
Microcontroller (μC) vs. Microprocessor (μP)
• μC intended as a single chip solution, μP requires external

support chips (memory, interface)
• μC has on-chip non-volatile memory for program storage,

μP does not.
• μC has more interface functions on-chip (serial interfacesμC has more interface functions on chip (serial interfaces,

analog-to-digital conversion, timers, etc.) than μP
• μC does not have virtual memory support (i.e., could not

run Linux) while μP doesrun Linux), while μP does.
• General purpose μPs are typically higher performance

(clock speed, data width, instruction set, cache) than μCs
• Division between μPs and μCs becoming increasingly

blurred

V 0.2 1

Microchip PIC24 Family μCp y μ
Features Comments

Instruction width 24 bitsInstruction width 24 bits

On-chip program memory (non-
volatile, electrically erasable)

PIC24HJ32GP202 has 32Ki bytes/11264
instructions, architecture supports
24Mibytes/4Mi instructions)

On-chip Random Access Memory
(RAM) , volatile

PIC24HJ32GP202 has 2048 bytes,
architecture supports up 65536 bytes() pp p y

Clock speed DC to 80 MHz

16 bit Architecture General purpose registers 71 instructions16-bit Architecture General purpose registers, 71 instructions
not including addressing mode variants

On-chip modules Async serial IO, I2C, SPI, A/D, three 16-
bit timers one 8 bit timer comparator

V 0.2 2

bit timers, one 8-bit timer, comparator

PIC24 Core (Simplified Block Diagram)
D M

Program Counter
23

24 Data Mem
Inst. Reg

D t
16 address

address
Program Memory,
non-volatile, up to

16 Data

1616 x 16
kinon volatile, up to

4M words (4M x 24)

DOUT
16

16

16Working
Reg array

ALU

16The instruction register contains the machine
code of the instruction currently being
executed.

17 x 17 Multiplier

16ALU (Arithmetic Logic Unit) is 16 bits wide,
can accept as operands working registers or
data memory

V 0.2 3

p
not shown

data memory.

Memory Organizationy g
Memory on the PIC24 μC family is split into two types:
Program Memory and Data MemoryProgram Memory and Data Memory.

PIC24 instructions are stored in program memory, which is
non-volatile (contents are retained when power is lost). (p)

A PIC24 instruction is 24 bits wide (3 bytes).
PIC24HJ32GP202 program memory supports 11264
instructions; the PIC24 architecture can support up to 4M
instructions.

PIC24 data is stored in data memory, also known as the file
registers, and is a maximum size of 65536 x 8. Data memory
is volatile (contents are lost when power is lost).

V 0.2 4

(p)

Program Memory

Locations 0x000000- 0x0001FF reserved, User program
starts at location 0x000200.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Data Memory Organization Data memory for
PIC24HJ32GP202

6V 0.2
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Special Function Registers (SFRs)

Special Function Registers (SFR) are addressed like normal data memory
locations but have specified functionality tied to hardware subsystems in thelocations but have specified functionality tied to hardware subsystems in the
processor. We typically refer to SFRs by name (W0, T3CON, STATUS, etc)
instead of by address.

There are many SFRs in the PIC24 μC they are used as control registers andThere are many SFRs in the PIC24 μC – they are used as control registers and
data registers for processor subsystems (like the serial interface, or the analog-
to-digital converter). We will cover their use and names as we need to.

SFRs live in the address range 0x0000 to 0x07FE in data memory. See the
datasheet for a complete list of SFRs.

Other locations in data memory that are not SFRs can be used for storage of y g
temporary data; they are not used by the processor subsystems. These are
sometimes referred to as GPRs (general purpose registers). MPLAB refers to
these locations as file registers.

V 0.2 7

8-bit 16-bit 32-bit Data8 bit, 16 bit, 32 bit Data
We will deal with data that is 8 bits, 16 bits (2 bytes), and
32 bits (4 bytes) in size Initially we will use only 8 bit and32 bits (4 bytes) in size. Initially we will use only 8 bit and
16 bit examples.

Size Unsigned Rangeg g
8-bits 0 to 28-1 (0 to 255, 0 to 0xFF)
16-bit 0 to 216-1 (0 to 65536, 0 to 0xFFFF)
32-bit 0 to 232-1 (0 to 4 294 967 295) 0 to 0xFFFFFFFF)32-bit 0 to 2 -1 (0 to 4,294,967,295), 0 to 0xFFFFFFFF)

The lower 8 bits of a 16-bit value or of a 32-bit value is
known as the Least Significant Byte (LSB)known as the Least Significant Byte (LSB).

The upper 8 bits of a 16-bit value or of a 32-bit value is
k h M Si ifi B (MSB)

V 0.2 8

known as the Most Significant Byte (MSB).

Storing Multi-byte Values in Memory
16-bit and 32-bit values are stored in memory from least
significant byte to most significant byte, in increasing memory
locations (little endian order).locations (little endian order).

9V 0.2Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Data Transfer Instruction

Copies data from Source (src) location to Destination (dst)
Location

(src) → dst ‘()’ read as ‘contents of’

This operation uses two operands.

h h d b hi h d A SS i ifi d iThe method by which an operand ADDRESS is specified is
called the addressing mode.

