
Indirect Addressing Modes

V 2.0 1
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Indirect Addressing Modes Examples

V 2.0 2
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Register Indirect with Register Offset Examples

V 2.0 3
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Arrays and Pointers in C
• A pointer variable is a variable that contains the

address of another variable.
• An array is a collection of like elements, such as

an array of integers, array of characters, etc.
• One use of pointer variables in C is for stepping

through the elements of an array.
• Another use of pointer variables is for passing

arrays to subroutines
O l h t th dd f th fi t l t– Only have to pass the address of the first element
instead of passing all of the array elements!

V 2.0 4

A First Look at C Pointers

& is “address of” operator, “*” is dereference operator.
Pointers to data RAM are 16-bits wide because there are 64Ki

V 2.0 5

addressable locations.
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Same Example with uint32 variables

p is still 16-bits! Pointer size is always 16 bits not dependent upon referenced

V 2.0 6

p is still 16 bits! Pointer size is always 16 bits, not dependent upon referenced
data size

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

uint16* Pointer Example to Assembly

 uint16 u16_k, u16_j;
 uint16* pu16_a;

In C In Assembly
u16_k: .space 2
u16_j: .space 2

(1) u16_k = 0xA245;

(2) 16 j 0 9FC1

;; W1 is used for pu16_a

 mov #0xA245,W0
 mov W0,u16_k ;u16_k = 0xA245

(2) u16_j = 0x9FC1;

(3) pu16_a = &u16_j;
 mov #0x9FC1,W0
 mov W0,u16_j ;u16_j = 0x9FC1

(4) u16_k = *pu16_a;
 mov #u16_j,W1 ;W1 = &u16_j

 mov [W1],W0 ;W0 = *W1 = *pu16_a = u16_j
mov W0,u16 k ;u16 k = W0 = u16 j

W1 register used to implement the pu16_a pointer.
Indirect addressing used to implement *pu16_a.

, _ ; _ _j

V 2.0 7
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Pointers in assembly
Operation RTL Assembly C
Literal ____

0x0900 → W0
#
mov #0x0900, W0

____ (based on type)
W0 = 0x0900;

mov #u8_c, W0
mov W0, pu8_b
mov #au8_d, W0
mov W0 pu8 b

pu8_b = &u8_c;
=> pu8_b = 0x0804;
pu8_b = au8_d;
=> pu8 b = 0x0805;mov W0, pu8_b > pu8_b 0x0805;

Direct (___)
(u16_a) → W0
=> (0x0800) → W0

mov u16_a, W0
=> mov 0x0800, W0

____ (based on type)
W0 = u16_a;

() ,
(Register)
indirect

((___))
((pu8_b)) → W0
((0x0802)) → W0

[___] (registers only)
mov pu8_b, W1
mov [W1], W0

*____ or ____[0]
W0 = *pu8_b; // or
W0 = pu8_b[0]

.space u16_a 2 ; u16_a = 0x0800

.space pu8_b 2 ; pu8_b = 0x0802

Address Data
0x0800 0x1234

.space u8_c 1 ; u8_c = 0x0804

.space au8_d 10 ; au8_d = 0x0805
0x0802 0x0804
0x0804 0x5678

uint32* Pointer Example to Assembly

V 2.0 9
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Pointer Arithmetic
Pointer arithmetic means to add or subtract a pointer by some value. The

l b i dd d t th i t bt t d f th i t i lti li d

uint8* pu8_a;
uint8 u8 j u8 k;

value being added to the pointer or subtracted from the pointer is multiplied
by the SIZE in bytes of what the pointer is pointing at!

uint8 u8_j, u8_k;

pu8_a = &u8_j;
pu8_a = pu8_a + 1; ; pu8_a = pu8_a + 1*sizeof(uint8)

; pu8_a = pu8_a + 1*1 = pu8_a + 1;

uint16* pu16_a;
uint16 u16_j,u16_k;

pu16 a = &u16 j;pu16_a = &u16_j;
pu16_a = pu16_a + 1; ; pu16_a = pu16_a + 1*sizeof(uint16)

; pu16_a = pu16_a + 1*2 = pu16_a + 2;

uint32* pu32 a;uint32 pu32_a;
uint32 u32_j,u32_k;

pu32_a = &u32_j;
pu32_a = pu32_a + 1; ; pu32_a = pu32_a + 1*sizeof(uint32)

