
MPC5121e Microcontroller
Reference Manual

Devices Supported:
MPC5121e
MPC5123

Document Number: MPC5121ERM
Rev. 2

09/2008



How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 26668334
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and 
software implementers to use Freescale Semiconductor products. There are 
no express or implied copyright licenses granted hereunder to design or 
fabricate any integrated circuits or integrated circuits based on the 
information in this document.

Freescale Semiconductor reserves the right to make changes without further 
notice to any products herein. Freescale Semiconductor makes no warranty, 
representation or guarantee regarding the suitability of its products for any 
particular purpose, nor does Freescale Semiconductor assume any liability 
arising out of the application or use of any product or circuit, and specifically 
disclaims any and all liability, including without limitation consequential or 
incidental damages. “Typical” parameters that may be provided in Freescale 
Semiconductor data sheets and/or specifications can and do vary in different 
applications and actual performance may vary over time. All operating 
parameters, including “Typicals”, must be validated for each customer 
application by customer’s technical experts. Freescale Semiconductor does 
not convey any license under its patent rights nor the rights of others. 
Freescale Semiconductor products are not designed, intended, or authorized 
for use as components in systems intended for surgical implant into the body, 
or other applications intended to support or sustain life, or for any other 
application in which the failure of the Freescale Semiconductor product could 
create a situation where personal injury or death may occur. Should Buyer 
purchase or use Freescale Semiconductor products for any such unintended 
or unauthorized application, Buyer shall indemnify and hold Freescale 
Semiconductor and its officers, employees, subsidiaries, affiliates, and 
distributors harmless against all claims, costs, damages, and expenses, and 
reasonable attorney fees arising out of, directly or indirectly, any claim of 
personal injury or death associated with such unintended or unauthorized 
use, even if such claim alleges that Freescale Semiconductor was negligent 
regarding the design or manufacture of the part. 

Freescale™ and the Freescale logo are trademarks of Freescale 
Semiconductor, Inc. The ARM POWERED logo is a registered trademark of 
ARM Limited. ARM7TDMI-S is a trademark of ARM Limited.
Java and all other Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
The PowerPC name is a trademark of IBM Corp. and is used under license.The 
described product contains a PowerPC processor core. The PowerPC name is 
a trademark of IBM Corp. and used under license. The described product is a 
PowerPC microprocessor. The PowerPC name is a trademark of IBM Corp. 
and is used under license. The described product is a PowerPC 
microprocessor core. The PowerPC name is a trademark of IBM Corp. and is 
used under license. All other product or service names are the property of their 
respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

MPC5121ERM

Rev. 2
09/2008



Freescale Semiconductor I

Chapter 1 
Overview

1.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

Chapter 2 
System Configuration and Memory Map 

(XLBMEN + Mem Map)
2.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
2.2 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

2.2.1 Local Memory Map Overview and Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
2.2.2 Address Translation and Mapping  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2.2.3 Window into Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2.2.4 Local Access Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2.2.5 Local Access Register Memory Map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2.2.6 Precedence of Local Access Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
2.2.7 Configuring Local Access Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
2.2.8 Distinguishing Local Access Windows from Other Mapping Functions  . . . . . . .20
2.2.9 Outbound Address Translation and Mapping Windows  . . . . . . . . . . . . . . . . . . .20
2.2.10 Inbound Address Translation and Mapping Windows . . . . . . . . . . . . . . . . . . . . .21
2.2.11 PCI Inbound Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
2.2.12 Accessing Internal Memory from External Masters  . . . . . . . . . . . . . . . . . . . . . .21

2.3 System Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
2.3.1 System Configuration Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Chapter 3 
Signal Descriptions

3.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
3.1.1 Signals Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

3.2 Output Signal States During Reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Chapter 4 
Reset

4.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
4.2 HRESET Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

4.2.1 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
4.2.2 Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

4.3 SRESET Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
4.3.1 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
4.3.2 Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

4.4 (PORESET) Power-On Initialization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
4.5 Reset of Internal Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
4.6 Reset Configuration Word (RST_CONF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

4.6.1 BMS Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

MPC5121e Microcontroller Reference Manual, Rev. 2



II Freescale Semiconductor

4.6.2 RTC at Reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
4.6.3 JTAG Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
4.6.4 Boot Vector Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
4.6.5 Boot Memory Interface Selection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
4.6.6 LPC Initialization Sequence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
4.6.7 NFC Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

4.7 Memory Map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
4.7.1 Reset Configuration Word Low Register (RCWLR)  . . . . . . . . . . . . . . . . . . . . . .10
4.7.2 Reset Configuration Word High Register (RCWHR) . . . . . . . . . . . . . . . . . . . . . .11
4.7.3 Reset Status Register (RSR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
4.7.4 Reset Mode Register (RMR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
4.7.5 Reset Protection Register (RPR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
4.7.6 Reset Control Register (RCR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
4.7.7 Reset Control Enable Register (RCER)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

4.8 IO During Reset Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Chapter 5 
Clocks and Low-Power Modes

5.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
5.2 System Clock Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

5.2.1 Peripheral Clock Domains  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
5.2.2 Clock Frequency Measurement (CFM) Clock Selection . . . . . . . . . . . . . . . . . . . .4
5.2.3 System Oscillator Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
5.2.4 PSC Clock Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
5.2.5 MSCAN Clock Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
5.2.6 RTC Clock Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
5.2.7 SATA Clock Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
5.2.8 USB Clock Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
5.2.9 System PLL and e300 PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

5.3 Clock Control Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
5.3.1 Memory Map/Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Chapter 6 
AXE System

6.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
6.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

6.2 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
6.2.1 Data Memory Map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
6.2.2 Instruction Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
6.2.3 Register Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
6.2.4 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

6.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
6.3.1 AXE Reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
6.3.2 AXE System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor III

6.3.3 Data Access Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
6.3.4 DMA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
6.3.5 Interrupt Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
6.3.6 FIFOs for Inter-Processor Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
6.3.7 Interrupt Enable/Pending and Clear/Set Registers for FIFO1, FIFO2, and Soft 

Interrupts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

Chapter 7 
Byte Data Link Controller (BDLC)

7.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
7.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

7.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
7.3 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

7.3.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
7.3.2 Register Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

7.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
7.4.1 J1850 Frame Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
7.4.2 J1850 VPW Symbols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
7.4.3 MUX Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
7.4.4 Protocol Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
7.4.5 Transmitting A Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
7.4.6 Receiving A Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
7.4.7 Transmitting an In-Frame Response (IFR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
7.4.8 Receiving An In-Frame Response (IFR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
7.4.9 Special BDLC Module Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

7.5 Initialization Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
7.5.1 Initializing the Configuration Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
7.5.2 Exiting Loopback Mode and Enabling the BDLC Module . . . . . . . . . . . . . . . . . .62
7.5.3 Enabling BDLC Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

Chapter 8  
Clock Frequency Measurement (CFM)

8.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
8.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
8.1.2 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

8.2 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
8.2.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
8.2.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

8.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
8.4 Application Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Chapter 9 
CPU e300 Core Power Architecture

9.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

MPC5121e Microcontroller Reference Manual, Rev. 2



IV Freescale Semiconductor

9.2 e300c4lp Processor Core Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
9.3 e300c4lp Core Reference Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
9.4 Unsupported e300c4lp Core Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

9.4.1 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
9.4.2 CSB Parity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
9.4.3 Performance Monitor Event  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Chapter 10 
CSB Arbiter and Bus Monitor

10.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
10.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

10.2 Memory Map/Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
10.2.1 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

10.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
10.3.1 Arbitration Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
10.3.2 Bus Error Detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

10.4 Initialization/Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
10.4.1 Initialization Sequence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
10.4.2 Error Handling Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

Chapter 11 
Direct Memory Access (DMA)

11.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
11.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

11.2 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
11.2.1 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

11.3 Initialization/Application Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
11.3.1 DMA Initialization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
11.3.2 DMA Programming Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
11.3.3 DMA Arbitration Mode Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
11.3.4 DMA Transfer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
11.3.5 TCD Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
11.3.6 Channel Linking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
11.3.7 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

Chapter 12 
Display Interface Unit (DIU)

12.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
12.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
12.1.2 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

12.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
12.3 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

12.3.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
12.3.2 Register Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor V

12.3.3 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

12.4.1 Area Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
12.4.2 Area Descriptor Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
12.4.3 Pixel Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
12.4.4 Pixel Format Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
12.4.5 Alpha Blending  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
12.4.6 Chroma Keying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
12.4.7 Gamma Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
12.4.8 Cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
12.4.9 Write Back Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
12.4.10Color Bar Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
12.4.11Interrupt Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
12.4.12Dynamic Priority Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
12.4.13Display Signal Timing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

12.5 Initialization/Application Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
12.5.1 DIU Initialization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
12.5.2 Controlling DIU Planes after the DIU is Enabled  . . . . . . . . . . . . . . . . . . . . . . . .52
12.5.3 Synchronize With the Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
12.5.4 Recover From Parameter Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
12.5.5 Recover From Underrun Error  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

Chapter 13 
DRAM Controller

13.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
13.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

13.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
13.3 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

13.3.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
13.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
13.4.1 Interfacing with the DRAM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
13.4.2 Programming DRAM Device Internal Configuration Register . . . . . . . . . . . . . . .27
13.4.3 DRAM Command Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
13.4.4 Write Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
13.4.5 Timing Manager  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
13.4.6 DRAM Read Block and DRAM Write Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
13.4.7 Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

Chapter 14 
DRAM Controller Priority Manager

14.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
14.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

14.2 Bus Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

MPC5121e Microcontroller Reference Manual, Rev. 2



VI Freescale Semiconductor

14.3 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
14.3.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
14.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
14.4.1 Description of Operation — Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
14.4.2 Block Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
14.4.3 Congestion Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Chapter 15 
External Memory Bus (EMB)

15.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
15.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
15.1.2 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

15.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
15.2.1 EMB Mux  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Chapter 16 
Fast Ethernet Controller (FEC)

16.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
16.1.1 FEC Top Level  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
16.1.2 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
16.1.3 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

16.2 External Signal Description (Off Chip) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
16.2.1 I/O Signal Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
16.2.2 Detailed Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

16.3 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
16.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
16.3.2 Top-Level Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
16.3.3 Detailed Memory Map – Control/Status Registers . . . . . . . . . . . . . . . . . . . . . . .10
16.3.4 MIB Block Counters Memory Map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
16.3.5 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

16.4 Initialization Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
16.4.1 Initialization (Prior to Asserting ETHER_EN)  . . . . . . . . . . . . . . . . . . . . . . . . . . .45

16.5 Buffer Descriptors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
16.5.1 Driver/DMA Operation with Buffer Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . .46
16.5.2 Ethernet Receive Buffer Descriptor (RxBD) . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
16.5.3 Ethernet Transmit Buffer Descriptor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

16.6 Network Interface Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
16.6.1 FEC Frame Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
16.6.2 FEC Frame Reception  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
16.6.3 Ethernet Address Recognition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
16.6.4 Full-Duplex Flow Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
16.6.5 Inter-Packet Gap Time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
16.6.6 Collision Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor VII

16.6.7 Internal and External Loopback  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
16.6.8 Ethernet Error-Handling Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
16.6.9 Transmission Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
16.6.10Reception Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

Chapter 17 
General Purpose Timers (GPT)

17.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
17.1.1 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
17.1.2 Detailed Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

17.2 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
17.2.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
17.2.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

17.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
17.3.1 Input Capture Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
17.3.2 Changing Sub-Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
17.3.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
17.3.4 Force Output Low Immediately . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
17.3.5 Output Pulse High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
17.3.6 Output Pulse Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
17.3.7 Output Toggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
17.3.8 Pulse Width Modulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
17.3.9 Simple GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Chapter 18 
General Purpose I/O (GPIO)

18.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
18.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
18.3 Memory Map/Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

18.3.1 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Chapter 19 
IIM/Fusebox

19.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
19.2 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

19.2.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
19.2.2 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

19.3 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
19.3.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
19.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
19.4.1 Fuse Bank 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
19.4.2 Fuse Bank 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

MPC5121e Microcontroller Reference Manual, Rev. 2



VIII Freescale Semiconductor

Chapter 20 
Integrated Programmable Interrupt Controller (IPIC)

20.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
20.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
20.1.2 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

20.2 Memory Map/Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
20.2.1 Register Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

20.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
20.3.1 Interrupt Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
20.3.2 Interrupt Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
20.3.3 Internal Interrupts Group Relative Priority  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
20.3.4 Mixed Interrupts Group Relative Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
20.3.5 Highest Priority Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
20.3.6 Interrupt Source Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
20.3.7 Masking Interrupt Sources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
20.3.8 Interrupt Vector Generation and Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
20.3.9 Machine Check Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

Chapter 21 
Inter-Integrated Circuit (I2C)

21.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
21.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
21.1.2 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
21.1.3 I2C Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
21.1.4 START Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
21.1.5 STOP Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
21.1.6 Acknowledge  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
21.1.7 Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

21.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
21.3 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

21.3.1 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
21.4 Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
21.5 Transfer Initiation and Interrupt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

21.5.1 Post-Transfer Software Response  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
21.5.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
21.5.3 Special Note on AKF  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Chapter 22 
IO Control

22.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
22.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
22.1.2 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

22.2 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
22.2.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor IX

22.2.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

Chapter 23 
LocalPlus Bus (LPC)

23.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
23.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

23.2 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
23.2.1 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

23.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
23.3.1 Non-Muxed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
23.3.2 Muxed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
23.3.3 SCLPC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
23.3.4 Programmer’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

Chapter 24 
MBX Graphics Controller

24.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
24.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
24.1.2 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

24.2 DMA operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
24.3 Clocking Architecture of the MBXLITE Core  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Chapter 25 
MSCAN

25.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
25.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

25.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
25.2.1 CAN Receiver Input Pins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
25.2.2 CAN Transmitter Output Pins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
25.2.3 CAN System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

25.3 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
25.3.1 Register Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
25.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
25.3.3 Programmer’s Model of Message Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

25.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
25.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
25.4.2 Message Storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
25.4.3 Identifier Acceptance Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
25.4.4 Protocol Violation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
25.4.5 Clock System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
25.4.6 Timer Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
25.4.7 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
25.4.8 Low Power Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
25.4.9 Reset Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

MPC5121e Microcontroller Reference Manual, Rev. 2



X Freescale Semiconductor

25.4.10Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
25.4.11Description of Interrupt Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
25.4.12Interrupt Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
25.4.13Recovery from Deep Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
25.4.14MSCAN Initialization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
25.4.15Bus-Off Recovery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Chapter 26 
NAND Flash Controller (NFC)

26.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
26.2 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
26.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
26.4 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
26.5 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

26.5.1 Internal RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
26.5.2 Spare Area Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
26.5.3 Register Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
26.5.4 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

26.6 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
26.6.1 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
26.6.2 Booting From a NAND Flash Device  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
26.6.3 NAND Flash Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
26.6.4 NAND Flash Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
26.6.5 Flash Clock Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
26.6.6 NFC Boot Load Sequence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
26.6.7 DMA Request Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
26.6.8 RS ECC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
26.6.9 Address Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
26.6.10RAM Buffer (SRAM)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
26.6.11Read and Write Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
26.6.12Endian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
26.6.13I/O Pins Sharing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

26.7 Initialization Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
26.7.1 Normal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
26.7.2 Symmetric Mode – One Flash Clock Cycle Per Input or Output Data Cycle  . . .48
26.7.3 Memory Configuration Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

Chapter 27 
Parallel Advanced Technology Attachment (PATA)

27.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
27.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
27.1.2 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

27.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
27.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor XI

27.2.2 Meeting Timing on the ATA Bus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
27.3 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

27.3.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
27.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

27.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
27.4.1 Reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
27.4.2 Programming ATA Bus Timing and IORDY_EN  . . . . . . . . . . . . . . . . . . . . . . . . .28
27.4.3 Access to ATA Bus in PIO Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
27.4.4 Using DMA Mode to Receive Data from the ATA Bus . . . . . . . . . . . . . . . . . . . . .29
27.4.5 Using DMA Mode to Transmit Data to the ATA Bus  . . . . . . . . . . . . . . . . . . . . . .30

Chapter 28 
PCI Controller (PCI)

28.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
28.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

28.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
28.2.1 Detailed Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

28.3 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
28.3.1 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

28.4 PCI Interface Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
28.4.1 Bus Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

28.5 I/O Sequencer for PCI Subsystem (PCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
28.6 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

28.6.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
28.7 PCI_IOS Memory Map and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

28.7.1 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
28.8 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

28.8.1 Transaction Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
28.8.2 PCI Outbound Address Translation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
28.8.3 Transaction Ordering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

28.9 DMA for PCI Subsystem (PCI)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
28.9.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
28.9.2 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

28.10External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
28.10.1Detailed Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

28.11Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
28.11.1Register Descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

28.12Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
28.12.1Message Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
28.12.2DMA Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

Chapter 29 
Power Management Control Module (PMC)

29.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

MPC5121e Microcontroller Reference Manual, Rev. 2



XII Freescale Semiconductor

29.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
29.2 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

29.2.1 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
29.2.2 Core PLL Change Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
29.2.3 PRE_DIV Copy Enable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
29.2.4 Low-Power Configurations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

Chapter 30 
Programmable Serial Controller (PSC)

30.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
30.2 Memory Map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

30.2.1 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
30.3 PSC Functions Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
30.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
30.5 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

30.5.1 PSC in UART Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
30.5.2 PSC in Codec Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
30.5.3 PSC in AC97 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
30.5.4 Local Loop-Back Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
30.5.5 Remote Loop-Back Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

Chapter 31 
PSC Centralized FIFO Controller (FIFOC)

31.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
31.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
31.1.2 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
31.1.3 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

31.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Chapter 32 
Real Time Clock (RTC)

32.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
32.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

32.2 External Signal Descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
32.3 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

32.3.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
32.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

32.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
32.4.1 Behavior at Power On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
32.4.2 Behavior of Wakeup Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
32.4.3 Behavior During Power Off (Hibernation Mode) . . . . . . . . . . . . . . . . . . . . . . . . .31
32.4.4 RTC Response to Target Time Register/Actual Time Count Register and External 

Wakeup Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
32.4.5 RTC Response to External Wakeup Sources . . . . . . . . . . . . . . . . . . . . . . . . . . .36

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor XIII

Chapter 33 
SATA Controller (SATA)

33.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
33.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
33.1.2 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

33.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
33.3 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

33.3.1 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
33.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

33.4.1 Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
33.4.2 Interrupt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
33.4.3 ATAPI Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
33.4.4 PIO Transfers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
33.4.5 DMA Transfers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
33.4.6 Power Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
33.4.7 DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
33.4.8 Physical Coding Sublayer (PCS)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
33.4.9 Serial ATA Physical Layer Macro (SATA PHY)  . . . . . . . . . . . . . . . . . . . . . . . . . .43

33.5 Initialization Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

Chapter 34 
Secure Digital Host Controller (SDHC)

34.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
34.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

34.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
34.2.1 Detailed Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

34.3 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
34.3.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
34.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

34.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
34.4.1 Data Buffers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
34.4.2 DMA Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
34.4.3 Memory Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
34.4.4 SDIO Card Interrupt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
34.4.5 Card Insertion and Removal Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
34.4.6 Power Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
34.4.7 System Clock Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

34.5 Initialization Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
34.5.1 MMC_SD_CLK Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
34.5.2 Command Submit – Response Receive Basic Operation  . . . . . . . . . . . . . . . . .37
34.5.3 Card Identification Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
34.5.4 Card Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
34.5.5 Switch Card Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

MPC5121e Microcontroller Reference Manual, Rev. 2



XIV Freescale Semiconductor

Chapter 35 
Software Watchdog Timer (WDT)

35.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
35.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
35.1.2 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

35.2 Memory Map/Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
35.2.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
35.2.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

35.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
35.3.1 Software Watchdog Timer Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
35.3.2 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

Chapter 36 
Sony/Philips Digital Interface (SPDIF)

36.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
36.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

36.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
36.2.1 Pin Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
36.2.2 Detailed Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

36.3 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
36.3.1 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

36.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
36.4.1 SPDIF Receiver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
36.4.2 SPDIF Transmitter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

Chapter 37 
SRAM Memory (MEM)

37.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Chapter 38 
Temperature Sensor

38.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
38.1.1 Normal Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Chapter 39 
Universal Serial Bus Interface with On-The-Go

39.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
39.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
39.1.2 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
39.1.3 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

39.2 Memory Map/Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
39.2.1 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

39.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor XV

39.3.1 System Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
39.3.2 DMA Engine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
39.3.3 FIFO RAM Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

39.4 OTG Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
39.4.1 Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
39.4.2 Hardware Assist  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

39.5 Host Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
39.5.1 Periodic Frame List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
39.5.2 Asynchronous List Queue Head Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
39.5.3 Isochronous (High-Speed) Transfer Descriptor (iTD) . . . . . . . . . . . . . . . . . . . . .70
39.5.4 Split Transaction Isochronous Transfer Descriptor (siTD) . . . . . . . . . . . . . . . . . .74
39.5.5 Queue Element Transfer Descriptor (qTD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
39.5.6 Queue Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
39.5.7 Periodic Frame Span Traversal Node (FSTN) . . . . . . . . . . . . . . . . . . . . . . . . . . .88

39.6 Host Operational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
39.6.1 Host Controller Initialization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
39.6.2 Suspend/Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
39.6.3 Schedule Traversal Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
39.6.4 Periodic Schedule Frame Boundaries vs. Bus Frame Boundaries . . . . . . . . . . .95
39.6.5 Periodic Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
39.6.6 Managing Isochronous Transfers Using iTDs . . . . . . . . . . . . . . . . . . . . . . . . . . .98
39.6.7 Asynchronous Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
39.6.8 Operational Model for NAK Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
39.6.9 Managing Control/Bulk/Interrupt Transfers via Queue Heads  . . . . . . . . . . . . .112
39.6.10Ping Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
39.6.11Split Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124
39.6.12Host Controller Pause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
39.6.13Port Test Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
39.6.14Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153

39.7 Device Data Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
39.7.1 Endpoint Queue Head  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
39.7.2 Endpoint Transfer Descriptor (dTD)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161

39.8 Device Operational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
39.8.1 Device Controller Initialization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
39.8.2 Port State and Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164
39.8.3 Bus Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166
39.8.4 Managing Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
39.8.5 Device Operational Model For Packet Transfers . . . . . . . . . . . . . . . . . . . . . . . .170
39.8.6 Managing Queue Heads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177
39.8.7 Managing Transfers with Transfer Descriptors  . . . . . . . . . . . . . . . . . . . . . . . . .179
39.8.8 Device Error Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181
39.8.9 Servicing Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182
39.8.10Deviations from the EHCI Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183

39.9 USB 2.0 PHY with On-The-Go  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185
39.9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185

MPC5121e Microcontroller Reference Manual, Rev. 2



XVI Freescale Semiconductor

Chapter 40 
Video-In (VIU)

40.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
40.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

40.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
40.3 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

40.3.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
40.3.2 Register Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
40.3.3 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

40.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
40.4.1 ITU656  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
40.4.2 Round and Dither  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
40.4.3 DMA and De-interlacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
40.4.4 Error Case  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

40.5 Initialization/Application Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
40.5.1 Initialization Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
40.5.2 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 1-1

Chapter 1  
Overview

1.1 Introduction
The MPC5121e integrated processor provides an exceptional computing platform for multimedia and 
infotainment vehicle applications for OEM, aftermarket, and commercial products. The MPC5121e is also 
excellent for any embedded solution that requires graphics, a graphical user-interface, and network 
connectivity. The MPC5121e has automotive qualification; therefore, all customers can expect 
competitive cost, quality, reliability, and availability for years to come. The MPC5121e uses the e300 CPU 
core based on the Power Architecture™ instruction set.

The MPC5121e has an integrated graphics engine, the PowerVR® MBX Lite IP core licensed from 
Imagination Technologies, which supports 3D acceleration (not available in MPC5123). With a 128-bit 
interface, this graphics engine has incredible performance. A separate 32-bit RISC auxiliary acceleration 
engine (AXE) provides additional processing power. This engine has been optimized for audio 
applications and acceleration of popular media formats including MP3, AAC, WMA, Ogg Vorbis, and 
others. The AXE can also support sample rate conversion important to speech recognition.

The MPC5121e integrated processor includes multiple cores and multiple buses, helping to avoid high 
clock rates to obtain high performance. The excellent balance between operating power consumption and 
performance allows for lower system cost and higher reliability. The low standby power consumption also 
makes the product suitable for portable applications.

The flexibility of the MPC5121e provides customers a platform for a variety of product applications. Its 
rich set of integrated peripherals include PCI, SATA, PATA, Ethernet, USB 2.0, CAN, twelve 
programmable serial controllers, and numerous others. The integrated display controller (DIU) allows for 
cost-effective support of thin film transistor (TFT) LCD panel displays with up to 1280 x 720 resolution.

Again, the MPC5121e uses the e300 CPU core, with 32 Kbyte instruction cache and 32 Kbyte data cache, 
based on the Power Architecture instruction set. Wide support of RTOS, software drivers, middleware, and 
application solutions from mobileGT alliance members is planned when samples become available. This 
can greatly reduce development lead times and expense while improving software quality.

The many embedded memory buffers help ensure balanced system performance and system bus 
throughput. The performance of the MPC5121e is enhanced by having well-balanced system resources for 
the integrated core, graphics and audio engines.

Figure 1-1 shows a top-level block diagram of the MPC5121e.

MPC5121e Microcontroller Reference Manual, Rev. 2



Overview

1-2 Freescale Semiconductor

Figure 1-1. MPC5121e Block Diagram

1.1.1 Features

1.1.1.1 Chip-Level Features

Major features of the MPC5121e are as follows:
• e300 Power Architecture processor core
• Power modes include doze, nap, sleep, deep sleep, and hibernate
• AXE – Auxiliary Execution Engine
• MBX Lite – 2D/3D graphics engine (not available in MPC5123)
• DIU – Display interface unit
• DDR1, DDR2, and LPDDR/mobile-DDR SDRAM memory controller
• MEM – 128 Kbyte on-chip SRAM
• USB 2.0 OTG controller with integrated physical layer (PHY)
• DMA subsystem
• EMB – Flexible multi-function external memory bus interface
• NFC – NAND flash controller
• LPC – LocalPlus interface
• 10/100Base Ethernet
• PCI interface, version 2.3

P
M

C

IP
IC

W
D

T

G
P

T

G
P

IO

I2 C
 3

C
A

N
 4

J1
85

0

S
D

H
C

S
P

D
IF

C
F

M

P
S

C
 1

2

R
T

C

83 MHz (max) IP Bus

Display DDR1/2 Memory
Functionally

Multiplexed I/O

LPC

NFC

PATA

E
M

B

83
 M

H
z 

IP
 B

us AXE
Engine
8-KB

DIU
Multi-Port

Memory Controller

MBX Lite
Graphics Engine with

Vector Processing

FEC

USB2
+ PHY

USB2
ULPI

SATA
+ PHY

PCI

20
0 

M
H

z 
A

H
B

 (
32

-B
it)

Temp Fuse

128-KB
SRAM

DMA
64-Channel

e300
Power Architecture

32-KB Instruction-Cache
32-KB Data-Cache

20
0 

M
H

z 
C

S
B

B
us

 (
64

-B
it)

RESET/

JTAG/COP

CLOCK

I-Cache

VIU

Not available in MPC5123

MPC5121e Microcontroller Reference Manual, Rev. 2



Overview

Freescale Semiconductor 1-3

• PATA – Parallel ATA integrated development environment (IDE) controller
• SATA – Serial ATA controller with integrated physical layer (PHY)
• SDHC – MMC/SD/SDIO card host controller
• PSC – Programmable serial controller
• I2C – inter-integrated circuit communication interfaces
• S/PDIF – Serial audio interface
• CAN – Controller area network
• BDLC – J1850 interface
• VIU – Video Input, ITU-656 complient
• RTC – On-Chip real-time clock
• On-chip temperature sensor
• IIM – IC Identification module 

1.1.1.2 Module Features

The following provides more details of modules implemented on the device:
• e300 processor core using the Power Architecture instruction set

— 32 Kbyte instruction cache
— 32 Kbyte data cache
— High-performance, superscalar processor core with a four-stage pipeline
— Dual-issue processor with integrated floating-point unit and dual integer units
— Dynamic power management

• MBX Lite graphics block (not available in MPC5123)
— Dedicated hardware graphics coprocessor
— Superior 2D and 3D graphics performance
— Operating system with application programmer interface and drivers

• Display interface unit
— Supports LCD display resolution up to 1280 × 720
— Supports refresh rate up to 60 Hz
— Color depth up to 24 bits per pixel
— Hardware n-plane accelerated blending

• Video Interface Unit
— Support from QVGA to XVGA 8-bit/10-bit ITU656 video input
— YUV to RGB888/565 conversion
— Internal DMA engine for data transfering to memory

• AXE processor
— 32-bit RISC coprocessor
— 8 Kbyte instruction cache, 48-bit fixed point arithmetic, and multiply-accumulate (MAC)

MPC5121e Microcontroller Reference Manual, Rev. 2



Overview

1-4 Freescale Semiconductor

— Supports up to 4x MP3 encode speed
— Software available for many compressed audio formats such as MP3, AAC, Ogg Vorbis, and 

WMA
• Two USB controllers

— Two on-chip USB controllers with On-The-Go host/device capability
— Each supports high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps)
— One USB controller with an integrated on-chip physical interface (PHY)
— Both USB controllers can be accessed through the ULPI interface

• DMA
— 64-channel on-chip DMA engine with advanced capabilities
— Supports channel linking and scatter/gather processing
— Support for external DMA requests

• DDR SDRAM controller
— Supports 16-bit wide and 32-bit wide DDR1, DDR2, and LPDDR/mobile-DDR SDRAM 

devices at up to 200 MHz
• 128 Kbyte on-chip SRAM

— Usable as e300 core scratch pad memory
• PCI interface

— PCI specification revision 2.3 compliant
— 32-bit PCI interface support
— On-chip arbitration supports three external PCI bus masters
— Support for external DMA requests

• SATA controller with integrated PHY
— Compliant with SATA 1.0a spec
— Supports 1.5 Gbps

• Parallel ATA controller
— Compliant with ATA-6 specification
— Supports PIO mode 0 to 4
— Supports MDMA mode 0 to 2
— Supports UDMA mode 0 to 4

• Ethernet controller
— Supports 100 Mbps/10 Mbps IEEE 802.3 MII
— Supports 10 Mbps 7-wire interface
— IEEE 802.3 full duplex flow control

• NAND flash interface
— Supports 8-bit-wide and 16-bit-wide NAND flashes
— Supports booting from NAND flash
— Supports up to four Kbyte block NAND devices

MPC5121e Microcontroller Reference Manual, Rev. 2



Overview

Freescale Semiconductor 1-5

— Supports four chip selects
— Correction and detection up to eight erroneous symbols

• LocalPlus interface
— Interface to external memory-mapped or chip-selected devices
— 32-bit address bus
— 32-bit data bus
— Eight chip selects
— Supports burst mode flash
— Supports 32-bit ALE-muxed interface
— Supports up to 42-bit non-muxed interfaces
— Supports large-packet DMA transfers

• SD/SDIO/MMC card interface
— Compliant with SD and SDIO specification version 1.x
— Compliant with MMC card specification
— 100 Mbps data rate in 4-bit mode

• Four controller area network (CAN) interfaces
— Implementation of CAN protocol, version 2.0 A/B
— Programmable wakeup functionality
— Support of low speed or high speed

• S/PDIF receive and transmit interface
— S/PDIF receiver operates with incoming frequencies in 32 kHz to 96 kHz range
— S/PDIF transmitter

• Three inter-integrated circuit communication (I2C) interfaces
— Three industry-standard I2C interfaces
— Input digital noise filtering
— Master and slave modes supported

• Twelve programmable serial controllers
— Each PSC is a flexible serial communication engine, supporting the following protocols: 

UART, Codec/PCM, serial audio data, I2S, multi-channel data, SPI, and AC97
— PSC UART mode
— PSC Codec mode Master and slave clock support
— PSC inter-integrated sound interface (I2S mode) 
— PSC SPI mode
— PSC AC97 mode

• Frequency measurement block
— Four-Channel frequency measurement for I2S and S/PDIF serial interfaces

• J1850 interface (BDLC)

MPC5121e Microcontroller Reference Manual, Rev. 2



Overview

1-6 Freescale Semiconductor

— SAE J1850 Class B data communications network interface compliant
— ISO-compatible for low speed (< 125 Kbps) serial data communications
— Digital noise filter

• General purpose I/O
— Up to 32 GPIOs
— Four GPI available for external wake up

• On-chip real-time clock
— Real-time clock runs from separate Vbat power domain
— Tamper bit indicates when Vbat has been removed
— Programmable alarm
— Periodic interrupts for one second, one minute, one day
— Runs with external 32 kHz crystal or external clock source

• IC Identification module (IIM)
— One fuse bank user space (32 Bytes)

• On-chip temperature sensor
• Hibernation mode

— CPU and all internal modules are stopped; only Vbat supply is powered
— Six wakeup sources
— Hibernation mode power consumption below 20 μA

• Deep sleep mode
— All on-chip clocks except the real-time clock are stopped
— Wakeup from deep sleep mode possible from a number of sources

– CAN1_RX and CAN2_RX
– RTC alarm
– Four external wakeup inputs (GPIO28, GPIO29, GPIO30, and GPI31) on VBAT_RTC 

domain
— Power consumption in deep sleep mode below 1 mA

• System timer
— Real-time clock
— Eight general-purpose timers

• IEEE 1149.1 compliant JTAG boundary scan

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 2-1

Chapter 2  
System Configuration and Memory Map 
(XLBMEN + Mem Map)

2.1 Introduction
The System Configuration and Memory Map chapter describes the memory map of the MPC5121e and 
also details information on setting up the system configuration. The memory map is described by 17 Local 
Access Windows. Some of these memory access windows point to various blocks of the 32-bit memory 
address space while other memory access windows point to specific peripheral modules. A list of the Local 
Access Windows is shown in Table 2-1. The registers that set the base address and size of each Local 
Access Window are presented in Table 2-2. 

2.2 Memory Map and Register Definition

2.2.1 Local Memory Map Overview and Example

The MPC5121e provides a flexible local memory map. The local memory map refers to the 32-bit address 
space seen by the processor as it accesses memory and I/O space. Internal DMA engines also see this same 
local memory map. All memory accessed by the MPC5121e DDR SDRAM and LocalPlus controllers 
exists in this memory map, as do all memory-mapped configuration, control, and status registers.

The local memory map of the MPC5121e is defined by a set of 17 local access windows. Each of these 
windows map a region of memory to a particular target interface, such as the DDR SDRAM controller or 
the PCI controller. The LPC windows do not perform any address translation. Each local access window 
is assigned to a specific target interface as specified in Table 2-1.

Local Access Windows are defined in several different ways. For instance, Local Access Window Number 
0 is used for the configuration registers which include the IMMRBAR register and the base address for 
registers in the various peripheral modules. The block size for Local Access Window 0 is fixed at 1 Mbyte. 
Local Access Windows 1 – 9 are specified by the Start_Addr and Stop_Addr fields of the respective 
LocalPlus Access Window Registers for Chip Select Boot and Chip Selects 0 – 7. The base addresses for 
the three PCI Local Access Windows are specified by the respective PCI Local Access Window Base 
Address Registers and the size of the windows are specified by the respective PCI Local Access Window 
Attributes Register. The DDR SDRAM window base address and size is specified by the DDR Local 
Access Window Base Address Register and the size of the window is specified by the DDR Local Access 
Window Attributes Register. Window 14 is used for the MBX module. The MBX base address register is 
located at IMMR + 0xC0. The block size is fixed at 16 Mbytes. Window 15 is used for the SRAM module. 
The SRAM module base address register is located at IMMRBAR + 0xC4. The block size is fixed at 256 
Kbytes. While the SRAM window is 256 Kbytes, the actual size of the SRAM is 128 Kbytes. Window 16 

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

2-2 Freescale Semiconductor

is used for the NAND flash controller. The NAND flash controller base address register is located at 
IMMR + 0xC8. The block size is fixed at 1 Mbyte.

NOTE
It is generally a programming error to overlap the addressing range of the 
Local Access Windows. There is nothing to prevent software from 
programming overlapping addresses.

Changing the value of IMMRBAR changes the location of the Local Access Windows Target Interface. 
The address of the IMMRBAR Register is the contents of the IMMRBAR register, itself. A Special 
Purpose Register, SPR311, is specifically provided such that a copy of IMMRBAR can be maintained in 
a register that does not move in the memory map. 

NOTE
It is the responsibility of the system software to properly maintain e300 
special purpose register 311 (SPR311 - MBAR) such that its contents are the 
same as the contents of the IMMRBAR Register.

2.2.2 Address Translation and Mapping
Table 2-1. Local Access Windows Target Interface

Window
Number

Offset to
IMMR

Target Interface Comments

0 0x000 Configuration registers (IMMRBAR) Fixed 1 Mbyte window size

1 0x020 LocalPlus Bus Boot Access Window Reg. —

2 0x024 LocalPlus Bus CS0 Access Window Reg. —

3 0x028 LocalPlus Bus CS1 Access Window Reg. —

4 0x02C LocalPlus Bus CS2 Access Window Reg. —

5 0x030 LocalPlus Bus CS3 Access Window Reg. —

6 0x034 LocalPlus Bus CS4 Access Window Reg. —

7 0x038 LocalPlus Bus CS5 Access Window Reg. —

8 0x03C LocalPlus Bus CS6 Access Window Reg. —

9 0x040 LocalPlus Bus CS7 Access Window Reg. —

10 0x060 PCI Local Access Window 0 Base Address Reg. —

0x064 PCI Local Access Window 0 Attributes Reg. —

11 0x068 PCI Local Access Window 1 Base Address Reg. —

0x06C PCI Local Access Window 1 Attributes Reg.

12 0x070 PCI Local Access Window 2 Base Address Reg. —

0x074 PCI Local Access Window 2 Attributes Reg. —

13 0x0A0 DDR SDRAM Local Access Window Base Address Reg. —

0x0A4 DDR SDRAM Local Access Window Attributes Reg. —

14 0x0C0 MBX Base Address Reg. Fixed 16 Mbyte window size

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

Freescale Semiconductor 2-3

Three distinct types of translation and mapping operations are performed on transactions in the 
MPC5121e. These are:

• Mapping a local address to a target interface
• Translating the local 32-bit address to an external address space
• Translating external addresses to the local 32-bit address space

The local access windows perform target mapping for transactions within the local address space. No 
address translation is performed by the local access windows. 

Outbound windows perform the mapping from the local 32-bit address space to the address spaces of PCI, 
which may be much larger than the local space. 

Inbound windows perform the address translation from the external address spaces of PCI to the local 
address space. 

