C and Embedded Systems

e A uC-based system used 1n a device (i.e., a car engine)
performing control and monitoring functions is
referred to as an embedded system.

— The embedded system 1s invisible to the user

— The user only indirectly interacts with the embedded system
by using the device that contains the pC

 Many programs for embedded systems are written in C
— Portable — code can be retargeted to different processors
— Clarity — C is easier to understand than assembly

— Modern compilers produce code that is close to manually-
tweaked assembly language in both code size and
performance

V0.7 1

So Why Learn Assembly Language?

The way that C 1s written can impact assembly language size
and performance
— 1., if the uint32 data type is used where uint8 would suffice, both
performance and code size will suffer.
Learning the assembly language, architecture of the target uC
provides performance and code size clues for compiled C
— Does the uC have support for multiply/divide?

— Can the pC shift only one position each shift or multiple positions?
(i.e, does it have a barrel shifter?)

— How much internal RAM does the uC have?
— Does the uC have floating point support?

Sometimes have to write assembly code for performance
reasons.

V0.7 2

From .c to .hex

C Code (.¢)
@ compilation

Unoptimized
Assembly Code

@ oplimization

Optimized
Assembly Code (.s)

@ assembly

Machine code

Executable
(.hex)

C Compilation

Example Optimization

@ compilation

mov j,WO ;W0 = 3

add i ;i =1+ WO =31 + 3
mov 3,W0 ;W0 = 3
add k 'k =k + WO =k + 3

@ optimization

mov 3,WO0 ;W0 = 3
add i ;L= 1 + WO =
add k ;k =k + WO =

+ 4+
. -

|
mo

WO already contains 5,
remove second mov instruction

V0.7

MPLAB PIC24 C Compiler

Programs for hardware experiments are written in C

Will use the MPLAB PIC24 C Compiler from
Microchip

Excellent compiler, based on GNU C, generates
very good code

Use the MPLAB example projects that come with
the ZIP archive associated with the first hardware
lab as a start for your projects

V0.7 4

Referring to Special Function Registers

#include '"'pic24.h"

Must have this include statement at top of a C file to include the
all of the header files for the support libraries.

Special Function Registers can be accessed like variables:

extern volatile unsigned int PORTB _ attribute_ ((_sfr_));

—~ N N

Defined in compiler header files Register Special
Name functs
unction
register

PORTB = OxFO0O0O;

In C code, can refer to special register

using the register name
V0.7 S

Referring to Bits within

Special Function Registers
The compiler include file also has definitions for individual

bits within special function registers. Can use these to access
individual bits and bit fields:

PORTBbits.RB5

1; //set bit 5 of PORTB
PORTBbits.RB2

0; //clear bit 2 of PORTB

iIT (PORTBbits.RB0O) {
//execute 1f-body 1t LSb of PORTB 1s "1°

A bit field in a SFR is a grouping of consecutive bits; can also
be assigned a value.

OSCCONb1ts.NOSC = 2; //bit field 1n OSSCON register

V0.7 6

Referring to Bits within

Special Function Registers

Using registername.bitname requires you to remember both

the register name and the bitname. For bitnames that are
UNIQUE, can use just _bitname.

_RB5 = 1; //set bit 5 of PORTB
~RB2 = 0; //clear bit 2 of PORTB
iIT (RBO) {

//execute 1f-body 1t LSb of PORTB 1s "1°
by

NOSC = 2; //bit field 1n OSSCON register

V0.7

Variable Qualifiers, Initialization

If a global variable does not have an 1nitial value, by default
the runtime code 1nitializes it to zero — this includes static

arrays. To prevent a variable from being 1nitialized to zero,
use the PERSISTENT macro in front of it:

uintle ul6 k; //initialized to O
uint8 ug8 k = 4; //initialized to 4

_PERSISTENT uint8 u8 resetCount; //uninitialized, value
// 1s unknown

The C runtime code 1s run before main() entry, so run on
every power-up, every reset. Use PERSISTENT variables to
track values across processor resets.

