
Polled IO versus Interrupt Driven IO

• Polled Input/Output (IO) – processor continually
checks IO device to see if it is ready for datachecks IO device to see if it is ready for data
transfer
– Inefficient, processor wastes time checking for ready

condition
– Either checks too often or not often enough

I D i IO IO d i i• Interrupt Driven IO – IO device interrupts
processor when it is ready for data transfer

Processor can be doing other tasks while waiting for– Processor can be doing other tasks while waiting for
last data transfer to complete – very efficient.

– All IO in modern computers is interrupt driven.

V 2.0 1

p p

PIC24 μC Interrupt Operation

The normal program flow (main) is referred to as the
foreground code. The interrupt service routine (ISR) is

V 2.0 2

g p ()
referred to as the background code.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Vector
Table

This contains the starting
dd f h f haddress of the ISR for each

interrupt source.

V 2.0 3
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Interrupt
SSources

S i l d tSerial data
has arrived

CNx Pin has
changed state

V 2.0 4
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Interrupt Priorities
An interrupt can be assigned a priority from 0 to 7.

Normal instruction execution is priority 0.

An interrupt MUST have a higher priority than 0 to interrupt
normal execution. Assigning a priority of 0 to an interrupt

k (di bl) th i t tmasks (disables) than interrupt.

An interrupt with a higher priority can interrupt a currently
executing ISR with a lower priorityexecuting ISR with a lower priority.

If simultaneous interrupts of the SAME priority occur, then the
interrupt with the LOWER VECTOR NUMBER (is first in theinterrupt with the LOWER VECTOR NUMBER (is first in the
interrupt vector table) has the higher natural priority. For
example, the INT0 interrupt has a higher natural priority than
INT1

V 2.0 5

INT1.

Enabling an Interrupt
E h i ll h FLAG bi PRIORITY bi dEach interrupt source generally has FLAG bit, PRIORITY bits, and
an ENBLE bit.

The flag bit is set whenever the interrupt condition occurs whichThe flag bit is set whenever the interrupt condition occurs, which
varies by the interrupt.

The priority bits set the interrupt priorityThe priority bits set the interrupt priority.

The enable bit must be a ‘1’ AND the interrupt priority > 0 for the
ISR to be executed (interrupt is enabled). (NOTE: the interruptISR to be executed (interrupt is enabled). (NOTE: the interrupt
does not have to be a enabled for the flag bit to be set!!!!!).

One of the things that must be done by the ISR is to clear the flag g y g
bit, or else the PIC24 CPU will get stuck in an infinite loop
executing the ISR.

V 2.0 6

By default, all priority bits and enable bits are ‘0’, so interrupt ISRs
are disabled from execution.

Traps vs. Interrupts
A Trap is a special type of interrupt is non maskable hasA Trap is a special type of interrupt, is non-maskable, has
higher priority than normal interrupts. Traps are always
enabled!

Hard trap: CPU stops after instruction at which trap occurs

Soft trap: CPU continues executing instructions as trap is p g p
sampled and acknowledged

Trap Category Priority Flag(s)Trap Category Priority Flag(s)
Oscillator Failure Hard 14 _OSCFAIL (oscillator fail, INTCON1<1>),

_CF (clock fail, OSSCON<3>)

Add E H d 13 ADDRERR (dd INTCON1<3>)Address Error Hard 13 _ADDRERR (address error, INTCON1<3>)

Stack Error Soft 12 _STKERR (stack error, INTCON1<2>)

Math Error Soft 11 _MATHERR (math error, INTCON1<4>)

V 2.0 7

DMAC Error Soft 10 _DMACERR (DMA conflict write, INTCON1<5>)

Interrupt Latency

ISR Entry:
Number of

l fcycles from
interrupt until
1st instruction
of ISR is
executed.

ISR Exit:

From RETFIE
to program
resumed.

V 2.0 8Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

ISR Overhead
I N b f i i l f ISR (f h• Ientry: Number of instruction cycles for ISR entry (four on the

PIC24 µC).