The target mappings created by an inbound window must be consistent with those of the local access 
windows. That is, if an inbound window maps a transaction to a given local address, a valid local access 
window must be set independently.

2.2.3 Window into Configuration Space

The internal memory map registers’ base address register (IMMRBAR) defines a window that is used to 
access all memory-mapped configuration, control, and status registers, referred as internal memory map 
registers or IMMR. The window is always enabled with a fixed size of 1 Mbyte. There is no attributes 
register associated with Window 0. This window always takes precedence over all local access windows. 
The IMMRBAR always comes out of reset with a default base address value of 0xFF400000. The value 
of IMMRBAR can be modified by writing to this register. For more information, see Section 2.2.5.1.1, 
“Internal Memory Map Registers Base Address Register (IMMRBAR).”

NOTE
Even though Window 0 only uses a 1 Mbyte addressing range, it is 
recommended that it be treated as a 4 Mbyte addressing range. For example, 
if IMMRBAR is set to 0xFF40_0000, reserve an address space of 
0xFF40_0000-0xFF7F_FFFF. Although it is legal to use the 3 Mbyte 
address space directly above Window 0, this space may be used in future 
derivatives of MPC5121e.

2.2.4 Local Access Windows

As demonstrated in the address map overview in Section 2.2.1, “Local Memory Map Overview and 
Example,” local access windows associate a range of the local 32-bit address space with a particular target 

15 0x0C4 SRAM Base Address Register Fixed 256 Kbyte window size

16 0x0C8 NFC Base Address Register Fixed 1 Mbyte window size

Table 2-1. Local Access Windows Target Interface (continued)

Window
Number

Offset to
IMMR

Target Interface Comments

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

2-4 Freescale Semiconductor

interface. This allows the internal interconnections of the MPC5121e to route a transaction from its source 
to the proper target. No address translation is performed. The base address defines the high order address 
bits that give the location of the window in the local address space. The window attributes enable the 
window and define its size, while the window number specifies the target interface.

With the exception of configuration space (mapped by IMMRBAR), all addresses used by the system must 
be mapped by a local access window. This includes addresses that are mapped by PCI inbound windows.

The local access window registers exist as part of the local access block in the system configuration 
registers. See Section 2.3.1.1, “System Configuration Registers.” A detailed description of the local access 
window registers is given in the following sections. 

2.2.5 Local Access Register Memory Map

Table 2-2 shows the memory map for the local access registers.

Table 2-2. Local Access Register Memory Map

Local Memory
Offset (Hex)

Register Access Section/Page

0x000 Internal Memory Map Base Address Register (IMMRBAR)

See Table 2-4, MPC5121e Memory Map for individual module base addresses.

R/W 2.2.5.1.1/2-5

0x004–0x01C Reserved

0x020 LocalPlus Boot Access Window register (LPBAW) R/W 2.2.5.1.3/2-9

0x024 LocalPlus CS0 Access Window register (LPCS0AW) R/W 2.2.5.1.3/2-9

0x028 LocalPlus CS1 Access Window register (LPCS1AW) R/W 2.2.5.1.3/2-9

0x02C LocalPlus CS2 Access Window register (LPCS2AW) R/W 2.2.5.1.3/2-9

0x030 LocalPlus CS3 Access Window register (LPCS3AW) R/W 2.2.5.1.3/2-9

0x034 LocalPlus CS4 Access Window register (LPCS4AW) R/W 2.2.5.1.3/2-9

0x038 LocalPlus CS5 Access Window register (LPCS5AW) R/W 2.2.5.1.3/2-9

0x03c LocalPlus CS6 Access Window register (LPCS6AW) R/W 2.2.5.1.3/2-9

0x040 LocalPlus CS7 Access Window register (LPCS7AW) R/W 2.2.5.1.3/2-9

0x044–0x05C Reserved

0x060 PCI Local Access Window0 Base Address register (PCILAWBAR0) R/W 2.2.5.1.5/2-11

0x064 PCI Local Access Window0 Attribute register (PCILAWAR0) R/W 2.2.5.1.6/2-12

0x068 PCI Local Access Window1 Base Address register (PCILAWBAR1) R/W 2.2.5.1.5/2-11

0x06C PCI Local Access Window1 Attribute register (PCILAWAR1) R/W 2.2.5.1.6/2-12

0x070 PCI Local Access Window2 Base Address register (PCILAWBAR2) R/W 2.2.5.1.5/2-11

0x074 PCI Local Access Window2 Attribute register (PCILAWAR2) R/W 2.2.5.1.6/2-12

0x078–0x09C Reserved

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

Freescale Semiconductor 2-5

2.2.5.1 Local Access Register Description

2.2.5.1.1 Internal Memory Map Registers Base Address Register (IMMRBAR)

The internal memory map registers contain configuration, control, and status registers as well as device 
internal memory arrays. The internal memory map occupies a 1-Mbyte region of memory space. Its 
location is programmable using the internal memory map register (IMMRBAR). The default base address 
for the internal memory map register is 0xFF40_0000. Because IMMRBAR is at offset 0x0 from the 
beginning of the local access registers, IMMRBAR always points to itself. A complete list of the modules 
that are memory mapped by the IMMRBAR is shown in Table 2-4.

2.2.5.1.2 Updating IMMRBAR

Updates to IMMRBAR that relocate the entire 1-Mbyte region of the internal memory block, requires 
special treatment. The effect of the update must be guaranteed to be visible by the mapping logic before 
an access to the new location is seen. To make sure this happens, these guidelines should be followed:

• IMMRBAR should be updated during initial configuration of the device when only one host or 
controller has access to the device

• During system initialization, immediately after the release of reset, system software should set 
IMMRBAR to the desired final location before enabling other I/O devices to access the device. A 
copy of the IMMRBAR value should be written to Special Purpose Register SPR311 (MBAR). 
Updating SPR311 is not automatic. When software changes IMMRBAR, SPR311 should be 
updated by software at the same time.

0x0A0 DDR Local Access Window0 Base Address register (DDRLAWBAR0) R/W 2.2.5.1.7/2-13

0x0A4 DDR Local Access Window0 Attribute register (DDRLAWAR0) R/W 2.2.5.1.8/2-14

0x0A8–0x0BC Reserved

0x0C0 MBX Address Register (MBXBAR) R/W 2.2.5.1.9/2-15

0x0C4 SRAM Address Register (SRAMBAR) R/W 2.2.5.1.10/2-16

0x0C8 NFC Address Register (NFCBAR) R/W 2.2.5.1.11/2-17

0x0CC–0x0FC Reserved

Table 2-2. Local Access Register Memory Map (continued)

Local Memory
Offset (Hex)

Register Access Section/Page

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

2-6 Freescale Semiconductor

The Internal Memory Map Registers’ Base Address register is shown in Figure 2-1.

Offset 0x00 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BASE_ADDR

0 0 0 0

W

Reset 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 2-1. Internal Memory Map Registers’ Base Address Register (IMMRBAR)

Table 2-3. IMMRBAR Field Descriptions

Field Description

BASE_ADDR Identifies the 12 most-significant address bits of the base of the 4 Mbyte internal memory window.

Table 2-4. MPC5121e Memory Map

Address (OFFSET FROM 
IMMRBAR)

Use

00000 – 001FF System configuration (XLBMEN)

00200 – 008FF Reserved

00900 – 009FF Software watchdog timer (WDT)

00A00 – 00AFF Real time clock (RTC)

00B00 – 00BFF General purpose timer (GPT)

00C00 – 00CFF Integrated programmable interrupt controller (IPIC)

00D00 – 00DFF CSB arbiter

00E00 – 00EFF Reset module (RESET)

00F00 – 00FFF Clock module (CLOCK)

01000 – 010FF Power management control (PMC)

01100 – 011FF General Purpose I/O (GPIO)

01200 – 012FF Reserved

01300 – 0137F MSCAN 1

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

Freescale Semiconductor 2-7

01380 – 013FF MSCAN 2

01400 – 014FF Byte data link controller (BDLC)

01500 – 015FF Secure digital host controller (SDHC)

01600 – 016FF Sony/Philips digital interface (SPDIF)

01700 – 0171F Inter-integrated circuit (I2C) 1

01720 - 0173F Inter-integrated circuit (I2C) 2

01740 - 017FF Inter-integrated circuit (I2C) 3

01800 – 01FFF Reserved

02000 – 020FF AXE

02100 – 021FF Display Interface Unit (DIU)

02200 – 022FF Clock Frequency Measurement (CFM)

02300 – 0237F MSCAN 3

02380 – 023FF MSCAN 4

02400 – 027FF VIU

02800 – 02FFF Fast Ethernet Controller (FEC)

03000 – 035FF USB ULPI

03600 – 03FFF Reserved

04000 – 045FF USB UTMI

07000 – 07FFF Reserved

08000 – 082FF PCI DMA

08300 – 0837F PCI configuration

08380 – 083FF Reserved

08400 – 084FF PCI I/O Sequencer (IOS)

08500 – 085FF PCI controller

08600 – 08FFF Reserved

09000 – 09FFF Multi-port DRAM controller (MDDRC)

0A000 – 0AFFF IO control

0B000 – 0BFFF IC identification module (IIM)

0C000 – 0FFFF Reserved

10000 – 101FF LocalPlus controller (LPC)

10200–102FF Parallel ATA (PATA)

10300 – 10FFF Reserved

11000 – 110FF PSC0

11100 – 111FF PSC1

Table 2-4. MPC5121e Memory Map (continued)

Address (OFFSET FROM 
IMMRBAR)

Use

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

2-8 Freescale Semiconductor

11200 – 112FF PSC2

11300 – 113FF PSC3

11400 – 114FF PSC4

11500 – 115FF PSC5

11600 – 116FF PSC6

11700 – 117FF PSC7

11800 – 118FF PSC8

11900 – 119FF PSC9

11A00 – 11AFF PSC10

11B00 – 11BFF PSC11

11F00 – 11FFF SFIFO for PSC 0–11

12000 – 13FFF Reserved

14000 – 157FF DMA

15800 – 1FFFF Reserved

20000 – 21FFF SATA

22000 – FFFFF Reserved

Table 2-4. MPC5121e Memory Map (continued)

Address (OFFSET FROM 
IMMRBAR)

Use

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

Freescale Semiconductor 2-9

2.2.5.1.3 LocalPlus Boot/CS0-7 Access Window Registers (LPBAW/LPCSxAW)

The LocalPlus Access Window Registers (LPBAW/LPCSxAW) are shown in Figure 2-2.

Offset 0x20,0x24,0x28,0x2C,0x30,0x34,0x38,0x3C,0x40 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
START_ADDR

W

Reset1 See Table 2-6

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
STOP_ADDR

W

Reset See Table 2-6

1. The LPBAW reset value depends on the reset configuration word high values. See Section 2.2.5.1.4, “LPBAW[START_ADDR] 
and LPBAW[STOP_ADDR] Reset Value” for detailed description.

Figure 2-2. LocalPlus Boot/CS0–7 Access Window Registers (LPBAW/LPCSxAW)

Table 2-5. LPBAW/LPCSxAW Field Descriptions

Field Description

START_ADDR Any access on an address between Start and Stop Address enables the corresponding chip select. The 
START_ADDR is for the address comparison extended with 0x0000. The STOP_ADDR is for the address 
comparison extended with 0xFFFF. This means the minimum address size is 64 Kbytes. If the START_ADDR 
and STOP_ADDR are set to 0xA000, the access window goes from 0xA000_0000 to 0xA000_FFFF.
Note: CS Boot and CS0 have the same physical CS pin.

STOP_ADDR

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

2-10 Freescale Semiconductor

2.2.5.1.4 LPBAW[START_ADDR] and LPBAW[STOP_ADDR] Reset Value

The Power Architecture core may fetch its boot vector from a local bus peripheral device. For this purpose, 
LPBAW[START_ADDR] and LPBAW[STOP_ADDR] reset values are set according to the value of BMS 
and ROM_LOC bits in the reset configuration word high register.

Table 2-6 defines the reset value LPBAW[START_ADDR] and LPBAW[STOP_ADDR].

NOTE
BMS is bit 26 of the reset configuration word high register (RCWHR). Its 
initial value is set by the state of the EMB_AD05 pin at the release of 
PORESET. ROM_LOC is set by bits 22 and 21 of the reset configuration 
word high register (RCWHR). The initial values of these bits are set by the 
states of the EMB_AD0 and EMB_AD1 pins at the release of PORESET.

See Figure 2-10.

Table 2-6. LPBAW[START_ADDR] and LPBAW[STOP_ADDR] Reset Value

ROM_LOC BMS
START_ADDR
Reset Value

STOP_ADDR
Reset Value

00 0 0x0000 0x007F

00 1 0xFF80 0xFFFF

01 or 1X X 0x0100 0x0100

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

Freescale Semiconductor 2-11

2.2.5.1.5 PCI Local Access Window n Base Address Registers (PCILAWBAR0 – 
PCILAWBAR2)

The PCI Local Access Window n Base Address Registers (PCILAWBAR0–PCILAWBAR2) are shown in 
Figure 2-3.

Offset 0x60,0x68,0x70 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BASE_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BASE_ADDR

0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 2-3. PCI Local Access Window n Base Address Registers (PCILAWBAR0 – PCILAWBAR2)

Table 2-7. PCILAWBAR0 – PCILAWBAR2 Field Descriptions

Field Description

BASE_ADDR Identifies the 20 most-significant address bits of the base address of local access window n. The specified 
base address should be aligned to the window size, as defined by PCILAWARn[SIZE].

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

2-12 Freescale Semiconductor

2.2.5.1.6 PCI Local Access Window n Attributes Registers (PCILAWAR0 – 
PCILAWAR2)

The PCI Local Access Window n Attributes Registers (PCILAWAR0-PCILAWAR2) are shown in 
Figure 2-4.

Offset 0x64,0x6C,0x74 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EN

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0
SIZE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 2-4. PCI Local Access Window n Attributes Registers (PCILAWAR0 – PCILAWAR2)

Table 2-8. PCILAWAR0 – PCILAWAR2 Field Descriptions

Field Description

EN 0 The PCI local access window n is disabled.
1 The PCI local access window n is enabled and other PCILAWARn and PCILAWBARn fields combine to 

identify an address range for this window.

SIZE Identifies the size of the window from the starting address. Window size is 2(SIZE+1) bytes.
000000–001010 Reserved. Window is undefined.
001011  4 Kbytes
001100 8 Kbytes
001101 16 Kbytesl
. . . . . . . 2(SIZE+1) bytes
011110 2 Gbytes
011111–111111 Reserved. Window is undefined.

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

Freescale Semiconductor 2-13

2.2.5.1.7 DDR Local Access Window Base Address Register (DDRLAWBAR)

Figure 2-5 shows the DDR Local Access Window Base Address Register (DDRLAWBAR).

Offset 0xA0 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BASE_ADDR

W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BASE_ADDR

0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 2-5. DDR Local Access Window Base Address Register (DDRLAWBAR)

Table 2-9. DDRLAWBAR0 Field Description

Field Description

BASE_ADDR Identifies the 20 most-significant address bits of the base address of local access window. The specified base 
address should be aligned to the window size, as defined by DDRLAWAR[SIZE].

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

2-14 Freescale Semiconductor

2.2.5.1.8 DDR Local Access Window Attributes Register (DDRLAWAR)

Figure 2-6 shows the DDR Local Access Window Attributes Register (DDRLAWAR).

Offset 0xA4 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0
SIZE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

= Unimplemented or Reserved

Figure 2-6. DDR Local Access Window Attributes Register (DDRLAWAR)

Table 2-10. DDRLAWAR Field Description

Field Description

SIZE Identifies the size of the window from the starting address. Window size is 2(SIZE+1) bytes.
000000–011000 Reserved. Window is undefined.
011001 64 Mbytes
011010 128 Mbytes
011011 256 Mbytes
.............
. . . . . . . 2(SIZE+1) bytes
.............
011110 2 Gbytes
011111–111111 Reserved. Window is undefined.

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

Freescale Semiconductor 2-15

2.2.5.1.9 MBX Base Address Register (MBXBAR)

Figure 2-7 shows the MBX Base Address Register (MBXBAR).
Offset 0xC0 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BASE_ADDR

0 0 0 0 0 0 0 0

W

Reset 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 2-7. MBX Base Address Register (MBXBAR)

Table 2-11. MBXBAR Field Descriptions

Field Description

BASE_ADDR Identifies the 8 most-significant address bits of the base address of the 16 Mbyte MBX memory window.

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

2-16 Freescale Semiconductor

2.2.5.1.10 SRAM Base Address Register (SRAMBAR)

Figure 2-8 shows the SRAM Base Address Register (SRAMBAR).

NOTE
Although the SDRAM window size is 256 Kbytes, the MPC5121e SDRAM 
size is 128 Kbytes.

Offset 0xC4 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BASE_ADDR

0 0

W

Reset 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 2-8. SRAM Base Address Register (SRAMBAR)

Table 2-12. SRAMBAR Field Descriptions

Field Description

BASE_ADDR Identifies the 14 most-significant address bits of the base address of the 256-Kbyte SRAM memory window.

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

Freescale Semiconductor 2-17

2.2.5.1.11 NFC Base Address Register (NFCBAR)

Figure 2-9 shows the NFC Base Address Register (NFCBAR).

2.2.5.1.12 NFCBAR[BASE_ADDR] Reset Value

The Power Architecture core may use a NAND flash device to fetch its boot vector. For this purpose, 
NFCBAR[BASE_ADDR] reset value is set according to the value set in the reset configuration word high 
BMS and ROM_LOC fields.

Table 2-14 defines the reset value NFCBAR[BASE_ADDR].

Offset 0xC8 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BASE_ADDR

0 0 0 0

W

Reset See Table 2-14 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The NFCBAR[BASE_ADDR] reset value depends on the reset configuration word. See Section 2.2.5.1.12, 
“NFCBAR[BASE_ADDR] Reset Value” for detailed description.

= Unimplemented or Reserved

Figure 2-9. NFC Base Address Registers (NFCBAR)

Table 2-13. NFCBAR Field Descriptions

Field Description

BASE_ADDR Identifies the 12 most-significant address bits of the base address of the 1 Mbyte NFC memory window.

Table 2-14. NFCBAR[BASE_ADDR] Reset Value

ROM_LOC BMS
BASE_ADDR
Reset Value

X1 0 0x000

X1 1 0xFFF

X0 X 0x400

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

2-18 Freescale Semiconductor

NOTE
BMS is bit 26 of the reset configuration word high register (RCWHR). Its 
initial value is set by the state of the EMB_AD05 pin at the release of 
PORESET. ROM_LOC is set by bits 22 and 21 of the reset configuration 
word high register (RCWHR). The initial values of these bits are set by the 
states of the EMB_AD0 and EMB_AD1 pins at the release of PORESET.

See Table 2-15 for initial memory map values based on the EMBAD0/1 and BMS bits.

Table 2-15. Memory Map Values based on EMBAD0/1 and BMS

ROM_LOC BMS BOOT START BOOT_STOP NFC_BASE_ADDR NFC_STOP_ADDR

00 0 0x0000 0000 0x007F FFFF 0x4000 0000 0x400F FFFF

00 1 0xFF80 0000 0xFFFFF FFFF 0x4000 0000 0x400F FFFF

01 0  0x0100 0000 0x0100 FFFF 0x0000 0000 0x000F FFFF

01 1  0x0100 0000 0x0100 FFFF 0xFFF0 0000 0xFFFF FFFF

10 0 0x0100 0000 0x0100 FFFF 0x4000 0000 0x400F FFFF

10 1 0x0100 0000 0x0100 FFFF 0x4000 0000 0x400F FFFF

11 0 0x0100 0000 0x0100 FFFF 0x0000 0000 0x000F FFFF

11 1 0x 0100 0000 0x0100 FFFF 0xFFF0 0000 0xFFFF FFFF

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

Freescale Semiconductor 2-19

Figure 2-10. Initial Memory Map Configurations Immediately After the Release of PORESET

0x0000 0000

0x007F FFFF

0x0100 0000

0x0100 FFFF

0x4000 0000

0x400F FFFF

0xFFF0 0000

0xFFFF FFFF

0xFF80 0000

0x000F FFFF BOOT ROM

NAND FLASH

BOOT ROM

NAND FLASH

BOOT ROM

NAND FLASH

BOOT ROM

NAND FLASH

BOOT ROM

NAND FLASH

ROM_LOC = 00
BMS = 0

ROM_LOC = 00
BMS = 1

ROM_LOC = x1
BMS = 0

ROM_LOC = x1
BMS = 1

ROM_LOC = x0
BMS = x

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

2-20 Freescale Semiconductor

2.2.6 Precedence of Local Access Windows

In general, memory windows should not overlap. In case of overlap, the lower numbered memory window 
takes precedence over the higher numbered memory window.

2.2.7 Configuring Local Access Windows

After a local access window is enabled, it should not be modified while any device in the system may be 
using the window. Neither should a new window be used until the effect of the write to the window is 
visible to all blocks that use the window. This can be guaranteed by completing a read of the last local 
access window configuration register before enabling any other devices to use the window. For instance, 
if LPC local access windows 1–3 are being configured in order during the initialization process, the last 
write (to LPCS2AW) should be followed by a read of LPCS2AW before any devices try to use any of these 
windows. If the configuration is being done by the local Power Architecture processor, the read of 
LPCS2AW should be followed by an isync instruction.

2.2.8 Distinguishing Local Access Windows from Other Mapping 
Functions

It is important to distinguish between the mapping function performed by the local access windows and 
the additional mapping functions that happen at the target interface. The local access windows define how 
a transaction is routed through the MPC5121e internal interconnects from the transactions source to its 
target. After the transaction has arrived at its target interface, that interface controller may do additional 
mapping. For instance, the DDR SDRAM controller has chip select registers that map a memory request 
to a particular external device. Similarly, the local bus controller has base registers that perform a similar 
function. The PCI interface has outbound address translation units that map the local address into an 
external address space.

These other mapping functions are configured by programming the configuration, control, and status 
registers of the individual interfaces. There is no need to have a one-to-one correspondence between local 
access windows and chip select regions on outbound windows. A single local access window can be 
further decoded to any number of chip selects or to any number or outbound windows at the target 
interface.

2.2.9 Outbound Address Translation and Mapping Windows

Outbound address translation and mapping refers to the translation of addresses from the local 32-bit 
address space to the external address space and attributes of a particular I/O interface. 

The PCI controller has three outbound windows.

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

Freescale Semiconductor 2-21

2.2.10 Inbound Address Translation and Mapping Windows

Inbound address translation and mapping refers to the translation of an address from the external address 
space of an I/O interface (such as PCI address space) to the local address space understood by the internal 
interfaces of the MPC5121e. It also refers to the mapping of transactions to a particular target interface and 
the assignment of transaction attributes. The PCI controller has inbound address translation unit.

2.2.11 PCI Inbound Windows

The PCI controller has three general inbound windows for memory mapped configuration accesses 
(PIMMR). These windows have a one-to-one correspondence with the base address registers in the PCI 
programming model. Updating one automatically updates the other. There is no default inbound window. 
If a PCI address does not match one of the inbound windows, the MPC5121e does not respond with an 
assertion of PCI_DEVSEL. See Section 28.3, “Memory Map and Register Definition” for a detailed 
description of the PCI inbound windows.

2.2.12 Accessing Internal Memory from External Masters

In addition to being accessible by the Power Architecture processor, the memory window is accessible 
from external interfaces. This allows external masters on the I/O ports to configure the MPC5121e. 

External masters do not need to know the location of the IMMR memory in the local address map. Rather, 
they access this region of the local memory map through a window defined by a register in the interface’s 
programming model that is accessible to the external master from its external memory map.

The PCI base address for accessing the local IMMR memory is selectable through the PCI internal 
memory map register (PIMMR), at offset 0x10, described in Section 28.3, “Memory Map and Register 
Definition”. 

2.3 System Configuration
Some general information and configuration options which affect the system behavior and performance 
are described in the following sections.

2.3.1 System Configuration Register Memory Map

Table 2-16 shows the memory map for the system configuration registers.
Table 2-16. System Configuration Register Memory Map 

Local Memory
Offset (Hex)

Register Access Section/Page

0x100 System Part and Revision ID Register (SPRIDR) R/W 2.3.1.1.1/2-22

0x104 System Priority Configuration Register (SPCR) R/W 2.3.1.1.2/2-23

0x108 - 0x1FC Reserved — —

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

2-22 Freescale Semiconductor

2.3.1.1 System Configuration Registers

2.3.1.1.1 System Part and Revision ID Register (SPRIDR)

The System Part and Revision ID Register shown in Figure 2-11 provides information about the part and 
revision numbers.

Offset 0x100 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PARTID

W

Reset Part Dependent

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R REVID

W

Reset
MPC5121e

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Reset
MPC5123

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

= Unimplemented or Reserved

Figure 2-11. System Part and Revision ID Register (SPRIDR)

Table 2-17. SPRIDR Field Descriptions

Field Description

PARTID Part Identification. This read-only field is mask-programmed with a code corresponding to the part number. 
It is intended to help factory test and user code which is sensitive to part changes. The part number changes 
according to manufacturing considerations.

REVID Revision Identification. This read-only field is mask-programmed with a code corresponding to the revision 
number of the part defined in PARTID field. It is intended to help factory test and user code which is sensitive 
to part changes. The mask number changes with each mask set change.

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

Freescale Semiconductor 2-23

2.3.1.1.2 System Priority Configuration Register (SPCR)

The System Priority Configuration Register shown in Figure 2-12 controls the priority of requests for 
transactions on the internal system bus. This priority is considered by the system arbiter when an internal 
unit requests the bus.

Offset 0x104 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PCIH

PE
PCIPR TBEN COREPR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SAPPR

MBX-
BSEN

TEM
PPD

TEMPSEL
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 2-12. System Priority Configuration Register (SPCR)
(The register is repeated for reference.)

Table 2-18. SPCR Field Descriptions

Field Description

PCIHPE PCI Highest Priority Enable. If this bit is set, the PCI bridge is permitted to request the internal system bus 
with highest priority, regardless of SYCR[PCIPR] value, when it needs to complete a posted write transaction 
from an external PCI master. To follow PCI ordering rules specifications, the PCI bridge must flush any 
outstanding write transactions before it can start a new read transaction. Setting this bit allows faster flushing 
of the outstanding write transactions coming from the PCI bus onto the system bus and to the system targets, 
such as DDR SDRAM and local bus memories.

PCIPR PCI bridge system bus request priority. The level of priority can be chosen from 4 possible levels.
00 Level 0 (Lowest Priority)
01 Level 1
10 Level 2
11 Level 3 (Highest Priority)

TBEN Power Architecture Core time base unit enable
0 Time base unit is disabled.
1 Time base unit is enabled.

COREPR Power Architecture Core system bus request priority. The level of priority can be chosen from 4 possible 
levels.
00 Level 0 (Lowest Priority)
01 Level 1
10 Level 2
11 Level 3 (Highest Priority)

MPC5121e Microcontroller Reference Manual, Rev. 2



System Configuration and Memory Map (XLBMEN + Mem Map)

2-24 Freescale Semiconductor

SAPPR SAP and TPR2MG system bus request priority. The level of priority can be chosen from 4 possible levels.
00 Level 0 (Lowest Priority)
01 Level 1
10 Level 2
11 Level 3 (Highest Priority)

MBXBSEN MBX Byte Swap enable bit
0 MBX Byte Swap is disabled.
1 MBX Byte Swap is enabled.

TEMPPD Temperature Sensor power down
0 Temperature Sensor power is enabled
1 Temperature Sensor power is disabled

TEMPSEL Temperature Sensor select trip point for temp_flt_lo
000 105 °C
001 95 °C
010 85 °C
011 75 °C
100 65 °C
101 55 °C
110 45 °C
111 35 °C

Offset 0x104 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PCIH
PE

PCIPR TBEN COREPR
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SAPPR

MBX-
BSEN

TEM
PPD

TEMPSEL
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 2-12. System Priority Configuration Register (SPCR)
(The register is repeated for reference.)

Table 2-18. SPCR Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 3-1

Chapter 3  
Signal Descriptions

3.1 Introduction
This chapter describes the MPC5121e external signals. It is organized into the following sections: 

• Overview of signals and cross references for signals that serve multiple functions, including two 
lists: one ordered by functional block and one alphabetical

• List of reset configuration signals
• List of output signal states during reset

NOTE
A bar over a signal name indicates that the signal is active low, such as IRQ0 
(interrupt input). Active-low signals are referred to as asserted (active) when 
they are low and negated when they are high. Signals that are not active low, 
such as MODT (DDR2 on-die-termination output), are referred to as 
asserted when they are high and negated when they are low.

3.1.1 Signals Overview
The MPC5121e signals are grouped as follows:

Figure 3-1 shows the primary external signals of the MPC5121e and how the signals are grouped. Refer 
to the MPC5121e Data Sheet at www.freescale.com for a pinout diagram showing pin numbers and a 
listing of all the electrical and mechanical specifications. 

Functionality, which is not a primary function (DIU, FEC, USB ULPI), is not shown in Figure 3-1. These 
functions are multiplexed. Multiplexing is shown in Table 3-1.

• DDR memory interface signals
• PCI interface signals
• PSC interface signals
• I2C interface signals
• LPC interface signals
• PATA interface signals
• NFC interface signals
• EMB interface signals

• SATA interface signals
• USB Phy interface signals
• CAN interface signals
• J1850 interface signals
• SPDIF interface signals
• JTAG, test, system control signals
• Clock signals

MPC5121e Microcontroller Reference Manual, Rev. 2



Signal Descriptions

3-2 Freescale Semiconductor

Individual chapters of this document provide details for each signal, describing each signal’s behavior 
when asserted and negated and when the signal is an input or an output. Power signals are described in the 
Hardware Specification.

Figure 3-1. MPC5121e Signal Groupings

MDQ[31:0]

MDQS[3:0]
MBA[2:0]
MA[15:0]

32

4
3
16

MWE
MRAS
MCAS

MCS

1
1
1
1

MCKE
1

MCK, MCK
2

MDM[3:0]
4

MODT
1

PCI_REQ[2:1]

PCI_C/BE[3:0]
PCI_PAR

PCI_FRAME
PCI_TRDY

1

PCI_IRDY
PCI_STOP

PCI_DEVSEL

1

1

PCI_AD[31:0]
1

PCI_CLK
1

32

PCI_RST_OUT

PCI_PERR
PCI_REQ0
PCI_GNT0

2

4

1
1
1
1
1
1
1

1

PCI_IDSEL
PCI_SERR

PCI_GNT[2:1]
2

12
12
12

PSC[11:0]_0

PSC[11:0]_2

PSC[11:0]_4
12

PSC[11:0]_1

PSC[11:0]_3

12

1
1

SPDIF_TXCLK

SPDIF_TX

NFC_WP 
1
1
1
1

NFC_ALE
NFC_CLE

NFC_R/B

1
1

DDR
Memory
Interface

67 Signals

PCI
Interface

54 Signals

PSC
Interface

61 Signals

SPDIF
Interface
3 Signals

NFC
Interface
7 Signals

MPC5121e
EMB_AD[31:0]
EMB_AX[2:0]

32
3

EMB
Interface
35 Signals

PCI_INTA
1

PSC_MCLK_IN
1

3
3

I2C[2:0]_SDA
I2C[2:0]_SCL

I2C
Interface
6 Signals

SPDIF_RX

1

4
CAN[4:1]_TX

CAN
Interface
4 Signals

CAN[4:1]_RX

4

1
J1850_TX

J1850
Interface
2 Signals

J1850_RX

1

NFC_WE
NFC_RE

NFC_CE01

PATA_CS[2:1] 
2
1
1
1 PATA_IOW

PATA_IOCHRDY1
1

PATA
Interface
9 Signals

PATA_ISOLATE

PATA_IOR

PATA_INTRQ

1 PATA_DRQ

PATA_DACK1

LPC_CLK 
1
3
1
1 LPC_R/W

LPC_ACK1

LPC
Interface
8 Signals

LPC_CS[2:0]

LPC_OE

LPC_AX[3]1

MPC5121e Microcontroller Reference Manual, Rev. 2



Signal Descriptions

Freescale Semiconductor 3-3

Figure 3-1. MPC5121e Signal Groupings (continued)

The following tables provide summaries of signal functions. Table 3-1 provides a summary of the signals 
grouped by function, and Table 3-2 provides a summary of the signals grouped alphabetically. These tables 
detail the signal name, interface, alternate functions, number of signals, and whether the signal is an input, 
output, or bidirectional.

Table 3-1. MPC5121e Signal Reference by Functional Block (Sheet 1 of 7)

Pin Name 
Function 1

Function 2 Function 3 Function 4

MDQ0 — — —

MDQ1 — — —

MDQ2 — — —

MDQ3 — — —

MDQ4 — — —

MDQ5 — — —

MDQ6 — — —

MDQ7 — — —

MDQ8 — — —

MDQ9 — — —

MDQ10 — — —

MDQ11 — — —

1

USB_PHY_VBUS_PWR_FAULT

USB_PHY_XTALO

USB_PHY_XTALI

USB_PHY_RREF

1

1
1
1

1
1
1

 

USB_PHY_DRVVBUS
1

1

SATA_XTALI
SATA_XTALO

SATA_TXP
SATA_TXN
SATA_RXP
SATA_RXN

1
1
1

1
1

4

1
1

1
1

TCK
TDI
TDO
TMS
TRST

1

1
1
1

HRESET
PORESET

SRESET

1
SYS_XTALI
SYS_XTALO

1

GPI[31:28]GPI
Interface
4 Signals

SATA
PHY

Interface
8 Signals

USB
PHY

Interface
11 Signals

JTAG
5 Signals

System
Control
3 Signals

System

Interface
2 Signals

MPC5121e

Clock

1
RTC_XTAL1
RTC_XTALO

1
Interface
3 Signals

RTC

HIB_MODE
1

Interface
2 Signals

Test1
TEST

CKSTP_OUT
1

Interface
2 Signals

Interrupt1
IRQ0

IRQ1
1

USB_PHY_DM
USB_PHY_DP

USB_PHY_TPA

USB_PHY_VBUS

SATA_RESREF
1

SATA_ANAVIZ
1

USB_PHY_UID 1

MPC5121e Microcontroller Reference Manual, Rev. 2



Signal Descriptions

3-4 Freescale Semiconductor

MDQ[12:15] — — —

MDQ[16:23] — — GPIO[0:7]

MDQ[24:31] — — GPIO[16:23]

MDM[0:1] — — —

MDM[2:3] — — GPIO[24:25]

MDQS[0:1] — — —

MDQS[2:3] — — GPIO[26:27]

MBA[0:2] — — —

MA[0:15] — — —

MWE — — —

MRAS — — —

MCAS — — —

MCS — — —

MCK — — —

MCK — — —

MCKE — — —

MODT — — —

MVREF — — —

MVTT[0:3] — — —

LPC_CLK TPA CKSTP_IN —

LPC_OE — — —

LPC_R/W — — —

LPC_CS0 — — GPIO25

LPC_CS1 SPDIF_TXCLK — GPIO7

LPC_CS2 NFC_CE_1 — GPIO0

LPC_ACK LPC_CS7 — GPIO24

LPC_AX03 — — GPIO1

EMB_AX02 — — GPIO2

EMB_AX01 — — GPIO3

EMB_AX00 — — —

— — EMB_AD[31:0] —

PATA_CE1 LPC_CS4 — GPIO9

PATA_CE2 LPC_CS5 — GPIO10

PATA_ISOLATE CAN3_TX — GPIO11

PATA_IOR SDHC_CLK — GPIO12

PATA_IOW SDHC_CMD LPC_AX08 GPIO13

Table 3-1. MPC5121e Signal Reference by Functional Block (Sheet 2 of 7)

Pin Name 
Function 1

Function 2 Function 3 Function 4

MPC5121e Microcontroller Reference Manual, Rev. 2



Signal Descriptions

Freescale Semiconductor 3-5

PATA_IOCHRDY SDHC_D0 LPC_AX07 GPIO14

PATA_INTRQ SDHC_D1_IRQ LPC_AX06 GPIO15

PATA_DRQ SDHC_D2 LPC_AX05 GPIO16

PATA_DACK SDHC_D3_CD LPC_AX04 GPIO17

NFC_CE_0 LPC_CS3 PSC_MCLK_IN GPIO26

NFC_WP SDHC_CLK LPC_AX09 GPIO18

NFC_R/B SDHC_CMD LPC_AX08 GPIO19

NFC_ALE SDHC_D0 LPC_AX07 GPIO20

NFC_CLE SDHC_D1_IRQ LPC_AX06 GPIO21

NFC_WE SDHC_D2 LPC_AX05 GPIO22

NFC_RE SDHC_D3_CD LPC_AX04 GPIO23

I2C0_SCL — — GPIO7/GPT7

I2C0_SDA — — GPIO1

I2C1_SCL — SPDIF_TX GPIO2

I2C1_SDA — SPDIF_RX GPIO3

I2C2_SCL — CAN4_TX GPIO4

I2C2_SDA — CAN4_RX GPIO5

IRQ0 — CAN3_TX GPIO4/GPT4

IRQ1 SPDIF_TXCLK CAN3_RX GPIO5/GPT5

CAN1_TX — — GPIO6

CAN1_RX — — —

CAN2_TX — — GPIO8

CAN2_RX — — —

J1850_TX — GPIO4 CAN4_TX

J1850_RX — LPC_CS6 CAN4_RX

SPDIF_TXCLK FEC_RX_DV DIU_CLK GPIO26

SPDIF_TX FEC_TX_ER DIU_VSYNC GPIO27

SPDIF_RX FEC_CRS DIU_HSYNC GPIO0

PCI_GNT2 — DIU_LD21 GPIO8

PCI_REQ2 — DIU_LD20 GPIO9

PCI_GNT1 — DIU_LD19 GPIO10

PCI_REQ1 — DIU_LD18 GPIO11

PCI_INTA — DIU_LD15 GPIO14

PCI_CLK — DIU_LD14 GPIO15

PCI_RST_OUT — DIU_LD13 GPIO16

PCI_GNT0 — DIU_LD12 GPIO12

Table 3-1. MPC5121e Signal Reference by Functional Block (Sheet 3 of 7)

