Context Root Not Found
until the application is successfully started.

2.7 Migrating a Java EE application to Liberty

To migrate a Java EE application from a third-party Java Platform, Enterprise Edition server to
Liberty in CICS, the Java EE environment that is required by the application must be provided
by Liberty. This environment consists of the Liberty features installed in the server, instance
configuration for specific resources (for example, data sources, connection factories) and
other data, such as system properties. The primary mechanism for configuring the Liberty
server environment, the server.xml configuration file, is different from that used by other Java
Platform, Enterprise Edition application servers so the required environment must be
migrated to server.xml definitions.

This section gives an overview of the main considerations when migrating a Java Platform,
Enterprise Edition application to Liberty in CICS and the tools available to help with this. The
main considerations are:

� Application validation
� Java EE server environment migration
� External dependency migration

These are considered in turn, although they would not necessarily always be performed in
this exact order.

2.7.1 Application validation

The first step in migrating a Java Platform, Enterprise Edition application to Liberty in CICS is
to check that the application is eligible for migration, that is, it uses only Java Platform,
Enterprise Edition features that are supported in Liberty in CICS. This can be done manually
by checking the application design documentation, source code, and so on, or tools can be
used to assist.

WebSphere Liberty provides a suite of tools to assist in migrating web applications from
WebSphere Application Server full profile or other Java Platform, Enterprise Edition servers
to the Liberty profile. The rest of this section gives an overview of these tools and how they
can be used to help configure Liberty in CICS. In Chapter 8, “Implementing security options”
on page 143, we guide you through the process of using the tools to help migrate a web
application.

Migration toolkit for application binaries files (technology preview)
This command-line tool is a Java application that can analyze the packaged binary of an
existing Java Platform, Enterprise Edition application and produce a report in the form of an
HTML file:

� An overview Technology Report that identifies the Java Platform, Enterprise Edition
technologies, roughly equivalent to Liberty features, which are used by the application,
and whether those technologies are supported in the target server environment.
42 IBM CICS and Liberty: What You Need to Know

� A more detailed Analysis Report for migrating the application from a specified source
server to a specified target server. This tool incorporates a set of source-target specific
rules, which are used to check the application binary and produce a report of the rules that
match.

The command line Analysis Report tool is a limited version of the Eclipse-based Migration
Toolkit below, capable of analyzing migration only from WebSphere V7.0+ and Java SE V6+
to Liberty.

WebSphere Application Server Migration Toolkit
This Eclipse-based tool performs the same task as the second of the command-line tools
listed, although capable of analyzing rules for migration from earlier versions of WebSphere,
and third-party servers. Because it is integrated into Eclipse, it can also pinpoint source code
locations where changes need to be made.

For more information about the WebSphere Application Migration Toolkit and its use, see:

https://developer.ibm.com/wasdev/docs/move-applications-liberty-using-migration-to
olkit

What to do if your application depends on unsupported features
In this case, the application has to be remediated to remove dependencies on the
unsupported features before it can be migrated. This is a manual development task, which
can be assisted by the tool in the WebSphere Application Server Migration Toolkit. The tool
can help by suggesting source code changes as quick fixes.

2.7.2 Server environment migration

The next stage of migration is to extract details of the server configuration from the original
Java Platform, Enterprise Edition server, and replicate these in server.xml. Only those
elements of the configuration that are required by the application need to be migrated. The
required subset can be determined referring to the results of the application validation stage
above.

There are a number of ways to determine which features and resources need to be
configured in Liberty:

� Manual analysis of the application, with information from the application migration exercise

The results of the validation step above will show which features and resources are
required by the application. This informs you which of the configuration properties from the
original Java Platform, Enterprise Edition server will need to be migrated.

� From the existing Java Platform, Enterprise Edition server configuration

The existing Java Platform, Enterprise Edition server configuration can be checked from
its configuration files or administrative console. Alternatively, in the case of the WebSphere
Application Server full profile, the configuration can be extracted from the running server
as a set of properties, using wsadmin AdminTask.extractConfigProperties.

Note: Because the WebSphere Application Server Migration Toolkit is not tailored for
CICS, it does not report features that are unsupported in Liberty in CICS, nor any
restrictions that apply to the available features. For details about the available features and
restrictions that need to be checked against the application dependencies, see the latest
CICS IBM Knowledge Center page at this site:

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.do
c/topics/liberty_features.html
Chapter 2. Application development 43

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/topics/liberty_features.html
https://developer.ibm.com/wasdev/docs/move-applications-liberty-using-migration-toolkit/

Equivalent configuration declarations can then be added to server.xml.

� Using the WebSphere Configuration Migration tool

WebSphere Liberty provides an Eclipse-based tool, which can analyze the configuration
of another Java Platform, Enterprise Edition server and generate configuration fragments
suitable for inclusion in a WebSphere Liberty configuration.

An overview of the migration tool is available at this site:

https://developer.ibm.com/wasdev/downloads/#asset/tools-WebSphere_Configuration
_Migration_Tool

In Chapter 8, “Implementing security options” on page 143, we give an example of updating a
server.xml Liberty configuration file to support a web application using servlets, JSP, and a
JCA connection.

2.7.3 External dependency migration

So far in this section, we discussed the issue of migrating the application view of a Java
Platform, Enterprise Edition server, comprising the Java Platform, Enterprise Edition features
and resources required by the application. In some cases, an application has external
dependencies, for example on a database, web services, or JCA connection. When the
application is moved to Liberty in CICS, it might make sense for some of these dependencies
to be migrated at the same time.

Therefore, the last stage in the migration is to consider whether any of the application’s
external dependencies should be migrated along with the application, for example:

� A JDBC connection to a local database might be migrated to DB2 on z/OS accessed using
a Type-2 JDBC connection

� Web services calls to CICS programs can be replaced with direct JCICS calls

� A JCA connection using CTG can be changed to use a local CICS ECI connector

The migration of these external dependencies needs to be considered on a case-by-case
basis. The resources that are potential candidates for migration are those that have earlier
been configured in server.xml, plus other external dependencies, such as web services
endpoints, which might not explicitly appear in server.xml.
44 IBM CICS and Liberty: What You Need to Know

https://developer.ibm.com/wasdev/downloads/#asset/tools-WebSphere_Configuration_Migration_Tool
https://developer.ibm.com/wasdev/downloads/#asset/tools-WebSphere_Configuration_Migration_Tool
https://developer.ibm.com/wasdev/downloads/#asset/tools-WebSphere_Configuration_Migration_Tool
https://developer.ibm.com/wasdev/downloads/#asset/tools-WebSphere_Configuration_Migration_Tool

Chapter 3. Workload management

Workload management is the process of defining performance goals for the items of work in a
system (such as in a CICSplex or across the network). Using a workload manager
technology, the workload can be allocated to meet those performance goals. Workload
management consists of two main features:

� Load balancing
� Affinity management

Load balancing (workload balancing) refers to the distribution of requests across multiple,
available target regions. This allows you to increase the overall throughput of the system.
There are different methods of workload balancing:

� The first approach is to use a predefined round-robin or randomized technique.

� The second approach is to use an advisor that checks the availability of the target servers
before selecting the server to route the request to.

� The third approach is to have performance monitors in each server providing statistics that
can be used to select a server based on its overall level.

Affinity management provides a way to manage your requests to a specific server instance,
such as a CICS region or Liberty server. Using affinities means that you have the ability to
route subsequent requests in a logical conversation to the same server that serviced the first
request. This is a characteristic of a CICS application that constrains transactions to run in a
specific region or server due to the presence of shared state, such as temporary storage. For
web applications, affinities can be an issue when load balancing HTTP requests because of
the use of HTTP session data. For more information about this, see 3.2.3, “HTTP session
management” on page 52.

Within CICS, the ability to distribute the workload across multiple resources is important
because it can prevent a CICS region from becoming constrained, and allow multiple CICS
regions to be better used. There are different methods that can be used to provide high
system availability and workload management for CICS web applications running in a Liberty
JVM. In this section, we discuss workload balancing as it relates to the following technologies:

� IP load balancing
� Web server plug-in
� CICSPlex SM workload management

3

© Copyright IBM Corp. 2016. All rights reserved. 45

3.1 IP load balancing

To avoid being dependent on a single CICS router region, consider using more than one
Liberty owning region to share the incoming HTTP connection from the network. You can use
several techniques to balance the connections between your Liberty owning regions. The
z/OS Communications Server integrates TCP/IP and IBM Workload Manager (WLM) on z/OS
to provide two main technologies that can be used:

� Port sharing
� Sysplex Distributor

3.1.1 Port sharing

TCP/IP port sharing is a simple way to balance HTTP connections across a group of cloned
Liberty JVM servers, providing failover and workload balancing across multiple Liberty owning
regions within a single logical partition (LPAR). This load balancing is based primarily on the
number of established sockets to each port.

Each Liberty server is configured to listen on the same TCP/IP port number, with either the
SHAREPORT or SHAREPORTWLM option specified in the TCP/IP stack profile. This enables a group
of cloned regions to listen on the same port. As the incoming client connections arrive for this
port, TCP/IP distributes them across the available CICS regions listening on this shared port
using a weighted round-robin approach. TCP/IP selects the CICS region with the least
number of connections at the time of the incoming client connection request. SHAREPORT
selects a CICS region based on a round-robin distribution. Figure 3-2 on page 48 illustrates
configuring port sharing across cloned CICS regions. This configuration allows multiple
Liberty servers to listen on the same port from the same IP stack. In the example that is
shown in Figure 3-2 on page 48, CICSA and CICSB have Liberty servers that are listening on
port 1234. All requests addressing this IP stack’s port 1234 are distributed between these
CICS regions, in a round-robin fashion.
46 IBM CICS and Liberty: What You Need to Know

Figure 3-1 TCP/IP SHAREPORT configuration

Port sharing is ideal for failover scenarios because it can rapidly detect failing regions. It also
works in tandem with the second option provided by TCP/IP, Sysplex Distributor, to provide a
combined high-availability approach across CICS regions in the same LPAR and across
different LPARs in a sysplex.

3.1.2 Sysplex Distributor

The second option is to set up an Internet Protocol network with Sysplex Distributor, which is
designed to address the requirement of one single network-visible IP address for the whole of
the sysplex.

Sysplex Distributor uses dynamic virtual IP addresses (DVIPAs) to increase availability and
help distribute the workload by allowing connections to be distributed across listeners on
multiple IP stacks within a sysplex. This option must be used if the CICS regions reside on
separate LPARs or connect to separate IP stacks within the same LPAR.

With this function, you can implement a DVIPA as a single network-visible IP address that is
used for a set of servers belonging to the same sysplex. A client on the IP network sees the
sysplex as one IP address, regardless of the number of servers in the backend. With Sysplex
Distributor, clients receive the benefits of workload distribution and a failover mechanism that
is positioned at the entry to the sysplex.
Chapter 3. Workload management 47

There are several advantages to using Sysplex Distributor over other load balancing
implementations:

� Cross-system coupling facility (XRF) links can be used between the distributing stack and
target servers.

� Sysplex Distributor provides a total z/OS solution for TCP/IP workload distribution.

� Sysplex Distributor provides real-time load balancing for TCP/IP applications, even if
clients cache the IP address of the server.

� Sysplex Distributor provides for takeover of the virtual IP address (VIPA) by a backup
system if the distributing stack fails.

� Sysplex Distributor enables nondisruptive take back of the VIPA original owner to get the
workload to where it belongs. The distributing function can be backed up and taken over.

HTTP listeners for multiple Liberty servers can be configured to listen on the same distributed
DVIPA and port, and each VIPA is defined with the VIPADISTRIBUTE option. The TCP/IP stack
then balances connection requests across the listeners.

Figure 3-2 Sysplex Distributor with TCP port sharing

3.2 Web server plug-in

The web server plug-in is provided with WebSphere Application Server or WebSphere
Application Server Liberty Profile and is licensed for usage with CICS TS. The plug-in acts as
an HTTP client that forwards the HTTP requests from the web server to the application
server, which in this case is the Liberty server in a CICS region. It is implemented as a library
48 IBM CICS and Liberty: What You Need to Know

that needs to be installed into the web server and is loaded at startup, and uses the HTTP
protocol to redirect HTTP requests from the web server to the Liberty server in CICS.

The web server can either run on the same z/OS system as the application server Figure 3-4,
or on a different system than the application server, as shown in Figure 3-3.

Figure 3-3 Remote web server plug-in scenario

Figure 3-4 Local web server plug-in scenario

There are several reasons why you might want to use a web server and associated plug-in
with a web application deployed to a Liberty JVM server:

� The plug-in provides workload management and failover capabilities by distributing
requests evenly to multiple Liberty servers and routing requests away from a failed Liberty
server.

� The web server provides an additional hardware layer between the web browser and the
application server, which can be incorporated into a secure DMZ architecture. Existing
Chapter 3. Workload management 49

HTTP-based security procedures, such as SSL client authentication, can be used in the
DMZ layer to protect the enterprise systems and then valid requests forwarded onto the
enterprise system by the plug-in.

� Encrypted SSL connections can be terminated at the web server, thus removing the
requirement for SSL processing in the enterprise system.

� The plug-in provides integration with a web server for the serving of static content without
doing a full round-trip to the application server and back. For more information about
optimizing the serving static content, see Chapter 7, “Configuring the web server plug-in”
on page 133.

Figure 3-5 Web server plug-in processing

The web server plug-in consists of the following components (Figure 3-5):

� Web server process: This receives the request first

� The httpd.conf file: Contains the reference to the plug-in.so/dll file and reference to
the plug-in configuration file

� The web server plug-in: This is loaded by the web server during startup and runs inside
the same process as the web server

� The plug-in-cfg.xml file: The plug-in configuration file, which contains information about
which URLs are served by the application servers

� The web container: In the CICS scenario, this is the Liberty JVM server that handles the
request

The web server gives the plug-in an opportunity to handle every request first. It takes a
request and checks the request against the configuration data. If the configuration data maps
the URL for the HTTP request to the host name of an application server, the plug-in then uses
this information to forward the request on to the application server. But if the plug-in is not
configured to forward the request (URL), the request goes back to the web server for
servicing.
50 IBM CICS and Liberty: What You Need to Know

The plug-in configuration file needs to be regenerated and propagated to the web servers
when there are changes to your Liberty server configuration that affect how requests are
routed from the web server to the application server. These changes include:

� Installing an application
� Creating or changing a virtual host
� Creating a new Liberty server
� Modifying HTTP transport settings

3.2.1 Load balancing

To do load balancing using plug-in files, the web server maintains information about the
back-end web containers and applications. Based on these configured settings, the web
server forwards requests to its corresponding back-end web container. The plug-in
configuration file contains all of the information about the target servers, such as the
application URLs, session affinities, and weightings.

The plug-in can be configured to route requests using one of two load balancing methods:

� Round-robin load balancing is the default algorithm where the workload is distributed
across the group of servers based on the configured LoadBalanceWeights. The first
request that arrives is routed to a randomly selected server. After that, the plug-in uses the
next server in the list, and so forth. Each time that a server is chosen, the load balance
weight is decremented by one. Any server with a weight below 0 is longer considered for
new route requests. But, affinity requests still go through to that server. When all servers
have a weight of less than 0, the plug-in resets the weights to the starting values.

� Random load balancing is where the requests are forwarded among the group of servers
on a random basis. This approach does not use the load balance weight.

Using the web server plug-in, you can distribute the load between a single web server and
multiple Liberty JVM servers running in CICS on z/OS. However, the load balancing options
are impacted by the session affinity. After a session is created at the first request, all the
subsequent requests have to be served by the same Liberty server. The plug-in retrieves the
Liberty server that serviced the previous request by analyzing the session identifier and tries
to route to this same server.

3.2.2 Failover

When the plug-in can no longer connect to or receive a response from a specific Liberty
server, the session affinity is broken. This is considered a plug-in failover. This results in the
Liberty server being marked as down. Therefore, the web server plug-in no longer attempts to
route requests to that server. There are three plug-in properties that affect failover directly.

ServerIOTimeout is the number of seconds the plug-in waits for a response from the Liberty
server before it times out the request. The recommended value is 120 seconds. Failover
typically does not occur the first time that this time limit is exceeded for either a request or a
response. Instead, the web server plug-in tries to resend the request to the same Liberty
server, using a new stream. If the specified time is exceeded a second time, the web server
plug-in marks the server as unavailable, and initiates the failover process.

ConnectTimeout is the number of seconds the plug-in should wait for a response when trying
to open a socket connection to the Liberty server. The default is 0, which means to never time
out. It is recommended to keep this value small. If a request connection exceeds this limit, or
the Liberty server returns an HTTP 5xx response, the web server plug-in marks the server as
down, and attempts to connect to the next application server in the list. If the plug-in
Chapter 3. Workload management 51

successfully connects to another Liberty server, all requests that were pending for the down
Liberty server are sent to this other server.

RetryInterval is the number of seconds the plug-in waits before attempting to route requests
to a Liberty server that was previously marked as down. The recommended value is 60
seconds as most servers are recoverable.

If a Liberty server responds to an HTTP request with an application failure error, such as the
HTTP Not Found error 404, the plug-in does not view this as a permanent failure. This
response code will be returned by a Liberty JVM server for unknown URLs during the JVM
server startup process as Liberty applications are being started.

3.2.3 HTTP session management

In some web applications, application state date will be dynamically created as users
navigate through the website. Where the user goes next, and what the application displays as
the user’s next page, or next choice, depends on what the user has chosen previously from
the site. In order for this to occur, a web application needs a mechanism to hold the user’s
state information over a period of time. However, HTTP does not recognize or maintain a
user’s state. It treats each user request as a discrete, independent interaction.

The Java EE specification provides a mechanism known as a session for web applications to
maintain a user’s state information. A session needs to be serviced all within the same JVM
server. Otherwise, each JVM will see only one or two requests and get confused. This is
known as a session affinity. The web server plug-in assures the session affinity is maintained
in the following way: Each server Clone ID is appended to the session ID. When an HTTP
session is created, its ID is passed back to the browser as part of a cookie or URL encoding.
When the browser makes further requests, the cookie or URL encoding is sent back to the
web server. The web server plug-in examines the HTTP session ID in the cookie or URL
encoding, extracts the unique ID of the cluster member handling the session, and forwards
the request.

The application server ID can be seen in the web server plug-in configuration file, as shown in
Example 3-1.

Example 3-1 Server ID from the plug-in-cfg.xml file

<?xml version="1.0" encoding="ISO-8859-1"?>
<!--HTTP server plug-in config file for the cell ITSOCell generated on 2004.10.15
at 07:21:03 PM BST-->
<Config>
......
 <ServerCluster Name="MyCluster">
 <Server CloneID="vuel491u" LoadBalanceWeight="2" Name="NodeA_server1">
 <Transport Hostname="wan" Port="9080" Protocol="http"/>
 <Transport Hostname="wan" Port="9443" Protocol="https">

</Config>

Liberty keeps information about the user’s session on the server. It passes the user a session
ID, which correlates an incoming user request with a session object maintained on the server.
By default, Liberty stores session objects in memory. When session data must be maintained
across a server restart or an unexpected failure, you can configure the Liberty server to
persist the session data to a database using the sessionDatabase-1.0 feature. This
configuration allows multiple servers to share the same session data, and session data can
be recovered if there is a failover.
52 IBM CICS and Liberty: What You Need to Know

For more information about how to set up and configure the web server plug-in for usage with
CICS Liberty, see Chapter 8, “Implementing security options” on page 143.

3.3 CICSPlex SM workload management

Workload management in CICS can be achieved by dynamically routing work between
several CICS regions. You have to manage several CICS address spaces to manage the
workload. You can choose to run these regions as separately connected systems in a
multiregion operation (MRO) complex, or you could define them as CICSPlex System
Manager (CICSPlex SM)-managed regions. Multiple CICS regions can communicate with
each other and cooperate to handle inbound work requests. This specialized type of cluster is
called a CICSplex.

Typically a CICSplex consists of one or more terminal-owning regions (TORs) connected to a
group of application-owning regions (AORs). The workload originates in the TORs and is then
routed to one of the available AORs. For web applications, the work is not initiated from a
terminal, but from a web browser that sends an HTTP request to the HTTP listener in a
Liberty JVM server. We term each of these CICS regions hosting a Liberty JVM server as a
Liberty-owning region (LOR), each of which can then use dynamic routing of distributed
program link (DPL) requests to the business logic in a set of remote AORs.

Figure 3-6 CICSPlex SM dynamic routing with Liberty

Using dynamic routing can provide high availability as well as manage the workload within a
CICS sub-system. CICSPlex SM Workload Management (WLM) can be used to distribute the
workload between multiple target regions. It augments its workload management routing
decisions by using the current status information posted from the CICS regions. To optimize
the workload routing in a sysplex, you must configure and monitor a region status (RS) server
as part of a coupling facility data table.
Chapter 3. Workload management 53

CICSPlex SM Workload Management facilities create a list of suitable target candidate CICS
regions based on:

� The transaction
� The terminal ID, LU-name, user ID, or process type

The list of candidate targets is based on the workload to which the requesting or routing
region belongs.

CICSPlex SM does not do the routing. CICS still performs the routing based on information
received from CICSPlex SM.

CICSPlex SM Workload Management is based on workloads. The workload determines the
routing regions the workload will apply and the behavior of the work entering the routers using
routing rules. When you establish a workload, you associate the work itself with the CICS
regions to form a single, dynamic entity. Within this entity, you can route the work in two ways:

� Using workload balancing: You can route the task to a target region that is selected based
on the availability and activity level of the regions.

� Using workload separation: You can route the task to a subset of the target regions based
on a specific criteria.

3.3.1 Workload balancing

Workload balancing is the process that decides which target region is considered the most
suitable to route the task to, assuming that it is possible to send work there and that it does
not have an affinity in place. It is the most basic configuration because it allows you to balance
the dynamic transactions and program links across all of the available target CICS regions
that are associated with the workload. It does not distribute the work evenly or consistently. It
simply provides CICS with the best target region at the moment of the request from all of the
possible candidates.

Workload balancing uses a combination of health factors to determine which region is the
best fit and requires that three items are in place:

� A workload specification (WLMSPEC) to identify the default target scope for the workload.
This is associated with each CICS region that specifies EYU9XLOP as the dynamic
routing program or distributed routing program in the system initialization table (SIT).

� A CICS system definition (CSYSDEF) for each CICS system that specifies the Workload
Manager status of the system.

� The CICS system connects to a CICSPlex SM address space (CMAS) allowing the
workload management facility to initialize for transaction routing.
54 IBM CICS and Liberty: What You Need to Know

Figure 3-7 Monitoring of health factors for workload balancing

3.3.2 Workload separation

Workload separation allows you to separate tasks and program occurrences and direct them
to a subset of target regions. The workload can be balanced across this subset of target
regions. The target scope for a separated workload can vary from a single AOR to a large
AOR group consisting of multiple CICS regions. If an AOR group is the target, the routing
algorithm is applied to select the most suitable region from those defined to it.

The criteria that you use to separate transactions or programs can be based on the following
items:

� The terminal ID and user ID that are associated with a transaction or program occurrence

� The process type that is associated with the CICS business transaction services (BTS)
activity

� The transaction ID

� A selected target region based on its affinity relationship and lifetime

To perform workload separation, you also need a few more resources:

� A transaction group (TRANGRP) to identify the characteristics of a set of dynamic
transactions.

� The WLM definition (WLMDEF) to identify the target scope used to route the transaction in
the TRANGRP.

� A WLM group (WLMGROUP) that contains one or more WLMDEFs that are to be installed
together. The WLMGROUP can be associated with a WLMSPEC in case all of the child
WLMDEFs are installed at workload initialization.
Chapter 3. Workload management 55

Figure 3-8 Resources needed for workload separation

Workload balancing and workload separation can be active concurrently in the same or
different workloads associated with a CICSplex. Workload balancing can be used in addition
to, or in place of, workload separation.
56 IBM CICS and Liberty: What You Need to Know

Chapter 4. Security options

This chapter gives an overview of how the Liberty JVM server implements Java Platform,
Enterprise Edition security, along with the integration it provides with traditional CICS security.
This chapter highlights and explains choices that you can make to tailor Liberty JVM security
to meet your needs.

For more information about how to set up and implement CICS Liberty security, see
Chapter 8, “Implementing security options” on page 143.

This chapter describes the following topics:

� Java Platform, Enterprise Edition security
� Confidentiality
� Security registries

4

© Copyright IBM Corp. 2016. All rights reserved. 57

4.1 Java Platform, Enterprise Edition security

When you click a link to invoke a web application, what happens in CICS Liberty JVM server
before that web application gets control? There is a series of steps, defined by Java Platform,
Enterprise Edition specifications, which take place in the web container to ensure that the
user is authorized to run the web application.

4.1.1 Deployment descriptor

The first item to understand in Java Platform, Enterprise Edition security is the web
deployment descriptor. This is the web.xml file that is in the WEB-INF subdirectory of a web
project. Example 4-1 shows our GenAppWeb example.

Example 4-1 Web deployment descriptor

<login-config>
<auth-method>BASIC</auth-method>

</login-config>
 <security-constraint>

<display-name>Broker Role</display-name>
<web-resource-collection>

<web-resource-name>GenAppWeb</web-resource-name>
<url-pattern>/*</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name> Broker</role-name>
</auth-constraint>

 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>

</security-constraint>

The key items in the web.xml file in Example 4-1 are:

� Authentication method

Using the <login-config> element and its <auth-method> sub element is key to defining
how a user of this web application is authenticated by the web container. If the
<auth-method> element is present, the user must be authenticated to access any resource
that is constrained by a <security-constraint> rule in web.xml. The three authentication
method options available in Liberty are BASIC for basic authentication, FORM for
form-based authentication, or CLIENT-CERT for Secure Sockets Layer (SSL) client
certificates. In addition, the Java Platform, Enterprise Edition specification supports
DIGEST authentication. However, this is not available in Liberty.

� URL pattern

The <url-pattern> defines the URLs in the web application to which this security
constraint applies. In our example, all URLs are protected by using the /* prefix.

� Role name

The <role-name> element is the access group the server uses for authorization to this
application. In this example, all users need to be in the Broker role.

� Transport guarantee

The <transport-guarantee> sub element of the <user-data-constraint> defines
whether encryption is required when accessing this application. If CONFIDENTIAL is
58 IBM CICS and Liberty: What You Need to Know

listed, a protected transport layer connection, such as HTTPS is required when accessing
this application. Thus, you need to define an <httpEndpoint> in the server.xml configured
to use an httpsPort.

For general details about Java EE 6 application security, refer to the Oracle Java EE 6 tutorial
at:

https://docs.oracle.com/cd/E19226-01/820-7627/bncbk/index.html

4.1.2 Key steps in security processing

Figure 4-1 illustrates the steps in security processing of an HTTP request running in a Liberty
JVM server.

The Liberty angel process is a key part of any Liberty server security infrastructure on z/OS.
The angel process provides a Liberty server with access to z/OS authorized services, such as
System Authorization Facility (SAF) authentication and authorization. Each Liberty server
must register with the angel at startup to use authorized services. However, registration is
limited to only one process per address space. This means that it is only possible to configure
one Liberty JVM server per CICS region to use the function of the cicsts:security-1.0 feature.

Figure 4-1 Security processing of HTTP requests

The three steps in Liberty server security processing are as follows:

� Authentication by the web container
� Authorization by the web container
� Security processing during CICS transaction attach

Note: Instead of using the <role-name> element in an authorization constraint in web.xml
to grant access to specific roles, it is also possible to programmatically declare which roles
are authorized to access Java components. This can be done by using either annotations,
such as @RolesAllowed, or the isCallerInRole() method. For more information about
securing Java EE components programmatically, see the following tutorial:

https://docs.oracle.com/cd/E19798-01/821-1841/gjgcq/index.html
Chapter 4. Security options 59

https://docs.oracle.com/cd/E19226-01/820-7627/bncbk/index.html
https://docs.oracle.com/cd/E19798-01/821-1841/gjgcq/index.html

Authenticate
The first step is authentication. Authentication is the process of finding out and verifying the
identity of the user who is attempting to run the application. This function is performed entirely
by the Java Platform, Enterprise Edition security feature in Liberty, by enabling the
appSecurity-2.0 feature in server.xml. This step also requires access to the angel process to
provide access to SAF-authorized services if an SAF registry is used as the registry type.

Liberty can authenticate a user using the following methods:

� Basic authentication: The simplest example is basic authentication, whereby the web
container rejects the initial request with an HTTP 401 status code. This authentication
causes the browser to present a window requesting a user ID and password, which is then
used by the browser to resubmit the request.

� Form logon: In this scenario, a customized HTML form is created, which is added to the
application and used to supply the user ID and password.

� SSL client authentication: In this scenario, an SSL client certificate is mapped to a user ID
in the local security registry. When this client certificate is presented, the request is
authenticated by using the specified user ID.

� Trust association interceptor (TAI): The trust association interface is a service provider
API that enables the integration of third-party security services with a Liberty server. This
function allows the authenticated subject to be programmatically determined for each
request, providing for a simple means of identity assertion.

There are also three different registries available for verifying the user ID and password: SAF,
LDAP, and a basic user registry. We discuss the advantages and disadvantages of these
different methods of authentication in 4.3, “Security registries” on page 64.

If the user fails authentication, the Liberty server rejects the request. However, if the user
passes authentication, a valid Java subject, containing the details of the user ID and
authentication realm, is available. This is passed to the next step, authorization.

Authorize
The next step is authorization. At this point, we know who the user is and we have a valid user
ID. Authorization determines if the authenticated user has the correct privileges to access the
web application. This is determined by using roles. In our example, if the user is in the Broker
role, that user is authorized to run the application. If the user is not a Broker, Liberty rejects
the request.

To understand what authorization is, it is helpful to remember the security steps that happen
before granting authorization:

1. A security constraint in the application web.xml file establishes the role or roles that are
authorized to access a particular part of the URL path.

2. Authentication establishes the user ID that wants to access that path.

3. Authorization determines if the authenticated user ID belongs to the authorized role.
60 IBM CICS and Liberty: What You Need to Know

Authorization uses user role mapping to find out if a user, or group of users, belongs to a
certain role. There are three options to set up this authorization in a Liberty JVM server:

1. CICS bundles and the cicsAllAuthenticated role

If you deploy a web application as a CICS bundle, you need to add the
cicsAllAuthenticated role to authorization constraint in your web deployment descriptor as
follows:

<auth-constraint>
<role-name> Broker</role-name>

</auth-constraint >

CICS then creates the application definition statements in the installedApps.xml server
configuration file. Then, CICS grants access to this role for all authenticated users using
the special subject ALL_AUTHENTICATED_USERS (meaning all users who have passed
authentication).

Example 4-2 shows what the application element in server.xml looks like when
GenAppWeb is deployed as a CICS bundle.

Example 4-2 GenAppWeb deployed as CICS bundle in server.xml

<application id="GenAppWeb" name="GenAppWeb" type="war"
 location="${server.output.dir}/installedApps/GenAppWeb.war"
 bundle="GenApp" token="22ABF9E000000100" bundlepart="GenAppWeb">
 <application-bnd>
 <security-role name="cicsAllAuthenticated">
 <special-subject type="ALL_AUTHENTICATED_USERS"/>
 </security-role>
 </application-bnd>
 </application>

There are two possible ways that Liberty JVM server in CICS performs authorization. One
is called SAF authorization, which uses the EJBROLE classes in the SAF registry. The
other is Java Platform, Enterprise Edition role authorization, which uses the roles defined
in the server.xml configuration file.

Using this option requires that you have the ability to update the deployment descriptor in
your web application. In addition, this option delegates request authorization to CICS
transaction and resource security checking (see , “CICS transaction security” on page 62)
as from a Java Platform, Enterprise Edition security point of view. Any authenticated user
has access to run the web application. However, it is also possible to combine CICS
transaction security authorization with the usage of SAF authorization using EJBROLEs
(option 3., “SAF authorization” on page 62). This is because setting the
<safAuthorization/> element prevents access to the cicsAllAuthenticated role being
granted to ALL_AUTHENTICATED_USER. Instead, the EJBROLE permission is used.

2. Liberty security role authorization

The next option for user role mapping is to use <security-role> elements in the application
definition in the server.xml or ibm-application-bnd.xml file in the enterprise archive
(EAR). This method uses a definition in the application-bnd element of each application.
These definitions establish which users or user groups are authorized to certain roles.

Say that the web application security constraint defines the Broker role as follows:

<role-name> Broker </role-name>
Chapter 4. Security options 61

The application element might look like that shown in Example 4-3 if you wanted to grant
access to the authenticated user1 and any user ID in the webusers group.

Example 4-3 Security roles defined in server.xml

<application id="GenAppWeb"
 name="GenAppWeb" type="war"
 location="/u/reds13/cicsts53/GenAppWebBundle_1.0.0/GenAppWeb.war">

<application-bnd>
<security-role name="Broker">

 <user name="user1" />
 <group name="webusers" />

</security-role>
</application-bnd>

</application>

3. SAF authorization

Liberty uses SAF authorization when the <safAuthorization/> element is present in
server.xml, and determines the EJBROLE class to be validated using the
<safRoleMapper profilePattern=…> element. Authenticated users are then authorized to
access an application by giving them access to the EJBROLE referenced in the
profilePattern attribute. This option requires access to the SAF authorized services using
the angel process. For more information about configuring SAF authorization, see
Chapter 8, “Implementing security options” on page 143.

