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ABSTRACT

Two design procedures, one based on switched pulse shapes, and
the other based on alternating projections in the time and
frequency domain, are used to obtain interference and jitter-free
or reduced interference and jitter (near-Nyquist) pulse-shaping
filters. The latter method, that incorporates both frequency- and
time- domain constraints into the linear filter design procedure,
allows common pulse-shaping filters to be used for both QPSK
and 8-PSK used in contemporary satellite modems.

INTRODUCTION

One Intelsat Earth Station Standard [1] using quadrature phase-
shift keying (QPSK) requires pulse-shaping (or filtering) that, for
an R bit per second (bps) non-return-to-zero (NRZ) random bit
sequence (with equiprobable 1's and 0's) meets the following:

a) The modulator spectrum lies between certain minimum and
maximum spectral masks in the range ±0.75R

b) The filter's group delay should be within ± 4° from a linear
phase shift over a frequency range of ± 0.25R about the
nominal center frequency.

c)  Outside the bandwidth of ± 0.75R from the nominal center
frequency, the transmitted IF spectral density, as measured
in a 4kHz bandwidth, shall be at least 40dB below the peak
spectral density.

The standard describes a non-mandatory method that achieve
these requirements via the cascade of a 6-pole Butterworth filter
(BTs=1.0, B is the 3dB double sided bandwidth of the filter and
Ts is the symbol period equal to 2/R) and a sinc-1 compensation
filter such the overall BTs is 1.5. This method suffers from
excessive interference and jitter [2].

Direct digital synthesis of the desired pulse shape from impulse
±1 (not NRZ) input is considered in [2], wherein the desired
intersymbol interference-free (ISI-free) transmission is obtained
by forcing the impulse response of the filter to assume zero
values for integer multiples of Ts. In the signal processing
literature, such impulse responses are called Nyquist or M-th
band filters (where, in this case, M represents the number of
samples per symbol). A filter whose impulse response, g(n),
satisfies:
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is called a M-th band filter. Its frequency response, G(ejω),
satisfies [3]:
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Several techniques have been devised to design such filters [3-5].
From (2), it is evident that the frequency response of an M-th
band filter at π/M is 0.5 (6dB below the nominal passband
magnitude). Any spectral mask that does not permit the point
(π/M, 0.5) to be a valid frequency response disallows the use of
exactly Nyquist filters; in this case, filters that approximately
satisfy (1) and (2) and meet the demands of the spectral mask
must be designed. In particular, [1] requires that the magnitude
response at π/M be at most 4dB below the nominal passband
magnitude. We also mention an associated problem, the design
of root-Nyquist filters. In this case, the receiver transfer function
acts in concert with the transmitted pulse to ensure an overall
Nyquist characteristic (i.e., the transmit filter is a linear-phase
spectral factor of a Nyquist filter). Equiripple root-Nyquist filters
that meet the spectral masks required by [1] and [7] can be
designed using standard techniques.

SWITCHED ISI- AND JITTER- FREE FILTERS

An alternate method that uses switched filters, based on a
decision window of 2 bits, described in [2], which insert
sinusoidal transition shapes for each NRZ transition, termed as
an ISI- and jitter- free (IJF)  response suffers from a similar
drawback (see Figures 1 and 2) because its power spectral
density (PSD) S(x), where x is a frequency normalized to the
symbol rate, derived in Appendix 1, is [2]:
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At x=0.5, S(x) is 0.25, or 6dB down from the center frequency.
Correcting this by incorporating an inverse sinc function into the
switched wave-shapes is possible; with a decision window of 3
symbols, about a 3dB improvement in S(0.5) is obtained (see
Appendix 2 and Figure 2) at the expense of the second side-lobe.



This side-lobe must be suppressed by an analog filter or a high-
order digital filter. Supporting multiple data rates in the analog
filter case increases both cost and space as a selection from a set
of installed analog filters must be made. Digital filtering to
reduce the second sidelobe increases the complexity of the
scheme.
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Figure 1. Feher's QPSK-1 Modulator [2]. The tables contain
sampled values of sinθθ, -ππ/2≤≤θθ≤≤ππ/2.
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Figure 2. Magnitude response of Feher's QPSK-1 (dashed
line) and with IJF/ inverse sinc correction (solid line)

Coeff icients for 2- and 3-samples per symbol baseband
waveshapes (with inverse sinc correction and corresponding to
the middle bit) are shown in Table 1.

