Polled IO versus Interrupt Driven 10

* Polled Input/Output (I0) — processor continually
checks IO device to see 1f 1t 1s ready for data
transfer

— Inefficient, processor wastes time checking for ready
condition

— Either checks too often or not often enough
 Interrupt Driven IO — IO device interrupts
processor when 1t 1s ready for data transfer

— Processor can be doing other tasks while waiting for
last data transfer to complete — very efficient.

— All IO 1n modern computers 1s interrupt driven.

V2.0

PIC24 uC Interrupt Operation

Normal Program
flow

main() {
instrl

instr2
instr3

(1) Status (lower byte), CPU priority
level, and return address saved

on stack.

(2) CPU priority level set to priority
of pending interrupt, thus masking
interrupts of same or lower priority,
(3) PC set to interrupt vector.

instrN [nterrupt occurs at instrN (which completes)

instrN+1 --—

_..

Status (lower byte), CPU priority
level, and return address are restored

Interrupt Service Routine (ISR)
ISR interruptName () {

ISR responsibilities:
(a) save processor context
(b) service interrupt
(c) restore processor context
Return from
"“_ Interrupt

instrN+2 . .
from stack, th_ub returning to same state } instmetion
as before the interrupt.
} o ISR called by interrupt generation logic; main () code does not call ISR explictly.

The normal program flow (main) 1s referred to as the
foreground code. The interrupt service routine (ISR) is
referred to as the background code.

V2.0

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Decreasing Natural Order Priority

Reset - goto Instruction
Reset - goto Address
Reserved

Oscillator Fail Trap Vector
Address Error Trap Vector
Stack Error Trap Vector
Math Error Trap Vector
DMAC Error Trap Vector
Reserved

Reserved
Interrupt Vector 0
Interrupt Vector 1

Interrupt Vector 116

Interrupt Vector 117
e

Reserved

Reserved

Reserved
Oscillator Fail Trap Vector
Address Error Trap Vector
Stack Error Trap Vector
Math Error Trap Vector
DMAC Error Trap Vector

Reserved

Reserved

Interrupt Vector 0
Interrupt Vector 1

Interrupt Vector 116
Interrupt Vector 117
Start of Code

0x000000
0x000002
0x000004
0x000006
0x000008
0x00000A
0x00000C
0x00000E

0x000014
0x000016

0x0000FC
0x0000FE

0x000100
0x000102
0x000104
0x000106
0x000108
0x00010A
0x00010C
0x00010E

0x000114
0x000116

0x0001FC
0x0001FE
0x000200

|

|

Vector
Table

Interrupt Vector Table (IVT)

This contains the starting
address of the ISR for each
interrupt source.

Alternate Interrupt
Vector Table (AIVT)

Figure redrawn by author from Figure 6-1 of
the PIC24 FRM datasheet (DS70224B).
Microchip Technology. Inc.

V2.0 3

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

IVT Vector | PIC24 Compiler Vector
Address Num Name Function

0x000006] | _OscillatorFail Oscillator Failure

0x000008 2 | _AddressError Address Error Interrupt
0x00000A 3 | _StackError Stack Error Sources

0x00000C 4 | _MathError Math Error

0x000014 8 | _INTOInterrupt INTO — External Interrupt

0x000016 9 | _IClInterrupt IC1 - Input Capture 1

0x000018 10 | _OClInterrupt OC1 — Output Compare 1

0x00001 A 11 | _TlInterrupt T1 — Timerl Expired

0x00001E 13 | _IC2Interrupt IC2 — Input Capture 2

0x000020 14 | _OC2Interrupt OC2 — Output Compare 2

0x000022 15 | _T2Interrupt T2 — Timer2 Expired

0x000024 16 | _T3Interrupt T3 — Timer3 Expired

0x000026 17 | _SP1lErrInterrupt | QP[]1E — SPI1 Error

0x000028 18 | _SPlInterrupt SPI1 — SPII transfer done

0x00002A 19 | _UlRXInterrupt UIRX — UART1 Receiver < Serial data
0x00002C 20 | _UlTXInterrupt U1TX — UART1 Transmitter .
0x00002E 21 [_ADClInterzrupt | ADCI — ADC I convert done has arrived
0x000034 24 | _SI2ClInterrupt SI2C1 — 12C1 Slave Events

0x000036 25 | _MI2CInterrupt MI2C1 — 12C1 Master Events .
0x00003A 27 | _CNInterrupt Change Notification Interrupt [CNX Pln has
0x00003C 28 | _INTlInterrupt INT1 — External Interrupt Changed State
0x000040 30 | _IC7Interrupt IC7 — Input Capture 7

0x000042 31 | _IC8Interrupt IC8 — Input Capture 8

0x00004E 37 | _INT2Interrupt INT2 — External Interrupt

0x000096 73 | _UlErriInterrupt UlE — UART1 Error 4

CopyTight Delmar Cengage Learmng ZUUS. Al Kights Keserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Interrupt Priorities

An interrupt can be assigned a priority from O to 7.
Normal 1nstruction execution is priority O.