• Ibody: Number of instruction cycles for the ISR body (not• Ibody: Number of instruction cycles for the ISR body (not
including retfie).

• Iexit: Number of instruction cycles for ISR exit (three on the• Iexit: Number of instruction cycles for ISR exit (three on the
PIC24 µC).

• Fisr: Frequency (number of times per second) at which the ISRFisr: Frequency (number of times per second) at which the ISR
is triggered.

• Tisr: The ISR triggering period, which is 1/Fisr. For example, if gg g p p
an ISR is executed at 1 KHz, Tisr is 1 ms.

V 2.0 9

ISR Overhead (cont)

Percentage of CPU time taken up by one ISR:

ISR% = [(Ientry + Ibody + Iexit) x Fisr]/Fcy x 100

ISR CPU P t f FCY 40 MH IBODY 50 i t lISR CPU Percentage for FCY = 40 MHz, IBODY = 50 instr. cycles

Tisr = 10 ms Tisr = 1 ms Tisr = 100 μs Tisr = 10 μs

0.01% 0.14% 1.43% 14.3%

GOLDEN RULE: An ISR should do its work as quickly asGOLDEN RULE: An ISR should do its work as quickly as
possible. When an ISR is executing, it is keeping other ISRs of
equal priority and lower from executing, as well as the main

d
V 2.0 10

code!

Interrupt Vectors in Memory

The compiler uses the _DefaultInterrupt function as the
default ISR. If an interrupt is triggered, and the ISR is the
DefaultInterrupt, then the user did not expect the interrupt _ p , p p

to occur. This means the interrupt is ‘unhandled’. We have
written our own _DefaultInterrupt that prints diagnostic
information since this is an unexpected occurrence

V 2.0 11

information since this is an unexpected occurrence.

Our
_DefaultInterrupt

ISRISR

Used for all
interrupts when
you do not
provide an ISR.
Our versionOur version
saves the
interrupt source,
does a sof aredoes a sofware
reset, then
interrupt source

V 2.0 12

is printed.

Output from the _DefaultInterrupt ISR

V 2.0 13

A
User-provided

ISR

These ISRs just
clear the
MATHERR_MATHERR

interrupt flag and
return. If the
interrupt flag is
not cleared, get
stuck in an
infinite interrupt
loop.

V 2.0 14

Change Notification Interrupts

CNIE=1 and
CNIP>0 for
interrupt to be

When enabled, triggers an interrupt when a change

interrupt to be
enabled.

V 2.0 15

When enabled, triggers an interrupt when a change
occurs on a pin.

Use Change Notification
to wake from Sleep

V 2.0 16

Remappable Pins
Some inputs/outputs for internal modules must be mapped to p p pp
RPx pins (remappable pins) if they are to be used.

Input Name Function Example Assignment
Name mapping inputs to RPn

External Interrupt 1 INT1 _INT1R = n;
External Interrupt 2 INT2 INT2R = n;External Interrupt 2 INT2 _INT2R n;
Timer2 Ext. Clock T2CK _T2CKR = n;
Timer3 Ext. Clock T3CK _T3CKR = n;
I t C t 1 IC1 IC1RInput Capture 1 IC1 _IC1R = n;
Input Capture 2 IC2 _IC2R = n;
UART1 Receive U1RX _U1RXR = n;
UART1 Clr To Send U1CTS _U1CTSR = n;
SPI1 Data Input SDI1 _SDI1R = n;
SPI1 Clock Input SCK1 SCK1R = n;

V 2.0 17

SPI1 Clock Input SCK1 _SCK1R n;
SPI1 Slave Sel. Input SS1 _SS1R = n;

Remappable Pins (cont.)
Output Name Function RPnR<4:0> Example

Name Value Assignment
Default Port Pin NULL 0 RPnR = 0;Default Port Pin NULL 0 _RPnR = 0;
UART1 Transmit U1TX 3 _RPnR = 3;
UART1 Rdy. To Send U1RTS 4 _RPnR = 4;
SPI1 Data Output SDO1 7 _RPnR = 7;
SPI1 Clock Output SCK1OUT 8 _RPnR = 8;
SPI1 Slave Sel. Out. SS1OUT 9 RPnR = 9;_ ;
Output Compare 1 OC1 18 _RPnR = 18;
Output Compare 2 OC2 19 _RPnR = 19;

Mapping outputs to RPx pins.

