
Timers
• Recall that a timer on a μC is simply a counter

Basic equations that we have used:Basic equations that we have used:

General:

Time = Ticks * Clock period of counter
Ticks = Time / Clock period of counter

PIC24 ifiPIC24 specific:

Time = Ticks * timer_prescale / FCY
Ticks = Time * FCY / timer prescaleTicks = Time * FCY / timer_prescale

V 0.9 1

Period Register
Recall that the timer period register controls the amount of time
for setting the TxIF flag (controls the Timer roll-over time):

TxIF period = (PRx + 1) * Prescale / FCY

To generate a periodic interrupt of Y milliseconds we have done:To generate a periodic interrupt of Y milliseconds, we have done:
PRx = msToU16Ticks(Y, getTimerPrescale(TxCONbits)) – 1;

The msToU16Ticks function converts Y milliseconds to Timer ticks;
the decrement by 1 is needed because rollover time is PRx + 1.

V 0.9 2

Input Capture, Output Compare Modules

• The Input Capture and Output Compare modules
are peripherals that use Timer2 or Timer3 for
time-related functions

• The Output Compare module can generate pulses
of a specified pulse width and period
Th I C d l i d f i• The Input Capture module is used for measuring
pulse width and period (elapsed time)

V 0.9 3

Output Compare Module

Pulses are generated on the OCx pin. The PIC24HJ32GP202 has two
Output Compare modules (OC1, OC2). The OCxRS, OCxR registers

V 0.9 4

control when the output pin is affected by comparing against either
Timer2 or Timer3 values.

Output Compare Modes

V 0.9 5

Generating a Square Wave
using Toggle Modeusing Toggle Mode

Steps (assume using Timer2, and OC1)

a. Configure Timer2 for a period that is greater than ½ period of
the square wave.

b I it OC1R i tb. Init OC1R register
OC1R = TimerTicks_onehalfSquareWavePeriod

c Each match of OC1R register generates an OC1 interruptc. Each match of OC1R register generates an OC1 interrupt,
toggles the OC1 pin.

d In OC1 ISR assign new OC1R register value as:d. In OC1 ISR, assign new OC1R register value as:

OC1R = OC1R + TimerTicks_onehalfSquareWavePeriod

V 0.9 6

Toggle ModeToggle Mode,
OC1 square wave

V 0.9 7

Pulse Width Modulation (PWM)

High pulse width varies (i.e., duty cycle varies)

Current to LED is
proportional to

V 0.9 8

period is fixed high pulse width

LED PWM
Code

V 0.9 9

LED PWM Code main()()

While(1) loop just prints debugging information, work is
actually done by Timer2 ISR that updates pulse width from

V 0.9 10

actually done by Timer2 ISR that updates pulse width from
ADC converted value.

DC Motor Speed Controlp

V 0.9 11

Half-bridge Driverg

Integrates MOSFET/BJT drivers, protection diodes, switches.

V 0.9 12

g , p ,

Servos
S id l d d l i l dServos, widely used to steer model cars, airplanes, and
boats, consist of a motor with gearing to reduce the output
speed and increase output torque and a control circuit which p p q
spins the motor until the motor’s position measured by the
potentiometer matches the desired position specified by a
pulse supplied to the servopulse supplied to the servo.

=
Cable: red = power (4 8 V – 6 0 V)

V 0.9 13

Cable: red power (4.8 V – 6.0 V),
black = ground,
yellow = desired position

Controlling servos (HS-311)g ()
The high time of a pulse gives the desired
position of the servos. The pulse width must
b 20 A hi h ti f 1 5 thbe 20 ms. A high time of 1.5 ms moves the
servo to its center position; smaller or larger
values moves it clockwise or counter- From www.servocity.com

clockwise from the center position.

CCW

Mid

CW

0 ms 0.6 ms 1.5 ms 2.4 ms 20 ms

V 0.9 14

Not all servos can cover this entire range!

Changes to LED PWM Code to convert
Potentiometer input to control servo

#define PWM PERIOD 20000 // desired period in us#define PWM_PERIOD 20000 // desired period, in us
#define MIN_PW 600 //minimum pulse width, in us
#define MAX_PW 2400 //maximum pulse width, in us

uint16 u16_minPWTicks, u16_maxPWTicks;
void configOutputCapture1(void) {void configOutputCapture1(void) {
u16_minPWTicks = usToU16Ticks(MIN_PW, getTimerPrescale(T2CONbits));
u16_maxPWTicks = usToU16Ticks(MAX_PW, getTimerPrescale(T2CONbits));
...rest of the function is the same...

