C716 53mm / 6kV THYRISTOR Type C716 thyristor is suitable for phase control applications such as HMDC valves, static VAR compensators and synchronous motor drives. The silicon junction is manufactured by the proven multi-diffusion process and is supplied in an industry standard disc-type package, ready to mount to forced or naturally cooled heat dissipators using commercially available mechanical clamping hardware. #### ON-STATE CHARACTERISTIC ### MECHANICAL OUTLINE $A\Phi = 2.96$ in (75.2 mm) $B\Phi=1.90$ in (48.3 mm) D=1.07 in (27.2 mm) | S ANI | CHARACTER | ISTICS | | |--|--|--|--| | $\mathbf{V}_{\mathtt{DRM}}$ $\mathbf{V}_{\mathtt{RRM}}$ | T _J =0
to 115℃ | up to
6000 | v | | V _{DWM}
V _{RWM}
I _{DWM}
I _{RWM} | $T_{J}=0$ to 115°C $T_{J}=0$ to 115°C | 0.8V _{DRM}
0.8V _{RRM}
75 | ma | | I _{T(AV)} | T=
70°C | 550 | A | | I _{rsm} | 60 Hz
50 Hz | 6
5.5 | kA | | V _{T M} | I _r =500A
t _r =8ms
T =115°C | 2.00 | v | | di√dt.
nep | T _J =115℃
60 Hz | 50 | A/us | | V _a =.67
snubberd | V _{drm}
ischarge | 50 | A | | dw/dt | $T_J=115^{\circ}C$ $V_{DCRIT}=60 & V_{DRM}$ | 1500 | V/us | | I _{R M} | T _J =115°C
24√us
54 √us | 60
100 | A | | nap factor | S = 0.3 | | | | t _a | $Vd=.5V_{DRM}$ | 5 | us | | T _{eff} | 5A/us,-100V
20V/us to 2000V | 600 | us | | R _{thuc} | | .025 | c/w | | F | | 5500
24.5 | lss.
kn | | | VDRM VRRM VRRM VRWM LWM LYM LYM LYM LYM LYM LYM LYM LYM LYM LY | V _{DRM} T _J =0
V _{RRM} to 115°C
V _{RRM} T _J =0
V _{RRM} to 115°C
I _{DRM} T _J =0
I _{RRM} to 115°C
I _{T(AV)} T _{DE} =
70°C
I _{TSM} 60 Hz
50 Hz
V _{TM} I _T =500A
t _p =8ms
T _J =115°C
rep 60 Hz
V _d =.67V _{DRM}
snitter discharge
dw/dt T _J =115°C
V _{DCRIT} =60°tV _{DRM}
I _{RM} T _J =115°C
24/US
54/US
54/US
1000
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
11 | V _{RRM} to 115°C 6000 V _{DWM} T _J =0 0.8V _{DRM} V _{RWM} to 115°C 0.8V _{RRM} I _{DWM} T _J =0 75 I _{RWM} to 115°C 75 I _{T(XV)} T _{OSE} = 550 I _{T(XV)} T _{OSE} = 550 V _{TM} I _T =500A 2.00 t _D =8ms T _J =115°C 50 rep 60 Hz V _d =67V _{DRM} smitter discharge 50 dw/dt T _J =115°C 1500 V _{DCRIT} =60°t V _{DRM} I _{RM} T _J =115°C 1500 v _{DCRIT} =6 | | REPETI | TIVE PEA | K REVERSE | | | |-----------------------------|-----------|------------------|--|--| | AND OF | F-STATE | BLOCKING | | | | <u>VOLTAGE</u> | | | | | | T _. = 0 to 115°C | | | | | | MODEL | V_{DRM} | V _{RRM} | | | | | (volts) | (valts) | | | | C716FP | 6000 | 6000 | | | | C716ET | 5900 | 5900 | | | | C716EN | 5800 | 5800 | | | | C716ES | 5700 | 5700 | | | | C716EM | 5600 | 5600 | | | | C716EE | 5500 | 5500 | | | | | | | | | ## FULL CYCLE AVERAGE POWER LOSS versus ### PEAK CURRENT at 50/60 Hz (plasma spreading and conduction loss) ### MAXIMUM PEAK RECOVERY CURRENT versus COMMUTATING di/dt Full Cycle Power Loss (watts) 50/60 Hz, T_{.I}=115°C c716los1(vt=2.0) I_T (peak) Half-sine 3 Phase ### GATE SUPPLY REQUIREMENTS | Open circuit voltage | 30 V | |--------------------------------------|--------------| | Short circuit current
- rise time | 3 A
0.5.5 | | Pulse duration (min) | 20 us |