SPI, I2C Serial Interfaces

e The SPI and I°C are two synchronous serial interfaces on the
PIC24 uC

* Both are commonly used in industry

» The SPI port requires a minimum of three wires (and usually
4), and 1s technically duplex, even though most transfers are
half-duplex. Its top speed on the PIC24 uC 1s 10 MHz.

 Best for high-speed serial transfer

*Very simple

 The I°C port requires only two wires regardless of the number
of peripherals, 1s half-duplex, and top speed 1s 1 MHz.

 Best 1f you are trying to reduce external pin usage.
V0.2 1

Serial Peripheral Interface (SPI)

Peripheral 1 (Slave)

PIC24 nC (Master)

SDOx >15Dl1 Peripheral 2 (Slave)
SDIx [+—@—SDO
—|SDI
SCKx |——e@—»{SCK
. -—SDO
PIO » Device Select#
— ™ SCK
PIO »| Device Select#

Data is sent MSb first; received data is clocked in as transmitted data is clocked out.
Every transmission is a duplex transmission because data is exchanged on SDOx/SDIx.
Device Select# must be low before transmission starts to select the Slave and

must remain low for the duration of the transfer.

| | | | | | |
SDO X07):(06):(05):(04):(03):(oz):(01)Koo CKE = 1

SCK CKP =0

SDI {II?HII6>—(II5>—<[I4>—<II3>—<II2>—<II1>—<[Ib>— SMP = 1

One instruction cycle |
latency to set flag —! -

SPIXIF (status bit)

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

V0.2

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

SPIx Block Diagram for PIC24 uC

SCKx

SSxA Syne Control Select
~+— Control Clock Edge

SDOx Shift Control

SDIx bit 0 Y
AI% SPIxSR

Transfer V

SPIxRXB

& Transfer

SPIxTXB

Y

i

SPIxBUF

1:1to 1:8

<|‘ Secondary [
Prescaler

1:1/4/16/64
Primary
Prescaler

_FCY

SPIxCON1<1:0>

SPIxCON1<4:2>

Enable Master Clock

Figure redrawn by author
from Fig 18-1 found in the

PIC24H FRM

datasheet (DST0243A),
Microchip Technology Inc.

Read SPIxBUF Write SPIxBUF
y, 16

Internal Data Bus

_

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

/

Figure redrawn by author from PIC24 FRM datasheet (DS70243A). Fig 18-3, Microchip Technology Inc.

. User writes new data to
SPITBE SPABURSS o SPIXTXBU0SPISSR SPRRUF SPI
(SPIXSTAT<1>) Transmission
SCKx
(CKP =0, CKE = 0) , | | , , , | : Formats
SCKx I | I I | | | I E
(CKP = 1, CKE = 0) | | | | | | | | i CKP — clock
SCKx P U U I QP polarity.
CKP=0,CKE=1 !
SCKx : .
(CKP=1,CKE=1) ! which edge

f output data i1s
' transmitted on.

SDOx (CKE = 0) X b7 Xbﬁ' :XbS :Xb4 p(bz. >(b2 p(bl :Xb()

SDOx (CKE = 1) Xb7 Xb6 Xbs b4 Xb3 Xb2 Xbl XbO

X

SDIx (SMP = 0) — b7 b6>—§-< bs)ﬂi{ b4>—§-< b3>-§-(b2>—§-< bl }r(o —— Which format is used

Input Sampl l !

s 4P L epends on
SDLx (SMP=1) ————(b7)}~ b6 < b5)~ b4)< b3)< b2)~ b1)< Ho — peripheral.

nput Sampls B ylie xiie sy sy sl sfie iie

(SMP=1) I 1 instruction cycle L CKP :O, CKE — 1
SPIXIF latency to set SPxIF — —-— seems COmmon.

User reads SPIxBUF SPLxSR moved mo___

SPIRBF « SPIXRXB ~y
(SPIXSTAT<0>)

4

V02 Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

SPI C Functions

void checkRxErrorSP11() { In pic24_spi.c, pic24_spi.h
iIT (SPI1STATbits.SPIROV) {
//clear the error
SPI1STATbits.SPIROV = 0O;
reportError("'SPI1 Receive Overflow\n');

}
+ e Only function needed besides configuration

uintl6é i1oMasterSPI11(uintl6 ul6 c) {
checkRXErrorSP11();
_SPI1IF = 0; //clear interrupt flag since we are about to
// write new value
SPI1BUF = ul6 c;
while (!_SPI1IF) { //wait for operation to complete
doHeartbeat();

s
return SPIlBQEi\\iireturn the shifted 1n value

Must ALWAYS read the input buffer or

SPI overflow can occur! 5
V02

A SPI Transfer

(a) Master sending string to Slave

T+0 +1|us +2|u $ +3|us +4|u3 +5|us
T . « . Co o o o
| Slave Select ($5#) | E !
Master _sci) nnnnnnnn T HMMMM_ Slave
L 00
SDI SD]I(M) : : : - '-;[)0](';) SDO
T — 5) Ny
SDO SPOIM) [[T L ML ; PTG spI
(bI) Master readinlg reversed strin;lg from Slave | | |
T+/7.5us +lus +2Uus +3Us +dus +Hus
T T T T T
1 Slave Select (SS#) : : : e
SCLK L UL UL [UUUTUI
' I e v D
SDI SpIIGHy = p :’EW >b0
[T T L :
— m {0 T
SDO spoiouy R\ — ‘*’ SDH(‘S)

"N

Dummy data written by master to get data back from slave.

