The ADC Module with DMA Appendix H 1

Appendix H
The ADC Module with DMA

This appendix discusses the ADC operation on PIC24 CPUs that have DMA. The ADC
material in Chapter 11 is focused on P1C24 CPUs without DMA. This appendix assumes
that the reader has covered the material in Chapter 11 on ADC operation and in Chapter
13 on the DMA module. This appendix frequently refers to figures in Chapters 11 and 13.

ADC DIFFERENCES WITH AND WITHOUT DMA

As discussed in Chapter 13, some PIC24 CPUs support a DMA module. For example, the
PIC24HJ32GP202 CPU used in Chapter 11 that discusses ADC operation does not
support DMA, while the PIC24HJ64GP502 used in Chapter 13 does have the DMA
module. The ADC module in DMA-capable PIC24 CPUs operates differently in some
modes than what is discussed in Chapter 11. In referring to Figure 11.7, the ADC module
in a PIC24 CPU with DMA does not have ADC buffers 1 through F (registers ADCXBUF1
through ADCxBUFF). What this means is that ADC operation that only involves a single
conversion where the result is placed in ADCxBUFO is the same regardless of whether
DMA is supported or not. Thus, the example code in Figure 11.14 and the
convertADC1() function of Figure 11.13 operates the same way regardless of whether
DMA is supported or not.

However, modes that automatically perform multiple conversions, such as the scan mode,
operate differently on PIC24 CPUs with DMA. In these cases, the DMA module must be
used to store the multiple ADC conversion results instead of them being placed in the
ADCxBUF1 through ADCxBUFF registers. The DMA module gives more flexibility in
terms of the number of conversions performed and how they are stored in memory. The
ADC code examples in Figures 11.17/19 (automatic scanning), Figure 11.21 (automatic
scanning), Figure 11.22 (automatic scanning with ping-pong buffers), and Figures
11.25/11.26 are not appropriate for PIC24 CPUs with DMA.

AUTOMATED CHANNEL SCANNING WITH DMA

Our first example uses the same hardware setup as described in Figure 11.16. Our goal is
to perform automated channel scanning on seven ADC inputs (ANO, AN1, AN4, AN5,
AN10, AN11, AN12). In the code example of Figure 11.17, we noted that these results
were placed in ADC registers ADCxBUFO through ADCxBUF6 and that the ADC ISR
interrupt occurred after the seven conversions had been completed. The ADC ISR then
copied the registers to a memory buffer named aul6_buffer[]. The main() code of
Figure 11.19 printed these to the console as shown in Figure 11.20.

The presence of the DMA module requires the following changes:

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 2

e The ADC ISR is no longer used, as the ADC interrupt now occurs after each
conversion, at which point the DMA module transfers the result to a user-
specified DMA buffer. The DMA interrupt is used instead to indicate when the
seven conversions have finished and the DMA ISR is used to copy these to
another memory buffer.

e A DMA channel must be configured to be linked to the ADC module and a buffer
in DMA memory allocated for the ADC results. The DMA module is configured
for word mode since each ADC result is larger than a byte.

e There are two choices for storing the ADC results in DMA memory, conversion
order mode or scatter/gather mode. In conversion order mode, the results are
stored in DMA memory in the order that the conversions are performed as shown
in Figure H.1a. Thus, for our seven ADC inputs we have the following: ANO is
stored at DMA buffer offset 0, AN1 at offset 1, AN4 at offset 2, AN5 at offset 3,
ANI10 at offset 4, AN11 at offset 5, and AN12 at offset 6. This matches the
ordering of Figure 11.20 in which the seven ADC conversions are stored in ADC
registers ADCxBUFO through ADCxBUF®6. In scatter/gather mode, results are stored
in the DMA buffer at the offset that matches the channel number. Thus, ANO is
stored at offset O, AN1 at offset 1, AN4 at offset 4, AN5 at offset 5, AN10 at
offset 10, AN11 at offset 11, and AN12 at offset 12.

(a) Conversion order mode (b) Scatter/gather mode

(16 word DMA memory buffer shown) (16 word DMA memory buffer shown)
Offset 0 ANO result Offset 0 ANO result
Offset 1 AN1 result Offset 1 AN1 result
Offset 2 AN4 result Offset 2 unused
Offset 3 ANS result Offset 3 unused
Offset 4 AN10 result Offset 4 AN4 result
Offset 5 AN11 result Offset 5 ANS result
Offset 6 AN12 result Offset 6 unused
Offset 7 unused Offset 7 unused
Offset 8 unused Offset 8 unused
Offset 9 unused Offset 9 unused
Offset 10 unused Offset 10 | AN10 result
Offset 11 unused Offset 11 AN11 result
Offset 12 unused Offset 12 AN12 result
Offset 13 unused Offset 13 unused
Offset 14 unused Offset 14 unused
Offset 15 unused Offset 15 unused

The buffer storage shown is for one conversion per ADC input, scanning seven ADC
inputs (ANO, AN1, AN4, ANS5, AN10, AN11, AN12).