An interrupt MUST have a higher priority than 0 to interrupt
normal execution. Assigning a priority of 0 to an interrupt
masks (disables) than interrupt.

An interrupt with a higher priority can interrupt a currently
executing ISR with a lower priority.

If simultaneous interrupts of the SAME priority occur, then the
interrupt with the LOWER VECTOR NUMBER (is first in the
interrupt vector table) has the higher natural priority. For

example, the INTO interrupt has a higher natural priority than
INT]I.

V2.0

Enabling an Interrupt

Each interrupt source generally has FLAG bit, PRIORITY bits, and
an ENBLE bit.

The flag bit is set whenever the interrupt condition occurs, which
varies by the interrupt.

The priority bits set the interrupt priority.

The enable bit must be a ‘1’ AND the interrupt priority > 0 for the
ISR to be executed (interrupt is enabled). (NOTE: the interrupt
does not have to be a enabled for the flag bit to be set!!!!!).

One of the things that must be done by the ISR is to clear the flag
bit, or else the PIC24 CPU will get stuck in an infinite loop
executing the ISR.

By default, all priority bits and enable bits are ‘0’, so interrupt ISRs
are disabled from execution. v2o0 6

Traps vs. Interrupts

A Trap 1s a special type of interrupt, 1s non-maskable, has
higher priority than normal interrupts. Traps are always
enabled!

Hard trap: CPU stops after instruction at which trap occurs

Soft trap: CPU continues executing instructions as trap 1s
sampled and acknowledged

Trap Category Priority Flag(s)

Oscillator Failure Hard 14 _OSCFAIL (oscillator fail, INTCON1<1>),
_CF (clock fail, OSSCON<3>)
Address Error Hard 13 _ADDRERR (address error, INTCON1<3>)
Stack Error Soft 12 _STKERR (stack error, INTCON1<2>)
Math Error Soft 11 - MATHERR (math error, INTCON1<4>)
DMAC Error Soft 10 _ DMACERR (DMA conflict write, INTCON1<5>)

V2.0 7

Interrupt Latency

Figure redrawn by author from
(a) Latency on Interrupt entry Figure 29-3 of the PIC24H FRM

I I datasheet (DS7T0233A),
: @ : @ @ : @ : @ Mluoqup Tethnolog;w Inc. :
PC >< PC E><PC+2 VeCm"D(2000 >< 2002 X 2004 €X2006 X ISR Entry:

S . {\Addr A\ USR) | | | Number of

INST 1INST_A 1 INST B i Fetch | : : : :

Exceuted '(PC 3 ! (PC) FNOP E Vectori FNOPE ISR E ISR+2 E ISR+4E Cycles from

CPU I L] I I L O .
A4 X 6 X 6 X 6 X 6 X interrupt until

>'<

X 4

v Tey i A ' ' . .
T s T TPush SRL and high 8 bits of PC 15t instruction

Peripheral interrupt Save PC (from temporary buffer) ;
event occurs at or before in temporary Of ISR 1S
midpoint of this cycle

=

Priority

buffer Push Low 16 bits of PC
(from temporary buffer) executed.

(b) Return from Interrupt timing

i SORIONNON
PC ><ISR XISR+2: E)(PC X

ISR Exit:
From RETFIE

INST -ISR last 1 : RETFIE! L. A

Executed 1ipep 1 CTEIE '2nd cycle FNOP (] _B to program
U X . X . X) X ; resumed.
_Priority | / j ;

Copyright Delmar Cengage Learning 2008. All Rights Reserved. V20 8

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

ISR Overhead

e lentry: Number of instruction cycles for ISR entry (four on the
PIC24 uC).

e |body: Number of instruction cycles for the ISR body (not
including retfie).

e lexit: Number of instruction cycles for ISR exit (three on the
PIC24 uC).

e Fisr: Frequency (number of times per second) at which the ISR
1s triggered.

e Tisr: The ISR triggering period, which is 1/Fisr. For example, if
an ISR 1s executed at 1 KHz, Tisr 1s 1 ms.