There are man different addressing modes for the PIC24There are many different addressing modes for the PIC24.

We will use a very limited number of addressing modes in our
initial examplesinitial examples.

Data Transfer Instruction Summary
Dest

Source Memory Register direct Register indirect

Literal XX MOV{.B} #lit8/16, Wnd
lit W d XXlit → Wnd

Memory XX
MOV fALL, Wnd
MOV{.B} f, {WREG}
(f) → Wnd/WREG

XX
(f{ALL}) → Wnd/WREG

Register
direct

MOV Wns, fALL
MOV{.B} WREG, f
(Wns/WREG) → f

MOV{.B} Wso, Wdo
(Wso) → Wdo

MOV{.B} Wso, [Wdo]
(Wso) → (Wdo)

(Wns/WREG) → f{ALL}

Register
indirect XX MOV{.B} [Wso], Wdo

((Wso)) → Wdo
MOV{.B} [Wso], [Wdo]
((Wso)) → (Wdo)

Key:
MOV{.B} #lit8/16, Wnd PIC24 assembly
lit → Wnd Data transfer

Yellow shows
varying forms of the
same instructionlit → Wnd Data transfer s e s uc o

f: near memory (0…8095) fALL: all of memory (0…65534)

MOV{.B} Wso, Wdo Instruction
“Copy contents of Wso register to Wdo register” General form:Copy contents of Wso register to Wdo register . General form:

mov{.b} Wso, Wdo (Wso) → Wdo
W i f h 16 ki i W0 h h W15 (‘ ’ i di W iWso is one of the 16 working registers W0 through W15 (‘s’ indicates Wso is an
operand source register for the operation).

Wdo is one of the 16 working registers W0 through W15 (‘d’ indicates Wdo is
an operand destination register for the operation).

mov W3, W5 (W3) → W5 (word operation)
mov b W3 W5 (W3 LSB) → W5 LSB (byte operation)mov.b W3, W5 (W3.LSB) → W5.LSB (byte operation)

Contents of working register W3 copied to working register W5.

This can either be a word or byte operation. The term ‘copy’ is used here y p py
instead of ‘move’ to emphasize that Wso is left unaffected by the operation.

The addressing mode used for both the source and destination
d i ll d d Th i i

V 0.2 12

operands is called register direct. The mov instruction supports
other addressing modes which are not shown.

MOV Wso, Wdo Instruction Execution,

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

MOV Wso, Wdo Instruction Format

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

MOV Wns, f Instruction
“Copy contents of Wns register to data memory location f ”Copy contents of Wns register to data memory location f.
General form:

MOV Wns f (Wns) → fMOV Wns, f (Wns) → f
f is a memory location in data memory, Wns is one of the 16 working
registers W0 through W15 (‘s’ indicates Wns is an operand source register
f h i)for the operation)

MOV W3, 0x1000 (W3) → 0x1000

Contents of register W3 copied to data memory location 0x1000 ThisContents of register W3 copied to data memory location 0x1000. This
instruction form only supports WORD operations.

The source operand uses register direct addressing, while the p g g,
destination operand uses file register addressing.

File registers is how Microchip refers to data memory.

V 0.2 15

MOV Wns, f Instruction Execution

V 0.2 16Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

MOV Wns, f Instruction Format

V 0.2 17
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

MOV f, Wnd Instruction
“Copy contents of data memory location f to register Wnd”.
General form:

f d (f) dMOV f, Wnd (f) → Wnd

f is a memory location in data memory, Wnd is one of the 16
ki i t W0 th h W15 (‘d’ i di t W d iworking registers W0 through W15 (‘d’ indicates Wnd is an

operand destination register for the operation).

MOV 0x1000 W3 (0x1000) → W3MOV 0x1000, W3 (0x1000) → W3

Contents of data memory location 0x1000 copied to W3.

() i d “C f”() is read as “Contents of”.

This instruction form only supports a word operation.

V 0.2 18

MOV f, Wnd Instruction Execution

V 0.2 19
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

A Note on Instruction Formats
• The instruction formats (machine code) of some

instructions will be presented for informational p
purposes
– However, studying the machine code formats of the

instr ctions is not a priorit ; nderstanding instr ctioninstructions is not a priority; understanding instruction
functionality will be emphasized.

– All instruction formats can be found in the
dsPIC30F/dsPIC33F Programmers Reference manual
from Microchip

– The PIC24 family is a subset of the y
dsPIC30F/dsPIC33FF instruction set – the PIC24
family does not implement the DSP instructions.

20V 0.2

MOV{.B} WREG, f Instruction
“Copy content of WREG (default working register) to data memory
location f”. General form:

MOV{.B} WREG, f (WREG) → fMOV{.B} WREG, f (WREG) f

This instruction provides upward compatibility with earlier PIC μC.
WREG is register W0, and f is a location within the first 8192 bytes of data
memory (near data memory)memory (near data memory)

MOV WREG, 0x1000 (W0) → 0x1000

Contents of register W0 copied to data memory location 0x1000Contents of register W0 copied to data memory location 0x1000.

