
C Arithmetic operatorsp

Operator Description
+, - (+) addition, (–) subtraction
++, -- (++) increment, (– –) decrement
* / (*) multiplication (/) division, / () multiplication, (/) division
>>, << right shift (>>), left shift (<<)
&, |, ^ bitwise AND (&), OR (|), XOR (^)

bitwise complement~ bitwise complement

The above are C operators that we would like to implement in
PIC24 assembly language. Multiplication and division will
b d i l t l t

V 0.2 1

be covered in a later lecture.

Bit-wise Logical operations
Bitwise AND operation

AND.{B} Wb,Ws,Wd (Wb)&(Ws)→Wd j = k & i;
AND.{B} f (f)&(WREG) →f j = j & k;AND.{B} f (f)&(WREG) →f j j & k;
AND.{B} f, WREG (f)&(WREG) →WREG j = j & k;
AND.{B} #lit10,Wn lit10 & (Wn) →Wn j = j & literal;

Bitwise Inclusive OR operation

IOR.{B} Wb,Ws,Wd (Wb) | (Ws)→Wd j = k | i;
IOR.{B} f (f) | (WREG) →f j = j | k;
IOR.{B} f, WREG (f) | (WREG) →WREG j = j | k;
IOR.{B} #lit10,Wn lit10 | (Wn) →Wn j = j | literal;

V 0.2 2

Bit-wise Logical operations (cont.)
Bitwise XOR operation

XOR.{B} Wb,Ws,Wd (Wb) ^ (Ws)→Wd j = k ^ i;
XOR.{B} f (f) ^ (WREG) →f j = j ^ k;XOR.{B} f (f) (WREG) →f j j k;
XOR.{B} f, WREG (f) ^ (WREG) →WREG j = j ^ k;
XOR.{B} #lit10,Wn lit10 ^ (Wn) →Wn j = j ^ literal;

Bitwise complement operation

COM.{B} Ws,Wd ~ (Ws)→Wd j = ~k;
COM.{B} f ~(f) →f j = ~j ;
COM.{B} f, WREG ~(f) →WREG j = ~k;

V 0.2 3

Bit-wise Logical operations (cont.)
Clear ALL bits:

CLR.{B} f 0 →f j=0;
CLR {B} WREG 0 →WREG j=0;CLR.{B} WREG 0 →WREG j=0;
CLR.{B} Wd 0 →Wd j=0;

Set ALL Bits:

SETM.{B} f 111…1111 →f
SETM.{B} WREG 111…1111 →WREG
SETM.B} Wd 111…1111 →Wd }

V 0.2 4

Clearing a group of
Location contents

Data Memory

bits Location contents

(i) 0x0800 0x2C
(j) 0x0801 0xB2l f bi f i (j) 0x0801 0xB2
(k) 0x0802 0x8A

Clear upper four bits of i .

In C:
i t8 iuint8 i;

i = i & 0x0F;

In PIC24 μC assembly

i = 0x2C = 0010 1100
&&&& &&&&

mask= 0x0F = 0000 1111

The ‘mask’

In PIC24 μC assembly

mov.b #0x0F, W0 ; W0 = mask
and.b i ; i = i & 0x0f

mask 0x0F 0000 1111

result = 0000 1100
= 0x0Cand.b i ; i i & 0x0f

AND: mask bit = ‘1’, result bit is same as operand.
k bit ‘0’ lt bit i l d

V 0.2 5

mask bit = ‘0’, result bit is cleared

Setting a group of
Location contents

Data Memory

bits Location contents

(i) 0x0800 0x2C
(j) 0x0801 0xB2bi b b f j (j) 0x0801 0xB2
(k) 0x0802 0x8A

Set bits b3:b1 of j

In C:
i t8 juint8 j;

j = j | 0x0E;

In PIC24 μC assembly

j = 0xB2 = 1011 0010
|||| ||||

mask= 0x0E = 0000 1110

The ‘mask’