Figure H.1 Conversion order mode versus gather/scatter mode for storing ADC results to
DMA memory for one conversion per ADC input.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 3

The ADC module has the capability of performing multiple conversions per ADC input
during scanning. Figure H.2 shows the buffer storage using the same channels as Figure
H.1, but with four conversions per ADC input. The conversion order mode is more
efficient in terms of DMA memory usage since DMA memory is used for those channels
not scanned during scatter/gather mode, but these locations have to be allocated.
However, scatter/gather mode makes it easy to reference the conversions by input
number and conversion number.

(a) Conversion order mode (b) Scatter/gather mode

Offset 0 ANO result (0) Offset 0 ANQO result (0)
Offset 1 AN1 result (0) Offset 1 ANQO result (1)
Offset 2 AN4 result (0) Offset 2 ANQO result (2)
Offset 3 ANS5 result (0) Offset 3 ANQO result (3)
Offset 4 AN10 result (0) Offset 4 AN1 result (0)
Offset 5 AN11 result (0) Offset 5 AN1 result (1)
Offset 6 AN12 result (0) Offset 6 AN1 result (2)
Offset 7 ANO result (1) Offset 7 AN1 result (3)
Offset 8 AN1 result (1) Offset 8 - 15 ...unused..
Offset 9 AN4 result (1) Offset 16 AN4 result (0)
Offset 10 | ANS5 result (1) Offset 17 AN4 result (1)
Offset 11 | AN10 result (1) Offset 18 AN4 result (2)
Offset 12 | AN11 result (1) Offset 19 AN4 result (3)
Offset 13 | AN12 result (1) Offset 20 ANS result (0)
Offset 14 ANO result (2) Offset 21 ANS result (1)
Offset 15 AN1 result (2) Offset 22 ANS result (2)
Offset 16 AN4 result (2) Offset 23 ANS result (3)
Offset 17 ANS result (2) Offset 24-30 | ..unused..
Offset 18 | AN10 result (2) Offset 40 AN10 result (0)
Offset 19 AN11 result (2) Offset 41 AN10 result (1)
Offset 20 AN12 result (2) Offset 42 AN10 result (2)
Offset 21 | ANO result (3) Offset 43 AN10 result (3)
Offset 22 | AN1 result (3) Offset 44 AN11 result (0)
Offset 23 | AN4 result (3) Offset 45 AN11 result (1)
Offset 24 | ANS result (3) Offset 46 AN11 result (2)
Offset 25 | AN10 result (3) Offset 47 AN11 result (3)
Offset 26 | AN11 result (3) Offset 48 AN11 result (0)
Offset 27 | AN12 result (3) Offset 49 AN11 result (1)
Offset 28 unused Offset 50 AN11 result (2)
Offset 21 | unused Offset 51 AN11 result (3)
Offset 21 unused Offset 52 unused

The buffer storage shown is for four conversions per ADC input, scanning seven ADC
inputs (ANO, AN1, AN4, ANS, AN10, AN11, AN12).

Figure H.2 Conversion order mode versus scatter/gather mode for storing ADC results to
DMA memory for four conversions per ADC input.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 4

Figure H.3 shows the first part of the configDMA_ADC() function used to configure the
ADC and DMA modules for automated scanning operations. This is a modified version
of the ADC configuration code found in the Figure 11.17 and also includes DMA
memory buffer allocation as originally discussed in Figure 13.4

The configDMA_ADC() function adds two additional parameters over the parameters
found in the configADC1_AutoScanlrqCHO(Q) function of Figure 11.17.

e u8 useScatterGather: non-zero for scatter/gather mode and zero for
conversion order mode.

e u8 dmaLocsPerInput: this specifies the number of DMA buffer locations to be
used per ADC input and is only used in scatter/gather mode.

The ADDMABM bit in AD1CONL1 is used to choose between scatter/gather mode
(ADDMABM = 0) and conversion order mode (ADDMABM = 1). When using
conversion order mode the DMA channel is configured for register post-increment
addressing, while peripheral indirect is used for scatter/gather mode.

The remainder of the configDMA_ADC() function is given in Figure H.4. Note that the
DMA request line (DMAOREQ) is tied to the ADC interrupt, with the DMA address
register (DMAOPAD) set to the address of the ADC buffer register (ADC1BUFQ). The DMA
module is configured to generate an interrupt after all of the ADC conversions are
performed.