To read data from a slave device, the master has to write data

in order to get data back!
V0.2 6

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

PIC24 uC Master to DS1722 Thermometer

3.3V DS1722

PIC24HI32GP202 T T33V ‘ ‘
VDDD VDDA The Maxim DS1722 is a
A . digital thermometer with
KBS > CF 3.3V a SPI port. Range is
SDO1 (RP6) »{ SI SERMODE \ +120 °C to =55 °C.
SCK1 (RP7
(_) > SCLK Selects SPI mode
SDI1 (RP5) |- SDO GND —]

We use RB3 from the PIC24 uC as the chip select for the DS1722.
This chip select 1s high true.

V0.2

7
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

(a) Configuration byte

LSb .
Msb[1 1 | _|ISHOT| R2 | RI | RO | SD DS1722 Details

SD: 0- continuous conversion, 1- complete current conversion, enter low power mode.

R2/R1/R0: 000 8-bit mode, 0.075s conversion time, 1.0° C resolution (8.0 signed fixed-point)
001 9-bit mode, 0.15s conversion time, 0.5° C resolution (8.1 signed fixed point)
010 10-bit mode, 0.3s conversion time, 0.25° C resolution (8.2 signed fixed point)
011 11-bit mode, 0.6s conversion time, 0.125° C resolution (8.3 signed fixed point) W .
Ixx 12-bit mode, 1.2s conversion time, 0.0625° C resolution (8.4 signed fixed point) rite

_ISHOT: when SD=1 writing a | to this bit starts conversion, is cleared when conversion finished. configuration byte
(b) Single-byte transfer, write configuration to get the DS 1 7 22
cE_/ \ started.
pica4) sckr _ LU [LELL]] sexa| PS1722 | We will use
uC To read configuration byte, .
use address 0x00 continuous

SDO1 Address=0x80X Config Byte XSDI]
_________________ X XX conversion mode.

(c) Multi-byte transfer, read temperature

CE__/ \

(e 1)
seki LV L JILT] se
PIC24
uC < SDO1 XAddress=UxUlX don’t care X don’t care XSD] >DSI?22
\ SDII —__LSBTemp X, MSB Temp XSDO}

Read from address 0x01 Read from aﬁ'dress 0x02

(d) Temperature data format is 8.4 two’s complement fixed point (integer portion is
MSByte, fractional is LSByte).
Celsius (float) = 16-bit temperature (int16) / 256

Copyright Delmar Cengage Learning 2008. All Rights Reserved. 8

V0.2

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Utility Functions for DS1722

#define CONFIG_SLAVE_ENABLE () CONFIG_RB3_AS DIG _OUTPUT ()

tdefine SLAVE ENABLE () _LATB3 =1 //high true assertion
#define SLAVE DISABLE () _LATB3 = 0 <+— RB3 used for the DS1722 chip
select.

void configSPI1 (void) {
//spi clock = 40MHz/1*4 = 40MHz/4 = 10MHz <+—— 10 MHz SPI clock

SPI1CON1 = SEC PRESCAL 1 1 | //1:1 secondary prescale
PRI PRESCAL 4 1 | //4:1 primary prescale
CLK POL ACTIVE HIGH | //clock active high (CKP = 0)
SPI_CKE OFF | //out changes inactive to active (CKE=0)
SPI_MODES8 ON | //8-bit mode *_ Clock can either be
MASTER ENABLE ON; //master mode]ﬂghiHJQ“;uHejbut
CONFI0 300110 KE(8) ¢ //use RDE fox EDO ust use CRE-0
H use or
CONFIG_SCK1OUT TO RP(7); //use RP7 for SCLK }RP6 used for SDOI, RP7
CONFIG SDI1 TO RP(5); //use RP5 for sp1 ~/for SCKI, and RPS5 for SDI.
CONFIG SLAVE ENABLE () ; //chip select for DS1722
SLAVE DISABLE () ; //disable the chip select

SPI1STATbits.SPIEN = 1; //enable SPI mode

Macros for SPI configuration are defined in pic24 spi.h

V0.2 9

Utility Functions for DS1722 (cont.)

void writeConfigDS1722 (uint8 u8 i) {

}

SLAVE ENABLE () ; //assert chipselect Writes to the DS1722
ioMasterSPI1 (0x80) ; //config address
ioMasterSPI1 (u8 i) ; //config value
SLAVE DISABLE () ;

configuration register.

intlé readTempDS1722() {

uintl6 ulé lo, ul6 hi;
SLAVE ENABLE () ; //assert chipselect .
ioMasterSPI1 (0x01) ; //LSB address Reads 16-bit temperature

ul6é lo = ioMasterSPI1(0x00); //read LSByte value from DS1722.
ulé hi = ioMasterSPI1(0x00); //read MSByte

SLAVE DISABLE () ; —
return((ulé_hi<<8) | ulé lo); Send dummy data to get

/ data back.

Upper/lower bytes of temperature returned as single 16-bit value.