EJBROLEs can be used with CICS bundle-deployed applications because the
<application-bnd> and cicsAllAuthenticated role is ignored by Liberty in favor of using
the EJBROLE mappings defined by the SAF registry.

CICS transaction security
Authentication and authorization are common to any Java Platform, Enterprise Edition
application server. This third step, CICS transaction security, is unique to a Liberty JVM
server in CICS TS. This step is where CICS builds the transaction environment that enables
the web application to run as a CICS task and invoke CICS services. As such, it is a critical
point at which CICS security can be used to ensure that the user ID is authorized to run the
transaction and is implemented by using the cicsts:security-.1-0 feature, defined in
server.xml.

Note: In a Liberty JVM server, if you want to use Java Platform, Enterprise Edition
security roles without SAF authorization, you cannot use CICS bundles to install your
applications, as the application-bnd element will always be created with the
cicsAllAuthenticated role. However, this can be a useful method if you are porting an
application directly from a third-party Java Platform, Enterprise Edition application
server that uses this method.
62 IBM CICS and Liberty: What You Need to Know

As part of this process, the following key decisions need to be made by the CICS runtime
during transaction attach processing:

� The CICS transaction ID must be chosen: The default is CJSA, but this can easily be
overridden by using a URIMAP resource, which maps the URI and the protocol (HTTP or
HTTPS) to a specified CICS transaction ID.

� The CICS task user ID must be set: The user ID is taken from the authenticated Java
subject and used to set the CICS transaction security context during transaction attach
processing. In doing so, the user ID needs read access to the SAF resource group
(TCICSTRN) for the CICS transaction chosen at Step Ê. If the user ID does not have
access to this profile, the request is rejected.

The result of this process gives you the following security choices:

� If there is an authenticated SAF user ID from the Java subject, this is used to run the CICS
transaction. This should always be the case if there is a security constraint in the web.xml
file.

� If there is no authenticated user ID, the USERID specified on the URIMAP definition is
used to run the CICS transaction. This is the case, for instance, if there was no security
constraint in the web.xml file.

� If there is no USERID on the URIMAP definition and no authenticated user ID, the default
user ID for that CICS region is used to run the transaction. This is a default setup, and it is
unlikely that the default user should be granted access in this scenario in a secure system.

4.2 Confidentiality

You can configure a Liberty JVM server to use SSL for data encryption, and optionally
authenticate with the server by using a client certificate. Certificates can be stored in a Java
keystore held on the zFS filing system or in a SAF key ring such as IBM RACF®.

If the security constraint in the web.xml file defines a transport-guarantee of CONFIDENTIAL,
all communication with this web application needs to be using an HTTPS-enabled endpoint.
See Example 4-4.

Example 4-4 Excerpt from web.xml

<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

To make an environment secure, you must be sure that any communication is with trusted
sites whose identity you can be sure of. SSL uses certificates for authentication. These are
digitally signed documents, which bind the public key to the identity of the private key owner:

� SSL client authentication

The process of SSL client authentication occurs when the underlying socket is first
established. Authentication is performed by an exchange of certificates in X.509 format
between the client and the server. A Liberty server allows you to specify that client
authentication is required for connections to a particular HTTP endpoint by adding the
clientAuthentication="true" attribute to the SSL configuration element in server.xml.
Chapter 4. Security options 63

In addition, if you want requests to run under the identity of the user ID to which the
personal certificates are mapped in the keystore, you can specify the value CLIENT-CERT
on the auth-method element in the web.xml deployment descriptor, as shown in
Example 4-5.

Example 4-5 Excerpt from web.xml

<login-config>
 <auth-method>BASIC </auth-method>

</login-config>

� As extra protection, it is also possible to request Liberty to drive an HTTP basic
authentication challenge if the CLIENT-CERT identity is not authorized to the application.
This is achieved by adding the following webAppSecurity element to server.xml.

<webAppSecurity allowFailOverToBasicAuth="true" />

4.3 Security registries

Liberty provides a choice of security registries, which can be used to authenticate users
accessing protected web applications.

4.3.1 Basic user registry

The basic user registry is part of the appSecurity-2.0 feature and provides a simple,
text-based registry in the server.xml file. This can be found by using the basicRegistry
element shown in Example 4-6.

Example 4-6 Basic user registry definition in server.xml

<basicRegistry id="basic" realm="customRealm">
 <user name="dan" password="p@ssw0rd" />
 <user name="andy" password="pa$$w0rd" />
 <user name="shayla" password="pa$$w0rd" />
 <user name="indi" password="{xor}Lz4sLCgwLTs=" />
 <group name="residents">
 <member name="dan" />
 <member name="andy" />
 </group>
</basicRegistry>

Because access to server.xml is not controlled by SAF, and because this registry is not
integrated with CICS Liberty security or synchronized with SAF, it is not advisable to use this
registry type for any purpose other than testing.

4.3.2 System Authorization Facility

Integration with a System Authorization Facility (SAF) user registry, such as RACF, is part of
the Liberty zosSecurity-1.0 feature, which is integrated into the CICS Liberty security feature
(cicsts:security-1.0). All of the supported Java Platform, Enterprise Edition authentication
mechanisms, including basic authentication, form-based authentication, and SSL client
authentication, can use an SAF registry to authenticate users. In addition, the EJBROLE
support in Liberty can use the SAF registry to authorize access to the roles defined in
64 IBM CICS and Liberty: What You Need to Know

web.xml, and CICS transaction and resource security can use SAF to authorize access to
CICS resources.

4.3.3 LDAP and distributed identities

Many Java Platform, Enterprise Edition application servers on distributed platforms, such as
WebSphere Application Server, support the use of an LDAP security registry to authenticate
users. Liberty on z/OS also supports this ability. However, it also supports a means to map
these distributed identities in X.509 form to RACF user IDs that use mapping known as
distributed identity filters. These filters describe the mapping association between a RACF
user ID and one or more distributed identities.

Example 4-7 shows a RACMAP. This maps the LDAP user with the X.509 distinguished name
‘CN=Alice,OU=ITSO,O=IBM,C=US’ to the RACF user ID ALICE.

Example 4-7 RACMAP example

RACMAP ID(ALICE)
USERDIDFILTER(NAME(‘CN=Alice,OU=ITSO,O=IBM,C=US’))
REGISTRY(NAME(‘ldaps://itso.ibm.com’))
WITHLABEL(‘Alice’)

This function is supported in CICS TS V5.3 by using the new cicsts:distributedIdentity-1.0
feature. It can be used with the cicsts:security-1.0 feature to take the RACF user ID from the
mapping, then set this as the CICS transaction security context. This allows EJBROLEs and
CICS transaction security to be used for authorization and an LDAP registry to be used for
Java Platform, Enterprise Edition authentication.
Chapter 4. Security options 65

66 IBM CICS and Liberty: What You Need to Know

Part 2 Up and running

In this part, we describe how to get your system up and running.

Part 2 contains the following chapters:

� Chapter 5, “Developing and deploying applications” on page 69

� Chapter 6, “Configuring a Liberty server in CICS” on page 103

� Chapter 7, “Configuring the web server plug-in” on page 133

� Chapter 8, “Implementing security options” on page 143

Part 2
© Copyright IBM Corp. 2016. All rights reserved. 67

68 IBM CICS and Liberty: What You Need to Know

Chapter 5. Developing and deploying
applications

This chapter describes how to install and set up your development environment and deploy
applications to a Liberty JVM server in CICS. We used the Eclipse integrated development
environment (IDE) enhanced with the CICS Explorer software development kit (SDK) and the
IBM WebSphere Application Server Liberty Developer Tools plug-in to develop the sample
applications.

During testing, we used a local installation of WebSphere Liberty Profile. This chapter also
describes the advantages and disadvantages of this installation type. Applications can be
tested in the local server if you do not use the CICS specific library (JCICS) to access z/OS
resources. Otherwise, testing must be performed in a Liberty Server running in CICS.

This chapter also shows how to build and export your bundles to zFS using the CICS Build
Toolkit (CICS BT).

This chapter describes the following topics:

� Creating the development environment
� Creating a HelloWorld application
� Deploying the application to CICS

5

© Copyright IBM Corp. 2016. All rights reserved. 69

5.1 Creating the development environment

IBM provides the following tools for developing Liberty applications in CICS:

� CICS Explorer SDK

� WebSphere Developer Tools (WDT), which includes a WebSphere Liberty Profile local
server runtime for testing and debugging applications

5.1.1 Installing the components

After you complete the steps in this chapter, you will have a complete workbench in which to
develop and test your applications. The base development environment that we use is an
installation of Eclipse IDE for Java EE Developers, which is available from the following
website:

https://eclipse.org/luna

Follow these steps:

1. Install the CICS Explorer SDK

The following steps show how to extend Eclipse with the IBM CICS Explorer SDK. IBM
CICS Explorer provides tools and interfaces to CICS that help to manage CICS resources
and applications, and to develop Java applications for deployment into CICS:

a. Start your Eclipse and go to Help → Install New Software. The wizard opens. See
Figure 5-1 on page 71.
70 IBM CICS and Liberty: What You Need to Know

https://eclipse.org/luna/

Figure 5-1 Install new software wizard

b. Click Add. In the Add Repository window, add the following information about the
software update site to be used and click OK. See Figure 5-2.

Name: Explorer for z/OS Update Site

Location:
http://public.dhe.ibm.com/ibmdl/export/pub/software/htp/zos/tools/aqua/

Figure 5-2 Add update site to the repository list
Chapter 5. Developing and deploying applications 71

c. In the Available Software window, select IBM CICS Explorer and ensure that all the
subcomponents are selected including the CICS SDK for Java and the CICS SDK for
Servlet and JSP support (this is the component you need for developing web
applications). See Figure 5-3.

Figure 5-3 Selecting IBM CICS Explorer from the available software

d. Click Next, and Next again. Accept the license agreement and click Finish.

In CICS Explorer V5.3, the WebSphere Development Tools are now installed as part of
the CICS SDK for Servlet and JSP translation support. However, you still need to
create a local Liberty server to perform local testing of the application.
72 IBM CICS and Liberty: What You Need to Know

2. Install the local WebSphere Liberty Profile Server.

Perform the following steps to create the local WebSphere Liberty Profile Server:

a. Select File → New → Other and then select Server and click Next. See Figure 5-4.

Figure 5-4 Installing a new local server
Chapter 5. Developing and deploying applications 73

Choose WebSphere Application Server Liberty Profile and click Next. See
Figure 5-5.

Figure 5-5 Define a new server type
74 IBM CICS and Liberty: What You Need to Know

b. Select Install from an archive or a repository and click Next. See Figure 5-6.

Figure 5-6 Specifying Liberty Profile Runtime Environment
Chapter 5. Developing and deploying applications 75

c. Enter a destination path. The destination path is the path where your Liberty server will
be installed. Select WAS Liberty V8.5.5.7 Runtime, which provides the basic Java EE
6 Web profile environment for testing our servlet, and click Next twice. See Figure 5-7.

Figure 5-7 Install the runtime environment

d. If you want to change the server name or add an existing application to the server, click
Next. Otherwise, accept the license agreement and click Finish and the Liberty
runtime is downloaded.
76 IBM CICS and Liberty: What You Need to Know

5.2 Creating a HelloWorld application

After setting up the appropriate development environment, you can now create and deploy a
simple Liberty application from scratch. The application includes a simple servlet, which
responds to HTTP GET requests, either from a browser or another web client.

Use the following stepwise process for developing your HelloWorld servlet:

1. Create a simple dynamic web project, which produces a web archive (WAR) for
deployment to the dropins directory.

2. Convert the web project to an OSGi bundle project.

3. Add the OSGi bundle to an OSGi application project.

4. Exported as an enterprise bundle archive (EBA) for deployment to Liberty within a CICS
bundle project.

This method allows you to start out with a simple deployment model using a WAR. Then,
migrate to using an OSGi environment for more advanced modular development, and
integrate this with the CICS bundle deployment lifecycle.

Follow these steps:

1. Configure the target platform

Before creating any OSGi applications, you need to first define a target platform that
describes the runtime server environment and the interfaces that are available.

a. Open the Eclipse preference page (Window → Preferences) and enter target
platform in the search box and then select it from the list. Next, click Add to create a
new target platform to represent the CICS runtime. See Figure 5-8.

Figure 5-8 Define target platform
Chapter 5. Developing and deploying applications 77

b. The CICS Explorer SDK provides useful templates to set up the development
environment. Select Template, select CICS TS V5.3 with Liberty and PHP from the
drop-down list, and click Next. See Figure 5-9.

Figure 5-9 Create Target Definition
78 IBM CICS and Liberty: What You Need to Know

c. Figure 5-10 shows the contents of the platform and gives you the possibility to extend
the platform with your own bundles if required. Click Finish.

Figure 5-10 Target Content options
Chapter 5. Developing and deploying applications 79

d. To finish setting up the development environment, activate the configured platform.
Select the CICS TS V5.3 with Liberty and PHP check box, and click OK. See
Figure 5-11.

Figure 5-11 Select target platform

2. Create the HelloWorld application.

Perform the following steps to create the HelloWorld servlet:

a. If not already done, switch to the Java Platform, Enterprise Edition perspective by
selecting Window → Open Perspective → Other → Java EE (default). Click OK.
See Figure 5-12.

Figure 5-12 Open Java EE perspective
80 IBM CICS and Liberty: What You Need to Know

b. Now you can create the HelloWorld project. Click File → New → Web → Dynamic
Web Project.

Give your project a name (in this sample, enter com.ibm.liberty.HelloWorld) and clear
the Add project to an EAR option because we are not planning on using EJBs. See
Figure 5-13.

Figure 5-13 Create a Dynamic Web Project

c. Click Next. The next page describes the Java source directory. You do not need to
change anything on this page so click Next again.
Chapter 5. Developing and deploying applications 81

d. The next page configures the web module settings. Select the check box to Generate
web.xml deployment descriptor, and click Finish. See Figure 5-14.

Figure 5-14 Configure web module settings

Now your web project is ready for development work to begin.

Your newly created web-enabled bundle project is now listed in the Enterprise Explorer
view of your Eclipse. See Figure 5-15.

Figure 5-15 Enterprise Explorer view of the project
82 IBM CICS and Liberty: What You Need to Know

3. Set the build path.

Dynamic web projects are not able to use the Target Platform because they are not OSGi
components. Therefore, you need to add both the Liberty and CICS development libraries
to the project’s build path. Complete the following steps:

a. In the Enterprise Explorer view, right-click the HelloWorld Project and select Build
Path → Configure Build Path. The Java Build Path editor is then displayed. See
Figure 5-16.

Figure 5-16 Configure Java Build Path

b. Click the Libraries tab and then click Add Library.
Chapter 5. Developing and deploying applications 83

c. Select Liberty JVM server libraries and then click Next. See Figure 5-17.

Figure 5-17 Add Liberty JVM server libraries

d. In the next window, select CICS TS 5.3 and click Finish.

Both the CICS and Liberty libraries are now added to the project build path, giving
access to both the JCICS and the servlet APIs.

Next, you create the sample servlet class.
84 IBM CICS and Liberty: What You Need to Know

e. Select File → New → Servlet. In the Create Servlet window, specify the name for the
Java package (com.ibm.liberty.HelloWorld) and for the Class (Hello). Click Next. See
Figure 5-18.

Figure 5-18 Create Servlet window
Chapter 5. Developing and deploying applications 85

f. The next page displays information about the servlet. No changes are necessary. Click
Next. See Figure 5-19.

Figure 5-19 Create Servlet default values
86 IBM CICS and Liberty: What You Need to Know

g. The last window specifies the HTTP interfaces supported by your servlet. Clear the
doPost field because we will only be implementing a doGet() method. Then, click
Finish. See Figure 5-20.

Figure 5-20 Select modifiers

h. The Hello.java class should open automatically. Go to the doGet() method and find this
line:

// TODO Auto-generated method stub

i. Replace it with the following code snippet:

ServletOutputStream output = response.getOutputStream();
output.println("Hello World!");

ii. Next, click Source → Organize Imports to add the missing imports. Your Hello
World servlet should look like what is shown in Example 5-1.

Example 5-1 Hello source

@WebServlet("/Hello")
public class Hello extends HttpServlet {

private static final long serialVersionUID = 1L;

 public Hello() {
 super();
 }
Chapter 5. Developing and deploying applications 87

/**
 * @see HttpServlet#doGet(HttpServletRequest request,

HttpServletResponse response)
 */
protected void doGet(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 ServletOutputStream output = response.getOutputStream();
 output.println("Hello World!");

}

}

Lastly, you need to add the Hello servlet to the welcome file list for the web application.

i. To do this, open the web.xml file in the WebContent/WEB-INF folder of the dynamic web
project. Click Welcome File List for the web application (see Figure 5-21), and then in
the Details tab, click Add. Select Hello, which is the name of the servlet class, and
then close the editor to save the web.xml file.

Figure 5-21 Updating the deployment descriptor

Now you are ready to test the application locally on the Liberty server.
88 IBM CICS and Liberty: What You Need to Know

j. Right-click your com.ibm.liberty.HelloWorld project and select Run As → Run on
Server (Figure 5-22).

Figure 5-22 Selecting Run on Server option
Chapter 5. Developing and deploying applications 89

k. Select your local Liberty server and click Finish. See Figure 5-23.

Figure 5-23 Select local server

l. Go to your web browser and open
http://localhost:9080/com.ibm.liberty.HelloWorld/Hello. See Figure 5-24.

Figure 5-24 Result of running HelloWorld

You have now created and executed the HelloWorld application.
90 IBM CICS and Liberty: What You Need to Know

5.2.1 Local Liberty server

Development on a local Liberty server has many advantages and some disadvantages. The
following list shows the advantages and disadvantages for a local installation:

� Advantages:

– Fast deployment: After your application is added to the local server, it is automatically
updated.

– Debugging: The complete range of Java debugging functions is available.

– Set up by the developer: No need for a system programmer during the development
process.

� Disadvantages:

– Performance: It is not valid to do performance tests on a local server.

– CICS API: The CICS features are not available, so it is not possible to use the JCICS
API. Although, you can use the JCA via the CICS Transaction Gateway to invoke CICS
programs, and then port the same application into a CICS Liberty JVM server.

5.3 Deploying the application to CICS

There are various ways to export and deploy your web application to CICS. The simplest
option is to use the dropins directory, which is automatically scanned by the Liberty server. In
this section, we describe the following three options:

� Deployment of a WAR via the dropins directory
� Deployment of an web-enabled OSGi bundle as an EBA via a CICS bundle
� Scripting the building of an application by using the CICS Build Toolkit

5.3.1 Dropins directory

The dropins method is an easy way to deploy an application in your Liberty server and is ideal
in a test environment, but is not recommended for a production environment.

The first step when using the dropins is to export your web application and copy it to the
dropins folder of the Liberty server. Next, you must modify your server.xml file. The benefit of
this option is that Liberty reloads your application automatically without requiring any further
definitions.
Chapter 5. Developing and deploying applications 91

The following steps illustrate the end-to-end flow for configuring and deploying applications
using dropins:

1. Complete the following steps to create a WAR export from your web project:

a. Right-click your project and select Export → WAR file. See Figure 5-25.

Figure 5-25 Export options on the right-click menu

b. Select a local destination for your WAR file and click Finish. See Figure 5-26.

Figure 5-26 Export WAR file
92 IBM CICS and Liberty: What You Need to Know

2. Enable dropins in the Liberty JVM server.

To use the dropins directory in a Liberty server, it must be enabled in the server.xml file
by adding the following directive:

<applicationMonitor dropins="dropins" dropinsEnabled="true" pollingRate="5s"
 updateTrigger="disabled"/>

With dropins enabled, the Liberty server automatically detects deployed WAR, EBA, or
EAR files in the dropins folder and automatically enables them.

3. Copy to zFS.

Now you can copy your WAR file by using FTP to your dropins folder. For this step, you
can use any FTP client. The following sample uses the Microsoft Windows command-line
FTP tool. Perform the following steps:

a. Open a command line and connect to your host with the ftp HOSTNAME command:

C:\Users\Desktop>ftp <hostname>

b. Log in with your user ID and password:

User (<hostname>:(none)): reds12
331 Send password please.
Passwd:
230 REDS12 is logged on. Working directory is "REDS12.".

c. Change your working directory to your dropins folder:

cd DROPINSFOLDER
ftp> cd /…/dropins/
250 HFS directory /…/dropins/ is the current working directory

d. Set the transfer type to binary:

ftp> binary
200 Representation type is Image

e. Send your WAR file in the dropins folder: send WARfile

ftp> send C:\...\com.ibm.liberty.HelloWorld.war
200 Port request OK.
125 Storing data set /…/dropins/com.ibm.liberty.HelloWorld.war
250 Transfer completed successfully.
FTP: 2977 Bytes gesendet in 0,42Sekunden 7,02KB/s

f. Close and exit the FTP connection:

ftp> close
ftp> bye

Note: If you use the CICS autoconfigure defaults, the dropins directory is not
automatically created. In this case, create the directory with this path:
WLP_USER_DIR/servers/server_name/dropins, where server_name is the value of the
com.ibm.cics.jvmserver.wlp.server.name property.

Note: Be sure to use a binary transfer mode. Otherwise, the Liberty cannot read the
WAR file.
Chapter 5. Developing and deploying applications 93

5.3.2 Deploying to CICS as an EBA

This section describes the conversion of the web project to an OSGi project, and the
deployment in a CICS bundle project. The supported deployment artifact for OSGi bundles in
Liberty is an enterprise bundle archive (EBA), which is created in Eclipse using an OSGi
Application Project.

First, you need to create a new OSGi Application Project. Proceed as follows:

1. In the Enterprise Explorer view, select your dynamic web project
com.ibm.liberty.HellowWorld, right-click, and select Configure → Convert to OSGi
Bundle Projects.

2. Click OK on the next window, which warns about the modifications to the project
classpath.

This converts the project to an OSGi bundle project, adding the OSGi bundle facet, and
importantly adding the MANIFEST.MF file to the WebContent/META-INF folder, which contains
the bundle dependencies. These are dynamically created for us so they do not need
editing in our example.

Next, we need to create an OSGi Application Project, which references the OSGi bundle
project.

3. Right-click in the Enterprise Explorer and go to New → OSGi Application Project. If this
option does not appear, you can find it through New → Other by using the filter bar. See
Figure 5-27.

Figure 5-27 Creating the OSGI Application Project

4. Complete the project name. In this example, use com.ibm.liberty.HelloWorld.app. Click
Next. See Figure 5-28.
94 IBM CICS and Liberty: What You Need to Know

Figure 5-28 Define OSGI Application Project name
Chapter 5. Developing and deploying applications 95

5. Now you should see the converted OSGi bundle that you created earlier. It is listed under
the Contained Bundles and Composite Bundles (Application-Content) section. Select the
check box next to the bundle name (com.ibm.liberty.HelloWorld 1.0.0) to add it to your
OSGi Application Project content. Click Finish. See Figure 5-29.

Figure 5-29 Add OSGi bundle and composite bundles to the application
96 IBM CICS and Liberty: What You Need to Know

Next, we need to create a CICS bundle project to reference the OSGi Application Project.

6. Click File → New → Other. Select CICS Resources → CICS Bundle Project and click
Next. See Figure 5-30.

Figure 5-30 Selecting the CICS bundle project wizard
Chapter 5. Developing and deploying applications 97

7. Specify the name of your project, in this case com.ibm.liberty.HelloWorld.cics, and
modify the properties if wanted. Click Finish. See Figure 5-31.

Figure 5-31 Defining the CICS bundle project name
98 IBM CICS and Liberty: What You Need to Know

8. Expand the newly created CICS bundle project, including the META-INF folder, then
double-click the cics.xml file to open the CICS bundle manifest editor. This view shows
some basic information about your bundle and gives you options for adding resources and
applications to your CICS bundle. The section that we are interested in is Defined
Resources. Click New to get a list of resources that you can add to the bundle. Then,
select OSGi Application Project Include from the list. See Figure 5-32.

Figure 5-32 Adding the OSGi Application Project Include
Chapter 5. Developing and deploying applications 99

9. Select your OSGi application project. Specify the name of your Liberty JVM server. Click
Finish. See Figure 5-33.

Figure 5-33 Selecting OSGi Application Project

5.3.3 Deploy CICS bundle with CICS Explorer

This section describes the deployment workflow with the CICS Explorer. Complete the
following steps:

1. Right-click your CICS bundle project and select Export Bundle Project to z/OS UNIX
File System. See Figure 5-34.

Figure 5-34 Export bundle project
100 IBM CICS and Liberty: What You Need to Know

2. Select Export to a specific location in the file system. See Figure 5-35.

Figure 5-35 Export bundle project to a specific location

3. Specify your Bundle Directory and click Finish (Figure 5-36).

Figure 5-36 Specify the bundle to export
Chapter 5. Developing and deploying applications 101

After you complete these steps, you need to install your CICS bundle by defining a CICS
BUNDLE definition that refers to the export location on zFS. For more information, see
Chapter 6, “Configuring a Liberty server in CICS” on page 103.

5.3.4 Using CICS Build Toolkit

The CICS Build Toolkit (CICS BT) provides a command-line interface for build automation of
CICS bundle projects, such as web projects, OSGi bundles, CICS applications, and CICS
application bindings and can take prebuilt OSGi bundles and Liberty applications as input.

In this section, we show a small sample of how to build a CICS bundle with a command line in
Microsoft Windows. You can also run the Build Toolkit under Linux and z/OS because the only
requirement is to have a Java Runtime Environment.

After you download and extract the CICS Build Toolkit, open a Microsoft Windows command
line, change to the directory where you installed the CICS Build Toolkit, and type the following
command:

cicsbt
--input path\to\your\project*
--build my.bundle.name(1.0.0)
--target com.ibm.cics.explorer.sdk.web.liberty53.target
--output path\to\your\output\directory

The parameter descriptions for the cicsbt command are as follows:

� input: Specifies the local path to the project source

� build: Specifies which project should be built from the input directory option

� target: Specifies the target runtime. We used the
com.ibm.cics.explorer.sdk.web.liberty53.target to support CICS TS V5.3 web applications

� output: Specifies the directory for your deployable CICS bundle project

For more information about using the CICS Build Toolkit, see CICS and DevOps: What You
Need to Know, SG24-8339, which is available at:

http://www.redbooks.ibm.com/abstracts/sg248339.html
102 IBM CICS and Liberty: What You Need to Know

http://www.redbooks.ibm.com/abstracts/sg248339.html
http://www.redbooks.ibm.com/abstracts/sg248339.html

Chapter 6. Configuring a Liberty server in
CICS

This chapter shows you how to configure the Liberty JVM server in CICS to run a web
container. This can be used to deploy Java applications that use a range of web technologies
including Java servlets and JavaServer Pages (JSP) technology. The web container is based
on the WebSphere Liberty profile (WLP) technology.

In this chapter, we show you a simple way to set up a Liberty server in CICS Transaction
Server (TS) and how to configure it in only a few steps. This chapter takes you through setting
up CICS and zFS, including all the steps required to get you started with a JVM server in
CICS, and to deploy a sample Hello World web application. For more information about how
to create a Hello World example, see Chapter 5, “Developing and deploying applications” on
page 69.

You can define all of the Liberty JVM server resources in a classic way by using these tools:

� Resource definition online (RDO) using the CEDA transaction
� Submitting offline batch jobs (using the DFHCSDUP program provided by CICS)
� Using CICS Explorer

This chapter describes the use of both CEDA and CICS Explorer.

This chapter describes the following topics:

� Getting your CICS region ready
� zFS file system configuration
� Setting up a Liberty JVM server
� Defining and installing a CICS bundle
� Verifying the configuration
� Setting up a Liberty JVM server using CICS Explorer

6

© Copyright IBM Corp. 2016. All rights reserved. 103

6.1 Getting your CICS region ready

The first step to run Java in CICS TS is to ensure that the UNIX System Services and Java
environment are enabled in CICS. To do this, follow these steps:

1. Add the SDFJAUTH library to the CICS region’s STEPLIB:

– Syntax//STEPLIB DD DISP=SHR,DSN=HLQ.CICS_VERSION.SDFJAUTH
– Example //STEPLIB DD DISP=SHR,CICSDPP.BETA14R.CTS53BT.CICS.SDFJAUTH

2. Set the USSHOME SIT parameter to the location where the CICS UNIX System Services
libraries are installed. In this example, we use the following:

– SyntaxUSSHOME=</usr/lpp/cicsts/cicsts53|directory|NONE>
– Example USSHOME=/usr/lpp/cicsts/cicsts53

3. Determine where your Java runtime is installed. For the purposes of this example, we use:

Example </usr/lpp/java/J7.0_64>

6.2 zFS file system configuration

Several zFS files are used by the JVM server in CICS. There are two for configuration and
logs. You need to copy a delivered JVM profile and edit it. This topic explains how to do this.

6.2.1 zFS configuration files

Only two mandatory configuration files are required to run a Liberty JVM server in CICS:

� JVM profile: This is the configuration file for the JVM server. It must be Extended Binary
Coded Decimal Interchange Code (EBCDIC) encoded and contain the environment
variables and JVM settings that are necessary to support the JVM server.

� server.xml: This is the configuration file for the Liberty run time. It is encoded in ASCII and
is an XML-based configuration file. It is normally created on the first startup of the Liberty
JVM server using autoconfigure support, and then it can be edited.

The JVM profile is located by using the JVMPROFILEDIR system initialization parameter for
your CICS region. CICS provides a set of fully commented examples in the
USSHOME/JVMProfiles zFS directory. In this example, we show you how to configure your
Liberty JVM server using the sample JVM profile and editing it for a first startup. We used the
JVMPROFILEDIR location /u/reds08/cicsts53/JVMProfiles as the JVM profile directory.

The server.xml file defines the Liberty configuration that you want to use for your Liberty JVM
server. If you create a Liberty JVM server for the first time with the autoconfigure option
turned on in your JVM profile, this file is created for you. We suggest that you start your
Liberty JVM servers with this option turned on when you start it for the first time, and then turn
it off for any subsequent restarts of that JVM server. This chapter uses autoconfigure to
create a server.xml file.

Note: In addition, you need to ensure that the SDFJAUTH library is APF-authorized, in the
same manner as used for the SDFHAUTH library.
104 IBM CICS and Liberty: What You Need to Know

6.2.2 zFS output files

Several output files are used by the JVM server, such as the stdout, stderr, JVM server
trace and Liberty first-failure data capture (FFDC) and messages logs. These are in
region-specific subdirectories based on the WORK_DIR setting in the JVM profile. We used
the location /<home directory>/<version>/<workdir>. This means that for our example
server called JVMWLP on our CICS region with applied CREDS08A, the zFS output files are
in the following directory: /u/reds08/cicsts53/workdir/CREDS08A/JVMWLP.

6.2.3 zFS file permissions

Access to zFS files in a JVM server is controlled by using the CICS region user ID and the
UNIX file permission bits. You must ensure that the CICS region user ID has a UNIX System
Services segment, and either this user ID or a group it belongs to has the following
permissions:

� Read and execute access to all directories in the tree so that entry is permitted to all
directories

� Read access to the JVM profile, which is used for reading the configuration

� Read and write access to the working directory, for creating log files and the Liberty server
configuration files

By using the examples, you can issue the following UNIX System Services commands to set
these permissions where <CICSGID> is the group ID that the CICS region user ID belongs to:

� chgrp <CICSGID> /u/reds08/cicsts53/JVMProfiles
� chmod 750 /u/reds08/cicsts53/JVMProfiles
� chgrp <CICSGID> /u/reds08/cicsts53/workdir
� chmod -R 770 /u/reds08/cicsts53/workdir

6.3 Setting up a Liberty JVM server

We are now ready to create and start the JVM server. This section shows what you must
define, edit, and configure to set up a Liberty JVM server in CICS using the CEDA tool to
create the JVMSERVER resource definition. If you prefer to use CICS Explorer to do this,
refer to 6.6, “Setting up a Liberty JVM server using CICS Explorer” on page 124.

Note: In a production environment, we suggest that the zFS configuration and output files
be in a separate dedicated zFS file system to provide the best recoverability of the system.

Note: UNIX file permissions only allow for one owner and one group owner. This can make
it difficult to grant access to multiple writers if the user IDs are not in the same group. As a
solution to this, you can use UNIX System Service file ACLs, which provide a more flexible
security model.
Chapter 6. Configuring a Liberty server in CICS 105

6.3.1 JVM profile

The JVM profile lists the options and system properties that are used by the CICS launcher
for Java. Some of the options are specific to, and others are standard for the JVM runtime
environment. For example, the JVM profile controls the initial size of the JVM storage heap
and how far it can expand. The profile can also define the destinations for messages and
dump output produced by the JVM. The JVM profile is named in the JVMPROFILE attribute in
a JVMSERVER resource definition.

You can copy the sample JVM profiles provided by CICS and customize them for your own
applications. The sample JVM profile supplied with CICS is in the USSHOME/JVMProfiles
directory on zFS. Copy the sample from the installation directory to the directory that you
specified in the JVMPROFILEDIR system initialization parameter. The sample JVM profile in
the installation location is overwritten if you apply an APAR that includes changes to these
files. To avoid losing your modifications, always copy the sample to a different location before
adding or changing any options.