The ADC is also configured to use a TAD = 10 x Tcy instead of using the dedicated ADC
internal oscillator. This is done so that we can accurately measure the TAD period. At FCy
=40 MHz, Tcy =25ns, so TAD = 10 x 25 ns = 250 ns.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 5

#define CONVERSIONS PER INPUT 1
#define MAX CHANNELS 16
//Max DMA transfer size is in words, make power of 2 for alignment
#define MAX TRANSFER (CONVERSIONS PER INPUT*MAX CHANNELS)
)) Buffer in DMA memory
//DMA buffers, alignment is based on number of bytes "//
uintlé aulé bufferA[MAX TRANSFER] _ attribute ((space(dma),aligned(MAX TRANSFER*2))) ;
uint8 uS_NumChannelsScanned; //need this global for the main averaging code

//generic DMA/ADC configuration function, enables scanning, uses DMA channel 0
//returns the number of channels that are scanned as specified by the mask.
uint8 configDMA ADC(uintlé ul6_chOScanMask, \

uint8 u8_autoSampleTime, \
uint8 u8_usel2bit,
uint8 u8 useScatterGather,
uint8 u8_dmaLocsPerInput) {
uint8 u8_i, uB8 nChannels=0;
uintlé ulé_mask = 0x0001;
uintlé ulé_dmaMode;

// compute the number of Channels the user wants to scan over
for (uB8 i=0; uB8 i<16; u8 i++) {
if (ul6_chOScanMask & ulé mask) Example found in:
u8_nChannels++; chapll/adc7scanl dma conv order.c
ulé mask<<=l;
} //end for

if (u8_autoSampleTime > 31) uB_autoSampleTime=31;

AD1CONlbits.ADON = 0; // turn off ADC (changing setting while ADON is not allowed)
/** Configure the internal ADC **/
ADICONL1 = ADC_CLK AUTO | ADC AUTO_ SAMPLING ON;
#ifdef _AD12B
if (u8 usel2bit)
AD1CONlbits.AD12B
else
AD1CON1bits.AD12B = 0;
#endif \
if (uB_useScatterGather) {
ADI1CONlbits.ADDMABM = 0;
ul6_dmaMode = DMA_AMODE_PERIPHERAL INDIRECT;

1;

} Config for either
else { scatter/gather or ordered

//order mode conversion modes.
AD1CON1bits.ADDMABM = 1;
ulé_dmaMode = DMA_ AMODE REGISTER POSTINC;

Figure H.3 ADC/DMA configuration code for channel scanning, part 1

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 6

//at FCY = 40 MHz, Tecy = 25 ns, and use ADC clock = 10* Tcy = 10 * 25 ns = 250 ns
//use clock based on Tcy so that we can accurately measure ADC clock period
ADICON3 = ADC_CONV_CLK SYSTEM | (uB_autoSampleTime<<8) |ADC_CONV_CLK 10Tcy;

//Note: PIC24H famlly reference manual (16.13.2) says that for

// 'ordered' mode, the SMPI bits should be cleared. However,

// when scanning, this seems to be incorrect as the

//settings that work are the same ones used for 'scatter/gather' mode.

ADICON2 = ADC VREF AVDD AVSS | ADC CONVERT CHO | ADC SCAN ON | ((u8 nChannels-1)<<2);

#tifdef _ PIC24H

AD1CHSO = ADC_CHO NEG SAMPLEA VREFN; Example found in:
#else chapll/ade7scanl dma conv order.c
ADICHS = ADC CHO NEG SAMPLEA VREFN; =
#endif

AD1CSSL = ulé_chOScanMask;

//AD1CON4 is only used in scatter-gather mode
switch (u8 dmaLocsPerInput) {

case 1 AD1CON4 = ADC_1 WORD_PER INPUT break;
case 2 AD1CON4 = ADC 2 WORD_PER INPUT;break;
case 4 : ADICON4 = ADC_4_WORD_PER_INPUT break;
case 8 : ADICON4 = ADC_8 WORD PER INPUT break;
case 16 : ADICON4 = ADC_16 WORD PER INPUTbreak;
case 32 : ADICON4 = ADC_32_WORD PER_INPUT;break;
case 64 : ADICON4 = ADC 64 WORD PER INPUT;break;

case 128 : ADICON4 = ADC_128 WORD PER_INPUT;break;
default: ADICON4 = ADC_1_WORD_PER_INPUT;break;