V 2.0 18

pp g p p

Remapping Macros

Contained in pic24_ports.h:

CONFIG U1RX TO RP(pin)CONFIG_U1RX_TO_RP(pin)

CONFIG_U1TX_TO_RP(pin)

etc..

Example Usage:

CONFIG_U1RX_TO_RP(10); //UART1 RX to RP10_ _ _

CONFIG_U1TX_TO_RP(11); //UART1 TX to RP11

V 2.0 19

INT2, INT1, INT0 Interruptsp
These are input interrupt sources (INTx) that can be
configured to be rising edge triggered or falling-edgeconfigured to be rising edge triggered or falling edge
triggered by using an associated INTxEP bit (‘1’ is falling
edge, ‘0’ is rising edge’).

On the PIC24HJ32GP202, INT1 and INT2 must be brought
out to remappable pins (RPx); INT0 is assigned a fixed pin
location.

V 2.0 20

//Interrupt Service Routine for INT1
void _ISRFAST _INT1Interrupt (void) {
_INT1IF = 0; //clear the interrupt bit

}}
/// Switch1 configuration, use RB13
inline void CONFIG_SW1() {
CONFIG_RB13_AS_DIG_INPUT(); //use RB13 for switch input
ENABLE RB13 PULLUP(); //enable the pullup

Use INT1 to wake

_ _ p p
DELAY_US(1); // Wait for pull-up

}
int main (void) {
configBasic(HELLO MSG);

from Sleep mode
g _

/** Configure the switch ***********/
CONFIG_SW1();
CONFIG_INT1_TO_RP(13); //map INT1 to RP13
/** Configure INT1 interrupt */ g p
_INT1IF = 0; //Clear the interrupt flag
_INT1IP = 2; //Choose a priority
_INT1EP = 1; //negative edge triggerred
INT1IE = 1; //enable INT1 interrupt_ p

while(1) {
outString("Entering Sleep mode, press button to wake.\n");
//finish sending characters before sleeping
WAIT UNTIL TRANSMIT COMPLETE UART1();

V 2.0 21

_ _ _ _
SLEEP(); //macro for asm("pwrsav #0")

}
}

Hardware Timers
Recall that a Timer is just a counter. Time can be converted from
elapsed Timer Ticks (Ticks) by multiplying by the clock period
(Ttmr) of the timer:

Time = Ticks x Ttmr

If a timer is a 16-bit timer, and it is clocked at the FCY = 40 MHz,
then will count from 0x0000 to 0xFFFF (65536 ticks) in:

Time = 65536 x (1/40 MHz)

= 65536 x 25 ns = 1638400 ns = 1638.4 us = 1.6384 ms

V 2.0 22

Timer 2 Block Diagram

V 2.0 23
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

T2IF Period

The T2IF flag is set at the following period (Tt2if):

T (PR2+1) PRE T (PR2+1) PRE/FTt2if = (PR2+1) x PRE x Tcy = (PR2+1) x PRE/Fcy

Observe that because Timer2 is a 16-bit timer, if PR2 is its
maximum value of 0xFFFF (65535) and the prescaler is ‘1’maximum value of 0xFFFF (65535), and the prescaler is 1 ,
this is just:

Tt2if = 65536 x 1/FcyTt2if 65536 x 1/Fcy

We typically want to solve for Tt2if, given a PRE value:

PR2 (T Fc /PRE) 1PR2 = (Tt2if x Fcy /PRE) − 1

V 2.0 24

Example T2IF PeriodsExample T2IF Periods
PR2/PRE Values for Tt2if = 15 ms, Fcy = 40 MHz

PRE=1 PRE=8 PRE=64 PRE=256

PR2 600000 75000 9375 2344

(invalid) (invalid)

The PR2 for PRE=1 PRE=8 are invalid because they are greaterThe PR2 for PRE=1, PRE=8 are invalid because they are greater
than 65535 (PR2 is a 16-bit register).

