Microcontroller (uC) vs. Microprocessor (LUP)

uC intended as a single chip solution, uP requires external
support chips (memory, interface)

uC has on-chip non-volatile memory for program storage,
uP does not.

uC has more interface functions on-chip (serial interfaces,
analog-to-digital conversion, timers, etc.) than uP

uC does not have virtual memory support (i.e., could not
run Linux), while uP does.

General purpose uPs are typically higher performance
(clock speed, data width, instruction set, cache) than uCs

Division between uPs and uCs becoming increasingly
blurred

V0.2

Microchip PIC24 Family uC

Features

Comments

Instruction width

24 bits

On-chip program memory (non-
volatile, electrically erasable)

PIC24HJ32GP202 has 32Ki bytes/11264

instructions, architecture supports
24Mibytes/4Mi instructions)

On-chip Random Access Memory
(RAM) , volatile

PIC24HJ32GP202 has 2048 bytes,
architecture supports up 65536 bytes

Clock speed

DC to 80 MHz

16-bit Architecture

General purpose registers, 71 instructions
not including addressing mode variants

On-chip modules

Async serial 10, 12C, SPI, A/D, three 16-
bit timers, one 8-bit timer, comparator

V0.2 2

PIC24 Core (Slmphﬁed Block Diagram)

2 A Data Mem
Program Counter Tnst Re 5
7 ,
1 23 /716 " address
y 16 /[/ > Data
address
Program Memory, 16 x 16 /
non-volatile, up to Working y 1 16
4M words (4M x 24) Reg array 716
/
DOUT // 716
The contains the machine Y 16_/—"
code of the instruction currently being ALU 7
executed.
/
ALU (Arithmetic Logic Unit) is 16 bits wide, /16

can accept as operands working registers or

data memory. 17 x 17 Multiplier

not shown

V0.2

Memory Organization

Memory on the PIC24 uC family 1s split into two types:
Program Memory and Data Memory.

PIC24 1nstructions are stored in program memory, which 1s
non-volatile (contents are retained when power 1s lost).

A PIC24 1nstruction 1s 24 bits wide (3 bytes).
PIC24HJ32GP202 program memory supports 11264
instructions; the PIC24 architecture can support up to 4M
Instructions.

PIC24 data is stored in data memory, also known as the file
registers, and 1s a maximum size of 65536 x 8. Data memory
1s volatile (contents are lost when power 1is lost).

V0.2

Program Memory

MSW most significant word Jeast significant word ~ PC Address

e —

Address 23 16 g 0 (LSW Address)
0x000001 | 00000000 0x000000
0x000003 | 00000000 0x000002
0x000005 | 00000000 0x000004
0x000007 | 00000000 0x000006

Program E/[Emﬂl'}" Instruction Width

[El
Phantom. B}fte Figure redrawn by author from Fig 3-2 found in the
(read as *07) PIC24HI32GP202/204 datasheet (DS70289A), Microchip Technology Inc.

PC is 23 bits wide, but instructions start on even word boundaries (the PC least
significant bit 1s always 0), so the PC can address 4 Mi instructions.

Locations 0x000000- 0x0001FF reserved, User program
starts at location 0x000200.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Data Memory Organization

Data memory for
PIC24HJ32GP202

8192 byte
— Near RAM

Data Memory
2048 byte 0x0001 SFR S 0x0000 ™\
pace
SFR space 0x07FF SFR: Special Function Register 0x07FE
0x0801 0x0800
e o o
0xOFFF - - 8}((1)5[1;(1)5
s Ve v s 4 e X
NIy,
; Unimplemented /
7 on PIC24HJ32GP202 /
Vv Y yars ’/ y Fard ’/ Y
OXIFFF .20 00520 222 % 7| OXIFFE /
0x2001 P77 077757777 0x2000
AN A DA
o e MSB
®© e
® /7,777, 7///® LSB=LeastSi
OXTFFF E;;Z.ﬁ;;?fffff// OXTFFE
/UXSOU](;/;;///////// x8000
Optionally ./;;/////////////

- SIS S :
mapped into ./;;;////////////. found in the
program SIS S SSS
memory SIS S SSS

N OxFFFF L OxFFFE
MSB | LSB
- >
16 bits
V0.2

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

= Most Significant Byte

gnificant Byte

Figure redrawn by author from Fig 3-3

PIC24HI132GP202/204

datasheet (DS70289A),
Microchip Technology Inc.

Special Function Registers (SFRs)

Special Function Registers (SFR) are addressed like normal data memory
locations but have specified functionality tied to hardware subsystems in the
processor. We typically refer to SFRs by name (W0, T3CON, STATUS, etc)

instead of by address.

There are many SFRs in the PIC24 uC — they are used as control registers and
data registers for processor subsystems (like the serial interface, or the analog-
to-digital converter). We will cover their use and names as we need to.

SFRs live in the address range 0x0000 to 0xO7FE in data memory. See the
datasheet for a complete list of SFRs.

Other locations in data memory that are not SFRs can be used for storage of
temporary data; they are not used by the processor subsystems. These are
sometimes referred to as GPRs (general purpose registers). MPLAB refers to
these locations as file registers.

V0.2 7

8-bit, 16-bit, 32-bit Data

We will deal with data that 1s 8 bits, 16 bits (2 bytes), and
32 bits (4 bytes) 1n size. Initially we will use only 8 bit and
16 bit examples.

Size Unsigned Range

8-bits 0 to 28-1 (0 to 255, 0 to OxFF)

16-bit 0 to 216-1 (0 to 65536, 0 to OXFFFF)

32-bit 0 to 232-1 (0 to 4,294,967,295), 0 to 0OxXFFFFFFFF)

The lower & bits of a 16-bit value or of a 32-bit value 1s
known as the Least Significant Byte (LSB).

The upper 8 bits of a 16-bit value or of a 32-bit value 1s
known as the Most Significant Byte (MSB).

V0.2

Storing Multi-byte Values in Memory

16-bit and 32-bit values are stored in memory from least
significant byte to most significant byte, in increasing memory
locations (little endian order).

Assume the 16-bit value 0x8B1A stored at location 0x1000
Assume the 32-bit value OxF19025AC stored at location 0x1002

Location | Contents [Location | Contents

0x1000 | O0x1A <«—— LSB 0x1000 | Ox8B1A <—— [.SB
0x1001 | 0x8B 0x1002 | 0x25AC <—— LSB
0x1002 | OxAC =—— LSB 0x1004 | OxF190

0x1003 | 0x25 0x1006 | 22222

0x1004 | 0x90 0x1008 | 272272

0x1005 | OxF1 0x1006 | 22292

Memory shown as 8 bits wide Memory shown as 16 bits wide

The LSB of a 16-bit or 32-bit value must begin at an even address (be word aligned).