Can be used for either WORD or BYTE operations:

MOV WREG, 0x1000 word operation, p

MOV.B WREG, 0x1001 lower 8-bits of W0 copied to 0x1001

Word copy must be to even (word-aligned) location.

V 0.2 21
Note: The previously covered MOV Wns, f instruction cannot be used for
byte operations!

MOV.B WREG, f Instruction Execution

A byte copy operation is shown.

V 0.2 22

y py p

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

MOV{.B} WREG, f Instruction Format

V 0.2 23
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

MOV{.B} f {,WREG} Instruction
“Copy contents of data memory location f to WREG (default working
register) . General form:

MOV{.B} f, WREG (f)→ WREGMOV{.B} f, WREG (f) WREG

MOV{.B} f (f)→ f

This instruction provides upward compatibility with earlier PIC μC.
WREG is register W0, and f is a location within the first 8192 bytes of data
memory (near data memory)

Can be used for either WORD or BYTE operations:Can be used for either WORD or BYTE operations:

MOV 0x1000, WREG word operation

MOV.B 0x1001, WREG only lower 8-bits of W0 are affected., y

MOV 0x1000

Word copy must be from even (word-aligned) data memory location.

Copies contents of 0x1000 back to
itself, will see usefulness of this later

V 0.2 24
Note: The MOV f,Wnd instruction cannot be used for byte operations!

MOV{ B} f { WREG} FormatMOV{.B} f {,WREG} Format

V 0.2 25
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

MOV.{B} f, WREG Instruction Execution

V 0.2 26
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Move a literal into a Working Register
M l l i ki i Th ‘#’ i di hMoves a literal into a working register. The ‘#’ indicates the
numeric value is a literal, and NOT a memory address.

General form:General form:

MOV #lit16, Wnd lit16 → Wnd (word operation)

MOV.B #lit8, Wnd lit8 → Wnd.lsb (byte operation)

The source operand in these examples use the immediate
dd i daddressing mode.

Examples:

MOV #0x1000, W2 0x1000 → W2

MOV.B #0xAB, W3 0xAB → W3.lsb

V 0.2 27

More on Literals

Observe that the following two instructions are very different!Observe that the following two instructions are very different!

MOV #0x1000, W2 after execution, W2=0x1000

after execution, W2 = (0x1000),
the contents of memory
location 0x1000

MOV 0x1000,W2

location 0x1000

MOV Literal Execution

29V 0.2
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

MOV Literal Instruction Formats

30V 0.2Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Indirect Addressing
M i h i di Add iMov with indirect Addressing:

mov{.b} [Wso], [Wdo] ((Wso)) → (Wdo)

[] (brackets) indicate indirect addressing.
Source Effective Address (EAs) is the content of Wso, or (Wso).
Destination Effective Address (EAd) is the content of Wdo orDestination Effective Address (EAd) is the content of Wdo, or
(Wdo).

The MOV instruction copies the content of the Source EffectiveThe MOV instruction copies the content of the Source Effective
Address to the Destination Effect Address, or:

(EAs) → EAd()

which is:

((Wso)) → (Wdo)((Wso)) → (Wdo)

Indirect Addressing
MOV E ampleMOV Example

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Why Indirect Addressing?y g
The instruction:

[W0] [W1]mov [W0], [W1]

Allows us to do a memory-memory copy with one instruction!

The following is illegal:

mov 0x1000, 0x1002

Instead, would have to do:

mov 0x1000, W0mov 0x1000, W0

mov W0, 0x1002

V 0.2 33

Indirect Addressing Coverageg g
• There are six forms of indirect addressing
• The need for indirect addressing makes the most• The need for indirect addressing makes the most

sense when covered in the context of C pointers
– This is done in Chapter 5

• At this time, you will only need to understand the
simplest form of indirect addressing, which is
register indirect as shown on the previous two slidesregister indirect as shown on the previous two slides.

• Most instructions that support register direct for an
operand, also support indirect addressing as well foroperand, also support indirect addressing as well for
the same operand
– However, must check PIC24 datasheet and book to

ficonfirm.

ADD{.B} Wb, Ws, Wd Instruction
Three operand addition, register-to-register form:

ADD{.B} Wb, Ws, Wd (Wb) + (Ws) → Wd

Wb, Ws, Wd are any of the 16 working registers W0-W15

ADD W0, W1, W2 (W0) + (W1) → W2

ADD W2 W2 W2 W2 W2 + W2 W2*2ADD W2, W2, W2 W2 = W2 + W2 = W2*2

ADD.B W0, W1, W2 Lower 8 bits of W0 W1ADD.B W0, W1, W2 Lower 8 bits of W0, W1
are added and placed in the
lower 8 bits of W2

V 0.2 35

ADD{.B} Wb, Ws, Wd Execution
() E t dd W0 W1 W2

0x1AF3
(a) Execute: add W0,W1,W2

W0 0x1AF3
W1 0x8B1A
W2 0x64DE

+ 0x8B1A
W0 0x1AF3
W1 0x8B1A
W2 0xA60D Modified

W3 0xFB90
Before

0xA60D W3 0xFB90
After

(b) Execute: add.b W0,W1,W2
0xF3

(b) Execute: add.b W0,W1,W2

W0 0x1A F3
W1 0x8B 1A
W2 0x64DE
W3 0 FB90

+ 0x1A

0x0D

W0 0x1A23
W1 0x8B1A
W2 0x64 0D
W3 0 FB90

Modified

(c) Execute: add W2,W2,W2

W3 0xFB90
Before

0x0D W3 0xFB90
After

Result limited
to 8-bits!

