C Arithmetic operators

Operator Description

+, - (+) addition, (-) subtraction

++, -- (++) increment, (—-) decrement
* (*) multiplication, (/) division

>>, << right shift (>>), left shift (<<)

&, |, N bitwise AND (&), OR (]), XOR (")

~ bitwise complement

The above are C operators that we would like to implement in
PIC24 assembly language. Multiplication and division will
be covered in a later lecture.

V0.2

Bit-wise Logical operations

Bitwise AND operation

AND.{B} WbWsWd (Wb)&(Ws)—»>Wd j=k&T;
AND.{B} f (N&(WREG) —f] =] &K;
AND.{B} f, WREG (N&(WREG) >WREG] =] &K;
AND.{B} #it10,Wn [it10 & (Wn) ->Wn J =] & literal;

Bitwise Inclusive OR operation

IOR.{B} Wb,WsWd (Whb)|(Ws)—>Wd j=k]|T;
IOR{B} f (H | (WREG) —f J=]lk;
IOR{B} f, WREG (H | (WREG) >WREG J=]lk;
IOR.{B} #litl10,Wn lit10 | (Wn) ->Wn J =] | literal,;

V0.2

Bit-wise Logical operations (cont.)

Bitwise XOR operation

XOR.{B} WbWsWd (Wb) " (Ws)—»>Wd j =k,
XOR{B} f (H » (WREG) —f J=1MK;
XOR.{B} f, WREG (H ~ (WREG) >WREG J=]"NK;
XOR.{B} #Iit10,Wn [itl0 » (Wn) ->Wn j =" literal,;

Bitwise complement operation

COM.{B} WSs,Wd ~ (Ws)—>Wd j=-~k:
COM{B} f ~(f) of i=-i;
COM{B} f WREG ~(f) >WREG j=~k:

V0.2

Bit-wise Logical operations (cont.)
Clear ALL bits:

CLR{B} f 0 of J=0;
CLR.{B} WREG 0 >WREG J=0;
CLR{B} Wd 0 ->Wd J=0;
Set ALL Bits:

SETM.{B} f 111...1111 >f
SETM.{B} WREG 111...1111 »WREG
SETM.B} Wd 111...1111 —>Wd

V0.2

Clearing a group of Data Memory

bitS Location contents
(i) 0x0800|0x2C
Clear upper four bits of i . (j) 0x0801|0xB2
InC: (k) 0x0802 | OX8A
uint8 I;
i — | & — The ‘mask’ 1 = Ox2C = 0010 1100
8&8&& &&&&
|n P|C24 MC assembly mask= OxOF = 0000 1111
mov.b #0OxOF, WO : WO = mask result = 0000 1100
and.b i i =i & OXOf = 0x0C

AND: mask bit = “1’, result bit is same as operand.
mask bit = “0’, result bit is cleared

V0.2 5

Setting a group of Data Memory

bitS Location contents
(i) 0x0800|0x2C
Set bits b3:b1 of | (j) 0x0801|0xB2
InC: (k) 0x0802 | OX8A
uint8 J;
i =i «—— The ‘mask’ j = O0xB2 = 1011 0010
J Jl I T
|n P|C24 MC assembly mask= OxOE = 0000 1110
mov.b #0OxOE, WO ; WO = mask result = 10éé 1110
1or.b J ;j :j | Ox0E = Ox

OR: mask bit = “0’, result bit is same as operand.
mask bit = “1’, result bit Is set

V0.2 6

Complementing a
group of bits

Complement bits b7:b6 of k

In C:
uint8 k

kk‘

In PIC24 uC assembly

mov.b #0xCO0, WO
xor.b k

«—The ‘mask’

: W0 = mask
-k =k 0xCO

Data Memory

Location

(i) 0x0800
(j) 0x0801
(k) 0x0802

k = Ox8A
mask= 0xCO

result

contents

0x2C
OxB2
Ox8A

1000 1010

NNNIN\ NNN/N\

1100 0000

0100 1010
Ox4A

XOR: mask bit = ‘07, result bit is same as operand.

mask bit = ‘1’

V0.2

, result bit 1s complemented

Complementing all

bits
Complement all bits of k
In C:
uint8 k;
k=~k;

In PIC24 uC assembly
com.b K Kk =~k

V0.2

Data Memory

Location

(i) 0x0800
(j) 0x0801
(k) 0x0802

k = Ox8A

contents

0x2C
OxB2
Ox8A

= 1000 1010

After complement

result

0111 0101
Ox75

Bit set, Bit Clear, Bit Toggle instructions

Can set/clear/complement one bit of a data memory location by using the
AND/OR/XOR operations, but takes multiple instructions as previously

seen.

The bit clear (bcf), bit set (bsf), bit toggle (btg) instructions
clear/set/complement one bit of data memory or working registers using

one instruction.