V2.0 9

ISR Overhead (cont)

Percentage of CPU time taken up by one ISR:
ISR% = [(Ientry + Ibody + Iexit) x Fisr]/Fcy x 100

ISR CPU Percentage for FCY =40 MHz, IBODY = 50 1nstr. cycles
Tisr=10ms Tisr=1ms Tisr =100 us Tisr = 10 us
0.01% 0.14% 1.43% 14.3%

GOLDEN RULE: An ISR should do its work as quickly as
possible. When an ISR is executing, it 1s keeping other ISRs of
equal priority and lower from executing, as well as the main

code!
V20 10

Interrupt Vectors in Memory

(b) MPLAB Program Memory
Line Address | Opcode ‘Label] Dis

1 0000 040C02 goto _reset

P 0002 Q000000 nop

3 0004 Q000DEC _Defaultinterrupt

4 0006 Q000DEC _Defaultinterrupt

S 0008 Q000DEC _Defaultinterrupt

6 0004 Q00DEC DefaultInterrupt

T 000C Q000DE8C _Defaulctlnterrupt

Unhandled interrupts
us€¢ DefaultInterrupt

Math Error
Trap Vector

The compiler uses the _Defaultinterrupt function as the
default ISR. If an interrupt 1s triggered, and the ISR 1s the
_Defaultinterrupt, then the user did not expect the interrupt
to occur. This means the interrupt 1s ‘unhandled’. We have
written our own _Defaultinterrupt that prints diagnostic
information since this 1s an unexpected occurrence.

V2.0

11

(a) Code for default interrupt handler Our

_PERSISTENT const char* sz lastError; _ PERSISTENT error variables used Defaultlnterrupt
PEREISTEHT char* sz laﬂ-tTJ.'lllEﬂutEI‘I‘ﬂI‘, fﬂl— tl’ﬂ[‘.k]ﬂg BeITors across If-“Sf"tS _ p
_PERSISTENT INTTREGBITS INTTREGBITS last; ISR

#define ulé INTTREGlast \
BITS2WORD (INTTREGBITS last)

This allows treating the INTTREGBITS last
structure as a single uwinti6 value.

ul6é INTTREGlast = INTTREG: default ISR used by the PIC24 compiler.
reportError ("Unhandled interrupt, ") Our version saves the interrupt cause

(INTTREG) then does a software reset. Used for all
Saves the error message, then lnterrupts when

does a software reset

}

volid reportError (const char*
gz errorMessage) {
sz lastError = sz errorMessage;
asm ("reset"):

}

volid printResetCause (void) {
..print reset cause, see Chapter 8...

void ISR DefaultInterrupt(void) } _DefaultInterrupt i1s the name of the

you do not
provide an ISR.
Our version

After reset, printResetCause () pl’illts
the error message.

if (ulé INTTREGlast !'= 0) {

outString ("Error trapped: "): | Outputerror message saved saves the

cutsString(s=z lastError): from last reset .

if (sz lastInterrupt != 0) { 1nterrupt Source,
outsString("Priority: "}:
outUints (INTTREGBITS last.ILR): H]‘a“remt.was ca"‘rfdl_’? an does a sofware
outstring(" , Vector number: "): lnﬂm?uﬂedlﬂﬂﬂanﬂgpnmﬂthﬂ
outUints (INTTREGBITS last.VECNUM); | Priomty (ILR) and vector reset, then

b number (VECHUM) .

outString ("\nn") ; IIltCI'I'upt SOurce

sz lastError = HULL . .

ul6 INTTREGlast = } Clear PERSISTENT error variables. 1S prln‘[ed.

} V2.0 12

Output from the DefaultInterrupt ISR

(a) Simplified test code (frap test.c) to generate a Math Error Trap
int main (void) {
volatile uint8 uB_zero;
configBasic (HELLO MSG) ;
while (1) ({
outString("Hit a key to start divide by zero test...");
inChar() ;
outString ("OK. Now diwviding by zero.\n"):;
uB8 zero = 0;
u8 zero = 1/u8 zero;

doHeartbeat () ; ~+——___ Generates divide-by-zero
} // end while (1) (Math Error) trap

(b) Console Output

Reset cause: Power-on.
Device ID = 0x00000F1D (PIC24HJ32GP202), rewvision 0x00003001 (AZ2)
Fast RC Osc with PLL

pressed a key
trap test.c, built on Jun 6 2008 at 10:17:§:E’#ﬂfﬂ’#ﬂﬂﬂﬂf
Hit a key to start divide by zero test...OK. Now dividing by =zero.

Reset cause: Software Reset. !

eal
H
H
0
H
Tt
H
g
T
()
o
c
ja}
oy
o
)
(o}
l_l
0
Q
l.l.
s}
cr
1)
:
T
ct
J
H
l_l;
0
H
::lr.
v
o
M
=]
13
<
()]
]
U
0
H
E
0
H
o
M
o
LS

from INTTREG, then causes the software reset.
_printResetCause () then prints out the saved error message, interrupt information.