Bit
Sequence

2-sample
waveform

3-sample waveform

000 -1.0000, -1.0000 -c, -c, -c
001 -1.0000, -0.7949 -c, -b, -a
010 0.7949, 0.7949 a, c, a
011 0.7949,1.0000 a=0.50037, b=1.06881,

c=1.00000
100 -0.7949,-1.0000 -a, -b, -c
101 -0.7949, -0.7949 -a, -c, -a
110 1.0000, 0.7949 c, b, a
111 1.0000, 1.0000 c, c, c

Table 1. Switched IJF waveforms with inverse sinc
correction

Extension of this method to the design of waveshapes for 8-PSK
used in [7] requires a 9-bit window on the input bit stream. This
9-bit window is further decomposed into two (redundant) 6-bit
windows, one each for the I and Q channels. For each 6 bit
pattern, a length 64 table (similar to Table 2) is derived. The

table size becomes large for M-PSK, M>3; this motivates the use
linear interpolation filters (with upsampling factors inversely
proportional to bit rate) designed using alternating projections
onto time- and frequency- domain convex constraint sets, that
output data to a DAC at a constant rate. This may be followed by
a single (overall ) analog filter. One advantage of this method,
discussed in the next section, is that the same filter may be used
for both the QPSK of [1] and the 8-PSK of [7].

ITERATIVE DESIGN USING POCS

The iterative method begins by the initial prototype, h'0(n),
which is the inverse Fourier transform of Hid(ω) (a transfer
function that meets the spectral mask requirements) i.e.,
hid(n)=

� -1[Hid(ω)] truncated to support I (in the present case, I

is assumed to consist of N contiguous samples):
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The frequency response, H'(ejω), of  the zero-phase filter is
required to be within prescribed upper and lower bounds in its
passband and stopband as follows:

H'id(e
jω)-Ed(ω)≤H'(ejω)≤ H'id(e

jω)+Ed(ω) ω∈ Fr             (5)

where H'id(e
jω) is the ideal filter response, Ed(ω) is a positive

function of ω, which takes values in Fr. Each iteration consists of
applying successive temporal and frequency domain constraints
to the current iterate. The k-th iteration has the following steps:

•  Compute the zero-phase frequency response of the k-th
iterate hk(n) on a suitably dense grid of frequencies using the
Fast Fourier Transform (FFT) algorithm

•  Impose the frequency domain constraints of (4) on this
dense grid of frequencies

•  Compute the impulse response associated with this
frequency response using an inverse FFT

•  Truncate the impulse response to the desired support (3) to
obtain gk(n)

•  Determine the deviation, ek(n) of this impulse response
from a weaker form of the Mth-band condition of (1)
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This condition avoids interference between symbols spaced
apart by more than one symbol interval.

•  Interpolate this error sequence, ek(n), by convolving it with
gk(n) and reducing the result's support to N central samples to
obtain fk(n)

•  Subtract  α⋅fk(n) from gk(n) to obtain hk+1(n), where 0<α<1
is chosen suitably



An iteration termination criterion is when a suitable metric (e.g.,
L∝  norm) between the kth and the (k+1)th iterate is less than a
threshold. If the frequency domain constraints are too stringent
or α is too large, the iteration may not converge; a limit on the
number of iterations is recommended. In this event, assuming
that the frequency domain constraints are realizable, the support
N is increased or α is reduced (or both).

RESULTS

Eye-patterns [2], frequently used to evaluate signal and channel
imperfections, are obtained on an oscill oscope if the transmitted
(or channel impaired) signal is fed to the vertical input of an
oscill oscope while the symbol clock is fed to its external trigger.
The eye-opening and the zero-crossings of the eye pattern are
important in determining extra power or the data-transition jitter
associated with an imperfect (non-Mth band) data shaping filter.
For example, if the eye-opening is reduced by 85%, an equal
decision margin requires a 1.4dB signal level increase. Though
transition jitter by itself does not necessarily lead to performance
degradation, data-transition jitter combined with clock jitter and/
or a static clock offset may lead to significant degradation [6].
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Figure 3. Designed magnitude response shown along with
upper and lower spectrum constraints (for QPSK of [1])
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Figure 4. Impulse response (with 5 symbol-duration's
support) of designed filter
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Figure 5. QPSK eye diagram associated with designed filter
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Figure 6. 8-PSK eye diagram associated with designed filter