Name Mnemonic Operation
Bit Set bset{.b} Ws, #bit4 1 — Ws<bitd>
Ws indirect modes
Bit Clear | beclr{.b} Ws, #bit4 0 — Ws<bitd>
Ws indirect modes
bClI{.b} f, #blt4 0 — f<bitd>
Bit Toggle | btg{.b} Ws, #bit4 ~Ws<bitd> — Ws<bitd4>
Ws indirect modes
btg{.b} £, #bit4 ~F<bitd> —> f<bitd>

V0.2

Data Memory

Bit clear/set/toggle Location contents
examples (i) 0x0800 |Ox2C
Clear bit 7 of k, Set bit 2 of |, (j) 0x0801 [0OxB2
complement bit 5 of I. (k) 0x0802 [Ox8A
nc o s
uints 1, J, k; K 0x8 1000 1010
_] = X8A = 1 101
l_(_ !(&OX7F’ bclr.b k,#7
] =] | O0x04; k = OxOA = |Q000 1010
I =1 " 0x20; B
In PIC24 uC assembl Jbszt_bo}(?iz - 10
belrb K, #7/j = 0xB6 = 1011 Q10
bset.b |, #2

. 1 = Ox2C = 0010 1100
btg.b 1,#5 > btg.b i,#5
V0.2 1 = Ox0C = 0000 1100

status Register
The STATUS register is a special purpose register (like the Wn

registers).
Status Register
— |-l =1=] === |DCJIPL2|IPLT [IPLO|RA| N OV | Z | C
-—— Status Register high byte > Status Register low byte >

C

V4

oV
N
RA

[PL[2:0]

DC

Carry
Zero

Overflow

Negative
Repeat Loop Active
Interrupt Priority Level

Decimal Carry
Unimplemented

The C, Z, OV, N, DC flags can be user
set/cleared; also are set/cleared as a side effect of
instruction exection.

The RA bit is read-only; set when a repeat instruction
is active, cleared when repeat is finished.

The IPL[2:0] bits are user set/cleared.

We will not discuss the DC flag; it is used in Binary Coded Decimal arithmetic.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

V0.2 11

Carry, Zero Flags

Bit O of the status register is known as the carry (C) flag.
Bit 1 of the status register is known as the zero (Z) flag.

These flags are set as side-effects of particular instructions or
can be set/cleared explicitly using the bset/bclr instructions.

How do you know if an instruction affects C, Z flags?

Look at Table 19-2 in PIC24HJ32GP202 uC datasheeet.— add
affects all ALU flags, mov f only Z, N flags, and mov f, Wn no

flags.
Mnemonic Syntax. Desc # of Instr Status
words Cycles affected
ADD |ADD F | F=F+WREG| 1 | 1 | C,DC,Z,0V,N
MOV [MOV £,Wn | Wn=(F) | 1 | 1 | none
MOV |[MOV T | Ff=(C) | 1| 1 | N,Z

V0.2 12

Addition: Carry, Zero Flags

Zero flag is set if result is zero and cleared otherwise.

In addition, carry flag is set if there is a carry out of the MSbit
and cleared otherwise.

In byte (8-bit) mode, C=1 if sum > 255 (0xFF)
In word (16-bit) mode, C=1 if sum > 65535 (OxXFFFF)

0XFO 0x00 0x01 0x80

+0x20 +0x00 +0xFF +OX7F
0x10 Z=0, 0x00 Z=1, 0x00 Z=1, OxFF Z=0,
c=1 Cc=0 C=1 C=0

Byte mode operations are shown.

V0.2 13

Subtraction: Carry, Zero Flags

Zero flag is set if result is zero and cleared otherwise.

In subtraction, carry flag is cleared if there Is a borrow into the
MSb (unsigned underflow, result is < 0, larger number subtracted
from smaller number). Carry flag is set if no borrow occurs.

OXEO 0x00 Ox01
- 0x20 -0x00 -OxFF

0xD0 Z=0, 0x00 Z=1, 0x02 Z=0,
C=1 C=1 C=0

For a subtraction, the combination of Z=1, C=0 will not
occur. Byte mode operations are shown.

V0.2 14

How do you remember setting of C flag

for Subtraction?