In PIC24 μC assembly

mov.b #0x0E, W0 ; W0 = mask
ior.b j ; j = j | 0x0E

mask 0x0E 0000 1110

result = 1011 1110
= 0xBEior.b j ; j j | 0x0E

OR: mask bit = ‘0’, result bit is same as operand.
k bit ‘1’ lt bit i t

V 0.2 6

mask bit = ‘1’, result bit is set

Complementing a
Location contents

Data Memory

group of bits Location contents

(i) 0x0800 0x2C
(j) 0x0801 0xB2l bi b b f k (j) 0x0801 0xB2
(k) 0x0802 0x8A

Complement bits b7:b6 of k

In C:
i t8 k The ‘mask’uint8 k;

k = k ^ 0xC0;

In PIC24 μC assembly

k = 0x8A = 1000 1010
^^^^ ^^^^

mask= 0xC0 = 1100 0000In PIC24 μC assembly

mov.b #0xC0, W0 ; W0 = mask
xor.b k ; k = k ^ 0xC0

mask 0xC0 1100 0000

result = 0100 1010
= 0x4Axor.b k ; k k 0xC0

XOR: mask bit = ‘0’, result bit is same as operand.
k bit ‘1’ lt bit i l t d

V 0.2 7

mask bit = ‘1’, result bit is complemented

Complementing all
Location contents

Data Memory

bits Location contents

(i) 0x0800 0x2C
(j) 0x0801 0xB2l ll bi f k (j) 0x0801 0xB2
(k) 0x0802 0x8A

Complement all bits of k

In C:
i t8 kuint8 k;

k = ~k ;

In PIC24 μC assembly

k = 0x8A = 1000 1010

After complementIn PIC24 μC assembly

com.b k ; k = ~k

After complement

result = 0111 0101
= 0x75

V 0.2 8

Bit set, Bit Clear, Bit Toggle instructions
C t/ l / l t bit f d t l ti b i thCan set/clear/complement one bit of a data memory location by using the
AND/OR/XOR operations, but takes multiple instructions as previously
seen.

The bit clear (bcf), bit set (bsf), bit toggle (btg) instructions
clear/set/complement one bit of data memory or working registers using
one instruction.

V 0.2 9

Bit clear/set/toggle Location contents
Data Memory

examples (i) 0x0800 0x2C
(j) 0x0801 0xB2Clear bit 7 of k, Set bit 2 of j, (j)
(k) 0x0802 0x8A

, j,
complement bit 5 of i.

In C: bbbb bbbb
7654 3210uint8 i, j, k;

k = k & 0x7F;
j = j | 0x04;

7654 3210

k = 0x8A = 1000 1010
bclr.b k,#7
k = 0x0A = 0000 1010j j | 0x04;

i = i ^ 0x20;

In PIC24 μC assembly

k = 0x0A = 0000 1010

j = 0xB2 = 1011 0010
bset b j #2μ y

bclr.b k, #7
bset.b j, #2

bset.b j,#2
j = 0xB6 = 1011 0110

i = 0x2C = 0010 1100

V 0.2 10

btg.b i, #5
i = 0x2C = 0010 1100
btg.b i,#5
i = 0x0C = 0000 1100

status Register
Th STATUS i i i l i (lik h WThe STATUS register is a special purpose register (like the Wn
registers).

We will not discuss the DC flag; it is used in Binary Coded Decimal arithmetic.

V 0.2 11

g; y

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

Carry, Zero Flags
Bit 0 of the status register is known as the carry (C) flag.

Bit 1 of the status register is known as the zero (Z) flag.

These flags are set as side-effects of particular instructions or
can be set/cleared explicitly using the bset/bclr instructions.

How do you know if an instruction affects C, Z flags?

Look at Table 19-2 in PIC24HJ32GP202 μC datasheeet.– add
affects all ALU flags, mov f only Z, N flags, and mov f, Wn no
flags.