V0.7 8

C Macros, Inline Functions
The support library and code examples makes extensive use of
C macros and Inline functions. The naming convention is all

uppercase:

#define DEFAULT_BAUDRATE 57600

#define LED1 _RB15 N
Macros, the left hand

label 1s replaced by the
right hand text

static 1nline void CONFIG RB1 AS DIG _INPUT(O{

DISABLE_RB1_PULLUPQOY: . 1pline functions expand

_TRISB1 = 1; . .
PCEG3 = 1- without a subroutine

1 call.

V0.7

PIC24HJ32GP202 uC

Hardware lab exercises

=3

MCLR# [1°1 28 [1 AVDD
. ANO/VREF+/CN2/RAO] 2 27[] AVSS
will use the ANI/VREF/CN3RAI (3 ., 26[] AN9/RPI5/CN11/RBIS
PIC24HI32GP202 MC PGEDI/AN2RPO/CN4RBO []4 7 25[] ANIO/RP14/CN12/RB14
PGECI/AN3RPI/CNSRBI []5 £ 24[] ANII/RPI3/CN13/RB13
(2 8-pin DIP) AN4/RP2/CN6/RB2 [|6 = 23[] AN12/RP12/CN14/RB12
ANS/RP3/CN7T/RB3 []7 & 22[] PGEC2TMS/RP11/CN15/RB11
_ VSS[s & 21[] PGED2TDLRPI10/CNI6/RB10
Note that most pins OSCLUCLKICN30/RA2 []9 = 20[] VCAP/VDDCORE
. OSCO/CLKO/CN29/RA3 [] 10 19 Vss
have multlple SOSCI/RP4/CN1/RB4 [11 18 [1 TDO/SDA1/RP9/CN21/RB9
functions. SOSCO/TICK/CNO/RA4] 12 17 [] TCK/SCL1/RPS/CN22/RBS

VDD [

PGED3/ASDAL/RP5/CN2T/RBS]

13
14

16
15

] INTO/RPT/CN23/RB7
] PGEC3/ASCL1/RP6/CN24/RB6

Pin functions are

Figure redrawn by author from PIC24HTI2ZGR202204 datasheet (DST02894), Microchip Technology Inc.

controlled via special
registers in the PIC.

Will download programs into the PIC24

uC via a serial bootloader that allows
the PIC24 uC to program itself.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

V0.7

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

10

There are
multiple
VDD/VSS pins
on your PIC24
HUC; hook them
all up!!

Not included in
your board.

Initial Hookup

1 A/6 V Wall Transformer €——___ Any input voltage from 5V to 15V

will work. 10 k€2

1L.M2937-33
Wiz
fuse ym 3.3V output
O] VDD R
c4T 0.1 pF o
L 910 Q<R1 | MCLR# —=& Switc
OlpF=— C2 $—{vss (2 conns
¢l AVDD ﬂ}_
00w == 1163 i
or higher | POWEL i —T1AVSS —
-=P \ R = VCAP{S ™ €3
6-pin header — .:""EF Connection RB15 ! __I_ 1
P - = ¥ for flashing \| T Mo-OuE
for ICSP (optional) L1 - (configure as —low ESR
. open drain!) My
; 1. To MCLR# = (tantatum,
> |9— "% To 33V orif unconn. then ceramic)
3.3V must be on during ICP PGEDI
L 822 mustbe on dunng 77 PGEC1 Important! Place
— 5|0 RP10 (RX) as close as
or 0 O1J1 ! E__I_ RP11 (TX) possible to
5V from 2 |O p— package.
USB . g 3 23R TXD PIC24HJ32GP202
6 [OF>— To MCLR#

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

V0.7

6-pin header for FTDI TTL-232R-3 .3V USB-to-TTL cable (PC serial communication link)

11

500 mA/9 V Wall Transformer POWCI’ing the

E ngf; ﬁ,l*;f-:LMz%?-}3 PIC24 “C
! : 3.3V output
: Switch The POWER LED provides a

[|
“wr . =L |PI0QSRI visual indication that power is on.
all -~ C1
— b 10.0 uF == |
= LED

A Wall transformer provides 15 to 6V DC unregulated
(unregulated means that voltage can vary significantly depending
on current being drawn). The particular wall Xfmr in the parts kit
provides/6V with a max current of 1000 mA.