Subtraction of A - B is actually performed in hardware as A
+(~B) +1

The value (~B) + 1 is called the two’s complement of B
(more on this later). The C flag Is affected by the addition
of A+ (~B) +1

~ OxFO
OxFO 0x20 = 0010 0000 + OXDF

- 0x20 ~0x20 = 1101 1111 + 001

________ = OxDF
YXDO g—:f / OxD0 Z=0,
B Carry out of MSB, C=1
so C=1

V0.2

No borrow, C=1

15

C Shift Left, Shift Right

logical Shiftright 1>>1
all bits shift to right by one, ‘0’ into MSB (8-bit right shift shown)

b7 b6 b5 b4 b3 b2 bl bO Origina| value
0 b7 b6 b5 b4 b3 b2 bl | >> 1 (right shift by one)

Shiftleft 1 <<1
all bits shift to left by one, ‘0’ into LSB (8-bit left shift shown)

b7 b6 b5 b4 b3 b2 bl b0 Origina| value
e v
b6 b5 b4 b3 b2 bl b0 O | << 1 (left shift by one)

V0.2 16

P1C24 Family Unsigned Right Shifts
Logical Shift Right

0 —| b7 b6 b5 b4 b3 b2 bl boO 1 Cflag 8-bit
O}b—|bl5 bl4 bl bO 1 Cflag 16-bit
Descr: Syntax Operation
Log. Shift Right f LSR{.B} f f>1-f
LSR{.B} f,WREG f>>1—-> WREG
Log. Shift Right Ws LSR{.B} Ws,Wd Ws>> 1 - Wd
Log. Shift Right by LSR Wh, #lit4, Wd Wb>>lit4 - Wd
short Literal
Log. Shift Right by LSR Wb, Ws, Wd Wb>>Ws — Wd

Ws

The last two logical shifts can shift multiple positions in one
Instruction cycle (up to 15 positions), but only as word
operations. There is an arithmetic right shift that will be
covered in a later lecture.

PIC24 Family Left Shifts

Shift left
Cflag b7 b6 b5 b4 b3 b2 bl b0 0 8-bit
Cflag bl5 bl4 . . bl bO 0 16-bit
Descr: Syntax Operation
Shift left f SL{B} f f<<lf
SL{.B} fWREG f<<1—-> WREG
Shift left Ws SL{.B} Ws,Wd Ws <<1 > Wd
Shift left by SL Wb, #lit4, Wd Wb << lit4 - Wd
short Literal
Shift left by Ws SL Wb, Ws, Wd Wb << Ws —» Wd

The last two shifts can shift multiple positions in one
Instruction cycle (up to 15 positions), but only as word

operations.

18

PI1C24 Rotate Instructions

P1C24 has some rotate left and rotate right instructions as well:
rotate right thru

L. |Cflag ymsb _ Isb carry (rrc)
' rotate left thru

—|[Cflag [msb Isb carry (ric)
rotate right no

s{msb Isb Jcarry (rrnc)

rotate left no

< msb _ _ Isb carry (rinc)

The rrc/ric instructions are used in the next chapter for 32-bit shift operations. The
rrnc/rInc are not discussed further. The valid addressing modes are the same as for

the shift operations that only shift by one position.
V0.2

19

C Shift operations

InC In Assembly
uintl6 ul6_p,ul6_k:
uint8 u8 1 lsr.b u8 i ji= i >> 1;
—% | 1sr.b u8 i A= i o>> 1;
. . / =
u8 1=u8 1>>2;
mov ulé p,wl ;wl = p
1 wl,#10,wl wl = wl << 10
. — . H S r r r
ul6_k=ul6_p << 10:;- mov wl,ulé k 'k = wl

It is sometimes more efficient to repeat a single position shift
Instruction performing a multi-bit shift.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

V0.2 20

Arithmetic Example

(a)In C

uintl6 1i,n,p;

k=n+(1<3)-p;

(b) Steps:

Copy n, i to working registers
Perform i<<3

Addton

Subtract p

Write to k

(¢) In Assembly
mov n,W0
mov 1,W1l
sl Wl,#3,Wl
add WO ,W1l,WO
mov Pp,Wl
sub WO ,W1,WO
mov WO,k

I

i

1 << 3;

n + (i<<3)
P

(n + (1<<3))-p
(n + (1<<3))-p

Use working registers for storage of intermediate results.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Mixed 8-bit, 16-bit operations

In C (a) In Assembly (incorrect)
wntlé ul6_p: mov.b u8 i,WREG ;WD.LSB = uB i
uintd ud i1 add ulé p ;ulé p = ulé p + WO
ul6 p=ul6 p+u8_i: vl6_p | MsB LSB The upper 8 bits of W0

+ WO T
????????W—l sum 1s likely mcorrect.

(b) In Assembly (correct)

mov.b u8 i ,WREG sWO.1lsb = ug 1i

Ze WO, WD ;&ero extend WO
add uls p ;ulé p = ulé p + WO
—— are now zero: unsigned
+ WO 0+ u 1 8-bit vaniables should be
zero-extended before

use m 16-bit operations.
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

V0.2 22

Conditional Execution using Bit Test

The “bit test f, skip if clear’ (btsc) and *“bit test f, skip if set’
(btss) instructions are used for conditional execution.

btsc{.b} f, #bit4 ; skips next instruction is f<#bit4> is clear (‘0’)
btss{.b} f, #bit4 ; skips next instruction is f<#bit4> isset (‘1’)

Bit test instructions are just the first of many different

methods of performing conditional execution in the PIC24
uC.