32 32 1 32

V 2.0 10

; pu32_a = pu32_a + 1*4 = pu32_a + 4;

Pointer Arithmetic (continued)
Pointer arithmetic means to add or subtract a pointer by some value. The

l b i dd d t th i t bt t d f th i t i lti li d

int8* p 8 a

value being added to the pointer or subtracted from the pointer is multiplied
by the SIZE in bytes of what the pointer is pointing at!

uint8* pu8_a;
uint8 u8_j, u8_k;

pu8_a = &u8_j;
pu8_a = pu_a + 1;

mov #u8_j, W1 ;use W1 for pu8_a
add W1,#1, W1 ;pu8_a = pu8_a + 1*sizeof(uint8)

;pu8 a = pu8 a + 1*1 = pu8 a + 1;_ _

uint16* pu16_a;
uint16 u16_j,u16_k;

;pu8_a = pu8_a + 1*1 = pu8_a + 1;

pu16_a = &u16_j;
pu16_a = pu_a + 1;

mov #u16_j, W1 ;use W1 for pu16_a
add W1,#2, W1 ;pu16_a = pu16_a + 1*sizeof(uint16)

;pu16_a = pu16_a + 1*2 = pu16_a + 2;

uint32* pu32_a;
uint32 u32_j,u32_k;

pu32_a = &u32_j;
pu32 a = pu a + 1;

mov #u32_j, W1 ;use W1 for pu32_a
add W1,#4, W1 ;pu32_a = pu32_a + 1*sizeof(uint32)

V 2.0 11

pu32_a pu_a + 1; _ _
;pu32_a = pu32_a + 1*4 = pu32_a + 4;

Arrays and Pointers: Array of uint8

V 2.0 12
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Arrays and Pointers: Array of uint16

V 2.0 13
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Add two uint16 Arrays

V 2.0 14
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

C Strings

V 2.0 15
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

The repeat Instruction

V 2.0 16
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Why are Subroutines needed?

V 2.0 17
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

A C Subroutine (Function)

V 2.0 18
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Call/Return

V 2.0 19
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

A Stack

V 2.0 20
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Push/Pop on PIC24 Stack

mov src, [W15++]

mov [--W15], dest

V 2.0 21
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Push/Pop Forms

V 2.0 22
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Push/Pop Example

V 2.0 23
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

New instructions: call/rcall, return
The call/rcall instructions can used to call a subroutine.
The call instruction is 2 program words, the rcall is 1
program word Each does the same two things:program word. Each does the same two things:

1. Pushes the return address on the stack. The return
address is the address of the instruction after the

ll/ ll instr ctioncall/rcall instruction.
2. Does an unconditional jump to the subroutine.

The return instruction is used to return from a subroutine. It
pops the top of the stack into the program counter, causing a
j h l i d l di i h ljump to that location. Under normal conditions, the value
popped from the stack will be the return address for the
call/rcall instruction used to jump to this subroutine.

V 2.0 24
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

j p

Call/Return and the Stack

V 2.0 25
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Call/Return Forms

V 2.0 26
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Dynamic Allocation
f L lfor Locals

Dynamic allocation
is needed for
recursive functionsrecursive functions
to operate correctly.

New space for
parameters and
locals are allocated
in registers or on the
stack.

V 2.0 27
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Rules For Subroutine Parameter Passing

• W0-W7 are used for parameters, left to right order. W0-W7 are
caller saved (if caller wants these preserved caller has to savecaller saved (if caller wants these preserved, caller has to save
them).
• Function values returned in W0-W3 (W0 for 8/16 bit, W0-W1
f 32 bit W0 W3 f 64 bit l)for 32-bit, W0-W3 for 64-bit values).
• Registers W8-W14 are callee saved (if the callee uses them,
must be preserved).
• Locals are allocated to unused W0-W7 registers, and also to W8-
W14.

V 2.0 28
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Subroutine Example

V 2.0 29
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Subroutine Call Example

V 2.0 30
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Using the stack to save register valuesg g
Recall the countOnes() PIC24 implementation used the W1, W2
registers for local variables. What if the caller wanted to save
h i ? P h h h k b f ll hthese registers? Push them on the stack before call, then pop

them off (must be in reverse order of push!!!)

push W1 ;save W1
push W2 ;save W2p
mov u16_k, WREG ;pass u16_k in W0
rcall countOnes ;call the function
mov b WREG u8 j ;save return valuemov.b WREG, u8_j ;save return value
pop W2 ;restore W2
pop W1 ;restore W1

V 2.0 31

A Recursive Subroutine

V 2.0 32
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Observe that stack is used for temporary storage.

