
V 0.7 1

Approaches to Digital System Design

• In Digital Devices, you learned how to create a
logic network (Flip-flops + combinational gates)
to solve a problem

– The logic network was SPECIFIC to the problem. To
solve a different problem, needed a different logic
network

– A high end graphics card is an example of a
special purpose processing system.

• Another approach is to design a logic network that
can used to solve many different problems

– This general purpose logic network might not be as
efficient (speed, cost) as a special purpose logic
network, but hopefully can be used to solve multiple
problems!

V 0.7 2

A Computer!!

• A Computer is a digital system whose operation

can be specified via a Program.

– Changing the program changes the computer behavior!

(solves a different problem!!!).

• A Program is simply a sequence of binary codes

that represent instructions for the computer. The

Program is stored in a Memory.

• External inputs to the Computer can also alter the

behavior the computer. The computer will have

Outputs that can be set/reset via program

instructions.

– These external inputs/output are known as the I/O

section of the computer.

V 0.7 3

Components of any Computer System

• Control – logic that controls fetching/execution of

instructions

• Memory – area where instructions/data are stored

• Input/Output – external interaction with computer

C

o

n

t

r

o

l

Memory

Address bus

Data bus

Input/Output

devices

V 0.7 4

Problem Definition

Build a Digital System based upon your phone number,

assumed to be of the form Y1Y2Y3-Z1Z2Z3Z4

The Digital System will have one external input called LOC.

If LOC is true, then the system will display only the digits

Z1Z2Z3Z4.

If LOC is false, then the system will display all seven digits.

V 0.7 5

Two Approaches for Solving this Problem

Finite State Machine

Will only work for one

number sequence

C

o

n

t

r

o

l

Memory

Address bus

Databus bus

Input/Output

devices

Computer System

Will only work for any

number sequence,

change program to

change sequence

V 0.7 6

ASM chart for

324 8561

Odd only affects sequence in State

S* (Reset state)

Copyright Thomson/Delmar Learning 2005. All Rights

Reserved.

V 0.7 7

FSM Implementation

One-Hot encoding: one DFF per state, requires 1 DFF per state

but simplifies combinational logic.

Binary Encoding: use minimal number of DFFs, but makes

combinational logic more complex.

V 0.7 8

FSM Implementation (cont.)

Use one hot encoding, D-FFs for the 7 states.

Combinational

Logic

Circuit

Dffs

DOUT[3:0]

7

7

7-bit

Present State

Value

7-bit

Next State

Value

LOC
Outputs

DQ

Clk

Reset logic, DFF

S0 set to a ‘1’ on

reset, other DFFs

reset to ‘0’

R, S
Logic designed for

a particular number

sequence.

See textbook for combinational

logic derivation.

V 0.7 9

FSM Operation

Each state requires one clock cycle
Copyright 2005. Thomson/Delmar Learning, All rights

reserved.

V 0.7 10

Computer System Implementation

What do We Need?

Input/Output First, same as FSM

4

DOUT[3:0]

LOC

DOUT[3:0] - 4 bit output bus that has the value of the digit

LOC – 1 bit input that controls whether or not the full number

sequence is displayed

V 0.7 11

Register for holding DIGIT output value

4

DOUT[3:0]D

4

LD

R

E

G

R
LOC

Register loads D on rising clock edge when LD = 1.

R is an asynchronous clear.

V 0.7 12

Memory for holding instructions

LOC

M

E

M

Data[?:0]Address[?:0]

Memory is KxN (K locations, each location N bits wide).

Don’t know values of K, N yet.

4

DOUT[3:0]D

4

LD

R

E

G

R

V 0.7 13

What Instructions do we need?
START:

If (loc) goto LOCAL;

dout = 3;

dout = 2;

dout = 4;

LOCAL:

dout = 8;

dout = 5;

dout = 6;

dout = 1;

goto START;

Psuedo Code for

operations

V 0.7 14

Needed Instructions

1. Jc location Jump conditionally

If LOC = 1, then jump to location (counter

set equal to specified location).

If LOC = 0, then fetch next instruction

(counter increments by 1).

2. Jmp location Jump unconditionally

Fetch next instruction from location (counter

loaded with specified location).

3. out data

load output register with data. Used for

setting the DOUT[3:0] value.

V 0.7 15

Instruction Encoding
The binary encoding for instructions is usually divided into

different fields; with each field representing part of the

information needed by the instruction.

Our instructions require two fields: Operation Code and Data

Opcode | Data

How many bits for the Opcode? Have 3 instructions, need at

least 2 bits! (2 bits can encode 22 items)

How many bits for Data? The data field must specify the 4 bits

for the DOUT number, and also specify a memory location.

For now, lets use 4 bits for data. Instruction is 6 bits total.

Opcode | Data

I5 I4 I3 I2 I1 I0

V 0.7 16

Instruction Table

0 0 | 4-bit locationJMP location

I5 I4 I3 I2 I1 I0

0 1 | 4-bit locationJC location

1 0 | 4-bit dataOUT data

Note that Opcode = 11 is unused.

The opcode assignment was chosen so that the OUT

instruction could be distinguished from the two jump

instructions by only the most significant bit of the opcode.

Could have chosen another opcode assignment, but this

could make the decode logic more complex.

means

memory

will have

maximum

of 24 = 16

locations.

Each

location

will

contain 6

bits.