0x64DEW0 0x1AF3
W1 0x8B1A
W2 0x64DE
W3 0xFB90

+ 0x64DE

0xC9BC

W0 0x1AF3
W1 0x8B1A
W2 0xC9BC
W3 0xFB90

Modified

V 0.2 36Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Before
W3 0xFB90

After

SUB{.B} Wb, Ws, Wd Instruction
Three operand subtraction, register-to-register form:

SUB{.B} Wb, Ws, Wd (Wb) – (Ws) → Wd

Wb, Ws, Wd are any of the 16 working registers W0-W15.
Be careful:

while ADD Wx, Wy, Wz gives the same result as ADD Wy, Wx, Wz

The same is not true for

SUB Wx, Wy, Wz versus SUB Wy, Wx, Wz

SUB W0, W1, W2 (W0) – (W1) → W2SUB W0, W1, W2 (W0) (W1) W2

SUB W1,W0, W2 (W1) – (W0) → W2

SUB B W0 W1 W2 Lower 8 bits of W0 W1 are subtracted

V 0.9 37

SUB.B W0, W1, W2 Lower 8 bits of W0, W1 are subtracted
and placed in the lower 8-bits of W2

37

SUB{.B} Wb, Ws, Wd Execution

V 0.9 3838Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Subtraction/Addition with Literals

Three operand addition/subtraction with literals:

ADD{.B} Wb, #lit5, Wd (Wb) – #lit5 → Wd
SUB{.B} Wb, #lit5, Wd (Wb) – #lit5 → Wd

#lit5 is a 5-bit unsigned literal; the range 0-31. Provides a
convenient method of adding/subtracting a small constant
using a single instructiong g
Examples

ADD W0, #4, W2 (W0) + 4 → W2

SUB.B W1,#8, W3 (W1) – 8 → W3

ADD W0, #60, W1 illegal, 60 is greater than 31!

ADD{.B} f {,WREG} Instruction
Two operand addition form:

ADD{.B} f (f) + (WREG) → f

ADD{.B} f, WREG (f) + (WREG) → WREG

WREG is W0 f is limited to first 8192 bytes of memoryWREG is W0, f is limited to first 8192 bytes of memory.

One of the operands, either f or WREG is always destroyed!

ADD 0x1000 (0x1000) + (WREG) → 0x1000

ADD 0x1000,WREG (0x1000) + (WREG) → WREG

ADD.B 0x1001, WREG (0x1001) + (WREG.lsb) → WREG.lsb

V 0.2 40

Assembly Language Efficiency

ADD 0x1000 (0x1000) + (WREG) → 0x1000

The effects of the following instruction:

() ()

Can also be accomplished by:

MOV 0x1000 , W1 (0x1000) → W1
ADD W0, W1, W1 (W0) + (W1) → W1
MOV W1, 0x1000 (W1) → 0x1000MOV W1, 0x1000 (W1) 0x1000

This takes three instructions and an extra register. However, in
this class e are onl concerned ith the correctness of o rthis class we are only concerned with the correctness of your
assembly language, and not the efficiency. Use whatever
approach you best understand!!!!!

V 0.2 41

ADD{.B} f {,WREG} Execution

V 0.2 42
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

SUB{.B} f {,WREG} Instruction
Two operand subtraction form:

SUB{.B} f (f) – (WREG) → f

SUB{.B} f, WREG (f) – (WREG) → WREG

WREG is W0 f is limited to first 8192 bytes of memoryWREG is W0, f is limited to first 8192 bytes of memory.

One of the operands, either f or WREG is always destroyed!

SUB 0x1000 (0x1000) – (WREG) → 0x1000

SUB 0x1000,WREG (0x1000) – (WREG) → WREG

SUB.B 0x1001, WREG (0x1001) – (WREG.lsb) → WREG.lsb

V 0.9 4343V 0.2

Increment
Increment operation register-to-register form:Increment operation, register to register form:

INC{.B} Ws, Wd (Ws) +1 → Wd

I t ti t /WREG fIncrement operation, memory to memory/WREG form:

INC{.B} f (f) + 1 → f

INC{.B} f, WREG (f) + 1 → WREG

(f must be in first 8192 locations of data memory)

Examples:

INC W2, W4 (W2) + 1 → W4, ()

INC.B W3, W3 (W3.lsb) + 1 → W3.lsb

INC 0x1000 (0x1000) +1 → 0x1000

V 0.2 44

INC 0x1000 (0x1000) +1 → 0x1000

INC.B 0x1001,WREG (0x1001)+1 → WREG.lsb

Decrement
Decrement operation register-to-register form:Decrement operation, register to register form:

DEC{.B} Ws, Wd (Ws) – 1 → Wd

I t ti t /WREG fIncrement operation, memory to memory/WREG form:

