


# The IL-17 Cytokine Family

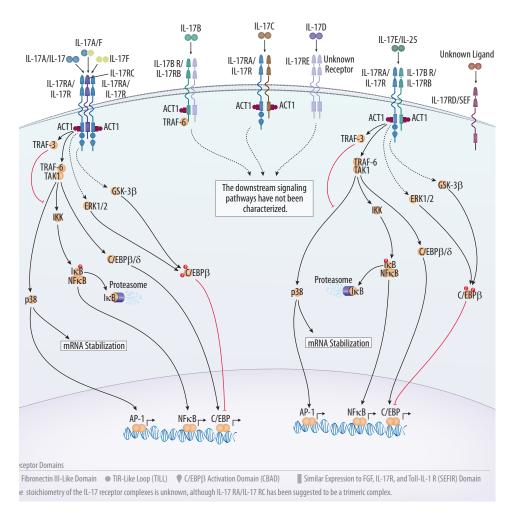


## The IL-17 Cytokine Family

The IL-17 cytokine family consists of six proteins (IL-17A, IL-17B, IL-17C, IL-17D, IL-17E/ IL-25, and IL-17F) that are secreted by multiple cell types and primarily promote proinflammatory immune responses. IL-17A was the first member of the IL-17 family of cytokines to be cloned, followed by homology-based cloning of the five other IL-17 family members, which share 16-50% amino acid sequence identity with IL-17A.<sup>1,2</sup> Members of this cytokine family contain five spatially conserved cysteine residues at their C-terminal ends and form a cysteine-knot fold structure.2 They are secreted as disulfide-linked dimers with the exception of IL-17B, which is secreted as a non-covalent homodimer. Signaling by IL-17 family cytokines is mediated by members of the IL-17 receptor family (IL-17 RA - IL-17 RE). All five of these receptors are type I transmembrane proteins that oligomerize to form functional receptor complexes.

Within the IL-17 cytokine family, IL-17A and IL-17F have been the most widely studied because they are secreted by Th17 cells. Th17 cells are of great interest due to their involvement in the pathogenesis of a number of inflammatory and autoimmune diseases.<sup>2-4</sup>

Both IL-17A and IL-17F, as well as IL-17A/F, signal through a receptor complex consisting of IL-17 RA and IL-17 RC. Receptor binding activates a series of intracellular kinases that drive the NF $\kappa$ B-, AP-1-, and C/EBP-dependent expression of pro-inflammatory cytokines, chemokines, and anti-microbial peptides. These molecules promote immunity, but they can also have tissue destructive effects that drive disease development.


In contrast to IL-17A and IL-17F, IL-17E/IL-25 acts through a receptor complex formed by IL-17 RA and IL-17 RB. It activates similar intracellular signaling pathways but primarily induces the expression of IL-4, IL-5, and IL-13, and promotes eosinophil recruitment.<sup>2,5</sup> As a result, IL-17E/IL-25 stimulates Th2- and Th9type immune responses and may contribute to the pathogenesis of allergen-induced airway inflammation.2,5 Less is known about the signaling pathways activated by other IL-17 family cytokines. Recent studies suggest that autocrine signaling by IL-17C in epithelial cells stimulates the production of anti-microbial peptides and pro-inflammatory cytokines. which may contribute to the development of autoimmune diseases.6,7 IL-17B is known to

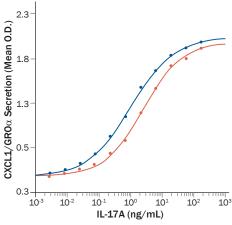
bind to IL-17 RB, but the major target cells and effects of IL-17B signaling have not been reported.<sup>4</sup> In addition, the receptor for IL-17D and the ligand for IL-17 RD are currently unknown.

R&D Systems offers a wide selection of products for IL-17 family research including bioactive recombinant human and mouse proteins for most of the IL-17 family ligands and receptors. In addition, we offer antibodies for blocking/neutralization, Western blotting, flow cytometry, and immunohistochemistry, and ELISAs for cytokine and receptor quantification. For more information, please visit our website at rndsystems.com/ IL-17Family.