Mnemonic Syntax Desc # of Instr StatusMnemonic Syntax. Desc # of Instr Status
words Cycles affected

ADD |ADD f | f=f+WREG| 1 | 1 | C,DC,Z,OV,N
MOV |MOV f,Wn | Wn=(f) | 1 | 1 | none

V 0.2 12

MOV |MOV f | f = (f) | 1 | 1 | N,Z

Addition: Carry, Zero Flags

In addition, carry flag is set if there is a carry out of the MSbit

Zero flag is set if result is zero and cleared otherwise.

and cleared otherwise.

In byte (8-bit) mode, C=1 if sum > 255 (0xFF)
d (bi) d if ()In word (16-bit) mode, C=1 if sum > 65535 (0xFFFF)

0xF0 0x00 0x01 0x80
+0x20

0x10 Z=0,

+0x00

0x00 Z=1

+0xFF

0x00 Z=1

0x80
+0x7F

0xFF Z=0,

C=1
0x00 Z 1,

C=0
0x00 Z 1,

C=1
0xFF Z=0,

C=0

B t d ti h
V 0.2 13

Byte mode operations are shown.

Subtraction: Carry, Zero Flags

Zero flag is set if result is zero and cleared otherwise.

In subtraction, carry flag is cleared if there is a borrow into the
MSb (unsigned underflow, result is < 0, larger number subtracted
from smaller number) Carry flag is set if no borrow occursfrom smaller number). Carry flag is set if no borrow occurs.

0xF0
0 20

0x00
-0x00

0x01
-0xFF- 0x20

0xD0 Z=0,

-0x00

0x00 Z=1,

C 1

-0xFF

0x02 Z=0,

C 0C=1 C=1 C=0

For a subtraction, the combination of Z=1, C=0 will not

V 0.2 14

occur. Byte mode operations are shown.

How do you remember setting of C flag
f S bt ti ?for Subtraction?

Subtraction of A – B is actually performed in hardware as A
+ (B) + 1+ (~B) + 1

The value (~B) + 1 is called the two’s complement of B
(more on this later) The C flag is affected by the addition(more on this later). The C flag is affected by the addition
of A + (~B) + 1

0xF0
0xF0

0x20 = 0010 00000xF0
- 0x20

0 D0 Z 0

+ 0xDF
+ 0x01

0x20 = 0010 0000
~0x20 = 1101 1111

= 0xDF
0xD0 Z=0,

C=1
0xD0 Z=0,

C=1Carry out of MSB,
C 1

V 0.2 15
No borrow, C=1 so C=1

C Shift Left, Shift Right, g
logical Shift right i >> 1
all bits shift to right by one ‘0’ into MSB (8-bit right shift shown)all bits shift to right by one, 0 into MSB (8 bit right shift shown)

b7 b6 b5 b4 b3 b2 b1 b0 original value

0 b7 b6 b5 b4 b3 b2 b1 i >> 1 (right shift by one)

Shift left i << 1
all bits shift to left by one, ‘0’ into LSB (8-bit left shift shown)

b7 b6 b5 b4 b3 b2 b1 b0 original value

i 1 (l ft hift b)
V 0.2 16

b6 b5 b4 b3 b2 b1 b0 0 i << 1 (left shift by one)

PIC24 Family Unsigned Right Shifts
L i l Shif Ri h

b7 b6 b5 b4 b3 b2 b1 b0 Cflag0

Logical Shift Right
8-bit

bi
Descr: Syntax Operation
Log. Shift Right f LSR{.B} f f >> 1 → f

b15 b14 b1 b0 Cflag0 16-bit

LSR{.B} f,WREG f >> 1 → WREG

Log. Shift Right Ws LSR{.B} Ws,Wd Ws>> 1 → Wd
Log. Shift Right by LSR Wb, #lit4, Wd Wb>>lit4 → Wd
short Literal

Log. Shift Right by LSR Wb, Ws, Wd Wb>>Ws → Wd g g y , ,
Ws

The last two logical shifts can shift multiple positions in one
instruction cycle (up to 15 positions) but only as word

V 0.2 17

instruction cycle (up to 15 positions), but only as word
operations. There is an arithmetic right shift that will be
covered in a later lecture.