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

V0.2 9

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Data Transfer Instruction

Copies data from Source (src) location to Destination (dst)
Location

(src) — dst ‘()’ read as ‘contents of’

This operation uses two operands.

The method by which an operand ADDRESS is specified 1s
called the addressing mode.

There are many different addressing modes for the PIC24.

We will use a very limited number of addressing modes 1n our
initial examples.

Data Transfer Instruction Summary

SourcEeSt Memory Register direct Register indirect
Literal X MQV{.B} #1it8/16, Wnd X
lit — Wnd
MOV £y, Wnd
Memory X MOV {.B} f, {WREG} X
(fr411) — Wnd/WREG
, MOV Wns, f,,, MOV{.B} Wso, Wdo MOV{.B} Wso, [Wdo]
Register \ov{.B! WREG, f | (Wso) — Wdo (Wso) — (Wdo)
direct | Wns/WREG) — f,,,,
Register X MOV {.B} [Wso], Wdo [MOV{.B} [Wso], [Wdo]
indirect ((Wso)) — Wdo r\((Wso)) — (Wdo)
Key: Yellqw shows
MOV {.B} #1it8/16, Wnd PIC24 assembly | varying forms of the
lit — Wnd Data transfer same instruction

f: near memory (0...8095)

f,;: all of memory (0...65534)

MOV{.B} Wso, Wdo Instruction

“Copy contents of Wso register to Wdo register”. General form:

mov{.b} Wso, Wdo (Wso) — Wdo

Wso is one of the 16 working registers WO through W15 (‘s’ indicates Wso 1s an
operand source register for the operation).

Wdo 1s one of the 16 working registers WO through W15 (‘d’ indicates Wdo 1s
an operand destination register for the operation).

mov W3, W5 (W3)— W5 (word operation)
mov.b W3, W5 (W3.LSB) —» W5.LSB (byte operation)

Contents of working register W3 copied to working register W5.

This can either be a word or byte operation. The term ‘copy’ 1s used here
instead of ‘move’ to emphasize that Wso is left unaffected by the operation.

The addressing mode used for both the source and destination
operands 1s called register direct. The mov instruction supports
other addressing modes which are not shown.

MOV Wso, Wdo Instruction Execution

(a) Execute: mov W2, WI (word mode operation)

WO Ox1AF3 WO | Ox1AF3
W1 |0x8BIA W1 | 0x64DE |Modified
W2 [0x64DE | = W2 [Ox64DE
W3 | 0xFB90 W3 | 0xFB90
Before After

(b) Execute: mov.b W2,W1 (byte mode operation)

W0 | Ox1AF3 WO | Ox1AF3
W1 | 0x8BIA W1 | 0x8BDB |Modified
W2 | 0x6 —" W2 [0x64DE
W3 | 0xFB90 W3 | 0xFB90

Before After

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

MOV Wso, Wdo Instruction Format

BBBB BBEBE BBEE BEEB BBBEE BBBEB
2222 1111 1111 1100 0000 0000
() 3210 9876 5432 1098 7654 3210

wwww = base register (Wb) for indirect offset
(Wso) — Wdo (reg. direct) addressing mode [Wso/Wdo + Wbh]; otherwise 0
{indirel:t ﬂddTESSillg modes not Sh()wn} =100 for WOI‘d, 1 for byte
hhh = Wdo addressing mode (Register direct = 000)
dddd = Wdo register number (0 to 15)
ggg = Wso addressing mode (Register direct = 000)
ssss = Wso register number (0 to 15)

(b) Assembly: Machine Code:
mov W3,W5 0x780283

Machine Code = 0111 1000 OﬂU{] (j010 10000011 = 0x780283

= T — “’ ~
B = word mode =0 » ssss = 0011 (register number is 3)

dddd = 0101 (register number is 5)

ggg, hhh, wwww fields are all 0 because indirect addressing is not used

(¢) mov.b W3,W5 0x784283 Byte mode, only difference isB = |

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

MOV Whns, f Instruction

“Copy contents of Wns register to data memory location f.”
General form:

MOV Wnhns, f (Wns) — f

f1s a memory location in data memory, Wns is one of the 16 working
registers WO through W15 (‘s’ indicates Wns 1s an operand source register
for the operation)

MOV W3, 0x1000 (W3) — 0x1000

Contents of register W3 copied to data memory location 0x1000. This
instruction form only supports WORD operations.

The source operand uses register direct addressing, while the
destination operand uses file register addressing.

File registers 1s how Microchip refers to data memory.

V0.2 15

MOV Whns, f Instruction Execution

copied

Execute: mov W3,0x1002
W3 = 0x64DE
Location | Contents
0x1000 | Ox8B1A
0x1002 0x25AC
0x1004 | 0xFB90
0x1006 | Ox9ED7
Betfore

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

W3 =0x64DE (unaffected)

Location
0x1000

0x1002
0x1004
0x1006

Contents

0x8B1A

0x64DE

0xFB90

0x9ED7

After

modified

16

MOV Whns, f Instruction Format

[E_) BEBE BBEEBE BBEBB BBEBE BEBB BBBB
mov Wis f 2222 1111 1111 1100 0000 OODOO
i 3210 9876 5432 1098 7654 3210

{Wm} —}f 1000 1fff £ffff ffff ffff ssss

f .. £ = upper 15 biats of 16-bat address (lower bit assumed = 0)
ssss — Wns register number (0 to 13)

(b) Assembly: Machine Code:
mov W3.0x1002 0x888013

Machine Code = 1000 1|000 1000 0000 0001{|0011]=0x888013

i

r_4
£ ... £= (0001 0000 0000 0010 ssss = 0011 (register number 1s 3)
(upper 13-bats of 0x1002)

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

V0.2 17

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

MOV f, Wnd Instruction

“Copy contents of data memory location f to register Wnd”.
General form:

MOV £, Wnd (f) — Wnd

f1s a memory location in data memory, Wnd is one of the 16
working registers WO through W15 (‘d’ indicates Wnd is an
operand destination register for the operation).

MOV 0x1000, W3 (0x1000) — W3
Contents of data memory location 0x1000 copied to W3.
() 1s read as “Contents of”.