V0.2

23

(1)
(2)
(3)
(4)
()
(6)
(7)
(8)
()
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
1)
(22)
(23)
(24)
(25)
(26)
27)
(28)

loc:

out:

.bss
.space 1

.space 1

Eext

reset:

mov #__SP_init, Wls

tbelr
bset
loop top:

#0
#0

loc,

loc,

btsc.b loc,#0

;unitialized data section

myee varsanie NUMDEr Sequencing Task
;5tart of Code section using thC

;byte wariable

; first imstruction

;Initalize the Stack Pointer
;suncomment for loco<0>=0
;uncomment for loc<i>=1

;skip next if loc<0> is O

goto loc 1sb is 1 . .
;loc<0> is E if_:r:e;ch here Sklp goto lDl::_le_J.s_l
mov.b #3,w0 if least significant bit of
mov.b wreqg,out ;out = 3 1nci5{l
mov. b #2 ,wl
mov.b wreg,out ;out = 2
mov.b #4 ,wi
mov.b wreg,out ;out = 4
loc 1sb is 1: =
mov. b #8 ,wl
mov.kb wreg,out ;out = B
mov.b #5 , w0
mov.b wreg,out ;out = 5
mov. b #6 ,wl
mowv . b wreg,out ;ount = 6 Copyright Delmar Cengage Learning 2008. All Rights Reserved.
mov.b #1 ,w0 From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.
mov.b wreg,out ;out =1
goto loop top ;loop forever

V0.2 24

C Conditional Tests

Operator Description
==, I= equal, not-equal
> >= greater than, greater than or equal
<, <= less than, less than or equal
&& logical AND
|| logical OR
! logical negation

If an operator used in a C conditional test, such as an IF
statement or WHILE statement, returns nonzero, then the
condition test iIs TRUE.

V0.2

25

Logical Negation vs. Bitwise Complement

I IS not the same as ~1
1 = OxAO 1 = OxAO
(i) =) 0 ~(i) = 0xX5F

Logical operations: !, &&, || always treat their operands as
either being zero or non-zero, and the returned result is
always either O or 1.

V0.2 26

Examples of C Equality, Inequality,
Logical, Bitwise Logical Tests

uint8 a,b,a It b, a eq b, a gt b, a ne b;

a=>5; b= 10;

a lt b= (a<b); // a It b result 1s 1
aegqgb=(a==D>b); // a eq b result 1s O
agthbh=(G>Db); // a gt b result 1s O
a ne b= (G !=Db); // a ne b result 1s 1

uint8 a lor b, a bor b, a Ineg b, a bcom b;

(2) a = OxFO; b = OxOF;

3) a land b = (a & b); //logical and, result 1s 1

(4) a band b = (a & b); //bitwise and, result 1s O

(5) a lor b = (a|]] b); //logical or, result 1s 1

(6) a bor b = (a | b); //bitwise or, result 1s OxFF

@) a Ineg b = (1b); //1ogical negation, result 1s O
(8) a _bcom b = (~b); //bitwise negation, result i1s OxFO

Copyright Delmar Cengage Learning 2008. All Rights Reserved. V02 27

If{} Statement Format in C

if (condition test)
if-body

t else {
else-body <—— FExecuted when condition test is zero (false)

-+—— FExecuted when condition fest is non-zero (frue)

1
]

If-body and else-body can contain multiple
statements.

else-body Is optional.

Copyright Delmar Cengage Learning 2008. All Rights Reserved. V0.2 28

C zero/non-zero tests

A C conditional test is true if the result is non-zero; false if
the result is zero.

The ! operator Is a logical test that returns 1 if the operator is
equal to ‘0’, returns ‘0’ if the operator Is non-zero.

if (1) { L O R S
// do this if i zero y /7 do this 1f 1 non-zero
=1+ j; | J=1+*t1;
} L}
Could also write:
if (i ==0) { : it (1 !'=0) {
// do this if i zero y // do this 1f 1 non-zero
=1+ j; | J=1+*t1;
1 T
I

V0.2 29

C equality tests

‘=="1s the equality test in C; ‘=°1s the assignment operator.

A common C code mistake Is shown below (= vs ==

if (i =5) { if (i == 5) {

J=1+7]; J=1+7];
7llwrong }/// right
Always executes The test i == 5 returns a
because i=5 returns 5, 1 only when1is 5. The
so conditional test is == Is the equality
always non-zero, a true operator.

value. The = is the

assignment operator.
V0.2 30

C Bitwise logical vs. Logical AND

The ‘&’ operator Is a bitwise logical AND. The ‘&&’ operator
IS a logical AND and treats its operands as either zero or non-
Zero.

it (i && j) { Is read as: If ((i1snonzero) AND
/* do this */ EEE) (J is nonzero)) then do
by this.
e - o - IS read as:
II (r & J) :E If ((i bitwise AND j) is
/} do this */ nonzero)) then do this.