V2.0

// only action is
// to clear the error
_MATHERR = 0;
RCOUNT 0;

In include\pic24 util.h
#define

In Assembly (C30)
_MathError:
push PSVPAG ;save
push W8 ;save
mov.b #0,W8
mov W8, PSVPAG ;PSVPAG = page 0
pop W8 ;restore

;clr MATHERR flag
belr.b INTCON1, #4
clr RCOUNT
pop PSVPAG
retfie

;_MATHERR = 0
sRCOUNT = 0
;restore

;return from interrupt

_ISR ___attribute_ ((interrupt)) _ attribute_ _ ((auto_psv))

// only action is
// to clear the error
_MATHERR = 0;
RCOUNT = 0;

}
In include\pic24 util.h

In Assembly (C30) The no_auto_psv causes
PSVPAG to not be

saved, reducing ISR size®
_MathError:

;clr MATHERR flag

beclr.b INTCON1,#4 ; MATHERR = O
clr RCOUNT ;RCOUNT = 0
retfie ;return from interrupt

#define _ISRFAST __ attribute ((interrupt)) _ attribute ((no_auto _psv))

(¢c) MPLAB Program Memory

Line | Address Opcade |Label|

Dis

goto _reset

nop

_DefaultInterrupt
DefaultInterrupt

“DefaultInterrupt Math Error Trap vector

DefaultInterrupt now contains address of

1 Q000 040C02
2 0002 000000
3 0004 000D8C
4 0006 000D8C
S 0008 000DEeC
& 000n 000D8C
7 QoocC 001084

_MathError | <— _MathError ISR.

V2.0

A
User-provided
ISR

These ISRs just
clear the

- MATHERR
interrupt flag and
return. If the
interrupt flag 1s
not cleared, get
stuck 1n an
infinite interrupt
loop.

14

Change Notification Interrupts

CNOPUE
\i[_)D C-hange Figure redrawn by author
: . from Fig 10-4 found in the
P (weak) Notification PIC24 FRM datasheet (DS70230B).
pull-up Microchip Technology, Inc.
D Q \ CNO
] ﬁ, — \ Change
Interrupt
D Q CNIF
CNOIE (IFS1<3>)
—PCK (CNEN1<0>)
CN1 Ch CNIE=1 and
- ange
CN1-CN23 . CNIP>0 for
Details not ° interrupt to be
shown e CN23 Change enabled.

When enabled, triggers an interrupt when a change

occurs on a pin.
V20 15

- o Use Change Notification
//Fnterrupt Service Routine fo? Change Notification
VOigNE;SEFng _CNInterrupt (void) { to Wake from Sleep

//clear the change notification interrupt bit
}

\ Clear the interrupt flag before exiting!

/// Switchl configuration

inline void CONFIG SW1() {
CONFIG RB13 AS DIG INPUT(); //use RB13 for switch input
ENABLE RB13 PULLUP() ; //enable the pull-up

<ENABLE RB13 CN INTERRUPT(); > //CN13IE =1

DELAY US(1); // Wait for pull-up
} Macro to set CNxIE bit associated with

RB13 port.

int main (veoid) ({
configBasic (HELLO MSG) ;
/** Configure the switch ***kkkkkkkx/
CONFIG SW1(); //enables individual CN interrupt also
/** Configure Change Notification general interrupt */

-

. CNIF = 0; | //Clear the interrupt flag

, _CNIP = 2; : //Choose a priority

, CNIE = 1; : //enable the Change Notification general interrupt
While'(1) ("

outString("Entering Sleep mode, press button to wake.\n");
// Finish sending characters before sleeping

WAIT UNTIL TRANSMIT COMPLETE UARTL () ;

SLEEP() ; //macro for asm("pwrsav #0")

} T Pushing the switch here generates CN interrupt, causing
wakeup and execution of the _CNinterrupt ISR, which then
returns here and loop continues.

An interrupt flag (_cNIF) should be cleared before the interrupt is enabled (_cNIE=1).
The priority (_cNIP = 2) chosen here was arbitrary, but it must be greater than 0 for
the ISR to be executed. 16

Remappable Pins

Some inputs/outputs for internal modules must be mapped to
RPX pins (remappable pins) if they are to be used.

Input Name

External Interrupt 1
External Interrupt 2
Timer2 Ext. Clock
Timer3 Ext. Clock
Input Capture 1
Input Capture 2
UARTT1 Receive
UARTI Clr To Send
SPI1 Data Input
SPI1 Clock Input

Function
Name
INT1
INT2
T2CK
T3CK
IC1
IC2
UIRX
UICTS
SDI1
SCK1

SPI1 Slave Sel. Input SSI

V2.0

Example Assignment
mapping inputs to RPn
INTIR =n;

_INT2R =n;
_T2CKR =n;
_T3CKR =n;

_ICIR =n;

_IC2R =n;

~UIRXR =n;
_UICTSR =n;
_SDIIR =n;
_SCKIR =n;

_SSIR =n;

17

Remappable Pins (cont.)

Output Name Function
Name
Default Port Pin NULL
UART1 Transmit UITX
UART1 Rdy. To Send UIRTS
SPI1 Data Output SDOI1
SPI1 Clock Output SCKI1OUT
SPI1 Slave Sel. Out. SS1OUT
Output Compare 1 OCl
Output Compare 2 OC2

Mapping outputs to RPx pins.