The LM2937-3.3 voltage regulator provides a regulated +3.3V.
Voltage will stay stable up to maximum current rating of device.
With writing on device visible, input pin (+9 v) 1s
left side, middle is ground, right pin is +3.3V
regulated output voltage.

V0.7 12

Aside: How does an LED work?

@33V Anodewd)
Power on \/&

LED \’C/
§ athode (short lead)
> ‘m\

ohm current limiting resistor

A diode will conduct current (turn on) when the anode 1s at
approximately 0.7V higher than the cathode. A Light
Emitting Diode (LED) emits visible light when conducting
— the brightness 1s proportional to the current flow. The
voltage drop across LEDs used 1n the lab is about 2V.

Current = Voltage/Resistance ~ (3.3v — LED voltage drop)/470 Q
=(3.3v—-2.2V)/470 = 2.7 mA

V0.7 13

Reset

10K ohm

AN

+3.3V PIC24 pC

0.1pum

VSS

—1VDD MCLR#

/

Reset
Switch

i

10K resistor used to limit current

when reset button 1s pressed.

V0.7

When reset button
1s pressed, the
MCLR# pin 1s
brought to ground.
This causes the PIC
program counter to
be reset to 0, so
next istruction
fetched will be from
location 0. All uCs
have a reset line in
order to force the
uC to a known
state.

14

Connect to OSCO, OSCI for

XT (3 to 10 MHz crystal), Doze Postscaler
HS (10 to 40 MHz crystal) modes

The Clock

5 !
st 1
sl -
BT o |
q &
X
3
2!
~WH 813
>0 13
_____.___§‘
\VE
@]
<}
>< —
=2
I -
wn
m
@)
7
2
DOZE<2:0>

] ‘“‘Y“al‘ = = S U o swss
! I5pF ! 1OSCI 1 [SI e
I.-------P----J ------- - Can be Olltpllt The PIC24 “C has
, (¢).External Clock (EC) XIPLL, /2] on0SCO pin tions fi
: . HSPLL,
| L L Lo OSCh ECPLL. via OSCIOFNC Maty options 1ot
10810 64 MHz | ’ config. bit for all the primary clock;
. FRCPLL
e FRC Postscaler clock modes except p ry >
N W HT, XT. can use an (a)
. A _
Internal) IV Fosc . .
o e 5 FRCDIVN . internal oscillator,
Oscillat -~ /1
— o ey (b) external crystal,
& 764
TUN<5:0> = [7s6 or (c) an external
—12% to +11.625% ne FRCDIV16 S6 Figure redrawn by author from 1 k
0.375% steps FRC Fig 7-1 found in the ClOCK.
SOSCO SO PIC24HJI32GP202/204
- ot ! ™~ SOSC datasheet (DS70289A), .
(d) ?econdary 3 : ! = to Timer S4 Microchip, Technology Inc. We Wlll use the
Oscillator for E ELPOSCEN I

32.768 Khz LPRC |5 internal clock.
crystal - gOSCY bennnn-- . /T

(e) Internal Low 32.768 kHz +/- 20%

Power RC Oscillator Clock Clock Reset
to WDT, PWRT, Fail Switch

> FSCM 1 } i Configuration

.- - Bi
S0 NOSC<2:0=FNOSC<2:0=% s

-

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

V0.7 15

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Internal Fast RC Oscillator + PLL