PIC24 Family Left Shifts
Shif l f

b7 b6 b5 b4 b3 b2 b1 b0Cflag

Shift left

0 8-bit

b15 b14 b1 b0Cflag 0 16-bit

Descr: Syntax Operation
hif l f f { } f f fShift left f SL{.B} f f << 1 → f

SL{.B} f,WREG f << 1 → WREG

Shift left Ws SL{ B} Ws Wd Ws << 1 → WdShift left Ws SL{.B} Ws,Wd Ws << 1 → Wd
Shift left by SL Wb, #lit4, Wd Wb << lit4 → Wd
short Literal

Shift left by Ws SL Wb, Ws, Wd Wb << Ws → Wd

The last two shifts can shift multiple positions in one
instruction cycle (up to 15 positions) but only as word

V 0.2 18

instruction cycle (up to 15 positions), but only as word
operations.

PIC24 Rotate Instructions
PIC24 has some rotate left and rotate right instructions as well:

rotate right thru
carry (rrc)msb lsbCflag carry (rrc)

rotate left thru
carry (rlc)msb lsbCflag carry (rlc)

rotate right no
msb lsb

rotate right no
carry (rrnc)

rotate left no

msb lsb carry (rlnc)

The rrc/rlc instructions are used in the next chapter for 32-bit shift operations. The
/ l di d f h Th lid dd i d h f

V 0.2
19

rrnc/rlnc are not discussed further. The valid addressing modes are the same as for
the shift operations that only shift by one position.

C Shift operationsp

It is sometimes more efficient to repeat a single position shift p g p
instruction performing a multi-bit shift.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

V 0.2 20

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Arithmetic Examplep

Use working registers for storage of intermediate results.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Mixed 8-bit, 16-bit operations

V 0.2 22

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Conditional Execution using Bit Testg
The ‘bit test f, skip if clear’ (btsc) and ‘bit test f, skip if set’
(btss) instructions are used for conditional execution. ()

btsc{.b} f, #bit4 ; skips next instruction is f<#bit4> is clear (‘0’)

btss{ b} f #bit4 ; skips next instruction is f<#bit4> is set (‘1’)btss{.b} f, #bit4 ; skips next instruction is f<#bit4> is set (1)

Bit test instructions are just the first of many different
methods of performing conditional execution in the PIC24
μC.μ

V 0.2 23

Number Sequencing Task
i busing btsc

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

V 0.2 24

C Conditional Tests
Operator Description

== , != equal, not-equal

>, >= greater than, greater than or equal

<, <= less than, less than or equal

&& logical AND
| | logical OR

! logical negation

If t d i C diti l t t h IFIf an operator used in a C conditional test, such as an IF
statement or WHILE statement, returns nonzero, then the
condition test is TRUE.

V 0.2 25

Logical Negation vs. Bitwise Complement
!i is not the same as i

!

!i is not the same as ~i

0

i = 0xA0 i = 0xA0

!(i) 0 ~(i) 0x5F

Logical operations: !, &&, || always treat their operands as
either being zero or non-zero, and the returned result is
always either 0 or 1.

V 0.2 26

Examples of C Equality, Inequality,
L i l Bit i L i l T tLogical, Bitwise Logical Tests

uint8 a,b,a_lt_b, a_eq_b, a_gt_b, a_ne_b;

a = 5; b = 10;
a_lt_b = (a < b); // a_lt_b result is 1
a_eq_b = (a == b); // a_eq_b result is 0
a gt b = (a > b); // a gt b result is 0a_gt_b = (a > b); // a_gt_b result is 0
a_ne_b = (a != b); // a_ne_b result is 1

uint8 a_lor_b, a_bor_b, a_lneg_b, a_bcom_b;

