Silicon monoxide passivation for gallium nitride transistors

Researchers in China and UK achieve improved subthreshold, Schottky and breakdown characteristics for GaN-based HEMT transistors.

handong University in China and University of Manchester in the UK have reported room-temperature thermal-evaporation silicon monoxide (SiO) passivation for aluminium gallium nitride (AlGaN) barrier high-electron-mobility transistors (HEMTs) [Gengchang Zhu et al, Appl. Phys. Lett., vol109, p113503, 2016].

The passivation reduced leakage currents and increased breakdown voltages compared with unpassivated and silicon nitride (SiN_x) passivated devices. The researchers comment: "Because of the good passivation effectiveness, no ion damage, simple preparation technology, and low cost, the thermally evaporated SiO is a promising candidate as a surface passivation for GaN-based HEMTs, especially for high-power and noise-sensitive applications."

The SiNx passivation reference was produced using 300°C plasma-enhanced chemical vapor deposition (PECVD), which can suffer from ion damage. "Compared with PECVD and other techniques, thermal evaporation has many advantages such as no ion damage, technical simplicity, and low cost," the researchers claim.

Although the team mentions avoiding current collapse under pulsed current operation as a motivation for passivation, the paper does not report any measurements that would be needed to assess that effect.

SiO has a higher dielectric constant of 5.0 compared with silicon dioxide's 3.9. The breakdown field of both these silicon oxides is around 10MV/cm. Although thermally evaporated SiO has been assessed for use with other technologies such as thin-film transistors, the researchers say that very little work has been carried out on its use in GaN HEMT passivation.

Figure 1. (a) Schematic cross-section of the AlGaN/AIN/GaN HEMTs. (b) Output and (c) transfer characteristics of the unpassivated, SiOpassivated, and SiN_x-passivated AlGaN/AIN/GaN HEMTs.

Technology focus: Nitride transistors 85

The device material was grown on 6H polytype silicon carbide (SiC), using metal-organic chemical vapor deposition (Figure 1). The conducting twodimensional electron gas (2DEG) near the GaN/barrier interface had 1.05x10¹³/cm² sheet carrier density, 298 Ω /square sheet resistance, and 1810 cm²/V-s carrier mobility (μ_n) , according to Hall measurements.

Device fabrication created plasma-etch mesa isolation, annealed/alloyed

titanium/aluminium/nickel/gold source-drain ohmic contacts, nickel/gold gate, 100nm SiO passivation, and plasma-etch contact-pad opening.

The placing of the 2µm-long gate in the 13µm source-drain gap gave a gate-drain distance of 6µm. The gate width was 100µm.

Passivation with SiO, and the SiN_x reference, increased Hall sheet carrier density but reduced mobility (Table 1). The researchers suggest that the reduction in mobility could be related to increased Coulomb scattering due to the increased carrier density. The product of carrier density and mobility is higher for the passivated samples. The SiN_x has a marginally higher product than SiO passivation.

The performance in terms of maximum drain current (I_{Dmax}) and transconductance (g_m) at 10V drain bias (V_{DS}) on the HEMTs is again better for the passivated devices, with SiN_x passivation giving better results. The current and transconductance improvements were, respectively, 19% and 18% for SiO, and 25% and 24% for SiN_x. The researchers attribute the improvement to the increased carrier densitymobility product.

However, the SiO passivation has subthreshold and Schottky characteristics that significantly improve on both the unpassivated and SiN_x-passivated devices — that is, lower off-current (I_{off}) , higher on/off current ratio (I_{on}/I_{off}) , lower subthreshold swing (SS), lower gate leakage (I_a) , and higher Schottky barrier height ($\Phi_{\rm B}$). The SiO passivation also gives the lowest ideality factor (n) for the Schottky diode gate.

The interface trap density (D_{it}) is also lower for SiO passivation. The researchers comment: "The increased density of interface traps for the SiN_xpassivated HEMTs is probably caused by the ion be avoided by applying the thermally evaporated SiO." AIGaN/AIN/GaN HEMTs.

Table 1. Summary of measurements.			
Sample	Unpassivated	SiO	SiN _x
n _s [10 ¹³ /cm ²]	1.05	1.25	369
$\mu_n [cm^2/V-s]$	1810	1.32	385
I _{Dmax} [mA/mm]	309	1760	137
g _m [mS/mm] @ V _{DS} = 10V	116	1690	144
I _{off} [mA/mm] @ V _{GS} = −5V	2.0x10 ⁻³	2.1x10 ⁻⁴	3.0x10 ⁻¹
I _{on} /I _{off}	1.5x10 ⁵	1.8x10 ⁶	1.3x10 ³
SS [mV/decade]	181	95	447
D _{it} [10 ¹² /cm ² -eV]	3.76	1.16	11.30
I _g [mA/mm] @ V _{GS} = −5V	3.3x10 ⁻³	3.3x10 ⁻⁴	4.1x10 ⁻²
n	1.77	1.75	1.83
$\Phi_{B}\left[eV ight]$	0.79	0.85	0.73
$V_{b} [V] @ V_{GS} = -5V$	175	206	111
f_{T} [GHz] @ V_{DS} = 10V, V_{GS} = 0V	4.0	5.2	5.8

Another improvement of SiO passivation is for breakdown voltage (V_b) with -5V gate (V_{GS}), giving the 'off' state. Breakdown was defined at 10⁻⁴A drain leakage. The breakdown current was set at a level that did not destroy the devices. The high $V_{\rm b}$ is claimed to be the result of lower gate leakage and off-current for the SiO passivation.

The SiN_x passivation gives a higher current-gain cut-off (f_{T}) , while the performance of the SiO-passivated HEMT is better than the unpassivated device. In other studies, SiN_x passivation has variously improved and degraded f_{T} performance. The researchers comment: "The increase of f_T for the SiO-passivated and the SiN_xpassivated HEMTs is attributed to the increased g_m and decreased overall capacitance of C_{GD} and C_{GS}." http://dx.doi.org/10.1063/1.4962894 Author: Mike Cooke

Figure 2. Off-state breakdown characteristics of bombardment during the PECVD process, which can unpassivated, SiO-passivated, and SiN_x-passivated