1 = OxAO, jJ = OxOB; 1 = OxAO, jJ = OxOB;

(i&&j):>1 (i&j):> 0x0

V0.2

31

C Bitwise logical vs. Logical OR

The ‘|’ operator Is a bitwise logical OR. The ‘|| operator is
a logical OR and treats its operands as either zero or non-
Zero.

if G ||) { 'Sreadas: If ((i is nonzero) OR (j
/; do this */ EEE) IS nonzero)) { do...
L. IS read as:
II I) :E If ((i bitwise OR j) is
/} do this */ nonzero)) { do....

1 = OxAO, jJ = OxOB; 1 = OxAO, jJ = OxOB;

Gl =) 1 (1) =) oxaB

V0.2 32

Non-Zero Test labels for SFRs

defined in
P24HXxxxX.INC; use
for clarity!!!!

InC In Assembly
uintl6 k;
mov k ; k = k, affects N,Z2 flags
k) btse SR, #1 ; skip if Z = 0 (Z is SR<1>)
I‘() ‘ goto end if — ; Z =1, k is 0
if-body if-body stmtl
! ... StmtN
... rest of code end if: —
. rest of code

The mov I instruction just moves I back onto itself! Does no
useful work except to affect the Z, N flags.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

V0.2 33

Conditional Execution using branches

A branch functions as a conditional goto based upon the
setting of one more flags

Simple branches test only one flag:
BRA Z, <label> branch to label if Z=1
BRA NZ, <label> branch to label if Z=0 (not zero)
BRA C, <label> branch to label if C=1
BRA NC, <label> branch to label if C=0 (no carry)
BRA N, <label> branch to label if N=1
BRA NN, <label> branch to label if N=0 (not negative)

BRA <label> unconditional branch to <label>

Using branch instructions instead of btsc/btss generally

results in fewer instructions, and improves code clarity.
V0.2 34

Non-Zero Test

The bra Z (branch if Zero, Z=1) replaces the btfsc/goto
combisation.

InC In Assembly
uintl6 1, j;
mov i ; 1 =1, affects N,Z flags
if (i) { bra Z,end if ; skip if-body when Z=1 (i is 0)
.] . .1f-body stmtl
/I if-body code ‘ . .if-body StmtN
} end if:
// ...rest of code... ..rest of code..

For a non-zero test if(!1){} replace bra Z with bra NZ

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

V0.2 35

General 1f-else form with branches

InC In Assembly

if (condition test) { - test condition ;set status flags

. - cond == false

;f_bﬂdy Ski branch »
L else ! _ p | cond == true, execute if-body
’ Z lb " if-body if-body stmtl
1 else-body otmEN
.j .. rest of code > elza:z;lways U ncqnditinnal branch

else-body stmtl to skip else-body after
. StmtN execution of if-body
end if: =
.. rest of code

Choose the branch instruction such that the branch is
TAKEN when the condition is FALSE.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

V0.2 36

Equality Test (==)

InC In Assembly
uintl6 Kk, j; mov j,WO ;WO = 9
sub k,WREG ;WO =k - 3

el —— bra NZ,end if ;skip if-body when Z=0 (k '= 9)
it (k==)){ ‘ . ~

if-body if-body stmtl

S . StmtN

} end if:
... rest of code ... rest of code

Subtraction operation of k-j performed to check equality;

If kK == then subtraction yields “0’, setting the Z flag. Does not
matter if k-j or J-k Is performed.

Copyright Delmar Cengage Learning 2008. All Rights Reserved. \V 0.2 37
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.)

> >= < <= tests using Z, C flags and subtraction

(a) k—j (b) j—Kk
k>=j k<=j k>=j k<=}
C=1 C=0orZ=1 C=0orZ=1 C=1
b
k <]
= (C=1
and
% /=0
k>
C=0
N\

Note: k<=jis~(k>j)is ~(C & ~Z) is Note: k<jis~(k>=7))is~(!C|Z)is (C & ~Z)
(~C | Z) by DeMorgan’s law. Similarly, by DeMorgan’s law. Similarly, k <=jis ~(k>))
k<jis~(k>=j)is ~(C) is ~C. is ~(~C) 1is C.

V0.2 38

k>] test using k-

InC In Assembly
uintl6 k, j; mov j,WO ;WO = 3
.. sub k,WREG ;WO =k - 3
if (k>) ¢ —~—bra NC, end if ;skip if-body when C = 0 (k < j)
) - I : . 1 1 F = = —_—
if-body o]:l>ra Z, end if j;or skip if-body when Z 1 (k 3)
. | |} if-body stmtl
! | e . StmtN
... rest of code ‘bpiend if:
I —
\) ... rest of code

LI]

False condition of k > j1s k <=], so need branches that accomplish this.