For reference material about all of the properties you can edit in a Liberty JVM server profile,
see Options for JVMs in a CICS environment:

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/t
opics/dfha2_jvmprofile_options.html?cp=SSGMCP_5.3.0%2F8-7-0-3-4-2

6.3.2 Tailoring the JVM profile

To begin, follow these steps:

1. Copy the sample JVM profile for a Liberty JVM server, which is delivered with your CICS
installation and is at:

/USSHOME/JVMProfiles/DFHWLP.jvmprofile

2. Copy it to your JVMPROFILEDIR directory as defined in your SIT:

/u/reds08/cicsts53/JVMProfiles/JVMWLP.jvmprofile

6.3.3 Java home directory

The JAVA_HOME directory specifies the installation location for the IBM Java SDK for z/OS. This
location contains subdirectories and Java archive files that are required for Java support.

The supplied sample JVM profiles contain a path that was generated by the JAVADIR
parameter in the DFHISTAR CICS installation job. The default for the JAVADIR parameter is
java/J7.0_64/, which is the default installation location for the IBM 64-bit SDK for z/OS, Java
Technology Edition. This value produces a JAVA_HOME setting in the JVM profiles of
/usr/lpp/java/J7.0_64/:

JAVA_HOME</usr/lpp/java/J7.0_64

Note: You can rename the JVM profile if you do not want to use the delivered default. In
this example, we named it JVMWLP.
106 IBM CICS and Liberty: What You Need to Know

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/topics/dfha2_jvmprofile_options.html?cp=SSGMCP_5.3.0%2F8-7-0-3-4-2
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/topics/dfha2_jvmprofile_options.html?cp=SSGMCP_5.3.0%2F8-7-0-3-4-2

WORK_DIR
WORK_DIR is the working directory in zFS that the CICS region uses for activities that are
related to the JVM server. The CICS JVM server uses this directory for both configuration and
output. A period (.) is defined in the supplied JVM profiles, indicating that the home directory
of the CICS region user ID is to be used as the working directory. If the directory does not
exist or if WORK_DIR is omitted, /tmp is used as the zFS directory name. You can also specify
your own zFS directory for the working directory. In this situation, you must also ensure that
the relevant directory is created on zFS, and that access permissions are given to the correct
CICS regions.

We specified the following pattern for our WORK_DIR, under which CICS dynamically creates
subdirectories for each region and JVM server.

WORK_DIR=/u/reds08/cicsts53/workdir

Log files
Output from Java applications that are running in a Liberty JVM server can be written to either
zFS or to JES. The destination for the logs is defined using the STDOUT, STDERR, and
JVMTRACE options in the JVM profile.

� STDERR

STDERR specifies the location to which the stderr stream is directed from the JVM
server, and often contains useful output such as Java exception messages. By default files
are placed in the WORK_DIR/<applid>/<jvmserver> directory in zFS.

In our example, we left STDERR unset so that the output was written to the following
default location in our working directory:

/u/reds08/cicsts53/workdir/CREDS08A/JVMWLP/Dyyyymmdd.Thhmmss.dfhjvmerr

� STDOUT

STDOUT specifies the location to which the stdout stream is directed from the JVM
server. By default, files are placed in the WORK_DIR/<applid>/<jvmserver> directory in
zFS. CICS JVM servers do not log output to this file, but it can be used by Java
applications or other components.

In our example, we left STDOUT unset so that the output was written to the following
location in our working directory:

/u/reds08/cicsts53/workdir/CREDS08A/JVMWLP/Dyyyymmdd.Thhmmss.dfhjvmout

Redirection of log files to JES
In CICS TS V5.2 and above, JVM server log files can now be directed to JES instead of zFS.

For example, to log output to the following JCL DD members

// LOGOUT DD SYSOUT=*
// LOGERR DD SYSOUT=*

Note: Do not define your working directories in the CICS USSHOME directory, as this is
the home directory for CICS installation files and is typically mounted read-only.

Note: By default, there are multiple versions of the log files stored in the zFS, but the
current version in use is easily identified using the symbolic link CURRENT.<file> for
instance /u/reds08/cicsts53/workdir/CREDS08A/JVMWLP/CURRENT.STDOUT.
Chapter 6. Configuring a Liberty server in CICS 107

Specify the following options for the STDOUT and STDERR in the JVM profile:

STDOUT=//DD:LOGOUT
STDERR=//DD:LOGERR

Maximum number of zFS log or trace files
The LOG_FILES_MAX value specifies the number of old log files kept on the system. A
default setting of 0 ensures that all old versions of the log file are retained. This value can be
modified to specify how many old log files you want to remain on the file system:

LOG_FILES_MAX=<n>

If STDOUT, STDERR, and JVMTRACE use the default scheme, or if it is customized, include
the &DATE;.&TIME; pattern, then only the newest instance of each log type is kept on the
system. If your customization does not include any variables that make the output unique, the
files are appended to, and there is no requirement for deletion. This clean up function does
not apply if the output variables have been customized to route output to JES.

6.3.4 Time zone

The time zone (TZ) environment variable specifies the local time of a system. You can set
this for a JVM server by adding it to the JVM profile.

When setting the time zone for a JVM server, be aware of the following issues:

� The TZ variable in your JVM profile needs to match your local IBM MVS™ system offset
from Greenwich mean time (GMT).

� If you do not set the TZ variable, the system defaults to Coordinated Universal Time
(UTC).

� Customized time zones are not supported and result in failover to UTC or a mixed time
zone output in the JVMTRACE file.

� If you see LOCALTIME as the time zone string, there is an inconsistency in your
configuration. This can be between your local MVS time and the TZ you are setting, or
between your local MVS time and your default setting in the JVM profile. The output will be
in mixed time zones, although each entry will be correct.

� The short form of Portable Operating System Interface (POSIX) TZ can be used and
reduces the chances of input errors.

Short format:

TZ=CET-1CEST

Long format:

TZ=CET-1CEST,M3.5.0,M10.5.0

Note: The USEROUTPUTCLASS, which can be specified in an OSGi JVM server in CICS,
is not supported for Liberty JVM servers.

If the variable LOG_PATH_COMPATABILITY=TRUE, the output files are placed in the WORK_DIR
directory, which is the same behavior as in CICS TS V5.2 and earlier releases.
108 IBM CICS and Liberty: What You Need to Know

6.3.5 Liberty-specific options

The variables described in this section are specific to the Liberty server environment:

� WLP_INSTALL_DIR

This environment variable is required if you want to start a Liberty JVM server. The Liberty
profile installation files are installed in the CICS USSHOME directory in a subdirectory called
wlp. The default installation directory is /usr/lpp/cicsts/cicsts53/wlp. Always use the
&USSHOME symbol to set the correct file path and append the wlp directory:

WLP_INSTALL_DIR=&USSHOME;/wlp

If you set this environment variable, you can also supply other environment variables and
system properties to configure the Liberty JVM server. The Liberty specific environment
variables are all prefixed with WLP.

� WLP_USER_DIR

This specifies the directory that contains the configuration files for the Liberty JVM server.
This environment variable is optional. If you do not specify it, CICS defaults to the following
subdirectory of the JVM server: working directory:

WLP_USER_DIR=./&APPLID;/&JVMSERVER;/wlp/usr

We used this default location and so our Liberty user directory was as follows:

/u/reds08/cicsts53/workdir/CREDS08A/JVMWLP/wlp/usr

� WLP_OUTPUT_DIR

This specifies the directory that contains output files for the Liberty profile. By default, the
Liberty profile stores logs, the work area, and configuration files for the server in a
directory that is named after the server.

This environment variable is optional. If you do not specify it, CICS defaults to the following
subdirectory of the JVM server working directory:

WLP_OUTPUT_DIR=./&APPLID;/&JVMSERVER;/wlp/usr/servers

We used this default location and so our Liberty output directory was as follows:

/u/reds08/cicsts53/workdir/CREDS08A/JVMWLP/wlp/usr/servers

The following system properties are specific to the Liberty JVM server environment:

� Encoding

A Liberty JVM server requires that JVM encoding be set to ASCII rather than the usual
EBCDIC default for CICS. This is controlled by using the file.encoding JVM system
property. You need to set your encoding as follows to start a Liberty JVM server.

-Dfile.encoding=ISO-8859-1

� Autoconfigure

For the first startup of the Liberty JVM server in CICS, enable autoconfigure, which builds
the CICS Liberty server environment. This requires setting the following system
properties:

-Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true

This property instructs CICS to build the Liberty server and configuration file (server.xml)
during startup. The default JVM profile already supplies this line and you need to remove
the ‘#’ comment and set the value to true.
Chapter 6. Configuring a Liberty server in CICS 109

� HTTP/HTTPS port

Now change your default ports so that they do not conflict with any existing port usage.
Delete the ‘#’ before the following two lines and change ‘9080’ and ‘9443’ to valid free
ports:

-Dcom.ibm.cics.jvmserver.wlp.server.http.port=53088
-Dcom.ibm.cics.jvmserver.wlp.server.https.port=53089

This is a summary of all content that is configured and enabled in the DFHWLP.jvmprofile by
default:

JAVA_HOME=/usr/lpp/java/J7.0_64
WORK_DIR=.
WLP_INSTALL_DIR=&USSHOME;/wlp
-Xms128M
-Xmx256M
-Xmso128K
-Xgcpolicy:gencon
-Xscmx128M
-Xshareclasses:name=cicsts530%g,groupAccess,nonfatal
-Dcom.ibm.tools.attach.enable=no
-Dfile.encoding=ISO-8859-1

This is how the JVMWLP.jvmprofile looked after editing:

JAVA_HOME=/usr/lpp/java/J7.0_64
WORK_DIR=/u/reds08/cicsts53/workdir
LOG_FILES_MAX=5
-Xms128M
-Xmx256M
-Xmso128K
-Xgcpolicy:gencon
-Xscmx128M
-Xshareclasses:name=cicsts530%g,groupAccess,nonfatal
-Dcom.ibm.tools.attach.enable=no
TZ=CET-1CEST
WebSphere Liberty Profile server (WLP)

WLP_INSTALL_DIR=&USSHOME;/wlp
-Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true
-Dcom.ibm.cics.jvmserver.wlp.server.http.port=53088
-Dcom.ibm.cics.jvmserver.wlp.server.https.port=53089
#
-Dcom.ibm.ws.logging.max.files=5
-Dfile.encoding=ISO-8859-1

6.3.6 Creating a JVMSERVER

Now it is time for you to create the CICS JVMSERVER resource definition. This is used to
define the JVM profile location and control the lifecycle of the JVM server within the CICS
runtime environment.
110 IBM CICS and Liberty: What You Need to Know

Copy the sample JVMSERVER DFHWLP from sample CSD group DFH$WLP with a new name to a
CSD group of your choice to enable it to be modified. We used the following values:

Table 6-1 Values for the new JVM server

Create a JVMSERVER definition by using CEDA with your user-specific changes as shown in
Example 6-1.

Example 6-1 Create a JVM server resource definition

OVERTYPE TO MODIFY CICS RELEASE = 0700
 CEDA ALter JVmserver(JVMWLP)
 JVmserver : JVMWLP
 Group : REDS08LP
 DEScription ==> CICS JVM server to run WLP samples
 Status ==> Enabled Enabled | Disabled
 Jvmprofile ==> JVMWLP (Mixed Case)
 Lerunopts ==> DFHAXRO
 Threadlimit ==> 015 1-256
 DEFINITION SIGNATURE

 SYSID=ISV APPLID=CREDS08A

 PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

6.3.7 Install a JVMSERVER

To install a JVMSERVER:

1. Install and enable the JVMSERVER resource into your CICS region using CEDA using the
following syntax:

CEDA EXPAND GROUP(GROUP)

For example:

CEDA EXPAND GROUP(REDS08LP)

See Example 6-2.

Example 6-2 Install JVM server resource

CEDA EX GR(REDS08LP)
 ENTER COMMANDS
 NAME TYPE GROUP LAST CHANGE
 JVMWLP JVMSERVER REDS08LP install 28/10/15 19:28:14
SYSID=ISV APPLID=CREDS08A
 RESULTS: 1 TO 7 OF 7 TIME: 17.38.09 DATE: 29/10/15
PF 1 HELP 2 SIG 3 END 4 TOP 5 BOT 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

ATTRIBUTE DEFAULT VALUE Description

JVMSERVER DFHWLP JVMWLP Name of the Liberty JVM
server in CICS

Group DFH$WLP REDS08LP Name of the CSD group
defined in CICS

Jvmprofile DFHWLP JVMWLP Name of the JVM profile in zFS
Chapter 6. Configuring a Liberty server in CICS 111

2. Then, check the status of the JVM server using CEMT as follows:

CEMT INQUIRE JVMSERVER

See Example 6-3.

Example 6-3 Check JVM server status

CEMT I JVMS
 STATUS: RESULTS - OVERTYPE TO MODIFY
 Jvm(JVMWLP) Ena Prf(JVMWLP) Ler(DFHAXRO)
 Threadc(011) Threadl(015) Cur(61580456)

 SYSID=ISV
APPLID=CREDS08A
 RESPONSE: NORMAL TIME: 17.49.26 DATE:
29/10/15
PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11 SF

If the status shows enabled, you know that your JVM environment is running. You completed
your first step and have successfully validated the Java environment on CICS. If it fails to
enable, check the CSMT log and the stderr log in the zFS working directory for further errors.

If you want to restart the Liberty JVM server in CICS, disable it by typing over Ena with Dis.

6.3.8 Manually tailoring server.xml

We show how you can manually configure your server.xml file and how to set up the
parameters in it. Performing a manual configuration is especially important in a production
environment, in which you might want to more tightly control the server configuration.

One of the major advantages of Liberty is its composability, based on features. You can add
all the functionality that you need for your specific set of applications by choosing the features
that they require. Being composable allows you to keep the server lightweight because you
add only the features that you need.

Example 6-4 illustrates how to compose the server.xml to load specific features.

Example 6-4 Example of loading specific features on server.xml

<server description="ComposabilityIsTheKey">

 <featureManager>
 <feature>cicsts:core-1.0</feature>
 <feature>jsp-2.2</feature>
 <feature>servlet-3.0</feature>
 <feature>restConnector-1.0</feature>
 </featureManager>

</server>
112 IBM CICS and Liberty: What You Need to Know

6.3.9 Adding new features

You can add a wide variety of features in the <featureManager> list of features. These are the
key features that we used in our initial configuration:

� The CICS feature cicsts:core-1.0 enables the CICS Liberty profile integration. This
feature is required for the JVM server to start.

� The ssl-1.0 feature enables Secure Sockets Layer (SSL) support for the HTTP listeners,
using either Java keystores or RACF key rings.

� The servlet-3.0 feature enables support for servlet applications written to the Java
Platform, Enterprise Edition 6 web profile standard.

� The jsp-2.2 feature enables support for servlet and JavaServer Pages (JSP) applications.
This feature is required by Dynamic Web Projects (WAR files) and OSGi Application
Projects containing OSGi bundle projects with web support.

� The wab-1.0 feature enables support for Web Archive Bundles (WABs) that are inside
enterprise bundles (EBAs). This feature is required by OSGi application projects
containing OSGi bundle projects with web support.

See Example 6-5.

Example 6-5 Adding new features on server.xml

<featureManager>
 <feature>cicsts:core-1.0</feature>
 <feature>ssl-1.0</feature>
 <feature>servlet-3.0</feature>
 <feature>jsp-2.2</feature>
 <feature>wab-1.0</feature>
</featureManager>

CICS supports a wide range of features from the WebSphere Application Server Liberty
profile enabling Java Platform, Enterprise Edition web applications to be deployed into a
Liberty JVM server. For more information about supported features, see Chapter 1,
“Introduction” on page 1.

6.3.10 Configuring the HTTP and HTTPS endpoint

If you want to change the port or IP address that is used by the Liberty HTTP listener, update
the httpEndpoint attribute with the host name and port numbers that you require, as shown in
Example 6-6.

Example 6-6 HTTP and HTTPS port definition on server.xml

<httpEndpoint host="<hostname>" httpPort="53088" httpsPort="53089"
 id="defaultHttpEndpoint"/>

Use a port number that is not in use anywhere else, for example, by a TCPIPSERVICE in
CICS.

HTTPS is available only if SSL is configured.

Note: If you are using autoconfigure, the HTTP ports are configured by using a system
property and should not be modified directly in the server.xml file.
Chapter 6. Configuring a Liberty server in CICS 113

6.3.11 CICS bundle deployed applications

If you want to deploy Liberty applications that use CICS bundles, the server.xml file must
include the following entry. See Example 6-7.

Example 6-7 Set the resource location on server.xml

<include location="${server.output.dir}/installedApps.xml"/>

The included file is used to define CICS bundle deployed applications.

6.3.12 Bundle repository

Share common OSGi bundles between applications deployed in EBAs by placing them in a
directory and referring to that directory in a bundleRepository element, as in Example 6-8.

Example 6-8 List file sets in the bundle repository

<bundleRepository>
 <fileset dir="directory_path" include="*.jar"/>
</bundleRepository>

6.3.13 Global library

Share common Java archive (JAR) files between web applications (WARs and EARs) by
placing them in a directory and referring to that directory in a global library definition, as in
Example 6-9.

Example 6-9 Define path for common libraries

<library id="global">
 <fileset dir="directory_path" include="*.jar"/>
</library>

The global libraries cannot be used by OSGi applications in an EBA, which must use a bundle
repository.

6.3.14 Liberty server application and configuration update monitoring

The Liberty JVM server scans the server.xml file for updates. By default, it scans every 500
milliseconds. To vary this value, add an entry such as in Example 6-10.

Example 6-10 Set monitoring intervals

<config monitorInterval="5s" updateTrigger="polled"/>

The Liberty JVM server also scans the dropins directory to detect the addition, update, or
removal of applications. If you install your web applications in CICS bundles, disable the
dropins directory as shown in Example 6-11.

Example 6-11 Disable monitoring of dropins

<applicationMonitor dropins="dropins" dropinsEnabled="false" pollingRate="5s"
updateTrigger="enabled"/>
114 IBM CICS and Liberty: What You Need to Know

6.3.15 CICS default web application

The CICS default web application, CICSDefaultApp, illustrated in Figure 6-10 on page 123, is
a built-in configuration service that validates the Liberty JVM server has started. To make the
application available, add the following statement to your server.xml file. See Example 6-12.

Example 6-12 Enable the default web application

<cicsts_defaultApp deployed="true" />

6.3.16 JTA transaction log

When Liberty applications use the Java Transaction API (JTA), the Liberty transaction
manager stores its recoverable log files in the zFS filing system. The default location for the
transaction logs is ${WLP_USER_DIR}/tranlog/. This location can be overridden by adding a
transaction element to the server.xml file, as shown in 6.3.17, “Sample server.xml” on
page 115. You only need to consider setting this location if your application uses either EJB
container-managed transactions or the Java Transaction API using the UserTransaction
interface. See Example 6-13.

Example 6-13 Define directory of the transaction log

<transaction transactionLogDirectory="/cicsts53/CICSPRD/JVMWLP/tranlog/"/>

6.3.17 Sample server.xml

Example 6-14 shows what the server.xml file looks like when the configuration is complete.

Example 6-14 Sample server.xml with our updates

<server description="JVMWLP sample">

<featureManager>
 <feature>cicsts:core-1.0</feature>
 <feature>ssl-1.0</feature>
 <feature>servlet-3.0</feature>
 <feature>jsp-2.2</feature>
 <feature>wab-1.0</feature>
</featureManager>
...
<httpEndpoint host="<hostname>" httpPort="53088" httpsPort="53089"
 id="defaultHttpEndpoint"/>
...
<include location="${server.output.dir}/installedApps.xml"/>
...
<cicsts_defaultApp deployed="true" />
...
<bundleRepository>
 <fileset dir="/u/user/bundles/" include="TESTBUND.jar"/>
</bundleRepository>
...

Note: If you disable configuration monitoring, CICS bundle installation does not work.
Chapter 6. Configuring a Liberty server in CICS 115

<library id="global">
 <fileset dir="/u/user/bundles/global/" include="GLOBUND.jar"/>
</library>
...
<config monitorInterval="5s" updateTrigger="polled"/>
...
<applicationMonitor dropins="dropins" dropinsEnabled="false" pollingRate="5s"
updateTrigger="enabled"/>
...
<transaction transactionLogDirectory="/u/cics/CICSPRD/JVMWLP/tranlog/"/>
...
</server>

6.3.18 Check welcome page

A quick way to check your Liberty JVM server status is to use the home page created by the
Liberty server. This page is a simple welcome page, which is displayed by Liberty when a
browser attempts to access its HTTP or HTTPS port without a valid URI. You can access this
page by visiting the URL <hostname>:<port>.

In our example, we used: http://<hostname>:53088/, which displayed the following page. For
more information about how to verify your configuration, see 6.5, “Verifying the configuration”
on page 122.

Figure 6-1 Liberty welcome page
116 IBM CICS and Liberty: What You Need to Know

http://winmvsh1.zseries.tec.hur.cdn:53088/

For more information, see Configuring a Liberty JVM server, at:

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/
JVMserver/config_jvmserver_liberty.html

6.4 Defining and installing a CICS bundle

A CICS BUNDLE resource definition is required to install Liberty applications via a CICS
bundle project. The BUNDLE resource definition then refers to the deployed versions of these
components in a zFS directory. This directory simply contains the deployable artifacts and a
manifest that describes the bundle and its potential dependencies. CICS bundles provide a
useful way of grouping and managing related resources and providing a versioning schema
and the ability to declare dependencies on other resources outside the bundle. CICS does not
dynamically create prerequisite systems, but can check that they exist in the CICS region.
Application developers can use CICS bundle project for packaging Java and Web
applications, and for creating cloud-based applications and business events. System
programmers need to use CICS bundles for system events and policies.

In this section, we install CICS bundle projects using both the CEDA transaction server and
CICS Explorer. We use the bundle project to install our sample Hello World web application
into the Liberty JVM server and control its availability. For more information about creating this
application, see Chapter 5, “Developing and deploying applications” on page 69.

6.4.1 BUNDLE resource definition

We are ready to create the BUNDLE resource definition. You have to copy the sample
BUNDLE definition ‘WLPHELLO’ from sample group ‘DFH$WLP’ with a new name to a group of
your choice. These are the settings that we used. See Table 6-2.

Table 6-2 Values for the new bundle resource definition

Create a BUNDLE definition using CEDA and set the system-dependent attributes (Group,
BUndledir), as shown in Example 6-15.

Example 6-15 Create a bundle definition with CEDA

OVERTYPE TO MODIFY CICS RELEASE = 0700
 CEDA ALter Bundle(HELLOWO)
 Bundle : HELLOWO
 Group : REDS12LP
 DEScription ==> CICS BUNDLE FOR LIBERTY HELLO TEST
 Status ==> Enabled Enabled | Disabled
 BUndledir ==> /u/reds12/bundles/com.ibm.liberty.HelloWorld.cics_1.0.0
 (Mixed Case) ==>
 BAsescope ==>

ATTRIBUTE DEFAULT VALUE Description

BUNDLE WLPHELLO HELLOWO Name of the BUNDLE definition
in CICS

Group DFH$WLP REDS12LP Name of the CSD group defined
in CICS

BUndledir /u/reds12/bundles/com.ibm.liberty.HelloW
orld.cics_1.0.0

zFS directory of the deployed
CICS Bundle
Chapter 6. Configuring a Liberty server in CICS 117

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/JVMserver/config_jvmserver_liberty.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/JVMserver/config_jvmserver_liberty.html

 (Mixed Case) ==>

 DEFINITION SIGNATURE
+ CHANGETime : 30/10/15 18:40:12

 PF/PA KEY UNDEFINED SYSID=ISV APPLID=CREDS12A

 PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

6.4.2 Install a BUNDLE resource definition

To install a BUNDLE resource definition:

1. Install and enable the CICS bundle into your CICS region using CEDA using the following
syntax:

CEDA EX GR(GROUP) BUNDLE(BUNDLENAME)

For example:

CEDA EX GR(REDS12LP) BUNDLE(HELLOWO)

See Example 6-16.

Example 6-16 Install and enable CICS bundle into CICS region

CEDA EX GR(REDS12LP) BUNDLE(HELLOWO)
 ENTER COMMANDS
 NAME TYPE GROUP LAST CHANGE
 HELLOWO BUNDLE REDS12LP install 30/10/15 18:42:48

 SYSID=ISV APPLID=CREDS12A
 RESULTS: 1 TO 1 OF 1 TIME: 20.35.20 DATE: 30/10/15
PF 1 HELP 2 SIG 3 END 4 TOP 5 BOT 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

2. Then, check the status of the Liberty JVM server using the CEMT transaction, as follows:

CEMT INQUIRE BUNDLE

See Example 6-17.

Example 6-17 Check bundle status

CEMT I BUNDLE
 STATUS: RESULTS - OVERTYPE TO MODIFY
 Bun(HELLOWO) Ena Par(00001) Tar(00001)
 Enabledc(00001) Bundlei(com.ibm.liberty.HelloWorld)

SYSID=ISV APPLID=CREDS12A
 RESPONSE: NORMAL TIME: 20.38.33 DATE: 30/10/15
PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11 SF

If the status shows enabled, that means that the bundle resource is enabled. Check the
Liberty messages.log file to see whether the Liberty application has deployed and is available.
To check that the Liberty application is running, access it by using the HTTP or HTTPS port of
the Liberty JVM server (Figure 6-2 on page 119). For example:

http://<hostname>:53120/com.ibm.liberty.HelloWorld/Hello
118 IBM CICS and Liberty: What You Need to Know

http://<hostname>:53120/com.ibm.liberty.HelloWorld/Hello

Figure 6-2 Hello World application

6.4.3 BUNDLE definition by CICS Explorer

The next steps explain how you can define a CICS Bundle with CICS Explorer. Switch to the
CICS SM perspective in your Eclipse Environment:

1. Click Window → Open Perspective → Other → CICS SM. See Figure 6-3.

Figure 6-3 Open Perspective window

2. Select your CICS region from the list on the left side on the window. See Figure 6-4.

Figure 6-4 Select your CICS region

3. Go to Window → Show View → Other and select Bundle Definitions. Click OK. See
Figure 6-5 on page 120.
Chapter 6. Configuring a Liberty server in CICS 119

Figure 6-5 Bundle definition

4. Right-click anywhere in the view and select New. See Figure 6-6.

Figure 6-6 New bundle definition menu

5. Now you can edit the details of your CICS bundle. We use the same parameters as
defined in Chapter 5, “Developing and deploying applications” on page 69. Create your
bundle by clicking Finish. See Figure 6-7 on page 121.
120 IBM CICS and Liberty: What You Need to Know

Figure 6-7 Create Bundle Definition window

6.4.4 BUNDLE installation by CICS Explorer

The next step explains how to install the CICS Bundle with CICS Explorer. Switch to the CICS
SM perspective in your CICS Explorer.

1. Right-click CICS Bundle definition → Install → select CICS region → OK. See
Figure 6-8.

Figure 6-8 Install CICS Bundle window
Chapter 6. Configuring a Liberty server in CICS 121

Figure 6-9 Select CICS region

6.5 Verifying the configuration

The default web application is a built-in web application that is activated in the server.xml file.
It delivers helpful information about the Liberty JVM server, such as:

� Reports on runtime configuration
� Provides access to log files
� Defaults to SSL if security set-up

You can run the application by using the following style of URL:

http://<server>:<port>/com.ibm.cics.wlp.defaultapp/

Figure 6-10 on page 123 shows the results of entering the following URL:

http://<hostname>:53088/com.ibm.cics.wlp.defaultapp/
122 IBM CICS and Liberty: What You Need to Know

http://<server>:<port>/com.ibm.cics.wlp.defaultapp/
http://winmvsh1.zseries.tec.hur.cdn:53088/com.ibm.cics.wlp.defaultapp/

Figure 6-10 CICS TS default web application

6.5.1 Log file analysis

The most important log file created by each startup of Liberty JVM server is the messages.log
file. The messages.log file can be found by default in the logs directory in the same zFS
directory as your Liberty server configuration. To locate this directory, the root directory for
your Liberty JVM server log files is in the working directory used by the JVM server.

In our example, the CICS APPLID is CREDS08A. The Liberty JVM Server is called JVMWLP.
And the Liberty log files can be found in this location:

/u/reds08/cicsts53/workdir/CREDS08A/JVMWLP/wlp/usr/servers/defaultServer/logs
Chapter 6. Configuring a Liberty server in CICS 123

Liberty outputs useful information about application and system activity to this messages.log
file. This file serves as one of the main ways to monitor your Liberty JVM server. This section
briefly shows several generated messages written to the messages.log file. See Figure 6-11.

Figure 6-11 Sample from messages.log

For more information about logs, see Chapter 12, “Troubleshooting” on page 211.

6.6 Setting up a Liberty JVM server using CICS Explorer

In this section, we show you how to create and install a Liberty JVM server using CICS
Explorer.

To start a Liberty JVM server in CICS, you need a JVM profile that describes your server. In
our example, we use the example server provided with the CICS installation as the basis for
our server. We are using FTP to connect to zFS on the hosting mainframe. This chapter
requires a few technical requirements.
124 IBM CICS and Liberty: What You Need to Know

You need to install these items:

� CICS Explorer and FTP

The IBM Knowledge Center for CICS TS V5.3 has a section that shows you how to install
and configure the CICS Explorer.

Open “IBM Knowledge Center for CICS Transaction Server 5.3.0” – “Installing” – “CICS
Explorer installation.”

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.install
ation.doc/topics/explorer_configure_chapter.html

� SMSS CICS region or WUI Server

The IBM Knowledge Center for CICS TS V5.3 has a section that shows you how to set up
an SMSS CICS region or a CICSPlex SM WUI Server.

Open “IBM Knowledge Center for CICS Transaction Server 5.3.0” – “Configuring” –
“Setting up access for CICS Explorer.”

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.clienta
pi.doc/topics/clientapi_setup.html

6.6.1 CICS Explorer connection

Ensure that your CICS Explorer is connected to the CICS system using a CMCI connection to
CICS and an FTP connection to your z/OS FTP server.

Figure 6-12 CICS Explorer connections

6.6.2 Locate the zFS directories

CICS provides several example JVM profiles to help you get started with JVM servers. We
used the Liberty sample profile to help us set up our profile. To locate the directories, locate
the UNIX System Services home and the JVM profiles directory. The USSHOME and
JVMPROFILEDIR system initialization parameters list these locations.

You can find out these values for any CICS region from the CICS Explorer Regions view using
Show SIT parameters → Combined:

USSHOME=/usr/lpp/cicsts/cicsts53
JVMPROFILEDIR=/u/reds08/cicsts53/JVMProfiles/
Chapter 6. Configuring a Liberty server in CICS 125

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.installation.doc/topics/explorer_configure_chapter.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.installation.doc/topics/explorer_configure_chapter.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.clientapi.doc/topics/clientapi_setup.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.installation.doc/topics/explorer_configure_chapter.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.installation.doc/topics/explorer_configure_chapter.html

6.6.3 Copy the JVM profile

In the z/OS UNIX Files view in your Eclipse environment, enter your USSHOME directory into the
filter box, and then select the JVMProfile subdirectory. You will see a number of sample
profiles listed. The one that we need is DFHWLP. Copy this file to your JVMPROFILEDIR location
with an appropriate name. In our example, we named it JVMWLP.jvmprofile.

Figure 6-13 Default JVMPROFILE

Figure 6-14 Example JVMPROFILE

6.6.4 Edit the JVM profile

The default profile contains most of the settings that are required to run a Liberty JVM server
in CICS. Here, we add in only the necessary options to enable the autoconfigure feature. For
the remainder of the profile, retain the default values:

-Dcom.ibm.cics.jvmserver.wlp.autoconfigure=true
-Dcom.ibm.cics.jvmserver.wlp.server.http.port=53088
-Dcom.ibm.cics.jvmserver.wlp.server.https.port=53089

For more information about editing the profile, see 6.3.1, “JVM profile” on page 106.
126 IBM CICS and Liberty: What You Need to Know

6.6.5 Create the Liberty JVM server definition

We now need to create and install a JVM server definition in CICS. Follow these steps:

1. Select the connected CICS region in the CICSplex Explorer window on the left. See
Figure 6-15.

Figure 6-15 CICS region selected

2. Open the JVM Server Definitions view in Explorer, and select Window → Show View →
Other. See Figure 6-16.

Figure 6-16 Show view menu
Chapter 6. Configuring a Liberty server in CICS 127

3. Enter JVM Server Definitions in the filter box, select Search, and click OK. See
Figure 6-17.

Figure 6-17 Choose JVM server definitions

4. In the newly opened JVM Server Definitions window, right-click anywhere and select New
to open the New JVM Server Definition wizard, which is shown in Figure 6-18.

5. Complete the fields for the JVM server, pointing the profile to the one created in JVMWLP.
Click Finish (Figure 6-18).

Figure 6-18 JVM server definitions
128 IBM CICS and Liberty: What You Need to Know

6.6.6 Install Liberty JVM server definition

You now see the JVM server definition that you created listed in the JVM Server Definitions
view.

1. Right-click your JVM server and select Install. See Figure 6-19.

Figure 6-19 Select the JVM server to install

2. In the window that displays, select your CICS region and then click OK.

Figure 6-20 Install the chosen JVM server

3. CICS installs your JVM server definition.
Chapter 6. Configuring a Liberty server in CICS 129

4. To see your JVM server installation, open the JVM Servers view, and go to Window →
Show View → Other. Type JVM Servers into the filter box and click OK.

