

C792 100mm THYRISTOR PRESSPAK 6000V / 2100A

Type C792 thyristor is suitable for phase control applications such as for HVDC valves, static VAR compensators and synchronous motor drives. The silicon junction design utilizes a second generation pilot gate and a unique orientation of emitter shorts which promote the lateral expansion of conducting plasma resulting in lower spreading losses while achieving high dv/dt withstand. It is supplied in an industry accepted disc-type package, ready to mount using commercially available heat dissipators and mechanical clamping hardware.

USA

REPE	TITIVE	PEAK	REVERSE					
AND	OFF-ST	ATE B	LOCKING					
VOLTAGE								
$T_{T} = 0$ to $115^{\circ}C$								
MODEL	ı V,	DM	V_{PPM}					
		lts)	(valts)					
C792FP	60	000	6000					
C792ET	59	900	5900					
C792EN	58	300	5800					
C792ES	57	/00	5700					
C792EM	1 56	500	5600					
C792EE	55	500	5500					
MECHANICAL OUTLINE								
			- J					
		-						
	- []-	-+-,	\sim					
	i	۲ ۲	$\langle \rangle \rangle$					
	//							
-	- -	+	- ┼╆ ┸					
	1 1 4	· ·						

AF = 5.65 in (143.5 mm) BF = 3.92 in (99.4 mm) D= 1.45 in (36.8 mm)

ELECTRICAL <u>CREEPAGE / STRIKE</u> 1.6/1.0 in 40.6/25.4 mm <u>CLAMPING FORCE</u> (range) 17000-19000 lb.

C792 / 6RT300

LIMITING CHARACTERISTICS AND RATINGS									
PARAMETER		SYMBOL	<u>C0</u>	IEST NDITIONS	MAXIMUM <u>VALUES</u>	<u>unit s</u>			
Repetitive peak of state and reverse voltage	Í-	$\begin{matrix} V_{\text{drm}} \\ V_{\text{rrm}} \end{matrix}$	T = to	0 +115℃	see table	V			
Repetitive workir crest voltage	ŋ	V _{dwm} V _{drm}	T = to	0 115°C	.8V .8V _{rrm}	V			
Rep.off-state and revense leakage current		I Dwm I Rrm	V V T j	^{₩ M} 115°C	150 150	ma ma			
On-state Voltage		V _{TM}	I_= t_={ T_=	2000A 8.3ms 115°C	1.90	V			
Critical DC gate current/voltage to trigger on		$\overset{I}{\overset{GT}{V}}_{gT}$	V T=	=12VDC :25°C	150 3	ma V			
Non-trigger gate aurrent/voltage		I V _{gd}	V_{D} T_{J} =	=.8V _{DRM} =115℃	8	ma V			
Critical rate of rise of off-state		dv/dt	0.0 T _j =	57V _{DRM} 115C	2000	V/us			
Critical rate of of on-state		di/dt_mp	0.0 æ	57 V _{DRM} e req'd gating	100	A/us			
Peak recovery current		I RM(rec)	di/ T_;=	'dt=2A/us :115°C	118	A			
Peak half-cycle nm-repetitive surge current		I _{tsm}	t={ t _p =:	8.3ms 10 ms	35 34	kA			
Circuit comutat turn-off time	ed	t g	di/ dv/	'dt=5A/us 'dt=20V/us	600	US			
	<u>G</u> Qpen circuit Short circuit Qument riset Pulse duratio	<u>ATE CIRCUI</u> voltage ament ime n	<u>t requ</u>	<u>JIREMENTS</u> 40 – 50 V 3 A minimum 0.5 us nominal 10–20 us					

C792 / 6RT300

PEAK RECOVERY CURRENT

versus

T300

FULL CYCLE AVERAGE POWER DISSIPATION Sine Wave-includes spread loss

6RT300

6RT300

P3 11/13/01

C792 / 6RT300

Gate Characteristics and Gate Supply Requirements

Non-Repetitive Surge Current

and I2t for Fusing

 THYRISTOR GATE IMPEDANCE Enhanced by fast rising gate voltage, increasing anode bias and junction temperature. It is at a minimum for dc current, zero anode bias and low temperature.

• GATE SUPPLY Prefer 50V/10 ohm for supporting the di/dt rating and life expectancy. The short circuit current risetime should be nominally 0.5us and the duration longer than the expected delay time for all magnitudes of anode bias. Practically 10-30us is recommended followed by a back porch of 750ma if needed to sustain conduction.

- MINIMUM ACCEPTABLE GATE CURRENT The intersection of the load line and gate impedance characteristic indicates the minimum value of actual current needed during the delay time interval to support di/dt.A different load line meeting this criterion may be used.
- MAXIMUM GATE RATINGS
 Peak gate power,Pgm(100us) = 300 W
 Average gate power,Pg(av) = 50W
 Peak gate current,Igfm = 25 A
 Peak reverse voltage,Vgrm = 25 V

01I:C792ITSM