

RFVGR03

General Description

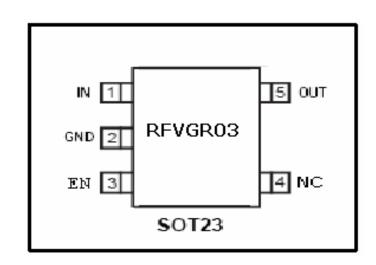
Low-cost series voltage references meets the cost advantage of shunt references and offers the power-saving advantage of series references, which traditionally cost more. Unlike conventional shunt-mode (twoterminal) references that must be biased at the load current and require an external resistor, these devices eliminate the need for an external resistor and offer a supply current that is virtually independent of the supply voltage. These low power, low-cost devices are ideal for high-volume, cost-sensitive 1.8V battery operated systems with wide variations in supply voltage that require very low power dissipation. Additionally, these devices are internally compensated and do not require an external compensation capacitor, saving valuable board area in space-critical applications.

Key Features

- 2.1 % Max. initial Accuracy
- 71 ppm/°C max. temperature Coefficient
- Low Power Consumption
- Power-up and Power-down mode available
- No external Capacitor required
- Fast Settling time
- Low Power Dissipation

Applications

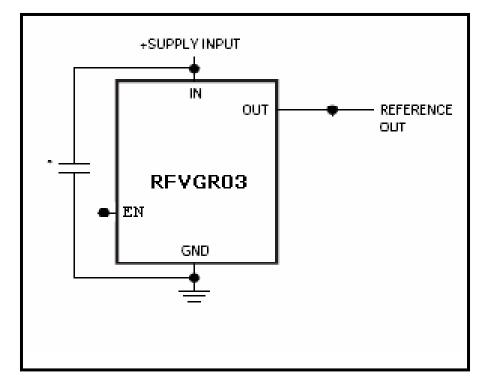
- Portable / Battery powered Equipment
- Hard Disk Drives
- Data Acquisition Systems
- Automotives
- **Cell Phones**
- Notebooks Computers


www.rficsolutions.com

RFVGR03

Pin Configuration

Top View


Pin Description

Pin Name	1/0	Description	
IN	Ι	Input Voltage Unregulated	
OUT	0	Output Voltage, Regulated	
GND	-	Ground Connection	
NC	-	NO Connection	
EN	I	Power-up and power-down Control	

RFVGR03

Typical Operating Circuit

Absolute Maximum Ratings

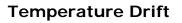
Operating Temperature Range	-40° C to $+125^{\circ}$ C
Storage Temperature Range	65 ⁰ C to 150 ⁰ C
Lead Temperature (Soldering 10 Sec)	+ 300 ° C

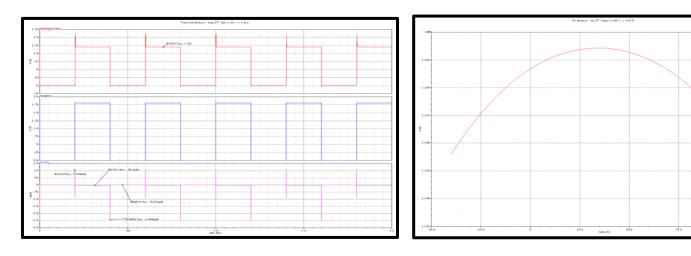
Page 3 of 5

RFVGR03

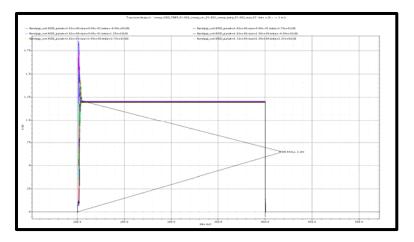
Electrical Characteristics (Typical values are at $T_A = +25$ °C)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Supply Voltage	V_{supply}		1.6	1.8	1.98	V
Output Voltage	V _{OUT}	$T_A = +25 \ ^{0}C$		1.22		V
Temperature Coefficient	TCV _{OUT}	$-40 {}^{0}C < T_{A} < +125$			71.9	ppm/ ⁰ C
Initial Accuracy Error					11	mV
Line Regulation	V _{OUT} / V _{supply}	$T_A = +25^{0} C$			13	mV
Turn-on Settling Time	T _R	$T_A = +125 \ ^{0}C$			15	uS
Current Consumption	I _{OUT}	$T_A = +125 \ ^{0}C$			50	uA
Switching Current	I_{SW}	$T_A = -40^{0} C$	1.46			mA
Power Dissipation @Power up	PD _{PWR-UP}	$T_A = +125 \ ^{0}C$			2	mW
Power Dissipation @DC	PD _{DC}	$T_A = +125 \ ^{0}C$			97.2	uW
Power Dissipation @Power down	PD _{PWR-DN}	$T_A = +125 \ ^{0}C$			2.5	mW
Power Dissipation @standby mode	PD _{ST}	$T_A = +125 \ ^{0}C$			389	рW
Accuracy					2.10%	


Preliminary Datasheet


Low Power Voltage Reference

RFVGR03


Typical Operating Characteristics

Transient Simulation

Turn- on Time