The false condition of k>] Is k<=], so use k<=j to skip around
the iIf-body. For the k-j test, this is accomplished by C=0 or Z=1,
requiring two branches.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

V0.2 39

k>] test using J-k

InC In Assembly

uintl6 Kk, j; mov k,WO ;WO = k
sub j,WREG ;WO = 3§ - k

If(]\ :}l){ l?ra C, Eﬂd_if ;skip if-body when C =1 (k <= j)
£ body if-body stmtl
y-body . StmtN
} end if:
... rest of code ... rest of code

The false condition of k>j is k<=j, so use k<=j to skip
around the if-body. For the j-k test, this is accomplished by
C=1, requiring one branch

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

V0.2 40

Comparison, Unsigned Branches

Using subtraction, and simple branches can be confusing, since it
can be difficult to remember which preferred subtraction to
perform and which branch to use.

Also, the subtraction operation overwrites a register value.

The comparison instruction (CP) performs a subtraction without
placing the result in register:

Descr: Syntax Operation
Compare f with WREG CP{B} f f-WREG
Compare Wb with Ws CP {.B} Wb,Ws Wb — Ws
Compare Wb with #lit5 CP{.B} Wb #lit5 Wb — #lit5
Compare f with zero CPO{.B} f f-0
Compare Ws with zero CPQ{.B} Ws Ws -0

41

Comparison, Unsigned Branches (cont)

Unsigned branches are used for unsigned comparisons and tests a
combination of the Z, C flags, depending on the comparison.

Descr: Syntax Branch taken when
Branch >, unsigned BRA GTU, label C=1&& Z=0
Branch >=, unsigned BRA GEU, label C=1

Branch <, unsigned BRA LTU, label C=0

Branch <=, unsigned BRA LEU, label C=0 || Z=1

Use a Compare instruction to affect the flags before using an
unsigned branch.
Example:

CP WO, W1 , WO -W1
BRA GTU, place ; branch taken if W0 > W1

V0.2 42

Unsigned Comparison (> test)

In C In Assembly

uintl6 Kk, j; mov j,WO ;WO = 9
cp k ;k - WREG

If(]\ ~ l) { l?ra LEU, end if ;skip if-body when k <= j
b a"= if-body stmtl
y-body . stmtN
h end if:
... rest of code ... rest of code

For k > test, use the LEU (less than or equal unsigned) branch
to skip IF body iIf k <=}

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

V0.2 43

If-else Example

InC In Assembly
uintl6 Kk, j; mov j,WO ;WO = 3
cp k ;k - WREG
If(k <= l) { — br‘?fGEUé el:zlzcdy ;skip if-body when k > 9
- ..if-body s
[I'if-body code ..if-body stmtN
} else { bra end if ——— ;use unconditional branch
[lelse-body code - else body: ;to skip else-body after

1 . .else-body stmtl ;rexecuting if-body
. .else-body stmtN
end_i f: -
. .rest of code..

i
/I ...rest of code...

Must use unconditional branch at end of if-body to skip the else-
body.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

V0.2 44

Unsigned literal Comparison

(a) InC In Assembly 5-bit literal, unsigned range 0 to 31
uintl6 k: mov k,WO ;WO = k
cp WO,#10) 'k - 10
if(k} 10){ bra LEU, end if ;skip if-body when k <= 10
. : . .if-body stmtl
/"if-body code . .if-body stmtN
b end if:
// ...rest of code... . .rest of code..
(b) InC In Assembly 16-bit literal, unsigned range 0 to 65535
uint16 k: mov (#520), W ;WO = 520
cp k ;k - WREG
lf(k} 520) f bra LEU, end_if ;skip if-body when k <= 520
I/ if-bod ld ..if-body stmtl
ij-boay code . .if-body stmtN
} end_if:
/I ...rest of code... ..rest of code..

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

V0.2 45

SWI

(a) Chained if-else structure

uint8 u8 i;
uintlé ulé j, ulé k;

tch Statement in C

(b) switch structure

uint8 u8 i;
uintl6é ulé j, ulé k;

switch (u8 i) { break is required to keep

L B16 kbt]
jelse if (uB_i == 2) { !_|
' ul6_j--; :
e
lelse if (u8 i == 3) { T
y ulé 3 = ulé j + ulé kd
R R
jelse { —
: ulé k = ulé k - ulé _j;
b m T m e T T

| case 1: ul6 k++; from executing the next
[break / ¢
T '___J case block.
i case 2: ul6 j-——; _:
: break; I
HI- ----------------------- I
| case 3: ul6_j = ulé_j + ulé_k; |
: break; I
— default: ul6 k = ul6 k - ulé j;

T

A switch statement is a shorthand version of an if-else chain
where the same variable is compared for equality against

different values.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C

V0.2 46

with the PIC24 Family”.