} DMA configured to interrupt

//configure the DMA channel 0 interrupt after all conversions are

DMAOPAD = (unsigned int) &ADC1BUFO; finished.
DMAOREQ = DMA IRQ ADC1;
DMAOSTA __builtin_dmaoffset(aulG_bufferA);
DMAOCNT (u8_nChannels * u8 dmaLocsPerInput)-1;
DMAOCON = //configure and enable the module Module
(DMA_MODULE_ON |
DMA STZE WORD |
DMA DIR READ PERIPHERAL |
DMA INTERRUPT FULL |
DMA NULLW_ OFF |
u16_dmaMode |
DMA_MODE_CONTINUOUS) ;

_DMAOIF = 0;
_DMAOIP = 6;
_DMAOIE = 1;
ADICON1bits.ADON = 1; // turn on the ADC

return (u8_nChannels) ;

Figure H.4 ADC/DMA configuration code for channel scanning, part 2

Figure H.5 shows the DMA ISR code used in our application. The DMA ISR is triggered
whenever the ADC conversions are finished, which are the number of inputs scanned
multiplied by the number of conversions performed per input. The main() code sets the
u8_waiting flag to non-zero when it is ready for the latest ADC conversion results to
be copied from DMA memory to a local array named aul6_buffer[]. The LED2 port

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 7

is toggled each time the DMA ISR is executed so that we can measure how long it takes
to perform the ADC conversions.

volatile uintlé aul6 buffer[MAX TRANSFER] ; Buffers used by main () for
volatile uintl6 aul6 bufferSum[MAX CHANNELS]; § processing the conversion
volatile uint8 u8 waiting; results.

~

Flag set by main () when it is ready for the

void _ISRFAST DMAOInterrupt(void) { latest conversions to be copied.
uint8 uB_i;
uintlé* aul6_adcHWBuff = (uintlé*) &aulé bufferA;
_DMAQIF = O;
if (u8_waiting) { Copy the conversion results
for (uB_i=0; u8_i<MAX TRANSFER; uB_i++) { from DMA memory to a buffer
aul6 buffer[u8 i] = aulé_adcHWBuff[u8_i]; ﬁ)rkncrprocesmnginfmain(}

} //end for()
u8_waiting = 0; // signal main() that data is ready

}
// toggle a port pin so that we can measure how often DMA IRQs are coming in
= 1 .
LED2 = 'LED2; -— To ggle an output port so that we can measure the

time it takes to perform the conversions.

Figure H.5 DMA ISR code

Figure H.6 shows the main() code for processing the results that are produced by
conversion order mode. The nested for Q{} loops in the whi le(1){} loop averages
the results obtained per ADC input. The outer loop performs
CONVERSIONS_PER_INPUT iterations while the inner loop iterations are equal to the
number of ADC inputs that are scanned. After averaging the results for each ADC input,
the results are printed to the console.

The u8_waiting flag is used by main() to signal the DMA ISR when it is ready for
new results to be copied into the aul6_buffer[] array. This is needed so that the
aul6é_buffer[] array has stable values in it while the results are being averaged.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 8

int main (void) {
uint8 uB i, uB_j, uB k;
uintlé ulé_pot; Example found in:
float £ pot; chapl1/adc7scanl dma_conv_order.c

configBasic (HELLO MSG) ;

CONFIG ANO AS ANALOG() ;CONFIG ANl AS ANATOG(); CONFIG AN4 AS ANALOG() ;
CONFIG AN5 AS ANALOG() ;CONFIG AN10 AS ANATOG(); CONFIG AN1l AS ANALOG() ;
CONFIG AN12 AS ANALOG() ;

CONFIG LEDZ() ;

uB_NumChannelsScanned = configDMA ADC(ADC SCAN ANO | ADC SCAN AN1 | ADC SCAN AN4 | \
ADC SCAN_AN5 | ADC_SCAN AN10 | ADC SCAN AN1l | ADC_SCAN AN12,
31, ADC_12BIT_FLAG, CONVERSIONS_PER INPUT) ;

Selects conversion

u8_waiting = 1; order mode

while (1) {
while (uB8 waiting){}; // wait for valid data in ISR
//data is updated in array by DMA ISR when u8 waiting flag is cleared
//iterate over channels, and average results for each channel
//data in array will not be updated again by DMA ISR until uB8 waiting flag is set.
uB k = 0; //buffer index
for (uB_j=0; uB_ j<CONVERSIONS PER INPUT; uB j++) {
for (uB_i=0; u8_i<uB NumChannelsScanned; u8 i++) { //each channel
//each result per channel

if (u8_j == 0) aulé bufferSum[u8_i] = aulé buffer[u8 k]
else aul6é bufferSum[uB i] += aulé buffer[u8 k];
u8 k++;

