
General-purpose I/O
The simplest type of I/O via the PIC24 µC external pins areThe simplest type of I/O via the PIC24 µC external pins are
parallel I/O (PIO) ports.

A PIC24 µC can have multiple PIO ports named PORTA, µ p p ,
PORTB, PORTC, PORTD, etc. Each is 16-bits, and the number
of PIO pins depends on the particular PIC24 µC and package.
The PIC24HJ32GP202/28 pin package has:The PIC24HJ32GP202/28 pin package has:

PORTA – bits RA4 through RA0
PORTB – bits RB15 through RB0PORTB bits RB15 through RB0

These are generically referred to as PORTx.

Each pin on these ports can either be an input or output – the p p p p
data direction is controlled by the corresponding bit in the TRISx
registers (‘1’ = input, ‘0’ = output).

V 0.7 1

The LATx register holds the last value written to PORTx.

PORTB Examplep
Set the upper 8 bits of PORTB to outputs, lower 8 bits to be inputs:

TRISB = 0x00FF;

Drive RB15, RB13 high;
others low:others low:

PORTB = 0xA000; Test returns true while RB0=0

Wait until input RB0 is high:

while ((PORTB & 0x0001) == 0);

so loop exited when RB0=1

while ((PORTB & 0x0001) == 0);

Wait until input RB3 is low:
Test returns true while RB3=1
so loop exited when RB3=0

V 0.7 2

while ((PORTB & 0x0008) == 1);

PORTB Example (cont.)
I di id l PORT bi d RB0 RB1 RA0Individual PORT bits are named as _RB0, _RB1, .._RA0, _ etc.
so this can be used in C code.

Wait until input RB2 is high:
Test returns true while RB2=0
so loop exited when RB2=1.
C l b i

while (_RB2 == 0);
Can also be written as:
while (!_RB2);

Wait until input RB3 is low:
while (_RB3 == 1) ;

Test returns true while RB3=1
so loop exited when RB3=0
Can also be written as:Can also be written as:
while (_RB3);

V 0.7 3

Aside: Tri-State Buffer (TSB) Review
A tri-state buffer (TSB) has input, output, and output-
enable (OE) pins. Output can either be ‘1’, ‘0’ or ‘Z’
(high impedance).(high impedance).

A Y YA

OE OE = 0, then switch closed
OE = 1, then switch open

OE

V 0.7 4

Bi-directional, Half-duplex Communication
driver driver

PIC24 µC
QDTRIS Q D TRIS

PIC24 µC

0 1

driver
enabled

driver
disabled

Q

DQ

D
data bus

Q

D Q

D
data bus

0 1

DQ
rd_port

D Q
rd_port

PIC24 C PIC24 C
driver driver

PIC24 µC
QDTRIS

data bus

Q D TRIS

data bus

PIC24 µC

1 0

disabled enabled

Q

DQ

D
data bus

Q

D Q

D
data bus1

V 0.7 5

rd_port rd_port

PORTx Pin Diagram
External pin shared with
other on-chip modules

TRIS bit controls
tristate control ontristate control on
output driver

Reading LATx reads lastReading LATx reads last
value written; reading
PORTx reads the actual
i

V 0.7 6

pin

LATx versus PORTx
Writing LATx is the same as writing PORTx, both writes go to
the latch.

Reading LATx reads the latch output (last value written), while
reading PORTx reads the actual pin value.

PIC24 µC
Configure RB3 as an open-drain
output, then write a ‘1’ to it.

RB3 The physical pin is tied to ground, so
it can never go high.

Reading _RB3 returns a ‘0’, but
reading _LATB3 returns a ‘1’ (the
last value written).

V 0.7 7

s v ue w e).

LATx versus PORTx (cont)

_LATB0 = 1;

LATB0 = 0;

Compiler bset LATB,#0

bclr LATB,#0_LATB0 = 0; ,#

bitset/bitclr instructions are read/modify/write, in this case, read
LATB modify contents write LATB This works as expectedLATB, modify contents, write LATB. This works as expected.

_RB0 = 0;
Compiler bclr PORTB,#0

_RB0 = 1; bset PORTB,#0

bset/bclr instructions are read/modify/write – in this case, read y
PORTB, modify its contents, then write PORTB. Because of
pin loading and fast internal clock speeds, the second bset may
not work correctly! (see datasheet explanation) For this reason

V 0.7 8

not work correctly! (see datasheet explanation). For this reason,
our examples use LATx when writing to a pin.

Switch InputVdd

PIC24 µC

RB3

10K External pullup

When switch is pressed W e sw c s p essed
RB3 reads as ‘0’, else
reads as ‘1’.

If pullup not present, then
PIC24 µC don’t do input would float when

switch is not pressed, and
input value may read as

PIC24 µC

RB3

don t do
this!

p y
‘0’ or ‘1’ because of
system noise.

V 0.7 9

Internal Weak Pullups
E l i i h CN i f i h k i lExternal pins with a CNy pin function have a weak internal
pullup that can be enabled or disabled.

Change notification input; to g p ;
enable pullup:
CN11PUE = 1;
To disable pullup:To disable pullup:
CN11PUE = 0;

V 0.7 10

Schmitt Trigger Input Buffer
Each PIO input has a Schmitt trigger input buffer; thisEach PIO input has a Schmitt trigger input buffer; this
transforms slowly rising/falling input transitions into sharp
rising/falling transitions internally.

V 0.7 11

PORTx Shared Pin Functions
External pins are shared with other on-chip modules. Just
setting _TRISx = 1 may be not be enough to configure a
PORTx pin as an input depending on what other modules sharePORTx pin as an input, depending on what other modules share
the pin: RB15 shared with AN9, which is

an analog input to the on-chip g p p
Analog-to-Digital Converter
(ADC). Must disable analog
functionality!functionality!