(2) a = 0xF0; b = 0x0F;
(3) a_land_b = (a && b); //logical and, result is 1
(4) a band b = (a & b); //bitwise and, result is 0_ _
(5) a_lor_b = (a || b); //logical or, result is 1
(6) a_bor_b = (a | b); //bitwise or, result is 0xFF
(7) a_lneg_b = (!b); //logical negation, result is 0
(8) a bcom b = (~b); //bitwise negation result is 0xF0

V 0.2 27

(8) a_bcom_b = (~b); //bitwise negation, result is 0xF0

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

if{} Statement Format in Cf{}

if-body and else-body can contain multiple
t t tstatements.

else-body is optional.

V 0.2 28Copyright Delmar Cengage Learning 2008. All Rights Reserved.

C zero/non-zero tests
A C conditional test is true if the result is non-zero; false if
the result is zero.

h i l i l h if h iThe ! operator is a logical test that returns 1 if the operator is
equal to ‘0’, returns ‘0’ if the operator is non-zero.

if (!i) { if (i) {if (!i) {
// do this if i zero

j = i + j;
}

if (i) {
// do this if i non-zero

j = i + j;
}} }

Could also write:
if (i == 0) { if (i != 0) {if (i == 0) {
// do this if i zero

j = i + j;
}

if (i ! 0) {
// do this if i non-zero

j = i + j;
}

V 0.2 29

}

C equality tests

A common C code mistake is shown below (= vs ==)

‘==‘ is the equality test in C; ‘=‘ is the assignment operator.

if (i = 5) {
j = i + j;

} //wrong

if (i == 5) {
j = i + j;

} // right} // o g } // g t

Always executes
because i=5 returns 5,
so conditional test is

The test i == 5 returns a
1 only when i is 5. The
== is the equalityso conditional test is

always non-zero, a true
value. The = is the

 is the equality
operator.

V 0.2 30

assignment operator.

C Bitwise logical vs. Logical ANDg g
The ‘&’ operator is a bitwise logical AND. The ‘&&’ operator
is a logical AND and treats its operands as either zero or non-g p
zero.

if (i && j) { If ((i is nonzero) AND is read as:
/* do this */
}

is read as:

(j is nonzero)) then do
this.

is read as:
if (i & j) {
/* do this */
}

If ((i bitwise AND j) is
nonzero)) then do this.

(i && j) (i & j)

i = 0xA0, j = 0x0B;

1

i = 0xA0, j = 0x0B;

0x0

V 0.2 31

j j

C Bitwise logical vs. Logical ORg g
The ‘|’ operator is a bitwise logical OR. The ‘||’ operator is
a logical OR and treats its operands as either zero or non-g p
zero.

if (i || j) { If ((i is nonzero) OR (j is read as:
/* do this */
}

is read as:

is nonzero)) { do...

is read as:
if (i | j) {
/* do this */
}

If ((i bitwise OR j) is
nonzero)) { do....

(i || j) (i | j)

i = 0xA0, j = 0x0B;

1

i = 0xA0, j = 0x0B;

0xAB

V 0.2 32

j j 0xAB

Non-Zero Test labels for SFRs
defined in
p24Hxxxx.inc; use
for clarity!!!!

Th i i t ti j t i b k t it lf! DThe mov i instruction just moves i back onto itself! Does no
useful work except to affect the Z, N flags.

C i h D l C L i 2008 All Ri h R d

V 0.2 33

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Conditional Execution using branches

Simple branches test only one flag:

A branch functions as a conditional goto based upon the
setting of one more flags

Simple branches test only one flag:
BRA Z, <label> branch to label if Z=1
BRA NZ, <label> branch to label if Z=0 (not zero)
BRA C, <label> branch to label if C=1
BRA NC, <label> branch to label if C=0 (no carry)
BRA N, <label> branch to label if N=1BRA N, label branch to label if N 1
BRA NN, <label> branch to label if N=0 (not negative)

BRA <label> unconditional branch to <label>

Using branch instructions instead of btsc/btss generally

V 0.2 34

Using branch instructions instead of btsc/btss generally
results in fewer instructions, and improves code clarity.