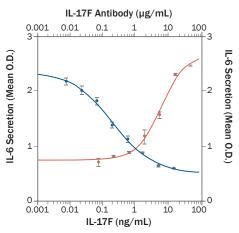
#### References

- 1. Kolls, J.K. & A. Linden (2004) Immunity 21:467.
- 2. Iwakura, Y. et al. (2011) Immunity 34:149.
- 3. Gaffen, S.L. (2011) Curr. Opin. Immunol. 23:613.
- 4. Gaffen, S.L. (2009) Nat. Rev. Immunol. 9:556.
- Monteleone, G. et al. (2010) Cytokine Growth Factor Rev. 21:471.
- Song, X. et al. (2011) Nat. Immunol. 12:1151.
   Ramirez-Carrozzi, V. et al. (2011) Nat. Immunol. 12:1159.




## Products for IL-17 Cytokine Family Research

### Ligands & Receptors


| Molecules            | Proteins | Antibodies                                        | ELISAs |
|----------------------|----------|---------------------------------------------------|--------|
| IL-17/IL-17A         | H M R Ca | H (B/N, FC, ICC, IP, WB) M (B/N, FC, WB) Ca (B/N) | H M Ca |
| IL-17A/F Heterodimer | H M      |                                                   | H M    |
| IL-17B               | H M      | <b>H</b> (FC, WB) <b>M</b> (B/N, FC, WB)          | H M    |
| IL-17C               | H M      | H (FC, IHC, WB) M (FC, WB)                        | Н      |
| IL-17D               | H M      | H (B/N, FC, IHC, WB) M (FC, WB)                   | M      |
| IL-17E/IL-25         | H M      | H (B/N, FC, WB) M (FC, WB)                        | M      |
| IL-17F               | H M R    | H (B/N, FC, ICC, WB) M (FC, ICC, WB)              | H M R  |
| IL-17 RA/IL-17 R     | H M      | <b>H</b> (B/N, FC, WB) <b>M</b> (B/N, FC, WB)     | Н      |
| IL-17B R/IL-17 RB    | H M      | H (FC, IHC, WB) M (FC, IHC, WB)                   | H M    |
| IL-17 RC             | H M      | H (FC, WB) M (B/N, FC, WB)                        | Н      |
| IL-17 RD/SEF         | H M      | H (FC, IHC, WB) M (FC, IHC, WB)                   |        |
| IL-17 RE             | H M      |                                                   |        |