This instruction form only supports a word operation.

V0.2 18

MOV f, Wnd Instruction Execution

Execute: mov 0x1002, W3

W3 = 0x64DE W3 = 0x25AC (modified)
Location | Contents Location | Contents
0x1000 | Ox8BI1A . od 0x1000 | Ox8BI1A
0x1002 | 0x25AC copie 0x1002 | 0x25AC | unaffected
0x1004 | OxFB90 0x1004 | OxFB90
0x1006 | Ox9ED7 0x1006 | Ox9ED7
Before After

V0.2

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

19

A Note on Instruction Formats

e The instruction formats (machine code) of some
instructions will be presented for informational
purposes

— However, studying the machine code formats of the

instructions 1s not a priority; understanding instruction
functionality will be emphasized.

— All instruction formats can be found in the
dsPIC30F/dsPIC33F Programmers Reference manual
from Microchip

— The PIC24 family 1s a subset of the
dsPIC30F/dsPIC33FF instruction set — the PIC24
family does not implement the DSP 1instructions.

V0.2

20

MOV{.B} WREG, f Instruction

“Copy content of WREG (default working register) to data memory
location f°. General form:

MOV{.B! WREG,f (WREG) — f

This instruction provides upward compatibility with earlier PIC uC.
WREG i1s register W0, and f is a location within the first 8192 bytes of data
memory (near data memory)

MOV WREG, 0x1000 (W0) — 0x1000
Contents of register W0 copied to data memory location 0x1000.
Can be used for either WORD or BYTE operations:
MOV WREG, 0x1000 word operation
MOV.B WREG, 0x1001 lower 8-bits of WO copied to 0x1001
Word copy must be to even (word-aligned) location.

Note: The previously covered MOV Whas, f instruction cannot be used for
byte operations! V0.2

21

MOV.B WREG, f Instruction Execution

Execute: mov.b WREG,0x1001

WREG = W0 = 0xE3 WREG = W0 = 0xE34F (unaffected)
Location | Contents Location~-Contents

0x1000 [OxBBIA 0x1000 [0x@DIA | (e T e
0x1002 | 0x25AC 0x1002 | 0x25AC 8 bits of word location
0x1004 0OxFB90 0x1004 | OxFB90 0x1000)
0x1006 | 0x9ED7 0x1006 | 0x9ED7

Before After

A byte copy operation 1s shown.

Copyright Delmar Cengage Learning 2008. All Rights Reserved. V02 22

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

MOV{.B} WREG, f Instruction Format

mov{.b} WREG, f

(WREG) — f

Assembly:
mov WREG, 0x1000

mov.b WREG, 0x1000
mov.b WREG, 0x1001

BEBE BBBE BEEE BEEBE EBEBEB BBEB
2222 1111 1111 1100 0000 0000
3210 9876 5432 1098 7654 3210

1011 0111 1B1f ffff ffff ffff

£ ... £ = 13-bit address (first 8192 bytes of data memory)
B = 0 for word, 1 for byte

Machine Code:

0xB7B000 (B bit = 0 since word operation)
0xB7F000 (B bit = 1 since byte operation)
0xB7F001 (bytes can be written to odd addresses)

V0.2 23

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

MOV{.B} f{,WREG)} Instruction

“Copy contents of data memory location f to WREG (default working
register) . General form:

MOV{B} f WREG (f/)— WREG
MOV {.B} f F)— f

This 1nstruction provides upward compatibility with earlier PIC uC.
WREG i1s register WO, and f 1s a location within the first 8192 bytes of data
memory (near data memory)

Can be used for either WORD or BYTE operations:
MOV 0x1000, WREG word operation

MOV.B 0x1001, WREG only lower 8-bits of WO are affected.
Copies contents of 0x1000 back to

MOV 0x1000 itself, will see usefulness of this later

Word copy must be from even (word-aligned) data memory location.

Note: The MOV f, Wnd instruction cannot be used for byte operations!
V0.2 24

MOV{B} f{ WREG} Format

BBEEB BEEE EBEBE EBEE BEEB BEEB
2222 1111 1111 1100 0000 0000

mov{.bj f, {WREG} 3210 9876 5432 1098 7654 3210

(f) — destination 1011 1111 1BDf ffff ffff ffff

f..f = 13-bit address (first 8192 bytes of data memory)

Destination is either . _
B = 0" for word, ‘1’ for byte

or WREG.
Jor D = destination = “0” for WREG, ‘1’ for f
Assembly: Machine Code:
mov 0x1000,WREG 0xBF9000 (B bit = 0 since word operation,
D bit = 0 since WREG destination)
mov.b 0x1000 OxBFF000 (B bit = 1 since byte operation,

D bit = 1 since f destination)

V0.2 25

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

MOV.{B} f, WREG Instruction Execution

unaffected

Execute: mov.b 0x1001.WREG
W0 = 0x64DE W0 = 0x648B) (modified)
Location Contents od Location | Contents
0x1000 | 0xBBIA COPIEC 0x1000 | 0x8B1A
0x1002 0x25AC 0x1002 | 0x25AC
Ox1004 OxFB90 0x1004 OxFR90
0x1006 | Ox9ED7 0x1006 | Ox9ED7
Before After

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, ¢

‘Microcon

trollers: From Assembly to C with the PIC24 Family”.

V0.2

26

Move a literal into a Working Register

Moves a literal into a working register. The ‘#’ indicates the
numeric value 1s a literal, and NOT a memory address.

General form:
MOV #litl6, Wnd 1lit16 - Wnd (word operation)
MOV.B #lit8, Wnd 11t8 — Wnd.Isb (byte operation)

The source operand in these examples use the immediate
addressing mode.

Examples:
MOV #0x1000, W2 0x1000 —» W2
MOV.B #0xAB, W3 0xAB — W3.Isb

V0.2 27

More on Literals

Observe that the following two instructions are very different!