}
}
//zero out unused channels
for (u8_ i=uB NumChannelsScanned; u8 i<MAX CHANNELS ;uB i++) {
aulé bufferSum[u8 i] = 0;
}
//now average and print
for (uB i=0; uB i<MAX CHANNELS ; uB i++) (
ulé_pot = aulé bufferSum[u8 i]/CONVERSIONS PER INPUT; //take the average
£ pot = 3.3 / ADC NSTEPS * ulé pot;
printf("z");
if (uB_i < 10) outChar('0O'+uB i);
else outChar('A'-10+u8 i);
printf (":0x%04X=%1.3fV ", wulé_pot, (double) f pot);
if ((u8_i % 4) == 3) printf("\n");
} //end for()
printf("\n") ;
uB_waiting = 1;
doHeartbeat() ;
DELAY_MS (1500) ;
} //endof while()
} // endof main()

Figure H.6 main() code for processing results produced by conversion order mode.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 9

Figure H.7 shows the results of the conversion order mode. Observe that the first seven
buffer locations have the conversions from our scanned channels (ANO, AN1, AN4,
AN5, AN10, AN11, AN12). This is a similar result to that shown in Figure 11.20 for a
P1C24 CPU without DMA.

Reset cause: Power-on.
Device ID = (x00000675 (PIC24HJ64GP502), revision (00003001 (A1)

Primary Osc (XT. HS. EC) with PLL Results written to buffer

in the order that the channels
are converted.

adcscan]_dma_conv_arderc, buit on May 8 2009 at 10:00:02
r0:(c0371=2.835V r1:0c02F0=2.423V r2:(<0270=2.011V r3:(c01EF=1.595V |
rd:(c016E=1.179V r5:(x00EE=0.767V r6:(x(006F=0.358\ r/:(x0000=0.000V
r8:(c0000=0.000V r9:(x0000=0.000V rA:(0000=0.000V rB:(xD000=0.000V

rC:(c0000=0.000V rD:(<0000=0.000V rE:(xD000=0.000V rF:(0000=0.000V

I3 T=2 839V T 2P =2 2N T2 2 70=2"0T TV T3 I TEF=17585V
rd:(c016A=1.167V r5:0c00F0=0.773V r6:0c0071=0.364V r7:Tec0000=0.000V
T8 EK00T0=0"000V T I C000=0"000V "TA i 0T00=U"000V" rB:(0000=0.000V
rC:(x0000=0.000V rD:0x0000=0.000V rE:(x0000=0.000V rF:(0000=0.000V

Figure H.7 Conversion order mode results

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 10

Figure H.8 shows the main() code for testing scatter/gather mode. This code reverses
the iteration order of nested for QO {} loops that performs the averaging in order to match
the data order of Figure H.2b. Otherwise, the code of Figure H.8 is similar to that of
Figure H.6.

int main (wvoid) {
uint8 uB i, uB_j, uB k;
uintlé ul6é_sum;
uintlé ulé_pot; Example found in:

float £ _pot; chapll/adc7scanl _scatter _gather I.c
configBasic (HELLO MSG) ;

CONFIG ANO_AS ANALOG(); CONFIG ANl AS ANALOG(); CONFIG AN4_AS ANALOG() ;
CONFIG_ANS5_AS ANALOG() ; CONFIG AN10_AS ANALOG(); CONFIG_ANL11_AS ANALOG() ;
CONFIG AN12 AS_ ANALOG() ;

CONFIG_LED2() ;

configDMA ADC(ADC_SCAN ANO | ADC SCAN AN1 | ADC_SCAN AN4 | \
ADC_SCAN AN5 | ADC_SCAN AN10O | ADC SCAN AN11 | ADC_SCAN AN12,
31, ADC_12BIT FLAG, CONVERSIONS PER INPUT) ;

uB waiting = 1; Selects scatter/gather

while (1) { mode.

while (uB waiting){}; // wait for valid data in ISR
//data is updated in array by DMA ISR when u8 waiting flag is cleared
//iterate over channels, and average results for each channel
//data in array will not be updated again by DMA ISR until uB8 waiting flag is set.
uB k = 0; //buffer index
for (uB_i=0; uB_i<16; u8_i++) { //each channel
for (uB_j=0; uB_j<CONVERSIONS PER INPUT; u8_ j++) { //each result per channel

if (u8_j == 0) ulé_sum = aulé buffer[uB k];
else ulé sum += aulé buffer[uB k];
ug k++;

}
ulé_pot = ulé_sum/CONVERSIONS PER INPUT; //take the average
f pot = 3.3 / ADC NSTEPS * ul6 pot;
printf("r");
if (u8_i < 10) outChar('0O'+uB i);
else outChar('A'-10+u8 i);
printf (":0x%04X=%1.3fV ", ulé _pot, (double) f pot);
if ((u8_i % 4) == 3) printf ("\n") ;
} //end for()
printf("\n") ;
uB_waiting = 1;
doHeartbeat () ;
DELAY MS(1500) ;
} //endof while()
} // endof main()

Figure H.8 main() code for processing results produce by scatter-gather order mode.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 11

Figure H.9 shows the console output for scatter/gather mode. Observe that values are
arranged by ADC input number.