Your JVM server is listed in this view with a status of Enabled. Liberty is now available for
use. See Figure 6-21.

Figure 6-21 JVM server is ENABLED

6.6.7 Liberty JVM server log files

Liberty prints a message to its messages.log file when it is available for use. Having the status
of Enabled confirms that the JVM server is ready for use. However, look at the logs anyway
because logging is slightly different from other JVM servers in CICS. Liberty JVM servers still
produce dfhjvmout, dfhjvmerr, and dfhjvmtr files when run. However, Liberty provides its
own logging file named messages.log.

The messages.log file (shown in Figure 6-22 on page 131) can be found by default in the logs
directory in the same zFS directory as your server configuration. To locate this directory, first
open the z/OS UNIX Files view in your Explorer environment.

The directory for your Liberty JVM server output files is in the working directory of the JVM
server. In our example, the CICS APPLID is CREDS08A and the Liberty JVM Server is
named JVMWLP so our message.log is in this location:

/u/reds08/cicsts53/workdir/CREDS08A/JVMWLP/wlp/usr/servers/defaultServer/logs
130 IBM CICS and Liberty: What You Need to Know

Figure 6-22 Path to messages.log

Liberty outputs a large amount of useful information about application and system activity to
the messages.log file. It serves as one of the main ways to monitor your Liberty JVM server.

For now, we are looking for a message that reads as follows and indicates that Liberty started
successfully:

A CWWF0011I: The server defaultServer is ready to run a smarter planet.

For more information about verifying the configuration and analyzing the log file, see 6.5,
“Verifying the configuration” on page 122.
Chapter 6. Configuring a Liberty server in CICS 131

132 IBM CICS and Liberty: What You Need to Know

Chapter 7. Configuring the web server
plug-in

In this chapter, we describe how we built a web server plug-in configuration file and deployed
the plug-in to a web server to load balance requests across a set of Liberty servers. For more
information about the workload management options available with Liberty in CICS, see
Chapter 4, “Security options” on page 57.

This chapter describes the following topics:

� Configuring the web server plug-in
� Install the HTTP Server and plug-in
� Liberty server configuration
� Configure the plug-in
� Test the configuration

7

© Copyright IBM Corp. 2016. All rights reserved. 133

7.1 Configuring the web server plug-in

The web server plug-in is configured by generating a plugin-cfg.xml file on the Liberty
server that is then copied to the machine hosting the web server. This configuration file can
be generated by calling the generateDefaultPluginConfig or the generatePluginConfig MBean
operation that is provided by Liberty. This JMX MBean can either be invoked remotely, by
using the JConsole utility supplied with the IBM Java SDK in combination with the Liberty
server restConnector-1.0 feature. Or, the JMX MBean can be invoked by developing a custom
JMX application to invoke the required operation on the MBean.

The plug-in must be installed into each web server that redirects requests to the target Liberty
servers. See Figure 7-1.

Figure 7-1 Web server plug-in configuration

Several steps are needed to configure the IBM HTTP Server to forward HTTP requests to the
Liberty JVM server running in CICS. In this scenario, we set up a remote web server on a
Microsoft Windows PC and configure it to route requests to the CICS region running on z/OS.
These are the high-level steps:

1. Install the IBM HTTP Server and the plug-in
2. Configure the Liberty server
3. Configure the plug-in configuration file
4. Test the configuration
134 IBM CICS and Liberty: What You Need to Know

7.2 Install the HTTP Server and plug-in

You can install a web server and web server plug-in by using IBM Installation Manager. You
can perform the installation by using the graphical user interface (GUI), command-line
interface (CLI), console mode, or silently. To install the IBM HTTP Server and web server
plug-in, complete the following steps:

1. Using IBM Installation Manager, configure the Installation Manager repository to point to
the WebSphere supplements package.

The IBM HTTP web server and the web server plug-in are provided as part of the
WebSphere Application Server supplements to the WebSphere Application Server. You
can download the fixes for WebSphere Application Server V8.5.5 at:

http://www.ibm.com/support/docview.wss?uid=swg24040533

2. Click the Install wizard and select the following packages:

a. IBM HTTP Server for WebSphere Application Server

b. Web server plug-ins for IBM WebSphere Application Server

3. Click Next.

4. Read and accept the license agreement, and click Next.

5. Specify the installation directory for each package.

6. Ensure the “Create a new package group” option is selected, then click Next.

7. In the Features window, verify the selected packages, and click Next.

8. Configure a port number for the IBM HTTP Server to communicate. By default, it listens on
ports 80 and 443. Click Next.

9. Review the settings in the Summary window and click Install.

10.When the installation is complete, review the summary and click Finish.

Now that everything is installed, we need to configure the web server plug-in. Because the
Liberty profile is running in CICS, we generate the plugin-cfg.xml file for the Liberty profile
server by calling the WebSphere:name=com.ibm.ws.jmx.mbeans.generatePluginConfig
MBean using a remote Representational State Transfer (REST) connection from the
JConsole tool running on our workstation.

Remote access through the REST connection is protected by a single administrator role.
Also, Secure Sockets Layer (SSL) is required in order to keep the communication confidential.

7.3 Liberty server configuration

The first step is to configure the ports to be used by the plug-in to communicate with the
Liberty server:

1. Specify the web server HTTP and HTTPS ports in the server.xml file. By default, the
values are 80 and 443:

<pluginConfiguration webserverPort=”80” webserverSecurePort=”443”/>
Chapter 7. Configuring the web server plug-in 135

http://www.ibm.com/support/docview.wss?uid=swg24040533

2. In the server.xml file, make the following changes:

a. Ensure that the httpEndpoint element specifies host=”*”

b. Enable the REST connector in the server.xml file

<featureManager>
<feature>restConnector-1.0</feature>
</featureManager>

c. Enable SSL communication for the Liberty profile

d. Enable the SSL Liberty feature in server.xml

<featureManager>
<feature>ssl-1.0</feature>
</featureManager>

Add the keystore service object entry to the server.xml file. If you let CICS
autoconfigure the server.xml file, this element has been added for you. Note the
keystore password:

<keyStore id=”defaultKeyStore” password=”defaultPassword”/>

e. Map a user to the administrator role for Liberty. Because we are mapping a z/OS user
to an administrator role, we must configure the SSL definitions with SAF and define the
administrator in IBM Resource Access Control Facility (RACF):

Configure SSL definitions with SAF:

<safRegistry id="saf"/>
<safCredentials profilePrefix="CREDS10A"/>
<safAuthorization id="saf"/>

<ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore" sslProtocol="TLS"/>
<keyStore id="defaultKeyStore" password="defaultPassword"/>
<trustStore id="defaultTrustKeyStore" password="defaultTrustPassword"/>

f. Configure the administrator role through RACF authorization. By default, the SAF
profile name for the administrator role is as follows:
BBGZDFLT.com.ibm.ws.management.security.resource.Administrator.

That profile must exist in the EJBROLE SAF class, and the admin user must be
granted READ access to it. For example:

RDEFINE EJBROLE
BBGZDFLT.com.ibm.ws.management.security.resource.Administrator UACC(NONE)
PERMIT BBGZDFLT.com.ibm.ws.management.security.resource.Administrator
ID(MSTONE1) ACCESS(READ) CLASS(EJBROLE)

g. Start the Liberty JVM server in CICS by installing the JVMSERVER resource definition.

h. Access the REST connector.

i. Start the Liberty JVM server in CICS. In the messages.log file, you see the following
messages:

CWWKT0016I: Web application available (default_host):
http://<hostname>:53103/IBMJMXConnectorREST/

j. Go to this URL in a browser to verify that you have set up a successful connection to
the REST connector. You need to input your z/OS user ID and password.
136 IBM CICS and Liberty: What You Need to Know

http://winmvsh1.zseries.tec.hur.cdn:53103/IBMJMXConnectorREST/

7.4 Configure the plug-in

To configure the plugin-cfg.xml file, we will be calling the generatePluginConfig MBean. We
use the jconsole utility that is provided with Java to generate this plug-in. However, we must
set some environment variables when we call this utility on the command line:

1. In the messages.log file, look for the following message and note the URL:

CWWKX0103I: The JMX REST connector is running and is available at the following
service URL:

service:jmx:rest://<hostname>:53104/IBMJMXConnectorREST

2. Create the C:\restclient directory on your workstation:

a. In the CICS region on z/OS:

i. Use FTP to transfer $USSHOME/clients/restConnector.jar to C:\restClient

ii. Use FTP to transfer <WLP_USER_DIR>/resources/security/key.jks to C:\restClient

b. On your workstation:

i. Copy <IBM_JDK_root>/jre/lib/security/java.policy to C:\restClient

ii. Replace the ssl.SocketFactory.provider and ssl.ServerSocketFactory.provider with
the following, if they exist:

ssl.SocketFactory.provider=
ssl.ServerSocketFactory.provider=

3. In a command window, type SET JAVA_HOME=<IBM_JDK_root>\java on your
workstation. This is the directory where you install the WebSphere Customization Toolbox
in step 2 above.

4. Change to the java directory: CD %JAVA_HOME%\bin

5. From the command window, run the jconsole Java utility. The full command follows:

jconsole -J-Djava.security.properties=C:\restClient\java.policy
-J-Djava.class.path=%JAVA_HOME%\lib\jconsole.jar";%JAVA_HOME%\lib\tools.jar";
"C:\restClient\restConnector.jar"
-J-Djavax.net.ssl.trustStore=C:\restClient\key.jks
-J-Djavax.net.ssl.trustStorePassword=defaultPassword
-J-Djavax.net.ssl.trustStoreType=jks
-J-Dcom.ibm.ws.jmx.connector.client.disableURLHostnameVerification=true

Note: This command must be all on one line.

� The trustStorePassword is the password specified on the keystore element in
server.xml.

� If jconsole fails to connect over SSL, add the following line to open a diagnostic
window when trying to connect:

-J-Djavax.net.debug=ssl
-J-Djava.util.logging.config.file=C:\temp\logging.properties
Chapter 7. Configuring the web server plug-in 137

6. In the jconsole window, do a remote connection to the CICS system on z/OS:

a. Enter the service:jmx:rest://<hostname>:53104/IBMJMXConnectorREST you noted in
Step 2 on page 134 for the remote process.

b. Enter your z/OS user ID and password and click Connect. See Figure 7-2.

Figure 7-2 Establishing a remote connection

7. In the MBeans tab, go to WebSphere →
com.ibm.ws.jmx.mbeans.generatePluginConfig → Operations →
generatePluginConfig.

8. Under Operation Invocation, click the generatePluginConfig button:

This creates a plugin-cfg.xml file on z/OS within the ${server.output.dir} directory.

9. Use FTP to transfer this plugin-cfg.xml file to the machine where the web server resides.

7.4.1 Configure the plug-in to forward requests

Plug-in properties used for mapping HTTP requests within the configuration file are:

� Route: Identifies the server for the plug-in to send a request to. The plug-in checks each
route to find the appropriate route for the request.

� VirtualHost: Contains multiple defined host:port pairs for the web servers and application
servers.

� URIGroup: Specifies a group of URIs that are indicated on the HTTP request line. The
route compares the incoming URI with the URIs in the group to determine if the request
should be forwarded to the application server for handling.

� Transport: Provides the information that is necessary to determine the location of the
application server to which the request is sent. If the server has multiple transports that
are defined to use the same protocol, the first one is used.

� Log: Is useful for identifying where the web server log is written.
138 IBM CICS and Liberty: What You Need to Know

Example 7-1 shows what the plugin-cfg.xml file contains.

Example 7-1 plugin-cfg.xml

<?xml version="1.0" encoding="UTF-8"?><!--HTTP server plugin config file for String generated on
2015.11.12 at 23:23:56 GMT-->
<Config ASDisableNagle="false" AcceptAllContent="false" AppServerPortPreference="HostHeader"
ChunkedResponse="false" FIPSEnable="false" IISDisableNagle="false" IISPluginPriority="High"
IgnoreDNSFailures="false" RefreshInterval="60" Re-sponseChunkSize="64" SSLConsolidate="false"
TrustedProxyEnable="false" VHostMatchingCompat="false">
 <Log LogLevel="Error" Name="String/logs/String/http_plugin.log"/>
 <Property Name="ESIEnable" Value="true"/>
 <Property Name="ESIMaxCacheSize" Value="1024"/>
 <Property Name="ESIInvalidationMonitor" Value="false"/>
 <Property Name="ESIEnableToPassCookies" Value="false"/>
 <Property Name="PluginInstallRoot" Value="String"/>
<!-- Configuration generated using httpEndpointRef=defaultHttpEndpoint-->
<!-- The default_host contained only aliases for endpoint defaultHttpEndpoint.

 The generated VirtualHostGroup will contain only configured web server ports:
webserverPort=8080
webserverSecurePort=443 -->

 <VirtualHostGroup Name="default_host">
 <VirtualHost Name="*:8080"/>
 <VirtualHost Name="*:443"/>
 </VirtualHostGroup>
<ServerCluster CloneSeparatorChange="false" GetDWLMTable="false" IgnoreAffinityRequests="true"
LoadBalance="Round Robin" Name="String_default_node_Cluster" PostBufferSize="0"
PostSizeLimit="-1" RemoveSpecialHeaders="true" RetryInter-val="60">
 <Server CloneID="a33546e6-6399-4fea-a865-2546d224fe44" ConnectTimeout="5"
ExtendedHandshake="false" MaxConnec-tions="-1" Name="default_node_String" ServerIOTimeout="900"
WaitForContinue="false">
 <Transport Hostname="<hostname>" Port="53103" Protocol="http"/>
 <Transport Hostname="<hostname>" Port="53104" Protocol="https">
 <Property Name="keyring" Value="keyring.kdb"/>
 <Property Name="stashfile" Value="keyring.sth"/>
 <Property Name="certLabel" Value="LibertyCert"/>
 </Transport>
 </Server>
 <PrimaryServers>
 <Server Name="default_node_String"/>
 </PrimaryServers>
 </ServerCluster>
 <UriGroup Name="default_host_String_default_node_Cluster_URIs">
 <Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/com.ibm.cics.wlp.defaultapp/*"/>
 <Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/IBMJMXConnectorREST/*"/>
 </UriGroup>
 <Route ServerCluster="String_default_node_Cluster"
UriGroup="default_host_String_default_node_Cluster_URIs" Virtu-alHostGroup="default_host"/>
</Config>

Notice the CICS com.ibm.cics.wlp.defaultapp is included within the URIGroup. We use this
application to test this scenario.
Chapter 7. Configuring the web server plug-in 139

Enable the plug-in in the httpd.conf file of the web server using the LoadModule phrase, and
specify the location of the plugin-cfg.xml file using the WebspherePluginConfig phrase. For
example, on a Microsoft Windows system, see Example 7-2.

Example 7-2 LoadModule excerpt from httpd.conf

LoadModule was_ap22_module
"C:\Users\IBM_ADMIN\IBM\WebSphere\Plugins2\bin\32bits\mod_w
as_ap22_http.dll"
WebSpherePluginConfig "c:\Program Files\IBM\HTTPServer\conf\plugin-cfg.xml"

7.4.2 Merging plug-in configuration files

In an environment where you have more than one CICS region each running a Liberty JVM
server, you might want to use the same HTTP server to send and receive HTTP and HTTPS
requests to each region. To accomplish this, you must merge the web server plug-in
configuration files that are used for each Liberty JVM server into a single web server plug-in
configuration file.

Use the preceding steps to generate a separate plug-in configuration file for each Liberty
profile. Then, combine all of these files into a single configuration. Install the generated
merged plugin-cfg file on the web server. Typically, you have to enable the plug-in in the
httpd.conf file of the web server. Use the LoadModule phrase to enable the plug-in, and
specify the location of the configuration file using the WebSpherePluginConfig phrase.

7.5 Test the configuration

As a first step in testing the plug-in, you can test that the web server is active:

1. Go to the web server host name and port number it is listening to in a browser (for
example, enter http://localhost:8080.

2. In Figure 7-3, you can see the default welcome page for the IBM HTTP Server.

Figure 7-3 IBM HTTP Server welcome page

As the next step, you create a static web page hosted on the Microsoft Windows PC that will
be serviced by the IBM HTTP Server.
140 IBM CICS and Liberty: What You Need to Know

SSL between the plug-in and the Liberty server might not be necessary, especially if the
plug-in is running on the same machine as the application server. However, in this case it is
not, and so we removed the following security features from the server.xml file:

<feature>cicsts:security-1.0</feature>
<feature>ssl-1.0</feature>

Now you can test the plug-in configuration. There are three ways to validate the configuration.
Choose one of the following options:

� Send an HTTP request to the Liberty JVM server port to validate that the server is up and
the application is running:

http://<libertyHost>:libertyPort/com.ibm.cics.wlp.defaultapp/

� Send an HTTP request to the IBM HTTP Server to validate the web server is listening on
the post and capable of handling requests:

http://<webserverHost>:webserverPort

� Test the application URL at the IBM HTTP Server to validate the service statement and
plugin-cfg.xml statements:

http://<webserverHost>:webserverPort/com.ibm.cics.wlp.defaultapp/

In this section, you successfully configured the web server plug-in to forward requests sent to
the IBM HTTP Server on Microsoft Windows to the Liberty profile running in CICS on z/OS.
Chapter 7. Configuring the web server plug-in 141

http://<libertyHost>:libertyPort/com.ibm.cics.wlp.defaultapp/
http://<webserverHost>:webserverPort
http://<webserverHost>:webserverPort/com.ibm.cics.wlp.defaultapp/

142 IBM CICS and Liberty: What You Need to Know

Chapter 8. Implementing security options

This chapter shows you how to get up and running with security in Liberty Java virtual
machine (JVM) server. The first sections are about basic security infrastructure that you need.
Later, we cover the details about several options for securing your web applications.

This chapter describes the following topics:

� Start the angel process
� Server.xml security elements
� Set up the SAF unauthenticatedUser user ID
� SAF definitions and permissions
� Web application security
� SAF authorization
� Liberty security-role authorization

For more information about the different security authentication and authorization options that
are available in the Liberty server environment on CICS, refer to Chapter 4, “Security options”
on page 57.

8

© Copyright IBM Corp. 2016. All rights reserved. 143

8.1 Start the angel process

The angel process is a long-running started task required for the Liberty JVM server in CICS
Transaction Server (CICS TS) to use System Authorization Facility (SAF)-authorized services.
There needs to be one, and only one, angel process started in each logical partition (LPAR). In
addition to Liberty JVM server in CICS TS, two other products also use the angel process.
These are WebSphere Liberty Profile on z/OS, and zOSMF. If there is already an angel process
started for either of those products, Liberty JVM server can use that angel process also.

Next, we describe how to start the angel process.

8.1.1 Copy and modify the angel process procedure

The angel process started task JCL procedure is shipped with CICS in the USSHOME
directory, for example:

/usr/lpp/cicsts53/wlp/templates/zos/procs/bbgzangl.jcl.

Example 8-1 shows the procedure.

Example 8-1 bbgzangl.jcl

//BBGZANGL PROC PARMS='',COLD=N
//*--
// SET ROOT='/u/MSTONE1/wlp'
//*--
//* Start the Liberty angel process
//*--
//* This proc may be overwritten by fixpacks or iFixes.
//* You must copy to another location before customizing.
//*--
//STEP1 EXEC PGM=BPXBATA2,REGION=0M,
// PARM='PGM &ROOT./lib/native/zos/s390x/bbgzangl COLD=&COLD &PARMS'
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//* == */
//* PROPRIETARY-STATEMENT: */
//* Licensed Material - Property of IBM */
//* */
//* (C) Copyright IBM Corp. 2011, 2012 */
//* All Rights Reserved */
//* US Government Users Restricted Rights - Use, duplication or */
//* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.*/
//* == */

We now begin the copy and modify procedure:

1. Copy this JCL to a JES procedure library.
2. On the line where it reads, // SET ROOT=’/u/MSTONE1/wlp’, change ROOT to USSHOME/wlp.

// SET ROOT=’/usr/lpp/cicsts53/wlp’

Note: Only one Liberty JVM server per CICS region can connect to the angel process.
Therefore, you can have only one Liberty JVM server per CICS region that integrates with
CICS security.
144 IBM CICS and Liberty: What You Need to Know

8.1.2 Specify the user ID under which the angel process runs

The following command adds an SAF STARTED profile to specify the user ID that the angel
process runs under. For example, in RACF, the following commands specify that user ID
WLPUSER will be the user ID for the angel process. WLPUSER must already be a valid SAF
user ID:

RDEFINE STARTED BBGZANGL.* UACC(NONE) STDATA(USER(WLPUSER))
SETROPTS RACLIST(STARTED) REFRESH

8.1.3 Start the angel process and verify that it is up

Example 8-2 shows the console command to start the angel process.

Example 8-2 Start command for the angel process

START BBGZANGL

If BBGZANGL started successfully, it will be a visible long-running job. If it started and then
ended immediately, then likely the problem is that there is already an active angel process in
the LPAR. Example 8-3 is a sample of this situation.

Example 8-3 Sample console message

23.03.15 STC47564 IEF403I BBGZANGL - STARTED
23.03.15 STC47564 CWWKB0062E A WEBSPHERE FOR Z/OS ANGEL PROCESS IS ALREADY
STARTED
23.03.15 STC47564 CWWKB0063I ACTIVE ANGEL ASID 94 JOBNAME IZUANG1
23.03.15 STC47564 CWWKB0058E WEBSPHERE FOR Z/OS ANGEL PROCESS ENDED ABNORMALLY,
701
 701 REASON=14

8.2 Server.xml security elements

There are several necessary server.xml elements required for security. This section
describes how to add these to the server.xml file:

1. Add the cicsts:security-1.0 and the ssl-1.0 features. With autoconfigure=true in the
jvmprofile, these features are added automatically if CICS security is active. See
Example 8-4.

Example 8-4 Enabling features in server.xml

<featureManager>
…
<feature>cicsts:security-1.0</feature>
<feature>ssl-1.0</feature>
…
</featureManager>

Note: In the messages, the active angel process is jobname IZUANG1. That is the name
of the angel process when started with instructions for zOSMF. There is no problem with
that. A Liberty JVM server in CICS can connect to, and use, this angel process with no
problem.
Chapter 8. Implementing security options 145

2. Ensure that there is an httpsPort. See Example 8-5.

Example 8-5 Setting HTTP and HTTPS ports in server.xml

<httpEndpoint host="*" httpPort="53130" httpsPort="53131"
id="defaultHttpEndpoint"/>

3. Specify the following SSL-related elements. These elements are added automatically
when using autoconfigure and CICS security is active. This is shown in Example 8-6.

This causes the Liberty server to dynamically configure an SSL keystore using a Java
keystore on zFS.

Example 8-6 Configuring SSL in server.xml

<ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore" sslProtocol="TLS"/>
<keyStore id="defaultKeyStore" password="defaultPassword"/>

4. Activate SAF authorization with the element shown in Example 8-7.

With this element, Liberty JVM server uses SAF EJBROLE profiles to authorize access to
web applications, and does not use the application-bnd element. Without this element, it is
the opposite. Liberty JVM server does not use SAF EJBROLE profiles to authorize access
to web applications. Instead, Liberty JVM server uses the application-bnd element.

Example 8-7 Activate SAF authorization in server.xml

<safAuthorization id="saf"/>

5. Specify the server name. The angel process will know the Liberty JVM server by this
name. This name will be used for the APPL class profile and as the prefix for EJBROLE
profiles. The default name is BBGZDFLT. Specify a name that is unique to this Liberty JVM
server, such as the CICS applid.

Example 8-8 shows the Liberty server name defined as LIBSRV01. This name is used in
further examples in this section.

Example 8-8 Specify Liberty server name in server.xml

<safCredentials profilePrefix="LIBSRV01" />

For more information about configuring SSL in Liberty with SAF key rings, see the IBM
Knowledge Center at this link:

https://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc
/ae/twlp_sec_ssl.html

8.3 Set up the SAF unauthenticatedUser user ID

If you are using an SAF user registry, it is necessary to specify an SAF user ID that
represents the unauthenticated state. The name of the unauthenticated user ID is specified
on the unauthenticatedUser attribute of the SAFCredentials element in server.xml. See
Example 8-9.

Example 8-9 Define unauthenticated user in server.xml

<safCredentials unauthenticatedUser="WSGUEST"/>
146 IBM CICS and Liberty: What You Need to Know

https://www.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_sec_ssl.html

This establishes the user ID that is treated as the unauthenticatedUser. The user ID you
specify here needs to have been established in the following way.

It is important to define this user ID correctly in your SAF registry. If you are using a RACF
SAF user registry, the unauthenticated user (default WSGUEST) needs a unique default
group (DFLTGRP) with no other user IDs connected to that group, an OMVS segment, but not
a TSO segment, and the options NOPASSWORD, NOOIDCARD, and RESTRICTED. If you
have another SAF user registry, instead of RACF, find the user ID options that are provided by
that SAF registry that are equivalent to these RACF options.

By running the appropriate commands, you can correctly set up an unauthenticated user in
your SAF user registry. An unauthenticated user that is set up incorrectly can cause a security
exposure.

The procedure for setting up the SAF unauthenticatedUser user ID follows:

1. Run the ADDGROUP command. Use WSGUESTG as the group name, as shown in
Example 8-10.

Example 8-10 Add group command

ADDGROUP WSGUESTG SUPGROUP(SYS1)OWNER(SYS1)
 DATA('WAS Unauthenticated User Group')
 OMVS(AUTOGID)

2. Run the ADDUSER command. Use WSGUEST as the user ID name, as shown in
Example 8-11.

Example 8-11 Add user command

ADDUSER WSGUEST DFLTGRP(WSGUESTG) OWNER(SYS1)
 OMVS(AUTOUID
 HOME(/u/WSGUEST)
 PROGRAM(/bin/sh))
 NAME('WAS unauth')
 NOPASSWORD NOOIDCARD
 RESTRICTED

The NOPASSWORD and NOOIDCARD options protect this user ID from being revoked by
repeated attempts to guess the password.

The RESTRICTED option means that this user ID cannot gain access to protected resources
unless it is explicitly permitted to that resource, even is that resource has a general access
setting of UACC(READ).

Note: An unauthenticated user that is set up incorrectly can cause a security exposure.
Chapter 8. Implementing security options 147

8.4 SAF definitions and permissions

Set up the following SAF definitions and permissions.

8.4.1 Server class authorizations

The CICS region user ID must be authorized to connect to and access necessary services
provided by the angel process. The commands in Example 8-12 show how to do this with
RACF.

Example 8-12 Server class authorizations

RDEFINE SERVER BBG.ANGEL UACC(NONE)
PERMIT BBG.ANGEL CLASS(SERVER) ACCESS(READ) ID(cics_region_userid)

RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM.SAFCRED UACC(NONE)
PERMIT BBG.AUTHMOD.BBGZSAFM.SAFCRED CLASS(SERVER) ACCESS(READ)
ID(cics_region_userid)

RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM UACC(NONE)
PERMIT BBG.AUTHMOD.BBGZSAFM CLASS(SERVER) ACCESS(READ) ID(cics_region_userid)

RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM.PRODMGR UACC(NONE)
PERMIT BBG.AUTHMOD.BBGZSAFM.PRODMGR CLASS(SERVER) ACCESS(READ)
ID(cics_region_userid)

RDEFINE SERVER BBG.SECPFX.LIBSRV01 UACC(NONE)
PERMIT BBG.SECPFX.LIBSRV01 CLASS(SERVER) ACCESS(READ) ID(cics_region_userid)

Note: After the unauthenticated user ID (WSGUEST) is defined to the SAF registry, ensure
that the user ID is permitted to only the minimum number of SAF resources. If the Liberty
server is using SAF APPL resource check to control which users can connect to the Liberty
z/OS System Security Access Domain, the unauthenticated user ID must be given access
to the APPL profile.

Run the PERMIT command:

PERMIT BBGZDFLT CLASS(APPL) ID(WSGUEST) ACCESS(READ)

If you receive the RACF authorization failure message ICH408I because the
unauthenticated user (WSGUEST) does not have access to a RACF resource, it is almost
always incorrect to permit the unauthenticated user ID to the resource profile to resolve the
problem. This message usually means that the request is running in an unauthenticated
state, when it should be running in an authenticated state. The actual problem is probably
a failure to authenticate properly. Whenever it appears necessary to permit the
unauthenticated user ID to an SAF resource profile, consider carefully whether that is the
correct action to take. Permitting the unauthenticated user ID to any SAF resource profile
makes that resource available to everyone, including users who are not authenticated.
There are almost no instances where that is required. However, the APPL profile that
controls access to the WZSSAD is one exception.
148 IBM CICS and Liberty: What You Need to Know

8.4.2 APPL class authorizations

Every user ID needs read access to the Liberty server APPL class profile. The profile name in
this example is LIBSRV01 because that is what was specified earlier in the <safCredentials>
element. Example 8-13 shows how to define and activate the profile in RACF.

Example 8-13 Define Liberty server APPL class profile

RDEFINE APPL LIBSRV01 UACC(NONE)
SETROPTS CLASSACT(APPL)

Permit read access for every user ID to this profile. In the following examples, ALLUSERS is a
RACF group that all users are connected to. WSGUEST is the unauthenticated user ID. It
needs access too. See Example 8-14.

Example 8-14 Permit read access to Liberty server APPL class profile

PERMIT LIBSRV01 CLASS(APPL) ACCESS(READ) ID(ALLUSERS)
PERMIT LIBSRV01 CLASS(APPL) ACCESS(READ) ID(WSGUEST)
SETROPTS RACLIST(APPL) REFRESH

8.5 Web application security

Controlling access to a web application involves a combination of Java Platform, Enterprise
Edition authorization and CICS transaction security. There are two ways to do Java Platform,
Enterprise Edition authorization. You can use SAF authorization or Liberty security-role
authorization:

� SAF authorization uses SAF profiles in the EJBROLE class. An EJBROLE profile
represents a role in a web application. By permitting groups and users access to those
profiles, you authorize those groups and users to those roles in the web application.

� Liberty security-role authorization takes place outside of SAF. Security-role information is
present in the application element that defines each web application in server.xml or in
other .xml files that are logically part of server.xml. This security-role information maps
an application role with the groups and users who are authorized to those roles in the web
application.

You must set up your Liberty JVM server to do either SAF authorization or Liberty
security-role authorization. It cannot do both. You control which one to use by the
<safAuthorization/> element in server.xml. In Example 8-7 on page 146, you were
directed to include the <safAuthorization id="saf"/> element in server.xml.

With that element present in server.xml, your Liberty JVM server will use SAF authorization.
Any security-role information in the application elements in server.xml is ignored.

Similarly, if the safAuthorization element is not present in server.xml, Liberty JVM server
will use Liberty security-role authorization. That is, Liberty JVM server will map roles to users
and groups using security-roles information in the application element. Any SAF EJBROLE
profiles and permissions are ignored.

The method of Java Platform, Enterprise Edition authorization affects how you set up CICS
transaction security. Sometimes, Java Platform, Enterprise Edition authorization totally
controls access to the web application and you do not need to use CICS transaction security
to control access. Other times, Java Platform, Enterprise Edition authorization is effectively
bypassed, and you need to use CICS transaction security to control access.
Chapter 8. Implementing security options 149

See 8.6, “SAF authorization” on page 150 for assistance in getting up and running with
securing your web applications using SAF authorization.

See 8.7, “Liberty security-role authorization” on page 152 for assistance in getting up and
running with securing your web applications using Liberty security-role authorization.

Each section uses several web applications as examples:

com.ibm.cics.server.examples.wlp.hello.war One of the CICS SDK servlet example
applications.

com.ibm.cics.wlp.defaultapp The Liberty JVM server default application.

GenAppWeb A sample application that is provided as a
SupportPac.

CatalogBrowse A fictional web application that does not
have a security constraint.

8.6 SAF authorization

When using SAF authorization, you need to do the following steps to secure your web
applications:

1. Set up EJBROLE profiles and permissions
2. Set up a TCICSTRN profile and permissions for transaction CJSA
3. Define a URIMAP to specify a static user ID for applications with no security constraints

8.6.1 Set up EJBROLE profiles and permissions

For each web application, set up appropriate EJBROLE class definitions and permissions.
The examples in this section show how to do this by using RACF commands for sample
applications. First, we cover some background information.

The EJBROLE profiles defined in this section are based on the following server.xml
elements:

<safCredentials profilePrefix=“LIBSRV01”/>
<safRoleMapper profilePattern="%profilePrefix%.%resource%.%role%"
 toUpperCase=“false“ />

In the safRoleMapper profilePattern, %profilePrex%, %resource% and %role% are
substitution variables. At run time, they are substituted as follows:

%profilePrefix% The name specified in safCredentials profilePrefix.
%resource$ The name of the application.
%role% The name of the role.

So, if you are checking authorization for the role Broker in application GenAppWeb, the name
of the EJBROLE profile is LIBSRV01.GenAppWeb.Broker.