MOV #0x1000, W2 after execution, W2=0x1000

MOV 0x1000,W2 after execution, W2 = (0x1000),
the contents of memory
location 0x1000

MOV Literal Execution

(a) Execute: mov #0x[1000}, W2 (immediate addressing)

Ox1000 | Ox8B1A 0x1000 | 0x8B1A
W2 0xD038 W2 0x1000 Modified
Before After

(b) Execute: mov 0x1000, W2 (file register addressing)

0x1000 [Ox8B1A cony 0x1000 [Ox8BIA
W2 0xDO038 W2

O0x8B1A Modified
Before After

(¢) Execute: mov.b #0x[F2[W2
0x1000 [Ox8BI1A 0x1000 | Ox8BI1A
W2 0xD038 W2 UXDOIE25 Modified

Before After
V0.2 29

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

MOV Literal Instruction Formats

EBEEE EEEE EEEE BBEEB BEEE EEEB
2222 1111 1111 1100 0000 0OO0OO
3210 9876 5432 1098 7654 3210

mov #lit16, Wn #itl6 — Wn 0010 kkkk kkkk kkkk kkkk dddd
mov.b #itS, Wn #lit8 — Whn 1011 0011 1100 kkkk kkkk dddd
k ... k = literal

#lit] 6: 16-bit literal
#litS: 8-bit literal

Assembly: Machine Code:

—

mov #0x]1000(, W|[2 0x2 10004@,-' Observe that the literal is encoded
. directly in the instruction machine

mov.b #0x 0xB3C code.

dddd = Wh register number (0 to 15)

30

Copyright Delmar Cengage Learning 2008. All Rights Reserved. V0.2

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Indirect Addressing

Mov with indirect Addressing:
mov{.b} [Wso], [Wdo] ((Wso0)) — (Wdo)

[] (brackets) indicate indirect addressing.

Source Effective Address (EAs) 1s the content of Wso, or (Wso).
Destination Effective Address (EAd) 1s the content of Wdo, or
(Wdo).

The MOV i1nstruction copies the content of the Source Effective
Address to the Destination Effect Address, or:

(EAs) — EAd
which is:

((Wso)) — (Wdo)

(a) Execute: mov W0, W1

source, destination use register direct

wWo 0x1000 wWo 0x1000
Wil 0x1002 W1 0x1000 |Modified
0x1000 | OxBBFA 0x1000 | Ox8BBEFA
0x1002 | 0=x23AC 0x1002 | 0x25AC
Before After

(b) Execute: mov [WO0], [W1] source, destination use register indirect

Source Effective Address = (W0) = 0x1000
Destination Effective Address = (W1) = 0x1002
Operation 1s (0x1000) — 0x1002

WO 0x1000 WO 0x1000

W1 0x1002 W1 0x1002

0x1000 | O0xBBFA ~— 0x1000 | Ox8BFA

0x1002 | 0x25AC 0x1002 | 0x8BFA | Modified
Before After

(c) Execute: mov WO, [W1]

source uses register direct

destination uses register indirect
Source Effective Address = W0
Destination Effective Address = (W1) = 0x1002
Operation 1s (W0) — 0x1002

W0 0x1000 W0 0x1000

W1 0x1002 W1 0x1002

0x1000 | 0x8BFA 0x1000 | 0x8BFA

0x1002 | 0x25AC 0x1002 | 0x1000 | Modified
Before After

Indirect Addressing
MOV Example

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Why Indirect Addressing?

The instruction:
mov [WO], [W1]
Allows us to do a memory-memory copy with one instruction!
The following is illegal:
mov 0x1000, 0x1002
Instead, would have to do:
mov 0x1000, WO
mov W0, 0x1002

V0.2

33

Indirect Addressing Coverage

There are six forms of indirect addressing

The need for indirect addressing makes the most
sense when covered in the context of C pointers

— This 1s done 1n Chapter 5

At this time, you will only need to understand the
simplest form of indirect addressing, which 1s
register indirect as shown on the previous two slides.

Most 1nstructions that support register direct for an
operand, also support indirect addressing as well for
the same operand

— However, must check PIC24 datasheet and book to
confirm.

ADD{.B} Wb, Ws, Wd Instruction
Three operand addition, register-to-register form:

ADD{.B} Wb, Ws, Wd (Wb) + (Ws) — Wd
Wb, Ws, Wd are any of the 16 working registers WO-W15

ADD WO, W1, W2 (WO0) + (W1) — W2
ADD W2, W2, W2 W2 = W2 + W2 = W2*2

ADD.B W0, W1, W2 Lower & bits of W0, W1

are added and placed in the
lower 8 bits of W2

V0.2 35

ADD{.B} Wb, Ws, Wd Execution

(a) Execute: add WO,W1,W2

WO
Wl
W2
W3

Ox1AF3

0x8BIA

0x64DE

0xFB90

Before

—» Ox1AF3 WA
—— +0x8B1A Wi
DU W2
0xA60D W3

0x1AF3

0x8BI1A

0xA60D

0xFB90

After

Modified

(b) Execute: add.b WO,W1,W2

WO
W1
W2
W3

0x1A(F)

0x8B(1A)

0x64DE

0xFB90

0x1A23

0x8B1A

0x64(0D)

0xFB90

After

Modified

(c) Execute: add W2,W2,W2

WO
Wl
W2
W3

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

Ox1AF3

0x8BIA

0x64DE

0xFB90

Before

— OxF3 WO
— +0x1A W1
- W2
0x0D — W3
Result limited
to 8-bits!
0x64DE WO

+ 0x64DE W1
/v"_

P W2
0xC9BC W3

V0.2

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Ox1AF3

0x8B1A

0xC9BC

0xFB90

After

Modified

36

SUB{.B} Wb, Ws, Wd Instruction

Three operand subtraction, register-to-register form:
SUB{.B} Wb, Ws, Wd (Wb) - (Ws) —» Wd
Wb, Ws, Wd are any of the 16 working registers WO-W15.

Be careful:
while ADD Wx, Wy, Wz gives the same result as ADD Wy, Wx, Wz

The same 1s not true for

SUB Wx, Wy, Wz versus SUB Wy, Wx, Wz
SUB W0, W1, W2 (W0)-(W1) — W2
SUB W1,W0, W2 (W1)-(W0) — W2

SUB.B W0, W1, W2 Lower & bits of W0, W1 are subtracted

and placed in the lower 8-bits of W2
V0.9 37

WO
W1
W2
W3

SUB{.B} Wb, Ws, Wd Execution

(a) Execute: sub WO0,W1,W2

Ox1AF3

Ox8B1A

0x64DE

0xFB90

Before

— » 0xIAF3 WO
— — 0x8B1A Wi
i > W2

Ox1AF3

0x8B1A

0x8FD9

0xFB90

After

Modified

(b) Execute: sub WI1,W0,W2

WO
W1
W2
W3

Ox1AF3

0x8B1A

0x64DE

0xFB90

Before

><: Ox8B1A W0
— 0x1AF3 W1
— _» W

Ox1AF3

0x8B1A

0x7027

0xFB90

After

Modified

(c) Execute: sub.b WO.W1,W2

WO
W1
W2
W3

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

0x1 ACI%)