Pin Name 
Function 1

Function 2 Function 3 Function 4

MPC5121e Microcontroller Reference Manual, Rev. 2



Signal Descriptions

3-6 Freescale Semiconductor

PCI_REQ0 — DIU_LD11 GPIO13

PCI_FRAME — DIU_LD10 GPIO17

PCI_IDSEL — DIU_LD07 GPIO18

PCI_DEVSEL — DIU_LD06 GPIO19

PCI_IRDY USB0_DATA7 DIU_LD05 GPIO20

PCI_TRDY USB0_DATA6 DIU_LD04 GPIO21

PCI_C/BE0 USB0_DATA5 DIU_LD03 GPIO4

PCI_C/BE1 USB0_DATA4 DIU_LD02 GPIO5

PCI_C/BE2 USB0_DATA3 DIU_LD00 GPIO6

PCI_C/BE3 USB0_DATA2 DIU_LD01 GPIO7

PCI_STOP USB0_DATA1 DIU_LD08 GPIO22

PCI_PAR USB0_DATA0 DIU_LD09 GPIO23

PCI_PERR USB0_STOP DIU_LD16 GPIO24

PCI_SERR USB0_NEXT DIU_LD17 GPIO25

PCI_AD31 USB0_CLK DIU_LD22 GPIO0

PCI_AD30 USB0_DIR DIU_LD23 GPIO1

PCI_AD[29:22] — USB1_DATA[7:0] GPIO[2:9]

PCI_AD21 — USB1_STOP GPIO10

PCI_AD20 — USB1_NEXT GPIO11

PCI_AD19 — USB1_CLK GPIO12

PCI_AD18 — USB1_DIR GPIO13

PCI_AD17 VIU_DATA0 FEC_TXD_3 GPIO14

PCI_AD16 VIU_DATA1 FEC_TXD_2 GPIO15

PCI_AD15 VIU_DATA2 FEC_TXD_1 GPIO16

PCI_AD14 — FEC_TXD_0 GPIO17

PCI_AD13 VIU_DATA3 FEC_RXD_3 GPIO18

PCI_AD12 VIU_DATA4 FEC_RXD_2 GPIO19

PCI_AD11 VIU_DATA5 FEC_RXD_1 GPIO20

PCI_AD10 — FEC_RXD_0 GPIO21

PCI_AD09 — FEC_RX_CLK GPIO22

PCI_AD08 — FEC_TX_CLK GPIO23

PCI_AD07 VIU_DATA7 FEC_RX_ER GPIO24

PCI_AD06 — FEC_RX_DV GPIO25

PCI_AD05 — FEC_TX_EN GPIO26

PCI_AD04 VIU_PIX_CLK FEC_TX_ER GPIO27

PCI_AD03 VIU_DATA6 FEC_CRS GPIO0

Table 3-1. MPC5121e Signal Reference by Functional Block (Sheet 4 of 7)

Pin Name 
Function 1

Function 2 Function 3 Function 4

MPC5121e Microcontroller Reference Manual, Rev. 2



Signal Descriptions

Freescale Semiconductor 3-7

PCI_AD02 VIU_DATA8 FEC_MDC GPIO1

PCI_AD01 VIU_DATA9 FEC_MDIO GPIO2

PCI_AD00 — FEC_COL GPIO3

PSC_MCLK_IN — DIU_DE GPIO6/GPT6

PSC0_0 FEC_COL USB0_DATA7 GPIO8

PSC0_1 FEC_TX_EN USB0_DATA6 GPIO9

PSC0_2 FEC_TX_CLK USB0_DATA5 GPIO10

PSC0_3 FEC_TXD_0 USB0_DATA4 GPIO11

PSC0_4 FEC_TXD_1 USB0_DATA3 GPIO0/GPT0

PSC1_0 FEC_TXD_2 USB0_DATA2 GPIO12

PSC1_1 FEC_TXD_3 USB0_DATA1 GPIO13

PSC1_2 FEC_MDC USB0_DATA0 GPIO14

PSC1_3 FEC_RX_ER USB0_STOP GPIO15

PSC1_4 FEC_RXD_3 USB0_NEXT GPIO1/GPT1

PSC2_0 FEC_RXD_2 USB0_CLK GPIO16

PSC2_1 FEC_RXD_1 USB0_DIR GPIO17

PSC2_2 FEC_RXD_0 — GPIO18

PSC2_3 FEC_MDIO — GPIO19

PSC2_4 FEC_RX_CLK — GPIO2/GPT2

PSC3_[0:3] USB1_DATA[0:3] — GPIO[20:23]

PSC3_4 LPC_CS6 VIU_PIX_CLK GPIO3/GPT3

PSC4_[0:3] USB1_DATA[4:7] VIU_DATA[0:3] GPIO[24:27]

PSC4_4 NFC_CE2 VIU_DATA4 GPIO4/GPT4

PSC5_0 USB1_CLK VIU_DATA5 GPIO8

PSC5_1 USB1_NEXT VIU_DATA6 GPIO9

PSC5_2 USB1_STOP VIU_DATA7 GPIO10

PSC5_3 USB1_DIR VIU_DATA8 GPIO11

PSC5_4 NFC_CE3 VIU_DATA9 GPIO5/GPT5

PSC6_0 LPC_TSIZ1 DIU_CLK GPIO12

PSC6_1 LPC_TSIZ2 DIU_HSYNC GPIO13

PSC6_2 — — GPIO14

PSC6_3 — — GPIO15

PSC6_4 LPC_TS DIU_VSYNC GPIO6/GPT6

PSC7_0 SDHC_CMD DIU_LD23 GPIO16

PSC7_1 SDHC_D0 DIU_LD22 GPIO17

PSC7_2 SDHC_D1_IRQ DIU_LD17 GPIO18

Table 3-1. MPC5121e Signal Reference by Functional Block (Sheet 5 of 7)

Pin Name 
Function 1

Function 2 Function 3 Function 4

MPC5121e Microcontroller Reference Manual, Rev. 2



Signal Descriptions

3-8 Freescale Semiconductor

PSC7_3 SDHC_D2 DIU_LD16 GPIO19

PSC7_4 SDHC_D3_CD DIU_LD09 GPIO7/GPT7

PSC8_0 — DIU_LD08 GPIO20

PSC8_1 — DIU_LD01 GPIO21

PSC8_2 — DIU_LD00 GPIO22

PSC8_3 — DIU_LD02 GPIO23

PSC8_4 SDHC_CLK DIU_LD03 GPIO0/GPT0

PSC9_[0:3] — DIU_LD[04:7] GPIO[24:27]

PSC9_4 — DIU_LD10 GPIO1/GPT1

PSC10_[0:3] — DIU_LD[11:14] GPIO[8:11]

PSC10_4 — DIU_LD15 GPIO2/GPT2

PSC11_[0:3] — DIU_LD[18:21] GPIO[12:15]

PSC11_4 — DIU_DE GPIO3/GPT3

TCK — — —

TDI — — —

TDO — — —

TMS — — —

TRST — — —

PORESET — — —

HRESET — — —

SRESET — — —

TEST — — —

CKSTP_OUT TPA — —

GPIO28 — — —

GPIO29 — — —

GPIO30 — — —

GPIO31 — — —

SYS_XTALO — — —

SYS_XTALI — — —

RTC_XTALO — — —

RTC_XTAL1 — — —

HIB_MODE — — —

USB_PHY_VBUS — — —

USB_PHY_RREF — — —

USB_PHY_UID — — —

USB_PHY_TPA — — —

Table 3-1. MPC5121e Signal Reference by Functional Block (Sheet 6 of 7)

Pin Name 
Function 1

Function 2 Function 3 Function 4

MPC5121e Microcontroller Reference Manual, Rev. 2



Signal Descriptions

Freescale Semiconductor 3-9

USB_PHY_XTALO — — —

USB_PHY_XTALI — — —

USB_PHY_DM — — —

USB_PHY_DP — — —

USB_PHY_VBUS_
PWR_FAULT

— — —

USB_PHY_DRVV
BUS

— — —

SATA_XTALI — — —

SATA_XTALO — — —

SATA_ANAVIZ — — —

SATA_RESREF — — —

SATA_TXP — — —

SATA_TXN — — —

SATA_RXP — — —

SATA_RXN — — —

Table 3-2. MPC5121e Alphabetical Signal Reference (Sheet 1 of 8)

Pin Name 
Function 1

Package Pin 
Number

Function 2 Function 3 Function 4

— — — EMB_AD[31:0] —

CAN1_RX C19 — — —

CAN1_TX A18 — — GPIO6

CAN2_RX B19 — — —

CAN2_TX E16 — — GPIO8

CKSTP_OUT Y26 TPA — —

EMB_AX00 W2 — — —

EMB_AX01 V5 — — GPIO3

EMB_AX02 W3 — — GPIO2

GPIO28 A19 — — —

GPIO29 E17 — — —

GPIO30 C18 — — —

GPIO31 B18 — — —

HIB_MODE D18 — — —

HRESET W24 — — —

I2C0_SCL AC23 — — GPIO7/GPT7

I2C0_SDA AD26 — — GPIO1

Table 3-1. MPC5121e Signal Reference by Functional Block (Sheet 7 of 7)

Pin Name 
Function 1

Function 2 Function 3 Function 4

MPC5121e Microcontroller Reference Manual, Rev. 2



Signal Descriptions

3-10 Freescale Semiconductor

I2C1_SCL AB22 — SPDIF_TX GPIO2

I2C1_SDA AB23 — SPDIF_RX GPIO3

I2C2_SCL AC25 — CAN4_TX GPIO4

I2C2_SDA AA22 — CAN4_RX GPIO5

IRQ0 AC26 — CAN3_TX GPIO4/GPT4

IRQ1 AB25 SPDIF_TXCLK CAN3_RX GPIO5/GPT5

J1850_RX AA24 — LPC_CS6 CAN4_RX

J1850_TX Y22 — GPIO4 CAN4_TX

LPC_ACK AA2 LPC_CS7 — GPIO24

LPC_AX03 W4 — — GPIO1

LPC_CLK AA4 TPA CKSTP_IN —

LPC_CS0 W5 — — GPIO25

LPC_CS1 Y3 SPDIF_TXCLK — GPIO7

LPC_CS2 Y1 NFC_CE_1 — GPIO0

LPC_OE Y5 — — —

LPC_R/W AA1 — — —

MA0 AD17 — — —

MA1 AB16 — — —

MA2 AE18 — — —

MA3 AF20 — — —

MA4 AD18 — — —

MA5 AB17 — — —

MA6 AE19 — — —

MA7 AC18 — — —

MA8 AF21 — — —

MA9 AD19 — — —

MA10 AF22 — — —

MA11 AC19 — — —

MA12 AE21 — — —

MA13 AD20 — — —

MA14 AB19 — — —

MA15 AE22 — — —

MBA1 AC16 — — —

MBA2 AF19 — — —

MCAS AF24 — — —

MCK AF17 — — —

Table 3-2. MPC5121e Alphabetical Signal Reference (Sheet 2 of 8)

Pin Name 
Function 1

Package Pin 
Number

Function 2 Function 3 Function 4

MPC5121e Microcontroller Reference Manual, Rev. 2



Signal Descriptions

Freescale Semiconductor 3-11

MCK AF18 — — —

MCKE AB20 — — —

MCS AD22 — — —

MDM0 AC6 — — —

MDM1 AE8 — — —

MDM2 AF13 — — GPIO24

MDM3 AF16 — — GPIO25

MDQ0 C18 — — —

MDQ1 AB6 — — —

MDQ2 AE4 — — —

MDQ3 AF6 — — —

MDQ4 AF7 — — —

MDQ5 AB8 — — —

MDQ6 AD6 — — —

MDQ7 AE6 — — —

MDQ8 AC7 — — —

MDQ9 AC7 — — —

MDQ10 AB9 — — —

MDQ11 AD7 — — —

MDQ12 AE9 — — —

MDQ13 AF10 — — —

MDQ14 AC9 — — —

MDQ15 AF11 — — —

MDQ16 AD10 — — GPIO0

MDQ17 AF12 — — GPIO1

MDQ18 AD11 — — GPIO2

MDQ19 AB12 — — GPIO3

MDQ20 AD12 — — GPIO4

MDQ21 AB13 — — GPIO5

MDQ22 AF14 — — GPIO6

MDQ23 AD13 — — GPIO7

MDQ24 AE13 — — GPIO16

MDQ25 AC13 — — GPIO17

MDQ26 AF15 — — GPIO18

MDQ27 AB14 — — GPIO19

MDQ28 AE16 — — GPIO20

Table 3-2. MPC5121e Alphabetical Signal Reference (Sheet 3 of 8)

Pin Name 
Function 1

Package Pin 
Number

Function 2 Function 3 Function 4

MPC5121e Microcontroller Reference Manual, Rev. 2



Signal Descriptions

3-12 Freescale Semiconductor

MDQ29 AD15 — — GPIO21

MDQ30 AC15 — — GPIO22

MDQ31 AB15 — — GPIO23

MDQS0 AD5 — — —

MDQS1 AD8 — — —

MDQS2 AC11 — — GPIO26

MDQS3 AD14 — — GPIO27

MODT AC21 — — —

MRAS AF23 — — —

MVREF AB11 — — —

MVTT0 AB7 — — —

MVTT1 AF9 — — —

MVTT2 AE11 — — —

MVTT3 AE14 — — —

MWE AD21 — — —

NFC_ALE H4 SDHC_D0 LPC_AX07 GPIO20

NFC_CE_0 H3 LPC_CS3 PSC_MCLK_IN GPIO26

NFC_CLE H5 SDHC_D1_IRQ LPC_AX06 GPIO21

NFC_R/B H1 SDHC_CMD LPC_AX08 GPIO19

NFC_RE G2 SDHC_D3_CD LPC_AX04 GPIO23

NFC_WE G3 SDHC_D2 LPC_AX05 GPIO22

NFC_WP G4 SDHC_CLK LPC_AX09 GPIO18

PATA_CE1 K1 LPC_CS4 — GPIO9

PATA_CE2 L5 LPC_CS5 — GPIO10

PATA_DACK H2 SDHC_D3_CD LPC_AX04 GPIO17

PATA_DRQ J4 SDHC_D2 LPC_AX05 GPIO16

PATA_INTRQ J3 SDHC_D1_IRQ LPC_AX06 GPIO15

PATA_IOCHRDY J2 SDHC_D0 LPC_AX07 GPIO14

PATA_IOR J1 SDHC_CLK — GPIO12

PATA_IOW K5 SDHC_CMD LPC_AX08 GPIO13

PATA_ISOLATE K3 CAN3_TX — GPIO11

PCI_AD00 U24 — FEC_COL GPIO3

PCI_AD01 V26 VIU_DATA9 FEC_MDIO GPIO2

PCI_AD02 U25 VIU_DATA8 FEC_MDC GPIO1

PCI_AD03 R22 VIU_DATA6 FEC_CRS GPIO0

PCI_AD04 U26 VIU_PIX_CLK FEC_TX_ER GPIO27

Table 3-2. MPC5121e Alphabetical Signal Reference (Sheet 4 of 8)

Pin Name 
Function 1

Package Pin 
Number

Function 2 Function 3 Function 4

MPC5121e Microcontroller Reference Manual, Rev. 2



Signal Descriptions

Freescale Semiconductor 3-13

PCI_AD05 T24 — FEC_TX_EN GPIO26

PCI_AD06 R23 — FEC_RX_DV GPIO25

PCI_AD07 T26 VIU_DATA7 FEC_RX_ER GPIO24

PCI_AD08 R26 — FEC_TX_CLK GPIO23

PCI_AD09 P23 — FEC_RX_CLK GPIO22

PCI_AD10 R24 — FEC_RXD_0 GPIO21

PCI_AD11 R25 VIU_DATA5 FEC_RXD_1 GPIO20

PCI_AD12 P26 VIU_DATA4 FEC_RXD_2 GPIO19

PCI_AD13 P24 VIU_DATA3 FEC_RXD_3 GPIO18

PCI_AD14 P25 — FEC_TXD_0 GPIO17

PCI_AD15 N26 VIU_DATA2 FEC_TXD_1 GPIO16

PCI_AD16 L22 VIU_DATA1 FEC_TXD_2 GPIO15

PCI_AD17 K25 VIU_DATA0 FEC_TXD_3 GPIO14

PCI_AD18 J26 — USB1_DIR GPIO13

PCI_AD19 K24 — USB1_CLK GPIO12

PCI_AD20 J25 — USB1_NEXT GPIO11

PCI_AD21 H26 — USB1_STOP GPIO10

PCI_AD22 K23 — USB1_DATA0 GPIO9

PCI_AD23 J24 — USB1_DATA1 GPIO8

PCI_AD24 H24 — USB1_DATA2 GPIO7

PCI_AD25 J23 — USB1_DATA3 GPIO6

PCI_AD26 G25 — USB1_DATA4 GPIO5

PCI_AD27 J22 — USB1_DATA5 GPIO4

PCI_AD28 F26 — USB1_DATA6 GPIO3

PCI_AD29 G24 — USB1_DATA7 GPIO2

PCI_AD30 F24 USB0_DIR DIU_LD23 GPIO1

PCI_AD31 H22 USB0_CLK DIU_LD22 GPIO0

PCI_C/BE0 P22 USB0_DATA5 DIU_LD03 GPIO4

PCI_C/BE1 N24 USB0_DATA4 DIU_LD02 GPIO5

PCI_C/BE2 L24 USB0_DATA3 DIU_LD00 GPIO6

PCI_C/BE3 G26 USB0_DATA2 DIU_LD01 GPIO7

PCI_CLK C26 — DIU_LD14 GPIO15

PCI_DEVSEL L26 — DIU_LD06 GPIO19

PCI_FRAME M23 — DIU_LD10 GPIO17

PCI_GNT0 E25 — DIU_LD12 GPIO12

PCI_GNT1 G22 — DIU_LD19 GPIO10

Table 3-2. MPC5121e Alphabetical Signal Reference (Sheet 5 of 8)

Pin Name 
Function 1

Package Pin 
Number

Function 2 Function 3 Function 4

MPC5121e Microcontroller Reference Manual, Rev. 2



Signal Descriptions

3-14 Freescale Semiconductor

PCI_GNT2 E24 — DIU_LD21 GPIO8

PCI_IDSEL K22 — DIU_LD07 GPIO18

PCI_INTA U23 — DIU_LD15 GPIO14

PCI_IRDY K26 USB0_DATA7 DIU_LD05 GPIO20

PCI_PAR N22 USB0_DATA0 DIU_LD09 GPIO23

PCI_PERR M25 USB0_STOP DIU_LD16 GPIO24

PCI_REQ0 G23 — DIU_LD11 GPIO13

PCI_REQ1 E26 — DIU_LD18 GPIO11

PCI_REQ2 D26 — DIU_LD20 GPIO9

PCI_RST_OUT F22 — DIU_LD13 GPIO16

PCI_SERR M26 USB0_NEXT DIU_LD17 GPIO25

PCI_STOP M24 USB0_DATA1 DIU_LD08 GPIO22

PCI_TRDY M22 USB0_DATA6 DIU_LD04 GPIO21

PORESET W23 — — —

PSC0_0 D16 FEC_COL USB0_DATA7 GPIO8

PSC0_1 A17 FEC_TX_EN USB0_DATA6 GPIO9

PSC0_2 E15 FEC_TX_CLK USB0_DATA5 GPIO10

PSC0_3 C16 FEC_TXD_0 USB0_DATA4 GPIO11

PSC0_4 B16 FEC_TXD_1 USB0_DATA3 GPIO0/GPT0

PSC10_0 C13 — DIU_LD11 GPIO8

PSC10_1 B13 — DIU_LD12 GPIO9

PSC10_2 A13 — DIU_LD13 GPIO10

PSC10_3 C12 — DIU_LD14 GPIO11

PSC10_4 E12 — DIU_LD15 GPIO2/GPT2

PSC11_0 A12 — DIU_LD18 GPIO12

PSC11_1 B11 — DIU_LD19 GPIO13

PSC11_2 C11 — DIU_LD20 GPIO14

PSC11_3 E11 — DIU_LD21 GPIO15

PSC11_4 D11 — DIU_DE GPIO3/GPT3

PSC1_0 C15 FEC_TXD_2 USB0_DATA2 GPIO12

PSC1_1 A16 FEC_TXD_3 USB0_DATA1 GPIO13

PSC1_2 E14 FEC_MDC USB0_DATA0 GPIO14

PSC1_3 A15 FEC_RX_ER USB0_STOP GPIO15

PSC1_4 D14 FEC_RXD_3 USB0_NEXT GPIO1/GPT1

PSC2_0 C14 FEC_RXD_2 USB0_CLK GPIO16

PSC2_1 B14 FEC_RXD_1 USB0_DIR GPIO17

Table 3-2. MPC5121e Alphabetical Signal Reference (Sheet 6 of 8)

Pin Name 
Function 1

Package Pin 
Number

Function 2 Function 3 Function 4

MPC5121e Microcontroller Reference Manual, Rev. 2



Signal Descriptions

Freescale Semiconductor 3-15

PSC2_2 E13 FEC_RXD_0 — GPIO18

PSC2_3 A14 FEC_MDIO — GPIO19

PSC2_4 D13 FEC_RX_CLK — GPIO2/GPT2

PSC3_0 AF3 USB1_DATA0 — GPIO20

PSC3_1 AB5 USB1_DATA1 — GPIO21

PSC3_2 AC4 USB1_DATA2 — GPIO22

PSC3_3 AD4 USB1_DATA3 — GPIO23

PSC3_4 AF4 LPC_CS6 VIU_PIX_CLK GPIO3/GPT3

PSC4_0 AB1 USB1_DATA4 VIU_DATA0 GPIO24

PSC4_1 AA3 USB1_DATA5 VIU_DATA1 GPIO25

PSC4_2 AB3 USB1_DATA6 VIU_DATA2 GPIO26

PSC4_3 AA5 USB1_DATA7 VIU_DATA3 GPIO27

PSC4_4 AC2 NFC_CE2 VIU_DATA4 GPIO4/GPT4

PSC5_0 AC1 USB1_CLK VIU_DATA5 GPIO8

PSC5_1 AC3 USB1_NEXT VIU_DATA6 GPIO9

PSC5_2 AD1 USB1_STOP VIU_DATA7 GPIO10

PSC5_3 AD2 USB1_DIR VIU_DATA8 GPIO11

PSC5_4 AE3 NFC_CE3 VIU_DATA9 GPIO5/GPT5

PSC6_0 A11 LPC_TSIZ1 DIU_CLK GPIO12

PSC6_1 C10 LPC_TSIZ2 DIU_HSYNC GPIO13

PSC6_2 A10 — — GPIO14

PSC6_3 B9 — — GPIO15

PSC6_4 A9 LPC_TS DIU_VSYNC GPIO6/GPT6

PSC7_0 B8 SDHC_CMD DIU_LD23 GPIO16

PSC7_1 E10 SDHC_D0 DIU_LD22 GPIO17

PSC7_2 C8 SDHC_D1_IRQ DIU_LD17 GPIO18

PSC7_3 A8 SDHC_D2 DIU_LD16 GPIO19

PSC7_4 A7 SDHC_D3_CD DIU_LD09 GPIO7/GPT7

PSC8_0 E9 — DIU_LD08 GPIO20

PSC8_1 D8 — DIU_LD01 GPIO21

PSC8_2 C7 — DIU_LD00 GPIO22

PSC8_3 B6 — DIU_LD02 GPIO23

PSC8_4 E8 SDHC_CLK DIU_LD03 GPIO0/GPT0

PSC9_0 C6 — DIU_LD04 GPIO24

PSC9_1 D7 — DIU_LD05 GPIO25

PSC9_2 E7 — DIU_LD06 GPIO26

Table 3-2. MPC5121e Alphabetical Signal Reference (Sheet 7 of 8)

Pin Name 
Function 1

Package Pin 
Number

Function 2 Function 3 Function 4

MPC5121e Microcontroller Reference Manual, Rev. 2



Signal Descriptions

3-16 Freescale Semiconductor

PSC9_3 D6 — DIU_LD07 GPIO27

PSC9_4 K24 — DIU_LD10 GPIO1/GPT1

PSC_MCLK_IN C17 — DIU_DE GPIO6/GPT6

RTC_XTAL1 C20 — — —

RTC_XTALO A20 — — —

SATA_ANAVIZ E5 — — —

SATA_RESREF E4 — — —

SATA_RXN A4 — — —

SATA_RXP A5 — — —

SATA_TXN E1 — — —

SATA_TXP F1 — — —

SATA_XTALI C3 — — —

SATA_XTALO C2 — — —

SPDIF_RX AC24 FEC_CRS DIU_HSYNC GPIO0

SPDIF_TX AD24 FEC_TX_ER DIU_VSYNC GPIO27

SPDIF_TXCLK AB21 FEC_RX_DV DIU_CLK GPIO26

SRESET V22 — — —

SYS_XTALI V24 — — —

SYS_XTALO W26 — — —

TCK AB26 — — —

TDI Y23 — — —

TDO W22 — — —

TEST W25 — — —

TMS Y25 — — —

TRST AA26 — — —

USB_PHY_DM A22 — — —

USB_PHY_DP A23 — — —

USB_PHY_DRVV
BUS

A21 — — —

USB_PHY_RREF E22 — — —

USB_PHY_TPA A24 — — —

USB_PHY_UID E19 — — —

USB_PHY_VBUS — — — —

USB_PHY_XTALI C24 — — —

USB_PHY_XTALO B24 — — —

USB_PHY_VBUS_
PWR_FAULT

B21 — — —

Table 3-2. MPC5121e Alphabetical Signal Reference (Sheet 8 of 8)

Pin Name 
Function 1

Package Pin 
Number

Function 2 Function 3 Function 4

MPC5121e Microcontroller Reference Manual, Rev. 2



Signal Descriptions

Freescale Semiconductor 3-17

3.2 Output Signal States During Reset
When a system reset is recognized (PORESET or HRESET are asserted), the MPC5121e aborts all current 
internal and external transactions, and it releases all bidirectional I/O signals to a high-impedance state. 
See Chapter 4, “Reset,” for a complete description of the reset functionality.

During reset, the MPC5121e ignores most input signals (except for reset configuration signals Table 3-3) 
and drives most of the output-only signals to an inactive state. Table 3-3 shows states of the output-only 
signals.

Table 3-3. Output Signal States During System Reset

Interface Signal State During Reset

MDM[3:0] DDR data mask high-Z

MDQ[31:0] DDR data high-Z

MDQS[3:0] DDR data strobe high-Z

MBA[2:0] DDR bank select All 0

MA[15:0] DDR address All 0

MWE DDR write enable 1

MRAS DDR row address strobe 1

MCAS DDR column address strobe 1

MCS DDR chip select 1

MCKE DDR clock enable 0

MCK DDR differential clock 0

MCK DDR differential clock 0

MODT DRAM On-Die Termination 0

LPC_OE LocalPlus output enable 1

LPC_R/W LocalPlus read/write bar 1

EMB_AX[0] External Memory Bus address extension 0/LocalPlus 
Address latch/Parallel ATA address 0

0

TDO Test data out high-Z

CKSTP_OUT Check Stop output 1

PCI_RST PCI reset output 0

PCI_INTA PCI interrupt output Z

LPC_ACK LPC Acknowledge Pullup resistor

LPC_CS0 LPC Chip Select 0 Pullup resistor

LPC_CS1 LPC Chip Select 1 Pullup resistor

LPC_CS2 LPC Chip Select 2 Pullup resistor

NFC_CE0 NFC Chip Enable 0 Pullup resistor

PATA_CE1 PATA Chip Select 1 Pullup resistor

PATA_CE2 PATA Chip Select 2 Pullup resistor

PATA_ISOLATE PATA Isolation Pullup resistor

J1850_RX J1850 Receive port Pullup resistor

MPC5121e Microcontroller Reference Manual, Rev. 2



Signal Descriptions

3-18 Freescale Semiconductor

The control device’s signal multiplexing is documented in Chapter 22, “IO Control”.

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 4-1

Chapter 4  
Reset

4.1 Introduction
The MPC5121e has two reset flows, SRESET and HRESET. These flows can be initiated by the following 
events:

• Power on reset (PORESET)
• Hardware reset (HRESET)
• Soft reset (SRESET) 
• JTAG initiated reset (power on reset, hardware reset, and soft reset)1

• Checkstop (MCP) event
• Watchdog timer (WDT) module
• Bus monitor
• Software write to Section 4.7.6, “Reset Control Register (RCR)”.2

4.2 HRESET Flow
HRESET provides a mechanism to initialize all clocks and peripherals to the initial values. This flow does 
not sample the reset configuration word. 

4.2.1 Sources

The following sources may initiate an HRESET sequence:
• PORESET input signal
• HRESET input signal
• Watchdog timer (WDT) module
• Bus monitor 
• Checkstop event3

• Software write to the RESET module4

1. The JTAG initiated reset (power on reset, hardware reset, and soft reset) is independent of the reset state of the JTAG controller 
(TRST)
2. The reset control register in the RESET module may initiate a SRESET or HRESET sequence.
3. Checkstop may be initiated when the e300 core enters the checkstop state. This state may be masked at in the RESET module, 
e300 core, or IPIC.
4. The reset configuration register in the RESET module may initiate a SRESET or HRESET sequence.

MPC5121e Microcontroller Reference Manual, Rev. 2



Reset

4-2 Freescale Semiconductor

4.2.2 Impacts

When a HRESET sequence is initiated, the following occurs:
• HRESET pin is asserted by the device
• SRESET pin is asserted by the device.
• MSR[IP] bit in the e300 core is updated to reflect vector table location
• PLLs reloads programming information requiring the PLL re-lock to the reference clock signal
• Clock dividers are initialized
• Memory map initializes to reset state
• All peripheral logic asserts reset unless otherwise noted1

• Reset source is captured in the RESET module
• The e300 core resets fetching instructions from the vector indicated by the RST_CONF word
• Real time clock shadow registers and time, date, alarm, and stopwatch registers initialize to reset 

state. Other RTC registers are not reset.

4.3 SRESET Flow
SRESET provides a mechanism to shorten the boot flow by bypassing initialization of boot peripherals 
and clocks (see Table 4-1). Timing for SRESET can be found in the data sheet.

4.3.1 Sources

The following sources initiate an SRESET sequence:
• SRESET input signal
• JTAG JSRS command
• Software write to the RESET module

4.3.2 Impacts

When SRESET sequence is initiated, the following occurs:
• SRESET pin is asserted by the device
• The following peripherals are not affected by reset:

— IO control and pin multiplexing
— Clock control registers
— Memory access windows (XLBMEN)
— Local plus memory controller (LPC)
— DRAM controller (MDDRC)
— RTC registers on the VBAT power domain (see Section 4.6.2, “RTC at Reset”)

1. The RTC timer mechanism retains state as long as Vbat provides power to the RTC module

MPC5121e Microcontroller Reference Manual, Rev. 2



Reset

Freescale Semiconductor 4-3

• Reset source is captured in the RESET module
• MSR[IP] bit in the e300 core is not updated
• The e300 core start execution at the reset vector
• See e300 core manual for core impact of SRESET

4.4 (PORESET) Power-On Initialization
During the power-up sequence the PORESET pin must be asserted by an external device for a minimum 
of 32 XTAL clock cycles. The oscillator input (XTALI) must be stable prior to PORESET de-assertion. 
After PORESET has been qualified (see Section 4.5, “Reset of Internal Peripherals”), the HRESET flow 
is started.

4.5 Reset of Internal Peripherals
Table 4-1 summarizes each peripheral and the relation to each reset flow.

Table 4-1. Peripheral Versus Reset

Peripheral HRESET1 SRESET

AXE — •

BDLC — •

CFM — •

CLOCK • —

CSBARB — •

DIU — •

DMA — •

e3002 • •

EMB — •

FEC — •

FIFOC — •

FUSE • •

GPIO • —

GPT3 • •

I2C — •

IIM • —

IO_CONTROL • —

IPIC — •

LPC • —

MBX — •

MDDRC • —

MEM — •

MEMMAP • —

MPC5121e Microcontroller Reference Manual, Rev. 2



Reset

4-4 Freescale Semiconductor

4.6 Reset Configuration Word (RST_CONF)
The RST_CONF word is latched when the PORESET becomes qualified. This controls the boot 
configuration of the device. Each RST_CONF pin MUST have external pull-up/pull-down devices which 
ensure that the device enters the desired mode of operation. The value latched into the device at reset may 
be verified by access to the RCWLR & RCWHR registers (see Section 4.7, “Memory Map”).

Available modes include:
• PCI arbiter

MSCAN — •

NFC — •

PATA — •

PCI4 • •

PCI_DMA • •

PCI_IOS • •

PMC — •

PSC — •

RTC5 — •

RESET • —

SAP — •

SATA — •

SATA_PHY6 — —

SDHC — •

SPDIF — •

TEMPSENS — —

TLM7 — —

TPM — •

USB — •

USB_PHY8 — —

WDT — •

1 PORESET causes the same effect as HRESET.
2 The e300 core supports two reset configurations. See the e300 core user’s manual for details.
3 GPT supports two different reset configurations for each reset type.
4 PCI and submodules are effected by SRESET and HRESET.
5 RTC is reset by VBAT Power-On-Reset
6 SATA_PHY is reset by VSATA Power-On-Reset
7 TLM can only be reset through use of the JTAG (TRST). See Section 4.6.3, “JTAG Reset”.
8 USB_PHY is reset by the USB controller

Table 4-1. Peripheral Versus Reset (continued)

Peripheral HRESET1 SRESET

MPC5121e Microcontroller Reference Manual, Rev. 2



Reset

Freescale Semiconductor 4-5

• Test modes
• Boot interface selection
• MUX flash mode
• NOR flash port size
• NAND flash page size
• NAND flash port size
• Core PLL programming
• System PLL programming
• Clock divider

Table 4-2. Reset Configuration Word

Reset Parameter Signal Description

RST_CONF_BMS EMB_AD[5] Boot mode select — Selects e300 boot vector and 
configures default value for LPC CS0 or NFC base 
address. See Section 4.6.1, “BMS Operation”

RST_CONF_ROMLOC EMB_AD[1:0] Selects boot device1

00 LPC boot
01 NAND (NFC) boot
10 reserved
11 NAND (NFC) boot
see also definition of RST_CONF_NFC_PS

RST_CONF_SWEN EMB_AD[2] Enables Watchdog Timer at reset
0 Disabled
1 Enabled

RST_CONF_LPC_MX EMB_AD[16] LPC Mux mode configuration
0 Non-multiplexed mode
1 Multiplexed mode

RST_CONF_LPC_AX EMB_AD[9:8] LPC address extension mode
00 No LPC Address Extension
01 Use LPC_AX[pata]
10 Use LPC_AX[nfc]
11 Reserved

RST_CONF_LPC_DBW EMB_AD[19:18] LPC Data Port Size
00 8 bit
10 Reserved
01 16 bit
11 32 bit

RST_CONF_NFC_PS EMB_AD[20] NAND Flash Page Size
if RST_CONF_ROMLOC = 01 then 
RST_CONF_NFC_PS defines the page size:
0 512 bytes page size
1 2 Kbytes page size
if RST_CONF_ROMLOC = 11 then 
RST_CONF_NFC_PS defines the spare size with a fixed 
page size of 4K:
0 64 bytes spare size
1 218 bytes spare size

MPC5121e Microcontroller Reference Manual, Rev. 2



Reset

4-6 Freescale Semiconductor

4.6.1 BMS Operation

The boot mode select bit determines the default value of LPC CS0 and provide the reset vector to the e300 
core. The e300 MSR[IP] bit reflects the state which is latched by the BMS bit. The BMS bit indicates to 
the e300 where in memory to fetch the first instruction.

RST_CONF_NFC_DBW EMB_AD[21] NFC Data Port Size
0 8 bit
1 16 bit

RST_CONF_CKS_IN EMB_AD[22] Checkstop
0 Checkstop input disabled
1 Checkstop input enabled

RST_CONF_COREPLL EMB_AD[13:10] Core PLL Multiply factor

See clock module for programming options

RST_CONF_SYSPLL EMB_AD[26:23] System PLL Multiply factor

See clock module for programming options

RST_CONF_SYSOSCEN EMB_AX02 Oscillator Bypass Mode
0 System Oscillator bypass mode
1 System Oscillator mode

RST_CONF_SYSDIV LPC_AX[3],
EMB_AD[31:27]

System PLL divider

See clock module for programming options

RST_CONF_TLE EMB_AD[6] Endian Mode
0 Big Endian Mode
1 Little Endian Mode

RST_CONF_LPC_WA EMB_AD[17] LPC word/byte addressing
0 Byte addressing
1 Word addressing

RST_CONF_PCI66EN EMB_AD[7] Enable 66 MHz PCI Operation2

0 PCI 33 MHz
1 PCI 66 MHz

RST_CONF_EMB_AD14 EMB_AD[14] Reserved — must be connected to 1

RST_CONF_PCIARB EMB_AD[15] Internal PCI Arbiter signals
0 Disabled
1 Enabled

RST_CONF_TPR EMB_AD[3] Factory Test Mode
0 Disabled (normal operation)
1 Enabled (Freescale factory test only)

RST_CONF_COREDIS EMB_AD[4] Core Disable Mode3

0 Disabled (normal operation)
1 Enabled (Freescale factory test only)

1 LPC boot together with 4-Kbyte page NAND flash devices is not supported
2 Provides the required IO timing for the different PCI modes
3 This mode is provided for Freescale factory testing only

Table 4-2. Reset Configuration Word (continued)

Reset Parameter Signal Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Reset

Freescale Semiconductor 4-7

4.6.2 RTC at Reset

The RTC module contains registers which are located on the VBAT power domain which are not effected 
by system level reset functions. These registers can only be reset by removing power from VBAT.

4.6.3 JTAG Reset

The JTAG state machine is reset independently of PORESET, HRESET and SRESET. If the JTAG 
connection is not used, care should be taken to ensure that TRST is connected to a pull-up device. Even if 
your system does not utilize a JTAG connector the JTAG connection must be tied to a defined state or 
undefined behavior may occur.

4.6.4 Boot Vector Selection

The e300 boot vector may be configured through use of the RST_CONF_ROM_LOC and 
RST_CONF_BMS pins at reset (see Section 4.6, “Reset Configuration Word (RST_CONF)”). These pins 
allow selection of the boot memory interface and/or e300 boot vector. 

4.6.5 Boot Memory Interface Selection

The e300 boot memory interface may be selected by configuring the RST_CONF_ROM_LOC pin at reset. 
this allows selection of either the local plus controller (LPC) or NAND flash controller as the boot memory 
device. See Section 4.6.1, “BMS Operation” for details. Each interface requires a unique boot strap 
sequence for initializing the MPC5121e. These initialization suddenness are described in the following 
sections.