Reset cause: Power-on.

Device ID = (00000675 (PIC24HJ64GP502), revision (00003001 (41) Results arranged by
Primary Osc (XT, HS, EC) with PLL ADC input number

adeiscan] dma scatter_oather 1. huit.on. May. 8. 20092 101006 &0
r:0c0371=2.839V r1:002F0=2.423V r2:0<0000=0.000V r3:(<0000=0.000V
rd:0c026F=2.008V r5:0«01EE=1.552V r§:3<0000=0.000V r7-0<0000=0.000V
r8:0<0000=0.000V r9:0x0000=0.000V rA:(<016D=1.176V rB:0<00ED=0.764V
rC:c006F=0.358V rD:(<0000=0.000V rE:(<0000=0.000V rF-(k0000=0.000V

r0:(c0371=2.839V r1:(c02F0=2.423V r2:(c0000=0.000V r3:(<0000=0.000V
rd:(c0270=2.011V r5:0e01EF=1.595V r6:0x0000=0.000V r7:C<0000=0.000V
r8:0c0000=0.000V r9:(e0000=0.000V rA:(016F=1.183V rB:(00EF=0.770V
rC:(c0070=0.361V rD:(x0000=0.000V rE:(cD000=0.000V rF:(c0000=0.000V

Figure H.9 Scatter/gather mode results

Recall that the DMA ISR toggled the LED2 output. Figure H.10(a) shows the timing
results for the seven ADC inputs for the case of one conversion per input. In 10-bit mode,
each conversion takes 10.75 ps for TAD = 250 ns (Recall that the ADC was configured
for TAD =10 x Tcy with Fcy =40 MHz, Tcy = 25 ns, so TAD = 10 x 25 ns = 250 ns).
Each conversion takes 43 TAD periods: 31 TAD for sampling, 10 TAD for the conversion
itself, and 2 TAD overhead. So, one conversion = 43 x 250 ns = 10.75 ps.

The time for seven conversions is then 10.75 ps x 7 = 75.25 us, which matched the
measured half-period of the LED2 as shown in the logic analyzer screenshot.

Figure H.10(b) shows the timing results for the seven ADC inputs for the case of four
conversions per input. This causes the DMA ISR interrupt time to increase by a factor of
four, or 4 x 75.25 us = 301 ps.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 12

One Conversion time = Tsamp + Tconv + Toverhead
Tsamp =31 x TAD ; Tconv = 10 bits x TAD ; Toverhead =2 x TAD
One Conversion tiime = (31 + 10 +2) x TAD = 43 x TAD;

Test conditions: TCY =25 ns (FCY =40 MHz); TAD =10 = Tcy = 10 x 25 ns =250 ns

One Conversion time = 43 x TAD=43 x 250 ns = 10.75 pus

(a) For 7 ADC inputs to be scanned, with one conversion per input, the DMA ISR will

be called every 7 x Conversion Time =7 x 10.75 ps=75.25 us.

The logic analyzer screen shot below shows the LED2 output begin toggled in the DMA ISR
every 75.25 us.

Signal \'TE;E +200us
LED2 DO
0 {1 »
—
Iy Acquisition: 1, Samples: 15.3M Interval T->4: 75.245us Interval A->B: 75.25us

The logic analyzer screen shot above shows the LED2 output begin toggled in the DMA ISR
every 75.25 ps.

(b) If CONVERSIONS PER INPUT is changed from 1 to 4, then the total number of conversions
increases by x 4, so the new DMA ISR interrupt time is 4 x 75.25 ps = 301 ps.

Wwire | Edge | Cursor +200us

Signal D A A L
LED2 DO I 1

A1

»
e —
dy Acquisition: 1, Samples: B1.4M Interval T->4: 0 / Interval A-»B: 300.995uz

The logic analyzer screen shot above shows the LED2 output begin toggled in the DMA ISR
every 301 ps after CONVERSIONS _PER_INPUT was changed to 4.