0x8B(1A)

0x64DE

0xFB90

Before

— 0OxF3 W0
— — Ox1A Wi
— __»W2

V0.9

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Ox1AF3

O0x8B1A

0x64(D9)

0xFB90O

After

Modified

38

Subtraction/Addition with Literals

Three operand addition/subtraction with literals:

ADD{.B! Wb, #it5, Wd (Wb) — #lit5 — Wd
SUB{.B! Wb, #it5, Wd (Wb) — #lit5 — Wd

#11t5 1s a 5-bit unsigned literal; the range 0-31. Provides a
convenient method of adding/subtracting a small constant
using a single instruction

Examples
ADD WO, #4, W2 (W0)+4 — W2
SUB.B WI1,#8, W3 (W1)-8 — W3

ADD WO, #60, W1 illegal, 60 1s greater than 31!

ADD{.B} f {, WREG}, Instruction

Two operand addition form:
ADD{.B} f (f) + (WREG) — f
ADD{.B} f, WREG (f)+(WREG) —> WREG

WREG 1s WO, f1s limited to first 8192 bytes of memory.
One of the operands, either f or WREG is always destroyed!

ADD 0x1000 (0x1000) + (WREG) — 0x1000
ADD 0x1000,WREG (0x1000) + (WREG) — WREG
ADD.B 0x1001, WREG (0x1001) + (WREG.Isb) — WREG.lsb

V0.2

40

Assembly Language Efficiency

The effects of the following instruction:

ADD 0x1000 (0x1000) + (WREG) — 0x1000

Can also be accomplished by:

MOV 0x1000 , W1 (0x1000) — W1
ADD W0, W1, W1 (WO0) + (W1) —> W1
MOV W1, 0x1000 (W1) — 0x1000

This takes three instructions and an extra register. However, in
this class we are only concerned with the correctness of your
assembly language, and not the efficiency. Use whatever

V0.2

41

ADD{.B} f {, WREG} Execution

(a) Execute: ADD 0x1000

0x1000 [0x8BFA |— Ox8BFA 0x1000 | 0x5C32 | Modified
0x1002 | 0x25AC +0xD038 / 0x1002 | 0x25AC
WO 0xD038 — 0x5C32 - W0 0xD038

Before After

(b) Execute: ADD 0x1000, WREG

0x1000 [0x8BFA | —> Ox8BFA 0x1000 [Ox8BFA

0x1002 | 0x25AC +0xD038 0x1002 | 0x25AC

WO 0xD038 7 0x5C32 — W0 0x5C32 | Modified
Before After

(c) Execute: ADD.B 0x1001

—

0x1000 [0X8B)FA 0x8B

0x1002 | 0x25AC +0x38 0x1002 | 0x25AC
.---""""'J

W0 0xDO(38) 0xC3 WO 0xDO0 38
Before After

V0.2 42

0x1000 | 0XC3)FA | Modified

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

SUB{.B! f {, WREG} Instruction

Two operand subtraction form:
SUB{.B} f (f) - (WREG) — f
SUB{.B} f, WREG (f)-(WREG) — WREG

WREG 1s WO, f1s limited to first 8192 bytes of memory.
One of the operands, either f or WREG is always destroyed!

SUB 0x1000 (0x1000) — (WREG) — 0x1000
SUB 0x1000,WREG (0x1000)— (WREG) — WREG
SUB.B 0x1001, WREG (0x1001)— (WREG.Isb) — WREG.lsb

V0.2

43

Increment

Increment operation, register-to-register form:
INC{.B} Ws, Wd (Ws) +1 — Wd
Increment operation, memory to memory/ WREG form:
INC{.B} f H+1—-f
INC{.B} [, WREG (f) + 1 - WREG

(f must be in first 8192 locations of data memory)

Examples:
INC W2,W4 (W2)+1 — W4
INC.B W3, W3 (W3.Isb) + 1 — W3.lsb
INC 0x1000 (0x1000) +1 — 0x1000

INC.B 0x1001,WREG (0x1001)+1 — WREG.Isb

Decrement

Decrement operation, register-to-register form:
DEC{.B} Ws, Wd (Ws)-1 —Wd
Increment operation, memory to memory/ WREG form:
DEC{.B} f H-1—>f
DEC{.B} f, WREG (f) - 1 - WREG

(f must be in first 8192 locations of data memory)

Examples:
DEC W2, W4 (W2)-1—> W4
DEC.B W3, W3 (W3.Isb) - 1 — W3.lsb
DEC 0x1000 (0x1000) - 1 — 0x1000

DEC.B 0x1001,WREG (0x1001)-1 — WREG.Isb 45

How 1s the instruction register loaded?

—= Data Mem
P 24 |
rogram Counter Tnst. Reg
7 ,
1 23 /716 " address
y 16 > Data
address
Program Memory,
non-volatile, up to \1730);15161 y / / 16
4M words (4M x 24) Reg aﬂfy 7
DOUT - /{ i
| /] 16
The Program counter contains the program X _/—
memory address of the instruction that will be \ ALU 7
loaded into the instruction register . After
reset, the first instruction fetched from location /{ z
0x000000 1in program memory, 1.€., the
program counter 1s reset to Ox000000. 17 x 17 Multiplier
not shown

V0.2 46

Program Memory Organization

msw most significant word Jeast significant word ~ PC Address
Address - 73 16~ ; o (IswAddress)
0x000001 [00000000 0x000000
0x000003 | 00000000 0x000002
0x000005 | 00000000 0x000004
0x000007 [00000000 0x000006
Program Memory Instruction Width
‘Phantom’ Byte , : N
Adapted from Fig 3-2, DS70289A, Microchip, Inc.
(read as “07)

PC 1s 23-bits wide, but instructions start on even word boundaries,
so the PC can address 4M instructions (M = 229).

An 1nstruction is 24 bits (3 bytes). Program memory should be
viewed as words (16-bit addressable), with the upper byte of
the upper word of an instruction always reading as ‘0’.
Instructions must start on even-word boundaries. Instructions
are addressed by the Program counter (PC).

V0.2 Figure adapted with permission of the copyright owner, Microchip 47
Technology, Incorporated. All rights reserved.

Goto location (goto)

How can the program counter be changed?