V2.0

RPnR<4:0> Example
Value Assignment
_RPnNR =0;
_RPnR =3;
_RPNR =4;
_RPnNR =7,
_RPnNR =§;
_RPnR =9;
_RPnR = 18;
_RPNR = 19;

—_—— \O 00 J K~ W O

\O OO

18

Remapping Macros

Contained 1n pi1c24 ports.h:
CONFIG_U1RX TO RP(piIn)
CONFIG_U1TX TO RP(piIn)
etc..

Example Usage:

CONFIG_U1RX TO RP(10); //UART1l RX to RP10
CONFIG_U1TX TO RP(11); //UART1l TX to RP1l1

V2.0 19

INT2, INT1, INTO Interrupts

These are mput interrupt sources (INTX) that can be
configured to be rising edge triggered or falling-edge
triggered by using an associated INTXEP bit (‘1° 1s falling
edge, ‘0’ 1s rising edge’).

On the PIC24HJ32GP202, INT1 and INT2 must be brought
out to remappable pins (RPx); INTO 1s assigned a fixed pin
location.

V2.0

20

//1Interrupt Service Routine for INT1
void _ISRFAST _INT1lInterrupt (void) {
_INT1IF = O; //clear the interrupt bit
+
/// Switchl configuration, use RB13
inline void CONFIG SW1() {
CONFIG_RB13 _AS DIG_INPUT(); //use RB13 for switch input

ENABLE _RB13 PULLUP(Q); //enable the pullup
DELAY_US(1); // Wait for pull-up
+
int main (void) {
configBasic(HELLO MSG); Use INT1 to wake
/** Configure the switch **x**xxxxxy/ from Sleep mode

CONFIG_SW1(Q);
CONFIG_INT1 _TO _RP(13); //map INT1 to RP13
/** Configure INT1 interrupt */

_INT1IF = O; //Clear the interrupt flag
_INT1IP = 2; //Choose a priority
_INT1EP = 1; //negative edge triggerred
_INT1IE = 1; //enable INT1 interrupt
while(1l) {

outString("'Entering Sleep mode, press button to wake.\n");
//Tinish sending characters before sleeping
WAIT_UNTIL_TRANSMIT_COMPLETE_UART1(Q);

SLEEPQ); //macro for asm(‘'pwrsav #0")

}

V2.0 21
}

Hardware Timers

Recall that a Timer 1s just a counter. Time can be converted from
elapsed Timer Ticks (Ticks) by multiplying by the clock period
(Ttmr) of the timer:

Time = Ticks x Ttmr

If a timer 1s a 16-bit timer, and 1t is clocked at the FCY =40 MHz,
then will count from 0x0000 to OxFFFF (65536 ticks) in:

Time = 65536 x (1/40 MHz)
= 65536 x 25 ns = 1638400 ns = 1638.4 us = 1.6384 ms

V2.0 22

T2CK

TGATE

Timer 2 Block Diagram

\\ Gate

I1x

i

~_ TON TCKPS<1:0>

#2

Prescaler
1, 8, 64, 256

Figure redrawn by author
from Fig 11-2 found in the
PIC24H32GP202

TCS datasheet (DS70289B).
TGATE Microchip Technology. Inc.

—
"W The Timer 3 block

diagram is the same,

with TMR3, PR3 used
/ for these registers and

Sync D— 01
!7 00
Falling Edge Tcy
Detect __ ||
Reset
— = TMR2
Equal Compﬁmator
PR2

T3IF for the interrupt flag.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the P1IC24 FamiN’.Z.O

23

T2IF Period

The T2IF flag is set at the following period (T,,;):
Ty = (PR2+1) x PRE x Tcy = (PR2+1) x PRE/Fcy

Observe that because Timer2 is a 16-bit timer, 1f PR2 1s 1ts
maximum value of OXFFFF (65535), and the prescaler s ‘1°,
this 1s just:

T, =65536 x 1/Fcy
We typically want to solve for Tt2if, given a PRE value:
PR2 = (T, x Fcy /PRE) — 1

V2.0

24

Example T2IF Periods

PR2/PRE Values for Ty, = 15 ms, Fcy =40 MHz
PRE=1 PRE=8 PRE=64 PRE=256
PR2 600000 75000 9375 2344
(invalid) (invalid)

The PR2 for PRE=1, PRE=8 are invalid because they are greater
than 65535 (PR2 1s a 16-bit register).

Configuring Timer2 to interrupt every T,,.; period 1s called a
PERIODIC INTERRUPT.