4.6.6 LPC Initialization Sequence

This interface is utilized when the ROM_LOC configuration in the RST_CONF selects the Local Plus 
Interface as the boot vector. The following boot sequence works with both boot high or boot low vectors.

Table 4-3. BMS Impact on Boot Vector

Parameter BMS = 0 (boot low) BMS = 1 (boot high)

e300 Boot Vector 0x00000100 0xFFF00100

Table 4-4. BMS Impact On Memory Windows

Parameter BMS = 0 (boot low) BMS = 1 (boot high)

LPC CSBOOT Start 0x00000000 0xFF800000

LPC CSBOOT End 0x0007FFFF 0xFFFFFFFF

NFC Base Address 0x00000000 0xFFF00000

MPC5121e Microcontroller Reference Manual, Rev. 2



Reset

4-8 Freescale Semiconductor

4.6.7 NFC Initialization Sequence

This interface is utilized when the ROM_LOC configuration in the RST_CONF selects the NFC (NAND 
flash) Interface as the boot device. Care must be taken to ensure that the reset vector and NFC bootstrap 
fits into a single NAND flash page of 512 B or 2 Kbytes.

Table 4-5. LPC Initialization Sequence

Step Software Region Note

1 Configure IMMR1

1 Care must be taken to ensure that the IMMR address region does not overlap any active access windows at any time during 
the boot process.

Reset Vector (Flash) —

2 Configure LPC Clock Dividers Reset Vector (Flash) —

3 Configure CS0 Access Window Reset Vector (Flash) —

4 Configure CS0 Timing parameters Reset Vector (Flash) —

5 Perform an absolute jump to the 
initialization routine

Reset Vector (Flash) Relative branching should not be used

6 Initialize Memory Map Startup (Flash) Initialize all memory access windows and LPC chip 
selects

7 Initialize e300 Core Startup (Flash) Initialize core settings including cache policies and 
instruction burst capabilities. Flash should be 
initialized as both I/D cached in copyback mode2.

2 This must be changed to cache inhibited prior to entry into user code space.

8 Initialize system clocks Startup (Flash) —

9 Initialize DRAM Startup (Flash) —

10 Initialize IO pin muxing Startup (Flash) —

11 Code re-location Startup (Flash) Relocate code into DRAM for faster execution

12 c-runtime initialization Startup (Flash) This allows remaining routines

13 peripheral initialization Startup (Flash) Perform any initialization required by monitor or 
RTOS here. 

14 Boot Into Application Space DRAM Start Application Environment (RTOS)

Table 4-6. NFC Initialization Sequence

Step Software Region Note

1 Configure IMMR1 Reset Vector (flash) —

2 Configure DRAM & NFC Clock 
Dividers

Reset Vector (flash)
—

3 Configure NFC parameters Reset Vector (flash) —

4 Initialize DRAM Reset Vector (flash) Initialization should include DRAM access window 
as well as timings and initialization

MPC5121e Microcontroller Reference Manual, Rev. 2



Reset

Freescale Semiconductor 4-9

4.7 Memory Map
The reset configuration and status registers are shown in Table 4-7.

5 Copy NFC bootstrap to DRAM Reset Vector (flash) —

6 Perform absolute jump to NFC 
bootstrap

NFC Bootstrap (DRAM) Relative branch should not be used.

7 Initialize Memory Map Startup (DRAM) Initialize all memory access windows and LPC chip 
selects

8 Code re-location Startup (DRAM) Relocate code into DRAM for faster execution. 
Must use NAND flash mini-driver to access NAND 
flash

9 Initialize e300 Core Startup (DRAM) Initialize core settings including cache policies and 
instruction burst capabilities. Flash should be 
initialized as both I/D cached in copyback mode2.

10 Initialize system clocks Startup (DRAM) —

11 Initialize IO pin muxing Startup (DRAM) —

12 c-runtime initialization Startup (DRAM) This allows remaining routines

13 peripheral initialization Startup (DRAM) Perform any initialization required by monitor or 
RTOS here. 

14 Boot Into Application Space (DRAM) Start Application Environment (RTOS)

1 Care must be taken to ensure that the IMMR address region does not overlap any active access windows at any time during 
the boot process.

2 This must be changed to cache inhibited prior to entry into user code space.

Table 4-7. Reset Configuration Registers Memory Map

Address (Offset) Use Access

0x00 Reset Configuration Word Low Register (RCWLR) R

0x04 Reset Configuration Word High Register (RCWHR) R

0x08 Reserved —

0x0C Reserved —

0x10 Reset Status Register (RSR) R/W

0x14 Reset Mode Register (RMR) R/W

0x18 Reset Protection Register (RPR) R/W

0x1C Reset Control Register (RCR) R/W

0x20 Reset Control Enable Register (RCER) R/W

0x24–0xFC Reserved —

Table 4-6. NFC Initialization Sequence (continued)

Step Software Region Note

MPC5121e Microcontroller Reference Manual, Rev. 2



Reset

4-10 Freescale Semiconductor

4.7.1 Reset Configuration Word Low Register (RCWLR)

The Reset Configuration Word Low Register is shown in Figure 4-1. This is a read only register that gets 
its values according to the reset configuration word low loaded during the reset flow.

Offset 0x00 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SYSPLL COREPLL

R SPM
F3

SPM
F2

SPM
F1

SPM
F0

CPMF
3

CPMF
4

CPMF
5

CPMF
6

W

Reset 0 0 0 0
EMB_
AD26

EMB_
AD25

EMB_
AD24

EMB_
AD23

0 0 0 0
EMB_
AD13

EMB_
AD12

EMB_
AD11

EMB_
AD10

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SYSDIV

R SYS
DIV5

SYS
DIV4

SYS
DIV3

SYS
DIV2

SYS
DIV1

SYS
DIV0

W

Reset 0 0 LPC_
AX03

EMB_
AD31

EMB_
AD30

EMB_
AD29

EMB_
AD28

EMB_
AD27

0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 4-1. Reset Configuration Word Low Register (RCWLR)

Table 4-8. RCWLR Field Descriptions

Field Description

SPMF System PLL multiplication factor.

CPMF Core PLL configuration. 

SYSDIV System clock divide factor, see clock module for description.

MPC5121e Microcontroller Reference Manual, Rev. 2



Reset

Freescale Semiconductor 4-11

4.7.2 Reset Configuration Word High Register (RCWHR)

The Reset Configuration Word High Register is shown in Figure 4-2. This is a read only register which get 
its values according to the reset configuration word high loaded during the reset flow.

Offset 0x04 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ROMLOC

R
PCI

66EN
PCI
ARB

SYS-
OS-
CEN

CORE
DIS

BMS SWEN
ROM
LOC1

ROM
LOC0

TPR

W

Reset EMB_
AD14

EMB_
AD07

EMB_
AD15

EMB_
AX02

EMB_
AD04

EMB_
AD05

0 0
EMB_
AD02

EMB_
AD01

EMB_
AD00

EMB_
AD03

0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LPC_DBW LPC_AX

R
LPC_
MX

LPC_
WA

LPC_
DBW

1

LPC_
DBW

0

NFC_
PS

NFC_
DBW

LPC_
AX1

LPC_
AX0

TLE
CKS_

IN

W

Reset
0 0 0 0

EMB_
AD16

EMB_
AD17

EMB_
AD19

EMB_
AD18

EMB_
AD20

EMB_
AD21

EMB_
AD09

EMB_
AD08

EMB_
AD06

EMB_
AD22

0 0

= Unimplemented or Reserved

Figure 4-2. Reset Configuration Word High Register (RCWHR)

Table 4-9. RCWHR Field Descriptions

Field Description

PCI66EN PCI 66 enable

PCIARB PCI internal arbiter mode

SYSOSCEN System oscillator enable

COREDIS Core disable mode

BMS Boot memory space

SWEN Software watchdog enable

ROMLOC Boot ROM interface location

TPR TPR pin muxing

LPC_MX LPC muxed mode

MPC5121e Microcontroller Reference Manual, Rev. 2



Reset

4-12 Freescale Semiconductor

NOTE
The value of fields in the reset configuration words registers (RCWLR and 
RCWHR) reflect only their state during the reset flow. Some of these 
parameters and modes may be modified by changing their values in other 
units’ memory mapped registers. Modifying values in these other units’ 
memory mapped registers do not affect RCWLR and RCWHR.

4.7.3 Reset Status Register (RSR)

The reset status register shown in Figure 4-5 captures various reset events in the device.

LPC_WA LPC word/byte address

LPC_DBW LPC data bus width

NFC_PS NFC page size

LPC_AX LPC extended address bus

NFC_DBW NFC data bus width

TLE True little-endian

CKS_IN Checkstop in pin muxing

Offset 0x10 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SWSR SWHR JHRS JSRS CSHR SWRS BMRS SRS HRS

W

Reset 0 0 w1c w1c 0 0 0 w1c 0 0 0 w1c w1c w1c w1c w1c

= Unimplemented or Reserved

Figure 4-3. Reset Status Register (RSR)

Table 4-9. RCWHR Field Descriptions (continued)

MPC5121e Microcontroller Reference Manual, Rev. 2



Reset

Freescale Semiconductor 4-13

NOTE
The Reset Status Register accumulates reset events. This register returns to 
its reset value only when power-on reset occurs. 

Table 4-10. RSR Field Descriptions

Field Description

SWSR Software soft reset. If set, indicates that a software soft reset has occurred. cleared by writing a logic 1

SWHR Software hard reset. If set, indicates that a software hard reset has occurred. cleared by writing a logic 1t

JHRS JTAG hard reset status. When the JTAG reset (command) request is set, JHRS is set and remains set until 
software clears it. JHRS is cleared by writing a logic 1 to it (writing zero has no effect).
0 No JTAG reset event occurred
1 A JTAG reset event occurred

JSRS JTAG soft reset status. When the JTAG reset (command) request is set, JSRS is set and remains set until 
software clears it. JSRS is cleared by writing a logic 1to it (writing zero has no effect).
0 No JTAG reset event occurred
1 A JTAG reset event occurred

CSHR Check stop reset status. When the core enters a checkstop state and the checkstop reset is enabled by the 
RMR[CSRE], CSRS is set and it remains set until software clears it. CSRS is cleared by writing a logic 1to it 
(writing zero has no effect).
0 No enabled check stop reset event occurred
1 An enabled check stop reset event occurred

SWRS Software watchdog reset status. When a software watchdog expire event (which causes a reset) is detected, 
the SWRS bit is set and remains that way until the software clears it. SWRS is cleared by writing a logic 1.
0 No software watchdog reset event occurred
1 A software watchdog reset event has occurred

BMRS Bus monitor reset status. When a bus monitor expire event (which causes a reset) is detected, BMRS is set 
and remains set until the software clears it. BMRS is cleared by writing a logic 1.
0 No bus monitor reset event has occurred
1 A bus monitor reset event has occurred

SRS Soft reset status. When an external or internal soft reset event is detected, SRS is set and remains that way 
until software clears it. SRS is cleared by writing a logic 1 

0 No soft reset event has occurred
1 A soft reset event has occurred
Note: Soft reset induced by hard reset also sets this bit.

HRS Hard reset status. When an external or internal hard reset event is detected, HRS is set and remains that way 
until software clears it. HRS is cleared by writing a logic 1
0 No hard reset event has occurred
1 A hard reset event has occurred

MPC5121e Microcontroller Reference Manual, Rev. 2



Reset

4-14 Freescale Semiconductor

4.7.4 Reset Mode Register (RMR)

The reset mode register (RMR), shown in Figure 4-4, triggers an HRESET sequence when the e300 core 
enters checkstop state if the CSRE bit is set.

Offset 0x14 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CSRE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 4-4. Reset Mode Register (RMR)

Table 4-11. RMR Field Descriptions

Field Description

CSRE Checkstop reset enable. The e300 core can enter checkstop mode as the result of several exception 
conditions. Setting CSRE configures the chip to perform a hard reset sequence when the e300 core enters 
checkstop state.
0 Reset not generated when core enters checkstop state.
1 Reset generated when core enters checkstop state.

MPC5121e Microcontroller Reference Manual, Rev. 2



Reset

Freescale Semiconductor 4-15

4.7.5 Reset Protection Register (RPR)

The reset protection register shown in Figure 4-5, enable or disable writing to the reset control register 
(RCR). This register prevents unwanted resets due to unintended software writes to the reset control 
register (RCR). The user should write the value 0x52535445 (RSTE in ASCII) to enable. Enable indication 
appears in the reset control enable register (RCER[CRE]). Reading this register always returns all zeros. 
To disable write to the reset control register (RCR), the user should write 1 to RCER[CRE].

Offset 0x18 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
RCPW

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RCPW

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4-5. Reset Protection Register (RPR)

Table 4-12. RPR Field Descriptions

Field Description

RCPW Reset control protection word. Protects unintended software reset requests occurred because of write to the 
reset control register (RCR). The user should write the value 0x52535445 (RSTE in ASCII) to enable. Enable 
indication appears in the reset status register (RCER[CRE]). Reading this register always returns all zeros. 
To disable write to the reset control register (RCR), the user should write 1 to RCER[CRE].

MPC5121e Microcontroller Reference Manual, Rev. 2



Reset

4-16 Freescale Semiconductor

4.7.6 Reset Control Register (RCR)

The reset control register shown in Figure 4-6, can be used by software to initiate a soft or hard reset 
sequence. To allow writing to this register, the user has to first enable it by writing the value 0x52535445 
to the reset protection register (RPR).

Offset 0x1C Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SWHR SWSR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 4-6. Reset Control Register (RCR)

Table 4-13. RCR Field Descriptions

Field Description

SWHR Software hard reset. Setting this bit causes the MPC5121e to begin a hard reset flow. This bit returns to its 
reset state during the reset sequence, so reading it always returns 0.

SWSR Software soft reset. Setting this bit causes the MPC5121e to begin a soft reset flow. This bit returns to its 
reset state during the reset sequence, so reading it always returns 0.

MPC5121e Microcontroller Reference Manual, Rev. 2



Reset

Freescale Semiconductor 4-17

4.7.7 Reset Control Enable Register (RCER)

The reset control enable register shown in Figure 4-7, indicates by the CRE field that the reset 
protection register (RPR) was accessed with a value that enables the reset control register (RCR).

4.8 IO During Reset Assertion
When a system reset is recognized (PORESET, HRESET, and SRESET are asserted), the MPC5121e 
aborts all current internal and external transactions. All I/O signals go into a high-impedance state. 
Exceptions can be seen in Table 4-15.

Offset 0x20 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CRE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 4-7. Reset Control Enable Register (RCER)

Table 4-14. RCER Field Descriptions

Field Description

CRE Control register enabled. When set, indicates that the reset protection register (RPR) was accessed with a 
value that enables the reset control register (RCR). 

Writing 1 to this bit disables the reset control register (RCR) and clear this bit. Writing zero has no effect.

Table 4-15. IO During Reset Assertion

Interface Signal State During Reset

EMB_AD[31:0] See Section 4.6, “Reset Configuration Word (RST_CONF)” Input

LPC_AX[3] See Section 4.6, “Reset Configuration Word (RST_CONF)” Input

MDM[3:0] DDR data mask 0

MPC5121e Microcontroller Reference Manual, Rev. 2



Reset

4-18 Freescale Semiconductor

MCKE DDR clock enable 0

MCK DDR differential clocks 0

MCK DDR differential clocks 0

MODT DRAM on-die termination 0

LPC_OE LocalPlus output enable 1

LPC_R/W LocalPlus read/write bar 1

EMB_AX[0] External memory bus address extension 0/LocalPlus address latch/parallel 
ATA address 0

0

CKSTP_OUT Check stop output 1

Table 4-15. IO During Reset Assertion (continued)

Interface Signal State During Reset

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 5-1

Chapter 5  
Clocks and Low-Power Modes

5.1 Introduction
The wide range of applications supported by the MPC5121e require a complex clocking structure with 
different primary clock domains derived from four separate oscillator sources. Internal PLLs and clock 
dividers allow generation of a wide range of clock references.

Each peripheral clock may be individually controlled to minimize total power consumption of the device. 
Clocks may be gated individually or scaled in frequency to ensure the most efficient power profile for the 
user application.

5.2 System Clock Generation
The system reference is provided by a crystal oscillator that drives the system PLL. This PLL is 
programmed at reset by the reset configuration word (RST_CONFIG) sampled at the rising edge 
(deassertion) of power on reset. The SYS_PLL clock is then divided (SYS_DIV) and used as a reference 
to the MPC5121e cores and peripherals. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-2 Freescale Semiconductor

Figure 5-1. Clock System

Table 5-1. Clock Domain Programming

Domain Programing Interface

SYS_PLL Hardware Programmable (Section 5.2.9.1, “System PLL”)

CORE_PLL Hardware Programmable (Section 5.2.9.2, “e300 PLL Programming Model”)

IPS_DIV Software Programmable (Section 5.3.1, “Memory Map/Register Definition”)

NFC_DIV Software Programmable (Section 5.3.1, “Memory Map/Register Definition”)

LPC_DIV Software Programmable (Section 5.3.1, “Memory Map/Register Definition”)

DIU_DIV Software Programmable (Section 5.3.1, “Memory Map/Register Definition”)

MBX_GPX_DIV Software Programmable (Section 5.3.1, “Memory Map/Register Definition”)

PCI_DIV Software Programmable (Section 5.3.1, “Memory Map/Register Definition”)

PSC_DIV1

1 PSC clock generation sub-system is described in Section 5.2.4, “PSC Clock Generation,” on page 5-5.

Software Programmable (Section 5.3.1, “Memory Map/Register Definition”)

SYS_DIV

1/2

IPS_DIV

DIU_DIV

1/2

PCI_DIV

Power Architecture
PLL

NFC_DIV

LPC_DIV

MBX_GPX_DIV

csb_clk

ppc_clk

ips_clk

nfc_clk

lpc_clk

mbx_bus_clk

mbx_3d_clk

XTALI

XTALO

SYS_ SYS
PLL

pci_clk

REF_CLK

OSC

CPMF[3:0]

SPLL_OUT

diu_clk

SYS_CLK

RST_CONF_SYSOSCEN

DDR
1/2

SYSDIV[5:0]
SPMF[3:0]

mbx_clk

SDHC_DIV sdhc_clk

Memory
Device

The MBX module related clocks (MBX_BUS_CLK, 

MBX_3D_CLK, and MBX_CLK) are not available in 

the MPC5123 design. The related bit in the SCCR2

and SCFR1 must be set to zero.

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-3

5.2.1 Peripheral Clock Domains

The reference clock for each peripheral can be found in Table 5-2.

Table 5-2. Peripheral Clock Reference

Peripheral REFERENCE CLOCK

AXE CSB_CLK

BDLC IPS_CLK

CFM CSB_CLK

CSBARB CSB_CLK

DIU DIU_CLK, CSB_CLK, IPS_CLK

DMA CSB_CLK

E300 PPC_CLK

PPC_PLL CSB_CLK

EMB IPS_CLK, LPC_CLK, NFC_CLK

FEC IPS_CLK

FIFOC IPS_CLK

FUSE IPS_CLK

GPIO IPS_CLK

I2C IPS_CLK

IIM IPS_CLK

IPIC IPS_CLK

LPC LPC_CLK

MBX MBX_BUS_CLK, MBX_3D_CLK. 
MBX_CLK

MDDRC DDR_CLK

MEM CSB_CLK

MSCAN IPS_CLK1

NFC NFC_CLK

PATA IPS_CLK

PCI PCI_CLK, CSB_CLK

PCI_DMA CSB_CLK

PCI_IOS CSB_CLK

PMC IPS_CLK, REF_CLK

PRIMAN CSB_CLK

PSC IPS_CLK2

RTC IPS_CLK, RTC_CLK

SAP IPS_CLK, TCK_CLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-4 Freescale Semiconductor

Many peripheral clocks may be disabled to reduce power consumption, see Section 5.3.1.2, “System 
Clock Control Register 1 (SCCR1)” for more information.

5.2.2 Clock Frequency Measurement (CFM) Clock Selection

The CFM module is capable of measuring the clock frequency of any PSC mclk (PSC reference clock) or 
PSC bit clock (PSC output clock). The CSB_CLK is then used as a reference to determine the long term 
frequency of the PSC clock. The CFM is capable of accepting four inputs. Each input is connected to the 
CFM_SRCN_OUT as indicated below.

Figure 5-2. CFM Clock Input

SATA IPS_CLK, SATA_PHYCLK

SATA_PHY SATA_OSC

SDHC IPS_CLK, SDHC_CLK

SPDIF IPS_CLK

SYS_PLL REF_CLK

TLM TCK

TPR IPS_CLK

USB0 IPS_CLK, USB_CLK

USB1 IPS_CLK, USB_CLK

USB_PHY USB_OSC

WDT IPS_CLK

VIDEO_IN CSB_CLK

1 For all clock sources, see Section 5.2.5, “MSCAN Clock 
Generation,” on page 5-5.

2 For all clock sources, see Section 5.2.4, “PSC Clock 
Generation,” on page 5-5.

Table 5-2. Peripheral Clock Reference (continued)

Peripheral REFERENCE CLOCK

cfm_src0_out CFM

cfm_src1_out

cfm_src2_out

cfm_src3_out

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-5

Figure 5-3. CFM Clock Input

The signals indicated by psc(n) can be the MCLK reference clock or the bit clock (BCLK) output of the 
psc. Each mux provides selectable access to 3 PSC clock sources.

5.2.3 System Oscillator Disable

The system oscillator may be disabled so that an externally generated clock may be used as a reference. 
This can be performed by setting the RST_CONF_SYSOSCEN in the reset configuration word 
(RST_CFG) at reset.

5.2.4 PSC Clock Generation

Each PSC can select from multiple clock sources. A single clock input is provided that allows the 
PSC_MCLK_IN to be used as a master reference by all PSCs. Additionally, clock gating is supplied 
allowing the shutdown of unnecessary clocks.

Figure 5-4. PSC (MCLK) Clock Generation1

This circuit is replicated for each PSC and can be controlled by accessing the registers starting at 
Section 5.3.1.8, “PSC0 Clock Control Register (P0CCR)”.

5.2.5 MSCAN Clock Generation

Each MSCAN module can select from multiple clock sources. A single clock input is provided that allows 
the PSC_MCLK_IN to be used as a clock source for all MSCAN modules. Additionally, clock gating is 
supplied allowing the shutdown of unnecessary clocks.

1. PSC_MCLK_IN and SPDIF_TXCLK are generated by external pins. SPDIF_RXCLK is generated by the spdif module.

psc(n)_bclk

cfm_srcn_out

cfm_srcn

psc(n+2)_bclk

psc(n)_mclk

psc(n+2)_mclk

psc(n+1)_bclk

psc(n+1)_mclk

SPDIF_TXCLK

PSC_MCLK_IN MCLK_DIV

PSC_MCLK_OUT

SYS_CLK

REF_CLK

MCLK_0_SRC
MCLK_1_SRC

SPDIF_RXCLK

Clock 
Gate

MCLK_EN
MCLK_DIV

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-6 Freescale Semiconductor

Figure 5-5. MSCAN Source Clock Generation1

This circuit is replicated for each MSCAN module and can be controlled by accessing the registers starting 
at Section 5.3.1.23, “MSCAN1Clock Control Register (M1CCR)”.

5.2.6 RTC Clock Generation

The RTC module contains circuitry on two clock and voltage domains. The Vbat voltage domain circuitry 
operates from a 32.768 Khz oscillator input. The programming interface operates from the clock reference 
provided by the IPBUS interface.

Figure 5-6. RTC Clock Generation

1. PSC_MCLK_IN and SPDIF_TXCLK are generated by external pins.

SPDIF_TXCLK

PSC_MCLK_IN Divider
CAN_SOURCE_CLK

SYS_CLK

REF_CLK

MSCAN_CLK_SRC
CLKSRC (From MSCAN module)

IP clock

Clock 
Gate

MSCAN_EN

MSCAN_SRC

MPC5121e

RTC Module

Vbat Domain Vcore Domain

R
T

C
 O

sc
S

ys
 O

sc ips_clkSystem
Clock

Generation

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-7

5.2.7 SATA Clock Generation

The SATA interface requires a 25 MHz crystal input that is independent of the system oscillator. The 
1.5 GHz clock required by SATA physical interface (SATA PHY) is generated by this 25 MHz input.

Figure 5-7. SATA Clock Generation

5.2.8 USB Clock Generation

The USB2.0 (OTG) specification requires a clock operating up to 480 MHz. This clock is derived from a 
dedicated oscillator input and multiplied within the USB Physical Interface for USB transmission. The 
USB-OTG controller operates from the ips_clk interface.

Figure 5-8. USB Clock Generation

MPC5121e

SATA Subsystem

S
AT

A
 O

sc
S

ys
 O

sc

SATA
Physical
Interface

System
Clock

Generation

SATA
Controller

MPC5121e

USB Subsystem

U
S

B
 O

sc
S

ys
 O

sc

ips_clk

USB
Physical
Interface

System
Clock

Generation

USB
Controller

USB
Controller

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-8 Freescale Semiconductor

5.2.9 System PLL and e300 PLL

5.2.9.1 System PLL

5.2.9.1.1 System PLL Multiplication Factor 

The output of the system PLL conforms to the following equation (see Figure 5-1). 

fspll = SPMF * fref_clk Eqn. 5-1

Table 5-3. System PLL Programming – Normal Mode

Field Name Value (Binary) fspll:fref_clk

SPMF 0000 68:1

0001 PLL BYPASS, all the 
clocks from CLOCK block 

are bypassed with PLL 
reference clock

0010 12:1 

0011 16:1 

0100 20:1

0101 24:1 

0110 28:1 

0111 32:1 

1000 36:1

1001 40:1 

1010 44:1 

1011 48:1 

1100 52:1 

1101 56:1

1110 60:1 

1111 64:1

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-9

5.2.9.2 e300 PLL Programming Model

Table 5-4. Core PLL Programming – Normal Mode

Field Name Value (Binary) fcpll:fcsb_clk

CPMF 000? Core PLL BYPASS/OFF

0010 1.0:1

0011 1.5:1

0100 2.0:1

2.5:1 0101

3.0:1 0110

3.5:1 0111

4.0:1 1000

4.5:1 1001

5.0:1 1010

5.5:1 1011

6.0:1 1100

6.5:1 1101

7.0:1 1110

7.5:1 1111

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-10 Freescale Semiconductor

5.3 Clock Control Module

5.3.1 Memory Map/Register Definition

The clock configuration and status registers are shown in Table 5-5. The access to this register is 32 bit 
only.

Table 5-5. Clock Configuration Registers Memory Map

Address (Offset) Use Access

0x00 System PLL Mode Register (SPMR) R

0x04 System Clock Control Register 1 (SCCR1) R/W

0x08 System Clock Control Register 2 (SCCR2) R/W

0x0C System Clock Frequency Register 1 (SCFR1) R/W

0x10 System Clock Frequency Register 2 (SCFR2) R/W

0x14 System Clock Frequency Shadow Register 2 (SCFR2S) R/W

0x18 Bread Crumb Register (BCR) R/W

0x1C PSC0 Clock Control Register (P0CCR) R/W

0x20 PSC1 Clock Control Register (P1CCR) R/W

0x24 PSC2 Clock Control Register (P2CCR) R/W

0x28 PSC3 Clock Control Register (P3CCR) R/W

0x2C PSC4 Clock Control Register (P4CCR) R/W

0x30 PSC5 Clock Control Register (P5CCR) R/W

0x34 PSC6 Clock Control Register (P6CCR) R/W

0x38 PSC7 Clock Control Register (P7CCR) R/W

0x3C PSC8 Clock Control Register (P8CCR) R/W

0x40 PSC9 Clock Control Register (P9CCR) R/W

0x44 PSC10 Clock Control Register (P10CCR) R/W

0x48 PSC11 Clock Control Register (P11CCR) R/W

0x4C SPDIF Clock Control Register (SPCCR) R/W

0x50 CFM Clock Control Register (CCCR) R/W

0x54 DIU Clock Config Register (DCCR) R/W

0x58 MSCAN1 Clock Control Register (M1CCR) R/W

0x5C MSCAN2 Clock Control Register (M2CCR) R/W

0x60 MSCAN3 Clock Control Register (M3CCR) R/W

0x64 MSCAN4 Clock Control Register (M4CCR) R/W

0x68 – 0xFC Reserved. —

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-11

5.3.1.1 System PLL Mode Register (SPMR)

Figure 5-9 shows the system PLL mode register. This is a read only register that retrieves its values from 
reset configuration word low loaded during the reset flow. This register is updated during a power up and 
PORESET sequence.

Offset 0x00 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R SPMF CPMF

W

Reset 0 0 0 0 cfg cfg cfg cfg 0 0 0 0 cfg cfg cfg cfg

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-9. System PLL Mode Register (SPMR)

Table 5-6. SPMR Field Descriptions

Field Description

SPMF System PLL Multiplication Factor. See Section 5.2.9.1, “System PLL,” on page 5-8.

CMPF Core PLL Configuration. See Section 5.2.9.2, “e300 PLL Programming Model,” on page 5-9.

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-12 Freescale Semiconductor

5.3.1.2 System Clock Control Register 1 (SCCR1)
The system clock control register 1 shown in Figure 5-10 controls device units with a configurable clock 
ratio.

Offset 0x04 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CFG_
EN

LPC_
EN

NFC_
EN

PATA
_EN

PSC0
_EN

PSC1
_EN

PSC2
_EN

PSC3
_EN

PSC4
_EN

PSC5
_EN

PSC6
_EN

PSC7
_EN

PSC8
_EN

PSC9
_EN

PSC1
0_EN

PSC1
1_ENW

Reset 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FIFO
C_EN

SATA
_EN

FEC_
EN

TPR_
EN

PCI_
EN

DDR_
ENW

Reset 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-10. System Clock Control Register 1 (SCCR1)
(Register is repeated for reference.)

Table 5-7. SCCR1 Field Descriptions (Sheet 1 of 3)

Field Description

CFG_EN This disables access to the memory map configuration registers for IO_CONTROL and MEMMAP 
configuration

0 Disable
1 Enable

LPC_EN lpc_clk Enable

0 Disable
1 Enable

NFC_EN nfc_clk Enable
0 Disable
1 Enable

PATA_EN pata_clk Enable
0 Disable
1 Enable

PSC0_EN PSC0_clk Enable
0 Disable
1 Enable

PSC1_EN PSC1 Clock Enable
0 Disable
1 Enable

PSC2_EN PSC2 Clock Enable
0 Disable
1 Enable

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-13

PSC3_EN PSC3 Clock Enable
0 Disable
1 Enable

PSC4_EN PSC4 Clock Enable
0 Disable
1 Enable

PSC5_EN PSC5 Clock Enable
0 Disable
1 Enable

PSC6_EN PSC6 Clock Enable
0 Disable
1 Enable

PSC7_EN PSC7 Clock Enable
0 Disable
1 Enable

PSC8_EN PSC8 Clock Enable
0 Disable
1 Enable

PSC9_EN PSC9 Clock Enable
0 Disable
1 Enable

PSC10_EN PSC10 Clock Enable
0 Disable
1 Enable

PSC11_EN PSC11 Clock Enable
0 Disable
1 Enable

Offset 0x04 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CFG_
EN

LPC_
EN

NFC_
EN

PATA
_EN

PSC0
_EN

PSC1
_EN

PSC2
_EN

PSC3
_EN

PSC4
_EN

PSC5
_EN

PSC6
_EN

PSC7
_EN

PSC8
_EN

PSC9
_EN

PSC1
0_EN

PSC1
1_ENW

Reset 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FIFO
C_EN

SATA
_EN

FEC_
EN

TPR_
EN

PCI_
EN

DDR_
ENW

Reset 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-10. System Clock Control Register 1 (SCCR1)
(Register is repeated for reference.)

Table 5-7. SCCR1 Field Descriptions (Sheet 2 of 3)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-14 Freescale Semiconductor

FIFOC_EN FIFOC Clock Enable, 
0 Disable
1 Enable
Note: If one of the PSC is used, the FIFOC clock must be enabled

SATA_EN SATA Clock Enable, controls the SATA controller clock, not the SATA-PHY clock
0 Disable
1 Enable

FEC_EN FEC Clock Enable
0 Disable
1 Enable

TPR_EN TPR and SAP Clock Enable
0 Disable
1 Enable
Note: Always set this bit to 1 for all normal user modes. It can be disabled if no debugger is needed.

PCI_EN PCI Clock Enable
0 Disable
1 Enable

DDR_EN MDDRC Clock Enable
0 Disable
1 Enable

Offset 0x04 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CFG_
EN

LPC_
EN

NFC_
EN

PATA
_EN

PSC0
_EN

PSC1
_EN

PSC2
_EN

PSC3
_EN

PSC4
_EN

PSC5
_EN

PSC6
_EN

PSC7
_EN

PSC8
_EN

PSC9
_EN

PSC1
0_EN

PSC1
1_ENW

Reset 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FIFO
C_EN

SATA
_EN

FEC_
EN

TPR_
EN

PCI_
EN

DDR_
ENW

Reset 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-10. System Clock Control Register 1 (SCCR1)
(Register is repeated for reference.)

Table 5-7. SCCR1 Field Descriptions (Sheet 3 of 3)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-15

5.3.1.3 System Clock Control Register 2 (SCCR2)
The system clock control register 2 shown in Figure 5-11 controls device units with a configurable clock 
ratio.

Offset 0x08 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DIU_
EN

AXE_
EN

MEM
_EN

USB1
_EN

USB2
_EN

I2C_
EN

BDLC
_EN

SDH
C_EN

SPDI
F_EN

MBX_
BUS_

EN

MBX_
EN

MBX_
3D_
EN

IIM_
EN

VIDE
O_in_
_EN

W

Reset 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-11. System Clock Control Register 2 (SCCR2)
(Register is repeated for reference.)

Table 5-8. SCCR2 Field Descriptions

Field Description

DIU_EN DIU Clock Enable
0 Disable
1 Enable

AXE_EN AXE Clock Enable
0 Disable
1 Enable

MEM_EN MEM Clock Enable
0 Disable
1 Enable

USB2 USB1 Clock Enable
0 Disable
1 Enable

USB1 USB2 Clock Enable
0 Disable
1 Enable

I2C_EN I2C Clock Enable
0 Disable
1 Enable

BDLC_EN BDLC & MSCAN Clock Enable

0 Disable
1 Enable

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-16 Freescale Semiconductor

SDHC_EN SDHC Clock Enable
0 Disable
1 Enable

SPDIF_EN SPDIF Clock Enable
0 Disable
1 Enable

MBX_BUS_EN MBX BUS Clock Enable
0 Disable
1 Enable

MBX_EN MBX Clock Enable

0 Disable
1 Enable

MBX_3D_EN MBX 3D Clock Enable
0 Disable
1 Enable

IIM_EN IIM Clock Enable
0 Disable
1 Enable

VIDEO_IN_EN VIDEO_IN Clock Enable
0 Disable
1 Enable

Offset 0x08 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DIU_
EN

AXE_
EN

MEM
_EN

USB1
_EN

USB2
_EN

I2C_
EN

BDLC
_EN

SDH
C_EN

SPDI
F_EN

MBX_
BUS_

EN

MBX_
EN

MBX_
3D_
EN

IIM_
EN

VIDE
O_in_
_EN

W

Reset 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-11. System Clock Control Register 2 (SCCR2)
(Register is repeated for reference.)

Table 5-8. SCCR2 Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-17

5.3.1.4 System Clock Frequency Register 1 (SCFR1)
The system clock frequency register 1 shown in Figure 5-12 controls device units with a configurable 
clock ratio.

Offset 0x0C Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
IPS_DIV PCI_DIV

MBX_
GPX_
DIV

W

Reset 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MBX_GPX_
DIV

LPC_DIV NFC_DIV DIU_DIV
W

Reset 0 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0

= Unimplemented or Reserved

Figure 5-12. System Clock Frequency Register 1 (SCFR1)

Table 5-9. SCFR1 Field Descriptions (Sheet 1 of 3)

Field Description

IPS_DIV IPS Clock Divide Ratio 
Valid Settings

PCI_DIV PCI Clock Divide Ratio
Valid Settings

IPS_DIV Bit Encoding

1/2 010

1/3 011

1/4 100

1/6 110

PCI_DIV Bit Encoding

1/2 010

1/3 011

1/4 100

1/6 110

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-18 Freescale Semiconductor

MBS_GPX_DIV MBX 3D Clock Divide Ratio

LPC_DIV LPC Clock Divide Ratio

NFC_DIV NFC Divide Ratio

Offset 0x0C Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
IPS_DIV PCI_DIV

MBX_
GPX_
DIV

W

Reset 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MBX_GPX_
DIV

LPC_DIV NFC_DIV DIU_DIV
W

Reset 0 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0

= Unimplemented or Reserved

Figure 5-12. System Clock Frequency Register 1 (SCFR1)

Table 5-9. SCFR1 Field Descriptions (Sheet 2 of 3)

Field Description

MBS_GPX_DIV Bit Encoding

1/1 001

1/2 010

1/3 011

1/4 100

LPC_DIV Bit Encoding

1/1 001

1/2 010

1/3 011

1/4 100

NFC_DIV Bit Encoding

1/1 001

1/2 010

1/3 011

1/4 100

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-19

DIU_DIV DIU Divide Ratio

Note: The DIU Divide Ratio is related to the CSB_CLK. The DIU_CLK is derived directly from the SYS_CLK.

Offset 0x0C Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
IPS_DIV PCI_DIV

MBX_
GPX_
DIV

W

Reset 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MBX_GPX_
DIV

LPC_DIV NFC_DIV DIU_DIV
W

Reset 0 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0

= Unimplemented or Reserved

Figure 5-12. System Clock Frequency Register 1 (SCFR1)

Table 5-9. SCFR1 Field Descriptions (Sheet 3 of 3)

Field Description

CSB_CLK:DIU_CLK Field value

2 8

3 12

3.25 13

3.5 14

3.75 15

4 16

4.25 17

N/4 N

62.75 251

63 252

63.25 253

63.5 254

63.75 255

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-20 Freescale Semiconductor

5.3.1.5 System Clock Frequency Register 2 (SCFR2) 
The system clock control register 2 shown in Figure 5-13 programs SYS_DIV ratio. Changes to this 
register value unlock the Power Architecture PLL, because the source clock of the Power Architecture 
PLL is derived from the SYS_CLK.