V0.2 10

int main (void) { (a) main () function.
intlé 116 temp;
float £ tempC,f tempF;
configBasic (HELLO MSG)J(/,;"]Q’bH]nOde
configSPI1 () ;
writeConfigDS1722 (0xE8) ;
while (1) {
DELAY MS(1500) ;
116 temp = readTempDS1722() ;
f tempC = 116 temp;
f tempC = £ tempC/256;
f tempF = f tempC*9/5 + 32;
printf ("Temp is: 0x%0X, %4.4f (C),
(double) f_tempC,

//12-bit mode

‘r/,/”

(b) Sample Output

$4.4f (F)\n",
(double) f_tempF};

Configure DS1722 for continuous conversion,

Use floating point and printf
for convenience to print
temperature value in Celsius
and Fahrenheit.

//convert to floating point
//divide by precision

Testing the
DS1722

ilé_temp,

dsl722 spi tempsense.c, built on Jun 27 2008 at 21:56:03

Temp is: 0x1BCO, 27.7500 (C), 81.9500 (F)

Temp is: O0x1BDO, 27.8125 (C), 82.0625 (F)

Temp is: 0x1BDO, 27.8125 (C), 82.0625 (F)

Temp is: 0x1C30, 28.1875 (C), 82.7375 (F)

Temp is: 0x1D70, 29.4375 (C), 84.9875 (F)

Temp is: 0x1DCO, 29.7500 (C), 85.5500 (F)

Temp is: O0x1E10, 30.0625 (C), 86.1125 (F)

Temp is: Ox1E30, 30.1875 (C), 86.3375 (F) 1

Temp is: 0x1D90, 29.5625 (C), 85.2125 (F)

Temp is: 0x1D30, 29.1875 (C), 84.5375 (F)

Temp is: OxI1CFO, 28.9375 (C), 84.0875 (F) y
V0.2

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Finger placed on sensor
to raise temperature.

Finger removed from sensor.

11

Bus Definition

(a) Transmitter Receivers Transmitter Receivers w
>

I
I
J : Joe,® s>
°“",H\ . |
I
I \ Tomg : I \ Channel| Ton =

,H\ I /B\<

1
) : Wassup. Bill?
Bill e . Bill N

/M

| The add ob
Bob ; ¢ address
———
the address matches, so this receiver responds
(b) Transmitter Receivers Transmitter Receivers
=
A
\Z” Comm 192.168.0.5 192°168.0.3 1=
4

Channel 192.168.0.2

v ~
S (Ethernet) ‘i s>
192.168.0.2
192.168.0.1 192.168.0.2
- 92.168.0.3 ==
192.168.0.3,
(=) = [will respond.
the address ——> 192:168.0.3 o

The address 192.168.0.3
matches, so this receiver responds

V0.2

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

When a device
on a bus talks,
all hear what 1s
said.

An address is
used to specify
what device the
communication
1s intended for.

12

Inter-Integrated Circuit (I°C) Bus

Recommended value for
a typical PIC24 system.

Encoded within device,

device specific
l “1” Slave to Master (read)

/ [>C Peripheral
2.2 k() 2.2kQ (address = 0b nynonng A2 A1 A0 R/'W#)

“0” Master to Slave (write)

PIC24 uC
A2 External connections
' . SCL
SCLx Al —— } determine address
SDAXx ® SDA
AQ) ——
SCLx: Clock
SD Axx: D:a I>C Peripheral I’C Peripheral
Both SCL, SDA 1 A2 —— 7 A2
are bidirectional ¢ SCL Al R SCL Al
¢ SDA ' SDA
AQ | ? A0
V0.2 13

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

[°C Bus Signaling

Idle: SDA high, SCL high Stop: SDA low to high, SCL high

Start: SDA high to low, SCL high Ack: Acknowledgement by \

. r/ Byte transmitted MSb to LSb receiver that byte amved\/ X

T

SDAT\II /13?:)(B6 \ BS)(134:)(B3 X B2 X Bl } BO \!{ ., :/‘:_

I
gy ! | I I | \ 1] .
;ll W r I

l] ~ - T
SCL 1 2| |3 41 |s5] |6 7 |8 9 *
< Data Stable) Data allowed to change o
I I |
| N | X
SDA driven by Transmitter SDA driven by
Receiver

Every byte transferred takes 9 bits because of
acknowledgement bit.

V0.2 14

I°C on the PIC24 uC

(a) I2C Module Registers

I°C Registers Description

I2CxCON Control Register

I2CxSTAT Status Register

I2CxBRG Baud Rate Register

I2CxTRN Transmit Register

I2CxRCV Receive Register

I2CxMSK Slave Mode Address Mask Register
12CxADD Slave Mode Address Register

(b) Commonly used IC Control and Status Bits

Bit Name | Register Function

SEN R2CxCON=<(= Set to begin Start sequence, cleared by HW

ESEN RCxCON<1= Set to begin Repeated Start sequence, cleared by HW
PEN R2CxCON<2= Set to begin Stop condition, cleared by HW

RCEN RCxCON=3= Set to enable recerve, cleared m HW

ACKEN R2CxCON=4= Set to enable acknowledge sequence, cleared by HW

ACKDT RCxCON=<5= ACK bat to send: 1 for NAK, 0 for ACK.