Intracellular Signaling Molecules

| Molecules                     | Proteins | Antibodies                                          | ELISAs | Activators/Inhibitors |
|-------------------------------|----------|-----------------------------------------------------|--------|-----------------------|
| ERK1                          | Н        | H (IHC, WB) M (IHC, WB) R (IHC, WB)                 | Н      | ✓                     |
| Phospho-ERK1 (T202/Y204)      |          |                                                     | H M R  |                       |
| ERK1/ERK2                     |          | H (IHC, WB) M (IHC, WB) R (IHC, WB)                 |        | ✓                     |
| Phospho-ERK1 (T202/Y204)/ERK2 |          | H (FC, ICC/IHC, WB) M (FC, ICC/IHC, WB) R (FC, ICC/ | H M R  |                       |
| (T185/Y187)                   |          | IHC, WB)                                            |        |                       |
| ERK2                          | Н        | H (IHC, WB) M (IHC, WB) R (IHC, WB)                 | H M R  | ✓                     |
| Phospho-ERK2 (T185/Y187)      |          |                                                     | H M R  |                       |
| c-Fos                         |          | H (WB)                                              |        | ✓                     |
| FosB/GOS3                     |          | H (IHC, WB) M (WB)                                  |        | ✓                     |
| FRA-1                         |          | H (IHC, WB)                                         |        | ✓                     |
| GSK-3α/β                      |          | H (FC, ICC, WB) M (FC, ICC, WB) R (FC, ICC, WB)     | H M R  | ✓                     |
| Phospho-GSK-3α/β (S21/S9)     |          | H (FC, ICC, WB) M (FC, ICC, WB) R (FC, ICC, WB)     | H M R  |                       |
| GSK-3β                        | Н        | H (FC, ICC, WB) M (FC, WB) R (FC, WB)               |        | ✓                     |
| Phospho-GSK-3β (S9)           |          | H (FC, ICC, WB)                                     | H M R  |                       |
| ΙκΒ-α                         |          | H (WB) M (WB)                                       | Н      | ✓                     |
| Phospho-IκB-α (S32/S36)       |          | H (WB)                                              | H M R  |                       |
| ΙκΒ-β                         |          | H (WB) M (WB) R (WB)                                |        | ✓                     |
| lκΒ-ε                         |          | H (IHC, WB) M (WB)                                  |        |                       |
| IKK-α                         |          | H (ICC, WB) M (ICC, WB) R (ICC, WB)                 |        | ✓                     |
| Phospho-IKK-α (S176/S180)     |          | H (WB)                                              |        |                       |
| ІКК-В                         |          | H (WB) M (WB)                                       |        | ✓                     |
| ΙΚΚ-γ                         |          | H (ICC, WB) M (ICC, WB) R (ICC, WB)                 |        | ✓                     |
| IKK-ε                         |          | H (ICC, WB) M (ICC, WB) R (ICC, WB)                 |        | ✓                     |
| c-Jun                         |          | H (ICC, WB) M (ICC, WB)                             |        | ✓                     |
| Phospho-c-Jun (S63)           |          |                                                     | H M R  |                       |
| JunB                          |          | H (WB)                                              |        | ✓                     |
| JunD                          |          | H (WB) M (WB)                                       |        | ✓                     |
| NFKB1                         |          | H (ChIP, WB) M (ChIP, WB)                           |        | ✓                     |
| NFkB2                         |          | H (ChIP, ICC, WB)                                   |        | <b>✓</b>              |
| Phospho-p38 (T180/Y182)       |          | H (IHC, WB) M (IHC, WB) R (IHC, WB)                 | нм     |                       |
| ρ38α                          | Н        | H (IHC, WB) M (IHC, WB) R (IHC, WB)                 | H M R  | <b>✓</b>              |
| Phospho-p38α (T180/Y182)      |          | H (WB)                                              | H M R  |                       |
| р38В                          |          | H (ICC, WB) M (WB) R (WB)                           |        | <b>✓</b>              |
| p38γ                          |          | H (IHC, WB) M (IHC, WB) R (IHC, WB)                 | H M R  | <b>✓</b>              |
| Phospho-p38γ (T183/Y185)      |          | 11 (11.2) 11.2) 11 (11.2) 11.2)                     | НМ     |                       |
| p38δ                          |          | H (IHC, WB)                                         |        | ✓                     |
| Phospho-p38δ (T180/Y182)      |          |                                                     | Н      |                       |
| c-Rel                         |          | H (ChIP, ICC, WB) M (ChIP, ICC, WB)                 |        | ✓                     |
| RelA/NF <sub>K</sub> B p65    |          | H (ChIP, FC, ICC, WB) M (ChIP, FC, ICC, WB)         |        | <b>✓</b>              |
| Phospho-RelA/NFKB p65 (S529)  |          | H (WB)                                              |        |                       |
| Phospho-RelA/NFKB p65 (S536)  |          | H (WB)                                              | H M R  |                       |
| RelB                          |          | H (ICC/IHC, WB)                                     |        | <b>✓</b>              |
| TAK1                          |          | H (WB)                                              |        | ·                     |
| TRAF-3                        |          | H (WB) M (WB) R (WB)                                |        | •                     |
| TRAF-6                        |          | H (WB)                                              |        |                       |



Activity Comparison Data for Human Cell-Expressed Recombinant Human IL-17A. The HT-29 human colon adenocarcinoma cell line was treated with increasing concentrations of R&D Systems® Human Cell-expressed Recombinant Human IL-17A (Catalog # 7955-IL; blue line) or with human cell-derived recombinant human IL-17A from another company (red line). The bioactivity of the recombinant proteins was assessed by measuring CXCL1/GRO $\alpha$  secretion using the Human CXCL1/GRO $\alpha$  DuoSet® ELISA Development Kit (Catalog # DY275). The R&D Systems® protein demonstrated 2.5-fold greater activity compared to the other commercially available protein.



IL-17F-induced IL-6 Secretion and Antibody Neutralization. The NIH-3T3 mouse embryonic fibroblast cell line was treated with the indicated concentrations of Recombinant Human IL-17F (Catalog # 1335-INS) and IL-6 secretion was measured using the Mouse IL-6 Quantikine® ELISA Kit (Catalog # M6000B; orange line). The stimulatory effect induced by 25 ng/mL Recombinant Human IL-17F was neutralized by treating the cells with increasing concentrations of a Mouse Anti-Human IL-17F Monoclonal Antibody (Catalog # MAB13352; blue line).











Global info@bio-techne.com bio-techne.com/find-us/distributors TEL +1 612 379 2956

North America TEL 800 343 7475 Europe | Middle East | Africa TEL +44 (0)1235 529449

China info.cn@bio-techne.com TEL +86 (21) 52380373