Offset 0x10 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SYS_DIV

W

Reset cfg

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SDHC_DIV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

= Unimplemented or Reserved

Figure 5-13. System Clock Frequency Register (SCFR2)

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-21

Table 5-10. SCFR2 Field Descriptions

Field Description

SYS_DIV SYS_CLK Divide Ratio

SDHC_DIV SDHC Divide Ratio

Divide Factor Bit Encoding Divide Factor Bit Encoding

2 000000 17 010010

2.5 000001 18 010100

3 000010 19 010011

3.5 000011 20 010101

4 000100 21 010110

4.5 000101 22 011000

5 000110 23 010111

6 001000 24 011001

7 000111 25 011010

8 001001 26 011100

9 001010 27 011011

10 001100 28 011101

11 001011 29 011110

12 001101 30 100000

13 001110 31 011111

14 010000 32 100001

15 001111 33 100010

16 010001 All other settings are reserved.

CSB_CLK:SDHC_CLK Field value

2 8

3 12

3.25 13

3.5 14

3.75 15

4 16

4.25 17

N/4 N

62.75 251

63 252

63.25 253

63.5 254

63.75 255

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-22 Freescale Semiconductor

5.3.1.6 Shadow of System Clock Frequency Register 2 (SCFR2S) 
The Shadow of System Clock Control Register 2 shown in Figure 5-14, programs SYS_DIV ratio. When 
it gets control signal from PMC to update the main SCFR2, the value of this shadow register overwrites 
the SCFR2.

Offset 0x14 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SYS_DIV

W

Reset cfg 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SDHC_DIV

W

Reset 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

= Unimplemented or Reserved

Figure 5-14. Shadow of System Clock Frequency Register (SCFR2S)
(Note that the register is repeated for reference.)

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-23

5.3.1.7 Bread Crumb Register (BCR)
The bread crumb register shown in Figure 5-15 provides a mechanism for retaining data after reset. Data 
in this register is not affected by POR, HRESET, or SRESET.

Offset 0x18 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset N/A

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset N/A

Figure 5-15. Bread Crumb Register (BCR))

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-24 Freescale Semiconductor

5.3.1.8 PSC0 Clock Control Register (P0CCR)
The PSC0 clock control register shown in Figure 5-16 controls the PSC0 MCLK divider ratio, PSC0 
MCLK divider enable, PSC0 MCLK divider source, and the PSC0 MCLK source.

Table 5-11 defines the bit fields of P0CCR. 

Offset 0x1C Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PSC0_MCLK_DIV

MCLK
0_ENW

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PSC0_MCLK

_0_SRC

PSC0_
MCLK_
1_SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-16. PSC0 Clock Control Register (P0CCR)

Table 5-11. P0CCR Field Descriptions

Field Description

PSC0_
MCLK_DIV

MCLK_DIV divider Ratio
fmclk_out = fmclk_src/(MCLK_DIV + 1)

A value of 0x0 bypass the divider
Note: This value can only be changed when the value of MCLK_EN = 0

MCLK0_EN PSC0 Divider Enable
0 PSC0 divider is disable
1 PSC0 divider is enable

PSC0_MCLK_0_
SRC

PSC Mclk Divider Source
00 From SYS_CLK
01 From REF_CLK
10 From PSC_MCLK_IN
11 From SPDIF_TXCLK

PSC0_MCLK_1_
SRC

PSC MCLK Source
0 MCLK_DIV
1 SPDIF_RXCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-25

5.3.1.9 PSC1 Clock Control Register (P1CCR)
The PSC1 clock control register shown in Figure 5-17 controls the PSC1 MCLK divider ratio, PSC1 
MCLK divider enable, PSC1 MCLK divider source, and the PSC1 MCLK source.

Table 5-12 defines the bit fields of P1CCR.

Offset 0x20 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PSC1_MCLK_DIV

MCLK
1_ENW

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PSC1_MCLK

_0_SRC

PSC1_
MCLK_
1_SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-17. PSC1 Clock Control Register (P1CCR)

Table 5-12. P1CCR Field Descriptions

Field Description

PSC1_
MCLK_DIV

MCLK_DIV divider Ratio
fmclk_out = fmclk_src/(MCLK_DIV + 1)

A value of 0x0 bypass the divider
Note: This value can only be changed when the value of MCLK_EN equals 0

MCLK1_EN PSC1 Divider Enable
0 PSC1 divider is disable
1 PSC1 divider is enable

PSC1_
MCLK_0_SRC

PSC Mclk Divider Source
00 From SYS_CLK
01 From REF_CLK
10 From PSC_MCLK_IN
11 From SPDIF_TXCLK

PSC1_
MCLK_1_SRC

PSC MCLK Source
0 MCLK_DIV
1 SPDIF_RXCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-26 Freescale Semiconductor

5.3.1.10 PSC2 Clock Control Register (P2CCR)
The PSC2 clock control register shown in Figure 5-18 controls the PSC2 MCLK divider ratio, PSC2 
MCLK divider enable, PSC2 MCLK divider source, and the PSC2 MCLK source.

Table 5-13 defines the bit fields of P2CCR.

Offset 0x24 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PSC2_MCLK_DIV

MCLK
2_ENW

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PSC2_MCLK

_0_SRC

PSC2_
MCLK_
1_SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-18. PSC2 Clock Control Register (P2CCR)

Table 5-13. P2CCR Field Descriptions

Field Description

PSC2_
MCLK_DIV

MCLK_DIV divider Ratio
fmclk_out = fmclk_src/(MCLK_DIV + 1)

A value of 0x0 bypass the divider
Note: This value can only be changed when the value of MCLK_EN equals 0

MCLK2_EN PSC2 Divider Enable
0 PSC2 divider is disable
1 PSC2 divider is enable

PSC2_
MCLK_0_SRC

PSC Mclk Divider Source
00 From SYS_CLK
01 From REF_CLK
10 From PSC_MCLK_IN
11 From SPDIF_TXCLK

PSC2_
MCLK_1_SRC

PSC MCLK Source
0 MCLK_DIV
1 SPDIF_RXCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-27

5.3.1.11 PSC3 Clock Control Register (P3CCR)
The PSC3 clock control register shown in Figure 5-19 controls the PSC3 MCLK divider ratio, PSC3 
MCLK divider enable, PSC3 MCLK divider source, and the PSC3 MCLK source.

Table 5-14 defines the bit fields of P3CCR.

Offset 0x28 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PSC3_MCLK_DIV

MCLK
3_ENW

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PSC3_MCLK

_0_SRC

PSC3_
MCLK_
1_SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-19. PSC3 Clock Control Register (P3CCR)

Table 5-14. P3CCR Field Descriptions

Field Description

PSC3_
MCLK_DIV

MCLK_DIV divider Ratio
fmclk_out = fmclk_src/(MCLK_DIV + 1)

A value of 0x0 bypass the divider
Note: This value can only be changed when the value of MCLK_EN equals 0

MCLK3_EN PSC3 Divider Enable
0 PSC3 divider is disable
1 PSC3 divider is enable

PSC3_
MCLK_0_SRC

PSC Mclk Divider Source
00 From SYS_CLK
01 From REF_CLK
10 From PSC_MCLK_IN
11 From SPDIF_TXCLK

PSC3_
MCLK_1_SRC

PSC MCLK Source
0 MCLK_DIV
1 SPDIF_RXCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-28 Freescale Semiconductor

5.3.1.12 PSC4 Clock Control Register (P4CCR)
The PSC4 clock control register shown in Figure 5-20 controls the PSC4 MCLK divider ratio, PSC4 
MCLK divider enable, PSC4 MCLK divider source, and the PSC4 MCLK source.

Table 5-15 defines the bit fields of P4CCR.

Offset 0x2C Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PSC4_MCLK_DIV

MCLK
4_ENW

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PSC4_MCLK

_0_SRC

PSC4_
MCLK_
1_SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-20. PSC4 Clock Control Register (P4CCR)

Table 5-15. P4CCR Field Descriptions

Field Description

PSC4_
MCLK_DIV

MCLK_DIV divider Ratio
fmclk_out = fmclk_src/(MCLK_DIV + 1)

A value of 0x0 bypass the divider
Note: This value can only be changed when the value of MCLK_EN equals 0

MCLK4_EN PSC4 Divider Enable
0 PSC4 divider is disable
1 PSC4 divider is enable

PSC4_
MCLK_0_SRC

PSC Mclk Divider Source
00 From SYS_CLK
01 From REF_CLK
10 From PSC_MCLK_IN
11 From SPDIF_TXCLK

PSC4_
MCLK_1_SRC

PSC MCLK Source
0 MCLK_DIV
1 SPDIF_RXCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-29

5.3.1.13 PSC5 Clock Control Register (P5CCR)
The PSC5 clock control register shown in Figure 5-21 controls the PSC5 MCLK divider ratio, PSC5 
MCLK divider enable, PSC5 MCLK divider source, and the PSC5 MCLK source.

Table 5-16 defines the bit fields of P5CCR.

Offset 0x30 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PSC5_MCLK_DIV

MCLK
5_ENW

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PSC5_MCLK

_0_SRC

PSC5_
MCLK_
1_SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-21. PSC5 Clock Control Register (P5CCR)

Table 5-16. P5CCR Field Descriptions

Field Description

PSC5_
MCLK_DIV

MCLK_DIV divider Ratio
fmclk_out = fmclk_src/(MCLK_DIV + 1)

A value of 0x0 bypass the divider
Note: This value can only be changed when the value of MCLK_EN equals 0

MCLK5_EN PSC5 Divider Enable
0 PSC5 divider is disable
1 PSC5 divider is enable

PSC5_
MCLK_0_SRC

PSC Mclk Divider Source
00 From SYS_CLK
01 From REF_CLK
10 From PSC_MCLK_IN
11 From SPDIF_TXCLK

PSC5_
MCLK_1_SRC

PSC MCLK Source
0 MCLK_DIV
1 SPDIF_RXCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-30 Freescale Semiconductor

5.3.1.14 PSC6 Clock Control Register (P6CCR)
The PSC6 clock control register shown in Figure 5-22 controls the PSC6 MCLK divider ratio, PSC6 
MCLK divider enable, PSC6 MCLK divider source, and the PSC6 MCLK source. 

Table 5-17 defines the bit fields of P6CCR.

Offset 0x34 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PSC6_MCLK_DIV

MCLK
6_ENW

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PSC6_MCLK

_0_SRC

PSC6_
MCLK_
1_SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-22. PSC6 Clock Control Register (P6CCR)

Table 5-17. P6CCR Field Descriptions

Field Description

PSC6_
MCLK_DIV

MCLK_DIV divider Ratio
fmclk_out = fmclk_src/(MCLK_DIV + 1)

A value of 0x0 bypass the divider
Note: This value can only be changed when the value of MCLK_EN equals 0

MCLK6_EN PSC Divider Enable
0 PSC6 divider is disable
1 PSC6 divider is enable

PSC6_
MCLK_0_SRC

PSC MCLK Divider Source
00 From SYS_CLK
01 FROM REF_CLK
10 FROM PSC_MCLK_IN
11 FROM SPDIF_TXCLK

PSC6_
MCLK_1_SRC

PSC MCLK Source
0 MCLK_DIV
1 SPDIF_RXCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-31

5.3.1.15 PSC7 Clock Control Register (P7CCR)
The PSC7 clock control register shown in Figure 5-23 controls the PSC7 MCLK divider ratio, PSC7 
MCLK divider enable, PSC7 MCLK divider source, and the PSC7 MCLK source. 

Table 5-18 defines the bit fields of P7CCR.

Offset 0x38 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PSC7_MCLK_DIV

MCLK
7_ENW

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PSC7_MCLK

_0_SRC

PSC7_
MCLK_
1_SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-23. PSC7 Clock Control Register (P7CCR)

Table 5-18. P7CCR Field Descriptions

Field Description

PSC7_
MCLK_DIV

MCLK_DIV divider Ratio
fmclk_out = fmclk_src/(MCLK_DIV + 1)

A value of 0x0 bypass the divider
Note: This value can only be changed when the value of MCLK_EN = 0

MCLK7_EN PSC7 Divider Enable
0 PSC7 divider is disable
1 PSC7 divider is enable

PSC7_
MCLK_0_SRC

PSC Mclk Divider Source
00 From SYS_CLK
01 From REF_CLK
10 From PSC_MCLK_IN
11 From SPDIF_TXCLK

PSC7_
MCLK_1_SRC

PSC MCLK Source
0 MCLK_DIV
1 SPDIF_RXCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-32 Freescale Semiconductor

5.3.1.16 PSC8 Clock Control Register (P8CCR)
The PSC8 clock control register shown in Figure 5-24 controls the PSC8 MCLK divider ratio, PSC8 
MCLK divider enable, PSC8 MCLK divider source, and the PSC8 MCLK source. Table 5-19 defines the 
bit fields of P8CCR.

Offset 0x3C Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PSC8_MCLK_DIV

MCLK
8_ENW

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PSC8_MCLK

_0_SRC

PSC8_
MCLK_
1_SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-24. PSC8 Clock Control Register (P8CCR)

Table 5-19. P8CCR Field Descriptions

Field Description

PSC8_
MCLK_DIV

MCLK_DIV divider Ratio
fmclk_out = fmclk_src/(MCLK_DIV + 1)

A value of 0x0 bypass the divider
Note: This value can only be changed when the value of MCLK_EN equals 0

MCLK8_EN PSC8 Divider Enable
0 PSC8 divider is disable
1 PSC8 divider is enable

PSC8_
MCLK_0_SRC

PSC Mclk Divider Source
00 From SYS_CLK
01 From REF_CLK
10 From PSC_MCLK_IN
11 From SPDIF_TXCLK

PSC8_
MCLK_1_SRC

PSC MCLK Source
0 MCLK_DIV
1 SPDIF_RXCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-33

5.3.1.17 PSC9 Clock Control Register (P9CCR)
The PSC9 clock control register shown in Figure 5-25 controls the PSC9 MCLK divider ratio, PSC9 
MCLK divider enable, PSC9 MCLK divider source, and the PSC9 MCLK source. 

Table 5-20 defines the bit fields of P9CCR.

Offset 0x40 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PSC9_MCLK_DIV

MCLK
9_ENW

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PSC9_MCLK

_0_SRC

PSC9_
MCLK_
1_SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-25. PSC9 Clock Control Register 9 (P9CCR)

Table 5-20. P9CCR Field Descriptions

Field Description

PSC9_
MCLK_DIV

MCLK_DIV divider Ratio
fmclk_out = fmclk_src/(MCLK_DIV + 1)

A value of 0x0 bypass the divider
Note: This value can only be changed when the value of MCLK_EN equals 0

MCLK9_EN PSC9 Divider Enable
0 PSC9 divider is disable
1 PSC9 divider is enable

PSC9_
MCLK_0_SRC

PSC Mclk Divider Source
00 From SYS_CLK
01 From REF_CLK
10 From PSC_MCLK_IN
11 From SPDIF_TXCLK

PSC9_
MCLK_1_SRC

PSC MCLK Source
0 MCLK_DIV
1 SPDIF_RXCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-34 Freescale Semiconductor

5.3.1.18 PSC10 Clock Control Register (P10CCR)
The PSC10 clock control register shown in Figure 5-26 controls the PSC10 MCLK divider ratio, PSC10 
MCLK divider enable, PSC10 MCLK divider source, and the PSC10 MCLK source.

Table 5-21 defines the bit fields of P10CCR.

Offset 0x44

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PSC10_MCLK_DIV

MCLK1
0_ENW

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PSC10_MCL

K_0_SRC

PSC10_
MCLK_
1_SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-26. PSC10 Clock Control Register 10 (P10CCR)

Table 5-21. P10CCR Field Descriptions

Field Description

PSC10_
MCLK_DIV

MCLK_DIV divider Ratio
fmclk_out = fmclk_src/(MCLK_DIV + 1)

A value of 0x0 bypass the divider
Note: This value can only be changed when the value of MCLK_EN equals 0

MCLK10_EN PSC10 Divider Enable
0 PSC10 divider is disable
1 PSC10 divider is enable

PSC10_
MCLK_0_SRC

PSC Mclk Divider Source
00 From SYS_CLK
01 From REF_CLK
10 From PSC_MCLK_IN
11 From SPDIF_TXCLK

PSC10_
MCLK_1_SRC

PSC MCLK Source
0 MCLK_DIV
1 SPDIF_RXCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-35

5.3.1.19 PSC11 Clock Control Register (P11CCR)
The PSC11 clock control register shown in Figure 5-27 controls the PSC11 MCLK divider ratio, PSC11 
MCLK divider enable, PSC11 MCLK divider source, and the PSC11 MCLK source. 

Table 5-22 defines the bit fields of P11CCR.

Offset 0x48 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PSC11_MCLK_DIV

MCLK1
1_ENW

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PSC11_MCL

K_0_SRC

PSC11_
MCLK_
1_SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-27. PSC11 Clock Control Register 11 (P11CCR)

Table 5-22. P11CCR Field Descriptions

Field Description

PSC11_
MCLK_DIV

MCLK_DIV divider Ratio
fmclk_out = fmclk_src/(MCLK_DIV + 1)

A value of 0x0 bypass the divider
Note: This value can only be changed when the value of MCLK_EN equals 0

MCLK11_EN PSC11 Divider Enable
0 PSC11 divider is disable
1 PSC11 divider is enable

PSC11_
MCLK_0_SRC

PSC Mclk Divider Source
00 From SYS_CLK
01 From REF_CLK
10 From PSC_MCLK_IN
11 From SPDIF_TXCLK

PSC11_
MCLK_1_SRC

PSC MCLK Source
0 MCLK_DIV
1 SPDIF_RXCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-36 Freescale Semiconductor

5.3.1.20 SPDIF Clock Control Register (SCCR)
The SPDIF clock control register shown in Figure 5-28 controls the SPDIF MCLK divider ratio, SPDIF 
MCLK divider enable, SPDIF MCLK divider source, and the SPDIF MCLK source. 

Table 5-23 defines the bit fields of SPCCR.

Offset 0x4C Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SPDIF_MCLK_RATIO DE5

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SPDIF_CLK

_SRC

SPDI
F_TX
_SRC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-28. SPDIF Clock Control Register (SCCR)

Table 5-23. SCCR Field Descriptions

Field Description

SPDIF_MCLK_
RATIO

SPDIF Mclk Divider Ratio
The Divided Clock Frequency = System PLL Clock Frequency/(SPDIF_CLK_RATIO +1)
Note: 000_0000_0000_0000 is reserved.
Note: The ratio change needs to be under divider disable state.

DE5 SPDIF Mclk Divider Enable
0 mclk divider 0 disable
1 mclk divider 0 enable

SPDIF_CLK_
SRC

SPDIF Mclk Divider Source
00 From SYS_CLK
01 From REF_CLK
10 From PSC_MCLK_IN
11 From SPDIF_TXCLK

SPDIF_TX_SRC SPDIF MCLK Source

0 SPDIF Clock Divider
1 SPDIF_RXCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-37

5.3.1.21 CFM Clock Control Register (CCCR)
The CFM clock control register shown in Figure 5-29 controls:

• CFM clock0 source
• CFM clock1 source
• CFM clock2 source
• CFM clock3 source

Table 5-24 defines the bit fields of CCCR.

Offset 0x50 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
CFM_SRC0 CFM_SRC1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CFM_SRC2 CFM_SRC3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-29. CFM Clock Control Register (CCCR)
(Register is repeated for reference.)

Table 5-24. CCCR Field Descriptions

Field Description

CFM_SRC0 CFM Clock 0 Source Select
000 psc0_mclk_out
001 psc1_mclk_out
010 psc2_mclk_out
100 psc0_bclk
101 psc1_bclk
110 psc2_bclk

CFM_SRC1 CFM Clock 1 Source Select
000 psc3_mclk_out
001 psc4_mclk_out
010 psc5_mclk_out
100 psc3_bclk
101 psc4_bclk
110 psc5_bclk

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-38 Freescale Semiconductor

CFM_SRC2 CFM Clock 2 Source Select
000 psc6_mclk_out
001 psc7_mclk_out
010 psc8_mclk_out
100 psc6_bclk
101 psc7_bclk
110 psc8_bclk

CFM_SRC3 CFM Clock 3 Source Select
000 psc9_mclk_out
001 psc10_mclk_out
010 psc11_mclk_out
100 psc9_bclk
101 psc10_bclk
110 psc11_bclk

Offset 0x50 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
CFM_SRC0 CFM_SRC1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CFM_SRC2 CFM_SRC3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-29. CFM Clock Control Register (CCCR)
(Register is repeated for reference.)

Table 5-24. CCCR Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-39

5.3.1.22 DIU Clock Config Register (DCCR)
The DIU clock config register shown in Figure 5-30 configures the number of CSB cycles delay added to 
pixel clock to pad compare to pixel clock to DIU block.

Table 5-25 defines the bit fields of DCCR.

Offset 0x54 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DLY_NUM

CLK_
INVW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-30. DIU Clock Config Register (DCCR)

Table 5-25. DCCR Field Descriptions

Field Description

DLY_NUM Number of CSB_CLK cycles delay added to pixel clock output to pad compare pixel clock to DIU.
00 0 cycle delay
01 2 cycle delay
10 4 cycles delay
11 6 cycles delay

CLK_INV Pixel Clock Inversion
0 The pixel clock to pad is the same as the one to DIU. DLY_NUM decides the delay CSB cycles to it.
1 The pixel clock to pad is the inverted of the one to DIU. DLY_NUM decides the delay CSB cycles added 

to it.

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-40 Freescale Semiconductor

5.3.1.23 MSCAN1Clock Control Register (M1CCR)
The MSCAN1 clock control register shown in Figure 5-31 controls the MSCAN1 source clock divider 
ratio, MSCAN1 divider enable and MSCAN1 divider clock source.

Table 5-26 defines the bit fields of M1CCR.

Offset 0x58 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MSCAN1_CLK_DIV

MSCAN
1_ENW

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MSCAN1_C
LK_SRCW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-31. MSCAN1 Clock Control Register (M1CCR)

Table 5-26. M1CCR Field Descriptions

Field Description

MSCAN1_CLK_D
IV

MSCAN1 divider Ratio
fcan_source_clk = fmscan_src/(MSCAN1_CLK_DIV + 1)

A value of 0x0 bypass the divider
Note: This value can only be changed when the value of MSCAN1_EN equals 0

MSCAN1_EN MSCAN1 Divider Enable
0 MSCAN1 divider is disable
1 MSCAN1 divider is enable

MSCAN1_
CLK_SRC

MSCAN1 CLK Source
00 From SYS_CLK
01 From REF_CLK
10 From PSC_MCLK_IN
11 From SPDIF_TXCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-41

5.3.1.24 MSCAN2 Clock Control Register (M2CCR)
The MSCAN2 clock control register shown in Figure 5-32 controls the MSCAN2 source clock divider 
ratio, MSCAN2 divider enable, and MSCAN2 divider clock source.

Table 5-27 defines the bit fields of M2CCR.

Offset 0x5C Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MSCAN2_CLK_DIV

MSCAN
2_ENW

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MSCAN2_C
LK_SRCW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-32. MSCAN2 Clock Control Register (M2CCR)

Table 5-27. M2CCR Field Descriptions

Field Description

MSCAN2_CLK_D
IV

MSCAN2 divider Ratio
fcan_source_clk = fmscan_src/(MSCAN2_CLK_DIV + 1)

A value of 0x0 bypass the divider
Note: This value can only be changed when the value of MSCAN2_EN equals 0

MSCAN2_EN MSCAN2 Divider Enable
0 MSCAN2 divider is disable
1 MSCAN2 divider is enable

MSCAN2_
CLK_SRC

MSCAN2 CLK Source
00 From SYS_CLK
01 From REF_CLK
10 From PSC_MCLK_IN
11 From SPDIF_TXCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-42 Freescale Semiconductor

5.3.1.25 MSCAN3 Clock Control Register (M3CCR)
The MSCAN3 clock control register shown in Figure 5-33 controls the MSCAN3 source clock divider 
ratio, MSCAN3 divider enable and MSCAN3 divider clock source.

Table 5-28 defines the bit fields of M3CCR.

Offset 0x60 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MSCAN3_CLK_DIV

MSCAN
3_ENW

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MSCAN3_C
LK_SRCW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-33. MSCAN3 Clock Control Register (M3CCR)

Table 5-28. M3CCR Field Descriptions

Field Description

MSCAN3_CLK_D
IV

MSCAN3 divider Ratio
fcan_source_clk = fmscan_src/(MSCAN3_CLK_DIV + 1)

A value of 0x0 bypass the divider
Note: This value can only be changed when the value of MSCAN3_EN equals 0

MSCAN3_EN MSCAN3 Divider Enable
0 MSCAN3 divider is disable
1 MSCAN3 divider is enable

MSCAN3_
CLK_SRC

MSCAN3 CLK Source
00 From SYS_CLK
01 From REF_CLK
10 From PSC_MCLK_IN
11 From SPDIF_TXCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

Freescale Semiconductor 5-43

5.3.1.26 MSCAN4 Clock Control Register (M4CCR)
The MSCAN4 clock control register shown in Figure 5-34 controls the MSCAN4 source clock divider 
ratio, MSCAN4 divider enable and MSCAN4 divider clock source.

Table 5-29 defines the bit fields of M4CCR.

Offset 0x64 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MSCAN4_CLK_DIV

MSCAN
4_ENW

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MSCAN4_C
LK_SRCW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-34. MSCAN4 Clock Control Register (M4CCR)

Table 5-29. M4CCR Field Descriptions

Field Description

MSCAN4_CLK_D
IV

MSCAN4 divider Ratio
fcan_source_clk = fmscan_src/(MSCAN4_CLK_DIV + 1)

A value of 0x0 bypass the divider
Note: This value can only be changed when the value of MSCAN4_EN equals 0

MSCAN4_EN MSCAN4 Divider Enable
0 MSCAN4 divider is disable
1 MSCAN4 divider is enable

MSCAN4_
CLK_SRC

MSCAN4 CLK Source
00 From SYS_CLK
01 From REF_CLK
10 From PSC_MCLK_IN
11 From SPDIF_TXCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Clocks and Low-Power Modes

5-44 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 6-1

Chapter 6  
AXE System

6.1 Introduction 
Figure 6-1 shows a block diagram of the AXE system.

Figure 6-1. Block Diagram of the Auxiliary Execution Engine

The AXE system features a 200 MHz RISC microprocessor with two computation units: a scalar integer 
unit implementing a general 32-bit instruction set and a 48-bit fixed-point processing unit. The AXE is 
intended to off-load the main system CPU on compute and data-flow intensive operations (for example: 
digital signal processing and compressed audio encode/decode). This chapter provides a basic overview 
of features, operation, and system interfaces. Refer to the AXE Reference Manual for a detailed description 
of the core registers and instruction set.

6.1.1 Features
• SNE processor

— 200 MHz clock
— can execute scalar and vector instructions
— Eight 32-bit data registers
— Eight 32-bit address registers
— Eight 48-bit vector register
— Single-cycle 32*32 bit multiply and multiply/accumulate

Jtag

Slave IP Bus

Debug Force

Debug
Interface

SNE
Processor

Interrupt
Interface

DMA
Channel

8 Kbyte
Instruction

Cache

2 Kbyte
Instruction

SRAM

Data Bus
Logic

SRAM

Interface

SNE_INT

DDR

IP bus

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-2 Freescale Semiconductor

• Sleep mode via register bit. Writing 1 to it sends the processor into low-power sleep mode. Any 
non-masked interrupt wakes the processor out of sleep mode.

• 8-Kbyte 1-way set-associative instruction cache
— Feature to invalidate cache content
— Possible to disable the cache

• 2-Kbyte instruction SRAM
• Single channel DMA for transfer of data between MEM and DRAM or IP Bus. The DMA works 

in 32-byte bursts, and allows up to four pipelined transfers. It is capable of transfer speeds in excess 
of 500 Mbyte/sec.

• Hardware debugger
— One hardware program counter breakpoint register
— One hardware address and data breakpoint register
— Core has two modes: normal run and debug
— Possible to enter debug mode via breakpoint or via debug instruction
— In debug mode, it’s possible to see all processor registers and peek into processor memory.
— Hardware debugger is controlled via JTAG tap controller, compliant with IEEE 1149.1,
— The debug breakpoint registers are accessible by the core. This allows dynamic breakpoint 

generation.
• Interrupt controller

— There is an interrupt controller that is part of the core. It supports 32 interrupts. Every interrupt 
has a programmable 6-bit vector code. There is a priority encoder, detecting highest level of 
pending interrupt.

• Two 4x32 bit FIFOs for interprocessor communication

6.2 Memory Map and Register Definition

6.2.1 Data Memory Map

Table 6-1. Data Bus Memory Map

Offset or Address Address Space Access

Programmable1

1 All addresses where bits [31:18] are equal to bits [31:18] of SRAM Base Address Register (SRAMBAR) are mapped to the 
on-chip SRAM

On-Chip SRAM (MEM) R/W

0 to 0x1FFF AXE register space R/W

Programmable2

2 All addresses which are falling into the DDR address window, specified by DDR Local Access Window Base Address Register 
(DDRLAWBAR) and DDR Local Access Window Attributes Register (DDRLAWAR) within XLBMEN memory map, are mapped 
to the DDR-SDRAM.

DDR-SDRAM R/W

Other3

3 All addresses that do not hit in any of the three above are mapped to the IP Bus

IP Bus R/W

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-3

6.2.2 Instruction Memory Map

Table 6-2. IP-Bus Memory Map

Offset or Address Register Access

0x00 DMA Address Register R/W

0x04 DMA MEM Address Register R/W

0x08 DMA Attributes Register R/W

0x0C Instruction Cache and SRAM Attributes Register R/W

0x10 INTPRI0 Interrupt Priority Register R/W

0x14 INTPRI1 Interrupt Priority Register R/W

0x18 INTPRI2 Interrupt Priority Register R/W

0x1C INTPRI3 Interrupt Priority Register R/W

0x20 INTPRI4 Interrupt Priority Register R/W

0x24 INTPRI5 Interrupt Priority Register R/W

0x28 INTPRI6 Interrupt Priority Register R/W

0x2C INTPRI7 Interrupt Priority Register R/W

0x30 Instruction SRAM Address Register R/W

0x34 Instruction SRAM Data Register R/W

0x3C FIFO1 Write Data Register W

0x40 FIFO1 Read Data Register R

0x44 FIFO2 Write Data Register W

0x48 FIFO2 Read Data Register R

0x4C FIFO Level Register R

0x50 SNE Interrupt Enable Register RW

0x54 Power Architecture Interrupt Enable Register RW

0x58 Interrupt Clear/Set Register W

0x5C Interrupt Pending Register R

0x60 Instruction Cache Address Register RW

0x64 Instruction Cache Data Register RW

0x68 Instruction Cache Tag Register RW

Table 6-3. Instruction Bus Memory Map

Offset or Address Address Space Access

Programmable1 On-Chip SRAM (MEM) R/W

0 to 0x1FFF AXE instruction SRAM R/W

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-4 Freescale Semiconductor

6.2.3 Register Summary
Table 6-4 shows the format for a register summary table 

Programmable2 DDR-SDRAM R/W

Other3 IP Bus R/W

1 All addresses where bits [31:18] are equal to bits [31:18] of SRAM Base Address Register (SRAMBAR) are mapped to the 
on-chip SRAM

2 All addresses which are falling into the DDR address window, specified by DDR Local Access Window Base Address Register 
(DDRLAWBAR) and DDR Local Access Window Attributes Register (DDRLAWAR) within XLBMEN memory map, are mapped 
to the DDR-SDRAM.

3 All addresses that do not hit in any of the three above are mapped to the IP Bus

Table 6-4. AXE Register Summary (Sheet 1 of 4)

Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMA
_ADDR

0x00

R
DMA_ADDR[31:16]

W

R
DMA_ADDR[15:2]

W

DMA_MEM_
ADDR
0x04

R DMA_MEM_ADDR[19:
16]W

R
DMA_MEM_ADDR[15:2]

W

DMA 
ATTRIBUTE

S
0x08

R
DMA 
WRIT

E

INT 
EN

INT
PEN

D DMA
_ON

W
INT 
CLE
AR

R
WORD_COUNT[13:0]

W

INSTRUCTI
ON 

SRAM, 
CACHE 

ATTRIBUTE
S

0x0C

R
SRAM

2 
DUS-

ER ON

SRAM
2 

DSUP 
ON

SRAM
2 

IUS-
ER ON

SRAM
2 

ISUP 
ON

CAC
HE 
ON

IRA
M_U
SER
_ON

IRA
M_S
UP_
ON

PRO
C 

RSTW

CAC
HE 

CLE
AR

R

W

Table 6-3. Instruction Bus Memory Map

Offset or Address Address Space Access

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-5

INTPRI0
0x10

R INT0
ON

INT0 PRI[5:0]
INT1 
ON

INT1 PRI[5:0]
W

R INT2 
ON

INT2 PRI[5:0]
INT3 
ON

INT3 PRI[5:0]
W

INTPRI1
0x14

R INT4
ON

INT4 PRI[5:0]
INT5 
ON

INT5 PRI[5:0]
W

R INT6 
ON

INT6 PRI[5:0]
INT7 
ON

INT7 PRI[5:0]
W

INTPRI2
0x18

R INT8
ON

INT8 PRI[5:0]
INT9 
ON

INT9 PRI[5:0]
W

R INT10 
ON

INT10 PRI[5:0]
INT11 

ON
INT11 PRI[5:0]

W

INTPRI3
0x1C

R INT12
ON

INT12 PRI[5:0]
INT13 

ON
INT13 PRI[5:0]

W

R INT14 
ON

INT14 PRI[5:0]
INT15 

ON
INT15 PRI[5:0]

W

INTPRI4
0x20

R INT16
ON

INT16 PRI[5:0]
INT17 

ON
INT17 PRI[5:0]

W

R INT18 
ON

INT18 PRI[5:0]
INT19 

ON
INT19 PRI[5:0]

W

INTPRI5
0x24

R INT20
ON

INT20 PRI[5:0]
INT21 

ON
INT21 PRI[5:0]

W

R INT22 
ON

INT22 PRI[5:0]
INT23 

ON
INT23 PRI[5:0]

W

INTPRI6
0x28

R INT24
ON

INT24 PRI[5:0]
INT25 

ON
INT25 PRI[5:0]

W

R INT26 
ON

INT26 PRI[5:0]
INT27 

ON
INT27 PRI[5:0]

W

INTPRI7
0x2C

R INT28
ON

INT28 PRI[5:0]
INT29 

ON
INT29 PRI[5:0]

W

R INT30 
ON

INT30 PRI[5:0]
INT31 

ON
INT31 PRI[5:0]

W

Table 6-4. AXE Register Summary (Sheet 2 of 4)

Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-6 Freescale Semiconductor

INST SRAM 
ADDRESS

0x30

R

W

R
INSTR_ADDR[15:2]

W

INSTR 
SRAM DATA

0x34

R
INSTR_DATA[31:16]

W

R
INSTR_DATA[15:0]

W

FIFO1_WDA
TA

0x3C

R

W FIFO1_WDATA[31:16]

R

W FIFO1_WDATA[15:0]

FIFO1_RDAT
A

0x40

R FIFO1_RDATA[31:16]

W

R FIFO1_RDATA[15:0]

W

FIFO2_WDA
TA

0x44

R

W FIFO2_WDATA[31:16]

R

W FIFO2_WDATA[15:0]

FIFO2_RDAT
A

0x48

R FIFO2_RDATA[31:16]

W

R FIFO2_RDATA[15:0]

W

FIFO_LEVEL
0x4C

R FIFO1_FILL[2:0] FIFO2_FILL[2:0]

W

R

W

SNE_INTEN
0x50

R
SNE SOFTINT[7:0]

S
F

1E
E

S
F

1N
E

E

S
F

1N
F

E

S
F

1U
E

S
F

1O
E

W

R

S
F

2E
E

S
F

2N
E

E

S
F

2N
F

E

S
F

2U
E

S
F

2O
E

W

Table 6-4. AXE Register Summary (Sheet 3 of 4)

Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-7

PPC_INTEN
0x54

R
PPC SOFTINT[7:0]

P
F

1E
E

P
F

1N
E

E

P
F

1N
F

E

P
F

1U
E

P
F

1O
E

W

R

P
F

2E
E

P
F

2N
E

E

P
F

2N
F

E

P
F

2U
E

P
F

2O
E

W

INTCLEARS
ET

0x58

R

W SOFTINT_SET[7:0] SOFTINT_CLEAR[7:0]

R

W
F1U

C
F1O

C
F2U

C
F2O

C

INT_PENDIN
G

0x5C

R SOFTINT[7:0]

F
1E

P

F
1N

E
P

F
1N

F
P

F
1U

P
 

F
1O

P

W

R

F
2E

P

F
2N

E
P

F
2N

F
P

F
2U

 P

F
2O

P

W

ICACHE_AD
DR

0x60

R

W

R
ICACHE_ADDR[12:2]

W

ICACHE_DA
TA

0x64

R
ICACHE_DATA[31:16]

W

R
ICACHE_DATA[15:0]

W

ICACHE_TA
G

0x68

R
V S Addr[31:29]

W

R
Addr[28:13]

W

Table 6-4. AXE Register Summary (Sheet 4 of 4)

Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-8 Freescale Semiconductor

6.2.4 Register Descriptions

6.2.4.1 DMA Operation

6.2.4.1.1 DMA Address Register

Offset 0x00Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DMA_ADDR[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DMA_ADDR[15:2]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-2. DMA Address Register

Table 6-5. DMA Address Register Field Descriptions

Field Description

DMA_ADDR
[31:2]

Contains the first or next address the DMA uses to address DDR or IP Bus. It is auto-incremented by the 
DMA. 
Note: Do not write this register while the DMA is running. It is valid to read this register when the DMA is 

running, but it changes as it is auto-incremented every time a DMA access to DDR or IP Bus is done.

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-9

6.2.4.1.2 DMA MEM Address Register

Offset 0x04Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DMA_MEM_ADDR[19:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DMA_MEM_ADDR[15:2]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-3. DMA MEM Address Register

Table 6-6. DMA MEM Address Register Field Descriptions

Field Description

DMA_MEM_ADD
R

Contains the first or next address the DMA uses to address the on-chip SRAM (MEM). It is auto-incremented 
by the DMA. 
Note: Do not write this register while the DMA is running. It is valid to read this register when the DMA is 

running, but it changes as it is auto-incremented every time a DMA access to MEM is done.