[2CEN R2CxCON=<15= Enable the [2Cx module

RBF DCxSTAT<1= Set when [2CxRCV register 1s full, cleared by HW
after read of [2CxRCV

SR2CxIF Interrupt Flag Interrupt flag set on detection of address reception 1n
Status Registers | Slave mode, reception of data, or request to transmat
data

V0.2

Support Functions — I?C Operations

(a) Support Functions for I>C Operations

I°C Support Functions (Operations)

Description

void configI2Cl (uintl6é ul6é_ FkHZ)

Enables the I°C module for operation
atulé_ FkHZ kHz clock rate

void startI2Cl (void)

Performs start operation

void rstartI2Cl (void)

Performs repeated start operation

void stopI2Cl (void)

Performs stop operation

void putI2Cl (uint8 uB8 val)

Transmits u8_val; software reset if
NAK returned.

uint8 putNoAckCheckI2Cl (uint8 u8 val)

Transmits u8_wal and returns
received acknowledge bit

uint8 getI2Cl (uint8 u8 ack2Send)

Receive one byte and send
u8_ ack2Send as acknowledge bit

These are primitive operations.

V0.2

16

Support Functions — I2C Transactions

(b) Support Functions for I>C Transactions

I°C Support Functions (Transactions)

Description

void writelI2Cl (uint8 u8 addr,uints8
u8 di)

Write 1 byte (u8_d1)

void write2I2Cl (uint8 u8_addr,uint8
uB dl, uint8 u8_d2)

Write 2 bytes (u8_d1)

void writeNI2C1l (uint8 u8 addr,uint8%
puB data, uintlé ulé cnt)

Write u16_cnt bytes in buffer
puB8_data

void readlI2Cl (uint8 uB addr,uint8*
puB_dl)

Read 1 byte; return in *pu8 d1

void read2I2Cl (uint8 uB8_ addr,uint8*
puB8 dl, uint8* puB8 d2)

Read 2 bytes; return in *pu8_di1
*puB d2

’

void readNI2Cl (uint8 uB addr,uint8*%
puB8 data, uintlé ulé cnt)

Read u16_cnt bytes; return in
*puB8 data

These are use the primitive operations to read/write 1 or more

bytes to a slave.

V0.2

17

[2C Read/Write Transactions

(a) Write two bytes to slave:
write2I2Cl (uint8 u8_ addr,uint8 u8 _dl, uint8 u8 d2)

putI2Cl (uB8 addr & OxFE) ;
- putI2Cl(u8 dl); putI2Cl(uB _d2);
1 \ | I I | \ | 1 I
| | | | | | | | I

S| u8 addri0|A| u8dl [A|l u8d2 |A[P

I i ij#:();‘ i I I i i I i
| | I | | | | | 1
/ (write) T T \
startI2C1() ACK sent by slave, Data sent by stopI2C1 ()

read by put12ci () PIC24 uC

(b) Read two bytes from slave:
read2I2Cl (uint8 u8 addr, uint8* puB dl, uint8* pu8 d2)

putI2Cl (u8_addr | 0x01);
3 *puB d2 = getI2Cl(I2C_NAK) ;

*puB dl = getI2Cl (I2C . ACK)
PIC24 uC \, ! be sent for

last byte
u8 addr | 1 *pud_dl A pu8 d2

I | RfW#—l ;‘i I I |
I I I I I I
/ (read) T \
ACK sent by slave,

Data retumed by
startI2Cl() .4 by put12ci () slave

stopI2Cl ()

V0.2

18

Example primitive function

void configl2Cl (uintl6 ulé FkHZ) {

}

uint32 u32 temp;

Compute [2C1BRG value
u32 temp = (FCY/1000L)/((uint32) ul6é FkHZ) ; R puie
u32 temp = u32 temp - FCY/10000000L - 1; Oor operation at
I2C1BRG = u32 temp; ulé FkHZ kHz.

I2C1CONbits.I2CEN = 1;<e—— FEnable [2C module

void startI2Cl (void) {<—— Functions stopI2C1 (), rstartI2C1 () are similar

}

uint8 u8 wdtState; but use bits PEN, RSEN respectively.

sz lastTimeoutError = "I2C Start";

uB wdtState = SWDTEN; //save WDT state
_SWDTEN = 1; //enable WDT
I2C1CONbits.SEN = 1; // initiate start [nitiate start Cﬂnditinn and
// wait until start finished

while (I2C1CONbits.SEN) ;

_SWDTEN = u8 wdtState; //restore WDT

sz lastTimeoutError = NULL;

wait for finish.