EBEE BEEBE BEEE EBEE BEBE EEEB
2222 1111 1111 1100 0000 0O0OO
3210 9876 5432 1098 7654 3210

goto Expr lit23 — PC 0000 0100 nnnn nnnn nnnn nnn0

0000 Q0000 0000 0000 Onnn nnnn
Fxpr 1s a label or expression that is resolved i i
P P nn..nn0 = 23-bit value that is loaded

by the linker to a 23-bit program memory : 1
’ 7 into the PC

address known as the farget address

(this must be an even address).

The GOTO instruction requires two instruction words:

Assembly: Machine Code:
goto 0x[000800 0x04 |0800 First word

0x0000{00 Second word

A GOTO 1nstruction 1s an unconditional jump.

Copyright Delmar Cengage Learning 2008. All Rights Reserved. V0.2 48

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Valid addressing modes.

What are valid addressing modes for instructions?

The definitive answer can be found in Table 19-2 of the
PIC24H32GP202 datasheet.

TABLE 19-2: INSTRUCTION SET OVERVIEW (CONTINUED)

?nﬂgtf Fﬁiiﬁ:‘:ﬂi Assembly Syntax Description W#o?«:;s Cﬁ;;ﬁ Stgtﬁu:‘:li:;gs

40 MoV MOV f,Wn Mowve fto Wn 1 1 Maone
MOV £ Move fto f 1 1 MN,Z
MOV f,WREG Move fto WREG 1 1 M.Z
MOV $1itl6E,Wn Mowe 16-bit literal to Wn 1 1 Mone
MOV . b $£1it8,Wn Maovwe 8-bit literal to Wn 1 1 MNone
MOV Wn, £ Move Wnto f 1 1 MNone
MOV Wsao,Wdo Maowve Ws to Wd 1 1 MNone
MOV WREG, Move WREG to f 1 1 N,Z
MOV.D Wns, Wd Maove Double from W{ns)"W(ns + 1) to Wd 1 2 Mone
MOV.D Ws, Wnd Maowve Double from Ws to Wind + 1):W({nd) 1 2 Mone

Copyright Delmar Cengage Learning 2008. All Rights Reserved. V0.2 49

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

What does ‘Wso’, ‘Wsd’, ‘Wn’ etc. mean?

MOV Wso, Wdo

Table 19-1: Symbols used in opcode descriptions (partial list)
Field Description
Wnd One of 16 destination working registers € {W0..W15}
Wns One of 16 source working registers € {W0..W15}
WREG WO (working register used in file register instructions)
Ws Source W register € { Ws, [Ws], [Ws++], [Ws-], [++WSs], [-WSs] }
Wso Source W register €
{Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }
Wd Destination W register €
{wd, [wd], [Wd++], [Wd--], [++Wd], [-wWd] }
Wdo Destination W register €
I'Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd],
Wn One of 16 working registers € {W0..W15}
Wh Base W register € {W0..W15}

V0.2

50

ADD forms
ADD Wb, Ws, Wd

Field Description

Ws | Source W register € { Ws, [Ws], [Ws++], [Ws—], [++Ws], [-Ws] }

Wd | Destination W register € { Wd, [Wd], [Wd++], [Wd--], [++Wd], [-Wd] }

Wb | Base W register € {W0..W15}

Legal:

ADD W0, W1, W2
ADD W0, [W1], [W4]

Illegal:
ADD [WO],WI1,W2 ;first operand 1llegal!

V0.2

Video tutorials

A number of videos illustrate important concepts; all are listed on
the video page at http://www.reesemicro.com/site/pic24micro/Home/pic24-video-tutorials-1.

Available tutorials, which cover topics on the following pages of
these lecture notes:

« MPLAB IDE introduction at

http://www.ece.msstate.edu/courses/ece3724/main_pic24/videos/mplab assem/index.htm

e A simple assembly language program at
http://www.ece.msstate.edu/courses/ece3724/main_pic24/videos/assem _intro/index.htm

e Simulation of this program at
http://www.ece.msstate.edu/courses/ece3724/main_pic24/videos/assem_intro2/index.htm

e Converting the program from 8 to 16 bits at

http://www.ece.msstate.edu/courses/ece3724/main_pic24/videos/assem_intro3/index.htm

V0.2 52

A Simple Program

In this class, will present programs in C form, then translate
(compile) them to PIC24 uC assembly language.

C Program equivalent A uint8 variable is

#define avalue 100 ___—— 8 bits (1 byte)

uint8 1,j,k;

1 = avalue; // 1 = 100

1+ 1; // i++, 1 = 101
=1, // §J 1s 101

Jj - 1; // §J--, J 1s 100
= J + i; // k = 201

N S— S—
[

V0.2 53

Where are variables stored?

When writing assembly language, can use any free data memory
location to store values, it your choice.

A logical place to begin storing data in the first free location in
data memory, which 1s 0x0800 (Recall that 0x0000-0x07FF 1s
reserved for SFRs).

Assign i to 0x0800, j to 0x0801, and k& to O0x0802. Other choices
could be made.

V0.2 54

C to PIC24 Assembly

i=100;/

mov.b #100,WO
mov.b WREG,0x0800

;WREG = 100 = 0x64
;1 = WREG

1=i+1; —

k=j+i;\

inc.b 0x0B800 ;1= 1 + 1
mov.b 0x0800,WREG ;WREG = 1
mov.b WREG,0x0801 ;37 = WREG
dec.b 0x0801 ;3 =3 -1
mov.b 0x0800,WREG ;WREG = 1i
add.b 0x0801 ,WREG ;WREG = j + WREG
mov.b WREG,0x0802 ;k = WREG

i 1s location 0x0800, j 1s location 0x0801, & is location 0x0802

Comments: The assembly language program operation is not very clear.

Also, multiple assembly language statements are needed for one C

language statement. Assembly language is more primitive (operations less

powerful) than C.