switch Statement in assembly language

Im C In Assembly
mnts uf 1; mov.b uB i WREG ;W0 = ud i
uintlﬁulﬁ_iﬁulﬁ k: cp.b WO,#1 ;u i = 17
- bra NZ,case 2
) . inc ulée k sulée k++
switch I:llg_ﬂ{ bra End:switch_.., ;hre;k statement
case 2:
case 1: ul6_k++; cp.b WO,#2 ;us_i == 227
br&‘a.lr_, bra NZi,case 3
dec wulé J sulé j-—-
case g:u]_ﬁ_i__; bra end switch - rbreak statement
brealr_, case 3:
cp.b WO,#3 ;a8 1 == 37
_ bra NZ, default OK to use WO for computation
case 3: o :)
- :] mov ulﬁ_k,@""" after comparison 1s done.
ulé j=ulé j+ulé k; . . T .
add wulé J sulé j = ulé j + ulé k
bIEaL: bra end switch - sbreak statement
defanlt:
default: mov ulé j,W0
ul6 k=ul6 k-ul6 j; sub ulé k ;ulé k = ulé k - ulé j
end switch: ---——— _] i
}// end switch . .rest of code.. Nﬂt? The htﬁ‘fﬂl size in the |
CP instruction 1s 3-bits (unsigned
values of 0-31).

Copyright Delmar Cengage Learning 2008. All Rights Reserved.
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”. V0.2

47

Unsigned, Zero, Equality Comparison Summary

Condition |Test True Branch |False Branch
| == 1—0 bra Z bra NZ

11=0 1—0 bra NZ bra Z

| == | — K bra Z bra NZ

1 1=Kk | — K bra NZ bra Z

I >k | — K bra GTU bra LEU

| >=k | — K bra GEU bra LTU

I <k | — K bra LTU bra GEU

i <=k | — K bra LEU bra GTU

V0.2

48

Other PIC24 Comparison Instructions

The PIC24 has various other comparison instructions

CPSEQ Wb,Wn ; If Wb == Wn, skip next instruction
CPSNE Wb,Wn ; If Wb 1= Wn, skip next instruction
CPSGT Whb,Wn ; If Wb == Wn, skip next instruction
CPSLT Whb,Wn ; If Wb < Whn, skip next instruction

These are provided as upward compatibility with previous
PICmicro families, and may save an instruction or two In certain
situations. However, we will not use them since their
functionality can be duplicated by previously covered
compare/branch instructions.

V0.2 49

Complex Conditions (&&)

InC In Assembly
if (condition test] && condl] == false test conditionl
condition_test2 && branch
I - branch
condition_testN) { o
if-body condN == false test conditionN
} else { - branch . _
else-body skip all conditions are true, execute if-hody
N iﬁbﬂdy if-body stmtl
’ . | stmtN
... rest of code branch always N
» clse body: Unconditional branch
else-body stmtl to skip else-body after
stmtN execution of if~-body

end_if 1 -
rest of code

The else-body is branched to on the first condition that is false.
The if-body 1s executed if all conditions are true.

Copyright Delmar Cengage Learning 2008. All Rights Reserved. V0.2 50

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Complex Condition Example (&&)

InC
uintl6 1, j, k;

if (1<k) &&
(!=20)) {
if-body

} else {
else-body

j

In Assembly

mov k,WO
cp 1
bra GEU, else body
mov #20,WO0
cp 3
<+——bra Z, else body
if-body stmtl
.. StmtN

bra end if
—»-else body:

... rest of code else-body stmtl
' ... StmtN
end if: -
. rest of code
Copyright Delmar Cengage Learning 2008. All Rights Reserved. \V/ 02

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

;WO = k

;1 - WREG

;skip if-body when i >= k
;WO = 20

;3 - WREG

;skip if-body when j == 20

;skip else-body

o1

Complex Conditions (||)

InC In Assembly
if (condition testl || condl == true test conditionl
condition_test2 || branch
R . - branch
condition testN) {
{ﬁbody condN-1 == true test conditionN-1
} else { - branch
else-body test conditionN ..., N —— false
. branch .
| | > if body: This branch taken
... rest of code if-body stmtl to else-body if all
stmtN conditions are false.
) branch always
skip else body:
else-body else-body stmtl
stmtN
end if:

. rest of code

The if-body is branched to on the first condition that is true.
The else-body i1s executed if all conditions are false. Carer| Of IaSt branChl

Different from others!

Copyright Delmar Cengage Learning 2008. All Rights Reserved. V0.2 52

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Complex Conditions (||), alternate method

InC In Assembly
if (condition_test] || condl =true ‘test conditionl . :
T In this solution, all
condition_test2 || branch :
cond? =tme ‘test condition2 branches are for the
L - branch true condition. This
condition_testN) { o requires an extra
if-bod _ : £1onN- -
J-body condN-1 == true test conditionN-1 .., ditional branch.
} else { - branch
} - branch
branch always This branch taken
.. rest of code »if body: _
If-body stmtl to else-body if all
_ stmEN conditions are false.
skip branch always
else-body else body :¢———
else-body stmtl
stmtN
end if:

. rest of code

The if~-body 1s branched to on the first condition that is true.
The else-body is executed if all conditions are false.

