
The ADC Module with DMA Appendix H 1

Appendix H
The ADC Module with DMA
This appendix discusses the ADC operation on PIC24 CPUs that have DMA. The ADC
material in Chapter 11 is focused on PIC24 CPUs without DMA. This appendix assumes
that the reader has covered the material in Chapter 11 on ADC operation and in Chapter
13 on the DMA module. This appendix frequently refers to figures in Chapters 11 and 13.

ADC DIFFERENCES WITH AND WITHOUT DMA
As discussed in Chapter 13, some PIC24 CPUs support a DMA module. For example, the
PIC24HJ32GP202 CPU used in Chapter 11 that discusses ADC operation does not
support DMA, while the PIC24HJ64GP502 used in Chapter 13 does have the DMA
module. The ADC module in DMA-capable PIC24 CPUs operates differently in some
modes than what is discussed in Chapter 11. In referring to Figure 11.7, the ADC module
in a PIC24 CPU with DMA does not have ADC buffers 1 through F (registers ADCxBUF1
through ADCxBUFF). What this means is that ADC operation that only involves a single
conversion where the result is placed in ADCxBUF0 is the same regardless of whether
DMA is supported or not. Thus, the example code in Figure 11.14 and the
convertADC1() function of Figure 11.13 operates the same way regardless of whether
DMA is supported or not.

However, modes that automatically perform multiple conversions, such as the scan mode,
operate differently on PIC24 CPUs with DMA. In these cases, the DMA module must be
used to store the multiple ADC conversion results instead of them being placed in the
ADCxBUF1 through ADCxBUFF registers. The DMA module gives more flexibility in
terms of the number of conversions performed and how they are stored in memory. The
ADC code examples in Figures 11.17/19 (automatic scanning), Figure 11.21 (automatic
scanning), Figure 11.22 (automatic scanning with ping-pong buffers), and Figures
11.25/11.26 are not appropriate for PIC24 CPUs with DMA.

AUTOMATED CHANNEL SCANNING WITH DMA
Our first example uses the same hardware setup as described in Figure 11.16. Our goal is
to perform automated channel scanning on seven ADC inputs (AN0, AN1, AN4, AN5,
AN10, AN11, AN12). In the code example of Figure 11.17, we noted that these results
were placed in ADC registers ADCxBUF0 through ADCxBUF6 and that the ADC ISR
interrupt occurred after the seven conversions had been completed. The ADC ISR then
copied the registers to a memory buffer named au16_buffer[]. The main() code of
Figure 11.19 printed these to the console as shown in Figure 11.20.

The presence of the DMA module requires the following changes:

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 2

• The ADC ISR is no longer used, as the ADC interrupt now occurs after each
conversion, at which point the DMA module transfers the result to a user-
specified DMA buffer. The DMA interrupt is used instead to indicate when the
seven conversions have finished and the DMA ISR is used to copy these to
another memory buffer.

• A DMA channel must be configured to be linked to the ADC module and a buffer
in DMA memory allocated for the ADC results. The DMA module is configured
for word mode since each ADC result is larger than a byte.

• There are two choices for storing the ADC results in DMA memory, conversion
order mode or scatter/gather mode. In conversion order mode, the results are
stored in DMA memory in the order that the conversions are performed as shown
in Figure H.1a. Thus, for our seven ADC inputs we have the following: AN0 is
stored at DMA buffer offset 0, AN1 at offset 1, AN4 at offset 2, AN5 at offset 3,
AN10 at offset 4, AN11 at offset 5, and AN12 at offset 6. This matches the
ordering of Figure 11.20 in which the seven ADC conversions are stored in ADC
registers ADCxBUF0 through ADCxBUF6. In scatter/gather mode, results are stored
in the DMA buffer at the offset that matches the channel number. Thus, AN0 is
stored at offset 0, AN1 at offset 1, AN4 at offset 4, AN5 at offset 5, AN10 at
offset 10, AN11 at offset 11, and AN12 at offset 12.

Figure H.1 Conversion order mode versus gather/scatter mode for storing ADC results to
DMA memory for one conversion per ADC input.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 3

The ADC module has the capability of performing multiple conversions per ADC input
during scanning. Figure H.2 shows the buffer storage using the same channels as Figure
H.1, but with four conversions per ADC input. The conversion order mode is more
efficient in terms of DMA memory usage since DMA memory is used for those channels
not scanned during scatter/gather mode, but these locations have to be allocated.
However, scatter/gather mode makes it easy to reference the conversions by input
number and conversion number.