Configuring Timer2 to interrupt every Tt2if period is called a
PERIODIC INTERRUPT.

V 2.0 25

Timer2 Control Register

include\pic24_timer.h excerpts:
/*T2CON: TIMER2 CONTROL REGISTER*/
#define T2_ON 0x8000
#define T2_OFF 0x0000

#define T2_IDLE_STOP 0x2000
#define T2_IDLE_CON 0x0000

#define T2_GATE_ON 0x0040
#define T2_GATE_OFF 0x0000

#define T2_PS_1_1 0x0000
#define T2 PS 1 8 0x0010# _ _ _
#define T2_PS_1_64 0x0020
#define T2_PS_1_256 0x0030

#define T2_32BIT_MODE_ON 0x0008
#define T2_32BIT_MODE_OFF 0x0000

#define T2_SOURCE_EXT 0x0002
#define T2_SOURCE_INT 0x0000

V 2.0 26
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Programming the configuration register
Just write a 16-bit value to the Timer2 configuration register to configure Timer2:

T2CON = 0x0020; //Timer off, Pre=64, Internal clock

More readable:

T2CON = T2_OFF | T2_IDLE_CON | T2_GATE_OFF |
T2 32BIT MODE OFF | T2 SOURCE INT |T2_32BIT_MODE_OFF | T2_SOURCE_INT |
T2_PS_1_64;

This is actually:

T2CON = 0x0000 | 0x0000 | 0x00000 |
0x0000 | 0x0000 |
0x0020;;

Can also set individual bit fields:
T2CONbits.TON = 1; //Set TON bit = 1, turn timer on

V 2.0 27

Square Wave
Generation

Timer2 configured
t tto generate an
interrupt every 15
ms. An output pin
is toggled in the
ISR, so square
wave has period of

V 2.0 28

wave has period of
30 ms.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Switch Sampling

A Timer3
periodic
Timer
interrupt is
used toused to
sample the
switch.

V 2.0 29
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Timer 3 Configurationg

V 2.0 30
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Switch Sampling
(cont.)

V 2.0 31
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Semaphores

Will use a
‘button press&
release’
semaphore tosemaphore to
implement this
as one state

V 2.0 32
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Press&Release Semaphore

ISR is now a state machine!

A semaphore is a flag set by an ISR when an IO event occurs. The

V 2.0 33
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

p g y
main() code is generally responsible for clearing the flag.

main() codemain() code

Differences:

Only one state used
for each press and
releaserelease.

Use the u8_pnrSW1
semaphore tosemaphore to
determine when
press/release
occurred

V 2.0 34

occurred.

Another Solution

Put entire FSM into
the ISR instead of
using a press&release
semaphore.

NNow use a doBlink
semaphore to tell the
main() code when to
blink the LED.

Do not Blink in ISR!

V 2.0 35

This delays exit from
ISR.

Dividing Work between the ISR and main()g ()

There are usually multiple ways to divide work between the
ISR and main()ISR and main().

The ‘right’ choice is the one that services the I/O event in a
timely manner and there can be more than right choicetimely manner, and there can be more than right choice.

Golden Rules:

Th ISR h ld d it k f t iblThe ISR should do its work as fast as possible.

Do not put long software delays into an ISR.

An ISR should never wait for I/O, the I/O event should trigger
the ISR or the ISR should just sample the input!

V 2.0 36

An ISR is never called as a subroutine.

What do you have to know?What do you have to know?

• How interrupts behave on the PIC24 μCp μ
• Interrupt Priorities, Enabling of Interrupts
• Traps vs. Interruptsaps vs. te upts
• Change notification Interrupts
• Timer2 operationTimer2 operation
• Periodic Interrupt generation
• Switch sampling using periodic timer interrupts• Switch sampling using periodic timer interrupts

V 2.0 37