DEC{.B} f (f) – 1 → f

DEC{.B} f, WREG (f) – 1 → WREG

(f must be in first 8192 locations of data memory)

Examples:

DEC W2, W4 (W2) – 1 → W4, ()

DEC.B W3, W3 (W3.lsb) – 1 → W3.lsb

DEC 0x1000 (0x1000) 1 → 0x1000

V 0.9 45

DEC 0x1000 (0x1000) – 1 → 0x1000

DEC.B 0x1001,WREG (0x1001) – 1 → WREG.lsb 45

How is the instruction register loaded?
D M

Program Counter
23

24 Data Mem
Inst. Reg

D t
16 address

address
Program Memory,
non-volatile, up to

16 Data

1616 x 16
kinon volatile, up to

4M words (4M x 24)

DOUT
16

16

16Working
Reg array

ALU

16The Program counter contains the program
memory address of the instruction that will be
loaded into the instruction register . After

17 x 17 Multiplier

16

g
reset, the first instruction fetched from location
0x000000 in program memory, i.e., the
program counter is reset to 0x000000.

V 0.9 46

p
not shown

46V 0.2

Program Memory Organization

An instruction is 24 bits (3 bytes). Program memory should be (y) g y
viewed as words (16-bit addressable), with the upper byte of
the upper word of an instruction always reading as ‘0’.
Instructions must start on even-word boundaries InstructionsInstructions must start on even-word boundaries. Instructions
are addressed by the Program counter (PC).

47V 0.2 Figure adapted with permission of the copyright owner, Microchip
Technology, Incorporated. All rights reserved.

Goto location (goto)
How can the program counter be changed?How can the program counter be changed?

A GOTO i t ti i diti l j
V 0.2 48

A GOTO instruction is an unconditional jump.
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Valid addressing modes.
What are valid addressing modes for instructions?What are valid addressing modes for instructions?

The definitive answer can be found in Table 19-2 of the
PIC24H32GP202 datasheetPIC24H32GP202 datasheet.

V 0.2 49Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

What does ‘Wso’, ‘Wsd’, ‘Wn’ etc. mean?

bl b l d i d d i i (i l li)

MOV Wso, Wdo

Table 19-1: Symbols used in opcode descriptions (partial list)

V 0.2 50

ADD forms
ADD Wb, Ws, Wd

Legal:

ADD W0, W1, W2
ADD W0, [W1], [W4]

Ill lIllegal:
ADD [W0],W1,W2 ;first operand illegal!

V 0.2 51

Video tutorials
A number of videos illustrate important concepts; all are listed on
the video page at http://www.reesemicro.com/site/pic24micro/Home/pic24-video-tutorials-1.

Available tutorials, which cover topics on the following pages of
these lecture notes:

• MPLAB IDE introduction at
http://www.ece.msstate.edu/courses/ece3724/main_pic24/videos/mplab_assem/index.htm

• A simple assembly language program atA simple assembly language program at
http://www.ece.msstate.edu/courses/ece3724/main_pic24/videos/assem_intro/index.htm

• Simulation of this program at
http://www.ece.msstate.edu/courses/ece3724/main_pic24/videos/assem_intro2/index.htm

• Converting the program from 8 to 16 bits at
http://www ece msstate edu/courses/ece3724/main pic24/videos/assem intro3/index htm

V 0.2 52

http://www.ece.msstate.edu/courses/ece3724/main_pic24/videos/assem_intro3/index.htm

A Simple Program
In this class, will present programs in C form, then translate
(compile) them to PIC24 μC assembly language.
C Program equivalent

#define avalue 100
uint8 i,j,k;

A uint8 variable is
8 bits (1 byte)

u t8 ,j, ;

i = avalue; // i = 100

i = i + 1; // i++, i = 101

j = i; // j is 101

j = j - 1; // j--, j is 100

k = j + i; // k = 201

V 0.2 53

Where are variables stored?

When writing assembly language, can use any free data memory
location to store values, it your choice.

A logical place to begin storing data in the first free location in
d hi h i (ll h idata memory, which is 0x0800 (Recall that 0x0000-0x07FF is
reserved for SFRs).

A i i t 0 0800 j t 0 0801 d k t 0 0802 Oth h iAssign i to 0x0800, j to 0x0801, and k to 0x0802. Other choices
could be made.

V 0.2 54

C to PIC24 Assembly

Comments: The assembly language program operation is not very clear.
Also, multiple assembly language statements are needed for one C
l t t t A bl l i i iti (ti l

V 0.2 55

language statement. Assembly language is more primitive (operations less
powerful) than C.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

PIC24 Assembly to PIC24 Machine CodePIC24 Assembly to PIC24 Machine Code

• Could perform this step manually by determining p p y y g
the instruction format for each instruction from the
data sheet.

h i l ll d• Much easier to let a program called an assembler
do this step automatically

• The MPLAB™ Integrated Design Environment• The MPLAB™ Integrated Design Environment
(IDE) is used to assemble PIC24 programs and
simulate them
– Simulate means to execute the program without

actually loading it into a PIC24 microcontroller

V 0.2 56

.include "p24Hxxxx.inc"