V2.0 25

Timer2 Control Register

R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0
TON Ul TSIDL Ul Ul Ul Ul Ul
15 14 13 12 11 10 9 8
U0 R/W-0 R/W-0 RW-0 RWo0 U0 RW-0 -0 | include\pic24 timer.h excerpts:
2 =)] #define T2_ON 0x8000
7 6 > 3 0 #deFine T2 OFF 0x0000
Bit 15: TON: Timer2 On Bit Legend: i
When T32=1: When T32 =0: R = Readable bit #define T2_IDLE_STOP 0x2000
| = Starts 32-bit Timer2/3 | = Starts 16-bit Timer2 -n=Valueat POR #define T2 IDLE CON 0x0000
0 = Stops 32-bit Timer2/3 0 = Stops 16-bit Timer2 U = Unimplemented bit,
Bit 13: TSIDL: Stop in Idle Mode Bit readas ‘0" #define T2_GATE_ON 0x0040
| = Discontinue module operation device enters Idle mode ;W,= Writeable bit ~ #define T2_GATE_OFF 0x0000
0 = Continue module operation in Idle mode ‘ l u bit is set
‘ , , , 0" =bitiscleared gdefine T2 PS 1 1 0x0000
Bit 6: TGATE: Timer2 Gated Time Accumulation Enable ‘X’ =Dbit is unknown #define T2 PS 1 8 0x0010
}l?lfll:: I;)ifisi;:);ed 11N=h g]a:;(js‘[i:’lgraccumulation enabled #deTine T2:PS:1:64 0x0020
0 = Gated time accumulation disabled #define T2_PS_1_256 0x0030
Bit 5-4: TCKPS<1:0>: Timer2 Input Clock Prescale Select Bits Figure redrawn by author #define T2 32BIT MODE ON 0x0008
[1=1:256, 10=1:64, 01 = 1:8, 00= 1:1 }:ﬂjﬂ;f{jgzl(::zégund in the #define T2 32BIT MODE_OFF 0x0000
Bit 3: T32: 32-bit Timer Mode Select bit! datasheet (DS70289B).
1 = Timer2 and Timer3 form a single 32-bit timer Microchip Technology. Inc. #tdefine T2 SOURCE_EXT 0x0002
0 = Timer2 and Timer3 act as two 16-bit timers #define T2_SOURCE_INT 0x0000
Bit 1: TCS: Timer2 Clock Source Select bit Note 1: In 32-bit mode, T3CON

I = External clock from pin T2CK (on the rising edge) ~ 0its do notaffect 32-bit operation

0 = Internal clock (FCY)

V2.0 26

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Programming the configuration register

Just write a 16-bit value to the Timer2 configuration register to configure Timer2:

T2CON = 0x0020; //Timer off, Pre=64, Internal clock

More readable:

T2CON = T2 OFF | T2_IDLE_CON | T2 GATE OFF |
T2 32BIT _MODE OFF | T2 SOURCE_INT |
T2 PS 1 64;

This 1s actually:

T2CON = O0Ox0000] 0x0000 | 0x00000 |
Ox0000 | Ox0000 |
0x0020;

Can also set individual bit fields:
T2CONb1ts.TON = 1; //Set TON bit = 1, turn timer on

V2.0 27

#define WAVEOUT _LATRB2 //state

inline void CONFIG WAVEOUT () % RB2 used for square
CONFIG RB2 AS DIG OUTPUT () ; use RB2 for output Wave output

}

//Interrupt Service Routine for Timer2
void ISRFAST T2Interrupt (void)({
WAVEOUT = IWAVEOUT; //toggle output
_T2IF = 0;
}

#define ISR PERIOD 15 // in ms
void configTimer2(void) { =

//clear the interrupt bit

Square Wave
Generation

On each interrupt, toggle
the output pin to generate
the squave wave, clear
the interrupt flag.

Timer2 configuration

//T2CON set like this for documentation purposes.

//could be replaced by T2CON = 0x0020
T2CON = T2 OFF | T2 IDLE CON | T2 GATE OFF
| T2_32BIT_MODE_OFF
| T2 SOURCE_INT
| T2 PS 1 64 ;

sets T2CON, PR2:
enables the Timer2
interrupt; turns

on the timer.

//results in T2CON= 0x0020

//subtract 1 from ticks value assigned to PR2 because period is PR2 + 1

PR2 = msToUl6Ticks (ISR _PERIOD, getTimerPrescale(T2CON)) - 1;

T™R2 = O; //clear timer2 value

_T2IF = 0; //clear interrupt flag

_T2IP = 1; //choose a priority
T2IE = 1; //enable the interrupt

T2CONbits.TON = 1;
1

//turn on the timer

int main (wvoid) {

configBasic (HELLO_MSG) ;
CONFIG WAVEOUT() ; //PIO Config
configTimer2 () ; //TMR2 config
//ISR does the work!
while (1) {

doHeartbeat () ; //ensure that we are alive
} // end while (1)

After configuration, the ISR does
the work of generating the
square wave.