(a) PFD (Phase

-------------- Frequency Detector)
K ! lOU<FVCO<200MHz:

il S -

e —_——————
- -
- -

[(st " ¥ | PLLPOST<I:0>| FOSC
External clock = | PLLPRE<4-0> | |Voltage Controlled |

- (divideby [
or Internal FRC) | (divide by PFD| |Oscillator (VCO) y

|
—
2,4, 8) ',’
21033) |_' + K
--------- -r’

PLLDIV<8:0> ,

: _ . : * .) \FOSC<80MHZ)
Figure redrawn by author from Fig 7-8 found in the (divideby | ~~o0 . T
PIC24 FRM (DS70227B), 20 513)

Microchip, Technology Inc.

PLLDIV +2 Ogr examples use
(b) Fosc=FINx) this! Internal FRC +
(PLLPRE +2) x 2(PLLPOST + 1) :
Sample Calculations: PLL configured for
ample Calculations: SOMHz.
TUN| FIN PLL Calculation FOsC
(1) FRC 6844888 x [85+2
7370000 19 | 6844888 6+2)x 20+ 1) 79999623
n/a X 80000000
8000000 8000000 0+2)x 20+ 1) 16

Configuration Bits

Configuration bits are stored at special locations in program
memory to control various processor options. Configuration bits
are only read at power up.

Processor options controlled by configuration bits relate to
Oscillator options, Watchdog timer operation, RESET operation,
Interrupts, Code protection, etc.

The file pic24_config.c file included by the sample programs
used 1n lab specifies configuration bits used for all lab exercises.

We will not cover configuration bit details in this class; refer to
the PIC24 datasheet for more information 1f interested.

V0.7 17

The PC Serial Interface

= - e e
6 (O — ;
\or lo] 11 1lo RP11 (TX) possible to
5V from 2 (O — package.
- 0]3 PIC24HI32GP202

USBE 110 232R TXD
5 10| —232R RXD
6 (O T To MCLR#

6-pin header for FTDI TTL-232R-3.3V USB-to-TTL cable (PC senial communication link)

We use a special USB-to-Serial cable to connect
our board to the PC. This serial interface outputs
3.3V levels compatible with the PIC24 pC pins

B (careful, most USB-to-Serial cables use +/- 9V
levels!!).

The serial interface will be used for ASCII input/output to
PIC24 uC, as well as for downloading new programs via the

Bully Serial Bootloader (Winboo\%c}r.exe). y

ledflash nomacros.c

#include "pic24 all.h" - Includes several header files,
discussed later in this chapter.

[x%
A simple program that flashes the Power LED.

*/

//a naive software delay function
void a delay (void) {
uintlé ul6 _i,ulé k;

A subroutine for a software delay.
Change uié_i,ulé k initial

// change count wvalues to alter delay values to change delay. —
for (ul6 k = 1800; --ul6 k;) { .5V outgrat _+__—VDD
for(ule i = 1200 ; —--uleée i ;):; 0.1
} - - N0 Q<. R1 512: M(
VSS (2 con
} 1 =
Cs AVDD
int main(void) { power o1 pFF—_I:_ AVSS
configClock() ; //clock configuration LED C = 1
J*F*Kkkkkkkkk PIO config ***kkkkkkk/ "¢ ﬁ:ﬁiﬁiﬂ RB15
_ODCBE15 = 1; //enable open drain L1 11 g ?Wﬁ£$$
_TRISB15 = 0; //Config RB15 as output — pen '
_LATB15 = 0; //RB15 initially low .)
while (1) { //infinite while loop [nfinite loop that blinks
a delay() ; //call delay function thel;E[l()nbfexﬁis
LATB15 = ! LATB15; //Toggle LED attached to RB15 (through MCLR# reset

} // end while (1) or power cycle.