.global __reset

.bss ;reserve space for variables
i: .space 1

mptst_byte.s
i: .space 1
j: .space 1
k: .space 1
.text ;Start of Code section
__reset: ; first instruction located at __reset label

S i it 15 i iti li t k i t

p _ y

mov #__SP_init, W15 ;;initialize stack pointer
mov #__SPLIM_init,W0
mov W0,SPLIM ;;initialize Stack limit reg.

avalue = 100
; i = 100; This file can be assembled

mov.b #avalue, W0 ; W0 = 100
mov.b WREG,i ; i = 100

; i = i + 1;
inc.b i ; i = i + 1

by the MPLAB™

assembler into PIC24
machine code and

; j = i
mov.b i,WREG ; W0 = i
mov.b WREG,j ; j = W0

; j = j – 1;
dec b j ; j= j – 1

simulated.
Labels used for memory
locations 0x0800 (i),
0 0801(j) 0 0802(k) tdec.b j ; j= j – 1

; k = j + i
mov.b i,WREG ; W0 = i
add.b j,WREG ; W0 = W0+j (WREG is W0)
mov.b WREG,k ; k = W0

0x0801(j), 0x0802(k) to
increase code clarity

V 0.2 57

done:
goto done ;loop forever

mptst byte.s (cont.) Include file that defines various labels
for a particular processor ‘ include’ isp _ y ()

.include "p24Hxxxx.inc"

.global reset

for a particular processor. .include is
an assembler directive.

Declare the __reset label as g __

.bss ;reserve space for variables
i space 1

global – it is is needed by linker
for defining program start

i: .space 1
j: .space 1
k: .space 1

The .bss assembler directive
indicates the following should be
placed in data memory. By
default, variables are placed
beginning at the first free
location, 0x800. The .space

bl di ti

An assembler directive is not a
PIC24 instruction, but an
instruction to the assembler assembler directive reserves

space in bytes for the named
variables. i, j, k are labels, and
labels are case-sensitive and

program. Assembler directives
have a leading ‘.’ period, and are
not case sensitive

V 0.2 58

labels are case-sensitive and
must be followed by a ‘:’ (colon).

not case sensitive.

mptst_byte.s (cont.)
.text
__reset: mov #__SP_init, W15

mov #__SPLIM_init,W0
W0 SPLIM

‘.text’ is an assembler directive that says
what follows is code. Our first

mov W0,SPLIM instruction must be labeled as ‘__reset’.

These move instruction initializes the
stack pointer and stack limit registers –stack pointer and stack limit registers
this will be discussed in a later chapter.

avalue = 100

The equal sign is an assembler directive
that equates a label to a value.

V 0.2 59

mptst byte s (cont) Th f l b l dmptst_byte.s (cont.)
; i = 100;

mov.b #avalue, W0 ; W0 = 100

The use of labels and
comments greatly improves
the clarity of the program.mov.b #avalue, W0 ; W0 100

mov.b WREG,i ; i = 100

; i = i + 1;

y p g

It is hard to over-comment
an assembly language

; i = i + 1;
inc.b i ; i = i + 1

; j = i

mov b i WREG ; W0 = i

program if you want to be
able to understand it later.

S i f lmov.b i,WREG ; W0 = i
mov.b WREG,j ; j = W0

; j = j – 1;
dec.b j ; j= j – 1

Strive for at least a
comment every other line;
refer to lines

; k = j + i
mov.b i,WREG ; W0 = i
add.b j,WREG ; W0 = W0+j (WREG is W0)
mov.b WREG,k ; k = W0

V 0.2 60

mov.b WREG,k ; k W0

mptst byte.s (cont.) A label that is the target p _ y ()

done:

of a goto instruction.
Lables are case sensitive
(instruction mnemonics

goto done ;loop forever
(instruction mnemonics
and assembler directives
are not case sensitive.

.end A commentA comment

An assembler directive specifying the end of p y g
the program in this file.

V 0.2 61

General MPLAB IDE Comments
• See Experiment #2 for detailed instructions on

installing the MPLAB IDE on your PC and g y
assembling/simulating programs.

• The assembly language file must have the .s
extension and must be a TEXT file
– Microsoft .doc files are NOT text files

The MPLAB IDE has a built in text editor If you use an– The MPLAB IDE has a built-in text editor. If you use an
external text editor, use one that displays line numbers
(e.g. don’t use notepad – does not display line numbers)

Y h ld bl PC f i 1• You should use your portable PC for experiments 1-
5 in this class; all of the required software is freely
available.

V 0.2 62

available.

An Alternate Solution

C Program equivalent

#define avalue 100

;Assign variables to registers
;Move variables into registers.