Timer2 configured
The msToU16Ticks () value to geﬂel‘ate an
skemensdty 1 ingerrupt every 15
timer period is PR2+1 ms. An output pin
1s toggled in the
ISR, so square

wave has period of
30 ms.

V2.0 28

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

#define CONFIG LED1() CONFIG RB14 AS DIG OUTPUT ()
tdefine LED1 LATB14 //ledl state

inline void CONFIG SW1() {
CONFIG RB13 AS DIG INPUT(); //use RB13 for switch input

ENABLE RB13 PULLUP() ; //enable the pullup Switch Sampling
DELAY US(1); // Wait for pullup
} .
A Timer3
#tdefine SW1 RAW _RB13 //raw switch value : .
#tdefine SW1 uB valueSWl //switch state p?l’lOdlC
#define SW1 PRESSED() SWl== //switch test Timer
#idefine SW1 RELEASED() SWl==1 //switch test . .
iterrupt 18
//debounced switch value that is set in the timer ISR USCd to
volatile uint8 u8 valueSWl = 1; //initially high
sample the
//Interrupt Service Routine for Timer3 SWitCh
void ISRFAST T3Interrupt (void) {)
u8 valueSWl = SW1 RAW; //sample the switch
_T3IF = 0; //clear interrupt bit
}
//... other functions not shown ... Switch state is now stored in a variable!

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the P1IC24 FamiN’.Z.O 29

Timer 3 Configuration

#define ISR PERIOD 15 // in ms
void configTimer3 (void)
//ensure that TimerZ,3 configured as separate timers.
TZ2CONbits.T32 = 0; // 32-bit mode off
//T3CON set like this for documentation purposes.
//could be replaced by T3CON = 0x0020
T3CON = T3 OFF |T3 IDLE CON | T3 GATE OFF
T3 SOURCE INT
T3 PS 1 &4 ; //results in T3CON= 0x0020
PR3 = msToUleTicks (ISR PERIQOD, getTimerPrescale (T3CONbits)) -
THMEJ =

[
=+

; /fclear timerd wvalus

_T3IF = 0; /fclear interrupt flag
_T3IP = 1; //choose a priority
_T3IE = 1; //enable the interrupt
T3CONbits.TON = 1; //turn on the timer

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the P1IC24 FamiB/’. 2.0 30

int main (void) {
STATE e mystate;

//... config not shown ... Switch Samphng
e mystate = STATE WAIT FOR PRESS;
while (1) { (cont.)

printNewState (e mystate);
switch (e mystate) {
case STATE WAIT FOR PRESS:
if (SW1 _PRESSED()) e mystate = STATE WAIT FOR RELEASE;
break;
case STATE WAIT FOR RELEASE:
if (SW1 RELEASED()) {
LED1 = 'LED1; //toggle LED
e mystate = STATE WAIT FOR PRESS;

} DELAY MS (DEBOUNCE DLY)

break ; removed from end of loop as
default: the ISR periodically samples
e mystate = STME_WMW the input.
}//end switch (e mystate)
doHeartbeat () ; //ensure that we are alive
} // end while (1)

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the P1IC24 FamiN’.Z.O 31

V2.0

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Vdd + SWI pressed & released.
weak LEDT off | will now be implemented as
pullup + one state named
[nput SW1 WAIT _FOR_PNRI Semaphores
RB13 EI;C]'] Press a+nd release
|~ SW1 pressed & released.
PIC24 uC i SW1 LEDT on Will now be implemented as
= + one state named
SWI WAIT FOR PNR2 Will use a
RB14 Press and release ™~ «
o LED] . | button press&
<—? release’
T 1 semaphore to
Vdd| L —»[LEDI blink >omdb .
weak - 7 implement this
pullup
’@ as one state
released d
RB1? 7 SW2 presse
i —»| LEDI On WAIT FOR RELEASE3
pressed @
released

32

typedef enum
STATE WAIT FOR PRESS = 0, } N Press&Release Semaphore

STATE WAIT FOR RELEASE,

} ISRSTATE; u8_pnrswl semaphore set

volatile uint8 u8 valueSWl = 1; to 1 on press & release

volatile uint8 u8 pnrSWl = 0;- SWI1
ISRSTATE e _isrState = STATE WAIT FOR PRESS;

Press and release

//Interrupt Service Routine for Timer3
void ISRFAST T3Interrupt (void) ({
u8 valueSWl1 = SW1_RAW; //sample the switch DO notprocess another
switch(e isrState) { press & release until first
case STATE WAIT FOR PRESS: has been handled.
if (SW1_PRESSED() &&
e isrState = STATE | EASE ;
break; . .
case STATE WAIT FOR RELEASE: ISR 1s now a state machine!
if (SW1_RELEASED()) {
e isrState = STATE WAIT FOR PRESS;
u8_pnrswl = 1; //set semaphore Set the u8_pnrswil semaphore

break ; for foreground code.