Non-Zero Test

The bra Z (branch if Zero, Z=1) replaces the btfsc/goto
combination.

For a non-zero test if(!i){} replace bra Z with bra NZFor a non zero test if(!i){} replace bra Z with bra NZ

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

V 0.2 35

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

General if else form with branchesGeneral if-else form with branches

Choose the branch instruction such that the branch is
TAKEN when the condition is FALSE.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

V 0.2 36

py g g g g g

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Equality Test (==)q y ()

Subtraction operation of k-j performed to check equality;

if k == j then subtraction yields ‘0’, setting the Z flag. Does not
matter if k-j or j-k is performed.

V 0.2 37
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

>,>=, <,<= tests using Z, C flags and subtraction

V 0.2 38

k>j test using k-jj g j

The false condition of k>j is k<=j, so use k<=j to skip around
th if b d F th k j t t thi i li h d b C 0 Z 1the if-body. For the k-j test, this is accomplished by C=0 or Z=1,
requiring two branches.

V 0.2 39

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

k>j test using j-kj g j

The false condition of k>j is k<=j, so use k<=j to skip
around the if-body. For the j-k test, this is accomplished by
C=1, requiring one branch

V 0.2 40

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Comparison Unsigned BranchesComparison, Unsigned Branches
Using subtraction, and simple branches can be confusing, since it

b diffi l b hi h f d b ican be difficult to remember which preferred subtraction to
perform and which branch to use.

Also the subtraction operation overwrites a register valueAlso, the subtraction operation overwrites a register value.

The comparison instruction (CP) performs a subtraction without
placing the result in register:placing the result in register:

Descr: Syntax Operation
Compare f with WREG CP{.B} f f – WREGCompare f with WREG CP{.B} f f WREG
Compare Wb with Ws CP {.B} Wb,Ws Wb – Ws
Compare Wb with #lit5 CP{.B} Wb,#lit5 Wb – #lit5
Compare f with zero CP0{ B} f f 0

V 0.2 41

Compare f with zero CP0{.B} f f – 0
Compare Ws with zero CP0{.B} Ws Ws – 0

Comparison Unsigned Branches (cont)Comparison, Unsigned Branches (cont)
Unsigned branches are used for unsigned comparisons and tests a

bi i f h Z C fl d di h icombination of the Z, C flags, depending on the comparison.

Descr: Syntax Branch taken when
Branch > unsigned BRA GTU label C=1 && Z=0Branch >, unsigned BRA GTU, label C=1 && Z=0
Branch >=, unsigned BRA GEU, label C=1
Branch <, unsigned BRA LTU, label C=0
Branch <= unsigned BRA LEU label C=0 || Z=1Branch <=, unsigned BRA LEU, label C=0 || Z=1

Use a Compare instruction to affect the flags before using an
unsigned branchunsigned branch.
Example:

CP W0, W1 ; W0 – W1
BRA GTU l b h k if W0 W1

V 0.2 42

BRA GTU, place ; branch taken if W0 > W1

Unsigned Comparison (> test)

For k > j test, use the LEU (less than or equal unsigned) branch
to skip IF body if k <= j

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

V 0.2 43

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

If-else Example

M t diti l b h t d f if b d t ki th lMust use unconditional branch at end of if-body to skip the else-
body.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

V 0.2 44

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Unsigned literal Comparison

C i h D l C L i 2008 All Ri h R d

V 0.2 45

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

switch Statement in C

A switch statement is a shorthand version of an if-else chain
where the same variable is compared for equality against
different values.