}}

void _ISR _T2Interrupt(void) {
uint32 u32_temp;
_T2IF = 0; //clear the timer interrupt bit
//update the PWM duty cycle from the ADC value//update the PWM duty cycle from the ADC value
u32_temp = ADC1BUF0; //use 32-bit value for range
//compute new pulse width using ADC value
// ((max - min) * ADC)/4096 + min
u32_temp = ((u32_temp * (u16_maxPWTicks-u16_minPWTicks))>> 12) +

16 i PWTi k // >>12 i di id /4096u16_minPWTicks; // >>12 is same as divide/4096
OC1RS = u32_temp; //update pulse width value
AD1CON1bits.SAMP = 1; //start next ADC conversion for next interrupt

}

V 0.9 15

Map the potentiometer voltage to equivalent pulse-width
range of the servo.

Controlling Multiple Servos
The PIC24HJ32GP202 has two output compare modules. How do you
control more than two servos?control more than two servos?

Solution:

Do not dedicate an OCx output per servo, use just one Output CompareDo not dedicate an OCx output per servo, use just one Output Compare
module. Use RBx pins to control the servos, and use the OCx ISR to update
the RBx pins.

V 0.9 16

Multiple Servo Control Code
#define PWM_PERIOD 20000 //in microseconds
#define NUM SERVOS 4#define NUM_SERVOS 4
#define SERVO0 _LATB2
#define SERVO1 _LATB3
#define SERVO2 _LATB13
#define SERVO3 _LATB14_
#define MIN_PW 600 //minimum pulse width, in us
#define MAX_PW 2400 //minimum pulse width, in us
#define SLOT_WIDTH 2800 //slot width, in us
volatile uint16 au16_servoPWidths[NUM_SERVOS];
volatile uint8 u8 currentServo =0;volatile uint8 u8_currentServo =0;
volatile uint8 u8_servoEdge = 1; //1 = RISING, 0 = FALLING
volatile uint16 u16_slotWidthTicks = 0;
void initServos(void) {

uint8 u8_i;
uint16 u16_initPW;
CONFIG_RB2_AS_DIG_OUTPUT(); CONFIG_RB3_AS_DIG_OUTPUT();
CONFIG_RB13_AS_DIG_OUTPUT(); CONFIG_RB14_AS_DIG_OUTPUT();
u16_initPW = usToU16Ticks(MIN_PW + (MAX_PW-MIN_PW)/2,

getTimerPrescale(T2CONbits));get e esca e(CO b ts));
//config all servos for half maximum pulse width

for (u8_i=0; u8_i<NUM_SERVOS; u8_i++) au16_servoPWidths[u8_i]=u16_initPW;
SERVO0 = 0; //all servo outputs low initially
SERVO1 = 0; SERVO2 = 0; SERVO3 = 0; //outputs initially low
16 l tWidthTi k T U16Ti k (SLOT WIDTH tTi P l (T2CONbit))

V 0.9 17

u16_slotWidthTicks = usToU16Ticks(SLOT_WIDTH, getTimerPrescale(T2CONbits));
}

Multiple Servo Control Code (cont.)p ()
void configTimer2(void) {

T2CON = T2_OFF | T2_IDLE_CON | T2_GATE_OFF
| T2_32BIT_MODE_OFF
| T2 SOURCE INT| T2_SOURCE_INT
| T2_PS_1_256 ; //1 tick = 1.6 us at FCY=40 MHz

PR2 = usToU16Ticks(PWM_PERIOD,
getTimerPrescale(T2CONbits)) - 1;

TMR2 = 0; //clear timer2 value
}
void configOutputCapture1(void) {
T2CONbits.TON = 0; //disable Timer when configuring

Output compare
OC1R = 0; //initialize to 0 first match will be a firstOC1R = 0; //initialize to 0, first match will be a first

timer rollover.
//turn on the compare toggle mode using Timer2
OC1CON = OC_TIMER2_SRC | //Timer2 source

OC_TOGGLE_PULSE; //use toggle mode, just care
about compare event
_OC1IF = 0; _OC1IP = 1; _OC1IE = 1; //enable the OC1

interrupt
}

V 0.9 18

Screenshot of four servo control

P i d t t 10 i t d f 20 t h iPeriod set to 10 ms instead of 20 ms to emphasize
pulse-width differences.