Subroutine with Multiple Parameters

V 2.0 33
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Global Variable Initialization

V 2.0 34
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

What does ‘init_variables’ do?
• Initial values for variables live in program memory which is
non-volatile.
• Can use a special mode called program space visibility (PSV)Can use a special mode called program space visibility (PSV)
that allows upper half of memory to be mapped to program
memory.

C th i t ti t d t f t• Can then use instructions to copy data from program memory to
data memory to initialize variables.

V 2.0 35
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

I it i bl

(1) .text ;program memory
(2) ;; constant data to be moved to data memory
(3) sz_1_const: .asciz "Hello"
(4) 2 i "UPPER/l " Init_variables(4) sz_2_const: .asciz "UPPER/lower"

(5) init_variables:
(6) ;turn on program visibility space, use default PSVPAG value of 0
(7) bset CORCON,#2 ;enable PSV () , ;
(8) ;copy source address in program memory to W2
(9) mov #psvoffset(sz_1_const),W2
(10) mov #sz_1,W3 ;destination address in data memory
(11) rcall copy_cstring
(12);copy source address in program memory to W2(12);copy source address in program memory to W2
(13) mov #psvoffset(sz_2_const),W2
(14) mov #sz_2,W3 ;destination address in data memory
(15) rcall copy_cstring
(16) return
(17);;copy constant null-terminated string from program memory to data memory
(18);;W2 points to program memory, W3 to data memory
(19) copy_cstring:
(20) mov.b [W2],W0
(21) cp b W0 #0 ;test for null byte

Copy strings
from(21) cp.b W0,#0 ;test for null byte

(22) bra Z, copy_cstring_exit ;exit if null byte
(23) mov.b [W2++],[W3++] ;copy byte
(24) bra copy_cstring ;loop to top
(25) copy_cstring_exit:
(26) b [2] [3] ll b

from
program
memory to
d

V 2.0 36

(26) mov.b [W2++],[W3++] ;copy null byte
(27) return

data memory

Local variables versus global variablesg
• Global variables are assigned fixed memory locations in data
memory by the compiler (i e 0x800 0x802 etc)memory by the compiler (i.e, 0x800, 0x802, etc).
• Local variables (variables declared in subroutines) are assigned
either to working registers or to space allocated on the stack.

All ti f t k f l l i bl i ll d t k• Allocation of stack space for local variables is called a stack
frame, and is an advanced topic that is not covered in this
class (but is covered in the book and other slides). Stack
frames can also be used to pass parameters to functions.
• In our PIC24 implementations of C functions for homework
or test problem examples we will always use workingor test problem examples, we will always use working
registers for local variables declared in subroutines, and we
will always use working registers to pass parameters to

b ti
V 2.0 37

subroutines.

Stack Frames

Used when cannot fit locals, parameters in registers.
Use the stack for storage

V 2.0 38

Use the stack for storage.

Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Constructing a Stack Frame

V 2.0 39
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Stack Frame for fib() Function

V 2.0 40
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

Calling fib()

V 2.0 41
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

fib() Implementation
fib() with stack
frames required
20 instructions,
without stack
frames only 15frames only 15
instructions.
The generality
of stack framesof stack frames
has overhead
costs.

V 2.0 42
Copyright Delmar Cengage Learning 2008. All Rights Reserved.

From: Reese/Bruce/Jones, “Microcontrollers: From Assembly to C with the PIC24 Family”.

What do you have to know?

• Indirect addressing modes for PIC24
• C code operation with pointers and arrays• C code operation with pointers and arrays
• Implementation of C code with pointers/arrays in

PIC24 assemblyPIC24 assembly.
• How the stack on the PIC24 works
• How subroutine call/return works with the PIC24 stack• How subroutine call/return works with the PIC24 stack
• How to pass parameters to a subroutine using registers

for parameters and localsfor parameters and locals
• How to implement small C functions in PIC24

assembly.
V 2.0 43

assembly.