19
V0.2

(a) Write Transactions

#define I2C WADDR(x) (x & OxFE)
void writelI2Cl (uint8 u8_add.
uint8 u8_d1l) {

startI2C1l() ;
putI2Cl1(I2C_WADDR (uB8_ addr)) ;

(b) Read Transactions
#define I2C RADDR (x)

void readlI2Cl (uint8 ua_ad::tﬁﬁh“\\\
uint8* pu8 dl) {

startI2C1l(); _— LSb mustbe 1 forread.
putI2Cl (I2C RADDR (u8 addr)) ;

(x | 0x01)

]
1
]
1
]
1
]
1
]
1
]
1
]
1
])
putI2cl(ug di); W , *pus_dl = getI2C1(I2C_NAK); Transactions
stopI2C1() ; LSbmustbe 0 | stopI2Cl();
~ - I
} for write. : }
1
void write2I2Cl(uint8 u8_addr, , void read2I2Cl (uint§ uf_addr,
uints u8_d1, uints U.B_dz){ X uint8* puB_dl, uint8* pu8_d2) {
startI2C1 () ; '\ startI2Cl();
putI2Cl(I2C_WADDR (u8_addr)) ; E f“tézgi (Izc_ﬁzgizl;%a:g; ;) i
putI2Cl (u8 dil) ; ' pus_cdl = ge _ ;
putI2Cl (us_dz) P , *pu8_d2 = getI2Cl(I2C_NAK) ;
12C1() ; ' stopI2Cl();
 SroprEero) Used for block data
. . . 1 ——
Ez;ig:r;ﬁgﬂ;i:;fulnts u_addz, <Fﬁi void readNIZ2C1 IuintB u8 addr, TH%HleérS'
Bint16 w16 ont) (| uint8* pus data, uintls uls_ont)
intl 16 i: uin ulé i;
Starcroe (0 | start12c1();
putI2Cl (I2C_WADDR (u8_addr)) ; , PutI2CL(I2C_RADDR(u§_addr)) ;
for (ul6_i=0; ul6_i < ulb_cnt;){ . f?; Eui:_}=?ﬁ Uig_l E E}ﬁ_cnt;J{
utI2Cl (*puB data) ; 1L oluid 1 *= ulb _cnt-
guS dat;+$;u16 i+i; E *puB_data = gatI2Cl(I2C_ACK);
} - - : else *pu8 data = getI2Cl(I2C NAK) ;
stopI2Cl() ; : puB_data++; u16_i++;
} y)
, stopI2Cl();
V)
]
20

V0.2

PIC24 uC Master to DS1631 Thermometer

33V
2.2 kQ ;2.2 kQ
3.3V DSI1631

VDD A2 The Maxim DS1631 is a

SDA1 SDA Al [2C address digital thermometer and
. personalization thermostat with
SCLI ¢ SCL A0 an I2C port. Range is
- Toutr GND +125 °C to -55 °C.
PIC24HIJ32GP202 —

Similar to the DS1722 but does not have as many precision
options. Also has a thermostat function — Two internal registers
named TH, TL used for that. When temp > TH, the TOUT

output goes high. When Temp falls below TL, the TOUT output
goes back low.

TH, TL are stored in non-volatile memory.
V0.2 21

DS1631 Details

Address byte format for 76 o5 4 3 2 1 0
DS1631 Temperature Sensor 1 0 0 1 [A2|Al|A0|R/W#
9 (8.1), 10 (8.2), 11 (8.3). 12-bit (8.4) M5Byt LSByte

temperature in Celsius, fixed-point T[11:4] of temp. value|| T[3:0]
two’s complement format.

~273125°C=0xE4B0| 1 1100100 10110000

(12-bit mode) 0xE4BO0 = 6992 = —6992/256 = -27.3125 °C
(a) Standalone command

R/W# =0, Command
Write operationh bytel

CMD = 0x51 to start continuous conversion.
CMD = 0x22 to stop continuous conversion.

S|PC addr 0]A] CMD__ |AlP|e— §40p condition

(b) 8-bit Write CMD = 0xAC accesses configuration register.
R/W# =0, Command Data
' i byt byte
Write Dperatlonh yte l y l

Used to configure the device

S|PC addr 0] cMD |A| Data |Alp

V02 22

DS1631 Details

(¢c) 16-bit Write CMD = 0xA1l Temp. High Trigger.
R/W# =0, Command Data Data CMD = 0xA2 Temp. Low Trigger.
Write operation N byte l byte l byte l

S|PC addr0]Al CMD |Al MSByte [A| LSByte |Alp Used to set TH, TL regs.

(d) 8-bit Read CMD = 0xAC accesses configuration register.

R/W#= 10, Command R/W#=1, Data byte from
Write Dperatiﬂnh byte l Read operaiion lD51 631

Used to read the config.
S|I°C addr 0} ¢MD__|AR[PC addr1]A| Data N]P| register
Repeated Start condition 7 NAK /7

(e) 16-bit Read CMD = OxAA accesses 16-bit temperature register.

R/W# = (), Command R/W#=1, Data byte from Data byte from
Write DpE[‘atiDI’lh byte l Read operaiion lDSlﬁfi] lDSlﬁSl

S|I°C addr 10]A] cMD |AIRIPC addr 11]A] MSByte |A| LSByte |N[P|

Used to read the 9-bit temperature value.
V0.2 23

DS1631 Configuration

7 6 5

Register

1

CONFIG Register | DONE| THF | TLF |NVB| 1 | 0 | POL |[1ISHOT

DONE Conversion Done Flag: "1" when conversion is complete, "0" when
conversion is in progress.
THF Temperature High Flag: "1" if temperature has exceeded the TH register

value since power-on; reset on power down, write to CONFIG register,
or software power-on-reset command.