Note: Unlike other SAF profiles, changes to EJBROLE profiles do not take effect until the
address space is stopped and restarted. Therefore, you need to restart your CICS region if
adding or changing EJBROLE profiles in this section.
150 IBM CICS and Liberty: What You Need to Know

The specification of the safRoleMapper element is the default. If you specify something
different for safRoleMapper, you change the EJBROLE profile. For example, if you specify the
following, when checking for the role of Broker in application GenAppWeb, the name of the
EJBROLE profile is LIBSRV01.GenAppWeb.allRoles:

<safRoleMapper profilePattern="%profilePrefix%.%resource%.allRoles"
 toUpperCase=“false“ />

The following examples describe how to set up EJBROLE class definitions and permissions
using RACF commands for sample applications.

com.ibm.cics.server.examples.wlp.hello.war
The security constraint in the deployment descriptor for
com.ibm.cics.server.examples.wlp.hello.war declares that role cicsAllAuthenticated is
authorized to this application. Rather than permit all users to this role, you can specify
UACC(READ) on the definition for the profile. This allows all authenticated users to run this
web application. See Example 8-15.

Example 8-15 Define read access to the Hello World application

RDEFINE EJBROLE
LIBSRV01.com.ibm.cics.server.examples.wlp.hello.war.cicsAllAuthenticated
UACC(READ)
SETROPTS RACLIST(EJBROLE) REFRESH

com.ibm.cics.wlp.defaultapp
The default application, com.ibm.cics.wlp.defaultapp, has a security constraint that authorizes
the role of User to the entire application. The following RACF commands map the role of User
to a group called USERGRP. This allows all users who are associated with group USERGRP
to run the default application. See Example 8-16.

Example 8-16 Define read access to the default application

RDEFINE EJBROLE LIBSRV01.com.ibm.cics.wlp.defaultapp.User UACC(NONE)
PERMIT LIBSRV01.com.ibm.cics.wlp.defaultapp.User CLASS(EJBROLE) ACCESS(READ)
ID(USERGRP)
SETROPTS RACLIST(EJBROLE) REFRESH

The default application has an additional security constraint that controls the ability to access
links to some of the key files, such as server.xml and messages.log. Access to those files is
authorized to the role of Administrator. The following RACF commands authorize an
appropriate group, ADMINS, to that role. Any user connected to the ADMINS group is able to
use those links in the default application. See Example 8-17.

Example 8-17 Define read access to the default application for the administrator role

RDEFINE EJBROLE LIBSRV01.com.ibm.cics.wlp.defaultapp.Administrator UACC(NONE)
PERMIT LIBSRV01.com.ibm.cics.wlp.defaultapp.Administrator CLASS(EJBROLE)
ACCESS(READ) ID(ADMINS)
SETROPTS RACLIST(EJBROLE) REFRESH
Chapter 8. Implementing security options 151

GenAppWeb
The GenAppWeb deployment descriptor has a security constraint that authorizes the role of
Broker to the entire application. The following commands map a RACF group called
BROKERS to that role. Any user connected to group BROKERS is authorized to run
GenAppWeb. See Example 8-18.

Example 8-18 Define read access to the GenAppWeb application

RDEFINE EJBROLE LIBSRV01.GenAppWeb.Broker UACC(NONE)
PERMIT LIBSRV01.GenAppWeb.Broker CLASS(EJBROLE) ACCESS(READ) ID(BROKERS)
SETROPTS RACLIST(EJBROLE) REFRESH

BrowseCatalog
There is no security constraint in the BrowseCatalog deployment descriptor. There will be no
authentication and no authorization on a request to run this application. Therefore, you do not
have to define any EJBROLE profiles.

8.6.2 Set up a TCICSTRN profile and permissions for transaction CJSA

In 8.6.1, “Set up EJBROLE profiles and permissions” on page 150, we used EJBROLE class
profiles to control access to web applications. Therefore, you do not need transaction attach
security to further limit who can access the web applications. The following RACF commands
permit all users access to the default Liberty JVM server transaction, CJSA. See
Example 8-19.

Example 8-19 Permit access to Liberty JVM transaction

RDEFINE TCICSTRN CJSA UACC(NONE)
PERMIT CJSA CLASS(TCICSTRN) ACCESS(READ) ID(ALLUSERS)
SETROPTS RACLIST(TCICSTRN) REFRESH

Define a URIMAP to specify a static user ID for applications with no security constraints.

Having completed all of these steps, and if you have the appropriate authority, you should be
able to access the three web applications.

8.7 Liberty security-role authorization

Liberty security-role authorization does not use SAF EJBROLE profiles. Liberty security-role
authorization uses role-to-user and role-to-group security information that is specified inside
of the application element of each application. Who supplies the application element for each
web application, and the security information within it, depends on how you define the
application to Liberty JVM server.

One method of defining a web application to Liberty JVM server is to deploy it in a CICS
bundle. When you do it that way, CICS builds the application element and puts it in
installedApps.xml which is included in, and logically part of, server.xml. CICS also builds
role-to-user and role-to-group security information inside that application element. You have
no control over it. See 8.7.1, “Deploying your web application in a CICS bundle” on page 153
for a discussion about securing web applications that are deployed in a CICS bundle.

Note: At the time of this writing, changes to the EJBROLE profiles do not take effect until
the CICS region is stopped and restarted.
152 IBM CICS and Liberty: What You Need to Know

Another method of defining a web application to Liberty JVM server is for you to build the
application element and put it into server.xml. When you do it that way, you supply the
security information that maps the web application roles to the users and groups authorized
to those roles. Section 8.7.2, “Defining a web application in server.xml” on page 156
discusses how to secure web applications that you define that way.

Whichever method you use to get Liberty JVM server to use, the security information in the
application element, you must ensure there is no <safAuthorization/> element in server.xml.

8.7.1 Deploying your web application in a CICS bundle

When you deploy a web application to Liberty JVM server in CICS in a CICS bundle, CICS
automatically builds the application element for the application in a file called
installedApps.xml, which is included in, and logically part of, server.xml. This application
element always specifies just one security role, cicsAllAuthenticated, and maps it to a special
subject that stands for all authenticated users. There are two main implications of this.

� If your application has a security constraint, the only role that can pass authorization is
cicsAllAuthenticated.

� Your application will be authorized to all authenticated users. You cannot use Java
Platform, Enterprise Edition authorization to authorize the application to a smaller subset
of users.

The effect of this use of cicsAllAuthenticated on bundle-installed web applications is that Java
Platform, Enterprise Edition security role authorization is effectively bypassed. This means
that you need to use transaction security to control the access to each web application.

To use transaction security to control access to a web application:

1. Define a new transaction for the web application. The attributes should be the same as
those of transaction CJSA.

2. Define a URIMAP whose Path attribute specifies the generic context root of the
application. On the URIMAP transaction attribute, specify the transaction ID of the
transaction defined in step 1 above.

3. Define a SAF TCICSTRN profile for the transaction. Permit read access to that profile for
whatever group is appropriate to run the web application.

The following are specific instructions for setting up security for the example transactions
when you are not using SAF authorization, and you are installing and deploying the
applications in a CICS bundle.

com.ibm.cics.server.examples.wlp.hello.war
The deployment descriptor for this application authorizes a role of cicsAllAuthenticated to the
entire application. That matches perfectly with the security role built automatically when you
deploy a web application as a CICS bundle. See Example 8-20.

Example 8-20 Authorizing roles to application

<auth-constraint>
<role-name>cicsAllAuthenticated</role-name>

</auth-constraint>

The next step is to define a transaction ID and URIMAP for this web application.
Chapter 8. Implementing security options 153

Define and install a transaction definition
Define and install a transaction definition with the following attributes:

Description Copy of transaction CJSA for servlet hello example
Name HIEX
Program Name DFHSJTHP
Task Data Location Any
System Purge Yes
CmdSec Yes
ResSec Yes

Define and install a URIMAP definition
Define and install a URIMAP definition with the following attributes:

Description URIMAP for servlet hello example
Name HELLOSRV
Host *
Path /com.ibm.cics.server.examples.wlp.hello.war/*
Transaction HIEX
Usage JVMSERVER

TCICSTRN definition and permission
The following RACF commands show how to give access to group ALLUSERS to the new
transaction. See Example 8-21.

Example 8-21 Give transaction access to the ALLUSERS group

RDEFINE TCICSTRN HIEX UACC(NONE)
PERMIT HIEX CLASS(TCICSTRN) ACCESS(READ) ID(ALLUSERS)
SETROPTS RACLIST(TCICSTRN) REFRESH

GenAppWeb
The deployment descriptor for this application authorizes a role of Broker to the entire
application. Since, when deployed as a CICS bundle, the application element will not specify
a security-role for Broker, you are not able to run GenAppWeb. The solution is to alter the
deployment descriptor to add the cicsAllAuthenticated role.

Alter the deployment descriptor
Follow these steps to alter the deployment descriptor:

1. In the development environment, expand the GenAppWeb project, as shown in Figure 8-1.

Figure 8-1 View of the GenAppWeb project in the Java EE perspective
154 IBM CICS and Liberty: What You Need to Know

2. Double-click the highlighted 3.0 GenAppWeb directory. This opens the web.xml file in the
deployment descriptor editor.

3. Add a security role for cicsAllAuthenticated, as shown in Figure 8-2.

Figure 8-2 Add security role in the deployment descriptor

4. Highlight Security Constraint, and then add cicsAllAuthenticated as an extra
authorization constraint, as shown in Figure 8-3.

Figure 8-3 Add additional authorization constraints

5. The resulting web.xml source looks like that shown in Example 8-22.

Example 8-22 Sample of updated web.xml

<security-role>
<role-name>Broker</role-name>

</security-role>
<security-constraint>

<web-resource-collection>
<web-resource-name>full app</web-resource-name>
<url-pattern>/*</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>Broker</role-name>
<role-name>cicsAllAuthenticated</role-name>

</auth-constraint>
<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

</security-constraint>
<security-role>
Chapter 8. Implementing security options 155

<role-name>cicsAllAuthenticated</role-name>
</security-role>

When you have more than one role in an auth-constraint, you only need to belong to one role
in order to satisfy the constraint. So with these changes, all authenticated users are able to
run GenAppWeb. But that is not what you want. You only want Brokers to be able to run
GenAppWeb. To enforce that, you need to use a transaction, URIMAP, and TCICSTRN
permissions.

Define and install a transaction definition
Define and install a transaction definition with the following attributes:

Description - Copy of transaction CJSA for GenAppWeb
Name - GENA
Program Name – DFHSJTHP
Task Data Location – Any
System Purge - Yes
CmdSec - Yes
ResSec - Yes

Define and install a URIMAP definition
Define and install a URIMAP definition with the following attributes:

Description - URIMAP for GenAppWeb
Name - GENAPPWB
Host – *
Path - /GenAppWeb/*
Transaction - GENA
Usage - JVMSERVER

TCICSTRN definition and permission
The following RACF commands show how to give access to group BROKERS to the new
transaction. See Example 8-23.

Example 8-23 Give transaction access to the BROKERS group

RDEFINE TCICSTRN GENA UACC(NONE)
PERMIT GENA CLASS(TCICSTRN) ACCESS(READ) ID(ALLUSERS)
SETROPTS RACLIST(TCICSTRN) REFRESH

8.7.2 Defining a web application in server.xml

When you define the application in server.xml, and you are not using SAF authorization, you
can fully control access to your web application. Nevertheless, you still need to be able to
pass transaction security. Here, for each of the sample applications, we provide examples of
how to do that.

com.ibm.cics.server.examples.wlp.hello.war
The deployment descriptor for this application authorizes a role of cicsAllAuthenticated to the
entire application so you need to make the appropriate updates to the server. This example
application element in server.xml maps the cicsAllAuthenticated role to RACF group
ALLUSERS. Any authenticated user that is connected to group ALLUSERS is authorized to
the application. See Example 8-24 on page 157.
156 IBM CICS and Liberty: What You Need to Know

Example 8-24 Mapping groups to security role for the hello.war application in server.xml

<application id="com.ibm.cics.server.examples.wlp.hello.war"
 Location=”/u/reds13/cicsts53/com.ibm.cics.server.examples.wlp.hello.war.war"
 name="com.ibm.cics.server.examples.wlp.hello.war" type="war">

<application-bnd>
<security-role name="cicsAllAuthenticated">

<group name="ALLUSERS"/>
</security-role>

</application-bnd>
</application>

TCICSTRN definition and permission
Ensure that the group ALLUSERS has access to the TCICSTRN profile for CJSA. Here are
the RACF commands to do that. See Example 8-25.

Example 8-25 Define and permit ALLUSERS group access to the TCICSTRN profile

RDEFINE TCICSTRN CJSA UACC(NONE)
PERMIT GENA CLASS(TCICSTRN) ACCESS(READ) ID(ALLUSERS)
SETROPTS RACLIST(TCICSTRN) REFRESH

GenAppWeb
The GenAppWeb deployment descriptor has a security constraint that authorizes the role
Broker. The following example application element maps the Broker role to RACF group
BROKERS. Any authenticated user that is connected to group BROKERS is authorized to the
application. See Example 8-26.

Example 8-26 Map Broker role to BROKERS group in the server.xml

<application id="GenAppWeb"
location="/u/reds13/cicsts53/GenAppWebBundle_1.0.0/GenAppWeb.war" name="GenAppWeb"
type="war">

<application-bnd>
<security-role name="Broker">

<group name="BROKERS"/>
</security-role>

</application-bnd>
</application>

TCICSTRN definition and permission
Make sure group BROKERS has access to the TCICSTRN profile for CJSA. Here are the
RACF commands to do that. See Example 8-27 on page 158.

Note: RACF Groups and user IDs specified in a security-role must have an OMVS
segment and must have a unique GID or UID.

Note: RACF Groups and user IDs specified in a security-role must have an OMVS
segment and must have a unique GID or UID.
Chapter 8. Implementing security options 157

Example 8-27 Define and permit BROKERS group access to the TCICSTRN profile

RDEFINE TCICSTRN CJSA UACC(NONE)
PERMIT GENA CLASS(TCICSTRN) ACCESS(READ) ID(BROKERS)
SETROPTS RACLIST(TCICSTRN) REFRESH

BrowseCatalog
The deployment descriptor for BrowseCatalog does not specify any security constraints.
Therefore, a request to run BrowseCatalog will not go through authentication or authorization.
So there is no need for security-role information in the application element in server.xml.
That application element might look like that in Example 8-28.

Example 8-28 BrowseCatalog application without security-role information in server.xml

<application id="BrowseCatalog"
location="/u/reds13/cicsts53/BrowseCatalog.war"
name="BrowseCatalog" type="war">
</application>

Because there is no security constraint, a request to run this application needs to run the
CJSA transaction using a static user ID.

URIMAP definition
Define and install a URIMAP definition with the following attributes:

Description - URIMAP for BrowseCatalog
Name - BROWSCAT
Host – *
Path - /BrowseCatalog/*
Usage - JVMSERVER
Userid - PUBLIC01

TCICSTRN definition and permission
Ensure that the user ID PUBLIC01 has access to the TCICSTRN profile for transaction CJSA.
Example 8-29 shows the RACF commands to do that.

Example 8-29 Define and permit PUBLIC01 user ID access to the TCICSTRN profile

RDEFINE TCICSTRN CJSA UACC(NONE)
PERMIT CJSA CLASS(TCICSTRN) ACCESS(READ) ID(PUBLIC01)
SETROPTS RACLIST(TCICSTRN) REFRESH
158 IBM CICS and Liberty: What You Need to Know

Part 3 Scenarios

In this part, we describe scenarios.

Part 3 contains the following chapters:

� Chapter 9, “Porting a web application” on page 161

� Chapter 10, “Creating an integration logic application” on page 179

� Chapter 11, “Creating a business logic application” on page 191

Part 3
© Copyright IBM Corp. 2016. All rights reserved. 159

160 IBM CICS and Liberty: What You Need to Know

Chapter 9. Porting a web application

In this chapter, we show how to take a presentation logic web application from a third-party
Java EE web application server, and migrate it into the Liberty profile JVM server in CICS with
minimal changes. This is sometimes referred to as lift and shift of an application to Liberty in
CICS.

This chapter describes the following topics:

� Lifting or shifting an application to Liberty
� The migration process
� Configuring the Liberty environment
� Package and deploy the application
� Package the existing application WAR file and deploy
� Complete deployment and test the application

9

© Copyright IBM Corp. 2016. All rights reserved. 161

9.1 Lifting or shifting an application to Liberty

The application can be one that already uses CICS services remotely, using for example:

� JCA connectors
� CICS Transaction Gateway (CICS TG) ECI requests
� Web services (SOAP or JSON)
� HTTP or socket-based connectors

The application can also use other non CICS services such as:

� Web services (XML-based or JSON)
� JDBC database connections
� JMS or IBM MQ messaging

Alternatively, the application can be one that does not use CICS services, which are being
migrated for platform consolidation, or perhaps with the intention of extending it to exploit
integration with CICS applications in the future.

The following diagram illustrates the scenario that we walk through in this chapter. It is for an
application using servlets and JavaServer Pages (JSP) and an external call interface (ECI)
Java EE Connector Architecture (JCA) call to a CICS program using the CICS Transaction
Gateway.

Figure 9-1 Application running on an external server before migration

When this application is migrated into a Liberty JVM server, the application can remain
unchanged and the function of the CICS Transaction Gateway can be replaced by the local
JCA ECI feature running within CICS.

Figure 9-2 Application running in Liberty in CICS after migration
162 IBM CICS and Liberty: What You Need to Know

9.2 The migration process

There are potentially several stages to the application migration process, some of which are
optional, depending on the level of feasibility validation, environment configuration, and
deployment repackaging required. Following are the three main stages:

1. Validate the eligibility of the application for migration to Liberty in CICS. If issues are
discovered, remediate the migration inhibitors. Toolkit support is available to assist with
this validation.

2. Configure the Liberty in CICS environment for the application. Ensure that the features
and resources required by the application are available, in addition to any other
application-specific requirements. Toolkit support is available to assist with this
configuration.

3. Deploy and test the application in Liberty in CICS.

This Redbooks publication uses an example web application (GenAppWeb), which is a front
end to the CICS GenApp sample COBOL application. In the following sections, we walk
through the process that we used to migrate the sample GenApp web application to run in
Liberty in CICS. This is a fairly simple case of a stand-alone web application with no external
dependencies, and in the real world, the process might be more involved, but you can still
follow the same steps.

Figure 9-3 shows the initial page for the GenAppWeb application running on a local
WebSphere Application Server, and connecting to CICS using a local CICS Transaction
Gateway instance.

Figure 9-3 GenAppWeb running on a local application server

In the rest of this chapter, we assume that the GenAppWeb web archive (WAR) file containing
just the complied Java classes is available on the local file system.

9.2.1 Validating the application for migration

A Java EE application is eligible for migration to Liberty in CICS if all of its environment
requirements can be satisfied. That is, the Java EE features required by the application are
supported by Liberty in CICS, and configured in server.xml. The significant items to consider
in this process are:

� JDBC data sources

These are configured in server.xml, and you need to consider whether the associated
database should remain in its current environment or should also be migrated to z/OS.
Chapter 9. Porting a web application 163

� JCA connection factories

These are configured in the server.xml file. If you are using the ECI resource adapter, it is
simple to migrate using the local ECI JCA resource adapter supplied with CICS Liberty. If
you are using another JCA resource adapter, such as WebSphere Optimized Local
Adapter (WOLA), you need to determine if the resource adapter is portable to the CICS
Liberty environment.

� JMS resources

JMS applications use connection factories for outbound calls and activation specifications
for inbound calls, both of which need to be configured in the server.xml file. IBM MQ JMS
connections are not currently supported in CICS Liberty.

� Java system properties

These are configured in the JVM profile for the Liberty JVM server, and are used by many
applications to define specific properties.

� Vendor-specific application programming interfaces (APIs)

These must be removed from the application to run within Liberty, and so manual rework is
required.

� Unsupported components from Java Platform, Enterprise Edition

These must be removed from the application, and you need to find an alternative for these
components.

9.2.2 Using the dropins for validation

This section describes how to use dropins for validation:

1. As a first step in validating an application, a possible approach is simply to copy the WAR
file into the dropins directory of a suitably configured Liberty JVM server. To use the
dropins directory, add the following message to the server.xml file:

<applicationMonitor dropins="dropins" dropinsEnabled="true"
pollingRate="5s" updateTrigger="disabled"/>

The application might run without any further changes, although this is unlikely. However,
any error messages that are produced can be useful in understanding further migration
actions that might be necessary. When we copied our GenAppWeb.war file to the dropins
directory, the following messages were produced in the messages.log file for the server,
indicating that the web application could be loaded by Liberty:

CWWKZ0018I: Starting application GenAppWeb.
SRVE0169I: Loading Web Module: GenAppWeb.
SRVE0250I: Web Module GenAppWeb has been bound to default_host.
CWWKT0016I: Web application available (default_host):
http://<hostname>:65432/GenAppWeb/
CWWKZ0001I: Application GenAppWeb started in 3.221 seconds.

2. The next step is to access the application from a browser by using the URL from the
message CWWKT0016I produced:

http://<hostname>:65432/GenAppWeb/

The index.jsp page is displayed, showing that the application is accessible at that URL,
but the customer list does not appear. The messages.log file reports an Exception:
ja-va.lang.ClassNotFoundException: javax.resource.ResourceException. This
indicates that the JCA feature is not available in the Liberty environment.
164 IBM CICS and Liberty: What You Need to Know

http://winmvsh1.zseries.tec.hur.cdn:65432/GenAppWeb/

One approach to the migration is to correct this by adding the jca-1.6 feature to the server
configuration, then disable, and re-enable the JVM server, and retry. The next error would
then give a hint as to further migration action. However, we preferred to use a more
targeted method by using the WebSphere Application Migration Toolkit.

9.2.3 Application Migration Toolkit

WebSphere Liberty provides a suite of tools to assist in migrating web applications from
WebSphere Application Server full profile or other Java EE servers to the Liberty profile. This
section shows how to use these tools to help migrate the example GenApp front-end web
application to Liberty in CICS.

Migration report using application binaries technical preview
1. The first step is to use the application binaries technology preview to scan the application

WAR file. Run the following command, assuming that the WAR file has been copied into
the same directory as the scanner Java archive (JAR) file:

java -jar binaryAppScanner.jar GenAppWeb.war
The tool will produce command output similar to:
Scanning files.......................
The report was saved to the following file:
/home/jlawrence/LibertyRedbook/MigrationToolkit/wamt/TechnologyReport.html
The report was saved to the following file:
/home/jlawrence/LibertyRedbook/MigrationToolkit/wamt/TechnologyReport.html

2. When finished, the tool writes an HTML report file named TechnologyReport.html to the
current directory and displays the file in your default browser, as shown below in
Figure 9-4. Technologies used by the application are shown in the left column, and
WebSphere product editions each have their own column. For Liberty in CICS, the most
appropriate column is the one with the heading WebSphere Application Server for z/OS
8.5.5 Liberty profile.

Figure 9-4 Output from the Technology Report tool
Chapter 9. Porting a web application 165

3. For GenAppWeb.war, the tool has determined that the application uses servlets, JSP
technology, and JCA, and that all of these technologies are supported in WebSphere
Application Server for z/OS 8.5.5 Liberty profile. The corresponding features must be
configured in Liberty for the application to run.

Detailed migration report using the application analysis tool
The next level of analysis uses the same tool with the option to produce the more detailed
form of migration report. Run the following command in the same directory: It is necessary to
specify the full details (as shown) for the target server, because the defaults are Java 8 and
Java Platform, Enterprise Edition 7:

java -jar binaryAppScanner.jar GenAppWeb.war --analyzeMigrationDetails
--sourceAppServer=fullProfile855 --sourceJava=ibm6
--targetAppServer=libertyProfile --targetJava=ibm7 –targetJavaEE=ee6

The following output is displayed at the command line. The AnalysisReport.html file is
written to disk and opened in your default browser:

Scanning files.......................
The report was saved to the following file:
/home/jlawrence/LibertyRedbook/MigrationToolkit/wamt/AnalysisReport.html

In this case, a detailed report is saved to the AnalysisReport.html and displayed in the
default browser as illustrated in Figure 9-5.

Figure 9-5 Output from the Application Analysis tool

The report shows that no rules were flagged for the migration to Liberty. That means that in
principle, there is no obstacle to the migration. The application is suitable provided that the
target server environment is configured appropriately.
166 IBM CICS and Liberty: What You Need to Know

For more information, see the following resources:

� Move applications to Liberty by using the Migration Toolkit, a blog about the Application
Migration Toolkit, and links to download the tool:

https://developer.ibm.com/wasdev/docs/move-applications-liberty-using-migration
-toolkit

� Migration Toolkit for Application Binaries to download the command-line tool:

https://developer.ibm.com/wasdev/downloads/#asset/tools-Migration_Toolkit_for_A
pplication_Binaries

� WebSphere Application Server Migration Toolkit to download the Eclipse-based tools:

https://developer.ibm.com/wasdev/downloads/#asset/tools-WebSphere_Application_S
erver_Migration_Toolkit

9.2.4 Other migration considerations

There might be migration considerations that will not be detected by the tooling, but that will
need to be addressed before an application can be migrated. For example, an application
currently connecting to a local database using JDBC might need the database to be migrated
so that the application can continue to access the data after migration. Such additional
considerations are not detected by the toolkit and need to be determined by checking the
existing application design.

9.3 Configuring the Liberty environment

For a migrated application to run in Liberty in CICS, the Liberty server must be configured to
provide an equivalent environment for the application as the original server environment. The
same facilities, APIs, and data must be accessible to the application.

9.3.1 Migrating Java Platform, Enterprise Edition resources

The Java Platform, Enterprise Edition resources required by the application must be added to
server.xml for the CICS Liberty JVM server. You can see from the Application Migration
Technology report that servlet, JSP, and JCA are required by the GenAppWeb application.

1. Add the following feature elements into the featureManager section of server.xml:

<feature>jsp-2.2</feature>
<feature>jca-1.6</feature>
<feature>jndi-1.0</feature>

The jsp-2.2 feature automatically includes servlet capability, so this does not need to be
explicitly included.

2. Next, you need to configure instance elements for some of the features. This applies to
JDBC, JCA, and JMS. Information on the required configuration can be extracted from the
configuration of the original server environment.
Chapter 9. Porting a web application 167

https://developer.ibm.com/wasdev/docs/move-applications-liberty-using-migration-toolkit
https://developer.ibm.com/wasdev/downloads/#asset/tools-Migration_Toolkit_for_Application_Binaries
https://developer.ibm.com/wasdev/downloads/#asset/tools-Migration_Toolkit_for_Application_Binaries
https://developer.ibm.com/wasdev/downloads/#asset/tools-WebSphere_Application_Server_Migration_Toolkit
https://developer.ibm.com/wasdev/downloads/#asset/tools-Migration_Toolkit_for_Application_Binaries
https://developer.ibm.com/wasdev/downloads/#asset/tools-Migration_Toolkit_for_Application_Binaries

For a WebSphere full profile server, this can be done by navigating the Admin console and
copying relevant configuration parameters for the JCA resource adapter connection
factories, and so on. However, this is inconvenient. An alternative is to extract the entire
WebSphere configuration as a properties file and browse the properties to determine the
parameters. The command to extract the configuration properties must be run while the
WebSphere server is running:

wsadmin.(sh/bat) -lang jython -c
"AdminTask.extractConfigProperties(['-propertiesFileName websphere.props'])"

The wsadmin command must be run as a Windows Administrator, and needs to be run
from the <Profile_Home>\bin directory. On Linux, the command is suitable from any
location, as follows:

sudo '/opt/IBM/WebSphere/AppServer/bin/wsadmin.sh' -lang jython -c
"Ad-minTask.extractConfigProperties(['-propertiesFileName websphere.props'])"

The following output is produced and the websphere.props file is written to disk:

WASX7209I: Connected to process "server1" on node localhostNode01 using SOAP
connector; The type of process is: UnManagedProcess

3. Next, we examine the contents of the websphere.props file to find the configuration
parameters for the JCA connection factories required by the GenAppWeb application. By
browsing the file, we locate the following entry:

#
#Properties
#
name=CICS ECI Connection Factory #required
..
J2EEResourceProvider=ECIResourceAdapter #ObjectName(J2CResourceAdapter)
jndiName="eis/ECI" #required
..

This tells us the Java Naming and Directory Interface (JNDI) lookup location for the
connection factory. Another subsection with the title “J2CConnectionFactory Properties”,
contains the connection factory-specific attributes. In this case, for a CICS TG ECI
Connection Factory. This subsection reads as follows:

#
SubSection 1.0.2.0.0.2 # J2CConnectionFactory Properties
#
..
#
#Properties
#
keyRingClass=null
tranName=null
password=null
cipherSuites=null
portNumber=2006 #String
xaSupport=off #String
clientSecurity=null
serverName=winmvsh1 #String
ipicSendSessions=100 #integer
userName=null
tPNName=null
serverSecurity=null
socketConnectTimeout=0 #String
168 IBM CICS and Liberty: What You Need to Know

applidQualifier=null
connectionURL=tcp://localhost #String
requestExits=null
keyRingPassword=null
traceLevel=1 #integer
applid=null

These attributes need to be configured on the connection factory instance specification in
the Liberty server.xml file, although with modification because tcp://localhost refers to
the local host for the original server.

Continuing to search in websphere.props for “J2CConnectionFactory Properties” finds
other hits, one for the builtin_rra resource adapter, and there might be other third-party
resource adapters configured in the system. You need to determine which ones are being
used by the application. A good way to do this is to match the JNDI lookup locations for the
connection factories with those used by the application.

The manual process just described is one option. WebSphere Liberty provides a Beta tool,
called the WebSphere Configuration Migration Tool, which is intended to read the
configuration files for other servers and produce appropriate configuration fragments to
include in the server.xml of a Liberty server.

For more information, see the following tools:

� WebSphere Configuration Migration Tool

https://developer.ibm.com/wasdev/downloads/#asset/tools-WebSphere_Configuration
_Migration_Tool

� Making the move to the Liberty profile, Part 2: Migrating Java EE resources with the
Configuration Migration Toolkit

http://www.ibm.com/developerworks/websphere/library/techarticles/1404_vines2/14
04_vines2.html

9.3.2 External dependency migration

In the original environment, the J2C connection factory used by GenAppWeb is configured to
connect to a CICS Transaction Gateway instance, in this case on the system local to the
WebSphere Application Server. This continues to work after migration to Liberty in CICS, but
would make little sense because JCA requests would be transmitted to the external Gateway,
only to be forwarded back to CICS.

Therefore, we changed the parameters used for the J2C connection factory to use the new
local ECI adapter provided with CICS TS V5.3. The following server.xml changes are
required for this:

1. Add the JCA local ECI feature, which manages the local ECI resource adapter, to the
featureManager list in server.xml:

<feature>cicsts:jcaLocalEci-1.0</feature>

2. Define a connection factory instance for the JCA local ECI adapter, published at the
correct JNDI location, such as:

<connectionFactory id="eciLocal" jndiName="eis/ECI">
<properties.com.ibm.cics.wlp.jca.local.eci/>

</connectionFactory>
Chapter 9. Porting a web application 169

http://www.ibm.com/developerworks/websphere/library/techarticles/1404_vines2/1404_vines2.html
https://developer.ibm.com/wasdev/downloads/#asset/tools-WebSphere_Configuration_Migration_Tool
https://developer.ibm.com/wasdev/downloads/#asset/tools-WebSphere_Configuration_Migration_Tool
https://developer.ibm.com/wasdev/downloads/#asset/tools-WebSphere_Configuration_Migration_Tool
https://developer.ibm.com/wasdev/downloads/#asset/tools-WebSphere_Configuration_Migration_Tool

With these changes, JCA ECI requests from the application are processed within the CICS
region where the Liberty JVM is running. CICS dynamic routing of the LINK request can then
be used to forward these to other CICS regions if required.

For more information, see the following sites:

� CA local ECI support

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.do
c/topics/dfhpj_jcadoc.html

� Porting JCA ECI applications into a CICS Liberty JVM server

https://developer.ibm.com/cics/2015/07/23/porting-jca-eci-applications-into-a-c
ics-liberty-jvm-server

9.3.3 Other configuration parameters

For a complex application or environment, it is possible that using the toolkit and general
guidelines above might not be sufficient to guarantee that the application will be successfully
migrated at the first attempt. Some additional configuration and migration actions might be
required.

An example of such additional configuration is Java system properties. Some applications
require specific system properties to be configured, and so these also need to be set in the
Liberty JVM server environment. For Liberty in CICS, system properties are specified in the
JVM profile for the Liberty JVM server with -D declarations.

If you are migrating from WebSphere full profile, system properties are reported in the
configuration properties exported by the wsadmin AdminTask.extractConfigProperties tool.
For example:

#
SubSection 1.0.12.0.2 # Environment properties
#
..
*#
#Properties
#
com.ibm.cics.genapp.jca.jndiname=eis/ECI

The GenAppWeb application uses the system property com.ibm.cics.genapp.jca.jndiname
to determine the JNDI lookup location for the JCA connection factory, so this had to be
configured in the JVM profile.