V 0.7 17

A Program for 324 8561

start: JC local ; jump only if LOC input=1

OUT 3

OUT 2

OUT 4

local: OUT 8

OUT 5

OUT 6

OUT 1

JMP start

A program written
using the native
instructions of the
computer is called an
Assembly Language
Program.

V 0.7 18

Convert Program to Binary, Put in Memory

Memory Location Machine Code Instruction

0x0 01 ???? START: JC LOCAL

0x1 10 0011 OUT 3

0x2 10 0010 OUT 2

0x3 10 0100 OUT 4

0x4 10 1000 LOCAL: OUT 8

0x5 10 0101 OUT 5

0x6 10 0110 OUT 6

0x7 10 0001 OUT 1

0x8 00 0000 JMP START

V 0.7 19

Convert Program to Binary, Put in Memory

(final)

Memory Location Machine Code Instruction

0x0 01 0100 START: JC LOCAL

0x1 10 0011 OUT 3

0x2 10 0010 OUT 2

0x3 10 0100 OUT 4

0x4 10 1000 LOCAL: OUT 8

0x5 10 0101 OUT 5

0x6 10 0110 OUT 6

0x7 10 0001 OUT 1

0x8 00 0000 JMP START

V 0.7 21

Register for specifying address – Use counter

D

V 0.7 22

Add control Logic to Execute Instructions

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

16 locations

by 6 bits

wide.

V 0.7 29

What is control Logic?
Control logic controls count register, out register based on Op code

value (op[1:0] = Data[5:4]).

When does out register get loaded? When OP = 10!! (OUT

instruction):

VHDL:

out_ld <= ‘1’ when (op = “10”) else ‘0’;

When does Counter Load? When JMP instruction (OP=00) or when

JC instruction and LOC = ‘1’!!!!

pc_ld <= ‘1’ when (op=“00” or (op = “01” and LOC=‘1’))

else ‘0’;

When does counter increment? When NOT Loading!!

pc_inc <= not (pc_ld);

pc_ld, pc_inc are LD, INC inputs to counter.

out_ld is LD input to output register.

V 0.7 30

Decode Boolean Equations

out_ld <= op(1) -- don’t really need op(0)

pc_ld <= ((not op(1)) and (not op(0)) or

((not op(1)) and op(0) and LOC));

pc_inc <= not (pc_ld);

pc_ld, pc_inc are LD, INC inputs to counter.

out_ld is LD input to output register.

V 0.7 31

Final Hardware

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

V 0.7
32

Timing

Observe that DOUT value does not change each clock cycle as

with FSM implementation. This is because of the extra clock

cycles needed by the JC, JMP instructions.
Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

V 0.7 33

Comments

• Notice that the RESET# line forces the processor
to fetch its first instruction from location 0.

– All processors have a RESET# line like this to force the
first instruction fetch from a particular location.

• Notice that execution never stops!!! Processor is
always fetching, executing instructions!

• Called the Fetch,Execute loop.

• Must make sure that memory is loaded with valid
instructions BEFORE execution starts!!!

V 0.7 34

Program Counter

• The counter in this processor is a special purpose

register that exists in one form or another in every

processor

• Usually is called the Instruction Pointer (IP)

register or Program Counter (PC) register.

• This register contains the address of the next

instruction to be fetched.
– Normal operation is to fetch very next instruction in memory

– Jump instructions change the PC value so that fetch occurs from

some non-sequential memory location

V 0.7 35

Implementation Comparisons

• FSM Implementation

– Only 7 DFFs + combinational logic

– Will only do one number sequence

– Will operate a faster clock rate than Processor
implementation because of simpler logic

• Processor Implementation

– Many more gates needed than FSM implementation

– Will execute at a slower clock rate than FSM

– General purpose: can implement any number sequence
by simply changing program.

• MANY applications are better suited for
implementation by general purpose digital systems
(Processors) than by dedicated logic

V 0.7 36

Vocabulary

• Address bus – input bus to memory device
specifying location of data to read/write

• Data bus – input/output bus to memory device
containing data value being read or written.

• Program Counter – special register in a processor
specifying address of next instruction to be
executed.

• Instruction Mnemonic – the ASCII representation
of an instruction (i.e., OUT 4).

• Machine Code – the binary representation of an
instruction (i.e. OUT 4 = 10 0100)

V 0.7 37

Vocabulary (cont.)

• Operation code (Op code) – the part of the

machine code for an instruction that tells what the

instruction is (JMP = 00).

• Assembly – the process of converting instructions

to their machine code representation

OUT 4 10 0100

• Disassembly – the process of converting machine

code to its instruction mnemonic

10 0100 OUT 4

• Fetch/Execute - what processors do all day long

(fetch instruction from memory, execute it).

V 0.7 38

How are modern Computers different

from Number Sequencing Computer?

• NSC processor had 4-bit registers. Com. processors have
registers with widths from 8 bits to 128 bits wide.

• NSC processor has 2 registers. Com. proc have many
registers, some general purpose, some special purpose.

• NSC processor has 3 instructions. Com. Proc have 10’s to
a few hundred instructions (arithmetic, logical, control,
Input/output, data movement,etc).

• NSC processor could address 16 memory locations. Com.
Proc can address billions of memory locations.

• NSC processor can be implemented in a few 10’s of gates.
Com. Processors can take millions of gates to implement.

V 0.7 39

What do you need to know?

• Differences between specific logic networks and
general purpose logic networks for digital
systems.

• Basics of a computer system

• Logic Structure, timing of our NSC sequence
processor

• Instruction assembly,disassembly, execution of
NSC sequence processor

• Vocabulary