Figure H.2 Conversion order mode versus scatter/gather mode for storing ADC results to
DMA memory for four conversions per ADC input.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 4

Figure H.3 shows the first part of the configDMA_ADC() function used to configure the
ADC and DMA modules for automated scanning operations. This is a modified version
of the ADC configuration code found in the Figure 11.17 and also includes DMA
memory buffer allocation as originally discussed in Figure 13.4

The configDMA_ADC() function adds two additional parameters over the parameters
found in the configADC1_AutoScanIrqCH0() function of Figure 11.17.

• u8_useScatterGather: non-zero for scatter/gather mode and zero for
conversion order mode.

• u8_dmaLocsPerInput: this specifies the number of DMA buffer locations to be
used per ADC input and is only used in scatter/gather mode.

The ADDMABM bit in AD1CON1 is used to choose between scatter/gather mode
(ADDMABM = 0) and conversion order mode (ADDMABM = 1). When using
conversion order mode the DMA channel is configured for register post-increment
addressing, while peripheral indirect is used for scatter/gather mode.

The remainder of the configDMA_ADC() function is given in Figure H.4. Note that the
DMA request line (DMA0REQ) is tied to the ADC interrupt, with the DMA address
register (DMA0PAD) set to the address of the ADC buffer register (ADC1BUF0). The DMA
module is configured to generate an interrupt after all of the ADC conversions are
performed.

The ADC is also configured to use a TAD = 10 × TCY instead of using the dedicated ADC
internal oscillator. This is done so that we can accurately measure the TAD period. At FCY
= 40 MHz, TCY = 25 ns, so TAD = 10 × 25 ns = 250 ns.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 5

Figure H.3 ADC/DMA configuration code for channel scanning, part 1

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 6

Figure H.4 ADC/DMA configuration code for channel scanning, part 2

Figure H.5 shows the DMA ISR code used in our application. The DMA ISR is triggered
whenever the ADC conversions are finished, which are the number of inputs scanned
multiplied by the number of conversions performed per input. The main() code sets the
u8_waiting flag to non-zero when it is ready for the latest ADC conversion results to
be copied from DMA memory to a local array named au16_buffer[]. The LED2 port

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 7

is toggled each time the DMA ISR is executed so that we can measure how long it takes
to perform the ADC conversions.

Figure H.5 DMA ISR code

Figure H.6 shows the main() code for processing the results that are produced by
conversion order mode. The nested for(){} loops in the while(1){} loop averages
the results obtained per ADC input. The outer loop performs
CONVERSIONS_PER_INPUT iterations while the inner loop iterations are equal to the
number of ADC inputs that are scanned. After averaging the results for each ADC input,
the results are printed to the console.

The u8_waiting flag is used by main() to signal the DMA ISR when it is ready for
new results to be copied into the au16_buffer[] array. This is needed so that the
au16_buffer[] array has stable values in it while the results are being averaged.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 8

Figure H.6 main() code for processing results produced by conversion order mode.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 9

Figure H.7 shows the results of the conversion order mode. Observe that the first seven
buffer locations have the conversions from our scanned channels (AN0, AN1, AN4,
AN5, AN10, AN11, AN12). This is a similar result to that shown in Figure 11.20 for a
PIC24 CPU without DMA.

Figure H.7 Conversion order mode results

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 10

Figure H.8 shows the main() code for testing scatter/gather mode. This code reverses
the iteration order of nested for(){} loops that performs the averaging in order to match
the data order of Figure H.2b. Otherwise, the code of Figure H.8 is similar to that of
Figure H.6.

Figure H.8 main() code for processing results produce by scatter-gather order mode.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 11

Figure H.9 shows the console output for scatter/gather mode. Observe that values are
arranged by ADC input number.

Figure H.9 Scatter/gather mode results

Recall that the DMA ISR toggled the LED2 output. Figure H.10(a) shows the timing
results for the seven ADC inputs for the case of one conversion per input. In 10-bit mode,
each conversion takes 10.75 µs for TAD = 250 ns (Recall that the ADC was configured
for TAD = 10 × TCY with FCY = 40 MHz, TCY = 25 ns, so TAD = 10 × 25 ns = 250 ns).
Each conversion takes 43 TAD periods: 31 TAD for sampling, 10 TAD for the conversion
itself, and 2 TAD overhead. So, one conversion = 43 × 250 ns = 10.75 µs.

