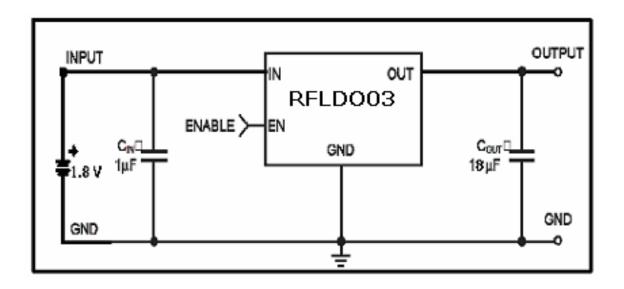
RFLD003

Description

The **RJLDO03**, Low Dropout Linear Regulator is ideal for systems where a low cost solution is critical. This device features extremely low quiescent current which is typically 5uA. Dropout voltage is also very low, typically 600mV. The **RJLDO03** has an Enable pin feature, which when pulled low will enter the LDO regulator into a shutdown mode removing power from its load and offering extended power conservation capabilities for portable battery powered applications. The devices have been optimized to meet the needs of Modern wireless communications design; Low noise, low Dropout, small size, high peak current, high noise immunity.

The device is rated over a -40°C to +125°C temperature range. Since only, 18uF ceramic output capacitor is recommended, the RJLDO03 is a truly cost effective voltage conversion solution. This Building block is designed in 180nm CMOS technology.

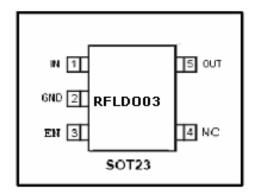
Key Features


- 600 mV Low Dropout Voltage
- 5 uA Quiescent Current
- 40 mA average output Current
- 2.1% High Accuracy
- < 100 ppm/ ⁰C Low Temperature Coefficient
- Power-Saving Shutdown Mode
- Low Power Consumption
- Operating Junction Temperature Range
 - -40°C to +125°C

RFLD003

Applications

- General Purpose
- High-Speed Driver Chipset Power
- Networking Backplane Cards
- Network Interface Cards
- PLL


Typical Application

RFLD003

Pin Configuration

Top View

Pin Description

Pin Name	1/0	Description			
IN	I	Input Voltage Unregulated			
GND	-	Ground Connection			
EN	I	Power-up and power-down Control			
NC	-	NO Connection			
OUY		Regulated Output Voltage			

RFLD003

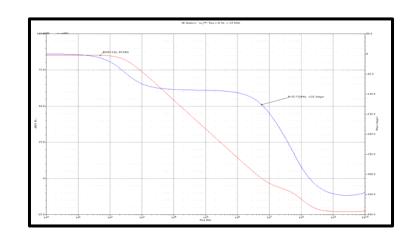
Absolute Maximum Ratings

Symbol	Description	Values	Units
VIN	Input Voltage	1.2 to 1.98	V
V _{EN}	EN to GND Voltage	1.2 to 1.98	V
I _{OUT}	Maximum DC Output Current	P _D /(V _{IN –} V _{O)}	mA
TJ	Operating Junction Temperature Range	-40 to +125	°C
T _{LEAD}	Maximum Soldering Temperature	300	°C

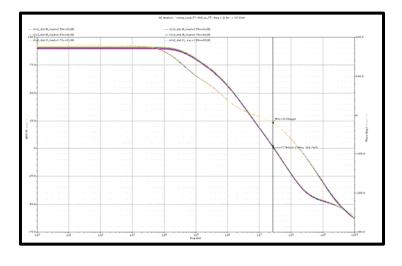
RFLD003

Electrical Characteristics (Typical values are at $T_A = +25$ $^{\circ}$ C)

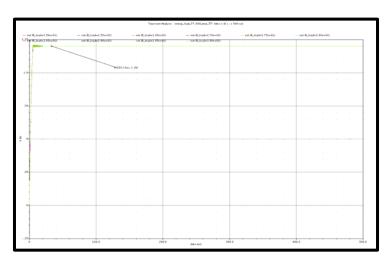
Parameter	Symbol	Conditions	Min	Тур	Max	Units
Supply Voltage	$\mathbf{V}_{ ext{supply}}$		1.6	1.8	1.98	V
Output Voltage	$\mathbf{V}_{\mathbf{OUT}}$	$T_A = +125 {}^{0}C$			1.18	V
Output Current	I _{OUT}	$T_A = +25 {}^{0}C$		35	40	mA
Ground Current	I _{GND}	$T_A = +125 {}^{0}C$			5.2	uA
Dropout Voltage	V_{DO}	$T_A = +25^{\circ} C$		600		mV
Temperature Coefficient	TCV _{OUT}	$^{-40}$ $^{\circ}$ C $^{<}$ T _A $^{<}$ + 125 $^{\circ}$ C			71.9	ppm/ ⁰ C
Initial Accuracy Error					<14	mV
Line Regulation	$ m V_{OUT}$ / $ m V_{supply}$	$T_A = +25^{\circ} C$			15	mV
Turn-on Settling Time	T_R	$T_A = +125 {}^{0}C$			249	uS
Switching Current	$\mathbf{I}_{\mathbf{SW}}$	$T_A = -40^{\circ} C$			186	mA
Power Dissipation @Power up	PD _{PWR-UP}	$T_A = +125^{\circ} C$			386	mW
Power Dissipation @DC	PD _{DC}	$T_A = +125 {}^{0}C$			19.4	uW
Power Dissipation @Power down	PD _{PWR-DN}	$T_A = +125^{\circ} C$			334	mW
Power Dissipation @standby mode	PD_{ST}	$T_A = +125^{\circ} C$			2.89	nW
Accuracy					2.10%	


RFLD003

Typical Characteristics


Line Regulation

| Stration | Stration


Gain and PM of Error Amplifier

AC Close Loop Analysis

Transient Simulation