V 0.2 46

d e e v ues.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

switch Statement in assembly language

V 0.2 47
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Unsigned, Zero, Equality Comparison Summary

Condition Test True Branch False BranchCondition Test True Branch False Branch
i == 0 i − 0 bra Z bra NZ
i != 0 i − 0 bra NZ bra Z
i == k i − k bra Z bra NZ
i != k i − k bra NZ bra Z
i k i k b GTU b LEUi > k i − k bra GTU bra LEU
i >= k i − k bra GEU bra LTU
i < k i − k bra LTU bra GEUi < k i k bra LTU bra GEU
i <= k i − k bra LEU bra GTU

V 0.2 48

Other PIC24 Comparison Instructions
The PIC24 has various other comparison instructions

CPSEQ Wb,Wn ; if Wb == Wn, skip next instructionQ , ; , p

CPSNE Wb,Wn ; if Wb != Wn, skip next instruction

CPSGT Wb Wn ; if Wb == Wn skip next instructionCPSGT Wb,Wn ; if Wb == Wn, skip next instruction

CPSLT Wb,Wn ; if Wb < Wn, skip next instruction

These are provided as upward compatibility with previous
PICmicro families, and may save an instruction or two in certainPICmicro families, and may save an instruction or two in certain
situations. However, we will not use them since their
functionality can be duplicated by previously covered
compare/branch instructions

V 0.2 49

compare/branch instructions.

Complex Conditions (&&)

V 0.2 50Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Complex Condition Example (&&)

V 0.2 51Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Complex Conditions (||)

Careful of last branch!
Different from others!

V 0.2 52Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Complex Conditions (||), alternate method

V 0.2 53Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Complex Condition Example (||)p p (||)

V 0.2 54Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

while loop Structure

Observe that at the end of the loop, there is a jump back to p j p
top_while after the while-body is performed. The body of
a while loop will not execute if the condition test is
initially false

V 0.2 55

initially false.
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

while loop Example

V 0.2 56Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

do-while loop Structure

V 0.2 57Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

do while Exampledo-while Example

V 0.2 58Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Aside: for loops in C

A for loop is just another way to write a while loop. Typically
used to implement a counting loop (a loop that is executed a p g p (p
fixed number of times).

uint16 i,j; executed once,
executed each
loop iteration

i = 0;
while (i != 10) { unsigned char i,j;

,
before test.

loop iteration
after body

() {
k = k + j;
i++;

}

for (i = 0; i!= 10; i++){
k = k + j;

}
/* ..do stuff..*/ /* do stuff */

These statements executed 10 times. Both code blocks

loop test

V 0.2 59

These statements executed 10 times. Both code blocks
are equivalent.

Bit Test Instruction
The ‘bit test’ instruction: btst f, #bit4 is useful for testing a
single bit in an operand and branching on that bit. The complement
of the bit is copied to the Z flag (if bit is 0 then Z=1; if bit is 1of the bit is copied to the Z flag (if bit is 0, then Z=1; if bit is 1,
then Z=0).

Other forms of ‘bit test’ are available; they will not be discussed.

V 0.2 60

What instructions do you use?
You will discover that there are many ways for accomplishing the
same thing using different instruction sequences.

Which method do you use?

The method that you understand......(and have not MEMORIZED),
since memorization of code fragments will fail if faced with a
situation different from what is memorized.

Your grade will not be penalized for ‘inefficient code’ in this course
since this is your first look at assembly language programming.

Y d ill l b li d f i t d “ l ”Your grade will always be penalized for incorrect code – “close”
does not count.

V 0.2 61

What do you need to know?y
• Bitwise logical operations (and,or,xor, complement)

– Clearing/setting/complementing groups of bitsClearing/setting/complementing groups of bits

• Bit set/clear/toggle instructions
• Shift left (<<) shift right (>>)Shift left (<<), shift right (>>)
• Status register (C, Z flags)
• == != > < >= <= tests on 8 bit 16 bit unsigned• ==, !=, >, <, >=, <= tests on 8-bit, 16-bit unsigned

variables
– Conditional executionConditional execution

• Loop structures

V 0.2 62