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-10 Freescale Semiconductor

6.2.4.1.3 DMA Attributes Register

Offset 0x08Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DMA
_DIR
ECTI
ON

INT_
EN

INT_
PEN

D DMA
_ONW INT_

CLEA
R

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
WORD_COUNT[13:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-4. DMA Attributes Register

Table 6-7. DMA Attributes Register Field Descriptions

Field Description

DMA_
DIRECTION

1: DMA transfers from the on-chip SRAM (MEM) to the DDR or IP Bus
0: DMA transfers from the DDR or IP Bus to the on-chip SRAM (MEM)

INT_EN 0: DMA finish event doesn’t generate an interrupt to the SNE processor

1: DMA finish event generates an interrupt to the SNE processor

INT_CLEAR Writing 1 to this bit clears interrupt pending bit.

INT_PEND Interrupt pending. This bit is set when DMA finishes the current transfer.

DMA_ON DMA on bit. If 1, the DMA is armed and transfers data until WORD_COUNT decrements to 0.

WORD_COUNT The DMA transfer count in 32-words. It is auto-decremented by the DMA. 
Note: Do not write while the DMA is running, or indeterminate operation results. It is valid to read while the 

DMA is running, but the count is updated every time data is transferred

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-11

6.2.4.2 Instruction Cache and SRAM Operation

6.2.4.2.1 Instruction Cache and SRAM Attributes Register

Offset 0x0CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

SLEEP

SRAM
2 

DUSE
R ON

SRAM
2 

DSUP 
ON

SRAM
2 

IUSE
R ON

SRAM
2 

ISUP 
ON

CACH
E ON

IRAM
_USE
R_ON

IRAM
_SUP
_ON

PROC 
RST

W CACH
E 

CLEA
R

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-5. Instruction Cache and SRAM Attributes Register

Table 6-8. Instruction Cache and SRAM Attributes Register Field Descriptions

Field Description

SLEEP 1: AXE is in sleep mode, all clocks stopped
0: AXE is in run mode, normal operation.

SRAM2 DUSER 
ON

1: Data accesses to on-chip SRAM (MEM) are enabled in SNE user mode

0: Data accesses to on-chip SRAM (MEM) are disabled in SNE user mode

SRAM2 DSUP 
ON

1: Data accesses to on-chip SRAM (MEM) are enabled in SNE supervisor mode

0: Data accesses to on-chip SRAM (MEM) are disabled in SNE supervisor mode

SRAM2 IUSER 
ON

1: Instruction accesses to on-chip SRAM (MEM) are enabled in SNE user mode
0: Instruction accesses to on-chip SRAM (MEM) are disabled in SNE user mode

SRAM2 ISUPON 1: Instruction accesses to on-chip SRAM (MEM) are enabled in SNE supervisor mode

0: Instruction accesses to on-chip SRAM (MEM) are disabled in SNE supervisor mode

CACHE ON 1: Instruction cache is enabled

0: Instruction cache is disabled

CACHE CLEAR Writing a 1 to this bit, invalidates the instruction cache

IRAM_USER_O
N

1: Instruction accesses to instruction SRAM are enabled in SNE user mode
0: Instruction accesses to instruction SRAM are disabled in SNE user mode

IRAM_SUP_ON 1: Instruction accesses to instruction SRAM are enabled in SNE supervisor mode

0: Instruction accesses to instruction SRAM are disabled in SNE supervisor mode

PROC RST Processor Reset

1: SNE processor kept in reset, not executing code

0: SNE processor is executing code

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-12 Freescale Semiconductor

AXE enters sleep mode when sleep mode is written 1. Wake up happens when any of following occurs:
• The Power Architecture processor writes a zero to the SLEEP bit, instructing the processor to run 

again.
• An interrupt, that is not disabled, is made pending to the SNE processor.

6.2.4.3 Interrupt Controller

6.2.4.3.1 INTPRI0 Interrupt Priority Register

Offset 0x10Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R INT0 
ON

INT0 PRI
INT1 
ON

INT1 PRI
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R INT2 
ON

INT2 PRI
INT3 
ON

INT3 PRI
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-6. INTPRI0 Interrupt Priority Register

Table 6-9. INTPRI0 Interrupt Priority Register Field Descriptions

Field Description

INT0 ON 1: Interrupt 0 enable. Pending interrupt 0 interrupts SNE processor

0: Interrupt 0 disable. Pending interrupt 0 does not interrupt SNE processor

INT0 PRI Interrupt 0 priority and interrupt vector. 
Note: Interrupt priority 0 is the highest priority. Interrupt priority 63 is the lowest priority.

INT1 ON - 
INT3 ON

Same as INT0 ON, but for interupt 1 - 3

INT1 PRI - 
INT3 PRI

Same as INT0 PRI, but for interupt 1 - 3

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-13

6.2.4.3.2 INTPRI1 Interrupt Priority Register

Offset 0x14Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R INT4 
ON

INT4 PRI
INT5 
ON

INT5 PRI
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R INT6 
ON

INT6 PRI
INT7 
ON

INT7 PRI
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-7. INTPRI1 Interrupt Priority Register

Table 6-10. INTPRI1 Interrupt Priority Register Field Descriptions

Field Description

INT4 ON - 
INT7 ON

Same as INT0 ON, but for interupt 4 - 7

INT4 PRI - 
INT7 PRI

Same as INT0 PRI, but for interupt 4 - 7

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-14 Freescale Semiconductor

6.2.4.3.3 INTPRI2 Interrupt Priority Register

Offset 0x18Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R INT8 
ON

INT8 PRI
INT9 
ON

INT9 PRI
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R INT10 
ON

INT10 PRI
INT11 

ON
INT11 PRI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-8. INTPRI2 Interrupt Priority Register

Table 6-11. INTPRI2 Interrupt Priority Register Field Descriptions

Field Description

INT8 ON - 
INT11 ON

Same as INT0 ON, but for interupt 8 - 11

INT8 PRI - 
INT11 PRI

Same as INT0 PRI, but for interupt 8 - 11

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-15

6.2.4.3.4 INTPRI3 Interrupt Priority Register

Offset 0x1CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R INT12 
ON

INT12 PRI
INT13 

ON
INT13 PRI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R INT14 
ON

INT14 PRI
INT15 

ON
INT15 PRI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-9. INTPRI3 Interrupt Priority Register

Table 6-12. INTPRI3 Interrupt Priority Register Field Descriptions

Field Description

INT12 ON - 
INT15 ON

Same as INT0 ON, but for interupt 12 - 15

INT12 PRI - 
INT15 PRI

Same as INT0 PRI, but for interupt 12 - 15

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-16 Freescale Semiconductor

6.2.4.3.5 INTPRI4 Interrupt Priority Register

Offset 0x20Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R INT16 
ON

INT16 PRI
INT17 

ON
INT17 PRI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R INT18 
ON

INT18 PRI
INT19 

ON
INT19 PRI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-10. INTPRI4 Interrupt Priority Register

Table 6-13. INTPRI4 Interrupt Priority Register Field Descriptions

Field Description

INT16 ON - 
INT19 ON

Same as INT0 ON, but for interupt 16 - 19

INT16 PRI - 
INT19 PRI

Same as INT0 PRI, but for interupt 16 - 19

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-17

6.2.4.3.6 INTPRI5 Interrupt Priority Register

Offset 0x24Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R INT20 
ON

INT20 PRI
INT21 

ON
INT21 PRI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R INT22 
ON

INT22 PRI
INT23 

ON
INT23 PRI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-11. INTPRI5 Interrupt Priority Register

Table 6-14. INTPRI5 Interrupt Priority Register Field Descriptions

Field Description

INT20 ON - 
INT23 ON

Same as INT0 ON, but for interupt 20 - 23

INT20 PRI - 
INT23 PRI

Same as INT0 PRI, but for interupt 20 - 23

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-18 Freescale Semiconductor

6.2.4.3.7 INTPRI6 Interrupt Priority Register

Offset 0x28Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R INT24 
ON

INT24 PRI
INT25 

ON
INT25 PRI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R INT26 
ON

INT26 PRI
INT27 

ON
INT27 PRI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-12. INTPRI6 Interrupt Priority Register

Table 6-15. INTPRI6 Interrupt Priority Register Field Descriptions

Field Description

INT24 ON - 
INT27 ON

Same as INT0 ON, but for interupt 24 - 27

INT24 PRI - 
INT27 PRI

Same as INT0 PRI, but for interupt 24 -27

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-19

6.2.4.3.8 INTPRI7 Interrupt Priority Register

Offset 0x2CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R INT28 
ON

INT28 PRI
INT29 

ON
INT29 PRI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R INT30 
ON

INT30 PRI
INT31 

ON
INT31 PRI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-13. INTPRI7 Interrupt Priority Register

Table 6-16. INTPRI7 Interrupt Priority Register Field Descriptions

Field Description

INT28 ON - 
INT31 ON

Same as INT0 ON, but for interupt 28 - 31

INT28 PRI - 
INT31 PRI

Same as INT0 PRI, but for interupt 28 - 31

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-20 Freescale Semiconductor

6.2.4.4 Instruction SRAM Indirect Access

6.2.4.4.1 Instruction SRAM Address Register

Offset 0x30Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
INSTR_ADDR[15:2]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-14. Instruction SRAM Address Register

Table 6-17. Instruction SRAM Address Register Field Descriptions

Field Description

INSTR_ADDR Address into instruction SRAM. Used for indirect access to the instruction SRAM.

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-21

6.2.4.4.2 Instruction SRAM Data Register

Offset 0x34Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
INSTR_DATA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
INSTR_DATA[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-15. Instruction SRAM Data Register

Table 6-18. Instruction SRAM Data Register Field Descriptions

Field Description

INSTR_DATA Reading INSTR_DATA returns content of instruction SRAM at address INSTR_ADDR.

Writing INSTR_DATA writes the data into instruction SRAM at address INSTR_ADDR.
Note: Both opperation are only valid when the instruction accesses to the instruction SRAM are disabled. 

IRAM_USER_ON and IRAM_SUP_ON are set to zero.

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-22 Freescale Semiconductor

6.2.4.5 Inter Processor Communication FIFOs

6.2.4.5.1 FIFO1 Write Data Register

Offset 0x3CAccess: User write only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W FIFO1_WDATA[31:16]

Reset

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W FIFO1_WDATA[15:0]

Reset

= Unimplemented or Reserved

Figure 6-16. FIFO1 Write Data Register

Table 6-19. FIFO1 Write Data Register Field Descriptions

Field Description

FIFO1_WDATA FIFO 1 write data
Note: Only 32 bit write accesses are allowed.

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-23

6.2.4.5.2 FIFO1 Read Data Register

Offset 0x40Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R FIFO1_RDATA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FIFO1_RDATA[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-17. FIFO1 Read Data Register

Table 6-20. FIFO1 Read Data Register Field Descriptions

Field Description

FIFO1_RDATA FIFO 1 read data
Note: Only 32 bit read accesses are allowed.

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-24 Freescale Semiconductor

6.2.4.5.3 FIFO2 Write Data Register

Offset 0x44Access: User write only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W FIFO2_WDATA[31:16]

Reset

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W FIFO2_WDATA[15:0]

Reset

= Unimplemented or Reserved

Figure 6-18. FIFO2 Write Data Register

Table 6-21. FIFO2 Write Data Register Field Descriptions

Field Description

FIFO2_WDATA FIFO 2 write data
Note: Only 32 bit write accesses are allowed.

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-25

6.2.4.5.4 FIFO2 Read Data Register

Offset 0x48Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R FIFO2_RDATA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FIFO2_RDATA[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-19. FIFO2 Read Data Register

Table 6-22. FIFO2 Read Data Register Field Descriptions

Field Description

FIFO2_RDATA FIFO 2 read data
Note: Only 32 bit read accesses are allowed.

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-26 Freescale Semiconductor

6.2.4.5.5 FIFO Level Register

Offset 0x4CAccess: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R FIFO1_FILL FIFO2_FILL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-20. FIFO Level Register

Table 6-23. FIFO2 Level Register Field Descriptions

Field Description

FIFO1_FILL FIFO 1 level (32-bit words)

FIFO2_FILL FIFO 2 level (32-bit words)

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-27

6.2.4.6 SNE Interrupt Enable Register

Offset 0x50Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SNE SOFTINT[7:0]

S
F

1E
E

S
F

1N
E

E

S
F

1N
F

E

S
F

1U
E

S
F

1O
E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

S
F

2E
E

S
F

2N
E

E

S
F

2N
F

E

S
F

2U
E

S
F

2O
E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-21. SNE Interrupt Enable Register

Table 6-24. SNE Interrupt Enable Register Field Descriptions

Field Description

SNE 
SOFTINT[7:0]

Any software interrupt can be routed to the SNE processor by setting the corresponding SNE SOFTINT bit.

SF1EE SNE FIFO1 Empty Enable bit
0: SNE processor doesn’t recognize a FIFO1 EMPTY interrupt.
1: FIFO1 EMPTY interrupt is routed to the SNE processor.

SF1NEE SNE FIFO1 Not Empty Enable bit
0: SNE processor doesn’t recognize a FIFO1 NOT EMPTY interrupt.
1: FIFO1 NOT EMPTY interrupt is routed to the SNE processor.

SF1NFE SNE FIFO1 Not Full Enable bit
0: SNE processor doesn’t recognize a FIFO1 NOT FULL interrupt.
1: FIFO1 NOT FULL interrupt is routed to the SNE processor.

SF1UE SNE FIFO1 Underrun Enable bit
0: SNE processor doesn’t recognize a FIFO1 underrun interrupt.
1: FIFO1 underrun interrupt is routed to the SNE processor.

SF1OE SNE FIFO1 Overrun Enable bit
0: SNE processor doesn’t recognize a FIFO1 overrun interrupt.
1: FIFO1 overrun interrupt is routed to the SNE processor.

SF2EE SNE FIFO2 Empty Enable bit
0: SNE processor doesn’t recognize a FIFO2 EMPTY interrupt.
1: FIFO2 EMPTY interrupt is routed to the SNE processor.

SF2NEE SNE FIFO2 Not Empty Enable bit
0: SNE processor doesn’t recognize a FIFO2 NOT EMPTY interrupt.
1: FIFO2 NOT EMPTY interrupt is routed to the SNE processor.

SF2NFE SNE FIFO2 Not Full Enable bit
0: SNE processor doesn’t recognize a FIFO2 NOT FULL interrupt.
1: FIFO2 NOT FULL interrupt is routed to the SNE processor.

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-28 Freescale Semiconductor

SF2UE SNE FIFO2 Underrun Enable bit
0: SNE processor doesn’t recognize a FIFO2 underrun interrupt.
1: FIFO2 underrun interrupt is routed to the SNE processor.

SF2OE SNE FIFO2 Overrun Enable bit
0: SNE processor doesn’t recognize a FIFO2 overrun interrupt.
1: FIFO2 overrun interrupt is routed to the SNE processor.

Offset 0x50Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SNE SOFTINT[7:0]

S
F

1E
E

S
F

1N
E

E

S
F

1N
F

E

S
F

1U
E

S
F

1O
E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

S
F

2E
E

S
F

2N
E

E

S
F

2N
F

E

S
F

2U
E

S
F

2O
E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-21. SNE Interrupt Enable Register

Table 6-24. SNE Interrupt Enable Register Field Descriptions (continued)

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-29

6.2.4.7 Power Architecture Interrupt Enable Register

Offset 0x54Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PPC SOFTINT[7:0]

P
F

1E
E

P
F

1N
E

E

P
F

1N
F

E

P
F

1U
E

P
F

1O
E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

P
F

2E
E

P
F

2N
E

E

P
F

2N
F

E

P
F

2U
E

P
F

2O
E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-22. Power Architecture Interrupt Enable Register

Table 6-25. Power Architecture Interrupt Enable Register Field Descriptions

Field Description

PPC SOFTINT[7:0] Any software interrupt can be routed to the Power Architecture processor by setting the corresponding PPC 
SOFTINT bit.

PF1EE Power Architecture FIFO1 Empty Enable bit
0: Power Architecture processor doesn’t recognize a FIFO1 EMPTY interrupt.
1: FIFO1 EMPTY interrupt is routed to the Power Architecture processor.

PF1NEE Power Architecture FIFO1 Not Empty Enable bit
0: Power Architecture processor doesn’t recognize a FIFO1 NOT EMPTY interrupt.
1: FIFO1 NOT EMPTY interrupt is routed to the Power Architecture processor.

PF1NFE Power Architecture FIFO1 Not Full Enable bit
0: Power Architecture processor doesn’t recognize a FIFO1 NOT FULL interrupt.
1: FIFO1 NOT FULL interrupt is routed to the Power Architecture processor.

PF1UE Power Architecture FIFO1 Underrun Enable bit
0: Power Architecture processor doesn’t recognize a FIFO1 underrun interrupt.
1: FIFO1 underrun interrupt is routed to the Power Architecture processor.

PF1OE Power Architecture FIFO1 Overrun Enable bit
0: Power Architecture processor doesn’t recognize a FIFO1 overrun interrupt.
1: FIFO1 overrun interrupt is routed to the Power Architecture processor.

PF2EE Power Architecture FIFO2 Empty Enable bit
0: Power Architecture processor doesn’t recognize a FIFO2 EMPTY interrupt.
1: FIFO2 EMPTY interrupt is routed to the Power Architecture processor.

PF2NEE Power Architecture FIFO2 Not Empty Enable bit
0: Power Architecture processor doesn’t recognize a FIFO2 NOT EMPTY interrupt.
1: FIFO2 NOT EMPTY interrupt is routed to the Power Architecture processor.

PF2NFE Power Architecture FIFO2 Not Full Enable bit
0: Power Architecture processor doesn’t recognize a FIFO2 NOT FULL interrupt.
1: FIFO2 NOT FULL interrupt is routed to the Power Architecture processor.

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-30 Freescale Semiconductor

NOTE
The purpose of SNE and Power Architecture Interrupt Enable Registers are 
to control which active interrupts are sent to the SNE or/and Power 
Architecture processor. If any bit in this register is set and the same bit in 
Figure 6-24 is set, an interrupt is made pending to the SNE or/and Power 
Architecture processor.

PF2UE Power Architecture FIFO2 Underrun Enable bit
0: Power Architecture processor doesn’t recognize a FIFO2 underrun interrupt.
1: FIFO2 underrun interrupt is routed to the Power Architecture processor.

PF2OE Power Architecture FIFO2 Overrun Enable bit
0: Power Architecture processor doesn’t recognize a FIFO2 overrun interrupt.
1: FIFO2 overrun interrupt is routed to the Power Architecture processor.

Offset 0x54Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PPC SOFTINT[7:0]

P
F

1E
E

P
F

1N
E

E

P
F

1N
F

E

P
F

1U
E

P
F

1O
E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

P
F

2E
E

P
F

2N
E

E

P
F

2N
F

E

P
F

2U
E

P
F

2O
E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-22. Power Architecture Interrupt Enable Register

Table 6-25. Power Architecture Interrupt Enable Register Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-31

6.2.4.8 Interrupt Clear/Set Register

NOTE
The FIFO underflow and overflow interrupts are sticky interrupts. They are 
cleared by writing a 1 to the corresponding bit in the IntClearSet (Section 
6.2.4.8, “Interrupt Clear/Set Register”) register. The FIFO data interrupts 
(empty, not empty, not full), are only influenced by the current FIFO filling. 
They are not sticky and change from set to clear and clear to set by reading 
or writing one or more words to/from the corresponding FIFO.

Offset 0x058Access: User write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W SOFTINT_SET[7:0] SOFTINT_CLEAR[7:0]

Reset

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W F1UC F1OC F2UC F2OC

Reset

= Unimplemented or Reserved

Figure 6-23. Interrupt Clear/Set Register

Table 6-26. Interrupt Clear/Set Register Field Descriptions

Field Description

SOFTINT_SET Writing a 1 to any of these bits sets the corresponding bit of the softint field in the interrupt pending register

SOFTINT_CLEA
R

Writing a 1 to any of these bits clears the corresponding bit of the softint field in the interrupt pending register.

F1UC FIFO1 Underrun interrupt Clear bit

Writing a 1 to this bit clears the F1UP bit in the interrupt pending register.

F1OC FIFO1 Overrun interrupt Clear bit
Writing a 1 to this bit clears the F1OP bit in the interrupt pending register.

F2UC FIFO2 Underrun interrupt Clear bit

Writing a 1 to this bit clears the F2UP bit in the interrupt pending register.

F2OC FIFO2 Overrun interrupt Clear bit

Writing a 1 to this bit clears the F2OP bit in the interrupt pending register.

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-32 Freescale Semiconductor

6.2.4.9 Interrupt Pending Register

Offset 0x05CAccess: User read

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SOFTINT[7:0]

F
1E

P

F
1N

E
P

F
1N

F
P

F
1U

P
 

F
1O

P

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

F
2E

P

F
2N

E
P

F
2N

F
P

F
2U

 P

F
2O

P

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-24. Interrupt Pending Register

Table 6-27. Interrupt Pending Register Field Descriptions 1

Field Description of interrupts

SOFTINT[7:0] Software interrupt. There are eight software interrupts. Any software interrupt is made pending when 1 is 
written to the corresponding bit of field SOFTINT_SET in the IntClearSet register. The software interrupt is 
cleared when a 1 is written to the corresponding bit of field SOFTINT_CLEAR in the IntClearSet register. 
Refer to Figure 6-23

F1EP FIFO1 Empty interrupt Pending bit.
Set when FIFO1 is empty. Cleared when FIFO 1 is not empty.

F1NEP FIFO1 Not Empty interrupt Pending bit.

Set when FIFO1 not empty, Cleared when FIFO 1 is empty.

F1NFP FIFO1 Not Full interrupt Pending bit.

Set when FIFO1 is not full. Cleared when FIFO 1 is full.

F1UP FIFO1 Underrun interrupt Pending bit.
Set when FIFO1 experiences a FIFO underflow. Cleared when 1 is written to bit F1UC in the IntClearSet 
register. Refer to Figure 6-23

F1OP FIFO1 Overrun interrupt Pending bit.
Set when FIFO1 experiences a FIFO overflow. Cleared when 1 is written to bit F1OC in the IntClearSet 
register. Refer to Figure 6-23

F2EP FIFO2 Empty interrupt Pending bit.
Set when FIFO2 is empty. Cleared when FIFO 2 is not empty.

F2NEP FIFO2 Not Empty interrupt Pending bit.

Set when FIFO 2 not empty. Cleared when FIFO 2 is empty.

F2NFP FIFO2 Not Full interrupt Pending bit.

Set when FIFO 2 is not full. Cleared when FIFO 2 is full.

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-33

F2UP FIFO2 Underrun interrupt Pending bit

Set when FIFO2 experiences a FIFO underrun. Cleared when 1 is written to bit F2UC in the IntClearSet 
register. Refer to Figure 6-23

F2OP FIFO2 Overrun interrupt Pending bit.

Set when FIFO2 experiences a FIFO overflow. Cleared when 1 is written to bit F2OC in the IntClearSet 
register. Refer to Figure 6-23

1 As this is the interrupt pending register, all fields herein are interrupt conditions . These conditions control interrupts that can be 
sent to Power Architecture and/or SNE core when the corresponding bit is set in the enable register. See Figure 6-21 for the SNE 
and Figure 6-22 for the Power Architecture.

Offset 0x05CAccess: User read

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SOFTINT[7:0]

F
1E

P

F
1N

E
P

F
1N

F
P

F
1U

P
 

F
1O

P

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

F
2E

P

F
2N

E
P

F
2N

F
P

F
2U

 P

F
2O

P

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-24. Interrupt Pending Register

Table 6-27. Interrupt Pending Register Field Descriptions (continued)1

Field Description of interrupts

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-34 Freescale Semiconductor

6.2.4.10 Instruction Cache Indirect Access

6.2.4.10.1 Instruction Cache Address Register

Offset 0x60Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ICACHE_ADDR[12:2]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 6-25. Instruction Cache Address Register

Table 6-28. Instruction Cache Address Register Field Descriptions

Field Description

ICACHE_ADDR ICACHE_ADDR[12:2]: Address into instruction cache data array
ICACHE_ADDR[12:5]: Address into instruction tag data array. (one tag line for every 8 data lines)

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-35

6.2.4.10.2 Instruction Cache Data Register

Offset 0x64Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ICACHE_DATA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ICACHE_DATA[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-26. Instruction Cache Data Register

Table 6-29. Instruction Cache Data Register Field Descriptions

Field Description

ICACHE_DATA Reading ICACHE_DATA returns content of instruction cache at address ICACHE_ADDR

Writing ICACHE_DATA writes the data into instruction cache at address ICACHE_ADDR
Note: Both opperation are only valid when the instruction cache is disabled. CACHE ON is set to zero.

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-36 Freescale Semiconductor

6.2.4.10.3 Instruction Cache Tag Register

NOTE
• Reading INSTR_CACHE_TAG returns 

ICACHE_TAG[INSTR_CACHE_ADDR] if the ICACHE is disabled.
• Writing INSTR_CACHE_TAG writes the data into 

ICACHE_TAG[INSTR_CACHE_ADDR] if the ICACHE is disabled.

6.3 Functional Description
The AXE is made up of the SNE processor, the memory system, and the JTAG tap controller. The AXE 
memory system contains the instruction cache, an instruction SRAM, the DMA, FIFOs to communicate 
between the SNE and PPC processor, soft interrupt logic, and the AXE interrupt controller.

Offset 0x68Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
V S Addr[31:29]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Addr[28:13]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6-27. Instruction Cache Tag Register

Table 6-30. Instruction Cache Tag Register Field Descriptions

Field Description

V Instruction Cache line valid bit
1: Cache line is valid
0 : Cache line is invalid

S Supervisor bit
1: Cache line contains supervisor memory space data
0: Cache line contains user memory space data

Addr[31:13] Address tag
Cache line contains data corresponding to these memory system MSB address bits

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-37

6.3.1 AXE Reset

The SNE processor reset is not the power-on reset, but controlled by bit PROC_RST in the instruction and 
cache attributes register (Table 6-8). When this bit is 1, the SNE is in reset. When this bit is 0, the reset is 
released. Power-on reset value of the bit is 1.

6.3.2 AXE System

6.3.2.1 AXE System Overview

Figure 6-28. AXE Memory System for 5121e

A block diagram of the AXE system is given in Figure 6-28. An overview appears next. 

The memory system is connected to the instruction bus and data bus coming from the SNE core. An 
instruction access controller takes care of the requests coming in over the instruction bus. The data access 
controller takes care of the requests coming in over the data bus. 

Three busses are connected to the memory system. This allows SNE accesses to the on-chip SRAM 
(MEM), off-chip DRAM and the IP bus.

The AXE system also includes an interrupt controller. It generates the interrupt and their priority to the 
SNE core.

Through the data access controller, the SNE has a direct connection to the AXE register space. This 
register space is also accessible by the e300. 

All registers needed to program the memory access controllers, the interrupt controller, and the DMA are 
mapped into this space. 

SNE

Data Access
Controller

Instruction Access
Controller

Interrupt
Controller

Instruction 
SRAM

Instruction 
Cache

MPC5121e

MEM

IP bus

DDR

AXE
Register Space

e300

DMA
Controller

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-38 Freescale Semiconductor

There are some special peripherals in the AXE register space that specifically address the issues of the 
dual-core system and the inter processor communications.

• There are two FIFOs. Each FIFO is 4x32 bits deep. They can be used for communication between 
the Power Architecture and the SNE processor. Each FIFO has the possibility to generate 
full/empty/not empty interrupts to the Power Architecture or the SNE processor.

• There are eight soft-interrupts. Soft-interrupts are interrupts that can be set or reset by writing 
specific bits in a control register. The soft-interrupts can be set and reset by the Power Architecture 
or the SNE processor. They can be sent to the Power Architecture or the SNE processor. In this 
way, they can provide interprocessor communication.

6.3.2.2 Instruction Access Controller

The instruction access controller has five memory systems connected. Two of these are first-priority, 
meaning they are tried first. Three are second priority, so they are accessed when the first two fail to 
respond to the request.

• First priority memory systems
— 2-Kbyte instruction SRAM
— 8-Kbyte instruction cache

• Second priority memory systems
— DDR
— IP bus
— On-chip SRAM memory

Operation of the memories is now given in detail.

6.3.2.2.1 Instruction SRAM

The instruction SRAM is always mapped to the first 2 Kbytes of the instruction space. It can be enabled 
or disabled separately for supervisor and user accesses. Enabling/disabling is done by control bits 
IRAM_USER_ON and IRAM_SUP_ON in the Instruction Cache and SRAM Attributes Register 
(Table 6-8). Bit IRAM_USER_ON determines if the instruction SRAM is accessilbe in user mode 
(1=accessilbe, 0=inaccessilbe). Bit IRAM_SUP_ON determines if the instruction SRAM is accessilbe in 
supervisor mode (1=accessilbe, 0=inaccessilbe).

In the instruction space, its only possible to read from the instruction SRAM. To make it possible to write 
the SRAM too, and to inspect its contents, there is an indirect access possible to the instruction SRAM. To 
read or write from the instruction SRAM using this indirect access, proceed as follows:

• Disable all instruction accesses to the SRAM by writing IRAM_USER_ON and IRAM_SUP_ON 
to 0.

• Write the address where you want to read or write to the SRAM to the Instruction SRAM Address 
Register (Table 6-17)

• Read or write the content of the memory from/to Instruction SRAM Data Register (Table 6-18)

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-39

6.3.2.3 Instruction Cache

The instruction cache is a one-way set-associative cache, with 32-byte cache lines. The cache size is 
8-Kbyte. 

All instruction accesses that miss in the instruction SRAM are mapped to the cache first. If they hit in the 
cache, zero-wait cycle access is done. If they miss in the cache, they are forwarded to the local memory 
and the bus.

Cache operation can be controlled by two bits in the Instruction Cache and SRAM Attributes Register.
• Bit CACHE_ON determines if the cache is enable or not
• Bit CACHE_CLEAR is a write-only bit. Writing 1 to this bit flushes the cache. During cache flush, 

the cache is disabled.

When an access misses in the cache, the instruction access controller loads the complete 32-byte line where 
this access is part of the local memory or the bus. The word that was needed, is loaded first. In case of a 
access, all data is loaded with a 32-byte line request.

6.3.2.4 Instruction Accesses Mapped to the On-Chip SRAM

If the address bits [31:20] of an instruction access are equal to the value programmed in SRAM Base 
Address Register (SRAMBAR), within XLBMEN memory map, this instruction access is mapped to the 
on-chip SRAM (MEM)if this SRAM is enabled for it. The on-chip SRAM can be enabled separately for 
supervisor accesses and user accesses. The control bits that enable/disable the local SRAM for instruction 
accesses are in the Instruction Cache and SRAM Attributes Register.

• If SRAM2_IUSER_ON is set, mapping to local SRAM is enabled for mode instruction accesses.
• If SRAM2_ISUP_ON is set, mapping to local SRAM is enabled for supervisor instruction 

accesses.

NOTE
Accesses that hit in the instruction RAM (IRAM) are never forwarded to the 
on-chip SRAM.

6.3.3 Data Access Controller

The data access controller has two functions:
• It maps the SNE data accesses to the relevant memory system.
• There is a build-in DMA that can do transfers between the DDR or IP bus  and the on-chip SRAM.

6.3.3.1 Data Accesses Mapped to the On-Chip SRAM

On-chip SRAM is first-priority memory system for data accesses.

If the address bits [31:20] of a data access are equal to the value programmed in SRAM Base Address 
Register (SRAMBAR), within XLBMEN register map, this data access is mapped to the on-chip SRAM 
if this SRAM is enabled for it. The on-chip SRAM can be enabled separately for supervisor accesses and 

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-40 Freescale Semiconductor

user accesses. The control bits that enable/disable the on-chip SRAM for instruction accesses are in the 
Instruction Cache and SRAM Attributes Register.

• If bit SRAM2_DUSER_ON is set, mapping to on-chip SRAM is enabled for user mode data 
accesses.

• If bit SRAM2_DSUP_ON is set, mapping to on-chip SRAM is enabled for user supervisor data 
accesses.

6.3.3.2 Data Accesses Mapped to the AXE IP Bus

Data accesses in the first 2 Kbytes of address space are mapped to the AXE IP bus if they do not hit in the 
on-chip SRAM (MEM) address space. 

6.3.3.3 Data Accesses Mapped to the DDR Interface

Data access falling into the DDR memory space, specified by the DDR Local Access Window Base 
Address Register (DDRLAWBAR) and DDR Local Access Window Attributes Register (DDRLAWAR), 
which are part of the XLBMEN register map, are mapped to DDR.

6.3.3.4 Data Accesses Mapped to the IP Bus

Data access not hit into the on-chip SRAM, AXE IP Bus or DDR memory space are going to the IP bus.

6.3.4 DMA

There is a DMA capable of moving data between the on-chip SRAM (MEM) and other peripherals. To use 
the DMA, proceed as follows:

The DMA has three associated registers :

6.3.4.1 DMA_ADDR[31:2] Register (Address 0x0000)

This register contains the first or next address the DMA uses on the DDR or IP bus. It is auto-incremented 
by the DMA. Do not write this register while the DMA is running, this may result in indeterminate 
operation of the DMA. It is valid to read this register when the DMA is running, but it changes as it is 
auto-incremented every time an access is done.

6.3.4.2 DMA_MEM_ADDR[19:2] Register (Address 0x0004)

This register contains the first or next address the DMA uses on the on-chip SRAM (MEM) bus. It is 
auto-incremented by the DMA. Do not write this register while the DMA is running. It is valid to read this 
register when the DMA is running, but it changes as it is auto-incremented every time a local bus access 
is done.

6.3.4.3 DMA attributes Register (Address 0x0008)

This register contains various field. A list is given below:

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-41

• WORD_COUNT[13:0]. The DMA transfer count in words. Do not write while the DMA is 
running, or indeterminate operation results. It is valid to read while the DMA is running, but the 
count is updated every time data is transferred.

• DMA_DIRECTION. This bit controls the direction of the transfer. If 1, data is read from the 
on-chip SRAM (MEM), and written to DDR or IP Bus. If 0, data is read from the bus, and written 
to the local memory.

• DMA_ON. Controls if the DMA is on or not.
• INT_EN, INT_PEND, INT_CLEAR. These bits control the DMA interrupt. At the end of a DMA 

transfer, a DMA interrupt is generated. At the end of the transfer, INT_PEND is set. If INT_EN is 
set, an interrupt is generated. If INT_EN is cleared, the interrupt is not forwarded to the SNE 
processor. Writing the INT_CLEAR bit always clears the pending interrupt.

6.3.4.4 Functional Description

The direction must be written (DMA-DIRECTION bit):
• Disable the DMA by writing DMA_ON to 0
• Write the DRAM/IP bus address
• Write the SRAM address to DMA_MEM_ADDR[19:2]
• Write the desired count to WORD_COUNT[13:2]
• Enable or disable the interrupt as desired.
• Start the DMA by writing 1 to DMA_ON
• When transfer is complete, INT_PEND bit is set and interrupt is made pending (if enabled)

Be aware of the following:
• There is a minimum length of a DMA transfer. 

— If the start address on the bus is aligned to a line boundary (DMA_ADDR[4:2] == 0), there are 
no restrictions.

— If the start address on the bus is not aligned to a line boundary, the transfer must run to at least 
the end of the first line.

— If the transfer size is at least seven longwords, there is no problem.
• The DMA always works with word-aligned addresses. Transferring byte-aligned or 

halfword-aligned is not possible.
• The DMA always transfers in increments of words. Transferring bytes or halfwords is not possible.
• The DMA always auto-increments the source and destination address.
• The requests on DMA_ADDR[31:2] side are always directly mapped to the bus regardless if they 

hit in the on-chip SRAM space or the AXE IP space.
• The requests on the DMA_MEM_ADDR[19:2] side are always directly mapped to the SRAM.
• The DMA attempts to organize transfers on the bus in bursts, but the bursts never cross a line 

boundary (32 byte boundary).

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-42 Freescale Semiconductor

6.3.5 Interrupt Controller

There are eight registers associated with the interrupt controller: INTPRI0, INTPRI1, INTPRI2, INTPRI3, 
INTPRI4, INTPRI5, INTPRI6, and INTPRI7. 

The interrupt controller services 32 interrupts. Every interrupt has a 6-bit INTXX_PRI[5:0] associated in 
the control registers and a 1-bit INTXX_ON bit.

The fields for interrupt 12 are INT12_PRI[5:0] and INT12_ON. The field INT12_PRI[5:0] codes for the 
interrupt vector for interrupt 12. If interrupt 12 is the highest priority, enabled and pending interrupt, 
interrupt vector INT12_PRI[5:0] is presented to the AXE core on its IRN[5:0] input. At the same time, the 
AXE core interrupt input IRQ is pulled high. If the bit INT12_ON is 0, interrupt 12 is disregarded. If the 
bit is 1, the interrupt is processed if pending.

If more than one interrupt is active and enabled at any given time, the interrupt controller arbitrates and 
presents the highest priority interrupt. This is done by taking the minimum of the INTXX_PRI fields of 
the pending interrupts and presents this interrupt vector to the core. 

Example: Suppose INT12_PRI[5:0] = 6’d23; INT15_PRI[5:0] = 6’d15; INT29_PRI[5:0] = 6’d17, and 
INTERRUPTS 12, 15, and 29 are enabled and active. The interrupt controller now presents interrupt vector 
6’d15 to the core, the vector of interrupt 15, because 6’d15 is the lowest interrupt vector of the three active 
interrupts.

Table 6-31. List of Interrupts

Interrupt
Number

Description

0 PSC FIFO RX0 AXE Request

1 PSC FIFO RX1 AXE Request

2 PSC FIFO RX2 AXE Request

3 PSC FIFO RX3 AXE Request

4 PSC FIFO RX4 AXE Request

5 PSC FIFO RX5 AXE Request

6 PSC FIFO RX6 AXE Request

7 PSC FIFO RX7 AXE Request

8 PSC FIFO RX8 AXE Request

9 PSC FIFO RX9 AXE Request

10 PSC FIFO RX10 AXE Request

11 PSC FIFO RX11 AXE Request

12 PSC FIFO TX0 AXE Request

13 PSC FIFO TX1 AXE Request

14 PSC FIFO TX2 AXE Request

15 PSC FIFO TX3 AXE Request

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-43

6.3.6 FIFOs for Inter-Processor Communication

There are two FIFOs for inter-processor communication, both resident as an IP peripheral.