#define avalue 100
uint8 i,j,k;

i = avalue; // i = 100
i = i + 1; // i++, i = 101
j = i; // j is 101

;use register-to-register operations for
computations;

;write variables back to memory

;assign i to W1, j to W2, k to W3j ; // j
j = j - 1; // j--, j is 100
k = j + i; // k = 201

; g , j ,

mov #100,W1 ; W1 (i) = 100
inc.b W1,W1 ; W1 (i) = W1 (i) + 1
mo b W1 W2 W2 (j) W1 (i)mov.b W1,W2 ; W2 (j) = W1 (i)
dec.b W2,W2 ; W2 (j) = W2 (j) -1
add.b W1,W2,W3 ; W3 (k) = W1 (i) + W2 (j)
;;write variables to memory
mov.b W1,W0 ; W0 = i

Previous approach took 9
instructions, this one took
11 instructions Use

mov.b WREG,i ; 0x800 (i) = W0
mov.b W2,W0 ; W0 = j
mov.b WREG,j ; 0x801 (j) = W0
mov.b W3,W0 ; W3 = k
mov b WREG k ; 0x802 (k) = W0

11 instructions. Use
whatever approach that
you best understand.

V 0.2 63

mov.b WREG,k ; 0x802 (k) = W0

Clock Cycles vs. Instruction Cycles
The clock signal used by a PIC24 μC to control instruction execution can be e c oc s g a used by a C μC to co t o st uct o e ecut o ca be
generated by an off-chip oscillator or crystal/capacitor network, or by using the
internal RC oscillator within the PIC24 μC.

For the PIC24H family the maximum clock frequency is 80 MHzFor the PIC24H family, the maximum clock frequency is 80 MHz.

An instruction cycle (FCY) is two clock (FOSC) cycles.

A PIC24 instruction takes 1 or 2 instruction (FCY) cycles, depending on the
Important!!!!!!!

A PIC24 instruction takes 1 or 2 instruction (FCY) cycles, depending on the
instruction (see Table 19-2, PIC24HJ32GP202 data sheet). If an instruction causes
the program counter to change (i.e, GOTO), that instruction takes 2 instruction
cycles.y

An add instruction takes 1 instruction cycle. How much time is this if the clock
frequency (FOSC) is 80 MHz (1 MHz = 1.0e6 = 1,000,000 Hz)?

1/frequency = period, 1/80 MHz = 12.5 ns (1 ns = 1.0e-9 s)

1 Add instruction @ 80 MHz takes 2 clocks * 12.5 ns = 25 ns (or 0.025 us).

By comparison an Intel Pentium add instruction @ 3 GHz takes 0 33 ns (330 ps) An Intel

V 0.2 64

By comparison, an Intel Pentium add instruction @ 3 GHz takes 0.33 ns (330 ps). An Intel
Pentium could emulate a PIC24HJ32GP202 faster than a PIC24HJ32GP202 can execute!
But you can’t put a Pentium in a toaster, or buy one from Digi-key for $5.00.

How long does mptst_byte.s take to execute?
Beginning at the __reset label, and ignoring the goto at the end,

k 12 i i l hi h i 24 l k l
Instruction
Cycles

takes 12 instruction cycles, which is 24 clock cycles.

mov #__SP_init, W15 1
mov #__SPLIM_init,W0 1
mov W0,SPLIM 1
mov.b #avalue, W0 1
mov.b WREG,i 1
inc b i 1inc.b i 1
mov.b i,WREG 1
mov.b WREG,j 1
d b j 1dec.b j 1
mov.b i,WREG 1
add.b j,WREG 1

V 0.2 65

mov.b WREG,k 1
Total 12

What if we used 16-bit variables instead
of 8-bit variables?

C Program equivalentC Program equivalent

#define avalue 2047
uint16 i,j,k;

A uint16 variable is
16 bits (1 byte)

i = avalue; // i = 2047

i = i + 1; // i++, i = 2048

j = i; // j is 2048

//j = j - 1; // j--, j is 2047

k = j + i; // k = 4095

V 0.2 66

.include "p24Hxxxx.inc"

.global __reset

.bss ;reserve space for variables
i: .space 2
j 2

Reserve 2 bytes for each
variable. Variables are now
stored at 0x0800 0x0802j: .space 2

k: .space 2

.text ;Start of Code section
__reset: ; first instruction located at __reset label

SP i it 15 i iti li t k i t

stored at 0x0800, 0x0802,
0x0804

mov #__SP_init, w15 ;initialize stack pointer
mov #__SPLIM_init,W0
mov W0,SPLIM ;initialize stack limit reg
avalue = 2048

; i = 2048;; i = 2048;
mov #avalue, W0 ; W0 = 2048
mov WREG,i ; i = 2048

; i = i + 1;
inc i ; i = i + 1

Instructions now
perform WORD (16-bit)
operations (the .b inc i ; i = i + 1

; j = i
mov i,WREG ; W0 = i
mov WREG,j ; j = W0

; j = j – 1;

p (
qualifier is removed).

dec j ; j= j – 1
; k = j + i

mov i,WREG ; W0 = i
add j,WREG ; W0 = W0+j (WREG is W0)
mov WREG,k ; k = W0mov WREG,k ; k W0

done:
goto done ;loop forever

V 0.2 67
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

An Alternate Solution (16-bit variables)()

C Program equivalent

#define avalue 2047

;Assign variables to registers
;Move variables into registers.