Copyright Delmar Cengage Learning 2008. All Rights Reserved. V0.2
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

InC

uintl6 1, j, k;
uint16 p.q;

if (1<k) ||
G==p
(q!=0))1{
if-body

i else {
else-body

b

... rest of code

In Assembly

mov k ,WO

cp 1

bra LTU, if body

mov p,WO

cp 3

<+——bra Z, if body
cp0 g
ra Z, else bod

—»-1f body:
if-body stmtl
.. StmtN
bra end if
else body: -

else-body stmtl
stmtN

—i~end_if:
rest of code

Copyright Delmar Cengage Learning 2008. All Rights Reserved. V0.2

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Complex Condition Example (]|)

;WO = 3

;1 - WREG

;execute if-body when i < k
;WO = p

;9 — WREG

;execute if-body when j == p
;g -0

Can be replaced with:

bra else body

bra NZ, if body ;true cond!

54

while loop Structure

InC In Assembly

while (condition test) { top while: s
while-body J—— fal test condition
cond == false .

! e bralég?f J = true Unconditional branch
... rest of code p | . to return to the top of

‘ while-body execute while-body _

" while-body stmtl the while loop.
... StmtN

branch always
h—end_while:
. rest of code

The while-body 1s not executed if the condition test 1s initially false.

Observe that at the end of the loop, there is a jJump back to
top_while after the while-body is performed. The body of
a while loop will not execute if the condition test Is
Initially false.

Copyright Delmar Cengage Learning 2008. All Rights Reserved. V0.2 55

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

while loop Example

InC In Assembly
uintl6 k. J: —+top while:
while (k=) { cp k | .k - WREG

hile bm:}y bra LEU, end while —
while-1 : |
1 while-body stmtl Sk]p Whife-bﬂdy "
s ... StmtN Ko<
... rest of code bra top while J

end while: -
rest of code

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

V0.2

56
From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

do-while loop Structure

InC In Assembly
do { top do while: - o
do-while-body do-while-body stmtl On true condition,

... StmtN return to the top of

+ while (condition_test) the do-while loop

, test condition
... rest of code

cond == true

branch

Lcona’ == false,

exit loop
rest of code

The do-while-body 1s always executed at least once.

Copyright Delmar Cengage Learning 2008. All Rights Reserved. V0.2 57

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

InC
uintl6 k. j;

do {
while-body
twhile (k > J);
... rest of code

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

do-while Example

In Assembly

top do while: -
while-body stmtl

stmtN
mov j,WO ;WO = 3
cp k ;k - WREG

bra GTU, top do _while
rest of code

V0.2

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

return to top of
do{}while loop if
k>j

58

Aside: for loops in C

A for loop is just another way to write a while loop. Typically
used to implement a counting loop (a loop that is executed a

fixed number of times).

Sint16 i.j: executed each

executed once, loop iteration
- before test. after body
i = 0; . i
while (i 1= 10) { unsygned char 1,j: \
k = k + j; for (n = 0; 1!= 10; 1++){

1++] k = k + J;
} N\
/* ..do stuff..*/ /* do stuff */ loop test

These statements executed 10 times. Both code blocks

are equivalent.
V0.2 59

then Z=0).

InC
umntl6 k. j;

if (k & 0x0080) {
if-body
)

... rest of code

Bit Test Instruction

The “bit test’ instruction: btst ¥, #bit4 Is useful for testing a
single bit in an operand and branching on that bit. The complement
of the bit is copied to the Z flag (if bit is 0, then Z=1; if bit is 1,

In Assembly

btst k,#7

bra Z, end if
if-body stmtl
... StmtN

end if:

. rest of code

This 1s testing bit #7 of k

;same as k & 0x0080
;skip if-body when bit #7 is 0

Other forms of “bit test’ are available; they will not be discussed.

V0.2

60

What instructions do you use?

You will discover that there are many ways for accomplishing the
same thing using different instruction sequences.

Which method do you use?

The method that you understand......(and have not MEMORIZED),
since memorization of code fragments will fail if faced with a
situation different from what is memorized.

Your grade will not be penalized for ‘inefficient code’ in this course
since this is your first look at assembly language programming.

Your grade will always be penalized for incorrect code — “close”
does not count.

V0.2 61

What do you need to know?

Bitwise logical operations (and,or,xor, complement)
— Clearing/setting/complementing groups of bits

Bit set/clear/toggle instructions
Shift left (<<), shift right (>>)
Status register (C, Z flags)

==, 1=, > <, >=, <=tests on 8-bit, 16-bit unsigned
varlables
— Conditional execution

Loop structures

V0.2 62