V0.2

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

55

PIC24 Assembly to PIC24 Machine Code

* Could perform this step manually by determining
the instruction format for each instruction from the
data sheet.

e Much easier to let a program called an assembler
do this step automatically

 The MPLAB™ Integrated Design Environment
(IDE) 1s used to assemble PIC24 programs and
simulate them

— Simulate means to execute the program without
actually loading it into a PIC24 microcontroller

V0.2 56

-.include "p24Hxxxx.inc"
.global _ reset

-bss ;reserve space for variables
- reserve, mptst byte.s
J: .Space 1
k: .Space 1
-text ;Start of Code section
__reset: ; FTirst instruction located at _ reset label
mov # SP_init, W15 ;> Initialize stack pointer
mov # SPLIM_ init,WO
mov WO, SPLIM ;>initialize Stack limit reg.
avalue = 100
i = 100: This file can be assembled
mov.b #avalue, WO ; WO = 100 by the MPLAB™
mov-b WREG. 1 > 1= 100 assembler into PIC24
01 =0+ 1; .
inc.b i s+ machine code and
S § =i simulated.
mov.b 1,WREG ; WO = 1
nov.b WREG.j "5 = wo Labe.ls used for memory
- § = - 1; locations 0x0800 (1),
 decb] > J=3 -1 0x0801(j), 0x0802(k) to
’ mof,_ b i.WREG WO = i increase code clarity
add.b j,WREG ; WO = WO+j (WREG is WO)
mov.b WREG, k ; k= WO
done:
goto done ;loop forever

V0.2 57

Include file that defines various labels
for a particular processor. “.include’ is
an assembler directive.

mptst byte.s (cont.)

.include "p24Hxxxx.i1nc"]

_.global _ reset) Declare the reset label as
global — it 1s 1s needed by linker
for defining program start

-bss ;reserve space for variables
i: .Space 1

j: _space 1 The .bss assembler directive
k: .space 1 indicates the following should be

placed in data memory. By

An assembler directive is not a default, variables are placed
PIC24 instruction, but an beginning at the first free
:] location, 0x800. The .space
instruction to the assembler o

. . assembler directive reserves
program. Assembler directives space in bytes for the named
have a leading ‘.’ period, and are variables. 1, j, k are labels, and
not case sensitive. labels are case-sensitive and

must be followed by a “:” (colon).
V0.2 58

mptst byte.s (cont.)

. text <«

__reset: mov #_SP_init, WIS |“text’is an assembler directive that says
mov #__ SPLIM_Init, WO | what follows is code. Our first
mov WO, SPLIM instruction must be labeled as © reset’.

These move instruction 1nitializes the
stack pointer and stack limit registers —
this will be discussed in a later chapter.

avalue = 100

T

The equal sign 1s an assembler directive
that equates a label to a value.

V0.2 59

mptst byte.s (cont.)

The use of labels and
/ comments greatly improves
"mov.b #avalue. WO ' : wo = 100 the clarity of the program.
s i =100 ,
It 1s hard to over-comment
Lo e an assembly language
= . i-i+1 1 |program ifyou want to be
bemm e ' able to understand it later.
i ,WREG - WO = i :
WREG, j L § = w0 Strive for at least a |
; comment every other line;
] ;. J=1 -1 refer to lines
i ,WREG WO = i
j ,WREG - WO = WO+j (WREG is WO0)
WREG, k -k = WO

OCOOOT +0 | TOT

V0.2 60

mpist byte. S (COIlt.) A label thgt is the. target
— of a goto 1nstruction.

Lables are case sensitive

done1:: o ; I . (instruction mnemonics
oto one :loop forever . .
d P and assembler directives
are not case sensitive.
-end A comment

N

An assembler directive specifying the end of
the program 1n this file.

V0.2 61

General MPLAB IDE Comments

* See Experiment #2 for detailed instructions on
installing the MPLAB IDE on your PC and
assembling/simulating programs.

* The assembly language file must have the .s
extension and must be a TEXT file
— Microsoft .doc files are NOT text files

— The MPLAB IDE has a built-in text editor. If you use an
external text editor, use one that displays line numbers
(e.g. don’t use notepad — does not display line numbers)
* You should use your portable PC for experiments 1-
5 1n this class; all of the required software 1s freely
available.

V0.2 62

An Alternate Solution

C Program equivalent
#define avalue 100

uint8 1,j,k;

xhlhl - .l

avalue;

1+ 1;

i;
J
J

+

1;
i;

//7 1 = 100
// 1++, 1 = 101
// j is 101
// j—-, j is 100
// k = 201

Previous approach took 9
instructions, this one took
11 instructions. Use
whatever approach that
you best understand.

;Assign variables to registers
;Move variables Into registers.
;use register-to-register operations for
computations;

;write variables back to memory

;assign 1 to W1, j to W2, k to W3

mov #100,W1 ; W1 (i) = 100
inc.b wi,wl ;WL (i) = w1l (i) +1
mov.b W1,W2 ; W2 () = wl (i)
dec.b w2,Ww2 ;W2 (g) = w2 (g) -1
add.b w1i,w2,w3 ; W3 (k) = w1l (i) + W2 ()
;;write variables to memory
mov.b W1,WO0 ; WO = 1
mov.b WREG, i ; Ox800 (i) = WO
mov.b W2,WO0 ; WO =
mov.b WREG, j ; 0x801 (J) = WO
mov.b W3,WO0 ; W3 = Kk
mov.b WREG, k ; 0x802 (k) = WO

V0.2 63

Clock Cycles vs. Instruction Cycles

The clock signal used by a PIC24 uC to control instruction execution can be
generated by an off-chip oscillator or crystal/capacitor network, or by using the
internal RC oscillator within the PIC24 uC.

For the PIC24H family, the maximum clock frequency 1s 80 MHz.

An instruction cycle (FCY) is two clock (FOSC) cycles.|«— Important!!!!!!!

A PIC24 instruction takes 1 or 2 instruction (FcY) cycles, depending on the
instruction (see Table 19-2, PIC24HJ32GP202 data sheet). If an instruction causes
the program counter to change (1.e, GOTO), that instruction takes 2 instruction
cycles.

An add instruction takes 1 instruction cycle. How much time is this if the clock
frequency (Fosc) 1s 80 MHz (1 MHz = 1.0e6 = 1,000,000 Hz)?

1/frequency = period, 1/80 MHz = 12.5 ns (1 ns = 1.0e-9 s)

1 Add instruction (@ 80 MHz takes 2 clocks * 12.5 ns =25 ns (or 0.025 us).

By comparison, an Intel Pentium add instruction @ 3 GHz takes 0.33 ns (330 ps). An Intel
Pentium could emulate a PIC24HJ32GP202 faster than a PIC24HJ32GP202 can execute!
But you can’t put a Pentium in a toaster, or Bi$y2one from Digi-key for $5.00. 64

How long does mptst byte.s take to execute?

Beginning at the reset label, and 1gnoring the goto at the end,
takes 12 instruction cycles, which is 24 clock cycles.