V 0.9 19

Time Measurement

A simple goal, measure the width of the pulse
f i h l id h iIf Timer2 PR2 = 0xFFFF, then pulse width is:

PW = TMR2_rising – TMR2 _falling; (total pulse width must be less than 216

ticks (timer period)!! Works even if one timer rollover occurs.)

If PR2 != 0xFFFF then: (assumes that at most only one rollover occurs, total
pulse width is less than PR2+1 ticks, i.e., timer period)

if ((TMR2_rising > TMR2 _falling) && no timer rollover)
PW = TMR2_rising – TMR2 _falling

else

V 0.9 20

PW = TMR2_rising + (PR2+1) – TMR2_falling

Delta Computationp

if PR2 != 0xFFFF then: (assumes that at most only one rollover occurs, total
pulse width is less than PR2+1 ticks)

if ((TMR2_rising > TMR2 _falling) && no timer rollover)
PW = TMR2_rising – TMR2 _falling

else

V 0.9 21

PW = TMR2_rising + (PR2+1) – TMR2_falling

Code

Compute PW as
Ti 2(i i d) Ti 2(f lli d)Timer2(rising edge)-Timer2(falling edge)
Assumes PR2= 0xFFFF

Total pulse widthTotal pulse width
< 216 ticks.
Inaccurate
b fbecause of
instruction delay,
also ISRs could
delay capturing of
TMR2 value.

V 0.9 22

Input Capture Module

Timer value is transferred by hardware to input capture
register (ICx) when an event occurs. The ICx register is

V 0.9 23

really a 4-element FIFO. Use ICx pin for input capture.

Simple Use of Input Capture
Use only one 16-bit timer, assume pulse width doesUse only one 16 bit timer, assume pulse width does
not exceed timer period.

V 0.9 24

Simple Use of Input Capture (continued)
ISR computes delta ticks between fall/rise edges.

V 0.9 25

Simple Use of Input Capture (continued)

main() prints out result

V 0.9 26

Simple Use of Input Capture (continued)

Pulse width printed each timePulse width printed each time
pushbutton is pressed.
This program is using an p g g
external crystal as the clock
source for timing accuracy.

V 0.9 27

More on Time Measurement

What if trying to measure an interval that is longer thanWhat if trying to measure an interval that is longer than
what one 16-bit timer can handle?

1. Use a 32-bit timer (combines Timer2/Timer3). Easy
from a coding perspective, but consumes resources.
S b k l ()See book example (chap12/timer32bit_switch_pulse_measure.c)

2 Track timer overflows and include in the equation2. Track timer overflows and include in the equation.
Results in more complex code. See book example
(chap12/incap switch pulse measure.c)

V 0.9 28

(p p_ _p _)

32-bit Timer (Timer2/3)

Combines Timers2, 3
into single 32-bitinto single 32 bit
timer.
Timer2 is LSW,
Timer3 is MSW.

Timer control bits are
in T2CON

T3IF used for rollover.

P i d R i t iPeriod Register is
PR3:PR2

V 0.9 29

Read/Write of Timer2/3
typedef union _union32 {
uint32 u32;
struct {

uint16 ls16;

Write: Must write MSW first, write to
TMR3HLD, which is auto transferred to
TMR3 when TMR2 is written (a 32-bit

d)uint16 ms16;
} u16;
uint8 u8[4];

} union32;

update).

Read: Read LSW (TMR2) first, auto
transfers TMR3 into TMR3HLD

union32 write_value;
union32 read_value;

transfers TMR3 into TMR3HLD,
which then can be read.

write_value.u32 = 0x12345678;
TMR3HLD = write_value.u16.ms16; //write the MSW first
TMR2 = write_value.u16.ls16; //then write the LSW
...
//read the timer
read_value.u16.ls16 = TMR2; //read the LSW first
read_value.u16.ms16 = TMR3HLD; //then read the MSW

V 0.9 30

Use 32-bit mode, Interrupt driven

Use INT1 to detect
falling risingfalling, rising
edges to measure
pulse width.

Compute pulse
width inside the
ISR, set a
semaphore.

V 0.9 31

32-bit PW measure,
interrupt driven (cont).p ()

Enable INT1

C fi 32 bitConfigure 32-bit
timer

Wait for
semaphore, set
the flag.

V 0.9 32

e g.

Problems with 32-bit approach
Hooray can measure pulses that are 107 seconds long with aHooray, can measure pulses that are 107 seconds long, with a
timer fidelity of 25 ns @ FCY = 40 MHz!!!!

Overkill – wasteful of Timer resources to use two timers,
should be better way where we do not have to use both timers.

