
C and Embedded Systems

• A μC-based system used in a device (i.e., a car engine)
performing control and monitoring functions is
referred to as an embedded system.
– The embedded system is invisible to the user

The ser onl indirectl interacts ith the embedded s stem– The user only indirectly interacts with the embedded system
by using the device that contains the μC

• Many programs for embedded systems are written in Cy p g y
– Portable – code can be retargeted to different processors
– Clarity – C is easier to understand than assembly

M d il d d h i l ll– Modern compilers produce code that is close to manually-
tweaked assembly language in both code size and
performance

1V0.7

So Why Learn Assembly Language?y y g g
• The way that C is written can impact assembly language size

and performanceand performance
– i.e., if the uint32 data type is used where uint8 would suffice, both

performance and code size will suffer.

L i th bl l hit t f th t t C• Learning the assembly language, architecture of the target μC
provides performance and code size clues for compiled C
– Does the μC have support for multiply/divide?
– Can the μC shift only one position each shift or multiple positions?

(i.e, does it have a barrel shifter?)
– How much internal RAM does the μC have?μ
– Does the μC have floating point support?

• Sometimes have to write assembly code for performance

2

reasons.
V0.7

C Compilation

V0.7 3

MPLAB PIC24 C Compiler

• Programs for hardware experiments are written in Cg p
• Will use the MPLAB PIC24 C Compiler from

Microchip
• Excellent compiler, based on GNU C, generates

very good code
• Use the MPLAB example projects that come with

the ZIP archive associated with the first hardware
lab as a start for your projects

4V0.7

Referring to Special Function Registers

#include "pic24.h"

h hi i l d f fil i l d hMust have this include statement at top of a C file to include the
all of the header files for the support libraries.

S i l F ti R i t b d lik i blSpecial Function Registers can be accessed like variables:

extern volatile unsigned int PORTB attribute ((sfr));extern volatile unsigned int PORTB __attribute__((__sfr__));

Special
f ti

Defined in compiler header files Register
Name

PORTB = 0xF000;

function
register

In C code, can refer to special register

Name

5

, p g
using the register name

V0.7

Referring to Bits within
Special Function RegistersSpecial Function Registers

The compiler include file also has definitions for individual
bits within special function registers. Can use these to access
i di id l bit d bit fi ldindividual bits and bit fields:

PORTBbits.RB5 = 1; //set bit 5 of PORTB
O bit 2 0 // l bit 2 f OPORTBbits.RB2 = 0; //clear bit 2 of PORTB

if (PORTBbits.RB0) {
// 1//execute if-body if LSb of PORTB is '1'

....
}

A bit field in a SFR is a grouping of consecutive bits; can also
be assigned a value.

6

OSCCONbits.NOSC = 2; //bit field in OSSCON register

V0.7

Referring to Bits within
Special Function RegistersSpecial Function Registers

Using registername.bitname requires you to remember both
the register name and the bitname. For bitnames that are
UNIQUE j t biUNIQUE, can use just _bitname.

_RB5 = 1; //set bit 5 of PORTB
2 0 // l bit 2 f O_RB2 = 0; //clear bit 2 of PORTB

if (_RB0) {
// 1//execute if-body if LSb of PORTB is '1'

....
}

_NOSC = 2; //bit field in OSSCON register

7V0.7

Variable Qualifiers, InitializationQ ,
If a global variable does not have an initial value, by default
the runtime code initializes it to zero – this includes staticthe runtime code initializes it to zero this includes static
arrays. To prevent a variable from being initialized to zero,
use the _PERSISTENT macro in front of it:

uint16 u16_k; //initialized to 0
uint8 u8_k = 4; //initialized to 4

_PERSISTENT uint8 u8_resetCount; //uninitialized, value
// is unknown

The C runtime code is run before main() entry, so run on
every power-up, every reset. Use _PERSISTENT variables to

V0.7 8

track values across processor resets.

C Macros, Inline Functions
The support library and code examples makes extensive use ofThe support library and code examples makes extensive use of
C macros and Inline functions. The naming convention is all
uppercase:

#define DEFAULT_BAUDRATE 57600

M th l ft h d
#define LED1 _RB15

Macros, the left hand
label is replaced by the
right hand text

static inline void CONFIG_RB1_AS_DIG_INPUT(){
DISABLE_RB1_PULLUP();
TRISB1 = 1;

Inline functions expand
_TRISB1 1;
_PCFG3 = 1;

}

without a subroutine
call.