TLF Temperature Low Flag: "1" if temperature has dropped below the TL
register value since power-on; reset on power down or write to CONFIG
register, or software power-on-reset command.

NVB Nonvolatile Memory Busy flag: "1" when write to nonvolatile memory is
in progress, "0" otherwise.

R1:RO Resolution selection bits, 00: 9-bit (93.75 ms), 10-bit (187.5 ms), 11-bit
(375 ms), 12-bit (750 ms)

POL Polarity bit: "1" TouT is active high, "0" TouT is active low. Stored in
NVM.

1SHOT One-Shot Mode: "1" DS1631 only performs conversions upon receiving
a Start Conversion command; "0" the DS1621 performs continuous
conversions. Store in NVM.

After configuring for continuous conversion, must sent the
Start command (OxXEE) to start conversions.

V0.2

Support Functions

#idefine DS1631ADDR 0x90 //DS81631 address with all pins tied low

:3:?22 g‘;ﬁisagﬁég E":h‘f DS1631 address = 0b 1001 A2 A1 A0 R/W
1l x ~
#define READ TEMP OxAA 0x90=0b 1001 0 0 O ?

void writeConfigDS1631 (uint8 uB8 i) {

, , Implements 8-bit write
write2I2C1 (DS1631ADDR, ACCESS CONFIG, u8 i) ;

} command.

void startConversionDS1631 () {
writelI2C1 (DS1631ADDR, START CONVERT) ; } Implements standalone command.
}

intl6é readTempDS1631() {
uint8 u8 lo, u8 hi;
intl6é 116 temp;
writelI2C1l (DS1631ADDR, READ TEMP) ; .
read2I2C1 (DS1631ADDR, &u8 hi, &u8 1o); }lmpleme“ts 16-bit read command.
116 temp = u8 hi;
return ((il6 temp<<8) |uB lo);
}

These use the ‘transaction’ functions to communicate with
the DS1621

V0.2 25

Testing the DS1631

int main (void) {

intl6 i16_temp; Configure I2C bus for 400 kHz.
float f tempC,f tempF;

configBasic (HELLO y Configure for continuous conversions.
configI2C1 (400) ; _‘f#’##77;;;;igure I2C for 400 kH=z
writeConfigDS81631 (0x0C) ; //continuous conversion, 12-bit mode
startConversionDS1631 () ; //start conversions

while (1) { Read temperature and print result

DELAY MS (750) ; / A .
i16 temp = readTempDS1631 (); as hex, Celsius and Fahrenheit.

f tempC = il6 temp; //convert to floating point

f tempC = £ tempC/256; //divide by precision

f tempF = £ tempC*9/5 + 32;

printf ("Temp is: 0x%0X, %4.4f (C), %4.4f (F)\n",
1il6_temp, (double) f tempC, (double) f tempF) ;

while(1){} loop is basically the same as used for DS1722.

V0.2 26

I°C Bus Activity when Reading DS1631 Temp
write112C1(DS1621ADDR, READ_TEMP)

address command byte
+20us +40us +B0us
A
SDA —{TH 50h 5}@-«{ Adh
‘|_|‘“| M y_|_|_|_|_|_|'—|_n_‘_ Read Temperature
SCL =7 (write command byte)
address MSB LSB
+80us / +100us / +120us ’/+1 40us +160us
I A B A SR Read
SDA@‘{ Eill JaH 10h T YA 30k Fr— Temperature
L|_|: [] [: : 5 (read MSB,

Temperature = 0x1D3056 = 7472/256 = 40.1875 °C
read212C1(DS1621ADDR, &u8_hi, &u8 _lo, 12C_NAK)

V0.2 27

PIC24 nC Master to 24LC515 Serial EEPROM

33V 33V A2 must be high
for device to function
{ /-

22k |22k vop 1
SCL1 SCL WP Write protect disabled if low
SDA1 l ' or left open (internal pulldown)

SDA - Al } Connect Al, A0 to combination
PIC24 nC —1VSS A0 of VDD or VSS to personalize

— — address
241.C515 Serial EEPROM

EEPROM is 64 Ki x 8 , internally arranged as st~ s[Jve
two separate 32 Ki x 8 memories. a2 & 7Owe

A2[]3 E 6] SCL
NOTE: The diagram above 1s a logical layout, e =

not the physical pinout, shown on the right.
V0.2 28

24L.C515 I°C Address Format, Write Operation

7 6 5 4 3 2 1 0

(a) Address byte format
for 24L.C515 serial EEPROM 1 0 1 0 B | Al | A0 [R/W#

B : Memory block select, if “0”" then operation is to low memory block (0x0000-0x7FFF),
if “1” then operation is to high memory block (0x8000-0xFFFF)

Al, A0: Used to personalized address, up to four LC515 EEPROMSs can be on bus.

R/W#: 1" if read operation, 0" if write operation

(b) Write Operation ~ Memory address Memory address Most efficient to
high byte * low byte ¢ +Write data +Write data write 64 bytes at
S|2C addr 0|A|Addr (hi) |AlAddr (lo) |A] Wdata |A.| Wdata |AlP a time as write
eh by — = takes 3 — 5 ms t
MSb of address high byte is a don’t care as 1 to 64 bt aKes 5 — o ms to
_______ ‘B’ bitof PCaddressisused forthis. O™ complete.
(c) End-of-Write Ack bit returns as “1” Ack bit returns as “0” (ACK)
Polling (NAK) if write is in progress when write is not in progress)
\ Poll device to see
I 0 hen the write i
S|I°C addr 0|N]P| [S[1°C addr 10]NP|[S|>C addr 10]AlP when the write 15
finished.

