
MICxx⁴ Series

Preliminary Datasheet

Features

- 1 bay / 10 bay desktop charger (others on request)
- Constant Current and voltage regulation (CCCV)
- Charges Lithium- and Nickel-based batteries 20W maximum charging power
- 16.8V maximum charging voltage
- 2.2A maximum charging current
- Battery temperature monitoring
- Resistor based battery identification Battery identification/monitoring using single-wire battery fuel gauge and monitor ICs (HDQ or 1-wire)

Applications

Customized charging station for battery packs or mobile devices used in industry, medical and consumer areas

Specification

Input		
	MIC01	MIC10
Voltage range		90 - 264VAC
Frequency range		47 – 63Hz
Input power	tbd	tbd
Standby power	tbd	tbd
Input fuse	tbd	tbd

Output (per bay)				
	MICxxA	MICxxB		
Voltage	0 - 8.4V	0 - 16.8V		
Current	<2.2A	<1.2A		
Power	20W max.			
Voltage tolerance	±1% max.			
Current tolerance	±5% max.			
Leakage current	< 1mA			
Ripple & Noise(1)	$< 120 \text{mV}_{\text{pk-pk}}$			
Protection	Short circuit Over temperature shutdown Reverse polarity			

Environmental	
Cooling	convection cooled
Temperature	Operating: -20°C to 40°C
	Non-operating -40°C to 85°C
Altitude	Operating: 1060hPa to 795hPa -382m to 2000m
	Non-operating: 1060hPa to 572hPa -382m to 4570m
Humidity	5 to 95% r.H., non-condensing

General					
Input connector	MIC01 IEC60320 C8 (2-pin)	MIC10 IEC60320 C14 (3-pin)			
Efficiency ⁽²⁾	typical 80% a	typical 80% at 100% load			
Green procurement	•	RoHS2002/95/EC WEEE 2002/96/EC			
MTBF	> 250000h at 25°C and full load per MIL-HDBK 217F				
Indicator	Battery status LED (green/red) Power LED (green)				

Notes

Datasheet subject to change without notice.

- Measured with a $0.1\mu F$ ceramic and a $47\mu F$ tantalum capacitor across the output terminals. The oscilloscope bandwidth is set at 20MHz a co-axial cable will be used to measure it. The test condition is maximum load.
- Power losses of input and output cables are not considered here.
- The rms method is used for leakage current measurements.
- xx=number of bays

MICxx⁴ Series

Charge phases and Indicators					
	Battery Status LE		LED Indicator		
Charge phase	Description	Green	Red		
Pre-charge	Until the battery voltage is lower than a specified threshold (deeply discharged) it is charged with a low current.	FLASHES			
Fast charge	When charging nickel based batteries, the charger delivers a constant current (CC) to the battery. When charging LiIon batteries the CC phase is followed by a constant voltage phase (CV). Once the battery voltage is close to the regulated charge voltage the charging current decreases.	FLASHES			
Top-off charge	Top-off charge completes the charging process. Selectable only for NiMH/NiCd batteries for achieving maximum capacity.	FLASHES			
Standby / Battery full		ON			
Failure			ON		

Charge phases, battery dependent threshold values and LED patterns can be modified to fit a variety of specifications. Please contact RRC.

Charge termin	ation met	chods
NiCd NiMH	-∆V d²V/dt² dT/dt	At the end of the charging process the battery voltage decreases slightly. Fast charging is terminated if the voltage drop is higher than a specified threshold This fast charge termination method detects the inflexion point of the charge voltage curve. Charging process is terminated if the rate at which the battery temperature increases during constant-current charging is higher than a specified threshold. Temperature gradient threshold is adjustable
LiIon LiPolymer	I_{Cutoff}	If the charging current goes lower than a set threshold the battery charging process is terminated.
All chemistries	Timer TCO	Terminate the charge process based on a safety timer Charge process stops if the temperature is out of a specified safety window.

Safety & EMC				
Insulation class Earth leakage current ⁽³⁾ Enclosure / Touch leakage current ⁽³⁾		II NA <100µA		
Safety standards		ITE version IEC60950-1	Household version IEC60335-2-29	Medical version IEC60601-1
Electromagnetic Emissions	Europe USA International	EN55022, level B FCC15 class B CISPR 22, level B		
Electromagnetic Immunity	ESD immunity Radiated immunity EFT / Burst Surge Conducted Immunity Magnetic Fields	EN/IEC61000-4-3, EN/IEC61000-4-4, EN/IEC61000-4-5, EN/IEC61000-4-6,	4/8kV, performance criteria 3V/m, performance criteria 1kV, performance criteria B 1kV, performance criteria B 10V, performance criteria A 1A/m, performance criteria	A
Regulatory approvals	Europe USA Japan International	CE cULus per UL60950 PSE CB)	

Mechanical Details		
Dimensions (LxWxH)	tbd	
Weight	tbd	

Germany/Headquarters	USA	Hong Kong	China	
RRC power solutions GmbH Technologiepark 1 D-66424 Homburg / Saar	RRC power solutions Inc. 18340 Yorba Linda Blvd., Suite 107-437 Yorba Linda, CA 92886-4104	RRC power solutions Ltd. S-V,6/F, Valiant Industrial Centre 2-12 Au Pui Wan Street Fo Tan, N.T., Hong Kong	RRC power solutions Ltd. Room 520, Yuanlin Building, Aiguo Road No. 3066, Luohu District, Shenzhen 518021	
Tel.: +49 6841 98090 Fax: +49 6841 9809280 Email: sales@rrc-ps.de Web: www.rrc-ps.de	Tel.: +1 714 777 3604 Fax: +1 714 777 3658 Email: usa@rrc-ps.com Web: www.rrc-ps.com	Tel.: +852 2376 0106 Fax: +852 2375 0107 Email: hkrrc@rrc-ps.cn Web: www.rrc-ps.com	Tel.: +86 755 8374 1908 Fax: +86 755 8374 1861 Email: hkrrc@rrc-ps.cn Web: www.rrc-ps.com	