We added the following entry into the JVM profile for the Liberty JVM server:

-Dcom.ibm.cics.genapp.jca.jndiname=eis/ECI

Note: The CICS local ECI resource adapter provides a default connection factory that can
be used without an instance configuration. This is always available when the
cicsts:jcaLocalEci-1.0 feature is enabled, and is configured at the JNDI lookup location
eis/defaultCICSConnectionFactory. Therefore, if the application is changed or can be
configured to look up its ECI Connection Factory at this location, there is no need for a
connection factory to be configured in server.xml.
170 IBM CICS and Liberty: What You Need to Know

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/topics/dfhpj_jcadoc.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/topics/dfhpj_jcadoc.html
https://developer.ibm.com/cics/2015/07/23/porting-jca-eci-applications-into-a-cics-liberty-jvm-server
https://developer.ibm.com/cics/2015/07/23/porting-jca-eci-applications-into-a-cics-liberty-jvm-server
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/topics/dfhpj_jcadoc.html
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.java.doc/topics/dfhpj_jcadoc.html
https://developer.ibm.com/cics/2015/07/23/porting-jca-eci-applications-into-a-cics-liberty-jvm-server
https://developer.ibm.com/cics/2015/07/23/porting-jca-eci-applications-into-a-cics-liberty-jvm-server

This configures the JNDI lookup location for the JCA connection factory used by the
GenAppWeb application. In fact, because of the default connection factory provided by the
CICS Local ECI adapter, we can change this to the following property and remove the
connection factory configuration from server.xml altogether:

-Dcom.ibm.cics.genapp.jca.jndiname=eis/defaultCICSConnectionFactory

9.4 Package and deploy the application

Having completed any necessary application remediation and configured the Liberty in CICS
server as required, we are ready to deploy and test the migrated application in its new
environment.

There are several possible deployment options for a Liberty application in CICS. Here, we
choose the option to deploy as a CICS bundle, using CICS Explorer. There are several
options to package an existing application as a CICS bundle. Two options are highlighted
here:

� Option 1: Import the application including its source code into your development
environment, then rebuild and package. This option is similar to the process described for
the Hello World starter application in Chapter 5, “Developing and deploying applications”
on page 69.

� Option 2: Package the existing application WAR file and deploy as-is. This is slightly
different from the usual process because there is no source code in the WAR.

Option 1 is covered in detail in Chapter 5, “Developing and deploying applications” on
page 69, so here we show how to package an existing binary WAR file for deployment by
using CICS Explorer.

9.5 Package the existing application WAR file and deploy

To package an existing binary WAR file for deployment using CICS Explorer, we use the
example of the GenAppWeb application. Following are the main stages:

1. Import the binary WAR file as a web project into your development environment.

2. Create a CICS Bundle project, and include the imported web project as a WAR bundle
part.

3. Export the CICS bundle to the z/FS file system, then define and install a CICS bundle
definition.
Chapter 9. Porting a web application 171

Complete the following steps:

1. In CICS Explorer, click File → Import.

2. In the Import Select dialog, select WAR file from the web section, as shown in Figure 9-6,
and click Next.

Figure 9-6 Select the option to import a WAR file

3. Browse for your file and click Next.

4. Accept the default web project name, which is the same as the WAR file name. And clear
the “Add project to an EAR” check box.

5. Click Finish to complete the import, as shown in Figure 9-7.

Figure 9-7 Importing a WAR file from the local file system
172 IBM CICS and Liberty: What You Need to Know

The .war file is imported and is displayed in your Eclipse workspace as a dynamic web
project, including any Web App Library JAR files, in this case, GenAppBli.jar. However,
there is no available source for the project.

If errors are displayed in the new project after importing the WAR file, this can be because
the Liberty JVM server libraries are not in the build path for the project. These libraries
provide both the web APIs for the Liberty features, and also the JCICS APIs, if these are
needed. To add these libraries, right-click the web project, and select Build path →
Configure Build Path → Add Library → Liberty JVM server libraries. Ensure that all
errors are corrected before continuing.

6. In CICS Explorer, create a new CICS Bundle project by selecting File → New → Other,
and then select the CICS Bundle Project from the CICS Resources section of the New
Project wizard.

7. Click Next.

Figure 9-8 Create a new CICS Bundle project

Note: If you click Next instead of Finish at this point, you will have the option to import
web library JAR files as separate projects. In our case, because this is a binary-only
JAR file, there is no point in doing so because there is no source available in the .war or
included .jar files.
Chapter 9. Porting a web application 173

8. Specify your new bundle project name, GenAppBundle, and click Finish, as shown in
Figure 9-9. The new, empty bundle project is created in your workspace.

Figure 9-9 Specify the details for the new CICS bundle project

9. Add your previously imported GenAppWeb dynamic web project as a warbundle resource
to the new CICS bundle project.

10.Expand the Bundle project and open the cics.xml Bundle definition file in the META-INF
directory.
174 IBM CICS and Liberty: What You Need to Know

11.In the Defined Resources area, click New, then select Dynamic Web Project Include in
the lower section of the list. A Dynamic Web Project Include dialog window opens, as
shown in Figure 9-10.

Figure 9-10 Specify the name of the target JVM server for Dynamic Web Project Include

12.Specify the name of the JVM SERVER in which the web application is to be deployed (see
Figure 9-10) and click Finish. The new GenAppWeb.warbundle include appears in the
GenAppBundle project.

9.6 Complete deployment and test the application

The final stage of the migration is to complete the deployment to the target CICS Liberty JVM
Server and then to test the application. For this, you need an active z/OS FTP connection to
the zFS file system of the target. Ensure that you have a connected z/OS FTP connection to
the target in the z/OS perspective.

From this point, the deployment procedure is the same as documented for deploying the Hello
World CICS Bundle project, documented in Chapter 5, “Developing and deploying
applications” on page 69, so the description is not repeated here. Follow the equivalent steps
as for the Hello World example application to export the CICS bundle to the z/OS UNIX file
system, then define and install a CICS bundle definition for the application.
Chapter 9. Porting a web application 175

9.6.1 Test the web application

Finally, test the migrated application by accessing its URL from a browser. This will be the
host name for the CICS region, with the HTTP or HTTPS port for the Liberty JVM server, with
a URL, depending on the deployment descriptor for the web application. The full URL is in the
messages.log file of the Liberty server when the application is installed, for example:

A CWWKT0016I: Web application available (default_host):

http://<hostname>:65432/GenAppWeb/

Figure 9-11 shows the initial page of the migrated GenAppWeb application, running in the
target CICS Liberty JVM server.

Figure 9-11 The migrated GenAppWeb application running in Liberty in CICS

In the case of unresolved build or deployment issues with the application, error messages are
issued to indicate the cause, allowing you to resolve any problems.

For example, if you do not configure a JCA connection factory instance in server.xml, or if
there is a mismatch between the JNDI lookup names used by the application and the
connection factory instance definition, a javax.naming.NameNotFoundException is thrown,
such as:

javax.naming.NameNotFoundException: eis/ECIJNDI
at com.ibm.ws.jndi.internal.ContextNode.lookup(ContextNode.java:218)
at com.ibm.ws.jndi.internal.WSContext.lookup(WSContext.java:295)
at com.ibm.ws.jndi.WSContextBase.lookup(WSContextBase.java:58)
at org.apache.aries.jndi.DelegateContext.lookup(DelegateContext.java:161)
at javax.naming.InitialContext.lookup(InitialContext.java:423)
at com.ibm.cics.genapp.bli.GenAppJCAImpl.<init>(GenAppJCAImpl.java:94)
... 35 more

This might be displayed in the messages.log file for the Liberty JVM server, depending on how
the application handles exceptions from the JNDI lookup.

Or, if you are using the CICS JCA local ECI adapter, and an error occurs making the call to
the CICS program, an exception is thrown, such as:

com.ibm.connector2.cics.CICSTxnAbendException:
CTG9638E Transaction Abend occurred in CICS: Abend Code=: AEI0, error code: AEI0
at com.ibm.connector2.cics.ECIManagedConnection.checkReturnCode
at com.ibm.connector2.cics.ECIManagedConnection.call
176 IBM CICS and Liberty: What You Need to Know

http://winmvsh1.zseries.tec.hur.cdn:65432/GenAppWeb/

at com.ibm.connector2.cics.ECIConnection.call(ECIConnection.java:133)
at com.ibm.connector2.cics.ECIInteraction.execute(ECIInteraction.java:346)
at com.ibm.cics.genapp.bli.GenAppJCAImpl.invokeChannelProgram
... 36 more
Caused by:
com.ibm.cics.server.InvalidProgramIdException:
CICS PGMIDERR Condition(RESP=PGMIDERR, RESP2=2)
at com.ibm.cics.server.DTCProgram.LINK(Native Method)
at com.ibm.cics.server.Program.link(Program.java:477)
at com.ibm.ctg.client.LocalCICSJavaGateway.flow(JavaGateway.java:953)
at com.ibm.connector2.cics.ECIManagedConnection.flowGatewayRequest
at com.ibm.connector2.cics.ECIManagedConnection.call
... 39 more

The underlying InvalidProgramIdException is wrapped by an exception thrown from the CICS
TG code used by the CICS local ECI adapter.
Chapter 9. Porting a web application 177

178 IBM CICS and Liberty: What You Need to Know

Chapter 10. Creating an integration logic
application

In this chapter, you learn how to use IBM WebSphere Liberty Profile (Liberty) within CICS
Transaction Server (TS) for IBM z/OS V5.3 (CICS) to develop a new service-based interface
into an existing CICS application. We use the general insurance application for all of our
coding examples. Although there are many options available when choosing to expose
applications, we use the representational state transfer (RESTful) and JavaScript Object
Notation (JSON) technologies within Liberty.

This chapter covers only the process of constructing and exposing a RESTful web service
with JSON data formats. It assumes the existence of a ready-made Java application
programming interface (API) to service the requests. In this case, the Java API that we use is
an interface to the CICS GenApp insurance application. This interface, referred to as the
GenApp Java business logic interface (BLI), encapsulates access to the underlying CICS
GenApp programs and resources.

The GenApp Java BLI is implemented by using Java EE Connector Architecture with external
call interface (JCA ECI) requests to invoke the GenApp COBOL programs, and uses JZOS
toolkit-record generated Java classes internally to marshal Java data into record structures, to
transmit to and from CICS. The details of the implementation of the BLI are not described
here. We treat BLI implementation as a black box, which provides the business methods
required to fulfill the web service requests.

This chapter describes the following topics:

� JSON and the json-1.0 feature
� RESTful and the jax-rs-1.1 feature
� Exposing GENAPP through a RESTful JSON interface
� Package and deploy the application

10
© Copyright IBM Corp. 2016. All rights reserved. 179

10.1 JSON and the json-1.0 feature

JavaScript Object Notation (JSON) is an open standard format for data interchange. Although
originally used in the JavaScript scripting language, JSON is now language-independent, with
many parsers available in many languages.

Compared to Extensible Markup Language (XML), JSON has many advantages. Most
predominantly, JSON is well-suited to easy integration for client-side software. It is based on
the JavaScript syntax, however it is distinct from it. Suitable for any data exchange, JSON is
often used within RESTful web services because of its easy consumption. XML is an
extremely verbose language. Every element in the tree has a name, and the element must be
enclosed in a matching pair of tags. Alternatively, JSON expresses trees in a nested array
format, similar to JavaScript. This enables the same data to be transferred in a far smaller
data package with JSON than with XML.

The Java API for JSON (json-1.0) feature provides a standardized method for constructing
and manipulating data to be rendered in JSON.

10.2 RESTful and the jax-rs-1.1 feature

Representational State Transfer (REST) is a defined set of architectural principles by which
you can design web services that focus on service resources. The REST architectural pattern
takes advantage of the technologies and protocols of the World Wide Web to describe how
data objects can be defined and modified.

In contrast to a request-response model, such as the SOAP protocol specification, which
focuses on procedures made available by the system, REST is modeled around the
resources in the system. Each resource is globally identifiable through its uniform resource
identifier (URI). Because REST does not focus on the procedures and services provided by a
system, a few actions are defined based on existing HTTP methods: GET, POST, PUT,
DELETE, HEAD.

The <jaxrs-1.1> feature provides technologies that simplify the creation of RESTful-like web
services. This is achieved by the use of Java annotations. For example, Table 10-1 shows
annotation declarations before a Java method, in a jax-rs application, can be called directly
when the respective HTTP method is received.

Table 10-1 A mapping of Java annotations to HTTP methods and their expected behaviors

Annotation HTTP method RESTful behavior expected

@GET GET Retrieve a resource
representation

@PUT PUT Modify a resource
representation

@POST POST Create a new resource
representation

@DELETE DELETE Delete a resource
representation

@HEAD HEAD Retrieve a resource’s metadata
180 IBM CICS and Liberty: What You Need to Know

10.3 Exposing GENAPP through a RESTful JSON interface

We now outline the steps that are needed to expose services from the GENAPP application
through a RESTful JSON interface using the <jax-rs-1.1> and <json-1.0> features.

To expose a CICS application through a RESTful service, you need to follow a number of
steps. At a high level, follow these steps:

� Mapping a URI to your application in the Liberty RESTful servlet
� Writing the application logic that handles the RESTful requests
� Packaging and deploying the application to Liberty running inside CICS
� Testing the RESTful service

We now review those steps in detail, using the sample application ported in Chapter 9,
“Porting a web application” on page 161 as a starting point.

You now need to create the local project that we will use to build your application. Perform the
following steps in your Eclipse environment to create a new Dynamic Web project:

1. Switch to the Java EE perspective by selecting Window → Open Perspective →
Other → Java EE. Click OK.

2. Select File → New → Other → Dynamic Web Project.

3. Give the project a name and ensure that Dynamic web mobile version has the value of 3.0.

4. Clear Add project to an EAR in the EAR membership section.

5. Click Next and Next again.

6. Select Generate web.xml deployment descriptor.

7. Click Finish.

Before you start to configure and write your RESTful application, you need to configure the
build path of the project. We know that we will use the libraries supplied by Liberty and the
GenApp Java business logic interface, which provides access to the underlying CICS
GenApp application. Add these libraries to the project by following these steps:

1. Right-click your Integration logic application package and select Build Path → Configure
Build Path.

2. On the Projects tab, click Add.

3. Select the Business logic application project and click OK.

4. On the Libraries tab, ensure that Liberty JVM server libraries are present. If they are not,
click Add Library. Select Liberty JVM server libraries. Click Next and select CICS TS
5.3 in the Version drop-down box. Click Finish.

5. Open web.xml and click Manage Utility Jars on the Design tab.

6. Click Add.

7. Select Project and click Next.

8. Select the Business logic application project GenAppBli and click Finish.

We have now extended our project build path to include the business logic project that we
imported earlier, in addition to the Liberty JVM server libraries. We have also configured
Eclipse to ensure that when we build and package our Integration logic application, the
business logic package is built and deployed with our project as a utility JAR.
Chapter 10. Creating an integration logic application 181

10.3.1 Mapping a URI to your application

We will map a URI pattern to the application that we will write to handle incoming RESTful
requests. We do this by configuring the IBM JAX-RS REST servlet, which is provided by the
Liberty web container. This mapping is created with the steps shown in Example 10-1. Add
the following to WebContent/WEB-INF/web.xml.

Example 10-1 Excerpt of web.xml

<servlet>
<description>RESTful JSON service for the GENAPP application</description>
<servlet-name>GenAppService</servlet-name>
<servlet-class>com.ibm.websphere.jaxrs.server.IBMRestServlet</servlet-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>com.ibm.cics.genapp.services.ServiceConfig</param-value>

</init-param>
/servlet>

Example 10-1 defines our servlet to the Liberty web container. Each individual field is
explained in Table 10-2.

Table 10-2 Description of the parameters when creating a servlet in the web.xml configuration file

When deployed, this will define the existence of our servlet to the Liberty web container.
Before we begin to write the code for our service, it is important to map the invocation of our
service to an inbound URI request. To do this, insert the XML shown in Example 10-2 on
page 183 into the web.xml file.

Field name Example value Field description

servlet Not applicable The root node. All fields encapsulated within
this XML node define the servlet that we are
creating.

servlet-name GenAppService The name used for internal reference to this
servlet.

servlet-class com.ibm.websphere.jaxrs.serv
er.IBMRestServlet

The type of servlet we want to create. In this
instance, we are extending the IBM JAX-RS
REST servlet.

init-param Not applicable The initialization parameters required for this
type of servlet. All parameters must be
encapsulated inside this node.

param-namej javax.ws.rs.Application The name of an initialization parameter. In
this case, we are describing where the IBM
JAX-RS REST servlet will look for the
configuration class of our service.

param-value com.ibm.cics.genapp.services.
ServiceConfig

The value of the initialization parameter. In
this case, we are defining a class that we will
create, which will define to the IBM JAX-RS
REST servlet which entry point Java classes
are used in our RESTful application.
182 IBM CICS and Liberty: What You Need to Know

Example 10-2 Excerpt of web.xml

<servlet-mapping>
<servlet-name>GenAppService</servlet-name>
<url-pattern>/service/*</url-pattern>
</servlet-mapping>

The fields in Example 10-2 are described in Table 10-3.

Table 10-3 Description of the parameters required to map a servlet to an inbound URL

With this XML, we defined a servlet mapping between our GenAppServlet servlet and the
URI mapping of <domain & port>/GenAppService/services/*. Where GenAppService is the
URI of our Liberty application and /services/* maps all requests to our RESTful service.

10.3.2 Writing the application logic that handles the RESTful requests

At this point, we have only defined the existence of one Java class to the IBM JAX-RS REST
servlet. The value that we entered for <param-value> in the servlet definition is the subclass
that will be used when configuring which classes are available as entry points to our REST
service. It is important that we create this class exactly as named. Create
com.ibm.cics.genapp.services.ServiceConfig with the Java code that is shown in
Example 10-3 on page 184.

Field name Example value Field description

servlet-mapping Not applicable The root node used for mapping
a servlet to an inbound URL.

servlet-name GenAppService+ The name of the servlet we
want to map to a URI. It is
important that this value
matches the value of
servlet-name that was used
when defining the servlet to the
IBM JAX-RS REST servlet.

url-mapping /services/* The URL pattern to map to the
servlet. This maps our servlet to
a URI that matches this URI
pattern suffixed to the domain
address of our Liberty
application.
Chapter 10. Creating an integration logic application 183

Example 10-3 ServiceConfig class

package com.ibm.cics.genapp.services;

import java.util.Set;
import java.util.HashSet;

public class ServiceConfig extends javax.ws.rs.core.Application {

public Set<Class<?>> getClasses()
{

Set<Class<?>> classes = new HashSet<Class<?>>();
classes.add(com.ibm.cics.genapp.services.CustomerService.class);
return classes;

}
}

This subclass extending javax.ws.rs.core.Application returns a set of classes that the IBM
JAX-RS REST servlet will use when attempting to match incoming URI and HTTP method
combinations for your RESTful service. In our example, we defined one class:
com.ibm.cics.genapp.services.CustomerService.class. You can provide more classes here if
you require multiple classes to handle your RESTful service requests. We demonstrate how
this is useful when creating a service that interacts with multiple resources. Follow these
steps to create your first service:

1. Create the class com.ibm.cics.genapp.services.CustomerService.

2. Above the class declaration, add, @javax.ws.rs.Path("/customer"). This defines a
further URI mapping to this class. In our example, with the configuration in web.xml, all
URIs with the mapping <domain & port>/GenAppWeb/services/customer will use this
class to resolve the request. It is at this point that you can define a different
@javax.ws.rs.Path annotation and add a new class to ServiceConfig if you want to create
multiple classes to handle different resources. For example, you can create a class with
annotation @jvax.ws.rs.Path(“/policy”) to handle requests against policies in the GENAPP
application.

3. Create a new method in CustomerService named FetchCustomerById with the definition
shown in Example 10-4.

Example 10-4 FetchCustomerById method

@javax.ws.rs.GET
@javax.ws.rs.Produces("application/json")
@javax.ws.rs.Path("/{customerNumber : \\d+}}")
public JSONObject FetchCustomerById(

@javax.ws.rs.PathParam("customerNumber")String customerNum)
{

This defines to the IBM JAX-RS REST servlet that this method is driven when the following
statements are true:

� The URI <domain & port>/GenAppWeb/services/customer/<data> was received, where
data matches the regular expression of \\d+, digits only.

� An HTTP GET request was received.

� The request produces a MIME media type of application/json as a response.
184 IBM CICS and Liberty: What You Need to Know

This definition also defines that the method driven will produce a response of JSONObject,
which is the Java JSON object provided by the Liberty feature <json-1.0> for parsing and
serializing JSON data. In Example 10-4 on page 184, we used a variable value in the
javax.ws.rs.Path annotation for the first time. This allows you to define URI mappings that will
extract data from the URI and input those as path parameters for use in your Java code. In
this example, we used the {customerNumber} variable as input data for the
FetchCustomerById method, usable with the Java variable customerNum within the method.
This means that a request that looks like the following, results in the method
FetchCustomerById being driven with the input variable customerNumber defined as the value
“1”. :

GET .../GenAppWeb/services/customer/1

The annotation @javax.ws.rs.Path supports regular expressions. The annotation
@javax.ws.rs.Consumes is also available. This annotation defines which Content-Type the
method receives. This can be useful if you want to create services that handle multiple
different types, such as application/json and application/xml.

We are now in a position to create the logic for our interface. For our sample application,
create a new class named CustomerService in the com.ibm.cics.genapp.services package.

Use the following package declaration for the application.

package com.ibm.cics.genapp.service;

The following imports are for the classes needed to use the GenApp Java Platform,
Enterprise Edition business logic interface. These classes must also be available at run time,
by importing the classes into your project, and including the GenAppBli.jar as a utility JAR as
described earlier in 10.3, “Exposing GENAPP through a RESTful JSON interface” on
page 181.

The source code for the GenApp Java BLI is provided with the additional materials for this
book at the following URL:

http://www.redbooks.ibm.com/abstracts/sg248335.html

The interface is specified by com.ibm.cics.genapp.bli.GenAppInterface, and is
self-documenting, though Javadoc comments are also included.

The interface uses some auxiliary holder classes for customer and policy data passed to and
from the interface methods. You need to import the following holder classes. These classes
have getters and setters for the individual data items that they encapsulate.

Example 10-5 Import statements for auxiliary classes

import com.ibm.cics.genapp.GenAppException;
import com.ibm.cics.genapp.bli.Customer;
import com.ibm.cics.genapp.bli.CustomerData;
import com.ibm.cics.genapp.bli.GenAppInterface;
import com.ibm.cics.genapp.bli.GenAppJCAImpl;
import com.ibm.cics.genapp.bli.PolicyData;
import com.ibm.cics.genapp.bli.PolicyType;
Chapter 10. Creating an integration logic application 185

http://www.redbooks.ibm.com/abstracts/sg248335.html

Import the following IBM JSON support classes, which are used to build the object model for
JSON. These are provided by the json-1.0 feature, which must be included in server.xml for
your Liberty server. See Example 10-6.

Example 10-6 Import statements for IBM JSON support classes

import com.ibm.json.java.JSONArray;
import com.ibm.json.java.JSONObject;

The example application that we create uses variables and static strings, among other things
that the labels used for individual data items within the JSON. They are shown in
Example 10-7.

Example 10-7 Declaration of variables and static strings

private boolean error = false;
private static final String ERROR_MSG_LABEL = "errorMsg";
private static final String ERROR_CODE_LABEL = "errorCode";
private static String errorMsg = "";
private static int errorCode = 0;
private static final String ERROR_NOT_INTEGER = "Customer number must

contain only numerical characters";
private static final String ERROR_GENAPP_ERROR = "Error retrieving response

from the GenApp application.";

private static final int ERROR_NOT_INTEGER_CODE = 1;
private static final int ERROR_GENAPP_ERROR_CODE = 2;

private static final String CUSTOMER_NO_LABEL = "customerNumber";
private static final String FIRST_NAME_LABEL = "firstName";
private static final String LAST_NAME_LABEL = "lastName";
private static final String BIRTH_YEAR_LABEL = "birthYear";
private static final String BIRTH_MONTH_LABEL = "birthMonth";
private static final StringBIRTH_DAY_LABEL = "birthDay";
private static final String HOUSE_NAME_LABEL = "houseName";
private static final String HOUSE_NUMBER_LABEL = "houseNumber";
private static final String POST_CODE_LABEL = "postCode";
private static final String MOBILE_PHONE_LABEL = "mobilePhone";
private static final String EMAIL_ADDRESS_LABEL = "emailAddress";

private static final String POLICY_NO_LABEL = "policyNumber";
private static final String POLICY_TYPE_LABEL = "policyType";
private static final String POLICY_ISSUE_DATE = "issueDate";
private static final String POLICY_EXPIRY_DATE = "expiryDate";

private static final String HTTP_CODE_LABEL = "httpCode";
private static int httpResponseCode = 0;
private static final int HTTP_OK = 200;
private static final int HTTP_BAD_REQUEST = 400;
private static final int HTTP_NOT_FOUND = 404;
private static final int HTTP_INTERNAL_ERROR = 500;

private static final String DATA_LABEL = "data";
private static final String RECORD_COUNT_LABEL = "recordCount";
186 IBM CICS and Liberty: What You Need to Know

Now that the infrastructure for our application is in place, we can focus on the logic and
configuration of the RESTful service. The Java code shown below uses the Genapp Business
logic interface to fetch a single customer record from Genapp running inside a CICS region. It
then returns that customer record as a JSON response to an HTTP client that made the
request:

JSONObject cJson = new JSONObject();
try {

Access to CICS data is by means of JCA to the GenApp COBOL programs. In this case, the
JCA communications, and marshalling of the required record structures for the commareas
and containers, have been encapsulated within the GenApp Java BLI component.

To access the underlying CICS GenApp programs, first instantiate an instance of the
GenAppJCAImpl class, which is the live JCA implementation of the GenAppInterface Java
interface:

GenAppInterface genAppJcaImpl = new GenAppJCAImpl();

To look up a specific GenApp customer record and obtain the customer details, invoke the
getCustomer() method, passing the required customer number. This method builds a
commarea in the appropriate format, invokes the LGICUS01 GenApp COBOL program using
JCA, and extracts the customer details returned in the commarea.

The getCustomer() method shown in the following example returns a CustomerData object,
which is a holder for the customer details extracted from the customer record returned from
the JCA call:

CustomerData cdata = genAppJcaImpl.getCustomer(customerNumber);

If the call was successful and the customer was found (meaning, no GenAppException has
been thrown (this is guaranteed by reaching this point in the code)), we can obtain the
individual customer attributes by using getter methods on the returned CustomerData object,
cdata. We extract each required attribute in turn, adding to the JSONObject Map with an
appropriate label for each attribute. See Example 10-8.

Example 10-8 Sample of getter methods to retrieve customer attributes

cJson.put(CUSTOMER_NO_LABEL, cdata.getCustomerNumber());
cJson.put(FIRST_NAME_LABEL, cdata.getFirstName());
cJson.put(LAST_NAME_LABEL, cdata.getLastName());

if(cdata.getBirthDay() > 0)
{

cJson.put(BIRTH_DAY_LABEL, cdata.getBirthDay());
cJson.put(BIRTH_MONTH_LABEL, cdata.getBirthMonth());
cJson.put(BIRTH_YEAR_LABEL, cdata.getBirthYear());

}
cJson.put(HOUSE_NAME_LABEL, cdata.getHouseName());
cJson.put(HOUSE_NUMBER_LABEL, cdata.getHouseNumber());
cJson.put(POST_CODE_LABEL, cdata.getPostCode());
cJson.put(MOBILE_PHONE_LABEL, cdata.getMobilePhone());
cJson.put(EMAIL_ADDRESS_LABEL, cdata.getEmailAddress());
Chapter 10. Creating an integration logic application 187

If an exception is thrown by the mainline processing, we catch it here and set an appropriate
error message and HTTP response code, depending on the type of exception that is caught.
See Example 10-9.

Example 10-9 Sample code for catching exceptions

} catch (NumberFormatException e) {
errorMsg = ERROR_NOT_INTEGER;
errorCode = ERROR_NOT_INTEGER_CODE;
httpResponseCode = HTTP_BAD_REQUEST;
error = true;

} catch (GenAppException e) {
error = true;
errorMsg = ERROR_GENAPP_ERROR;
httpResponseCode = HTTP_NOT_FOUND;
e.printStackTrace();

}

Instantiate a top-level JSONObject to return to the caller. This will be a holder for the
response, representing either the customer data or an error message. See Example 10-10.

Example 10-10 Instantiating a new JSON object

JSONObject jsonResponse = new JSONObject();

If the method is successful and we have valid customer data to return, add this code to the
response object. See Example 10-11.

Example 10-11 Adding to response object if return is successful

if(!error)
{

jsonResponse.put(DATA_LABEL, cJson);
}

Otherwise, add the error code and message to the response object. See Example 10-12.

Example 10-12 Adding to response object if an error is returned

else
{

jsonResponse.put(ERROR_CODE_LABEL, errorCode);
jsonResponse.put(ERROR_MSG_LABEL, errorMsg);

}

Add the appropriate HTTP code to the response object. See Example 10-13.

Example 10-13 Set the HTTP code to the response object

jsonResponse.put(HTTP_CODE_LABEL, httpResponseCode);
188 IBM CICS and Liberty: What You Need to Know

Finally, return the top-level JSONObject response to our caller, the Liberty JAX-RS
framework, which marshals the JSON into an HTTP response to the web service client. See
Example 10-14.

Example 10-14 Return the JSON response

return jsonResponse;

10.4 Package and deploy the application

We have shown you the steps that are needed to create and configure a JAXRS application.
Follow the steps in 5.3.2, “Deploying to CICS as an EBA” on page 94 to create a bundle
project with our application and deploy that to CICS. Ensure that you select the Dynamic
Web Project Include instead of OSGi Application Project described in step 3 on page 94.

10.4.1 Testing the RESTful service

Our JAXRS application has been configured and deployed to CICS. The next step is to test
that our service is available and works correctly. Our application so far has only created a
simple GET method for fetching one customer. This takes no HTTP body input from the client
and can therefore be tested by using a standard web browser. If you want to test an
application that uses an HTTP body, such as the POST methods that are available in the full
Genapp sample, you might need to download a RESTful client. The Chrome web browser has
one such client named “Simple REST Client.”

To test our application, we can send an HTTP GET request to the domain and path of our
application. In this example, that is <domain port>/<application_root>/service/customers/8.
This attempts to find a customer with customerNumber 8. Figure 10-1 on page 190 shows an
HTTP GET request being made to the application and running a successful retrieval of
customer 8 in JSON format.
Chapter 10. Creating an integration logic application 189

Figure 10-1 The Simple REST Client Chrome add-on making a successful GET request to the Genapp JSON application
190 IBM CICS and Liberty: What You Need to Know

Chapter 11. Creating a business logic
application

In Chapter 9, “Porting a web application” on page 161, you saw how to take an existing Java
application using Java EE Connector Architecture (JCA) to access CICS programs, migrate,
and deploy it into Liberty in CICS. This is the first stage in exploiting the capability of Liberty in
CICS for Java EE applications. The chapter that followed, Chapter 10, “Creating an
integration logic application” on page 179, showed how to develop a new service-based
interface into an existing CICS application by building a JavaScript Object Notation (JSON)
Representational State Transfer (REST) web service for the Java business logic interface.

In this chapter, we show how to further exploit Liberty in CICS to extend the flexibility and
function of an application by using more of the capabilities of the Liberty server. We first cover
conversion of the existing application to Open Services Gateway initiative (OSGi) and then
show how to extend the function in two ways:

� Adding a new custom COBOL program to implement a new business function and
invoking it from the Liberty application via JCA.

� Using JCICS to implement another new business function, directly accessing a Virtual
Storage Access Method (VSAM) key sequenced data set (KSDS) from Java.

There are many other ways in which the Liberty server capabilities can be used to enhance
and extend an application and in the conclusion of this chapter, we give a brief summary of a
few of these.

The following topics are covered in this chapter:

� Using OSGi with Liberty in CICS
� Extending the business logic application
� Summary

11
© Copyright IBM Corp. 2016. All rights reserved. 191

11.1 Using OSGi with Liberty in CICS

In previous chapters, the applications have been developed and deployed as Java EE
applications, using non-OSGi Java or dynamic web projects. In this section, we show how to
take a non-OSGi web application, and convert and deploy it as an assembly of OSGi bundles
by creating a shared OSGi bundle and an enterprise bundle archive (EBA).

Liberty in CICS is an OSGi-enabled Java EE application server environment. There are a
number of advantages to deployed applications as OSGi bundles, including improved
encapsulation of separate components, a clear version management capability, and easy
sharing of common components between applications.

In this section, we show how to take the existing GenApp Java EE projects, convert them to
OSGi bundles, and deploy them to Liberty in CICS.

There are four main stages of this conversion:

1. Copying the original Eclipse project to create a new version (optional, though strongly
suggested).

2. Removal of the existing build path entries and utility JARs.

3. Conversion of the projects to OSGi bundles using the Eclipse tooling.

4. Editing of the OSGi manifests to correct errors and ensure correct runtime resolution of
dependencies.

First, we need to create an OSGi bundle to contain the ibmjzos.jar utility JAR.

11.1.1 Create an OSGi bundle project for ibmjzos.jar

The GenAppBli Java project, which provides the Java business logic interface used by the
web and service front end modules, interacts with the GenApp base COBOL programs using
JZOS record-generated classes to marshall the records to pass to the CICS programs.

These JZOS-generated classes depend on utility classes in the com.ibm.jzos.fields
package from the ibmjzos.jar file included with the IBM Java SDK on z/OS. In previous
chapters, the classes were simply added to the build path for the GenAppBli project because
they are automatically available in the z/OS Java environment. When the application projects
are converted to OSGi, however, they can only access packages from other OSGi bundles, so
ibmjzos.jar needs to be converted to an OSGi bundle.