The FIFOs operate on longwords, and each FIFO can hold a maximum of four longwords. 

Five registers are directly associated with the operation of the FIFOs:
1. FIFO1_WRITE_DATA:1 word write only register. All data written to this register ends up in 

FIFO1. Side-effect of writes to this register is that FIFO1 filling increments.
2. FIFO1_READ_DATA:2 word read only register. All data read from this register comes from 

FIFO1. Side-effect of reads to this register is that FIFO1 filling decrements. 
3. FIFO2_WRITE_DATA:1 word write only register. All data written to this register ends up in 

FIFO2. Side-effect of writes to this register is that FIFO2 filling increments.
4. FIFO2_READ_DATA:2 word read only register. All data read from this register comes from 

FIFO2. Side-effect of reads to this register is that FIFO2 filling decrements.
5. FIFO_FILL: Read-only register. This register contains a 3-bit fill field for FIFO1 and a 3-bit fill 

field for FIFO2. The fill fields code for the current filling of these FIFO’s.

16 PSC FIFO TX4 AXE Request

17 PSC FIFO TX5 AXE Request

18 PSC FIFO TX6 AXE Request

19 PSC FIFO TX7 AXE Request

20 PSC FIFO TX8 AXE Request

21 PSC FIFO TX9 AXE Request

22 PSC FIFO TX10 AXE Request

23 PSC FIFO TX11 AXE Request

24 SPDIF TX DMA Request

25 SPDIF RX DMA Request

26 DMA Interrupt

27 Timer6 and Timer7 interrupts

28 Software interrupts

29 FIFO1 and FIFO2 underflow and overflow interrupts

30 FIFO1 and FIFO2 not full, empty and not empty interrupts

31 Local DMA interrupt

1. If data is written to a full FIFO, the write data is discarded (filling remains at the maximum), and the FIFO’s overflow flag is set.
2. If data is read from an empty FIFO, the read data is indeterminate, the FIFO’s underflow flag is set, and the filling remains zero.

Table 6-31. List of Interrupts

Interrupt
Number

Description

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-44 Freescale Semiconductor

On top, the FIFO’s generate five interrupts for each FIFO:
1. FIFO1_EMPTY, FIFO2_EMPTY: These interrupts are set when the corresponding FIFO is empty. 

They are cleared after data has been written to the corresponding FIFO.
2. FIFO1_NOT_EMPTY, FIFO2_NOT_EMPTY: These interrupts are set when the corresponding 

FIFO is not empty. They are cleared after data has been read until the corresponding FIFO is empty.
3. FIFO1_NOT_FULL, FIFO2_NOT_FULL: These interrupts are set when the corresponding FIFO 

is not full. They are not set if the corresponding FIFO is full.
4. FIFO1_OV, FIFO2_OV: FIFO overflow interrupts. These interrupts are set when an overflow 

occurs on the corresponding FIFO. Overflow occurs when data is written to a full FIFO. These bits 
are sticky bits. They are cleared by writing the corresponding bit in register (Table 6-26) 
IntClearSet.

5. FIFO1_UV, FIFO2_UV: FIFO underflow interrupts. These interrupts are set when an underflow 
occurs on the corresponding FIFO. Underflow occurs when data is read from an empty FIFO. 
These bits are sticky bits. They are cleared by writing the corresponding bit in register (Table 6-26) 
IntClearSet.

6.3.7 Interrupt Enable/Pending and Clear/Set Registers for FIFO1, FIFO2, 
and Soft Interrupts

These registers affect interrupts SOFTINT[7:0], FIFO1_EMPTY, FIFO2_EMPTY, FIFO1_NOT_EMPTY, 
FIFO2_NOT_EMPTY, FIFO1_NOT_FULL, FIFO2_NOT_FULL, FIFO1_OV, FIFO2_OV, FIFO1_UV 
and FIFO2_UV.

6.3.7.1 Setting and Clearing Soft Interrupts

The AXE system supports eight soft interrupts. These are called SOFTINT[7:0]. These soft interrupts can 
be made pending by writing a 1 to the corresponding set bit of register IntClearSet (Section 6.2.4.8, 
“Interrupt Clear/Set Register”). Writing a 1 to the corresponding clear bit of this register clears the soft 
interrupt.

6.3.7.2 Interrupt Enable Registers

There are two interrupt enable registers SNE_INTEN and PPC_INTEN (Section 6.2.4.7, “Power 
Architecture Interrupt Enable Register”). The register SNE_INTEN controls if FIFO interrupts and soft 
interrupts are sent to the AXE processor. A 1 in the corresponding interrupt bit means the interrupt is sent 
to the SNE processor if its pending. The register PPC_INTEN is equal in formatting to SNE_INTEN. 
Interrupts enabled in this register are sent to the Power Architecture processor.

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

Freescale Semiconductor 6-45

6.3.7.3 Interrupt Connections

There is one Power Architecture interrupt associated with all soft and FIFO interrupts. All interrupts 
enabled for the Power Architecture uses the same vector.

There are four AXE interrupts associated with the soft interrupts and the FIFO interrupts. Table 6-32 gives 
the details.

Table 6-32. AXE Interrupts

Interrupt SNE Interrupt Number

SOFTINT[7] 28

SOFTINT[6] 28

SOFTINT[5] 28

SOFTINT[4] 28

SOFTINT[3] 28

SOFTINT[2] 28

SOFTINT[1] 28

SOFTINT[0] 28

FIFO1_EMPTY 30

FIFO1_NOT_EMPTY 30

FIFO1_NOT_FULL 30

FIFO1_OV 29

FIFO1_UV 29

FIFO2_EMPTY 30

FIFO2_NOT_EMPTY 30

FIFO2_NOT_FULL 30

FIFO2_OV 29

FIFO2_UV 29

DMADONE 31

MPC5121e Microcontroller Reference Manual, Rev. 2



AXE System

6-46 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 7-1

Chapter 7  
Byte Data Link Controller (BDLC)

7.1 Introduction
The BDLC module is a serial communication module which allows the user to send and receive messages 
across a Society of Automotive Engineers (SAE) J1850 serial communication network. The user’s 
software manages each transmitted or received message on a byte-by-byte basis, while the BDLC 
performs all of the network access, arbitration, message framing and error detection duties.

It is recommended that the reader be familiar with the operation and requirements of the SAE J1850 
protocol as described in SAE Standard J1850 Class B Data Communications Network Interface document 
prior to proceeding with this specification.

The BDLC module is designed in a modular structure for use as an IP block. A general working knowledge 
of the IP bus signals and bus control is assumed in the writing of this document.

Figure 7-1 shows the organization of the BDLC module. The Tx/Rx shadow register function as Buffers 
provide storage for data received and data to be transmitted onto the J1850 bus. The Protocol Handler is 
responsible for the encoding and decoding of data bits and special message symbols during transmission 
and reception. The MUX Interface provides the link between the BDLC digital section and the analog 
Physical Interface. The wave shaping, driving and digitizing of data is performed by the Physical Interface.

The Physical Interface is not implemented in the BDLC module and must be provided externally.

The main functional blocks of the BDLC module are explained in greater detail in the following sections. 

Use of the BDLC module in message networking fully implements the SAE Standard J1850 Class B Data 
Communication Network Interface specification.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-2 Freescale Semiconductor

Figure 7-1. BDLC Block Diagram

BCR1 BSVR BCR2 BDR BARD

CPU Interface

8

TX Shadow Register RX Shadow Register

TX Shift Register RX Shift Register

Protocol State Machine

To CPU

Control/ StatusTX Data RX Data

TX Data RX Data

Control/ StatusTX Data RX Data

Symbol Encoder/Decoder

RX Digital
Filter

Loopback
Multiplexer

RX Data

RX Data

RX Data

J1850_RXJ1850_TX

TX Data

To Physical Interface

CPU Interface

Protocol Handler

MUX Interface

IPS Clock

IPS Clock

IPS Clock

8

8 8

Buffers

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-3

7.1.1 Features

Features of the BDLC module include the following: 
• SAE J1850 Class B Data Communications Network Interface Compatible and ISO Compatible for 

Low-Speed (≤ 125 Kbps) Serial Data Communications in Automotive Applications
• 10.4 Kbps Variable Pulse Width (VPW) Bit Format
• Digital Noise Filter
• Digital Loopback Mode
• 4X Receive and Transmit Mode, 41.6 Kbps, Supported
• BREAK symbol generation Supported
• Block Mode Receive and Transmit Supported
• Collision Detection
• Hardware Cyclical Redundancy Check (CRC) Generation and Checking
• Dedicated Register for Symbol Timing Adjustments 
• In-Frame Response (IFR) Types 0, 1, 2, and 3 Supported
• Polling and CPU Interrupt Generation with Vector Lookup Available

7.2 External Signal Description
The BDLC module has a total of two external pins.

7.3 Memory Map and Register Definition

7.3.1 Memory Map

The BDLC memory map is shown in Table 7-2.

Table 7-1. Signal Properties

Name Port Function I/O Reset Pull Up

J1850_
TX

Output The J1850_TX pin serves as the transmit output 
channel for the BDLC module

O 0

J1850_
RX

Input The J1850_RX pin serves as the receive input 
channel for the BDLC module

I

Table 7-2. BDLC Memory Map

Offset Register Access Reset Value Section/Page

0x00 BDLC control register 1 (DLCBCR1) R/W 0xc0 7.3.2.1/7-5

0x01 BDLC state vector register (DLCBSVR) R 0x00 7.3.2.2/7-6

0x04 BDLC control register 2 (DLCBCR2) R/W 0x40 7.3.2.3/7-8

0x05 BDLC data register (DLCBDR) R/W 0x00 7.3.2.5/7-14

0x08 BDLC analog round trip delay register (DLCBARD) R/W 0x50 7.3.2.6/7-16

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-4 Freescale Semiconductor

7.3.2 Register Summary

0x09 BDLC rate select register (DLCBRSR) R/W 0x00 7.3.2.7/7-19

0x0C BDLC control register (DLCSCR) R/W 0x00 7.3.2.8/7-20

0x0D BDLC bus state register (DLCBSTAT) R/W 0x00 7.3.2.9/7-20

Table 7-3. BDLC Register Summary

Name 7 6 5 4 3 2 1 0

0x00
DLCBCR1

R
IMSG CLKS

0 0 0 0
IE WCM

W

0x01
DLCBSVR

R 0 0 I3 I2 I1 I0 0 0

W

0x04
DLCBCR2

R
SMRST DLOOP 4XE NBFS TEOD TSIFR TMIFR1 TMIFR0

W

0x05
DLCBDR

R
D7 D6 D5 D4 D3 D2 D1 D0

W

0x08
DLCBARD

R 0
RXPOL

0
BO4 BO3 BO2 BO1 BO0

W

0x09
DLCBRSR

R
R7 R6 R5 R4 R3 R2 R1 R0

W

0x0C
DLCSCR

R 0 0 0
BDLCE

0 0 0
BREAK

W

0x0D
DLCBSTAT

R 0 0 0 0 0
tst_divte_t4 tst_crcv_t4 IDLE

W

Table 7-2. BDLC Memory Map (continued)

Offset Register Access Reset Value Section/Page

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-5

7.3.2.1 BDLC Control Register 1 (DLCBCR1)

This register is used to configure and control the BDLC module.

Read: any time

Write: any time

Offset + 0x00 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
IMSG CLKS

0 0 0 0
IE

W

Reset 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 7-2. BDLC Control Register 1 (DLCBCR1)

Table 7-4. DLCBCR1 Field Descriptions

Field Description

IMSG Ignore Message
This bit allows the CPU to ignore messages by disabling updates of the BDLC State Vector Register 
register until a new Start of Frame (SOF) or a BREAK symbol is detected. BDLC module transmitter 
and receiver operation are unaffected by the state of the IMSG bit. There are two situations in which 
interrupts are not masked by the IMSG bit: when a wakeup interrupt occurs; and when a receiver error 
occurs which causes a byte pending transmission to be flushed from the transmit shadow register. 
See Section 7.3.2.5, BDLC Data Register (DLCBDR) for a description of the conditions which cause 
a pending transmission to be flushed.
0 Enable BDLC State Vector Register Updates. This bit is automatically cleared by the reception of 

a SOF symbol or a BREAK symbol. It then allows updates of the state vector register to occur. 
1 Disable BDLC State Vector Register Updates. When set, all BDLC interrupt sources (exceptions 

are described below) are prevented from updating BDLC State Vector Register status bits. The 
behavior of which is as described in Section 7.3.2.2, BDLC State Vector Register (DLCBSVR). 
Setting IMSG does not clear pending interrupt flags. If this bit is set while the BDLC is receiving or 
transmitting a message, state vector register updates are inhibited for the rest of the message.

CLKS Clock Select
The nominal BDLC operating frequency (mux interface clock frequency - fbdlc) must always be 
1.048576 MHz or 1 MHz for J1850 bus communications to take place properly. The CLKS register bit 
is provided to allow the user to indicate to the BDLC module which frequency (1.048576 MHz or 1 
MHz) is used so that each symbol time can be automatically adjusted. The CLKS bit is a write once 
bit. All writes to this bit are ignored after the first one.
0 Integer frequency (1 MHz) is used for fbdlc.
1 Binary frequency (1.048576 MHz) is used for fbdlc.
Section 7.4.2.10, J1850 VPW Valid/Invalid Bits and Symbols describes the transmitter and receiver 
VPW symbol timing for integer and binary frequencies. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-6 Freescale Semiconductor

7.3.2.2 BDLC State Vector Register (DLCBSVR)

This register substantially decreases the CPU overhead associated with servicing interrupts while under 
operation of a MUX protocol. It provides an index offset directly related to the BDLC module’s current 
state, which can be used with a user supplied jump table to rapidly enter an interrupt service routine. This 
eliminates the need for the user to maintain a duplicate state machine in software.

Read: any time

Write: ignored

Encoding interrupt sources in states allows that only one interrupt source has to be managed at a time. After 
the highest priority interrupt source is dealt with and if another interrupt event of a lower priority has also 
occurred, the value corresponding to that interrupt source appears in the BDLC State Vector Register. This 
continues until all BDLC interrupt sources have been managed and all bits in the BDLC state vector 
register are cleared.

• Symbol invalid or out of range
• CRC error

Cyclical Redundancy Check Byte is used by the receiver(s) of each message to determine if any 
errors have occurred during the transmission of the message. If the message is not error free, the 
CRC error status is shown in the BDLC state vector register.

• Loss of arbitration

IE Interrupt Enable
This bit determines whether the BDLC module generates CPU interrupt requests. Interrupt requests 
are maintained until all of the interrupt request sources are cleared, by performing the specified 
actions upon the BDLC module’s registers. Interrupts that were pending at the time that this bit is 
cleared may be lost.
0 Disable interrupt requests from BDLC module.
1 Enable interrupt requests from BDLC module.
If the programmer does not wish to use the interrupt capability of the BDLC module, the BDLC State 
Vector Register (BDLC State Vector Register) can be polled periodically by the programmer to 
determine BDLC module states. Refer to for a description of Section 7.3.2.2, BDLC State Vector 
Register (DLCBSVR) and how to clear interrupt requests.

Offset + 0x00 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
IMSG CLKS

0 0 0 0
IE

W

Reset 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 7-2. BDLC Control Register 1 (DLCBCR1)

Table 7-4. DLCBCR1 Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-7

Loss of arbitration status is entered when a loss of arbitration occurs while the BDLC is 
transmitting onto the bus. 

• Tx data register empty
The Tx data register empty (TDRE) state is used to tell when data has been unloaded from the 
BDLC Data Register.

• Rx data register full
The Rx data register full (RDRF) state describes when data has been loaded in the BDLC Data 
Register.

• Received in-frame response (IFR) byte
The BDLC can transmit and receive all four types of in-frame responses. As each byte of an IFR 
is received, the BDLC State Vector Register indicates this by setting this state.

• Received EOF
When a 280 μs passive period on the bus is received, it signifies an end-of-frame (EOF). When this 
occurs, the EOF flag is set.

• No interrupts pending
This interrupt cannot generate an interrupt of the CPU.

Offset + 0x01 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 I3 I2 I1 I0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 7-3. BDLC State Vector Register (DLCBSVR)

Table 7-5. DLCBSVR Field Descriptions

Field Description

I[3:0] Interrupt State Vector(with priority from low to high)
0000 No interrupt Pending.
0001 Received EOF
0010 Received IFR byte
0011 Rx data register full
0100 Tx data register empty
0101 Loss of arbitration
0110 CRC error
0111 Symbol invalid or out of range
1000 Reserved, not implemented

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-8 Freescale Semiconductor

7.3.2.3 BDLC Control Register 2 (DLCBCR2)

This register controls transmitter operations of the BDLC module.

Read: any time

Write: any time

7.3.2.4 Transmit Multiple Bytes IFR with CRC (TMIFR1)

This bit requests the BDLC module to transmit the byte in the BDLC Data Register (BDLC data register) 
as the first byte of a multiple byte IFR with CRC or as a single byte IFR with CRC. Response IFR bytes 
are subject to J1850 message length maximums.

After the byte in the BDLC Data Register has been loaded into the transmit shift register, the transmit data 
register empty (TDRE) flag is set in the BDLC State Vector Register register, similar to the main message 
transmit sequence. If the interrupt enable bit (IE in BDLC Control Register 1) is set, an interrupt request 
from the BDLC module is generated.The programmer should then load the next byte of the IFR into the 
BDLC Data Register for transmission. When the last byte of the IFR has been loaded into the BDLC Data 
Register, the programmer should set the trnasmit end of data (TEOD) bit in the BDLC control register 2. 
This instructs the BDLC module to transmit a CRC byte once the byte in the BDLC Data Register is 
transmitted, and then transmit an EOD symbol, indicating the end of the IFR portion of the message frame.

However, if the programmer wishes to transmit a single byte followed by a CRC byte, the programmer 
should load the byte into the BDLC Data Register and then set the TMIFR1 bit before the EOD symbol 
has been received. Once the TDRE flag is set and interrupt occurs (if enabled), the programmer should 
then set the TEOD bit in BDLC Control Register 2. The byte in the BDLC data register is the only byte 
transmitted before the IFR CRC byte. 

Set the TMIFR1 bit before the EOF following the main part of the message frame is received or no IFR 
transmit attempts are made for the current message. If another node transmits an IFR to this message, the 
user must set the TMIFR1 bit before the normalization bit is received or no IFR transmit attempts are made 
for the message. If another node does transmit a successful IFR or a reception error occurs, the TMIFR1 
bit is cleared. If not, the IFR is transmitted after the EOD of the next received message.

If a transmitter underrun error occurs during transmission (caused by not writing another byte to the BDLC 
data register following the TDRE flag being set), the BDLC module automatically disables the transmitter 
after the byte currently in the shifter. Also, two extra 1-bits have been transmitted. The receiver picks this 
up as an framing error and relay it in the State Vector Register as an invalid symbol error. The TMIFR1 bit 
is also cleared.

If a loss of arbitration occurs when the BDLC module is transmitting a multiple byte IFR with CRC, the 
BDLC module switches to the loss of arbitration state and sets the appropriate flag and cease transmission. 
The TMIFR1 bit is cleared and no attempt is made to retransmit the byte in the BDLC Data Register. If 
loss of arbitration occurs in the last bit of the IFR byte, two additional one bits (a passive long followed by 
an active short) are sent out.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-9

NOTE
The extra logic is an enhancement to the J1850 protocol which forces a byte 
boundary condition fault. This is helpful in preventing noise on the J1850 
bus from corrupting a message.

Offset + 0x04 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
SMRST DLOOP 4XE NBFS TEOD TSIFR TMIFR1 TMIFR0

W

Reset 0 1 0 0 0 0 0 0

Figure 7-4. BDLC Control Register 2 (DLCBCR2)
(The register is repeated for reference.)

Table 7-6. DLCBCR2 Field Descriptions

Field Description

SMRST State Machine Reset
You can use this bit to reset the BDLC state machines to an initial state after the you put the off-chip 
analog transceiver in loop back mode.
0 Clearing SMRST after it has been set causes the generation of a state machine reset. After 

SMRST is cleared, the BDLC requires the bus to be idle for a minimum of an EOF symbol time 
before allowing the reception of a message. The BDLC requires the bus to be idle for a minimum 
of an inter-frame separator symbol (IFS) time before allowing any message to be transmitted.

1 Setting SMRST arms the state machine reset generation logic. Setting SMRST does not affect 
BDLC module behavior in any way.

DLOOP Digital Loopback Mode
This bit determines the input source the digital filter is connected to and can be used to isolate bus 
fault conditions.If a fault condition has been detected on the bus, this control bit allows the 
programmer to disconnect the digital filter from input from the receive pin (RXB) and connect it to the 
transmit output to the pin (TXB). In this configuration, data sent from the transmit buffer should be 
reflected back into the receive buffer. If no faults exist in the digital block, the fault is in the physical 
interface block or elsewhere on the J1850 bus.
0 No loopback. When cleared, digital filter input is connected to receive pin (J1850_RX) and the 

transmitter output is connected to the transmit pin (J1850_TX). The BDLC module is taken out of 
Digital Loopback Mode and can now drive and receive from the J1850 bus normally. After writing 
DLOOP to zero, the BDLC module requires the bus to be idle for a minimum of an EOF symbol 
time before allowing a reception of a message. The BDLC module requires the bus to be idle for a 
minimum of an inter-frame separator symbol time before allowing any message to be transmitted.

1 Loopback. When set, digital filter input is connected to the transmitter output. The BDLC module 
is now in Digital Loopback Mode of operation. The transmit pin (J1850_TX) is driven low and not 
driven by the transmitter output.

Note: The DLOOP bit is a fault condition aid and should never be altered after the BDLC Data 
Register is loaded for transmission. Changing DLOOP during a transmission may cause 
corrupted data to be transmitted onto the J1850 network.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-10 Freescale Semiconductor

4XE 4X Mode Enable
This bit determines if the BDLC operates at normal transmit and receive speed (10.4 kbps) or in 4X 
Mode at 41.6 kbps. This feature is useful for fast download of data into a J1850 node for diagnostic 
or factory programming of the node. The effect of 4X receive operation on receive symbol timing 
boundaries is described in Section 7.4.2.10, J1850 VPW Valid/Invalid Bits and Symbols.
0 When cleared, the BDLC module transmits and receives at 10.4 kbps. Reception of a BREAK 

symbol automatically clears this bit and sets the symbol invalid or out of range flag BDLC State 
Vector Register = 0x1C).

1 When set, the BDLC module is put in 4X (41.6 kbps) operation.

NBFS Normalization Bit Format Select 
This bit controls the format of the normalization bit (NB). SAE J1850 strongly encourages the use of 
an active long: 0 for In-Frame Responses containing CRC and active short, 1 for In-Frame Responses 
without CRC. 
0 NB that is received or transmitted is a 1 when the response part of an In-Frame Response (IFR) 

ends with a CRC byte. NB that is received or transmitted is a 0 when the response part of an 
In-Frame Response (IFR) does not end with a CRC byte.

1 NB that is received or transmitted is a 0 when the response part of an In-Frame Response (IFR) 
ends with a CRC byte. NB that is received or transmitted is a 1 when the response part of an 
In-Frame Response (IFR) does not end with a CRC byte.

TEOD Transmit End of Data
This bit is set by the programmer to indicate the end of a message being sent by the BDLC. It appends 
an 8-bit CRC after completing transmission of the current byte in the Tx Shift Register followed by the 
EOD symbol.If the transmit shadow register (refer to Section 7.4.4.1, Protocol Architecture for a 
description of the transmit shadow register) is full when TEOD is set, the CRC byte and EOD is 
transmitted after the current byte in the Tx Shift Register and the byte in the Tx Shadow Register have 
been transmitted. Once TEOD is set, the transmit data register empty flag (TDRE) in the BDLC state 
vector register (BDLCSVR) is cleared to allow lower priority interrupts to occur. This bit is also used 
to end an IFR. Bits TSIFR, TMIFR1, and TMIFR0 determine whether a CRC byte is appended before 
EOD transmission for IFRs.
0 The TEOD bit is automatically cleared after the first CRC bit is sent, or if an error or loss of 

arbitration is detected on the bus.  When TEOD is used to end an IFR transmission, TEOD is 
cleared when the BDLC receives back a valid EOD symbol, or an error condition or loss of 
arbitration occurs.

1 Transmit EOD symbol

TSIFR Transmit Single Byte IFR with no CRC (Type 1 or 2)
0 The TSIFR bit is automatically cleared after the EOD if one or more IFR bytes has been received 

or an error is detected on the bus.
1 If this bit is set prior to a valid EOD being received with no CRC error and after the EOD symbol 

has been received, the BDLC module attempts to transmit the appropriate normalization bit 
followed by the byte in the BDLC Data Register.

Offset + 0x04 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
SMRST DLOOP 4XE NBFS TEOD TSIFR TMIFR1 TMIFR0

W

Reset 0 1 0 0 0 0 0 0

Figure 7-4. BDLC Control Register 2 (DLCBCR2)
(The register is repeated for reference.)

Table 7-6. DLCBCR2 Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-11

The TSIFR, TMIFR1, and TMIFR0 bits control the type of In-Frame Response being sent. The 
programmer should not set more than one of these control bits to a one at any given time. However, if more 
than one of these three control bits are set to one, the priority encoding logic forces the internal register 
bits to a known value as shown in the following table. However, when these bits are read, they are the same 
as written earlier. For instance, if 011 is written to TSIFR, TMIFR1,and TMIFR0, then internally, they are 
encoded as 010. However, when these bits are later read back, they are encoded as 011.

The BDLC supports the In-frame Response (IFR) feature of J1850 by setting these bits correctly. The four 
types of J1850 IFR are shown in Figure 7-5. The purpose of the in-frame response modes is to allow single 
or multiple nodes to acknowledge receipt of the data by responding to a received message after they have 
seen the EOD symbol. For VPW modulation, the first bit of the IFR is always passive; therefore, an active 
normalization bit must be generated by the responder and sent prior to its ID/address byte. When there are 
multiple responders on the J1850 bus, only one normalization bit is sent which assists all other transmitting 
nodes to sync their responses. 

TMIFR1 Transmit Multiple Byte IFR with CRC (Type 3)
0 The TMIFR1 bit is automatically cleared once the BDLC module has successfully transmitted the 

CRC byte and EOD symbol, by the detection of an error on the multiplex bus, a transmitter 
underrun, or loss of arbitration.

1 If this bit is set prior to a valid EOD being received with no CRC error, once the EOD symbol has 
been received, the BDLC module attempts to transmit the appropriate normalization bit followed 
by IFR bytes. The programmer should set TEOD after the last IFR byte has been written into BDLC 
Data Register. After TEOD has been set and the last IFR byte has been transmitted, the CRC byte 
is transmitted.

TMIFR0 Transmit Multiple Byte IFR with no CRC (Type 3)
0 The TMIFR0 bit is automatically cleared once the BDLC module has successfully transmitted the 

EOD symbol, by the detection of an error on the multiplex bus, a transmitter underrun, or loss of 
arbitration.

1 If this bit is set prior to a valid EOD being received with no CRC error, once the EOD symbol has 
been received the BDLC module attempts to transmit the appropriate normalization bit followed by 
IFR bytes. The programmer should set TEOD after the last IFR byte has been written into BDLC 
Data Register. After TEOD has been set, the last IFR byte to be transmitted is the last byte written 
into the BDLC Data Register.

Offset + 0x04 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
SMRST DLOOP 4XE NBFS TEOD TSIFR TMIFR1 TMIFR0

W

Reset 0 1 0 0 0 0 0 0

Figure 7-4. BDLC Control Register 2 (DLCBCR2)
(The register is repeated for reference.)

Table 7-6. DLCBCR2 Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-12 Freescale Semiconductor

The TSIFR bit is used to request the BDLC to transmit the byte in the BDLC Data Register as a single byte 
IFR with no CRC. Typically, the byte transmitted is a unique identifier or address of the transmitting 
(responding) node.

Set the TSIFR bit before the EOF following the main part of the message frame is received or no IFR 
transmit attempts are made for the current message. If another node transmits an IFR to this message, set 
the TSIFR bit before the normalization bit is received or no IFR transmit attempts are made for the 
message. If another node does transmit a successful IFR or a reception error occurs, the TSIFR bit is 
cleared. If not, the IFR is transmitted after the EOD of the next received message.

If a loss of arbitration occurs when the BDLC module attempts transmission, after the IFR byte winning 
arbitration completes transmission, the BDLC module again attempts to transmit the byte in the BDLC 
Data Register (with no normalization bit). The BDLC module continues transmission attempts until an 
error is detected on the bus, or TEOD is set by the CPU, or the BDLC transmission is successful. 

NOTE
Setting the TEOD bit before transmission of the IFR byte directs the BDLC 
to make only one attempt at transmitting the byte. 

If loss of arbitration occurs in the last bit of the IFR byte, two additional 1 bits is not sent out because the 
BDLC attempts to retransmit the byte in the transmit shift register after the IFR byte winning arbitration 
completes transmission. 

The TMIFR1 bit requests the BDLC module to transmit the byte in the BDLC Data Register (BDLC Data 
Register) as the first byte of a multiple byte IFR with CRC or as a single byte IFR with CRC. Response 
IFR bytes are subject to J1850 message length maximums.

After the byte in the BDLC Data Register has been loaded into the transmit shift register, the TDRE flag 
is set in the BDLC State Vector Register register, similar to the main message transmit sequence. If the 
interrupt enable bit (IE in BDLC Control Register 1) is set, an interrupt request from the BDLC module is 
generated. The programmer should then load the next byte of the IFR into the BDLC Data Register for 
transmission. When the last byte of the IFR has been loaded into the BDLC Data Register, the programmer 
should set the TEOD bit in the BDLC control register 2. This instructs the BDLC module to transmit a 
CRC byte once the byte in the BDLC Data Register is transmitted, and then transmit an EOD symbol, 
indicating the end of the IFR portion of the message frame.

However, if you wish to transmit a single byte followed by a CRC byte, load the byte into the BDLC Data 
Register and then set the TMIFR1 bit before the EOD symbol has been received. Once the TDRE flag is 
set and interrupt occurs (if enabled), the programmer should then set the TEOD bit in BDLC Control 
Register 2. This results in the byte in the BDLC Data Register being the only byte transmitted before the 
IFR CRC byte. 

Set the TMIFR1 bit before the EOF following the main part of the message frame is received or no IFR 
transmit attempts are made for the current message. If another node transmits an IFR to this message, set 
the TMIFR1 bit before the normalization bit is received or no IFR transmit attempts are made for the 
message. If another node does transmit a successful IFR or a reception error occurs, the TMIFR1 bit is 
cleared. If not, the IFR is transmitted after the EOD of the next received message.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-13

If a transmitter underrun error occurs during transmission (caused by not writing another byte to the BDLC 
data register following the TDRE flag being set), the BDLC module automatically disables the transmitter 
after the byte currently in the shifter. Two extra 1-bits have been transmitted. The receiver picks this up as 
an framing error and relay it in the state vector register as an invalid symbol error. The TMIFR1 bit is also 
cleared.

If a loss of arbitration occurs when the BDLC module is transmitting a multiple byte IFR with CRC, the 
BDLC module goes to the loss of arbitration state, set the appropriate flag and cease transmission. The 
TMIFR1 bit is cleared and no attempt is made to retransmit the byte in the BDLC Data Register. If loss of 
arbitration occurs in the last bit of the IFR byte, two additional one bits (a passive long followed by an 
active short) is sent out.

NOTE
The extra logic is an enhancement to the J1850 protocol which forces a byte 
boundary condition fault. This is helpful in preventing noise on the J1850 
bus from corrupting a message

The TMIFR0 bit is used to request the BDLC module to transmit the byte in the BDLC Data Register as 
the first byte of a multiple byte IFR without CRC. Response IFR bytes are subject to J1850 message length 
maximums. 

After the byte in the BDLC Data Register has been loaded into the transmit shift register, the TDRE flag 
is set in the BDLC State Vector Register register, similar to the main message transmit sequence. If the 
interrupt enable bit (IE in BDLC Control Register 1) is set, an interrupt request from the BDLC module is 
generated. The programmer should then load the next byte of the IFR into the BDLC Data Register for 
transmission. When the last byte of the IFR has been loaded into the BDLC Data Register, the programmer 
should set the TEOD bit in the BDLC Control Register 2. This instructs the BDLC to transmit an EOD 
symbol, indicating the end of the IFR portion of the message frame. The BDLC module does not append 
a CRC.

However, if the programmer wishes to transmit a single byte, the programmer should load the byte into 
the BDLC Data Register and then set the TMIFR0 bit before the EOD symbol has been received. Once the 
TDRE flag is set and interrupt occurs (if enabled), the programmer should then set the TEOD bit in BDLC 
Control Register 2. This results in the byte in the BDLC Data Register being the only byte transmitted. 

Set the TMIFR0 bit before the EOF following the main part of the message frame is received, or no IFR 
transmit attempts is made for the current message. If another node transmits an IFR to this message, the 
user must set the TMIFR0 bit before the normalization bit is received or no IFR transmit attempts are made 
for the message. If another node does transmit a successful IFR or a reception error occurs, the TMIFR0 
bit is cleared. If not, the IFR is transmitted after the EOD of the next received message.

If a transmitter underrun error occurs during transmission (caused by the programmer not writing another 
byte to the BDLC Data Register following the TDRE flag being set) the BDLC module automatically 
disables the transmitter after the byte currently in the shifter plus two extra 1-bits have been transmitted. 
The receiver picks this up as an framing error and relay it in the State Vector Register as an invalid symbol 
error. The TMIFR0 bit is also cleared.

If a loss of arbitration occurs when the BDLC module is transmitting a multiple byte IFR without CRC, 
the BDLC module goes to the loss of arbitration state, set the appropriate flag and cease transmission. The 

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-14 Freescale Semiconductor

TMIFR0 bit is cleared and no attempt is made to retransmit the byte in the BDLC Data Register. If loss of 
arbitration occurs in the last bit of the IFR byte, two additional one bits (a passive long followed by an 
active short) is sent out.

NOTE
The extra logic is an enhancement to the J1850 protocol which forces a byte 
boundary condition fault. This is helpful in preventing noise on the J1850 
bus from corrupting a message

Figure 7-5. Types of In-Frame Response

Table 7-1. Transmit In-Frame Response Control Bit Priority Encoding

7.3.2.5 BDLC Data Register (DLCBDR)

This register is used to pass the data to be transmitted to the J1850 bus from the CPU to the BDLC module. 
It is also used to pass data received from the J1850 bus to the CPU.

READ: any time

WRITE: any time

WRITE READ ACTUAL (Internal Register)

TSIFR TMIFR1 TMIFR0 TSIFR TMIFR1 TMIFR0 TSIFR TMIFR1 TMIFR0

0 0 0 0 0 0 0 0 0

1 — — 1 — — 1 0 0

0 1 — 0 1 — 0 1 0

0 0 1 0 0 1 0 0 1

S
O

F Header Data Field CRC

E
O

D

Type 0—No IFR

Header Data Field CRC

E
O

D

Type 3—Multiple Bytes From a Single Responder (with or without CRC)

Header Data Field CRC

E
O

D

Type 1—Single Byte From a Single Responder (without CRC)

Header Data Field CRC
E

O
D

Type 2—Single Byte From Multiple Responders (without CRC)

ID1 ID n

IFR Data Field CRC

NB

NB

NB

ID

S
O

F
S

O
F

S
O

F

E
O

F

E
O

D

E
O

F

E
O

D

E
O

F
E

O
D

E
O

F

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-15

While transmitting, each data byte (after the first one) should be written only after a Tx Data Register 
Empty (TDRE) interrupt has occurred, or the BDLC State Vector Register register has been polled 
indicating this condition.

Data read from this register is the last data byte received from the J1850 bus. This received data should 
only be read after a Rx Data Register Full (RDRF) or Received IFR byte (RXIFR) interrupt has occurred 
or the BDLC State Vector Register register has been polled indicating either of these two conditions.

The BDLC Data Register is double buffered via a transmit shadow register and a receive shadow register. 
After the byte in the transmit shift register has been transmitted, the byte currently stored in the transmit 
shadow register is loaded into the transmit shift register. Once the transmit shift register has shifted the first 
bit out, the TDRE flag is set, and the shadow register is ready to accept the next byte of data. 

The receive shadow register works similarly. Once a complete byte has been received, the receive shift 
register stores the newly received byte into the receive shadow register. The RDRF flag (or RXIFR flag if 
the received byte is part of an IFR) is set to indicate that a new byte of data has been received. The 
programmer has one BDLC module byte reception time to read the shadow register and clear the RDRF 
or RXIFR flag before the shadow register is overwritten by the newly received byte.

If the user writes the first byte of a message to be transmitted to the BDLC Data Register and then 
determines that a different message should be transmitted, the user can write a new byte to the BDLC Data 
Register up until the transmission begins. This new byte replaces the original byte in the BDLC Data 
Register.

From the time a byte is written to the BDLC Data Register until it is transferred to the transmit shift 
register, the transmit shadow register is considered full and the byte pending transmission. If one of the 
IFR transmission control bits (TSIFR, TMIFR1, or TMIFR0 in BDLC Control Register 2) is also set, the 
byte is pending transmission as an IFR. A byte pending transmission is flushed from the transmit shadow 
register and the transmission canceled if one of the following occurs: a loss of arbitration or transmitter 
error on the byte currently being transmitted; a symbol error, framing error, bus fault, or BREAK symbol 
is received. If the byte pending transmission is an IFR byte, the reception of a message with a CRC error 
also causes the byte in the transmit shadow register to be flushed. 

To abort an in-progress transmission, the programmer should simply stop loading more data into the 
BDLC Data Register. This causes a transmitter underrun error and the BDLC module automatically 
disables the transmitter on the next non-byte boundary. This means that the earliest a transmission can be 
halted is after at least one byte (plus two extra 1-bits) has been transmitted. The receiver picks this up as 
an error and relay it in the state vector register as an invalid symbol error.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-16 Freescale Semiconductor

7.3.2.6 BDLC Analog Round Trip Delay Register (DLCBARD)

This register is used to program the BDLC module so that it compensates for the round trip delays of 
different external transceivers. Also the polarity of the receive pin (J1850_RX) is set in this register.

Read: any time

Write: write only once. Writes to unimplemented bits are ignored.