#define avalue 2047
uint16 i,j,k;

i = avalue; // i = 2047
i = i + 1; // i++, i = 2048
j = i; // j is 2048

;use register-to-register operations for
computations;

;write variables back to memory

;assign i to W1, j to W2, k to W3j ; // j
j = j - 1; // j--, j is 2047
k = j + i; // k = 4095

; g , j ,

mov #2047,W1 ; W1 (i) = 2047
inc W1,W1 ; W1 (i) = W1 (i) + 1
mo W1 W2 W2 (j) W1 (i)mov W1,W2 ; W2 (j) = W1 (i)
dec W2,W2 ; W2 (j) = W2 (j) -1
add W1,W2,W3 ; W3 (k) = W1 (i) + W2 (j)
;;write variables to memory
mov W1,i ; 0x800 (i) = W1

Previous approach took 9
instructions, this one took
8 instructions In this

mov W2,j ; 0x802 (j) = W2
mov W3,k ; 0x804 (k) = W3

8 instructions. In this
case, this approach is
more efficient!

V 0.2 68

How long does mptst_word.s take to execute?
Ignoring the goto at the end, takes 12 instruction cycles, which

Instruction
Cycles

mov #__SP_init, W15 1

g g g , y ,
is 24 clock cycles.

__ _
mov #__SPLIM_init,W0 1
mov W0,SPLIM 1
mov #avalue, W0 1mov #avalue, W0 1
mov WREG,i 1
inc i 1
mov i WREG 1mov i,WREG 1
mov WREG,j 1
dec j 1
mov i,WREG 1
add j,WREG 1
mov WREG,k 1

V 0.2 69

Total 12

16-bit operations versus 8-bit
The 16-bit version of the mptst program requires the same number of
instruction bytes and the same number of instruction cycles as the 8-bit
version.version.

This is because the PIC24 family is a 16-bit microcontroller; its natural
operation size is 16 bits, so 16-bit operations are handled as efficiently as 8-
bits operations.

On an 8-bit processor, like the PIC18 family, the 16-bit version would take
roughly double the number of instructions and clock cycles as the 8-bit
version.

O th PIC24 32 bit i f th t t ill t k i t lOn the PIC24, a 32-bit version of the mptst program will take approximately
twice the number of instructions and clock cycles as the 16-bit version. We
will look at 32-bit operations later in the semester.

V 0.2 70

Review: Units
In this class, units are always used for physical quantity:

Time Frequency

milliseconds (ms = 10-3 s) kilohertz (kHz = 103 Hz)milliseconds (ms 10 s) kilohertz (kHz 10 Hz)

microseconds (μs = 10-6 s) megahertz (MHz = 106 Hz)

nanoseconds (ns = 10-9 s) gigahertz (GHz = 109 Hz)

When a time/frequency/voltage/current quantity is asked for, I
will always ask for it in some units Values for these quantities inwill always ask for it in some units. Values for these quantities in
datasheets are ALWAYS given in units.

For a frequency of 1.25 kHz, what is the period in μs?For a frequency of 1.25 kHz, what is the period in μs?

period = 1/f = 1/(1.25 e3) = 8.0 e –4 seconds

Unit conversion= 8 0e 4 (s) * (1e6 μs)/1 0 (s) = 8 0e2 μs = 800 μs
V 0.2 71

Unit conversion= 8.0e-4 (s) * (1e6 μs)/1.0 (s) = 8.0e2 μs = 800 μs

PIC24H Family

• Microchip has an extensive line of PICmicro®

microcontrollers, with the PIC24 family introduced
in 2005.

• The PIC16 and PIC18 are older versions of the
PIC i ® f il h b l iPICmicro® family, have been several previous
generations.

• Do not assume that because something is done oneDo not assume that because something is done one
way in the PIC24, that it is the most efficient
method for accomplishing that action.

• The datasheet for the PIC24HJ32GP202 is found on
the class web site.

V 0.2 72

Some PICMicros that we have used
Features 16F87x PIC18F242 PIC24HFeatures 16F87x

(Fall 2003)
PIC18F242
(Summer 2004)

PIC24H
(Summer 2008)

Instruction
idth

14 bits 16 bits 24 bits
width

Program
memory

8K instr. 8K instructions ~10K instructions

Data
Memory

368 bytes 1536 bytes 2048 bytes

Clock speed Max 20 MHz, 4
clks=1instr

Max 40 MHz
4 clks=1instr

Max 80 MHz
2 clks=1 instr

Architecture Accumulator, 8- Accumulator, 8-bit General purposeArchitecture Accumulator, 8
bit architecture

Accumulator, 8 bit
architecture

General purpose
register, 16-bit
architecture

Th PIC24H t b t 6 f t th th
V 0.2 73

The PIC24H can execute about 6x faster than the
PIC18F242 previously used in this class.

What do you need to know?y
• Understand the PIC24 basic architecture (program

and data memory organization)and data memory organization)
• Understand the operation of mov, add, sub, inc, dec,

goto instructions and their various addressing modegoto instructions and their various addressing mode
forms

• Be able to convert simple C instruction sequences to e b e o co ve s p e C s uc o seque ces o
PIC24 assembly language
– Be able to assemble/simulate a PIC24 μC assembly

language program in the MPLAB IDE

• Understand the relationship between instruction
l d hi l

V 0.2 74

cycles and machine cycles