H.10 Timing results for LED2 output toggled by the DMA ISR

PING-PONG BUFFERING

Figure 11.21 discussed how to use the ping-pong buffering mode of ADC module in a
P1C24 CPU without DMA. This was accomplished by setting the buffer fill mode select
bit (BUFM) of ADxCONZ2, causing the ADC to write to the first half of the 16-entry
hardware buffer on the first interrupt, and the second half on the next interrupt. The ADC
in a PIC24 CPU with DMA does not have this capability since the hardware buffer is
only one register. However, ping-pong buffering is supported by a DMA mode as
discussed in Figure 13.4. Thus, to use ping-pong buffering, you would simply allocate
two DMA buffers, and use the DMA ping-pong mode for storage in a similar manner as
done in Figure 13.4.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 13

SIMULTANEOUS SAMPLING EXAMPLE

The code in Figures 11.25 and 11.26 performed simultaneous sampling on four channels
(AN12 - Channel 0, AN1 — Channel 1, AN2 — Channel 2, AN3 — Channel 3), averaged
them over 64 samples, and printed the results. The ADC module was also configured for
ping-pong buffering.

The next example accomplishes the same task, except for a PIC24 with DMA. The test
setup is the same as Figure 11.16 (8 resistor string), except input AN2/RBO replaces input
AN4/RB2.

Figure H.11 shows the configDMA_ADC() code that accomplishes the same
functionality as the configADC1_Simul4Chanlrq() function of Figure 11.25. The
ADC is configured for simultaneous sampling of inputs AN12, AN1, AN2, AN3 and uses
a Timer3 expiration event to begin conversion. Ping-pong buffering is accomplished by
allocating two buffers in DMA memory, and then configuring the DMA module for
continuous ping-pong mode as was originally done for the code in Figure 13.4. For
simplicity, the configDMA_ADC() function always configures for ordered conversion
mode and for one sample per ADC input. The ADC is configured for a manual sampling
start.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 14

#define CONVERSIONS_PER _INPUT 1 //for this example, assumed always to be 'l1'
#define MAX CHANNELS 16

//DMA transfer size is in words.

#define MAX TRANSFER (CONVERSIONS PER INPUT*MAX CHANNELS) .
//DMA buffers, alignment is based on number of bytes / ping-pong DMA mode
uintlé aulé bufferA[MAX TRANSFER] __ attribute ((space(dma) ,aligned(MAX TRANSFER*2))) ;
uintlé aulé_bufferB[MAX TRANSFER] _ attribute__ ((space(dma) ,aligned(MAX TRANSFER*2))) ;

Two buffers for

void configDMA ADC (uint8 uB_chlSelect, \
uintlé ulé_chl23SelectMask, \
uintlé ulé numTcyMask) {

AD1CONlbits.ADON = 0; // turn off ADC (changing setting while ADON is not allowed)
/** Configure the internal ADC **/

ADICONl = ADC_CLK_TMR | ADC_SAMPLE_SIMULTANEOUS | ADC_ADDMABM ORDER;
ADICON3 = (ul6_numTcyMask & OxOOFF) ;
ADICON2 = ADC_VREF AVDD_AVSS | ADC_CONVERT CHO0123;

#ifdef _ PIC24H _
ADICHSO = ADC_CHO_NEG_SAMPLEA VREFN | (u8_chOSelect & O0x1F);
ADICHS123 = ul6_chl23SelectMask;

f#else

ADICHS = ADC_CHO_NEG_SAMPLEA VREFN | (u8_ch0Select & O0x1F);
f#fendif

AD1CON4 = ADC 1 WORD PER INPUT;

ADICSSL = 0; - Example found in:

chapll/adc4simul _dma.c
//configure the DMA channel 0 interrupt

DMAOPAD = (unsigned int) &ADC1BUFO;

DMAOREQ = DMA IRQ ADC1;

DMAOSTA = _ builtin dmaoffset(aulé_buffera) ;

DMAOSTB = _ builtin dmaoffset(aulé bufferB) ;

DMAOCNT = 4 - 1; //converting four inputs, so DMAOCNT = 3
DMAQCON = //configure and enable the module Module

(DMA_MODULE_ON |

DMA_SIZE_WORD |
DMA_DIR READ PERIPHERAL |
DMA_INTERRUPT FULL |
DMA_NULLW_OFF |
DMA_AMODE_REGISTER_POSTINC |
DMA_MODE_CONTINUOUS PING PONG)”

Continuous ping-pong mode for DMA

_DMAOIF = 0;
_DMAOIP = 6;
_DMAOIE = 1;
ADICONlbits.ADON = 1; // turn on the ADC

}

H.11 ADC/DMA configuration code for simultaneous sampling example

Figure H.12 shows the DMA ISR for the simultaneous sampling example. It is similar in
nature to the ADC ISR used in Figure 11.25 for the original simultaneous sampling
example of Chapter 11. The code determines the active ping-pong buffer and then
accumulates these to a temporary buffer (aul6_buffer[]). Once 64 conversions have
been accumulated, the values are averaged to a buffer named aul6_sum[] and the
u8_goData flag is set to signal main() that the averaged values are ready. The main()
code for this example is the same as found in Figure 11.26, except the
configADC1_Simul4Chanlrg() function call has been replaced by the
configDMA_ADC() function shown in Figure H.11.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 15