This process is achieved by creating a wrapper project containing the required JAR and
exposing the com.ibm.jzos.fields package for use by other OSGi bundles as follows:

1. Download the ibmjzos.jar file from the JRE on z/OS. The JAR file is in the /lib/ext
directory of the Java runtime installation, for example:

/java/J7.0_64/lib/ext/ibmjzos.jar

2. Download the JAR file as a binary file using FTP or another mechanism to a suitable
directory on your workstation.

3. Create a new OSGi bundle to contain ibmjzos.jar. In the Eclipse development
environment, click File → New → OSGi Bundle Project. The New OSGi Bundle Project
dialog opens.

4. Enter a name for the new bundle, for example ibmjzosgi. Accept the default location for
the project, but clear the check box to “Add bundle to application”. Click Next → to
continue.
192 IBM CICS and Liberty: What You Need to Know

5. This OSGi bundle project does not contain any source or built classes because it is just a
holder for ibmjzos.jar. Therefore, you can remove the src folder from the build path if you
want. Select the src source folder and click Remove.

Figure 11-1 Remove the source folder from the OSGi bundle project

6. On the final dialog to create the OSGi bundle, you can remove the .qualifier element
from the bundle version. Again, this is optional because it does not affect the use of the
bundle.

Figure 11-2 Finalize the creation of the OSGi bundle

7. Click Finish to complete creating the new OSGi bundle. The new bundle project is created
in the workspace.

8. The next stage is to import ibmjzos.jar into the bundle, and then export the
com.ibm.jzos.fields package. Right-click the ibmjzosgi project and click Import. The
import dialog opens. Expand the OSGi section and select Java Archive into an OSGi
Bundle as shown in Figure 11-3.
Chapter 11. Creating a business logic application 193

Figure 11-3 Import a Java archive into an OSGi bundle

9. Click Next to continue. The Java Archive Import dialog is displayed.

10.Click Browse and select the ibmjzos.jar file that you downloaded in step 1 above, then
click Next to continue.

Figure 11-4 Import the JAR file into the OSGi project

11.The final dialog for the import (Figure 11-5 on page 195) allows the selection of the
packages to be exported by the OSGi bundle. Only the com.ibm.jzos.fields package
needs to be visible, so clear the boxes for the others and then click Finish to complete.
194 IBM CICS and Liberty: What You Need to Know

Figure 11-5 Selection of packages to export

The ibmjzos.jar file is now imported into the OSGi bundle and the bundle manifest is
updated to export the com.ibm.jzos.fields package from the bundle. The final MANIFEST.MF
file for the bundle contains the content as shown in Example 11-1.

Example 11-1 OSGi bundle manifest

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: ibmjzosgi
Bundle-SymbolicName: ibmjzosgi
Bundle-Version: 1.0.0
Bundle-RequiredExecutionEnvironment: JavaSE-1.7
Bundle-ClassPath: ibmjzos.jar
Export-Package: com.ibm.jzos.fields

11.1.2 Convert the existing Java projects to OSGI

Next, we need to convert the existing Java projects to use OSGi.

Complete the following steps to convert the GenAppBli project to use OSGI:

1. In your Eclipse development environment with the GenApp projects imported and correctly
building, right-click the GenAppBli project and select Copy (or use Ctrl-C). Then, click
Edit → Paste (or Ctrl-V). A Copy Project dialog is displayed with a suggested new project
name.
Chapter 11. Creating a business logic application 195

2. In the Copy Project dialog, replace the suggested name (Copy of GenAppBli) with a new
name GenAppBliV2 as shown in Figure 11-6.

3. Click OK and the new project is created as a copy of the original.

Figure 11-6 Copying the GenAppBli project to GenAppBliV2

4. Right-click the new GenAppBliV2 project and select Configure → Convert to OSGi
Bundle Project. The “Project conversion to OSGi” dialog window appears.

5. Because the project contains no binary files, which might have hidden dependencies, you
can clear the check box to search binary files. Click OK as shown in Figure 11-7.

Figure 11-7 The Project conversion to OSGi dialog window

A progress bar might appear for a few seconds while the OSGi project facet is installed. Then,
the project is converted and it might now contain errors because the classpath has been
updated and no longer includes all required dependencies. These errors now need to be
repaired.

The errors should be confined to the OSGi manifest MANIFEST.MF for the bundle project, as
shown in Figure 11-8 on page 197 because not all the import dependencies can be found.
196 IBM CICS and Liberty: What You Need to Know

Figure 11-8 Source tab of the manifest editor

To fix the error in the MANIFEST.MF:

1. Expand the project GenAppBliV2 and open Manifest: GenAppBliV2.

2. Select the MANIFEST.MF tab to edit the source for the manifest, as shown in Figure 11-8.
The Import-Package entry for package com.ibm.jzos.fields, highlighted in Figure 11-8, is
required as this package is one of the platform extensions in the CICS Liberty JVM server.

3. Also, delete the Export-Package entry for com.ibm.cics.genapp.records. This package is
internal to the GenAppBli implementation and does not need to be exported.

4. Remove .qualifier from Bundle-Version and add ;version="1.0.0" to the exported
package. See Example 11-2 on page 197. These changes simplify some of the later
steps, and allow version dependence to be specified for users of this bundle.

Your OSGi manifest should now look like as shown in Example 11-2. The entry
Import-Package: com.ibm.cics.server is needed for the JCICS API used later in this
chapter so it is included now for convenience.

Example 11-2 Final OSGi manifest

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: GenAppBliV2
Bundle-SymbolicName: GenAppBliV2
Bundle-Version: 1.0.0
Bundle-RequiredExecutionEnvironment: JavaSE-1.7
Import-Package: com.ibm.cics.server,
com.ibm.jzos.fields,
com.ibm.connector2.cics,
javax.naming,
javax.resource,
javax.resource.cci
Export-Package: com.ibm.cics.genapp.bli;version="1.0.0"
Chapter 11. Creating a business logic application 197

5. Save the changes and close the manifest editor.

Next, complete a similar process for the GenAppWeb dynamic web project:

1. Copy the GenAppWeb project to a new project GenAppWebV2 and convert to an OSGi
bundle in the same way as for GenAppBli. Errors will again appear in the project, which
will be corrected by editing the manifest.

2. Expand project GenAppWebV2 and open the OSGi manifest for the bundle in the
manifest editor and select the MANIFEST.MF tab.

3. Remove the entry WEB-INF/lib/GenAppBli.jar from the Bundle-Classpath. This is not
needed because the dependency will instead be satisfied by using OSGi import from the
shared bundle.

11.1.3 Deploying the OSGi version to Liberty in CICS

The original projects comprising the GenAppWeb application have now been converted to
OSGi bundles. We now show you how to package and deploy these to the Liberty JVM server
in CICS to allow you to test whether the conversion was successful.

The common business logic component GenAppBli will be deployed as a shared OSGi
bundle, while the application-specific web component GenAppWeb will be deployed as an
enterprise bundle archive (EBA) embedded in a CICS bundle:

1. In the Eclipse development environment, right-click project GenAppBliV2 and select
Export → OSGi Bundle or Fragment. The Export dialog appears.

2. Use the Browse option to select an appropriate directory and file name for the OSGi JAR
file as in Figure 11-9.

3. Click Finish and the OSGi bundle is packaged and placed in the designated location.

Figure 11-9 Export dialog for the OSGi shared bundle

4. Transfer the packaged OSGi bundle as a binary file to a suitable location in zFS via FTP or
another mechanism.

5. Edit the server.xml configuration file for the target Liberty JVM server and add a
<bundleRepository> element for the OSGI bundle transferred in Step 4, for example:

<bundleRepository>
 <fileset dir="/u/redg11/cicsts53/OSGi" include="GenAppBliV2_1.0.0.jar"/>
</bundleRepository>
198 IBM CICS and Liberty: What You Need to Know

This makes the exported packages from the bundle available to all installed OSGi
applications in the Liberty server runtime.

The OSGi version of the GenAppWeb application is packaged as an OSGi application and
deployed as a CICS bundle. We start by creating a new OSGi application project as follows:

1. In the Eclipse development environment, click File → New → OSGi Application Project.
A New OSGi Application Project dialog is displayed.

2. Enter a name for the new project, such as GenAppWebV2App and click Next.

3. Select the check box for the OSGi project for the GenAppWeb OSGi version created
earlier, but not for the shared OSGI bundle, as shown in Figure 11-10.

Figure 11-10 Adding the web OSGi bundle to the OSGi application project

4. Click Finish and the new OSGi application project is created in the workspace.

Create a CICS bundle project to deploy the OSGi application as follows:

1. Click File → New → Other. A new project dialog opens.

2. Expand CICS Resources and select CICS Bundle Project and click Next. A new CICS
Bundle Project dialog opens as shown in Figure 11-11.
Chapter 11. Creating a business logic application 199

Figure 11-11 CICS Bundle Project dialog window

3. In the CICS bundle project dialog, enter a name for the new CICS bundle, such as
GenAppWebV2Bundle.

4. Click Finish and the new CICS bundle project is created in the workspace and opened in
a CICS Bundle Manifest editor.

5. On the Overview tab in the CICS Bundle Manifest editor, click New next to the Defined
Resources list and select OSGi Application Project Include. An OSGi Application
Project Include dialog window opens, as shown in Figure 11-12.

Figure 11-12 OSGI Application Project Include dialog window
200 IBM CICS and Liberty: What You Need to Know

6. In the OSGi Application Project Include dialog, select the OSGi project for the GenApp
web application, GenAppWebV2App, and enter the name of the JVM server for the target
Liberty instance.

7. Click Finish to confirm, and the GenApp web-enabled OSGi application project is
displayed in the Defined Resources list in the CICS Bundle Manifest. You can now close
the Bundle Manifest editor.

8. Export the CICS bundle project to the zFS by right-clicking the project and selecting
Export Bundle Project to z/OS UNIX File System.

Your CICS bundle project containing the EBA archive is now ready for installation into CICS
for testing. This requires the installation of a CICS BUNDLE resource definition that refers to
the zFS location of the exported bundle in the BUNDLEDIR attribute. For more information,
see Chapter 6, “Configuring a Liberty server in CICS” on page 103.

In this section, you learned how to convert a regular Java Platform, Enterprise Edition web
application with an embedded utility JAR to OSGi, using a shared OSGi bundle for the
common component and an EBA for the web application.

We now build on this infrastructure to extend the Java business logic with new functions,
adding a new COBOL program for one new function, and using JCICS for another.

11.2 Extending the business logic application

So far in this chapter, we repackaged and redeployed the existing GenApp web application by
using the OSGi tooling in Eclipse, and deployed it into a Liberty server in CICS. Now we look
at a couple of options available to extend the business logic with new functions.

There are two techniques to be considered:

� Adding a COBOL program to implement the function and linking to it using JCA.
� Implementing the new function directly in Java using the JCICS API.

11.2.1 Adding new custom CICS programs

Perhaps the most obvious way to add new function to the Java business logic API is to create
a new CICS program to perform the required function and invoke it by the same method as for
the base application, that is via the JCA local CICS external call interface (ECI) adapter.

This section provides an example of creating a new COBOL program to implement a function
to return a list of customers for the GenApp Insurance application, using a channel and
container interface and invoked using JCA. The results of invoking this program are then
made available through a new method on the Java business logic interface.

Writing a new CICS COBOL program to provide the listCustomers function is outside of the
scope of this book, but we give an overview of the process and some code snippets.

Note: You can use the JCICS Program.link() method to link to other CICS programs;
however, we used JCA because this method was also used in the base GenAppWeb
application.
Chapter 11. Creating a business logic application 201

Add the new wanted method declaration to the GenAppInterface Java interface:

Example 11-3 Declare method

public Customer[] listCustomers(int startCustomer, int maxCount)
throws GenAppException;

where:

� startCustomer is the customer number to start the list of returned customers.

� maxCount is the maximum number of customers to return from the call.

These allow the client to page through many customers, for example, to display on a web
page.

The returned Customer[] is an array of Customer objects. Each includes the customer
number and first and surname, for summary purposes, not the full details for each customer.

For the new COBOL program intended to implement this function, we decided to use the
channel and container interface, using CHAR type containers. We also decided to implement
the marshalling of the container contents using hand coded Java rather than the JZOS
record-generated classes.

The channel interface to the new program uses three containers as shown in Table 11-1.

Table 11-1 Interface details

After the COBOL program that implements the new business function has been written, we
know the format and content of the containers that it uses, so the Java code to implement the
listCustomers() method can be completed. The skeleton method created by the Eclipse
source tool is replaced with the implementation outlined below.

The method signature, which matches the Java interface declaration, was created by the
Eclipse source tool:

Example 11-4 Interface declaration

public CustomerData[] listCustomers(int startCustomer, int maxCount)
throws GenAppException {

Create a StringBuffer to build the request container contents, and insert the input parameters
startCustomer and maxCount converted to strings (these also need to be padded with zeros to
the correct length. The details of this are omitted for brevity).

Example 11-5 StringBuffer sample

StringBuffer request = new StringBuffer(12);

String cstring = Integer.toString(startCustomer);
request.append(cstring);

Name I/O Content

REQUEST Input StartCustomer, maxCount as character string.

RESPONSE Output (success) Customer count, then count * (custnum, firstname, lastname) as
CHAR string.

ERROR Output (failure) Error message as character string.
202 IBM CICS and Liberty: What You Need to Know

String cmaxstr = Integer.toString(maxCount);
request.append(cmaxstr);

// Create a channel to pass to the JCA adapter:
ECIChannelRecord channel;
try {

channel = new ECIChannelRecord("GENAPP");
} catch (ResourceException e) { throw new GenAppException(e); }

// Create and populate the request container in the channel.
channel.put("REQUEST", request.toString());

// Invoke the target program passing the channel as input.
invokeChannelProgram(ListCustomersPgm, channel);

If an error container has been returned, throw an exception with the contents of the error
message.

Example 11-6 Sample to handle exception

if (channel.containsKey("ERROR")) // Error container exists.
 {
 throw new GenAppException((String) channel.get("ERROR"));
 }

Otherwise, there is no error container so the RESPONSE container is valid. Extract the
contents into a String (Example 11-7).

Example 11-7 Extract response into a string

String response = (String) channel.get("RESPONSE");

Extract the customer count from the first two characters of the response. Then, iterate to
extract each customer’s detail from the response, and add to a new array CustomerData[] of
the required size. See Example 11-8.

Example 11-8 Sample to extract customer count

int ccount = Integer.parseInt(response.substring(0, 2));
CustomerData[] carray = new CustomerData[ccount];

int coffset = 2; // Start offset for customer data.
for (int cindex = 0; cindex < ccount; cindex++) {

CustomerData cdata = new CustomerData();

int cnumber = Integer.parseInt(response.substring(coffset, coffset + 10));
cdata.setCustomerNumber(cnumber);
cdata.setFirstName(response.substring(coffset + 10, coffset + 20));
cdata.setLastName(response.substring(coffset + 20, coffset + 30));

carray[cindex] = cdata; // Store new CustomerData in array.
coffset += 30; // Shift forward by length of each customer data.

}

Chapter 11. Creating a business logic application 203

Finally, return the completed array of CustomerData (Example 11-9).

Example 11-9 Return array

return carray; // Return full CustomerData[] to caller.

The private method invokeChannelProgram(), which uses JCA to invoke the target CICS
COBOL program, passing the channel containing the request container, is outlined in
Example 11-10. The input parameters are the name of the target CICS program, and the
channel, which has been created by the caller.

Example 11-10 invokeChannelProgram() method

private void invokeChannelProgram(String program, ECIChannelRecord channel)
 throws GenAppException {

Create a new ECIInteractionSpec to define the JCA interaction to be performed, and set the
name of the target program. The interaction will be a synchronous send and receive.

Example 11-11 ECIInteractionSpec sample

ECIInteractionSpec eSpec = new ECIInteractionSpec();
eSpec.setFunctionName(program); // Name of target COBOL program
eSpec.setInteractionVerb(ECIInteractionSpec.SYNC_SEND_RECEIVE);

// Create a new ECI Interaction to execute the call
Interaction eciInt = eciConn.createInteraction();

Execute the interaction using the InteractionSpec, and passing the channel as input. The
same channel object is used to receive the response channel content from the CICS program
call (Example 11-12).

Example 11-12 Execute interaction

eciInt.execute(eSpec, channel, channel);
eciInt.close();

The Java implementations outlined above have been condensed from the complete code,
which is available in the additional materials supplied with this book at the following URL:

http://www.redbooks.ibm.com/abstracts/sg248335.html

These two new Java methods, listCustomers() and invokeChannelProgram(), when added
to the existing business logic interface class, complete the implementation of the new function
to provide a list of known customers. This function can then be used by the GenApp web front
end to display a list of customers on a web page, or exposed as a web service (such as a
JSON REST web service) as described in Chapter 10, “Creating an integration logic
application” on page 179.

11.2.2 Using the JCICS API

The Liberty server in CICS is fully integrated with its host CICS environment and this allows
you to use the native CICS Java programming capability, including JCICS. In this section, we
show how JCICS can be used to extend the functions of the Java business logic interface
very quickly and easily.
204 IBM CICS and Liberty: What You Need to Know

http://www.redbooks.ibm.com/abstracts/sg248335.html

To demonstrate this, we choose to add another new method on the GenAppBli interface, in
this case to obtain a list of all the policies for a given customer.

Add the method declaration shown in Example 11-13 to the GenAppInterface Java interface.

Example 11-13 Declare method

public PolicyData[] listPolicies(int custNumber) throws GenAppException;

where

� custNumber is the customer number for which the list of policies is required.

The returned PolicyData[] is an array of PolicyData objects. Each contains the policy
number and an enumerated type indicating the type of policy represented, for example, house
or car.

Saving the new method declaration in the Java interface definition causes the implementation
class to be invalidated because it no longer fully implements its declared interface. The
Eclipse coding assist tools can be used to create a new skeleton implementation method.

Edit the implementation class GenAppJCAImpl and position the cursor at an appropriate point
in the source where the new method skeleton should be added.

Right-click and select Source → Override/Implement Methods. A dialog is displayed as
shown in Figure 11-13. After checking details, click OK to finish and add the new method.

Figure 11-13 Override/Implement Methods dialog after adding listPolicies()

Now the actual implementation for the method has to be added. The following is the
condensed and annotated Java source code for the listPolicies() method. The method
signature matches the declaration in the interface, and the final statement builds the
PolicyData array for return (Example 11-14).

Example 11-14 Declare a listPolicies() method

public PolicyData[] listPolicies(int custNumber) throws GenAppException {
...
return policyList.toArray(new PolicyData[0]);
}

Chapter 11. Creating a business logic application 205

The main JCICS class used to implement listPolicies() is the KSDS class, which is used to
browse the "KSDSPOLY" VSAM file to obtain a list of policies that match the input customer
number. The key length for this file is 21 so we declare a byte array of size 21 to contain the key
(Example 11-15).

Example 11-15 Declare a byte array for KSDS class

KSDS ksdspoly = new KSDS();
ksdspoly.setName("KSDSPOLY");
byte[] key = new byte[21]; // Null value array, key length = 21.

Create a new ArrayList to hold the list of PolicyData objects as they are created from
matching file records. Declare and start a browse of the KSDS file, starting with the low
valued key so that all records are seen, and catching any exceptions returned from JCICS
(Example 11-16).

Example 11-16 Create a new ArrayList

ArrayList<PolicyData> policyList = new ArrayList<PolicyData>();
KeyedFileBrowse policyBrowse;
try {

policyBrowse = ksdspoly.startBrowse(key); // Start with low values.
...
 } catch (CicsException e) { throw new GenAppException(e); }

Create RecordHolder and KeyHolder objects to use as holders for the returned file record and
key respectively during the browse, as shown in Example 11-17.

Example 11-17 Create RecordHolder and KeyHolder objects

RecordHolder recordholder = new RecordHolder();
KeyHolder keyholder = new KeyHolder(key);

Loop indefinitely (until an exception is thrown), obtaining the next file record and key from the
browse, and terminate when the end of file is encountered (Example 11-18).

Example 11-18 Create a loop

while (true) { // Browse until end of file (EndOfFileException)
try {
policyBrowse.next(recordholder, keyholder);
...
 } catch (EndOfFileException endfile) {
 break; // End browse loop normally - expected.
 }
} // while()
policyBrowse.end(); // End the file browse normally at end of file.

If this point in the method is reached, no exception was thrown, so the next record was found.
Extract the key from its holder and convert it to a string for subsequent processing, as shown
in Example 11-19.

Example 11-19 Extract keys

key = keyholder.getValue();
String keystring = new String(key, ccsid);
206 IBM CICS and Liberty: What You Need to Know

// If the key matches the requested customer number,
// process the key to extract policy number & type.
PolicyData pdata = null;

If the key represents a file record for the requested customer, check the type of policy to see if
it is one of the types that we are interested in, that is a house or a car policy. If so, create a
PolicyData object of the appropriate type. If pdata is created, extract the policy number from
the key string and store it in pdata. Then, add it to the list of policies in policyList. Continue
browsing to inspect the next file record (Example 11-20).

Example 11-20 Create a PolicyData object and extract policy data

if (Integer.parseInt(keystring.substring(1, 11)) == custNumber) {

switch (keystring.charAt(0)) {
case 'M':

pdata = new PolicyData(PolicyType.Car);
break;

case 'H':
pdata = new PolicyData(PolicyType.House);
break;

default: // other
break; // Just ignore other policy types

} // switch()

if (pdata != null) { // Correct customer *and* accepted type.
pdata.setPolicyNumber(Integer.parseInt(keystring.substring(11)));
policyList.add(pdata);

}
}

When EndOfFileException is caught and terminates the loop normally, this is an expected
exception (Example 11-21). Any other exception also terminates the loop, but it will be an
error resulting in an exception to the caller.

Example 11-21 Exiting the loop

} catch (EndOfFileException endfile) {
break; // End browse loop normally - expected.
}

} // while()
policyBrowse.end(); // End the file browse normally at end of file.
} catch (CicsException e) { throw new GenAppException(e); }

Finally, convert the ArrayList to an array of the correct type, PolicyData[], and return it to
the caller, as shown in Example 11-22.

Example 11-22 Convert array and return to caller

return policyList.toArray(new PolicyData[0]);

The single short Java method shown here is all that is needed to implement the new business
logic function using JCICS to obtain a list of active policies for a given customer. This function
can then be used by a dynamic web page or exposed as a web service in the same way as for
the listCustomers() function.
Chapter 11. Creating a business logic application 207

The full source is available with the additional materials for this book at.

http://www.redbooks.ibm.com/abstracts/sg248335.html

11.3 Summary

This chapter has shown how to convert an existing Java Platform, Enterprise Edition
application to exploit OSGi and provided examples of two different approaches to extending
the business logic interface for a CICS Java Platform, Enterprise Edition application: JCA with
an auxiliary COBOL program, versus JCICS. Consider the following factors when deciding
between these the following alternatives:

� Portability
� Implementation
� Performance

The main advantages and disadvantages of these approaches, which are equivalent from a
functional perspective, include:

� Using the JCICS APIs to extend the business logic of an application prevents the
application from being deployed in a non CICS environment. Therefore, if you ever want to
port the application to another server, these would have to be changed to use a different
implementation such as COBOL via JCA as for the listCustomers() method.

� The JCA/COBOL approach requires a new additional COBOL program to be written,
compiled, and installed in CICS alongside existing programs.

� The JCICS implementation requires (in this case) much less code because it is a single
short Java method as opposed to a COBOL program plus a more extended Java method.

� The JCA/COBOL is likely to have better performance because it requires only a single
interaction across the Liberty CICS interface, versus many interactions (in this case) for
the JCICS performing the file browse. However, the performance gains have not been
measured during this project.
208 IBM CICS and Liberty: What You Need to Know

http://www.redbooks.ibm.com/abstracts/sg248335.html

Part 4 Reference

In this part, we provide reference information.

Part 4 contains Chapter 12, “Troubleshooting” on page 211.

Part 4
© Copyright IBM Corp. 2016. All rights reserved. 209

210 IBM CICS and Liberty: What You Need to Know

Chapter 12. Troubleshooting

Problems can occur when running Java web applications inside of CICS Transaction Server
(CICS TS). Additionally, with several different components running in tandem, the amount of
documentation to review can be confusing. When you have CICS TS, the Liberty Profile, and
the Java virtual machine (JVM) running and gathering documentation, where should you
begin?

If you encounter problems, you can use the diagnostic tools provided by CICS, the JVM, and
the Liberty Profile to determine the cause of the problem. CICS provides statistics, messages,
and tracing to help you diagnose problems related to your Java applications. The IBM Java
software development kit (SDK) diagnostic tools give more detailed information about the
internals of the JVM, including the garbage collection and just-in-time (JIT) daemon threads
running in a JVM. The Liberty Profile tools provide information about its inner workings.

This chapter discusses some of the diagnostics and tools available that can be obtained from
your Liberty JVM server environment and applications, mainly focusing on diagnosing
problems within a CICS region.

This chapter describes the following topics:

� Diagnostics
� Messages and log files
� Dumps and trace
� Additional documentation
� Debugging tools
� JVM Health Center
� Liberty debug tools
� Symptoms and user actions

12
© Copyright IBM Corp. 2016. All rights reserved. 211

12.1 Diagnostics

In addition to the traditional CICS administration facilities, such as the CICS EXEC Master
Terminal (Customer Information Control System (CEMT)) transaction, the system
programming interface (SPI), transaction monitoring, and statistics, there are a number of
unique interfaces and diagnostic logs that are specific to the CICS Liberty JVM environment
that you can use for problem determination with Java web applications.

12.2 Messages and log files

Several logs can be used by the JVM server environment on CICS. These logs vary from
z/OS file system (zFS) files to traditional DD destinations in the CICS job. The zFS files are
located, by default, in the working directory of the JVM server.

12.2.1 CICS logs

Most errors that occur in a JVM server result in a message being issued to the CICS MSGUSR
DD log. This is one of the first places to look for any CICS related errors, warnings, or abends
that might have occurred.

The SYSPRINT DD log is the stdout destination normally used by C-language routines. In a
CICS region in particular, it might contain errors from the initialization of the JVM server. If
omitted, individual SYSPRINT DD logs are dynamically allocated for each JVM server instance,
in the pattern SYSnnnnn.

12.2.2 Java logs

When the JVM server has initialized, output from the System.out stream is written to the
STDOUT destination set by the STDOUT option within the JVM server profile. If the file exists,
output is appended to the end of the file.

If you specify the USEROUTPUTCLASS option in a JVM profile, the Java class named on
that option handles the System.out requests instead. CICS supplies a sample class,
com.ibm.cics.samples.SJMergedStream, which can be used to redirect output from stdout
back to the MSGUSR log.

The STDERR destination is the primary location to which Java exceptions and stack traces are
written. These exceptions are typically a result of errors in Java applications or components.

The location is set by using the STDERR option in the JVM server profile. If the file exists, output
is appended to the end of the file.

For JVM servers, the default file name is <applid>.<jvmserver>.dfhjvmout, which means
that a unique file is created for each JVM server and CICS region. In addition, further unique
files can be made by using the &APPLID; &JVMSERVER, &DATE; and &TIME; symbols.
212 IBM CICS and Liberty: What You Need to Know

12.2.3 Liberty Profile server logs

Three primary log files are written by the Liberty Profile server:

� The messages.log file contains all messages except trace messages that are written or
captured by the logging component. All messages that are written to this file contain more
information, such as the message time stamp and the ID of the thread that wrote the
message. This file does not contain messages that are written directly by the JVM
process. Each message has a unique message identifier, and includes an explanation of
the problem, and details of any action that you can take to resolve the problem. Liberty
profile system messages are logged from various sources, including application server
components and applications.

� The console.log file contains the redirected standard output and standard error from the
JVM process. The console output contains major events and errors if you use the default
consoleLogLevel configuration. The console output also contains any messages that are
written to the System.out and System.err streams if you use the default
copySystemStreams configuration. The console output always contains messages that
are written directly by the JVM process, such as -verbose:gc output. By specifying the
following parameter within the JVM profile, you can control which messages that Liberty
writes to the stdout file:

com.ibm.ws.logging.console.log.level={INFO|AUDIT|WARNING|ERROR|OFF}

� The trace.log file contains all the messages that are written or captured by the product.
This file is created only if you enable additional trace. This is usually at the request of Level
2 Support. This file does not contain messages that are written directly by the JVM
process. Within the JVM profile, selectively enable this trace and specify the file name by
using the following parameters:

com.ibm.ws.logging.trace.specification=*=all=enabled
com.ibm.ws.logging.trace.file.name=trace.log

12.3 Dumps and trace

Several sources of detailed diagnostic information can be collected from a JVM server. This
includes several types of dumps as well as tracing that can be activated in each of the
components.

12.3.1 Java dumps and trace

Three types of Java dumps can be produced by the JVM.

The Javadump is often referred to as a Javacore or thread dump in some JVMs. This dump is
in a human-readable format. It is produced by default when the JVM terminates unexpectedly
because of an operating system signal, an OutOfMemoryError exception, or when the user
enters a reserved key combination (for example, Ctrl-Break on Microsoft Windows). You can
also generate a Javadump by calling a method from the Dump API, for example
com.ibm.jvm.Dump.JavaDump(), from within the application. A Javadump summarizes the
state of the JVM at the instant the signal occurred. Much of the content of the Javadump is
specific to the IBM JVM.
Chapter 12. Troubleshooting 213

The JVM can generate a Heapdump, which is a snapshot of JVM memory. It shows the live
objects on the heap along with references between objects. It is used to determine memory
usage patterns and memory leak suspects. A Heapdump can be taken at the request of the
user by calling com.ibm.jvm.Dump.HeapDump() from inside the application or when the JVM
ends because of an OutOfMemoryError exception. You can specify finer control of the timing of
a Heapdump with the -Xdump:heap option. For example, you can request a Heapdump after a
certain number of full garbage collections have occurred. The default Heapdump format (.phd
files) is not human-readable and must be processed by using available tools, such as Memory
Analyzer.

System dumps are platform-specific files that contain information about the active processes,
threads, and system memory. System dumps are usually large. By default, system dumps are
produced by the JVM only when the JVM fails unexpectedly because of a general protection
fault (GPF) or a major JVM or system error. You can also request a system dump by using the
Dump API. You can call the com.ibm.jvm.Dump.SystemDump() method from your application.
You can use the -Xdump:system option to produce system dumps when other events occur.

IBM JVM tracing allows execution points in the Java code and the internal JVM code to be
logged. The -Xtrace option allows the number and areas of trace points to be controlled, as
well as the size and nature of the trace buffers maintained. The internal trace buffers at a time
of failure are also available in a system dump and tools are available to extract them from a
system dump. Generally, trace data is written to a file in an encoded format and then a trace
formatter converts the data into a readable format. However, if small amounts of trace are to
be produced and performance is not an issue, trace can be routed to STDERR and will be
preformatted.

12.3.2 Liberty Profile server dumps and trace

Within a running server, there might be occasions when a dump is needed for further
analysis. Within the Liberty Profile server, use the server script command to capture status
information for a Liberty profile server.

The server dump command is useful for problem diagnosis of a Liberty profile server,
because the result file contains server configuration, log information, and details of the
deployed applications in the workarea directory. This command can be applied to either a
running or a stopped server.

The server javadump command is useful for diagnosing problems at the JVM level, such as
hung threads, deadlocks, excessive processing, excessive memory consumption, memory
leaks, and defects in the virtual machine. The server must be running to use this command.
Each dump type creates a file, but not all dump types are supported by all virtual machines.
By default, the files are written to the ${server.output.dir} directory.

For a running server, the following information is also included:

� State of each Open Service Gateway initiative (OSGi) bundle in the server
� Wiring information for each OSGi bundle in the server
� Component list that is managed by the Service Component Runtime (SCR) environment
� Detailed information about each component from SCR
� Configuration administration data of each OSGi bundle
� Information about registered OSGi services
� Runtime environment settings, such as JVM, heap size, operating system, thread

information, and network status

Within a CICS environment, use the wlpenv script to request these dumps. We discuss this
script in 12.7.1, “Using the wlpenv script to run Liberty commands” on page 224.
214 IBM CICS and Liberty: What You Need to Know

12.3.3 CICS dumps and trace

When errors occur, transactions abend and messages are written to the appropriate log.
Messages related to Java are in the format DFHSJxxxx. You can also turn on tracing to
produce more diagnostic information. When the first JVM is started in a CICS region after
initialization, CICS issues message DFHSJ0207, which shows the version of Java that is being
used:

DFHSJ0207 date time applid JVMSERVER jvmserver is running Java version version

In addition to the logging produced by Java, CICS, and the Liberty server, CICS also provides
some standard trace points in the SJ (JVM) and AP domains. These trace points trace the
actions that CICS takes in setting up and managing JVM servers, installing and running
applications, and making JCICS calls. JVM server tracing does not use auxiliary trace or GTF
tracing. CICS writes some information to the internal trace table. However, most diagnostic
information is logged by Java and written to a file in zFS. This file is uniquely named for each
JVM server and created within the WORK_DIR directory when you enable the JVMSERVER
resource. The default file name has the format applid.jvmserver.dfhjvmtrc. You can change
the name and location of the trace file in the JVM profile. If you delete or rename the trace file
when the JVM server is running, CICS does not re-create the file and the logging information
is not written to another file.