}
default: e isrState = STATE WAIT FOR RELEASE;

}
_T3IF = 0; //clear the timer interrupt bit

}

A semaphore 1s a flag set by an ISR when an IO event occurs. The

main() code 1s generally responsible for clearing the flag.
V20 33

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

typedef enum {
STATE RESET = 0, STATE WAIT FOR PNR1l, STATE WAIT FOR PNR2,
STATE BLINK, STATE WAIT FOR RELEASE3

} STATE; \
main states

int main (void) {
STATE e _mystate;
. r; :z:fiing;p;;got:;ﬁ'forz ENRL - Replaces states WAIT FOR PRESSI,
_my. — - = ' WAIT FOR RELEASEI of original

while (1) {
printNewState (e_mystate) ; code
switch (e_mystate) ({

case STATE WAIT FOR PNRI:
LED1 = 0; //turn off the LED
if (u8 _pnrswl) { <« Test press & release semaphore

u8 pnrSWl = 0; //clear <+——— Clear the semaphore indicating
e _mystate = STATE _WAIT_FOR PNR2; that this press & release has been

} consumed.

break;
case STATE WAIT FOR PNR2: —e Replaces states WAIT FOR_PRESS2,
LED1 = 1; //turn on the LED WAIT FOR RELEASE2 of original
if (u8 pnrswil) { code

u8_pnrSWl = 0; //clear semaphore
if (SW2) e mystate = STATE BLINK;
else e mystate = STATE WAIT FOR PNR1;
}
break;
case STATE BLINK:
LED1 = 'LED1; DELAY MS(100); //blink if not pressed
if (SW1 _PRESSED()) e mystate = STATE WAIT FOR RELEASE3;

break;
case STATE WAIT FOR RELEASE3:
I“F;D% :_:;r;lrSW§)/ Ffeeze LEDL at 1 Test press & release semaphore
1 u - .
u8_pnrSWl = 0; instead of SWI._RELEASED() because
e mystate = STATE WAIT FOR PNR1; the semaphore is set on release and
} must be cleared.
break;
default:

e mystate = STATE WAIT FOR PNR1;
}//end switch(e_mystate)
doHeartbeat () ; //ensure that we are alive
} // end while (1)
}

main() code

Differences:

Only one state used
for each press and
release.

Use the u8 pnrswi
semaphore to
determine when
press/release
occurred.

34

volatile uint8 uB_yalueSWl = 1;
volatile uint8 doBlink = 0; #—————— blink semaphore
STATE e mystate;
//Interrupt Service Routine for Timer3
void _ISRFAST _T3Interrupt (void) {
u8_valueSWl = SW1_RAW; //sample the switch
switch (e_mystate) {
case STATE WAIT FOR PRESSI1:
case STATE WAIT FOR RELEASEL:
case STATE WAIT FOR PRESS2:
case STATE WAIT FOR RELEASE2: ...
case STATE_ BLINK:
doBlink = 1;
if (SW1_PRESSED()) {
doBlink = 0; -
e mystate = STATE WAIT FOR RELEASE3;
}
break;
case STATE WAIT FOR RELEASE3:
default:
e mystate = STATE WAIT FOR PRESS1;

Unchanged from Figure 8.30

Do NOT put a software delay here to

Tell the main () code
to stop blinking the
LED.

» —+—— Unchanged from Figure 8.30

}
_T3IF = 0; //clear the timer interrupt bit
}

int main (void) ({
. config not shown ..
e mystate = STATE WAIT FOR PRESS1;
/* While loop just checks the doBlink semaphore */
while (1) {
printNewState (e_mystate) ;
if (doBlink) { ==
LED1 = 'LED1;
delayMs (100) ;
}
doHeartbeat () ;
} // end while (1)
}

//debug message when state changes
Blink the LED when the
doBlink semaphore is set.

//ensure that we are alive

V2.0

Tells the main () code to blink the LED.

Another Solution

Put entire FSM 1nto
the ISR 1nstead of
using a press&release
semaphore.

Now use a doBlink
semaphore to tell the
main() code when to
blink the LED.

Do not Blink 1n ISR!
This delays exit from
ISR. 35

Dividing Work between the ISR and main()

There are usually multiple ways to divide work between the
ISR and main().

The ‘right’ choice 1s the one that services the I/O event in a
timely manner, and there can be more than right choice.

Golden Rules:
The ISR should do its work as fast as possible.
Do not put long software delays into an ISR.

An ISR should never wait for I/O, the I/O event should trigger
the ISR or the ISR should just sample the input!

An ISR 1s never called as a subroutine.
V20 36

What do you have to know?

How interrupts behave on the PIC24 uC
Interrupt Priorities, Enabling of Interrupts
Traps vs. Interrupts

Change notification Interrupts

Timer2 operation

Periodic Interrupt generation

Switch sampling using periodic timer interrupts

V2.0 37