V0.7 19

ledflash.c

Defined in device-specific header file in include\devices
#include "pic24 all.h" directory in the book source distribution.
N Macro CONFIG RB15 AS DIG OD OUTPUT() configures
/** RB15 as an open drain output and contains the

A simple program that statements TRISB15=0, ODCB15 = 1
flashes an LED. o -

iy J

#define CONFIG LED1 () i CONFIG RB15 AS DIG OD OUTPUT ()
. ! RB15 _AS DIG OD_

#idefine LED1 LATB15

-—= _ LEDI macro makes changing of LED1 pin
int main(void) { assignment easier, also improves code clarity.
configClock () ; //clock configuration
[*Kkkkkkkkk PIO config *xkkkkkkkk/
CONFIG LED1() ; //config PIO for LED1
LED1 = 0; DELAY MS (ms)macro 1s defined in

«—— include\pic24 _delay.h in the book source distribution,

while (1) { 1S 4 uint32 value
DELAY MS(250); //delay uin :
LED1 = 'LED1; // Toggle LED

} // end while (1)

V0.7 20

echo.c

#include "pic24 all.h"

J **

"Echo" program which waits for UART RX character and echos it back +1.
Use the echo program to test your UART connection.

*/ configHeartbeat (void) function defined in
common\pic24 _util.c.
int main(void) { Configures heartbeat LED by default on RB15.
uint8 uB_c; configDefaul tUART (uint32 u32 baudRate) function

defined in common'\pic24 serial.c. This initializes the

configClock () ; UART1 module for our reference system.

configHeartbeat() ;)) . .
configDefaul tUART (DEFAULT BAUDRATE) ; PrintResetCause (void) function
printResetCause () ; < — defined in common\pic24 util.c.
outString (HELLO MSG) ; Prints info string about reset source.

outString (char* psz_s)function defined in

/** Echo code *xwuxkux/ common\pic24_uartl.c. Sends string to UART.

// Echo character + 1

while (1) { HELLO MsG macro default is file name, build date.
u8 ¢ = inChar(); //get character
u8 c++; //increment the character
outChar (u8_c) ; //echo the character

} // end while (1)

V0.7 21

Testing your PIC24 System

After you have verified that your hookup provides 3.3 V and turns on the
power LED, the TA will program your PIC24 uC bootloader firmware.
Use to program your PIC24 with the hex file produced by the echo.c
program and verify that it works.

a5l PIC24 Bully Bootloader
Main

Send Send&n

£

(=] =]

Logging Enabled Enable Config Bits Prgming

Reset cause: Power-on.

Device 1D = k<00000F10 (PIC24HI32GP202), revision Cx00003001 (AZ)

Fast RC Osc with PLL
echo.c, buit on Jun 25 2009 at 11:43.02

COM4 - 230400 | OpenCom

HencFile

Program FIC24HJ32GP202, Rev: 3001

Mem Address: (1400
Mem Address: (12800
Mem Address: (1c00
Mem Address: 2000
Done.

Completedin 1.416204 5.

MCLR#

M\Uszers'bjones'\Documents'evnsece 3724\ PIC 24 codechap 8techo hex /

MCLR# and Prgrm

(a) Select correct COM
port, baud rate of
230400, open the COM

port.
(b) Browse to hex file

(c) To program, press the
‘MCLR# and Prgm’
while power 1s on.

22

After downloading °

echo.c’

Type letters here and press ‘send’ to test, or type here.

|
o5l PIC24
Main

Eill].r Bootloader
Send Send&\n LoggjpePhabled

Reset cause: Poweron. Dﬂ/
Device 1D = (00000F1D | JI2GP202), revision (e 30071 (A2)
Fast RC Osc wit

echo.c, built on Jun 25 2009 at 11:43.02

COM4 - 230400 + |¥]| OpenCom MCLR#

HexFile
Program PIC24HJ32GP202, Rev: 3001

Mem Address: (1400
Mem Address: (k1800
Mem Address: (1c00

CUsers'bjonesDocuments svns'eced 724\ PIC24 code \chap8techo hex

MCLR# and Prgm

|
Enable CDF&IW

Welcome message
printed by ‘echo.c’ on
reset or power-on.