Example found in: chapl i/adc4simul dma.c

uintlé aulé_buffer[MAX TRANSFER] ;

volatile uintlé aul6é sum[MAX TRANSFER];

volatile wuint8 u8_gotData;

volatile uint8 u8_activeBuffer; «—— Flag used to track active buffer for

ping-pong mode.

void _ISRFAST DMAOInterrupt(veid) {

}

static uint8 u8_adcCount=64;

uint8 uB _i;

uintlé¥* aulé_adcHWBuff = (uintlé*) &aul6 bufferA;
_DMAQIF = 0;

if (u8_ activeBuffer) {
aul6_adcHWBuff = (uintlé*) &aulé bufferB;
uB8_activeBuffer = 0; .
} - Determine the addres of
else { the active buffer.
aulé_adcHWBuUff = (uintlé*) &aulé6 bufferd;
uB_activeBuffer = 1;

}

Copy the conversions from DMA memory

for (uB_i=0; u8_i<MAX TRANSFER; uB i++) {
to a buffer, accumulate the values.

//accumulate the sum
aul6_buffer[uB8 i] += aulé_adcHWBuff[uB_i]; :}
} //end for()
// we got the data, so start the sampling process again
SET_SAMP _BIT ADC1(); +—— I[mportant - must start sampling again!
uB_adcCount--;
if (u8_adcCount==0) {

u8_adcCount = 64; Have accumulated 64 conversions
u8_gotData = 1; for each ADC sampled input, so
for (u8_i=0; uB8_ i<MAX TRANSFER; u8 i++) { average them, copy to a result
aulG_sum[uB_i] = auls_buffer[us_i]; buffer.
aul6_buffer[u8 i] = 0;

} //end for()
}
// toggle a port pin so that we can measure how often DMA IRQs are coming in
LED2 = !LED2;

H.12 DMA ISR code for simultaneous sampling example

Figure H.13 shows the console results for the simultaneous sampling example. Note that
rO corresponds to AN12 — Channel O (first conversion), r1 to AN1 — Channel 1 (second
conversion), r2 to AN2 — Channel 2 (third conversion), and r3 to AN3 — Channel 3
(fourth conversion). The values for AN12, AN1, AN2 correlate with results found in
Figures H.7 and H.9.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 16

10 is AN12 - Channel 0
rl is AN1 - Channel 1
12 is AN2 - Channel 2
r3 is AN3 - Channel 3

adcdsimul_dma.c, buit on May 8 2009 at 12:51:27

r0:1BF7=0.361V r1:IxDE72=2 870V r2:(xBDED=2 450V r3:(xSD8D=2.033V
r0:B<1BFF=0.361V r1:0xDE78=2.871V r2:«BDDF=2.450V r3:0x3D9A=2.034V
r0:Bc1BF6=0.361V r1:IxDE76=2.870V r2:(IxBDE2=2 450V r3:x8D97=2.033V
rl:c1BFB=0.361V r1:IxDE75=2.870V r2:IxBDDE=2 450V r3:(5D35=2.033V
r0:(x1BFA=0.361V r1:(«DE75=2.870V r2:(xBDEG=2 450V r3:0x5D52=2 033V
r0:0c1BFA=0.361V r1:IxDE75=2.870V r2:(xBDE3=2 450V r3:(x8D95=2.033V
r0:«1BF6=0.361V r1:IxDE78=2.871V r2:(IxBDED=2 450V r3:(x8D58=2.033V
r0:(1BF8=0.361V r1:xDE75=2.870V r2:(xBDED=2.450V r3:(x5D51=2.033V

H.13 Results for simultaneous sampling example

SUMMARY

If only single ADC conversions are being used (no scanning or simultaneous sampling),
then the code examples in Chapter 11 work the same on P1C24 CPUs with or without
DMA because the result is always written to ADCxBUFO. However, if multiple
conversions are done, then PIC24 CPUs without DMA have 15 additional registers
named ADCxBUF1 through ADCxBUFF for buffering these results, and the ADC interrupt
is used to signal when a group of conversions is finished. For PIC24 CPUs with DMA,
these registers are not present, and DMA memory is used to buffer the results, with the
DMA interrupt occurring when a group of conversions has finished.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

	ADC differences with and without DMA
	Automated Channel Scanning with DMA
	Ping-pong Buffering
	Simultaneous Sampling Example
	Summary