V0.7 9

PIC24HJ32GP202 µC

Hardware lab exercises
will use the
PIC24HJ32GP202 µC
(28-pin DIP)

Note that most pins
have multiple
functions.functions.

Pin functions are
controlled via special p
registers in the PIC. Will download programs into the PIC24

µC via a serial bootloader that allows
the PIC24 µC to program itself

10

the PIC24 µC to program itself.
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”. V0.7

Initial HookupThere are
multiple
VDD/VSS pins

Any input voltage from 5 V to 15 V
will workVDD/VSS pins

on your PIC24
µC; hook them
all up!!!

will work.

Not included in
your board.

11
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”. V0.7

Powering the
PIC24 µCPIC24 µC

The POWER LED provides a
visual indication that power is on.

A Wall transformer provides 15 to 6V DC unregulated
(unregulated means that voltage can vary significantly depending
on current being drawn). The particular wall Xfmr in the parts kit g) p p
provides 6V with a max current of 1000 mA.

The LM2937-3.3 voltage regulator provides a regulated +3.3V.
Voltage will stay stable up to maximum current rating of device.

With writing on device visible, input pin (+9 v) is
left side, middle is ground, right pin is +3.3V

12

, g , g p
regulated output voltage.

V0.7

Aside: How does an LED work?Aside: How does an LED work?
3.3V Anode (long lead)

470

Power on
LED

Cathode (short lead)
470
ohm

A diode will conduct current (turn on) when the anode is at

current limiting resistor

A diode will conduct current (turn on) when the anode is at
approximately 0.7V higher than the cathode. A Light
Emitting Diode (LED) emits visible light when conducting

h b i h i i l h fl Th– the brightness is proportional to the current flow. The
voltage drop across LEDs used in the lab is about 2V.

Current = Voltage/Resistance (3 3v LED voltage drop)/470 Ω

13

Current = Voltage/Resistance ~ (3.3v – LED voltage drop)/470 Ω
= (3.3v – 2.2V)/470 = 2.7 mA

V0.7

Reset
When reset button

10K ohm

When reset button
is pressed, the
MCLR# pin is
b ht t d

PIC24 µC

VDD MCLR#
Reset
Switch

+

+3.3V

brought to ground.
This causes the PIC
program counter to VDD

VSS
0.1μ

MCLR#+ be reset to 0, so
next instruction
fetched will be fromfetched will be from
location 0. All μCs
have a reset line in

d t f th10K resistor used to limit current order to force the
μC to a known
state.

10K resistor used to limit current
when reset button is pressed.

14V0.7

The ClockThe Clock
The PIC24 μC has

i fmany options for
the primary clock;
can use an (a)
internal oscillatorinternal oscillator,
(b) external crystal,
or (c) an external
clockclock.

We will use the
internal clock.

V0.7 15
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Internal Fast RC Oscillator + PLL

Our examples use
this! Internal FRC +
PLL configured for
80MH80MHz.

V0.7 16

Configuration Bitsg
Configuration bits are stored at special locations in program
memory to control various processor options. Configuration bits
are only read at power up.

Processor options controlled by configuration bits relate to
O ill i W hd i i RESET iOscillator options, Watchdog timer operation, RESET operation,
Interrupts, Code protection, etc.

The file pic24 config c file included by the sample programsThe file pic24_config.c file included by the sample programs
used in lab specifies configuration bits used for all lab exercises.

We will not cover configuration bit details in this class; refer to
the PIC24 datasheet for more information if interested.

17V0.7

The PC Serial Interface

We use a special USB-to-Serial cable to connect
our board to the PC. This serial interface outputs
3.3 V levels compatible with the PIC24 µC pins
(careful, most USB-to-Serial cables use +/- 9V
levels!!).

The serial interface will be used for ASCII input/output to
PIC24 µC as well as for downloading new programs via the

V0.7 18

PIC24 µC, as well as for downloading new programs via the
Bully Serial Bootloader (winbootldr.exe).

ledflash_nomacros.c

V0.7 19

ledflash.c

V0.7 20

echo.c

V0.7 21

Testing your PIC24 System
After you have verified that your hookup provides 3.3 V and turns on the
power LED, the TA will program your PIC24 µC bootloader firmware.
Use to program your PIC24 with the hex file produced by the echo.c

d if h i kprogram and verify that it works.
(a) Select correct COM
port, baud rate of

h230400, open the COM
port.
(b) Browse to hex file

(c) To program, press the
‘MCLR# and Prgm’

hil iwhile power is on.

22

After downloading ‘echo.c’

Welcome message

Type letters here and press ‘send’ to test, or type here.