If pin 6 on serial

. connector tied to
MCLR#, then press this
to download a program.

Status messages from

Mem Address: (2000
Done.
Completed in 1.416204 5.

bootloader

23

Reading the PIC24 Datasheets

You MUST be able to read the PIC24 datasheets and find
information in them.

— The notes and book refer to bits and pieces of what you need to
know, but DO NOT duplicate everything that 1s contained in the
datasheet.

The datasheet chapters are broken up into functionality
(I/O Ports, Timer0O, USART)

— In each chapters are sections on different capabilities (I/O ports
have a section on each PORT).

The PIC24 Family reference manual has difference
sections for each major subsystem.

The component datasheet for the PIC24HJ32GP202 has
summary information, you will need to refer the family
reference manual most often.

V0.7

24

RESET Instruction

ﬂ" Glitch Filter

MCLR#

WDT

Module

Sleeporldle
BOR

PIC24 Reset

Figure redrawn by author from Fig 5-1
found in the PIC24H132GP202/204
datasheet (DS70289A).

Microchip, Technology Inc.

MCLR# -- external reset button
brings input low causes reset.

SYSRST#

Internal
Regulator

POR

VDD _‘

VDD Rise
Detect

Trap Conflict

Illegal Opcode

Uinitialized W Register

Configuration Mismatch

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

V0.7

RESET# instruction causes
reset.

Power-on causes reset after
voltage stabilizes.

25

What RESET type occurred?

Figure redrawn by author from Table 5-1 found in the PIC24HJ32GP202/204 datasheet (DS70289A),

Microchip, Technology Inc.

Flag Bit Set by: Cleared by:
TRAPR (RCON<15>) Trap conflict event POR, BOR
IOPUWR (RCON<14>) Illegal opcode or initialized W | POR, BOR
register access

CM (RCON<9>) Configuration Mismatch POR,BOR

EXTR (RCON<7>) MCLR# Reset POR

SWR (RCON<6>) reset Instruction POR, BOR

WDTO (RCON<4>) WDT time-out pwrsav instruction,
clrwdt instruction,
POR.BOR

SLEEP (RCON<3>) pwrsav #0 Instruction POR,BOR

IDLE (RCON<2>) pwrsav #1 instruction POR,BOR

BOR (RCON<1>) BOR n/a

POR (RCON<0>) POR n/a

Note: All Reset flag bits may be set or cleared by the user software.

Bits in the RCON special function register tell us what type of reset

occurred.

V0.7

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

26

printResetCause() function

void printResetCause (void) { Simplified version of printResetCause (), see

if (_SLEEP) { book CD-ROM for full version.
outString ("\nDevice has been in sleep mode\n"); SLEEP = 0; .)
} Check each bit, print a
if (IbLE) { message, clear the bit
outString("\nDevice has been in idle mode\n"); _IDLE = 0; g s
} after checking it.
outString ("\nReset cause: ");
if (_POR) {
outString("Power-on.\n"); POR = 0; BOR = 0; //clear both

} else { //non-POR causes
if (_SWR) {

outString ("Software Reset.\n"); _SWR = 0; }
if (_WDTO) {
outString("Watchdog Timeout. \n"); _WDTO = 0; }
if (_EXTR) {

; " ; "y . = .
i;utsggg?g: MCLR assertion.\n"); _EXTR 0; } fAsunusbﬁ
outString ("Brown-out.\n") ; _BOR = 0; } is cleared
if (_TRAPR) { if it has
outString ("Trap Conflict.\n"); _TRAPR = 0; } been set.
if (_IOPUWR) {
ocutString("Illegal Condition.\n") ; _IOPUWR = 0; }
if ((cM) |
outString("Configuration Mismatch.\n") ; _CM = 0; }

}//end non-POR causes
checkDeviceAndRevision () ; | Print status on processor ID and revision, and
checkOscOption () / clock source.