Instruction

Cycles

mov # SP _1nit, W15
mov # SPLIM Init,WO
mov WO,SPLIM

mov.b #avalue, WO
mov.b WREG, 1

(WS RGN TS WS W S S IS G S (N i —

Iinc.b i

mov.b 1,WREG
mov.b WREG,]}
dec.b J}

mov.b 1,WREG
add.b j,WREG
mov.b WREG, k

(S
(\9)

V0.2 Total 65

What 1t we used 16-bit variables instead
of 8-bit variables?

C Program equivalent , : .
) A uint16 variable 1s
#define avalue 2047 16 bits (1 byte)

ulntlé 1,J,K; «

1 = avalue; // 1 = 2047

1+ 1; // 1++, 1 = 2048
i; // J 1s 2048

Jj - 1; // §J--, J 1s 2047
j + i; // k = 4095

N S— S—
[

V0.2 66

-.include "p24Hxxxx.iInc"

_.global __reset Reserve 2 bytes for each
iZbSS ;rzzzggezs'oace for variables variable. Variables are now
j ; :Space 2 - StOI‘Cd at OXOSOO, OX0802,
k: -Space 2 0x0804
-.text ;Start of Code section
__reset: ; Ffirst instruction located at _ reset label

mov # SP Init, wlb ;initialize stack pointer
mov # SPLIM init,W0
mov WO,SPLIM ;initialize stack limit reg
avalue = 2048
1 = 2048; Inst ti
mov #avalue, WO - WO = 2048 nstrucuons now
mov WREG. 1 ; 1= 2048 perform WORD (16-bit)
1 =1 + 1; .
o i a1 operations (the .b
>y =1 _ qualifier 1s removed).
mov 1,WREG ; WO = 1
mov WREG, j ; J = WO
>3 =1 -1;
dec 3 > J1=3 -1
;o k = j + 1
mov 1,WREG ; WO = i
add J,WREG ; WO = WO+j (WREG is WO)
mov WREG, k ; k= WO
done:
goto done ;loop forever

V0.2 67

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

An Alternate Solution (16-bit variables)

C Program equivalent

#define avalue 2047
uintl6é 1,j,k;

;Assign variables to registers
;Move variables Into registers.
;use register-to-register operations for

computations;
: z ?Vflz?; ;; :+i 2?4Z 2048 ;write variables back to memory
J =1; // §J i1s 2048 ;assign 1 to W1, j to W2, k to W3
J=13-1; // j--, j is 2047
K =3 + i; // k = 4095
mov #2047,W1 ; W1 (i) = 2047
inc Wi,w1 WL () = w1l (i) +1
: mov W1,W2 W2 () = wl (i)
Previous approach took 9 dec W2,w2 Sw2 G) = w2 () -1
: . . add Wi,w2,w3 ; W3 (k) = W1 (i) + W2 ()
lnSthtlonS, thlS One tOOk ;;Write variables to memory
. . : mov W1, i : 0x800 (i) = W1
8 1nstruf:t10ns. In thl.S nov W23 ox802 G5 = w2
case, this approach 1s mov W3,k ; 0x804 (k) = W3
more efficient!

V0.2

68

How long does mptst word.s take to execute?

Ignoring the goto at the end, takes 12 instruction cycles, which

is 24 clock cycles. Instruction
Cycles

mov # SP 1nit, W15
mov # SPLIM Init,WO
mov WO,SPLIM

mov #avalue, WO
mov WREG, 1

inc i

mov 1,WREG

mov WREG, }

dec }

mov 1,WREG

add j,WREG

mov WREG, k

| | [et | et | | | et | e [e [e |

[E—
(\)

Total

D
e

V0.2

16-bit operations versus 8-bit

The 16-bit version of the mptst program requires the same number of
instruction bytes and the same number of instruction cycles as the 8-bit
version.

This 1s because the PIC24 family 1s a 16-bit microcontroller; its natural
operation size 1s 16 bits, so 16-bit operations are handled as efficiently as 8-
bits operations.

On an 8-bit processor, like the PIC18 family, the 16-bit version would take
roughly double the number of instructions and clock cycles as the 8-bit
version.

On the PIC24, a 32-bit version of the mptst program will take approximately

twice the number of instructions and clock cycles as the 16-bit version. We
will look at 32-bit operations later in the semester.

V0.2 70

Review: Units

In this class, units are always used for physical quantity:
Time Frequency
milliseconds (ms = 103 s) |kilohertz (kHz = 103 Hz)
microseconds (us = 105 s) |megahertz (MHz = 106 Hz)
10-° s) |gigahertz (GHz = 10° Hz)

nanoseconds (ns

When a time/frequency/voltage/current quantity is asked for, I
will always ask for 1t in some units. Values for these quantities in
datasheets are ALWAYS given in units.

For a frequency of 1.25 kHz, what 1s the period in us?
period = 1/f=1/(1.25 €3) = 8.0 ¢ —4 seconds
Unit conversion= 8.0e-4 (s) * (1e6 us)/1.0 (s) = 8.0e2 us = 800 us

V0.2 71

PIC24H Family

Microchip has an extensive line of PICmicro®

microcontrollers, with the PIC24 family introduced
in 2005.

The PIC16 and PIC18 are older versions of the
PICmicro® family, have been several previous
generations.

Do not assume that because something 1s done one
way 1n the PIC24, that 1t 1s the most efficient
method for accomplishing that action.

The datasheet for the PIC24HJ32GP202 1s found on
the class web site.

V0.2 72

Some PICMicros that we have used

Features 16F87x PIC18F242 PIC24H
(Fall 2003) (Summer 2004) (Summer 2008)
Instruction | 14 bits 16 bits 24 bits
width
Program 8K instr. 8K instructions ~10K 1nstructions
memory
Data 368 bytes 1536 bytes 2048 bytes
Memory
Clock speed | Max 20 MHz, 4 Max 40 MHz Max 80 MHz
clks=1nstr 4 clks=linstr 2 clks=1 instr
Architecture | Accumulator, 8- | Accumulator, 8-bit | General purpose

bit architecture

architecture

register, 16-bit
architecture

The PIC24H can execute about 6x faster than the
PIC18F242 previously used in this class.

73

What do you need to know?

Understand the PIC24 basic architecture (program
and data memory organization)

Understand the operation of mov, add, sub, inc, dec,
goto 1nstructions and their various addressing mode
forms

Be able to convert simple C instruction sequences to
PIC24 assembly language

— Be able to assemble/simulate a PIC24 uC assembly
language program in the MPLAB IDE
Understand the relationship between instruction
cycles and machine cycles

V0.2 74

