
MBCxx⁴ Series

Preliminary Datasheet

Features

- 1 bay / 10 bay desktop charger (others on request)
- Constant Current and voltage regulation (CCCV)
- Charges Lithium- and Nickel-based batteries
- 10W maximum charging power
- 10V maximum charging voltage
- 2A maximum charging current
- Battery temperature monitoring
- Resistor based battery identification
- Battery identification/monitoring using single-wire battery fuel gauge and monitor ICs (HDQ or 1-wire)

Applications

 Customized charging station for battery packs or mobile devices used in industry, medical and consumer areas

Specification

Input		
	MBC01	MBC10
Voltage range		90 - 264VAC
Frequency range		47 - 63Hz
Input power	tbd	tbd
Standby power	tbd	tbd
Input fuse	tbd	tbd

Output (per bay)			
	MBCxxA	MBCxxB	
Voltage	0 - 4.2V	0 - 8.4V	
Current	<2A	<1A	
Power	10W	max.	
Voltage tolerance	±1% max.		
Current tolerance	±5% max.		
Leakage current	< 1mA		
Ripple & Noise ⁽¹⁾	$< 120 \text{mV}_{\text{pk-pk}}$		
Protection	Short circuit Over temperatu Reverse polarity		

Environmental	
Cooling	convection cooled
Temperature	Operating: -20°C to 40°C
	Non-operating -40°C to 85°C
Altitude	Operating: 1060hPa to 795hPa -382m to 2000m
	Non-operating: 1060hPa to 572hPa -382m to 4570m
Humidity	5 to 95% r.H., non-condensing

General		
Input connector	MBC01 IEC60320 C8 (2-pin)	MBC10 IEC60320 C14 (3-pin)
Efficiency ⁽²⁾	typical 80% a	at 100% load
Green procurement	RoHS2002/95 WEEE 2002/9	,
MTBF	> 250000h a load per MIL-	t 25°C and full HDBK 217F
Indicator	Battery statu Power LED (g	s LED (green/red) reen)

Notes

Datasheet subject to change without notice.

- 1. Measured with a 0.1µF ceramic and a 47µF tantalum capacitor across the output terminals. The oscilloscope bandwidth is set at 20MHz a co-axial cable will be used to measure it. The test condition is maximum load.
- 2. Power losses of input and output cables are not considered here.
- 3. The rms method is used for leakage current measurements.
- 4. xx=number of bays

MBCxx⁴ Series

Charge phases and Indicators				
Charge phase	Description	Battery Status	LED Indicator	
		Green	Red	
Pre-charge	Until the battery voltage is lower than a specified threshold (deeply discharged) it is charged with a low current.	FLASHES		
Fast charge	When charging nickel based batteries, the charger delivers a constant current (CC) to the battery. When charging LiIon batteries the CC phase is followed by a constant voltage phase (CV). Once the battery voltage is close to the regulated charge voltage the charging current decreases.	FLASHES		
Top-off charge	Top-off charge completes the charging process. Selectable only for NiMH/NiCd batteries for achieving maximum capacity.	FLASHES		
Standby / Battery full		ON		
Failure			ON	

Charge phases, battery dependent threshold values and LED patterns can be modified to fit a variety of specifications. Please contact RRC.

Charge	termi	nation	methods
--------	-------	--------	---------

NiCd NiMH	-ΔV	At the end of the charging process the battery voltage decreases slightly. Fast charging is terminated if the voltage drop is higher than a specified threshold
	d ² V/dt ² dT/dt	This fast charge termination method detects the inflexion point of the charge voltage curve. Charging process is terminated if the rate at which the battery temperature increases during constant-current charging is higher than a specified threshold. Temperature gradient threshold is adjustable
LiIon LiPolymer	${ m I}_{\sf Cutoff}$	If the charging current goes lower than a set threshold the battery charging process is terminated.
All chemistries	Timer TCO	Terminate the charge process based on a safety timer Charge process stops if the temperature is out of a specified safety window.

Safety & EMC				
Insulation class		II		
Earth leakage current ⁽³⁾		NA		
Enclosure / Touch leak-		<100µA		
age current ⁽³⁾				
Safety standards		ITE version	Household version	Medical version
		IEC60950-1	IEC60335-2-29	IEC60601-1
Electromagnetic	Europe	EN55022, level B		
Emissions	USA .	FCC15 class B		
	International	CISPR 22, level B		
Electromagnetic	ESD immunity	EN/IEC61000-4-2, 4	/8kV, performance criteria E	3
Immunity	Dadiated immunity	EN/IEC61000 4 2 2	1//m norformance criteria 1	

Electromagnetic	ESD immunity	EN/IEC61000-4-2, 4/8kV, performance criteria B
Immunity	Radiated immunity	EN/IEC61000-4-3, 3V/m, performance criteria A
	EFT / Burst	EN/IEC61000-4-4, 1kV, performance criteria B
	Surge	EN/IEC61000-4-5, 1kV, performance criteria B
	Conducted Immunity	EN/IEC61000-4-6, 10V, performance criteria A
	Magnetic Fields	EN/IEC61000-4-8, 1A/m, performance criteria A
Regulatory approvals	Europe	CE
	USA	cULus per UL60950

PSE Japan СВ International

Mechanical Details

Dimensions (LxWxH) tbd Weight tbd

Germany/Headquarters	USA	Hong Kong	China
RRC power solutions GmbH Technologiepark 1 D-66424 Homburg / Saar	RRC power solutions Inc. 18340 Yorba Linda Blvd., Suite 107-437 Yorba Linda, CA 92886-4104	RRC power solutions Ltd. S-V,6/F, Valiant Industrial Centre 2-12 Au Pui Wan Street Fo Tan, N.T., Hong Kong	RRC power solutions Ltd. Room 520, Yuanlin Building, Aiguo Road No. 3066, Luohu District, Shenzhen 518021
Tel.: +49 6841 98090 Fax: +49 6841 9809280 Email: sales@rrc-ps.de Web: www.rrc-ps.de	Tel.: +1 714 777 3604 Fax: +1 714 777 3658 Email: usa@rrc-ps.com Web: www.rrc-ps.com	Tel.: +852 2376 0106 Fax: +852 2375 0107 Email: hkrrc@rrc-ps.cn Web: www.rrc-ps.com	Tel.: +86 755 8374 1908 Fax: +86 755 8374 1861 Email: hkrrc@rrc-ps.cn Web: www.rrc-ps.com