This file does not wrap so you must manage its size and the number of unique entries in zFS.
You can manage the number of files by setting the LOG_FILES_MAX option in the JVM
profile to control the number of old trace files that are retained on the JVM server startup. If
you disable the JVMSERVER resource, you can delete old entries or rename them if you
want to retain the information separately. When you enable the JVMSERVER resource, CICS
appends the new entries to the trace file if it already exists and creates a file.

You can activate JVM server tracing by turning on SJ and AP component tracing by using
either the CETR transaction or the SIT STNTRxx parameter. The SJ component traces
exceptions and processing in the SJ domain to the internal trace table. The AP component
traces the installation of OSGi bundles in the OSGi framework.

Set the tracing level for the SJ and AP components:

� SJ level 0 produces tracing for exceptions only, such as errors during the initialization of
the JVM server or problems in the OSGi framework.

� SJ level 1 and level 2 produce more CICS tracing from the SJ domain. This tracing is
written to the internal trace table.

� SJ level 3 produces additional logging from the JVM, such as warning and information
messages in the OSGi framework. This information is written to the trace file in zFS.

� SJ level 4 and AP level 2 produce debug information from CICS and the JVM, which
provides much more detailed information about the JVM server processing.

12.4 Additional documentation

In addition to the above sets of documentation, there are other ways that are available to help
monitor and tune the JVM server. CICS statistics and garbage collection can be used to
properly tune the JVM.
Chapter 12. Troubleshooting 215

12.4.1 CICS statistics

CICS collects statistics for the JVM servers and for Java programs that run in the JVMs. You
can use these statistics to manage and tune the Java workloads that are running in your
CICS regions. The JVM server statistics tell you about the activity of the JVM that is used by a
particular JVM server. The JVM program statistics tell you about Java programs that run in
the JVM servers. You can use the CEMT transaction to inquire on the JVMSERVER. You can
also access JVMSERVER statistics online by using the EXEC CICS EXTRACT STATISTICS
JVMSERVER() command, by using the STAT transaction, or through the CICS Explorer JVM
Servers view. JVMSERVER statistics are mapped by DFHSJSDS DSECT.

12.4.2 Garbage collection data

Garbage collection and heap expansion are an essential part of the operation of a JVM.
When a JVM runs out of space in the storage heap and is unable to allocate any more
objects, an allocation failure occurs and a garbage collection is triggered. To help diagnose
problems in the garbage collection, add the -verbose:gc option to the JVM profile. This
produces output in XML format that can be used to analyze problems in the Garbage
Collector itself or problems in the design of user applications.

12.5 Debugging tools

In this section, we discuss the tools that are available that allow you to interactively debug a
Java program running in CICS.

12.5.1 Execution diagnostic facility

CICS provides the Command Execution Diagnostic Facility (CEDF) as a basic debugging
tool.

You can use the execution diagnostic facility (EDF) to test an application, which can be used
to test application programs online without modifying the program or the program-preparation
procedure. When used, CEDF intercepts a transaction when each program starts and
finishes, before and after any EXEC CICS or EXEC SQL commands are executed, and when
the task ends. Using CEDF gives you a chance to interact with your transaction and view the
parameters and responses that are passed back and forth as well as storage areas when
each command is executed.

When used with a JCICS program, CEDF intercepts the CICS commands that the Java
Native Interface (JNI) programs start, which provide the interface between JCICS classes and
CICS. There might not be an obvious relationship between the JCICS class method and the
CICS command. For example, the HelloCICSWorld sample uses the Task.out.println()
method to send a message to the user terminal. The JNI program starts the SEND command to
write to the panel.
216 IBM CICS and Liberty: What You Need to Know

To use EDF on the same terminal as the transaction you are testing, follow these steps:

1. Type CEDF and press Enter to turn it on.

This results in the following message being printed to the terminal:

THIS TERMINAL: EDF MODE ON

2. Type CEDF,,OFF and press Enter to turn it off. (notice the double commas)

This results in the following message being printed to the terminal:

THIS TERMINAL: EDF MODE OFF

To use EDF on a different terminal than where the transaction is located:

1. Type CEDF,#### where #### is the other terminal ID and press Enter to turn it on.

2. Type CEDF,####,OFF and press Enter to turn it off.

12.5.2 Java debugger

When you use the CICS Explorer SDK to develop your web applications and then deploy
them in the Liberty JVM server, if a failure occurs in the application it can be difficult to debug
because there is no development environment there. This is where remote debugging comes
in handy. The Java Platform Debugger Architecture (JPDA) is a useful tool for debugging
applications that are failing in a deployment environment remotely. The JPDA is the standard
debugging mechanism provided in the Java 2 Platform. This architecture provides a set of
APIs that allow the attachment of a remote debugger to a JVM. The JPDA connects your
running application with your development environment (such as Eclipse).

Java provides this debugger using a listener mechanism. The application that you want to
debug attaches a socket to itself where it listens for any debug instructions. The JPDA then
uses this socket to connect to the JVM. To debug an application remotely, it must be running
in debug mode. This requires that the JVM is started with the following debug argument:

-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=port

In a CICS environment, this means adding the –agentlib:jdwp option to the JVM profile for
the JVM server and using the CICS Explorer SDK to debug your applications.

To configure Eclipse to remotely debug CICS web applications, follow these steps:

1. Ensure that the Liberty JVM server is either DISABLED or not installed in your CICS
region.

2. Add the following option to your JVM profile to attach the remote debugger:

-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=53107

3. Set the address= option to an available port number that the CICS region user ID is
authorized to open. This is the port that Eclipse will connect to during the debug session.

4. Install your JVMSERVER resource definition (or set it to Enable).

5. Install the CICS BUNDLE resource definition for your CICS web application.

6. In the CICS Explorer SDK, switch to the debug perspective by going to Window → Open
Perspective → Other → Debug → OK.

7. Select Run → Debug Configurations to set up the JPDA configuration.

8. Right-click Remote Java Application and click New.

9. Give the configuration a meaningful name.

10.Select the Project you want to debug.
Chapter 12. Troubleshooting 217

11.Select Socket Attach to attach the debugger to the application.

12.Specify the host name of your z/OS system and the port from step 2.

13.Click Debug to start the session. See Figure 12-1.

Figure 12-1 Debug configurations

Because the JVM is running in server mode, it must be started first in debug mode. Then,
the debugger is started. Otherwise, you would get a “Failed to connect to remote VM”
message.

14.Switch to the web perspective and go to your application class that you need to debug.

15.Set your breakpoints by double-clicking in the margin.

16.Save your changes and export the CICS Bundle to zFS.

17.Install CICS BUNDLE resource to deploy it to the Liberty JVM.

18.In your web browser, enter the URL for the web application.

19.When the first breakpoint hits, the Eclipse perspective switches to the debug perspective.
You can now step through your application code.
218 IBM CICS and Liberty: What You Need to Know

12.6 JVM Health Center

The IBM Health Center is a diagnostic tool for monitoring the status of a JVM and can be
used with any IBM JVM, including the CICS Liberty server. It provides recommendations and
analysis that help you improve the performance and efficiency of your application. In
particular, it is good for deep dives into issues with performance, high CPU, and monitor
contention. In this section, we look at the Health Center and how to integrate it with CICS
Explorer for monitoring.

12.6.1 What the Health Center is

The Health Center has a low runtime overhead and can be used to profile and tune your CICS
Java application. The Health Center is a monitoring tool that consists of two components,
which are installed separately:

� The agent, which is shipped with the IBM JVM
� The client, which is an Eclipse-based GUI perspective

Figure 12-2 shows where the Health Center agent and client are installed when using CICS.

Figure 12-2 Location of Health Center agent and client

The Health Center agent is a JVMTI native library that must be enabled in the JVM (by
default, it is off). It monitors the Java applications and collects data from the running
application. The agent can be enabled in three modes:

� Socket communication, by specifying –Xhealthcenter:port=xxxx: The agent connects to
a client through a socket. It communicates either in IIOP (default) or JRMP.

� Headless, by specifying –Xhealthcenter:level=headless. Instead of opening a socket, it
stores the agent data to a zFS file system in an HCD file.

� Late attach, where no data is collected until the client connects.
Chapter 12. Troubleshooting 219

It is always a preferred practice to update the agent because it is independent of the JVM and
the latest version has bug fixes, additional collection, better options, and so on.

The Health Center client is used to interpret the data collected by the agent. It provides
recommendations to improve the performance of the monitored application. The Health
Center client has several different views, each providing data on a different aspect of the JVM.
Following are some of the available views:

� Classes: Provides information about classes being loaded

� CPU: Provides processor usage for the application and the system on which it is running

� Environment: Provides details of the configuration and system of the monitored application

� Garbage Collection: Provides information about the Java heap and pause times

� I/O: Provides information about I/O activities that take place

� Locking: Provides information about contention on inflated locks

� Method Trace: Provides information about method use over time

� Native Memory: Provides information about the native memory usage

� Profiling: Provides a sampling profile of Java methods including call paths

� Threads: Provides information about the live threads of the monitored JVM

12.6.2 Install and Configure the Health Center and CICS Explorer

Because the Health Center client is Eclipse-based, it can be installed and utilized by using the
CICS Explorer. We do not look at how to monitor a CICS web application using the Health
Center and CICS Explorer.

To monitor a CICS Liberty JVM using the Health Center, follow these steps:

1. Install the Health Center client

The easiest way to install the Health Center client is by using the Eclipse Marketplace. In
your Eclipse client, follow these steps:

a. Select Help → Eclipse Marketplace.

b. In the Search tab, enter Health Center in the “Find” field.

c. Select IBM Monitoring and Diagnostic Tools for Java - Health Center from the list
and click Install.

d. Confirm that the Health Center and Health Center Core will be installed and click
Confirm.

e. Read and accept the license terms and then click Finish.

2. Enable the Health Center agent in the JVM:

a. Ensure that the JVMSERVER resource ID is DISABLED.

b. Add the following arguments to the JVM profile:

-Xhealthcenter:port=53108
-Dcom.ibm.java.diagnostics.healthcenter.agent.iiop.port=53109
220 IBM CICS and Liberty: What You Need to Know

c. Enable or start the JVM server

The JVM server jvmerr file will show the following messages indicating the Health
Center agent was successfully started:

Nov 15, 2015 6:55:11 AM
com.ibm.java.diagnostics.healthcenter.agent.mbean.HCLaunchMBean <init>
INFO: Agent version "3.0.4.20150622"
Nov 15, 2015 6:55:12 AM
com.ibm.java.diagnostics.healthcenter.agent.mbean.HCLaunchMBean
createJMXCon-nector
INFO: IIOP will be listening on port 53109
Nov 15, 2015 6:55:12 AM
com.ibm.java.diagnostics.healthcenter.agent.mbean.HCLaunchMBean startAgent
INFO: Health Center agent started on port 53108.

3. Connect the Health Center Client to the JVM:

a. In the CICS Explorer SDK, go to the Health Center perspective by going to Window →
Open Perspective → Other → Health Center Environment → OK.

b. Click File → New connection to open the Health Center Connection wizard. Click Next.

Note: Information that will help you follows:

� The default port for the Health Center agent is 1972. You could just add –Xhealthcenter
to use the default port 1972.

� The secondary port is used for the JVM over RMI-IIOP connection. The default is to
choose this port randomly. It can be configured by specifying the iiop port.

� If you use a non IBM JDK to run the Eclipse client, there can be a conflict in protocols.
Set the following option instead so that the Liberty server uses RMI-JRMP to connect:

-Xhealthcenter:transport=jrmp,port=xxxxx
Chapter 12. Troubleshooting 221

c. In the JMX connector tab, enter the z/OS host name and port number that the Health
Center agent is listening on as specified in the JVM profile (-Xhealthcenter:port=).

d. Click Next. See Figure 12-3.

Figure 12-3 Connecting the Health Center client

4. Select the detected agent and click Finish. See Figure 12-4 on page 223.
222 IBM CICS and Liberty: What You Need to Know

Figure 12-4 Selecting an agent

You are now successfully connected. The Configuration view is now displayed, providing
useful information about all the Java parameters, dump options, and classpath settings in the
JVM. By using the Status view, you can access the different functions of the Health Center.

For more information about how some of these features can be used to analyze the CICS
JVM server, see Integrating IBM Health Center and CICS Explorer at the following site:

https://ibm.biz/BdHfmw

12.7 Liberty debug tools

You might be asked by IBM service to run one or more of the Liberty profile-supplied
commands, such as productInfo or server dump. To run these commands, use the wlpenv
script as a wrapper to set the required environment for running the Liberty commands. This
script is created and updated every time the Liberty JVM server is enabled after the JVM
profile has been successfully parsed. This script is unique to each JVM server in each CICS
region. Therefore, it is created in the WORK_DIR directory as specified in the JVM profile.
Chapter 12. Troubleshooting 223

https://ibm.biz/BdHfmw

12.7.1 Using the wlpenv script to run Liberty commands

To run the wlpenv script in the UNIX System Services shell, change to the WORK_DIR directory,
and run the script with the Liberty profile command as an argument. For example:

./wlpenv productInfo version

You can verify the integrity of the Liberty profile installation after you install CICS or apply
service by using the productInfo script.

The following examples demonstrate the correct syntax for using the Liberty command scripts
and parameters using the CICS wlpenv script:

� compare: Allows you to compare APAR fixes installed in the current installation with a
different version of the Liberty profile:

./wlpenv productInfo compare --target=C:\wlp\newInstall\wlp

./wlpenv productInfo compare --target=C:\wlp\newInstall.jar
–-output=C:\wlp\compareOutput.txt
./wlpenv productInfo compare
–-apars=com.ibm.ws.apar.PM39074,com.ibm.ws.apar.PM39075

� featureInfo: Lists all features installed on the current Liberty profile server:

./wlpenv productInfo featureInfo --output=c:\wlp\featureListOutput.txt

� validate: Validates the Liberty profile server:

./wlpenv productInfo validate

� version: Displays the product name and version:

./wlpenv productInfo version

� viewLicenseAgreement and viewLicenseInfo: Displays the license agreement and
information for the Liberty profile edition that is installed:

./wlpenv productInfo viewLicenseAgreement

./wlpenv productInfo viewLicenseInfo

� help: Displays help information for the specific action:

./wlpenv productInfo help compare

� server: Captures a snapshot of the server or JVM status:

./wlpenv server dump --archive=package_file_name.dump.pax --include=heap

./wlpenv server javadump –-include=heap

12.8 Symptoms and user actions

This section describes the basic failure scenarios that might occur during JVM server set up,
the deployment of user applications, or at application runtime.

12.8.1 Unable to start the Liberty JVM server

If you are unable to start a Liberty JVM server, check that your setup is correct. Use the CICS
messages and SYSPRINT data for any errors in the Liberty messages.log file that is below
WLP_OUTPUT_DIR to determine what might be causing the problem.
224 IBM CICS and Liberty: What You Need to Know

Check that the -Dfile.encoding JVM property in the JVM profile specifies either ISO-8859-1
or UTF-8. These are the two code pages that are supported by the Liberty profile server. If
you set any other value, the JVM server fails to start.

12.8.2 Web application is not available after it is deployed to dropins directory

If you receive a CWWK0221E error message in dfhjvmerr, check that you set the right values for
the host name and port number in the JVM profile and server.xml. This error message
indicates that the port number or host name that are specified are incorrect. The host name
might be invalid or the port number might be in use.

12.8.3 CICS CPU usage is increased after a Liberty JVM server is enabled

The Liberty JVM server is scanning the dropins directory too frequently and causing too
much I/O and CPU usage. The frequency that the Liberty JVM server scans the dropins
directory for applications is configurable. The default interval that is supplied in the
configuration templates is 5 seconds, but you can increase this value or disable the
application scan. To fix this problem, edit the following XML in the server.xml file to disable
application monitoring:

<config monitorInterval="5s" updateTrigger="polled"/>
<applicationMonitor updateTrigger="disabled" pollingRate="5s" dropins="dropins"
dropinsEnabled="false"/>

If you install your web applications in CICS bundles, do not disable polling in the <config>
element, but disable the application scan.

12.8.4 Application not available

You copy a WAR file into the dropins directory but your application is not available. Check the
Liberty messages.log file for error messages. If you receive the CWWKZ0013E error message,
you already have a web application running in the Liberty JVM server with the same name. To
fix this problem, change the name of the web application and deploy to the dropins directory.

12.8.5 Web application is not requesting authentication

You configured security, but the web application is not requesting authentication. Follow these
steps:

1. Although you can configure CICS security for web applications, the web application uses
security only if it includes a security restraint in the WAR file. Check that a security
restraint was defined by the application developer in the web.xml file in the dynamic web
project.

2. Check that the server.xml file contains the correct security configuration information. Any
configuration errors are reported in dfhjvmerr and might provide some useful information.
If you are using CICS security, check that the CICS security feature cicsts:security-1.0
is specified. If CICS security is switched off, check that you specified a basic user registry
to authenticate application users.

3. Check that the server.xml file is configured either for <safAuthorization> to take
advantage of EJBRoles, or for a local role mapping in an <application-bnd> element.
The <application-bnd> element is found within the <application> element in server.xml
or installedApps.xml. The default security-role added by CICS for a local role mapping is
'cicsAllAuthenticated'.
Chapter 12. Troubleshooting 225

12.8.6 Web application is returning an HTTP 403 error code

The web application is returning an HTTP 403 error code in the web browser. If you receive
an HTTP 403 authorization failure, either your user ID is revoked or you are not authorized to
run the application transaction:

1. Check the CICS message log for the error message ICH408I to see what type of
authorization failure occurred. To fix the problem, ensure that the user ID has a valid
password and is authorized to run the transaction.

2. If the application is returning an exception for the class
com.ibm.ws.webcontainer.util.Base64Decode, check dfhjvmerr for error messages. If
you see configuration error messages, for example CWWKS4106E or CWWKS4000E, the server
is trying to access configuration files that were created in a different encoding. This type of
configuration error can occur when you change the file.encoding value and restart the
JVM server. To fix the problem, you can either revert to the previous encoding and restart
the JVM server, or delete the configuration files. The JVM server re-creates the files in the
correct file encoding when it starts.

12.8.7 Web application is returning an HTTP 500 error code

The web application is returning an HTTP 500 error in the web browser. If you receive an
HTTP 500 error, a configuration error occurred:

1. Check the CICS message log for DFHSJxxxx messages, which might give you more
information about the specific cause of the error.

2. If you are using a URIMAP to run application requests on a specific transaction, ensure
that the URIMAP is using the correct transaction.

3. If the URIMAP is using the correct transaction, ensure that the SCHEME and USAGE
attributes are set correctly. The SCHEME must match the application request, either HTTP
or HTTPS. The USAGE attribute must be set to JVMSERVER.

12.8.8 Web application is returning an HTTP 503 error code

The web application is returning an HTTP 503 error in the web browser. If you receive an
HTTP 503 error, the application is not available:

1. Check the CICS message log for DFHSJxxxx messages for additional information.

2. Ensure that the TRANSACTION and URIMAP resources for the application are enabled. If
these resources are packaged as part of the application in a CICS bundle, you can check
the status of the BUNDLE resource.

3. The request might have been purged before it completed. The error messages in the log
describe why the request was purged.
226 IBM CICS and Liberty: What You Need to Know

12.8.9 The web application is returning exceptions

The web application is returning exceptions in the web browser. For example, the application
is returning an exception for the class com.ibm.ws.webcontainer.util.Base64Decode:

1. Check the dfhjvmerr for error messages.

2. If you see configuration error messages, for example CWWKS4106E or CWWKS4000E, the
server is trying to access configuration files that were created in a different encoding. This
type of configuration error can occur when you change the file.encoding value and
restart the JVM server. To fix the problem, you can either revert to the previous encoding
and restart the JVM server, or delete the configuration files. The JVM server re-creates the
files in the correct file encoding when it starts.

12.8.10 Error message CWWKB0109E

If the Liberty server fails to shut down cleanly, the next Liberty JVM server with
WLP_ZOS_PLATFORM=TRUE writes the error message CWWKB0109E to the messages.log file. You
do not need to fix this error and it can be ignored.

12.8.11 JVM server set-up failures

If you are unable to start a JVM server, check the available documentation for an indication of
the problem. The CICS message log will provide the following message indicating the reason
for the failure:

DFHSJ0210 date time applid An attempt to start a JVM for the JVMSERVER resource
jvmserver has failed. Reason code: reason

One of the following reasons will be given:

� ATTACH_JNI_THREAD_FAILED

An attempt to attach a thread and run setup or termination classes in the JVM server has
failed. Contact IBM Support for further assistance.

� CHANGE_DIRECTORY_CALL_FAILED

An attempt to change the zFS working directory has failed. Check that the CICS job has
read, write, and execute access to the directory specified by WORK_DIR in the JVM
profile.

� CREATE_JVM_FAILED

An attempt to create a JVM has failed. Additional diagnostic messages have been output
to the standard error stream. Use these messages to determine the cause of the problem.

� ENCLAVE_INIT_FAILED

The IBM Language Environment® enclave failed to initialize successfully. Check that the
SDFJAUTH library is in the STEPLIB concatenation of the CICS region. Check
SYSPRINT, or the CICS log, for any error messages that are output by the Language
Environment. It is likely that either the SDFJAUTH PDSE has not been included in the
APF-authorized STEPLIB concatenation, or there is not enough storage available to
Language Environment. Additional information might be available in message
DFHSJ0216.

� ERROR_CODE_UNRECOGNIZED

START_JVM returned an error that was not handled. Contact IBM Support for further
assistance.
Chapter 12. Troubleshooting 227

� ERROR_LOCATING_MAIN_METHOD

An attempt to locate the main method within a setup or termination class has failed. An
exception has been output to the standard error stream. Use the exception to determine
the cause of the problem.

� JNI_CREATE_NOT_FOUND

JNI Create has not been found. This error might occur because the JAVA_HOME value in
the JVM profile does not specify the correct Java installation location. Check that the
JAVA_HOME value specifies the correct installation directory.

� JVMPROFILE_ERROR

An error occurred when processing the JVM profile. Additional diagnostic messages have
been output to the standard error stream. The standard error stream is usually redirected
to the location on zFS specified by the WORK_DIR parameter of the JVM profile. However,
for early failures before redirection, the standard error stream might be in SYSPRINT, or in
the CICS log as a dynamically generated DD name. Use the additional messages to
determine the cause of the problem.

� OPEN_JVM_ERROR

An error occurred when opening the JVM DLL. This error might occur because the
JAVA_HOME value in the JVM profile does not specify the correct Java installation
location. Check that the JAVA_HOME value specifies the correct installation directory.

� REDIRECT_IO_FAILED

An attempt to redirect stdout, stderr, or jvmtrace output for the JVM has failed. Additional
diagnostic messages have been output to the standard error stream either on zFS, in
SYSPRINT, or in the CICS log as a dynamically generated DD name. Use the messages
to determine the cause of the problem.

� SETUP_CLASS_NOT_FOUND

A setup class specified in the JVM profile cannot be found. An exception has been output
to the standard error stream. Check that the directory or archive containing the setup class
is added to the classpath using the CLASSPATH_SUFFIX JVM Profile option and that the
setup class is fully qualified.

� SETUP_CLASS_TIMEDOUT

A setup class did not return in a reasonable amount of time and was therefore canceled.
Ensure that your setup classes are not long running and return from the JVM within a
reasonable amount of time.

� STDOUT/STDERR_ACCESS_FAILED

An attempt to open the stdout or stderr stream for output has failed. The most likely reason
is that the CICS job has read-access only to the directory specified by WORK_DIR in the
JVM profile. Check that the CICS job has read, write, and execute access to the directory
specified by WORK_DIR in the JVM profile.
228 IBM CICS and Liberty: What You Need to Know

� TERMINATION_CLASS_NOT_FOUND

A termination class specified in the JVM profile cannot be found. An exception has been
output to the standard error stream. Check that the directory or archive containing the
termination class is added to the classpath using the CLASSPATH_SUFFIX JVM Profile
option and that the termination class is fully qualified.

� USS_VOLUME_CHECK_FAILED

An attempt to create stdout and stderr files for the JVM has failed because the UNIX
System Services file system is full. You need to allocate more space to the file system
used for stdout and stderr. It might also be useful to remove files that are no longer
needed.

12.8.12 Deploying from Explorer SDK failures

If you are unable to deploy your web application using CICS Explorer SDK, check if there are
errors in the CICS bundle project. If there are errors, the CICS Explorer SDK will not export
files to zFS.
Chapter 12. Troubleshooting 229

230 IBM CICS and Liberty: What You Need to Know

IS
B

N
 0738441368

S
G

24-8335-00

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

IBM
 CICS and Liberty: W

hat You Need to Know

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738441368

SG24-8335-00

®

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	IBM Redbooks promotions
	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction
	1.1 What to expect from this book
	1.1.1 Intended audiences
	1.1.2 Scenarios

	1.2 What is Liberty?
	1.2.1 Java EE 6
	1.2.2 Java EE 7
	1.2.3 Additional resources

	1.3 Benefits of running web applications in CICS
	1.3.1 Skills
	1.3.2 Integration
	1.3.3 Performance
	1.3.4 Cost reduction
	1.3.5 Porting a web application
	1.3.6 Creating an integration logic interface
	1.3.7 Creating a Java business logic application

	1.4 What’s new in Liberty for CICS TS V5.3
	1.4.1 Supported Liberty features
	1.4.2 CICS features
	1.4.3 Unsupported APIs

	Part 1 Technology essentials
	Chapter 2. Application development
	2.1 Application development
	2.1.1 Web invocation options

	2.2 Accessing CICS data
	2.2.1 CICS Java class library (JCICS) API

	2.3 Database access options
	2.3.1 JDBC access options
	2.3.2 Java Transaction API
	2.3.3 Access to non-SQL databases

	2.4 Optimizing static content
	2.4.1 Static content separation
	2.4.2 Dynamic caching

	2.5 Application deployment options
	2.5.1 Liberty deployment methods
	2.5.2 CICS deployment methods
	2.5.3 Deploying shared (middleware) bundle

	2.6 Application redeployment options
	2.6.1 Redeploy by using Liberty deployment methods
	2.6.2 Redeploy using CICS bundle deployment

	2.7 Migrating a Java EE application to Liberty
	2.7.1 Application validation
	2.7.2 Server environment migration
	2.7.3 External dependency migration

	Chapter 3. Workload management
	3.1 IP load balancing
	3.1.1 Port sharing
	3.1.2 Sysplex Distributor

	3.2 Web server plug-in
	3.2.1 Load balancing
	3.2.2 Failover
	3.2.3 HTTP session management

	3.3 CICSPlex SM workload management
	3.3.1 Workload balancing
	3.3.2 Workload separation

	Chapter 4. Security options
	4.1 Java Platform, Enterprise Edition security
	4.1.1 Deployment descriptor
	4.1.2 Key steps in security processing

	4.2 Confidentiality
	4.3 Security registries
	4.3.1 Basic user registry
	4.3.2 System Authorization Facility
	4.3.3 LDAP and distributed identities

	Part 2 Up and running
	Chapter 5. Developing and deploying applications
	5.1 Creating the development environment
	5.1.1 Installing the components

	5.2 Creating a HelloWorld application
	5.2.1 Local Liberty server

	5.3 Deploying the application to CICS
	5.3.1 Dropins directory
	5.3.2 Deploying to CICS as an EBA
	5.3.3 Deploy CICS bundle with CICS Explorer
	5.3.4 Using CICS Build Toolkit

	Chapter 6. Configuring a Liberty server in CICS
	6.1 Getting your CICS region ready
	6.2 zFS file system configuration
	6.2.1 zFS configuration files
	6.2.2 zFS output files
	6.2.3 zFS file permissions

	6.3 Setting up a Liberty JVM server
	6.3.1 JVM profile
	6.3.2 Tailoring the JVM profile
	6.3.3 Java home directory
	6.3.4 Time zone
	6.3.5 Liberty-specific options
	6.3.6 Creating a JVMSERVER
	6.3.7 Install a JVMSERVER
	6.3.8 Manually tailoring server.xml
	6.3.9 Adding new features
	6.3.10 Configuring the HTTP and HTTPS endpoint
	6.3.11 CICS bundle deployed applications
	6.3.12 Bundle repository
	6.3.13 Global library
	6.3.14 Liberty server application and configuration update monitoring
	6.3.15 CICS default web application
	6.3.16 JTA transaction log
	6.3.17 Sample server.xml
	6.3.18 Check welcome page

	6.4 Defining and installing a CICS bundle
	6.4.1 BUNDLE resource definition
	6.4.2 Install a BUNDLE resource definition
	6.4.3 BUNDLE definition by CICS Explorer
	6.4.4 BUNDLE installation by CICS Explorer

	6.5 Verifying the configuration
	6.5.1 Log file analysis

	6.6 Setting up a Liberty JVM server using CICS Explorer
	6.6.1 CICS Explorer connection
	6.6.2 Locate the zFS directories
	6.6.3 Copy the JVM profile
	6.6.4 Edit the JVM profile
	6.6.5 Create the Liberty JVM server definition
	6.6.6 Install Liberty JVM server definition
	6.6.7 Liberty JVM server log files

	Chapter 7. Configuring the web server plug-in
	7.1 Configuring the web server plug-in
	7.2 Install the HTTP Server and plug-in
	7.3 Liberty server configuration
	7.4 Configure the plug-in
	7.4.1 Configure the plug-in to forward requests
	7.4.2 Merging plug-in configuration files

	7.5 Test the configuration

	Chapter 8. Implementing security options
	8.1 Start the angel process
	8.1.1 Copy and modify the angel process procedure
	8.1.2 Specify the user ID under which the angel process runs
	8.1.3 Start the angel process and verify that it is up

	8.2 Server.xml security elements
	8.3 Set up the SAF unauthenticatedUser user ID
	8.4 SAF definitions and permissions
	8.4.1 Server class authorizations
	8.4.2 APPL class authorizations

	8.5 Web application security
	8.6 SAF authorization
	8.6.1 Set up EJBROLE profiles and permissions
	8.6.2 Set up a TCICSTRN profile and permissions for transaction CJSA

	8.7 Liberty security-role authorization
	8.7.1 Deploying your web application in a CICS bundle
	8.7.2 Defining a web application in server.xml

	Part 3 Scenarios
	Chapter 9. Porting a web application
	9.1 Lifting or shifting an application to Liberty
	9.2 The migration process
	9.2.1 Validating the application for migration
	9.2.2 Using the dropins for validation
	9.2.3 Application Migration Toolkit
	9.2.4 Other migration considerations

	9.3 Configuring the Liberty environment
	9.3.1 Migrating Java Platform, Enterprise Edition resources
	9.3.2 External dependency migration
	9.3.3 Other configuration parameters

	9.4 Package and deploy the application
	9.5 Package the existing application WAR file and deploy
	9.6 Complete deployment and test the application
	9.6.1 Test the web application

	Chapter 10. Creating an integration logic application
	10.1 JSON and the json-1.0 feature
	10.2 RESTful and the jax-rs-1.1 feature
	10.3 Exposing GENAPP through a RESTful JSON interface
	10.3.1 Mapping a URI to your application
	10.3.2 Writing the application logic that handles the RESTful requests

	10.4 Package and deploy the application
	10.4.1 Testing the RESTful service

	Chapter 11. Creating a business logic application
	11.1 Using OSGi with Liberty in CICS
	11.1.1 Create an OSGi bundle project for ibmjzos.jar
	11.1.2 Convert the existing Java projects to OSGI
	11.1.3 Deploying the OSGi version to Liberty in CICS

	11.2 Extending the business logic application
	11.2.1 Adding new custom CICS programs
	11.2.2 Using the JCICS API

	11.3 Summary

	Part 4 Reference
	Chapter 12. Troubleshooting
	12.1 Diagnostics
	12.2 Messages and log files
	12.2.1 CICS logs
	12.2.2 Java logs
	12.2.3 Liberty Profile server logs

	12.3 Dumps and trace
	12.3.1 Java dumps and trace
	12.3.2 Liberty Profile server dumps and trace
	12.3.3 CICS dumps and trace

	12.4 Additional documentation
	12.4.1 CICS statistics
	12.4.2 Garbage collection data

	12.5 Debugging tools
	12.5.1 Execution diagnostic facility
	12.5.2 Java debugger

	12.6 JVM Health Center
	12.6.1 What the Health Center is
	12.6.2 Install and Configure the Health Center and CICS Explorer

	12.7 Liberty debug tools
	12.7.1 Using the wlpenv script to run Liberty commands

	12.8 Symptoms and user actions
	12.8.1 Unable to start the Liberty JVM server
	12.8.2 Web application is not available after it is deployed to dropins directory
	12.8.3 CICS CPU usage is increased after a Liberty JVM server is enabled
	12.8.4 Application not available
	12.8.5 Web application is not requesting authentication
	12.8.6 Web application is returning an HTTP 403 error code
	12.8.7 Web application is returning an HTTP 500 error code
	12.8.8 Web application is returning an HTTP 503 error code
	12.8.9 The web application is returning exceptions
	12.8.10 Error message CWWKB0109E
	12.8.11 JVM server set-up failures
	12.8.12 Deploying from Explorer SDK failures

	Back cover