—
Send write command to poll for end-of-write

V0.2 29

241.C515 I?’C Read Operation

(a) Sequential Read _
Read ACK continues read, NAK ends read,
ea

next byte output by 241.C515 halts data output.
data | | 241515, N
SI’Caddr1|A] Rdata |A] Rdata |o] Rdata |A | Rdata |NP)
.------""""'r —— —
R/W# = 1, Read operation Any number of bytes
(b) Random Read
Memory address Repeated Start Read data Read data
high byte N Condition \ # #

S|2C addr 0[A|Addr (hi) |A|Addr (o) |AIRIEC addr 1A Rdata An| Rdata NP
\-———V—_——-’
. . . "“"-_-...,\’..-_—"
Use write operation to set internal address

counter. Repeated Start condition begins
new transaction.

Any number of bytes

We will do this to read the device, and always will read 64 bytes at a time.

V0.2 30

Support Functions

#define EEPROM O0xAQ //LC515 address assuming both address pins tied low.
#define BLKSIZE 64 + ——— 24LCI51 address=0b 1010 B Al A0 R/'W
0xA0=0b1010 0 0 0 2
void waitForWriteCompletion(uint8 uB_i2cAddr) { ,,)
uint8 u8_ack, u8_savedSWDTEN; ~ Assume lower 32 Ki block.
u8_savedSWDTEN = _SWDTEN; } Enable WDT to escape infinite loop, assumes
_SWDTEN = 1; WDT timeout is greater than EEPROM write time.
u8 i2cAddr = I2C WADDR(u8 i2cAddr); //write transaction, so R/W# = 0;
do {
startI2Cl(); 2 . -
u8 ack = putNoAckCheckI2Cl (u8 i2cAddr) ; } Send I°C address with R/W=0,
stopI2Cl () ; - check the ack bit that comes back.
} while (u8 ack == I2C NAK) ;<— Keep looping until get an ACK back.
_SWDTEN = u8 savedSWDTEN; //restore WDT to original state

} . .]
Write 64 bytes in *pu8_buf to EEPROM starting at address ul6 MemAddr

void memWriteLC515(uint8 u8 i2cAddr, uintlé ulé MemAddr, uint8 *pu8 buf) {
uint8 uB8 AddrLo, u8 AddrHi;
u8 AddrLo = ul6 MemAddr & oxo()FF,-} Get the high, low bytes of the memory
u8 AddrHi = (ul6 MemAddr >> 8); address.
puB buf[0] = u8 AddrHi; } First two bytes of pus_buf are reserved for the
pu8 buf[l] = u8 AddrLo;) EEPROM address.
if (ulé_MemAddr & 0x8000) {
// if MSB set , set block select bit Setthe “B” bit of the I2C memory
uB_i2cAddr = uB_i2cAddr | 0x08;-%—— address if writing upper 32 Ki block.
}
waitForWriteCompletion (u8 i2cAddr) ; .+— Wait for last write to finish.
writeNI2C1 (u8_i2cAddr,pu8 buf,BLKSIZE+2) ; --— [2C block write transaction.

V0.2

Poll device
| to see when
the write 1s

—

finished.

Write 64

bytes in

*pu_buf to
" device

31

Support Functions

- Read 64 bytes into *pu8 buf from EEPROM starting at address ul16 MemAddr

void memReadLC515 (uint8 u8 i2cAddr, uintlé ulé MemAddr, uint8 *pu8 buf) {
uint8 u8 AddrLo, u8 AddrHi;
u8 AddrLo = ul6 MemAddr & OxOOFF; } Get the high, low bytes of the memory
u8 AddrHi = (ul6 MemAddr >> 8); address.
if (ul6 MemAddr & 0x8000) {
// if MSB set , set block select bit e g
u8_i2cAddr = u8_i2cAddr | 0x08; Set the “B” bit of the I2C memory

} address if reading upper 32 Ki block.
waitForWriteCompletion (u8_ i2cAddr) ;«— Wait for last write to finish.
//set address counter Set EEPROM’s internal

write2I2C1 (u8 i2cAddr,u8 AddrHi, u8 AddrLo) ; address counter.
//read data
readNI2C1 (u8_i2cAddr,pu8 buf, BLKSIZE); <— [2C block read transaction.