_PCFG9 = 1;

TRISB15 = 1;

Disables analog function

Configure as input_TRISB15 = 1; Configure as input

_PCFG9 = 1; Disables analog function

V 0.7 12
_TRISB15 = 0; Configure as output

Analog/Digital Pin versus Digital-only Pin

Pins with shared analog/digital functions have a maximum input
voltage of Vdd + 0 3 V so 3 6 Vvoltage of Vdd + 0.3 V, so 3.6 V

Pins with no analog functions (“digital-only” pins) are 5 V
tolerant, their maximum input voltage is 5.6 V., p g

This is handy for receiving digital inputs from 5V parts.

Most PIO pins can only source or sink a maximum 4 mA YouMost PIO pins can only source or sink a maximum 4 mA. You
may damage the output pin if you tie a load that tries to
sink/source more than this current.

V 0.7 13

Open Drain Outputs
Some PIO pins can be configured as an open drain outputSome PIO pins can be configured as an open drain output,
which means the pullup transistor is disabled.

ODCxy = 1 enables open drain ODCxy = 0 disables open drain_ODCxy = 1 enables open drain, _ODCxy = 0 disables open drain

_ODCB15 = 1; Enables open drain on RB15

V 0.7 14

Recall that RB15 port used to drive
heartbeat/Power LED, configured as , g
open drain

LED is off if LATB15 = 0

V 0.7 15

Recall that RB15 port used to drive
heartbeat/Power LED, configured as , g
open drain

LED is on if LATB15 = 1

V 0.7 16

Driving LEDs : port configured as a normal CMOS driver

RB15/open drain configuration for heartbeat LED is a special case.

V 0.7 17

Port Configuration Macros
For convenience, we supply macros/inline functions that hide pin
configuration details:

CONFIG_RB15_AS_DIG_OUTPUT();

CONFIG_RB15_AS_DIG_INPUT();

These macros are supplied for each port pin. Because these
functions change depending on the particular PIC24 µC, the
include/devices directory has a include file for each PIC24 µC,
and the correct file is included by the include/pic24_ports.h file.

V 0.7 18

Other Port Configuration Macros
Other macros are provided for pull-up and open drain configuration:

ENABLE_RB15_PULLUP();
DISABLE RB15 PULLUP()DISABLE_RB15_PULLUP();
ENABLE_RB13_OPENDRAIN();
DISABLE_RB13_OPENDRAIN();
CONFIG RB8 AS DIG OD OUTPUT();

Output + Open
drain config in

CONFIG_RB8_AS_DIG_OD_OUTPUT();

General forms are ENABLE_Rxy_PULLUP(),
DISABLE Rxy PULLUP() ENABLE Rxy OPENDRAIN()

one macro

DISABLE_Rxy_PULLUP(), ENABLE_Rxy_OPENDRAIN(),
DISABLE_Rxy_OPENDRAIN(),
CONFIG_Rxy_AS_DIG_OD_OUTPUT()

A port may not have a pull-up if it does not share the pin with a
change notification input, in this case, the macro does not exist and
you will get an error message when you try to compile the code

V 0.7 19

you will get an error message when you try to compile the code.

ledflash.c Revisited

V 0.7 20

LED/Switch IO:
Toggle LED on each pressgg p
and release

21

I/O Configuration

Use macros to isolate pin assignments for physical devices so that it is p g p y
easy to change code if (WHEN!) the pin assignments change!

V 0.7 22

Toggling for each press/release

V 0.7 23
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Mechanical Switch Bounce
Mechanical switches
can ‘bounce’ (cause

lti l t iti)multiple transitions)
when pressed.

Scope shot of switch bounce; in this case, only bounced once, and
settled in about ~500 microseconds. After detecting a switch state
change, do not want to sample again until switch bounce has settled.
Our default value of 15 milliseconds is plenty of time. Do not want to
wait too long; a human switch press is always > 50 ms in duration

V 0.7 24

wait too long; a human switch press is always > 50 ms in duration.

State Machine I/O

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

C Code Solution

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

configBasic() function

V 0.7 27

Switch Sampling and Debounce

Our new approach is periodically sampling the switch every ~15
ms in our while(1) loop. In the first solution, we were reading the

i h f h ld lswitch as fast as the cpu could loop.

We want this sampling period to be longer than any switch bounce p g p g y
settling time, and we want it to be short enough that we do not
miss a switch press entirely (a human switch press is at least
greater than 50 ms so 15 ms is short enough)

V 0.7 28

greater than 50 ms, so 15 ms is short enough).

C Code Solution (cont).

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

}

LED Toggle Variations

Two variations of LED Toggle (recall that LED was toggled when
the switch was pressed and released)the switch was pressed and released)

• Variation 1: Blink the LED when the switch is pressed; when
l d f it OFFreleased, freeze it OFF

• Variation 2: Blink the LED a maximum of 4 times when
switch is pressed; when released, freeze it OFF

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Variation 1: Blink while pressed

V 0.7 31

Variation 2: Blink
while pressed 4 p

times, try #1

V 0.7 32

Variation 2: Blink
while pressed 4 p

times, try #2

V 0.7 33

A More Complex
Problem

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Solution, Part 1

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Console Output for LED/SW Problem

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

What do you have to know?

• GPIO port usage of PORTA, PORTB
• How to use the weak pullups of PORTB• How to use the weak pullups of PORTB
• Definition of Schmitt Trigger
• How a Tri-state buffer worksHow a Tri state buffer works
• How an open-drain output works and what it is

useful for.
• How to write C code for finite state machine

description of LED/Switch IO.

V 0.7 38