Welcome message
printed by ‘echo.c’ on
reset or power-on.

If pin 6 on serialIf pin 6 on serial
connector tied to
MCLR#, then press this
to download a program.

Status messages from
bootloader

p g

V0.7 23

Reading the PIC24 Datasheets
• You MUST be able to read the PIC24 datasheets and find

information in them.
The notes and book refer to bits and pieces of what you need to– The notes and book refer to bits and pieces of what you need to
know, but DO NOT duplicate everything that is contained in the
datasheet.

• The datasheet chapters are broken up into functionalityThe datasheet chapters are broken up into functionality
(I/O Ports, Timer0, USART)
– In each chapters are sections on different capabilities (I/O ports

have a section on each PORT).have a section on each PORT).
• The PIC24 Family reference manual has difference

sections for each major subsystem.
Th t d t h t f th PIC24HJ32GP202 h• The component datasheet for the PIC24HJ32GP202 has
summary information, you will need to refer the family
reference manual most often.

24V0.7

PIC24 Reset

MCLR# -- external reset button
brings input low causes reset.

RESET# instruction causes
reset.

Power-on causes reset after

25
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

voltage stabilizes.
V0.7

What RESET type occurred?

Bits in the RCON special function register tell us what type of reset

26

p g yp
occurred.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

V0.7

printResetCause() function

Check each bit, print a
message, clear the bit
after checking it.

V0.7 27
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Watchdog Timer

V0.7 28
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

WDT Specifics
U i f i RC ill f f b 32 768 kHUsing free-running RC oscillator, frequency of about 32.768 kHz,
runs even when normal clock is stopped.

Watchdog timeout occurs when counter overflows from max valueWatchdog timeout occurs when counter overflows from max value
back to 0. The timeout period is

WDT timeout = 1/32 768kHz x (WDTPRE) x (WDTPOST)WDT timeout 1/32.768kHz x (WDTPRE) x (WDTPOST)

Times from 1 ms to 131 seconds are possible, bootloader firmware
set for about 2 seconds.set for about 2 seconds.

A WDT timeout during normal operation RESETS the PIC24.

A WDT timeout during sleep or idle mode (clock is stopped)A WDT timeout during sleep or idle mode (clock is stopped)
wakes up the PIC24 and resumes operations.

The clrwdt instruction clears the timer prevents overflow

29

The clrwdt instruction clears the timer, prevents overflow.

V0.7

WDT Uses
Error Recovery: If the CPU starts a hardware operation to a
peripheral, and waits for a response, can break the CPU from an
infinite wait loop by reseting the CPU if a response does not come
back in a particular time period.

Wake From Sleep Mode: If the CPU has been put in a low power
mode (clock stopped) then can be used to wake the CPU after themode (clock stopped), then can be used to wake the CPU after the
WDT timeout period has elapsed.

V0.7 30

Power Saving Modesg
Sleep: Main clock stopped to CPU and all peripherals. Can be
awoke by the WDT. Use the pwrsav #0 instruction.

Idle: Main clock stopped to CPU but not the peripherals (UART
can still receive data). Can be awoke by the WDT. Use the pwrsav

i i#1 instruction.

Doze: Main clock to CPU is divided by Doze Prescaler (/2, /4, …
up to /128) Peripheral clocks unaffected so CPU runs slower butup to /128). Peripheral clocks unaffected, so CPU runs slower, but
peripherals run at full speed – do not have to change baud rate of
the UART.

V0.7 31

Current Measurements
Mode PIC24HJ32GP202

@40MHz (mA)
PIC24FJ64GA002
@16 MHz (mA)

Normal 42.3 5.6
Sleep 0.030 0.004
Idl 17 6 2 0Idle 17.6 2.0
Doze/2 32.2 4.0
Doze/128 17.9 2.0Doze/128 17.9 2.0

Doze current(/N mode) = Idle current + (Normal current − Idle current)/N

The idle current is the base current of the chip with the CPU stopped and the
clock going to all of the peripherals. So any doze mode current adds to this
base.

V0.7 32

reset.c Program

V0.7 33
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

reset.c
Program (cont)

V0.7 34
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

reset.c
Operation

V0.7 35

What do you have to know?
• Understand initial hookup schematic for the PIC24
μC

• CPU reset causes
• Power saving modes (sleep, idle, doze)

– Current draw under these various modes

• Watchdog timer operation
– Timeout causes reset under normal operation
– Timeout resumes execution while sleeping

l dfl h h t b i ti• ledflash.c, echo.c, reset.c basic operation

V0.7 36