The time for seven conversions is then 10.75 µs × 7 = 75.25 µs, which matched the
measured half-period of the LED2 as shown in the logic analyzer screenshot.

Figure H.10(b) shows the timing results for the seven ADC inputs for the case of four
conversions per input. This causes the DMA ISR interrupt time to increase by a factor of
four, or 4 × 75.25 µs = 301 µs.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 12

H.10 Timing results for LED2 output toggled by the DMA ISR

PING-PONG BUFFERING
Figure 11.21 discussed how to use the ping-pong buffering mode of ADC module in a
PIC24 CPU without DMA. This was accomplished by setting the buffer fill mode select
bit (BUFM) of ADxCON2, causing the ADC to write to the first half of the 16-entry
hardware buffer on the first interrupt, and the second half on the next interrupt. The ADC
in a PIC24 CPU with DMA does not have this capability since the hardware buffer is
only one register. However, ping-pong buffering is supported by a DMA mode as
discussed in Figure 13.4. Thus, to use ping-pong buffering, you would simply allocate
two DMA buffers, and use the DMA ping-pong mode for storage in a similar manner as
done in Figure 13.4.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 13

SIMULTANEOUS SAMPLING EXAMPLE
The code in Figures 11.25 and 11.26 performed simultaneous sampling on four channels
(AN12 – Channel 0, AN1 – Channel 1, AN2 – Channel 2, AN3 – Channel 3), averaged
them over 64 samples, and printed the results. The ADC module was also configured for
ping-pong buffering.

The next example accomplishes the same task, except for a PIC24 with DMA. The test
setup is the same as Figure 11.16 (8 resistor string), except input AN2/RB0 replaces input
AN4/RB2.

Figure H.11 shows the configDMA_ADC() code that accomplishes the same
functionality as the configADC1_Simul4ChanIrq() function of Figure 11.25. The
ADC is configured for simultaneous sampling of inputs AN12, AN1, AN2, AN3 and uses
a Timer3 expiration event to begin conversion. Ping-pong buffering is accomplished by
allocating two buffers in DMA memory, and then configuring the DMA module for
continuous ping-pong mode as was originally done for the code in Figure 13.4. For
simplicity, the configDMA_ADC() function always configures for ordered conversion
mode and for one sample per ADC input. The ADC is configured for a manual sampling
start.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 14

H.11 ADC/DMA configuration code for simultaneous sampling example

Figure H.12 shows the DMA ISR for the simultaneous sampling example. It is similar in
nature to the ADC ISR used in Figure 11.25 for the original simultaneous sampling
example of Chapter 11. The code determines the active ping-pong buffer and then
accumulates these to a temporary buffer (au16_buffer[]). Once 64 conversions have
been accumulated, the values are averaged to a buffer named au16_sum[] and the
u8_goData flag is set to signal main() that the averaged values are ready. The main()
code for this example is the same as found in Figure 11.26, except the
configADC1_Simul4ChanIrq() function call has been replaced by the
configDMA_ADC() function shown in Figure H.11.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 15

H.12 DMA ISR code for simultaneous sampling example

Figure H.13 shows the console results for the simultaneous sampling example. Note that
r0 corresponds to AN12 – Channel 0 (first conversion), r1 to AN1 – Channel 1 (second
conversion), r2 to AN2 – Channel 2 (third conversion), and r3 to AN3 – Channel 3
(fourth conversion). The values for AN12, AN1, AN2 correlate with results found in
Figures H.7 and H.9.

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

The ADC Module with DMA Appendix H 16

A supplement for Microcontrollers: From Assembly Language to C Using the PIC24 Family, by
Reese/Bruce/Jones.

H.13 Results for simultaneous sampling example

SUMMARY
If only single ADC conversions are being used (no scanning or simultaneous sampling),
then the code examples in Chapter 11 work the same on PIC24 CPUs with or without
DMA because the result is always written to ADCxBUF0. However, if multiple
conversions are done, then PIC24 CPUs without DMA have 15 additional registers
named ADCxBUF1 through ADCxBUFF for buffering these results, and the ADC interrupt
is used to signal when a group of conversions is finished. For PIC24 CPUs with DMA,
these registers are not present, and DMA memory is used to buffer the results, with the
DMA interrupt occurring when a group of conversions has finished.

	ADC differences with and without DMA
	Automated Channel Scanning with DMA
	Ping-pong Buffering
	Simultaneous Sampling Example
	Summary

