Prospect of accurate p-type silicon-doped gallium arsenide antimonide

MOCVD at increased temperature shifts conductivity from n- to p-type.

Researchers at Japan's NTT Device Technology Laboratories have used silicon (Si) doping to achieve p-type conduction in gallium arsenide antimony (GaAsSb) produced with metal-organic chemical vapor deposition (MOCVD) on indium phosphide (InP) [Haruki Yokoyama and Takuya Hoshi, Jpn. J. Appl. Phys., vol54, p015506, 2015]. Yokoyama and Hoshi write: "This is the first time that p-type doping into GaAsSb layers has been achieved by MOCVD using silicon as a dopant."

These researchers believe that the resulting p-GaAsSb could be useful for heterojunctions with InP and InGaAs with improved device performance in heterojunction bipolar transistors (HBTs), tunnel diodes and tunnel fieldeffect transistors.

Alternative p-dopants for GaAsSb suffer from high levels of diffusion, which makes accurate doping profiles difficult to achieve. Carbon (C) is also

a p-dopant for GaAsSb with a relatively low diffusion rate, but the precursor used to supply C atoms, tetrabromomethane (CBr₄), has an etching effect on GaAsSb, again compromising doping profiles.

Silicon also has a low diffusion coefficient, but previous work producing Si-doped GaAsSb by MOCVD has resulted in n-type conduction. Although Si is an n-type impurity in GaAs, it is a p-type impurity in GaSb.

Yokoyama and Hoshi hoped that different growth conditions might lead to p-type conduction from Si-doped GaAsSb. Previous work reported by others in 1988 with molecular beam epitaxy (MBE) supported this: GaAsSb showed a shift from n-type to p-type conductivity as the growth temperature increased. MOCVD processes tend to be preferred by manufacturers.

Yokoyama and Hoshi used MOCVD carried out in a close-coupled showerhead reactor on (001) semiinsulating iron-doped InP wafers. The source materials

Figure 1. Si_2H_6 flow rate dependence of carrier concentration in silicondoped GaAsSb layers.

were triethylgallium (TEGa), arsine (AsH_3) and trimethylantimony (TMSb) in hydrogen carrier gas. The silicon doping was achieved with disilane (S_2H_6) . The growth pressure was 125mbar.

Undoped lattice-matched GaAsSb/InP samples were found to have p-type conductivity. However, silicon doping shifted this to n-type when MOCVD was carried out at 530°C (Figure 1). At 580°, silicon doping instead increased the hole density, giving stronger p-type behavior.

Yokoyama and Hoshi comment: "These results confirm that there is a proportional relationship between the Si_2H_6 flow rate and carrier concentration, regardless of conductivity type. This indicates that precise control of p- and n-type carrier concentration in Si-doped GaAsSb layer is possible."

The mobility behavior of the samples was similar to that achieved for GaAsSb samples produced using MBE

Technology focus: Antimonide electronics 87

Figure 2. (a) Relationship between electron mobility and electron carrier concentration in Si-doped GaAsSb layers grown at 530°C, compared with MBE GaAsSb:Si. (b) Relationship between hole mobility and hole carrier concentration in Si-doped GaAsSb layers grown at 580°C, compared with MBE GaAsSb:C.

(Figure 2). Comparison was made with silicon-doped MBE GaAsSb for the n-type low-temperature MOCVD material and with carbon-doped MBE GaAsSb for the p-type layer.

Secondary-ion mass spectrometry (SIMS) showed that the silicon doping concentration was constant through the deposited layers. The activation ratio of electron carrier concentration to silicon concentration was 0.33 for a 530°C GaAsSb layer with 1.5×10^{18} /cm³ doping density. The hole/silicon ratio was 0.27 for

580°C GaAsSb with 3x10¹⁸/cm³ silicon density. Si-doped MBE GaAsSb has been reported with 0.392 activation of 1.27x10¹⁸/cm³ doping. C-doped MBE GaAsSb activation has been measured close to 1. The low activation of Si-GaAsSb does not impact the mobility performance (Figure 2b). "Since alloy scattering becomes dominant in GaAsSb, it may eliminate the effect of inactivation," write Yokoyama and Hoshi. ■ http://dx.doi.org/10.7567/JJAP.54.015506 Author: Mike Cooke

REGISTER for *Semiconductor Today* free at

www.semiconductor-today.com