Not really this accurate – INT0 ISR uncertain – if higher
priority interrupt occurring we will read the timer value late,
also uncertain as to where in the instruction cycle the interruptalso uncertain as to where in the instruction cycle the interrupt
is recognized.

Also, if want accuracy, use a Crystal. External crystal accuracy
is approx. ±20 ppm (parts per million), i.e, 20 µs in 1 second.
For a 100 ms (100,000 µs) push button pulse, is ±2 µs .

V 0.9 33

(, µ) p p , µ
If using internal oscillator, this varies by ± 2%!!!

Input Capture
modes

Interrupt selection

Edge selection

V 0.9 34

g

Input Capture Approach
U l 16 bit tiUse only one 16-bit timer.

Track number of Timer overflows using Timer2 ISR
and include this in the computation to compute long

l idth
V 0.9 35

pulse widths.

Delta Time Code

uint32 computeDeltaTicksLong(uint16 u16_start, uint16 u16_end,
uint16 u16 tmrPR uint16 u16 oflows) {uint16 u16_tmrPR, uint16 u16_oflows) {
uint32 u32_deltaTicks;
if (u16_oflows == 0) u32_deltaTicks = u16_end - u16_start;
else {

//compute ticks from start to timer overflow//compute ticks from start to timer overflow
u32_deltaTicks = (u16_tmrPR + 1) - u16_start;
//add ticks due to
//overflows = (overflows -1) * ticks_per_overflow
u32 deltaTicks += ((((uint32) u16 oflows)- 1) *u32_deltaTicks + ((((uint32) u16_oflows) 1)

(((uint32)u16_tmrPR) + 1)) ;
//now add in the delta due to the last capture
u32_deltaTicks += u16_end;

}}
return (u32_deltaTicks);

}

V 0.9 36

Input Capture Code,
IC1Interrupt ISR

V 0.9 37

Input Capture Mode Code (config)

V 0.9 38

Reducing Error for Period Measurement
The previous time measurement examples measured the
pulse width (falling edge to rising edge) of a single pulse.

If you have a repeating square wave of a fixed frequency,
and want to measure period then measure either rising toand want to measure period, then measure either rising-to-
rising or falling-to-falling edges.

For more accuracy, use the input capture modes that
captures these edges either every 4 edges or every 16 edges
(this reduces error by a factor of 4 and factor of 16,
respectively). See book example
(h 10/i f)

V 0.9 39

(chap10/incap_freqmeasure.c).

Input Capture
modes

These modes useful for measuring
period of square waves

V 0.9 40

p q

PW measure application: IR Decodingpp g

IR transmission is common wireless control method.

V 0.9 41

IR transmission is not as simple as turning on or off an IR source

IR Modulation to remove Ambient Lightg

V 0.9 42

Integrated IR Receiverg

Can be use to receive signals
from a universal remote controlfrom a universal remote control

V 0.9 43

Space Width Serial Encodingp g

V 0.9 44

Biphase Serial Encoding

V 0.9 45

Philli VCRPhillips VCR
RC-5 Code

V 0.9 46

IC1 ISR Flowchart
for Decodingfor Decoding

Book has full
dcode.

Use IC1 pulse p
width
measurement
determine if adetermine if a
half-pulse or full-
pulse has been

i d d dreceived, decode
bits, place bytes
in software FIFO.

V 0.9 47

Code Output

V 0.9 48

Real-Time Timekeeping
Timer1 is special,

thcan use the
secondary
oscillator.

A 32.768 kHz
watch crystal and a
PR1 = 0x7FFFPR1 0x7FFF
means timer period
is 0x8000 ticks, or
32768 ticks, or
1 second for a
32.768 kHz crystal!

Use ISR to
increment a
‘seconds’ variable!

V 0.9 49

Real-Time Clock/Calendar Module

V 0.9 50

Found on some PIC24 µCs; see chap10/rtcc.c

Test Code

V 0.9 51

Test Code (cont)

V 0.9 52

Test Code Outputp

V 0.9 53

What do you have to know?
Output Compare:Output Compare:

In general, how the Output Compare module works.

H PWM k f t t lHow PWM works for motor, servo control

Input Capture:
In general, how the Input Capture module works.

How to compute delta Time given two timer captures,How to compute delta Time given two timer captures,
number of timer overflows, and PR value. (guaranteed
question!)

Definitions of space-width, biphase decoding.

V 0.9 54

Real-Time Timekeeping – purpose of a 32.768 kHz crystal