Coefficient Value
h(0)=h(40) 1.3402638e-003
h(1)=h(39) 3.8244552e-003
h(2)=h(38) 5.5046170e-003
h(3)=h(37) 6.6868215e-003
h(4)=h(36) 6.5848940e-003
h(5)=h(35) 5.2457689e-003
h(6)=h(34) 1.8887894e-003
h(7)=h(33) -3.2882370e-003
h(8)=h(32) -7.1354006e-003
h(9)=h(31) -1.2081291e-002
h(10)=h(30) -1.3461233e-002
h(11)=h(29) -1.1232700e-002
h(12)=h(28) -3.9701417e-003
h(13)=h(27) 8.6964544e-003
h(14)=h(26) 2.6842589e-002
h(15)=h(25) 4.8345543e-002
h(16)=h(24) 7.2146512e-002
h(17)=h(23) 9.5255840e-002
h(18)=h(22) 1.1428773e-001
h(19)=h(21) 1.2692899e-001

h(20) 1.3418602e-001

Table 2. Impulse response coefficients for M=8, N=41



For the constraints specified in [1], POCS iteration produced a
filter with magnitude response (shown along with the frequency
domain constraints) as in Figure 3. Its impulse response is shown
in Figure 4, while the eye diagrams for QPSK and 8-PSK (used
in [7]) is shown in Figures 5 and 6. The eye opening for QPSK is
reduced by only about 5% (requiring a signal level increase by
only about 0.4dB with the same decision margins as compared to
a Nyquist filter.  Timing jitter is less than 5%. Table 2 provides
numerical values for the impulse response coefficients.

Transmit root-Nyquist filters may be designed using standard
techniques without much diff iculty as (π/M, 1/√2) lies within the
spectral mask. We have ill ustrated an equiripple filter that may
be designed using the techniques provided in [9] or [10]. The
design of receive root-Nyquist filters, using 1 sample per symbol
and including a tunable fractional delay component for symbol
timing synchronization, are outside the scope of this paper.
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Figure 7. Near-equiripple root-Nyquist magnitude response
(a 127-tap FIR filter meets aspectral mask required by  [1])

APPENDIX 1

For m=2 symbols decision window, the NRZ signals, xI(t) and
xQ(t), are encoded into IJF baseband signals yI(t) and yQ(t) using:
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where se(t-nTs) and so(t-nTs) are even and odd single interval
pulses satisfying the IJF conditions. The PSD of the encoded
signal y(t) is (this PSD has only continuous components; see [8]):
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where πj is the stationary probabilit y of state j and Qjk , the
generating functions of transition probabiliti es, pjk,  from state j
to k, are
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Q03= Q10= Q23= Q30= Q31= Q02= Q11= Q22 and Q12= Q13= Q20=
Q21= Q32= Q01= Q00= Q33.        (A1.7)

Substituting (A1.5)-(A1.7) in (A1.3),
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After simplification,
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and for a sinusoidal transition shape
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where x=fTs. Obtain (3) by using (A1.10) and (A1.11) in (A1.9).

APPENDIX 2

For m=3 symbols decision window, which allows IJF inverse
sinc filters to be incorporated into pulse shapes, the NRZ signals,
xI(t) and xQ(t), are encoded into IJF baseband signals yI(t) and
yQ(t) using:
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If subscripts e and o denote even and odd functions respectively
and ~x denotes the time-reversal of x,
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The Fourier transforms of the first 4 possibiliti es are real, while
the latter 4 are complex, with the latter two of these being the
complex conjugates of the former two. Considering a shift-
register of three bits, the generating functions for the 3-bit shift-
register symbols are:
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Substituting in (A1.3)
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Set S1=S1e+jS1o :
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Although 3-symbol decision windows are used to improve the
passband response, (A2.5) may be verified by inserting the
Fourier transforms of Table A2.1 to obtain Feher's QPSK-1 PSD.
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Table A2.1 Fourier transforms of 3-bit window pulse shapes
for Feher's QPSK-1
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