}

V0.7 27

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Watchdog Timer

All device resets
Transition to new clock source
Exit sleep or idle mode
PWRSAV Instruction

CLRWDT Instruction

WDTPRE selects either divide-by-32 or
divide-by-128. WDTPOST selects

1:1, 1:2. 1:4. 1:8, up to 1:32,768.

Timeouts from 1 ms to 131 seconds are possible.

SWDTEN ‘ ‘ ‘ ‘ _
Figure redrawn by author from Fig 18-2 found in the
FWDTEN PIC24HI32GP202/204 datasheet (DS70289A),
Microchip, Technology Inc.
LPRC Clock Sleep/Idle mode = 1,
Normal mode =0 . .
Watchdog Timer “1” on WDT timeout

N (Y during sleep or idle

: WDTPRE WDTPOST<3:0> ! ": N\ WDT

: l ! *— Wake-up

i ' J\/l !

- . RST RST :

: Prf:sf:aler |, > Po:st'scaler e

: (divide by N1) (divide by N2) |, WDT

X j 0 Reset

“1” on -
timeout Demux]
—_— WDT Window Select O “1I” on WDT timeout
WINDIS during normal
execution.
CLRWDT Instruction
V0.7 28

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

WDT Specifics

Using free-running RC oscillator, frequency of about 32.768 kHz,
runs even when normal clock 1s stopped.

Watchdog timeout occurs when counter overflows from max value
back to 0. The timeout period 1s

WDT timeout = 1/32.768kHz x (WDTPRE) x (WDTPOST)

Times from 1 ms to 131 seconds are possible, bootloader firmware
set for about 2 seconds.

AWDT timeout during normal operation RESETS the PIC24.

AWDT timeout during sleep or idle mode (clock is stopped)
wakes up the PI1C24 and resumes operations.

The clrwdt instruction clears the timer, prevents overflow.

V0.7 29

WDT Uses

Error Recovery: If the CPU starts a hardware operation to a
peripheral, and waits for a response, can break the CPU from an
infinite wait loop by reseting the CPU i1f a response does not come

back in a particular time period.

Wake From Sleep Mode: If the CPU has been put in a low power
mode (clock stopped), then can be used to wake the CPU after the

WDT timeout period has elapsed.

V0.7 30

Power Saving Modes

Sleep: Main clock stopped to CPU and all peripherals. Can be
awoke by the WDT. Use the pwrsav #0 instruction.

Idle: Main clock stopped to CPU but not the peripherals (UART
can still receive data). Can be awoke by the WDT. Use the pwrsav
#1 1nstruction.

Doze: Main clock to CPU 1s divided by Doze Prescaler (/2, /4, ...
up to /128). Peripheral clocks unaffected, so CPU runs slower, but
peripherals run at full speed — do not have to change baud rate of
the UART.

V0.7 31

Current Measurements

Mode PIC24HJ32GP202 PIC24FJ64GA002
@40MHz (mA) @16 MHz (mA)

Normal 42.3 5.6

Sleep 0.030 0.004

Idle 17.6 2.0

Doze/?2 32.2 4.0

Doze/128 17.9 2.0

Doze current(/N mode) = Idle current + (Normal current — Idle current)/N
The 1dle current is the base current of the chip with the CPU stopped and the
clock going to all of the peripherals. So any doze mode current adds to this

base.

V0.7

reset.cC Program

//Experiment with reset, power-saving modes
_PERSISTENT variables are not initialized by

_PERSISTENT uint8 u8 resetCount; (" runtime code.

int main(void) {

configPinsForLowPower{void)ﬁnuiﬁnldeﬁnedin

configClock () ; . \ .
con figpi 0 SFéLL owPower () ;<4—— common'pic24 util.c. Configs parallel port pins
configHeartbeat () ; as all inputs, with weak pull-ups enabled.

configDefaul tUART (DEFAULT BAUDRATE) ;
outString (HELLO_ MSG) ;

_POR bit issettoa*“1” by power-on reset. The function
printResetCause () clears Portoa “0”.

if (_POR) {
uB_resetCount = 0; // if power on reset, init the reset count variable
} else {
u8 resetCount++; //keep track of the number of non-power on resets

_WDTO bit is setto a “1” by watch dog timer timout.