Read 64 bytes from device, returnin *pu_buf

V0.2 32

int main (void) { TeSting the

uint8 au8 buf[64+2]; //2 extra bytes for address

uintlé ulé MemAddr;

uint8 uB8 Mode; 24LC5 1 5
configBasic (HELLO_ MSG) ;

configI2C1 (400) ; //configure I2C for 400 KHz

outString("\nEnter 'w' for write mode, anything else reads: ");
uB Mode = inCharEcho() ;

outString ("\n") ; In write mode, read 64
::lfi:er:i;ﬂdf = 0; //start at location 0 in memory Characters from the CODSOIC,
uint8 us_i; write to the 24L.C515
if (u8 _Mode == 'w') {

outString ("Enter 64 chars.\n");
//first two buffer locations reserved for starting address

for (uB_i = 2;uB_i< 64+2;u8_i++) {) Get 64 bytes from the
} au8 buf[u8_i] = inCharEcho() ; } console. In read mOde, read 64

outString("\nDoing Write\n'"); characters from the memory,

// write same string twice to check Write Busy polling .
memWriteLC515 (EEPROM,ul6 MemAddr, au8 buf); // do write WTIte to the console.
ulé MemAddr = ul6 MemAddr +64;
memWritel.C515 (EEPROM,ulS_MemAddr,auB_buf) ; // do write
ul6 MemAddr = ul6 MemAddr +64;
} else {
memReadLC515 (EEPROM,ul6 MemAddr,au8 buf); // do read
for (u8_i = O;uB_i< 64;u8 i++) outChar(au8 buf[u8 i]);
1 n 1 n .
:231’81;:;‘:(.;1?(\nAny key continues read...\n") ,\ Echo 64 bytes to the
ul6 MemAddr = ul6_MemAddr + 64; console.

y V0.2 33

Reset cause: Power-on.
Device ID = 0x00000F1D (PIC24HJ32GF202), rewvision 0x00003002 (A3)
Fast RC Osc with PLL

i2c serialeepromtest.c, built on Jun 28 2008 at 19:21:32 ,I, t () t t
CS utpu

Enter 'w' for write mode, anything else reads: w I)

Enter 64 chars.

A person who graduates today and stops learning tommorrow 1S

Doing Write

Enter 64 chars.

uneducated the day after. Life long learning 1s very lmportant.

Doing Write Two strings entered: each string saved twice to EEPROM.
Enter &4 chars.

Reset button pressed.

Reset cause: MCLR assertion.

Device ID = 0Ox00000F1D (PIC24HJ32GF202), rewvision 0x00003002 (A3)
Fast RC Osc with PLL

i2c_serialeepromtest.c, built on Jun 28 2008 at 19:21:32

Enter "w' for write mode, anything else reads: r

A person who graduates today and stops learning tommorrow 1is
Any key continues read...

A person who graduates today and stops learning tommorrow is
Any key continues read...

uneducated the day after. Life| long learning is wvery important.
Any key continues read...

uneducated the day after. Life| long learning is wvery important.

Any key continues read... Strings read back from EEPROM.
V0.2

34

[°C Lab Assignment

Read streaming data from serial port, write to EEPROM

Serial Input data ‘

Data 1s arriving in
a steady stream

RX

I2C Bus
TX | E===) Serial EEPROM

Y

Capture 64 bytes from
serial port, save in buffer

1 .

Do page write to
serial EEPROM

'

Writing data to
EEPROM

Interrupt service routine stores arriving bytes
in buffer.

Problem: While writing bytes to serial EEPROM,

/ more bytes are arriving! Where are they placed?

Solution: Use two buffers! Second buffer captures
data while first buffer data is written to EEPROM.

V0.2 35

Double buffering for Streaming Data

Interrupt Service Routine (background code) captures
incoming data.

Normal program flow (foreground code) does
EEPROM writes.

.

Incoming (@)
Data © From serial port

\

auB_bufferl

V0.2 36

au8_buffer0 [>
Empty au8 buffer0 while

au8 bufferl is filling, swap
when au8_ bufferl is full.

Page write
to EEPROM

Q !

UART Receive ISR

UART RX
Interrupt Service Routine

Character arrival via serial
port triggers interrupt

Y

0]

Save character in au8_buffer0 Save character in au8_bufferl

64 Bytes?
yes, full

64 Bytes?
yes, full

Set semaphore to u8 writeFlag = 1 u8 writeFlag = 1
inform main () that u8 activeBuffer =1 uB8 activeBuffer = 0
buffer is full, switch Y Y

to ﬂmpt}f bUffer. - EXit ISR -

This 1s a flowchart of the UART

Receive ISR you must write. This is

NOT a software FIFO, you are just placing input data in one of two

separate buffers.

V0.2 37

main() Code

u8_writeFlag is set by

ISR when a buffer is S emaphore S et by
full.

Active buffer is the oneISR°

being written by the ISR,

so the other buffer has data

Streaming write loop
in main ()

uB writeFlag = 0

0 1 to write.
uB activeBuffer? l
Page write o« Write full buffer » | Page write
au8 bufferl to EEPROM. auB_buffer0

—| address = address + 64 | +————

0 Y 1 u8_writeFlag is already
uB_writeFlag? set after write, then overflow
1 has occurred (data is arriving
) too fast for EEPROM writes
Overflow, terminate to keep pace).

and indicate error.

This is a flowchart of the whi le(1){} loop in main() that you must
write. The ISR places data into the buffer, and then the while(1){}

loop writes it to EEPROM.
V0.2 38

What do you have to know?

SPI port operation

SPI slave to PIC24 master communication,
hookup

DS1722 operation

[2C Bus operation

[2C primitive function operation and usage
[2C Transaction function operation and usage
DS1621 operation

24L.C515 EEPROM Operation

V0.2 39