- : . LT Ak
if (_WDTO) The function printResetCause () clears wpTo to a “0”.

_SWDTEN = 0; //1f Watchdog timeout, disable WDT.
}
printResetCause() ; //print statement about what caused reset
//print the reset count
outString ("The reset count is ") ;
outUint8 (uB resetCount); outChar('\n');
while (1) ({
...See the next figure...

}

VU./
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

//...see previous figure for rest of main()

while (1) {
uint8 u8 c;

u8_c = printMenuGetChoice() ;
delayMs (1) ; //let characters clear the UART executing

switch (u8 _c) {
case 'l':
_SWDTEN = 1;
break;
case '2':
asm("pwrsav #0") ;
break;
case '3':
asm ("pwrsav #1") ;
break;
case '4':
_SWDTEN = 1;

asm ("pwrsav #0") ;
outString("after WDT enable, sleep.\n"); //e

//enable watchdog timer
//WDT ENable bit = 1

//sleep mode
//sleep Reduces

current

//idle mode draw

//idle

//WDT ENable bit =1
//sleep

break;
case '5': //doze mode 33V
_DOZE = 1; //chose divide by 2
_DOZEN= 1; //enable doze mode
break; #,,fff’f"
case '6': //doze mode Reduces
DOZE = 7; //chose divide by 128
_DOZEN= 1; //enable doze mode current
break; draw
case '7': //software reset
asm("reset") ; //reset myself
break;
default:
break;
}
} // end while (1)
return 0;
} V0.7

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

//Print menu, get user’s choice
choice

reset.cC

Program (cont)

cuted on wakeup

ammeter

Vdd

PIC24H uC

34

Reset cause: Power-on.

Device ID = 0x00000F1D (PIC24HJ32GP202), revision 0x00003001 (A2)
FastRC Osc with PLL

The reset count is 0x00

'l'" enable watchdog timer

'2'" enter sleep mode

'3'" enter idle mode Menu printed by

'4'" enable watchdog timer and enter sleep mode printMenuGetChoice ()
'5'" doze = divide by 2

'6' doze = divide by 128

'7" execute reset instruction

Choice: 1-= (a) Enable WDT timer

...Menu is reprinted...
...2 seconds elapse...

Reset cause: Watchdog Timeout: - (b) WDT timer reset
...Device ID info...

The reset count is 0x01 - (¢) Reset count is now 1
...Menu is reprinted...

Choice: 2 —s (d) Sleep mode selected,
...non responsive, press program hangs

...MCLR button to wakeup...

Device has been in sleep mode = (e) from printResetCause ()
Reset cause: MCLR assertion.— (f) pressed MCLR to escape
...Device ID info... Sleep mode.

The reset count is 0x02 - (g) Rese[count -is now 2
...Menu is reprinted...

Choice: 4 - (h) WDT enabled, sleep
...enters sleep mode. .. mode entered.

...WDT expires after 2 second causing wakeup

after WDT enable, sleep. - (1) After WDT wakeup

...menu is reprinted from loop, then after 2 more seconds

...WDT expires again, causing WDT reset.

Device has been in sleep mode

Reset cause: Watchdog Timeout:

...Device ID info... . .

The reset count is 0x03 (J) Reset count is now 3

reset.c
Operation

35

What do you have to know?
Understand initial hookup schematic for the PIC24
uC
CPU reset causes

Power saving modes (sleep, 1dle, doze)

— Current draw under these various modes

Watchdog timer operation
— Timeout causes reset under normal operation

— Timeout resumes execution while sleeping

ledflash.c, echo.c, reset.c basic operation

V0.7 36