Offset + 0x05 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
D7 D6 D5 D4 D3 D2 D1 D0

W

Reset 0 0 0 0 0 0 0 0

Figure 7-6. BDLC Data Register (DLCBDR)

Table 7-7. DLCBDR Field Descriptions

Field Description

D[7:0] Receive/Transmit Data

Offset + 0x08 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0
RXPOL

0
BO4 BO3 BO2 BO1 BO0

W

Reset 0 1 0 1 0 0 0 0

= Unimplemented or Reserved

Figure 7-7. BDLC Analog Round Trip Delay Register (DLCBARD)

Table 7-8. DLCBARD Field Descriptions

Field Description

RXPOL Receive Pin Polarity
The Receive pin Polarity bit is used to select the polarity of incoming signal on the receive pin. Some 
external analog transceiver inverts the receive signal from the J1850 bus before feeding back to the 
digital receive pin.
0 Select inverted polarity, where external transceiver inverts the receive signal.
1 Select normal/true polarity; true non-inverted signal from J1850 bus, i.e., the external transceiver 

does not invert the receive signal.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-17

BO[4:0[ BDLC Analog Roundtrip Delay Offset Field
Adjust the transmitted symbol timings to account for the differing roundtrip delays found in different 
SAE J1850 analog transceivers.The allowable delay range is from 0 μs to 31 μs, with a nominal target 
of 16 μs (reset value). Refer to Table  for the BO[4:0] values corresponding to the expected transceiver 
delays and the resultant transmitter timing adjustment (in mux interface clock periods (tbdlc)). Refer to 
the analog transceiver device specification for the expected roundtrip delay through both the 
transmitter and the receiver. The sum of these two delays makes up the total roundtrip delay value.
Note: For Digital Loopback test, the Analog Roundtrip Delay Offset Field should be set to 0μs.

Table 7-9. BARD Values vs. Transceiver Delay and Transmitter Timing Adjustment

BARD Offset Bits BO[4:0]
Corresponding Expected 
Transceiver’s delays (μs)

Transmitter Symbol Timing 
Adjustment (tbdlc

1)

00000 0 0

00001 1 1

00010 2 2

00011 3 3

00100 4 4

00101 5 5

00110 6 6

00111 7 7

01000 8 8

01001 9 9

01010 10 10

01011 11 11

01100 12 12

01101 13 13

01110 14 14

01111 15 15

10000 16 16

10001 17 17

Offset + 0x08 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0
RXPOL

0
BO4 BO3 BO2 BO1 BO0

W

Reset 0 1 0 1 0 0 0 0

= Unimplemented or Reserved

Figure 7-7. BDLC Analog Round Trip Delay Register (DLCBARD)

Table 7-8. DLCBARD Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-18 Freescale Semiconductor

10010 18 18

10011 19 19

10100 20 20

10101 21 21

10110 22 22

10111 23 23

11000 24 24

11001 25 25

11010 26 26

11011 27 27

11100 28 28

11101 29 29

11110 30 30

11111 31 31

1 The transmitter symbol timing adjustment is the same for binary and integer bus frequencies.

Table 7-9. BARD Values vs. Transceiver Delay and Transmitter Timing Adjustment (continued)

BARD Offset Bits BO[4:0]
Corresponding Expected 
Transceiver’s delays (μs)

Transmitter Symbol Timing 
Adjustment (tbdlc

1)

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-19

7.3.2.7 BDLC Rate Select Register (DLCBRSR)

This register determines the divider prescaler value for the mux interface clock (fbdlc). Only integer 
multiple of the 1 MHz or 1.048576 MHz fbdlc are supported as input clock.

Read: any time

Write: write only once.

Table 7-11.  BDLC Rate Selection for Binary Frequencies [CLKS = 1]

Table 7-12. BDLC Rate Selection for Integer Frequencies [CLKS = 0]

Offset + 0x09 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
R7 R6 R5 R4 R3 R2 R1 R0

W

Reset 0 0 0 0 0 0 0 0

Figure 7-8. BDLC Rate Select Register (DLCBRSR)

Table 7-10. DLCBRSR Field Descriptions

Field Description

R[7:0] Rate Select. These bits determine the amount by which the frequency of the system clock signal is 
divided to generate the MUX Interface clock (fbdlc) which defines the basic timing resolution of the 
MUX Interface.The value programmed into these bits is dependent on the chosen system clock 
frequency. See Table 7-11 and Table 7-12 for example rate selects for different bus frequencies. All 
divisor values from divide by 1 to divide by 256 are possible, but are not shown in the tables. 
Note: Although the maximum divider is 256, a divider that generates a 1 MHz or 1.048576 MHz fbdlc 

must be selected for J1850 communications to occur.

IP bus clock frequency R[7:0] division fbdlc

fCLOCK=1.048576 MHz 0x00 1 1.048576 MHz

IP bus clock frequency R[7:0] division fbdlc

fCLOCK=66.00000 MHz 0x41 66 1.000000 MHz

fCLOCK=54.00000 MHz 0x35 54 1.000000 MHz

fCLOCK=33.00000 MHz 0x20 33 1.000000 MHz

fCLOCK=27.00000 MHz 0x1A 27 1.000000 MHz

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-20 Freescale Semiconductor

7.3.2.8 BDLC Control Register (DLCSCR)

This register enables the BDLC module.

Read: any time

Write: any time

7.3.2.9 BDLC Status Register (DLCBSTAT)

This register indicates the status of the BLDC module.

Read: any time

Write: any time

Offset + 0x0C Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0
BDLCE

0 0 0
BREAK

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 7-9. BDLC Control Register (DLCSCR)

Table 7-13. DLCSCR Field Descriptions

Field Description

BDLCE BDLC Enable
This bit serves as a mux interface clock (fbdlc) enable/disable for power savings.
1 The mux interface clock (fbdlc) and BDLC module are enabled to allow J1850 communications to 

take place.
0 The mux interface clock (fbdlc) is disabled, shutting down the BDLC module for power saving. Bus 

clocks continue running, allowing registers to be accessed.

BREAK Send BREAK signal
This bit determines whether the BDLC module generates a BREAK symbol.
0 The BDLC module does not generate a BREAK symbol.
1 The BDLC module immediately sends a Break signal on the bus, regardless of its current transmit 

or receive status.
After setting the BREAK bit it is automatically cleared after two IPB clock cycles.
The active Break signal causes any other transmitting module to stop transmitting immediately 
because it loses arbitration. It is at least 280 μs long.
Note: When the BDLC is operating at the high bus speed all 4X symbol times are one fourth that 

shown, except for Break, which is transmitted the same length in 1X or 4X mode.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-21

7.4 Functional Description
The BDLC module is a serial communication module which allows the user to send and receive messages 
across a Society of Automotive Engineers (SAE) J1850 serial communication network. The user’s 
software manages each transmitted or received message on a byte-by-byte basis, while the BDLC 
performs all of the network access, arbitration, message framing and error detection duties.

7.4.1 J1850 Frame Format

As noted above and in Section 7.1.1, “Features”, the BDLC module communicates across an SAE J1850 
network. As such, all messages transmitted on the J1850 bus are structured using the format below. The 
following sections describe this format and it’s meanings.

Figure 7-11. J1850 Bus Message Format (VPW)

SAE J1850 states that each message has a maximum length of 101 bit times or 12 bytes (excluding SOF, 
EOD, NB and EOF).

Offset + 0x0D Access: User read/write

Power PC 0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0 TST_DIVTE
_T4

TST_CRCV_
T4

IDLE
W

Reset 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 7-10. BDLC Status Register (DLCBSTAT)

Table 7-14. DLCBSTAT Field Descriptions

Field Description

TST_DIVTE_T4 1 The module output Tx pin output mux interface clock (FBDLC).
0 The module output Tx pin output normal signal.

TST_CRCV_T4 Status of the receive message CRC
1 Incorrect
0 Correct

IDLE This bit indicates when the BDLC module is idle.
0 BDLC module is either transmitting or receiving data.
1) BDLC module has received IFS and no data is being transmitted or received.

NOTE
BDLC module is only idle after receiving IFS. The IDLE bit is 0 during 
reset since the BDLC module needs to wait for an IFS before becoming 
idle. Noise on the bus will be filtered and the IDLE bit will remain 
unchanged.

SOF

E
O
D

EOF
Priority Message

Datan CRC IFR

I
F
S

Idle IdleID (Data1)(Data0)

Optional

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-22 Freescale Semiconductor

7.4.1.1 Start of Frame Symbol (SOF)

All messages transmitted onto the J1850 bus must begin with an long active SOF symbol. This indicates 
to any listeners on the J1850 bus the start of a new message transmission. The SOF symbol is not used in 
the CRC calculation.

7.4.1.2 In Message Data Bytes (Data)

The data bytes contained in the message include the message priority/type, message I.D. byte, and any 
actual data being transmitted to the receiving node. See SAE J1850 - Class B Data Communications 
Network Interface, for more information about 1 and 3 Byte Headers.

Messages transmitted by the BDLC module onto the J1850 bus must contain at least one data byte, 
and therefore can be as short as one data byte and one CRC byte. Each data byte in the message is 
8 bits in length, transmitted MSB to LSB. 

7.4.1.3 Cyclical Redundancy Check Byte (CRC)

This byte is used by the receiver(s) of each message to determine if any errors have occurred during the 
transmission of the message. The BDLC calculates the CRC byte and appends it onto any messages 
transmitted onto the J1850 bus, and also performs CRC detection on any messages it receives from the 
J1850 bus.

CRC generation uses the divisor polynomial X8+X4+X3+X2+1. The remainder polynomial is initially set 
to all ones, and then each byte in the message after the SOF symbol is serially processed through the CRC 
generation circuitry. The one’s complement of the remainder then becomes the 8-bit CRC byte, which is 
appended to the message after the data bytes, in MSB to LSB order.

When receiving a message, the BDLC uses the same divisor polynomial. All data bytes, excluding the SOF 
and EOD symbols, but including the CRC byte, are used to check the CRC. If the message is error free, 
the remainder polynomial equals X7+X6+X2 (0xC4), regardless of the data contained in the message. If 
the calculated CRC does not equal 0xC4, the BDLC recognizes this as a CRC error and set the CRC error 
flag in the BDLC State Vector Register.

7.4.1.4 End-of-Data Symbol (EOD)

The EOD symbol is a long passive period on the J1850 bus used to signify to any recipients of a message 
that the transmission by the originator has completed. No flag is set upon reception of the EOD symbol.

7.4.1.5 In-Frame Response Bytes (IFR)

The IFR section of the J1850 message format is optional. Users desiring further definition of in-frame 
response should review the SAE J1850 Class B Data Communications Network Interface specification.

7.4.1.6 End-of-Frame Symbol (EOF)

This symbol is a passive period on the J1850 bus, longer than an EOD symbol, which signifies the end of 
a message. Because an EOF symbol is longer than an EOD symbol, if no response is transmitted after an 

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-23

EOD symbol, it becomes an EOF, and the message is assumed to be completed. The EOF flag is set upon 
receiving the EOF symbol.

7.4.1.7 Inter-Frame Separation Symbol (IFS)

The IFS symbol is a passive period on the J1850 bus which allows proper synchronization between nodes 
during continuous message transmission. The IFS symbol is transmitted by a node following the 
completion of the EOF period. 

When the last byte of a message has been transmitted onto the J1850 bus, and the EOF symbol time has 
expired, all nodes must then wait for the IFS symbol time to expire before transmitting an SOF, marking 
the beginning of another message.

However, if the BDLC module is waiting for the IFS period to expire before beginning a transmission and 
a rising edge is detected before the IFS time has expired, it internally synchronizes to that edge.

A rising edge may occur during the IFS period because of varying clock tolerances and loading of the 
J1850 bus, causing different nodes to observe the completion of the IFS period at different times. Receivers 
must synchronize to any SOF occurring during an IFS period to allow for individual clock tolerances.

7.4.1.8 Break 

If the BDLC module is transmitting at the time a BREAK is detected, it treats the BREAK as if a 
transmission error had occurred, and halts transmission.The BDLC module can transmit a BREAK 
symbol. If while receiving a message the BDLC module detects a BREAK symbol, it treats the BREAK 
as a reception error and sets the invalid symbol flag. If while receiving a message in 4X mode, the BDLC 
module detects a BREAK symbol, it treats the BREAK as a reception error, sets BDLC State Vector 
Register register to 0x1C, and exits 4X mode.The 4XE bit in BDLC Control Register 2 is automatically 
cleared upon reception of the BREAK symbol.

7.4.1.9 Idle Bus

An idle condition exists on the bus during any passive period after expiration of the IFS period. Any node 
sensing an idle bus condition can begin transmission immediately.

7.4.2 J1850 VPW Symbols

Variable pulse width modulation (VPW) is an encoding technique in which each bit is defined by the time 
between successive transitions, and by the level of the bus between transitions, active or passive. Active 
and passive bits are used alternately. This encoding technique is used to reduced the number of bus 
transitions for a given bit rate. See Section 7.1.1, “Features”.

The symbol values shown below are nominal values. Refer to the electrical specification for a more 
complete description of symbol values. Each logic one or logic zero contains a single transition, and can 
be at either the active or passive level and one of two lengths, either 64μs or 128μs (TNOM at 10.4kbps 
baud rate), depending upon the encoding of the previous bit. The SOF, EOD, EOF and IFS symbols are 
always encoded at an assigned level and length. See Figure 7-12.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-24 Freescale Semiconductor

Each message begins with an SOF symbol, an active symbol. Therefore, each data byte (including the CRC 
byte) begins with a passive bit, regardless of whether it is a logic one or a logic zero. All VPW bit lengths 
stated in the following descriptions are typical values at a 10.4 kbps bit rate. 

 

Figure 7-12. J1850 VPW Symbols

128 ms

Active

Passive

64 msOR

(a) Logic 0

128 ms

Active

Passive
64 msOR

(b) Logic 1

200 ms

Active

Passive

(c) Start of Frame

200 ms

(d) End of Data

280 ms

Active

Passive

(e) End of Frame

240 ms

(f) Break

300 ms

Active

Passive

(g) Inter-Frame Separator (IFS)

EOD EOF
20 ms

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-25

7.4.2.1 Logic 0

A logic zero is defined as either an active to passive transition followed by a passive period 64μs in length, 
or a passive to active transition followed by an active period 128μs in length (Figure 7-12(a)).

7.4.2.2 Logic 1

A logic one is defined as either an active to passive transition followed by a passive period 128μs in length, 
or a passive to active transition followed by an active period 64μs in length (Figure 7-12(b)).

7.4.2.3 Normalization Bit (NB)

The NB symbol has the same property as a logic 1 or a logic 0.  It is only used in IFR message responses. 
This bit is defined as an active bit.

7.4.2.4 Start of Frame Symbol (SOF)

The SOF symbol is defined as passive to active transition followed by an active period 200μs in length 
(Figure 7-12(c)). This allows the data bytes which follow the SOF symbol to begin with a passive bit, 
regardless of whether it is a logic one or a logic zero.

7.4.2.5 End of Data Symbol (EOD)

The EOD symbol is defined as an active to passive transition followed by a passive period 200μs in length 
(Figure 7-12(d)).

7.4.2.6 End of Frame Symbol (EOF)

The EOF symbol is defined as an active to passive transition followed by a passive period 280μs in length 
(Figure 7-12(e)). If there is no IFR byte transmitted after an EOD symbol is transmitted, after another 80μs 
the EOD becomes an EOF, indicating the completion of the message.

7.4.2.7 Inter-Frame Separation Symbol (IFS)

The IFS symbol is defined as a passive period 300μs in length. The IFS symbol contains no transition, 
since when used it always follows an EOF symbol.(Figure 7-12(g))

7.4.2.8 Break Signal (BREAK)

The BREAK signal is defined as a passive to active transition followed by an active period of at least 240μs 
(Figure 7-12(f)). 

7.4.2.9 IDLE

An IDLE is defined as a passive period greater than 300μs in length.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-26 Freescale Semiconductor

7.4.2.10 J1850 VPW Valid/Invalid Bits and Symbols

The timing tolerances for receiving data bits and symbols from the J1850 bus have been defined to allow 
for variations in oscillator frequencies. In many cases the maximum time allowed to define a data bit or 
symbol is equal to the minimum time allowed to define another data bit or symbol.

Because the minimum resolution of the BDLC module for determining which symbol is received equals a 
single period of the MUX Interface clock (tbdlc), the receiver symbol timing boundaries are subject to an 
uncertainty of 1 tbdlc due to sampling considerations.

This clock resolution of 1 tbdlc allows the BDLC module to properly differentiate between the different 
bits and symbols, without reducing the valid window for receiving bits and symbols from transmitters onto 
the J1850 bus having varying oscillator frequencies.

7.4.2.10.1 Transmit and Receive Symbol Timing Specifications

Table 7-15 through Table 7-20 contain the SAE J1850 transmit and receive symbol timing specifications 
for the BDLC module. The units used in these tables are mux interface clock periods (tbdlc). The mux 
interface clock is a divided down version of the bus clock input to the module (see Section 7.3.2.7, “BDLC 
Rate Select Register (DLCBRSR)”). The mux interface clock drives the transmit and receive counters 
which control symbol generation and identification. The symbol timing in effect during J1850 operations 
is dependent on the state of two control bits: the CLKS bit in the BDLC control register 1, which indicates 
whether the bus clock is an integer frequency or a binary frequency; the 4XE bit in BDLC Control Register 
2, which is used to select 4X operation. 

Table 7-15 andTable 7-17 indicate the transmit and receive timing for integer bus frequencies (CLKS = 0) 
and 4X operation disabled (4XE = 0). It is assumed that for integer bus frequencies the divided down mux 
interface clock frequency is 1 MHz (tbdlc = 1 μs). 

Table 7-16 and Table 7-18 indicated the transmit and receive timing for binary bus frequencies 
(CLKS = 1) and 4X operation disabled (4XE = 0). It is assumed that the divided down mux interface clock 
frequency is 1.048576 MHz (tbdlc = 0.953674 μs) for binary bus frequencies. The symbol timing values 
are adjusted to compensate for the shortening of the mux interface clock period. 

Table 7-19 and Table 7-20 show how the receive symbol timing values are adjusted when 4X operation is 
enabled (4XE = 1) for both integer bus frequencies (CLKS = 0) and binary bus frequencies (CLKS = 1), 
respectively.

The values specified in the tables are for the symbols appearing on the SAE J1850 bus. These values 
assume the BDLC module is communicating on the SAE J1850 bus using an external analog transceiver, 
and that the BDLC module analog roundtrip delay value programed into the BDLC Analog Round Trip 
Delay Register register is the appropriate value for the transceiver being used. If these conditions are not 
met, the symbol timings being measured on the SAE J1850 bus are significantly affected. For a detailed 
description of how symbol timings are measured on the SAE J1850 bus, refer to the appropriate SAE 
documents.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-27

Table 7-15. BDLC Transmitter VPW Symbol Timing for Integer Frequencies

Number Characteristic Symbol Min Typ Max Unit

1 Passive Logic 0 Ttvp1 62 64 66 tbdlc

2 Passive Logic 1 Ttvp2 126 128 130 tbdlc

3 Active Logic 0 Ttva1 126 128 130 tbdlc

4 Active Logic 1 Ttva2 62 64 66 tbdlc

5 Start of Frame (SOF) Ttva3 198 200 202 tbdlc

6 End of Data (EOD)1 Ttvp3 162 164 166 tbdlc

7 End of Frame (EOF)1 Ttv4 238 240 242 tbdlc

8 Inter-Frame Separator (IFS)1 Ttv5 298 300 302 tbdlc

Note: The transmitter timing for this symbol depends upon the minimum detection time of the symbol by the receiver.

Table 7-16. BDLC Transmitter VPW Symbol Timing for Binary Frequencies

Number Characteristic Symbol Min Typ Max Unit

1 Passive Logic 0 Ttvp1 65 67 69 tbdlc

2 Passive Logic 1 Ttvp2 132 134 136 tbdlc

3 Active Logic 0 Ttva1 132 134 136 tbdlc

4 Active Logic 1 Ttva2 65 67 69 tbdlc

5 Start of Frame (SOF) Ttva3 208 210 212 tbdlc

6 End of Data (EOD)1

1 The transmitter timing for this symbol depends upon the minimum detection time of the symbol by the receiver.

Ttvp3 170 172 174 tbdlc

7 End of Frame (EOF)1 Ttv4 250 252 254 tbdlc

8 Inter-Frame Separator (IFS)1 Ttv5 313 315 317 tbdlc

Table 7-17. BDLC Receiver VPW Symbol Timing for Integer Frequencies

Number Characteristic Symbol Min Typ Max Unit

1 Passive Logic 0 Trvp1 32 64 95 tbdlc

2 Passive Logic 1 Trvp2 96 128 163 tbdlc

3 Active Logic 0 Trva1 96 128 163 tbdlc

4 Active Logic 1 Trva2 32 64 95 tbdlc

5 Start of Frame (SOF) Trva3 164 200 239 tbdlc

6 End of Data (EOD) Trvp3 164 200 239 tbdlc

7 End of Frame (EOF) Trv4 240 280 299 tbdlc

8 Inter-Frame Separator (IFS) Trv5 281 — — tbdlc

9 Break Signal (BREAK) Trv6 240 — — tbdlc

Note: The receiver symbol timing boundaries are subject to an uncertainty of 1 tbdlc due to sampling considerations.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-28 Freescale Semiconductor

Table 7-18. BDLC Receiver VPW Symbol Timing for Binary Frequencies

Number Characteristic Symbol Min Typ Max Unit

1 Passive Logic 0 Trvp1 34 67 100 tbdlc

2 Passive Logic 1 Trvp2 101 134 171 tbdlc

3 Active Logic 0 Trva1 101 134 171 tbdlc

4 Active Logic 1 Trva2 34 67 100 tbdlc

5 Start of Frame (SOF) Trva3 172 210 251 tbdlc

6 End of Data (EOD) Trvp3 172 210 251 tbdlc

7 End of Frame (EOF) Trv4 252 293 314 tbdlc

8 Inter-Frame Separator (IFS) Trv5 315 — — tbdlc

9 Break Signal (BREAK) Trv6 252 — — tbdlc

Note: The receiver symbol timing boundaries are subject to an uncertainty of 1 tbdlc due to sampling considerations.

Table 7-19. BDLC Receiver VPW 4X Symbol Timing for Integer Frequencies

Number Characteristic Symbol Min Typ Max Unit

1 Passive Logic 0 Trvp1 8 16 23 tbdlc

2 Passive Logic 1 Trvp2 24 32 40 tbdlc

3 Active Logic 0 Trva1 24 32 40 tbdlc

4 Active Logic 1 Trva2 8 16 23 tbdlc

5 Start of Frame (SOF) Trva3 41 50 59 tbdlc

6 End of Data (EOD) Trvp3 41 50 59 tbdlc

7 End of Frame (EOF) Trv4 60 70 74 tbdlc

8 Inter-Frame Separator (IFS) Trv5 75 — — tbdlc

9 Break Signal (BREAK) Trv6 60 — — tbdlc

Note: The receiver symbol timing boundaries are subject to an uncertainty of 1 tbdlc due to sampling considerations.

Table 7-20. BDLC Receiver VPW 4X Symbol Timing for Binary Frequencies

Number Characteristic Symbol Min Typ Max Unit

1 Passive Logic 0 Trvp1 9 17 25 tbdlc

2 Passive Logic 1 Trvp2 26 34 42 tbdlc

3 Active Logic 0 Trva1 26 34 42 tbdlc

4 Active Logic 1 Trva2 9 17 25 tbdlc

5 Start of Frame (SOF) Trva3 43 53 62 tbdlc

6 End of Data (EOD) Trvp3 43 53 62 tbdlc

7 End of Frame (EOF) Trv4 63 74 78 tbdlc

8 Inter-Frame Separator (IFS) Trv5 79 — — tbdlc

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-29

The minimum and maximum symbol limits shown in the following sections (Invalid Passive Bit–Valid 
BREAK Symbol) and figures (Figure 7-13 - Figure 7-16) refer to the values listed in Table 7-15 
throughTable 7-20. 

Invalid Passive Bit

If the passive to active transition beginning the next data bit or symbol occurs between the active 
to passive transition beginning the current data bit or symbol and Trvp1(Min), the current bit would 
be invalid.  See Figure 7-13(1).

Figure 7-13. J1850 VPW Passive Symbols

Valid Passive Logic Zero

If the passive to active transition beginning the next data bit or symbol occurs between Trvp1(Min) 
and Trvp1(Max), the current bit would be considered a logic zero. See Figure 7-13(2).

Valid Passive Logic One

If the passive to active transition beginning the next data bit or symbol occurs between Trvp2(Min) 
and Trvp2(Max), the current bit would be considered a logic one. See Figure 7-13(3).

9 Break Signal (BREAK) Trv6 63 — — tbdlc

Note: The receiver symbol timing boundaries are subject to an uncertainty of 1 tbdlc due to sampling considerations.

Table 7-20. BDLC Receiver VPW 4X Symbol Timing for Binary Frequencies

Number Characteristic Symbol Min Typ Max Unit

Trvp1(Min)

Trvp2(Min) Trvp2(Max)

Trvp1(Max)Trvp1(Min)

(1) Invalid Passive Bit

(2) Valid Passive Logic Zero

(3) Valid Passive Logic One

64 ms

128 ms

Trvp3(Min) Trvp3(Max)

(4) Valid EOD Symbol

200 ms

Active

Passive

Active

Passive

Active

Passive

Active

Passive

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-30 Freescale Semiconductor

Valid EOD Symbol

If the passive to active transition beginning the next data bit or symbol occurs between Trvp3(Min) 
and Trvp3(Max), the current symbol would be considered a valid EOD symbol.  See Figure 7-13(4).

Figure 7-14. J1850 VPW EOF and IFS Symbols

Valid EOF and IFS Symbol

In Figure 7-14(1), if the passive to active transition beginning the SOF symbol of the next message 
occurs between Trv4(Min) and Trv4(Max), the current symbol is considered a valid EOF symbol. 
If the passive to active transition beginning the SOF symbol of the next message occurs after 
Trv5(Min), the current symbol is considered a valid EOF symbol followed by a valid IFS symbol. 
See Figure 7-14(2). All nodes must wait until a valid IFS symbol time has expired before beginning 
transmission. However, due to variations in clock frequencies and bus loading, some nodes may 
recognize a valid IFS symbol before others, and immediately begin transmitting. Therefore, 
anytime a node waiting to transmit detects a passive to active transition once a valid EOF has been 
detected, it should immediately begin transmission, initiating the arbitration process.

Idle Bus

If the passive to active transition beginning the SOF symbol of the next message does not occur 
before Ttv5(Min), the bus is considered to be idle, and any node wishing to transmit a message may 
do so immediately.

(2) Valid EOF+ IFS Symbol

280 ms

300 ms

Trv4(Min) Trv4(Max)

(1) Valid EOF Symbol

Active

Passive

Active

Passive
Trv5(Min)

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-31

Figure 7-15. J1850 VPW Active Symbols

Invalid Active Bit

If the active to passive transition beginning the next data bit or symbol occurs between the passive 
to active transition beginning the current data bit or symbol and Trva2(Min), the current bit would be 
invalid. See Figure 7-15(1).

Valid Active Logic One

If the active to passive transition beginning the next data bit or symbol occurs between Trva2(Min) 
and Trva2(Max), the current bit would be considered a logic one. See Figure 7-15(2).

Valid Active Logic Zero

If the active to passive transition beginning the next data bit or symbol occurs between Trva1(Min) 
and Trva1(Max), the current bit would be considered a logic zero.  See Figure 7-15(3).

Valid SOF Symbol

If the active to passive transition beginning the next data bit or symbol occurs between Trva3(Min) 
and Trva3(Max), the current symbol would be considered a valid SOF symbol. See Figure 7-15(4).

Trva2(Min)

Trva1(Min) Trva1(Max)

Trva2(Max)Trva2(Min)

(1) Invalid Active Bit

(2) Valid Active Logic One

(3) Valid Active Logic Zero

64 ms

128 ms

Trva3(Min) Trva3(Max)

(4) Valid SOF Symbol

200 ms

Active

Passive

Active

Passive

Active

Passive

Active

Passive

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-32 Freescale Semiconductor

Figure 7-16. J1850 VPW BREAK Symbol

Valid BREAK Symbol

If the next active to passive transition does not occur until after Trv6(Min), the current symbol is 
considered a valid BREAK symbol. A BREAK symbol should be followed by a SOF symbol 
beginning the next message to be transmitted onto the J1850 bus. See Figure 7-16.

7.4.2.10.2 Message Arbitration

Message arbitration on the J1850 bus is accomplished in a non-destructive manner, allowing the message 
with the highest priority to be transmitted, while any transmitters which lose arbitration simply stop 
transmitting and wait for an idle bus to begin transmitting again.

If the BDLC module wishes to transmit onto the J1850 bus, but detects that another message is in progress, 
it automatically waits until the bus is idle. However, if multiple nodes begin to transmit in the same 
synchronization window, message arbitration occurs beginning with the first bit after the SOF symbol and 
continue with each bit thereafter.

The VPW symbols and J1850 bus electrical characteristics are carefully chosen so that a logic zero (active 
or passive type) always dominates over a logic one (active or passive type) simultaneously transmitted. 
Hence logic zeroes are said to be dominant and logic ones are said to be recessive.

When a node transmits a recessive bit and detects a dominant bit, it loses arbitration, and immediately stops 
transmitting. This is known as bitwise arbitration. The loss of arbitration flag (in BDLC State Vector 
Register) is set when arbitration is lost. If the interrupt enable bit (IE in BDLC Control Register 1) is set, 
an interrupt request from the BDLC module is generated. Reading the BDLC State Vector Register register 
clears this flag.

During arbitration, or even throughout the transmitting message, when an opposite bit is detected, 
transmission is immediately stopped unless it occurs on the 8th bit of a byte. In this case, the BDLC module 
automatically appends up to two extra 1 bits and then stop transmitting. These two extra bits are arbitrated 
normally and thus do not interfere with another message. The second 1 bit is not sent if the first loses 
arbitration. If the BDLC module has lost arbitration to another valid message, the two extra ones do not 
corrupt the current message. However, if the BDLC module has lost arbitration due to noise on the bus, 
the two extra ones ensure the current message is detected and ignored as a noise-corrupted message.

(2) Valid BREAK Symbol

240 ms

Trv6(Min)

Active

Passive

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-33

Figure 7-17. J1850 VPW Bitwise Arbitrations

Because a 0 dominates a 1, the message with the lowest value has the highest priority and always wins 
arbitration. A message with priority 000 wins arbitration over a message with priority 011. This method 
of arbitration works no matter how many bits of priority encoding are contained in the message.

7.4.2.11 J1850 Bus Errors

The BDLC module detects several types of transmit and receive errors which can occur during the 
transmission of a message onto the J1850 bus.

7.4.2.11.1 Transmission Error

If the BDLC module is transmitting a message and the message received contains a symbol error, a framing 
error, a bus fault, a BREAK symbol, or a logic 1 symbol when a logic 0 is being transmitted, this 
constitutes a transmission error. Receiving a logic 0 symbol when transmitting a logic 1 is considered a 
loss of arbitration condition (See Section 7.4.2.10.2, “Message Arbitration”) and not a transmission error. 
When a transmission error is detected, the BDLC module immediately ceases transmitting. Further 
transmission or reception is disabled until a valid EOF symbol is detected on the J1850 bus. The error 
condition is reflected by setting the symbol invalid or out of range flag in the BDLC State Vector Register 
register. If the interrupt enable bit (IE in BDLC Control Register 1) is set, an interrupt request from the 
BDLC module is generated. Reading the BDLC State Vector Register register clears this flag.

7.4.2.11.2 CRC Error

A cyclical redundancy check (CRC) error is detected when the data bytes and CRC byte of a received 
message are processed, and the CRC calculation result is not equal to 0xC4. The CRC code should detect 
any single and 2 bit errors, as well as all 8 bit burst errors, and almost all other types of errors. The CRC 
error flag (in BDLC State Vector Register) is set when a CRC error is detected. If the interrupt enable bit 
(IE in BDLC Control Register 1) is set, an interrupt request from the BDLC module is generated. Reading 
the BDLC State Vector Register register clears this flag. 

Transmitter A

Transmitter B

J1850 Bus

SOF
Data

Bit 1

Data

Bit 4

Data

Bit 5

0

Passive

Active

Passive

Active

Passive

Active

0

0

1

1

1

Data

Bit 2

1

1

1

Data

Bit 3

0

0

0

0

1 Transmitter A detects
an active state on the bus
and stops transmitting.

Transmitter B wins
arbitration and continues

transmitting.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-34 Freescale Semiconductor

7.4.2.11.3 Symbol Error

A symbol error is detected when an abnormal (invalid) symbol is detected in a message being received 
from the J1850 bus. See Invalid Passive Bit and Invalid Active Bit which define invalid symbols. The 
symbol invalid or out of range flag (in BDLC State Vector Register) is set when a symbol error is detected. 
If the interrupt enable bit (IE in BDLC Control Register 1) is set, an interrupt request from the BDLC 
module is generated. Reading the BDLC State Vector Register register clears this flag.

7.4.2.11.4 Framing Error

A framing error is detected when a received symbol occurs in an inappropriate location in the message 
frame. The following situations result in framing errors: 

• An active logic 0 or logic 1 received as the first symbol of the frame.
• An SOF symbol received in any location other than the first symbol of a frame. Erroneous locations 

include: Within the data portion of a message or IFR; Immediately following the EOD in a message 
or IFR.

• An EOD symbol received on a non-byte boundary in a message or IFR.
• An active logic 0 or logic 1 received immediately following the EOD at the end of an IFR. 

The symbol invalid or out of range flag (in BDLC State Vector Register) is set when a framing error is 
detected. If the interrupt enable bit (IE in BDLC Control Register 1) is set, an interrupt request from the 
BDLC module is generated. Reading the BDLC State Vector Register register clears this flag.

7.4.2.11.5 Bus Fault

If a bus fault occurs, the response of the BDLC module depends upon the type of bus fault.

If the bus is shorted to VDD, the BDLC module waits for the bus to fall to a passive state before it attempts 
to transmit a message. As long as the short remains, the BDLC never attempts to transmit a message onto 
the J1850 bus.

If the bus is shorted to ground, the BDLC module sees an idle bus, begin to transmit the message, and then 
detect a transmission error, since the short to ground would not allow the bus to be driven to the active 
(dominant) state. The BDLC module waits for assertion of the receive pin for (64 - analog round trip delay) 
tbdlc cycles, after assertion of the transmit pin, before detecting the error. If the transmission is an IFR, the 
BDLC module waits for (280 - analog round trip delay) tbdlc cycles before detecting an error. The analog 
round trip delay is determined by the value stored in the BDLC Analog Round Trip Delay Register register. 
The BDLC module sets the symbol invalid or out of range flag (in BDLC State Vector Register), abort that 
transmission and wait for the next CPU command to transmit. In this case, the transmitter does not have 
to wait for an EOF symbol to be received to be enabled. If the interrupt enable bit (IE in BDLC Control 
Register 1) is set, an interrupt request from the BDLC module is generated. Reading the BDLC State 
Vector Register register clears this flag.

If the bus fault is temporary, as soon as the fault is cleared, the BDLC module resumes normal operation. 
If the bus fault is permanent, it may result in permanent loss of communication on the J1850 bus.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-35

7.4.2.11.6 Break

Any BDLC transmitting at the time a BREAK is detected treats the BREAK as if a transmission error had 
occurred, and halt transmission. 

If while receiving a message the BDLC module detects a BREAK symbol, it treats the BREAK as a 
reception error.

If a BREAK symbol is received while the BDLC module is transmitting or receiving, the symbol invalid 
or out of range flag (in BDLC State Vector Register) is set. Further transmission/reception is disabled until 
the J1850 bus returns to the passive state and a valid EOF symbol is detected on the J1850 bus.  If the 
interrupt enable bit (IE in BDLC Control Register 1) is set, an interrupt request from the BDLC module is 
generated. Reading the BDLC State Vector Register register clears this flag.

The BDLC module can transmit a BREAK symbol. It can receive a BREAK symbol from the J1850 bus.

7.4.2.12 Bus Error Summary

The possible J1850 bus errors and the actions taken by the BDLC module are summarized in Table 7-21.

7.4.3 MUX Interface

The MUX Interface is responsible for bit encoding/decoding and digital noise filtering between the 
Protocol Handler and the Physical Interface. Refer to Figure 7-1.

Table 7-21. BDLC Module J1850 Error Summary

Error Condition BDLC Module Function

Transmission Error BDLC module immediately ceases transmitting. Further transmission and 
reception is disabled until a valid EOF symbol is detected. The symbol invalid 
or out of range flag is set and interrupt generated if enabled. 

Cyclical Redundancy Check (CRC) Error CRC error flag set and interrupt generated if enabled. 

Symbol Error The symbol invalid or out of range flag is set and interrupt generated if 
enabled. Transmission and reception is disabled until a valid EOF symbol is 
detected.

Framing Error The symbol invalid or out of range flag is set and interrupt generated if 
enabled. Transmission and reception is disabled until a valid EOF symbol is 
detected.

Bus short to VDD. The BDLC module does not transmit until short is corrected and a valid EOF 
is detected. Depending upon when short occurs and is corrected, this error 
condition may set the symbol invalid or out of range, crc error, or loss of 
arbitration flags.

Bus short to GND. Short is seen as an idle bus by BDLC module. If a transmission attempt is 
made before short is corrected, the symbol invalid or out of range flag is set 
and interrupt generated if enabled. Another transmission can be initiated as 
soon as short is corrected.

BREAK symbol reception If doing so, the BDLC module immediately ceases transmitting. Symbol invalid 
or out of range flag set and interrupt generated if enabled.Transmission and 
reception is disabled until a valid EOF symbol is detected. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-36 Freescale Semiconductor

7.4.3.1 Mux Interface – Rx Digital Filter

The Receiver section of the BDLC module includes a digital low pass filter to remove narrow noise pulses 
from the incoming message. An outline of the digital filter is shown in Figure 7-18.

Figure 7-18. BDLC Module Rx Digital Filter Block Diagram

7.4.3.2 Operation

The clock for the digital filter is provided by the MUX Interface clock. At each positive edge of the clock 
signal, the current state of the Receiver input signal from the J1850_RX pad is sampled. The J1850_RX 
signal state is used to determine whether the counter should increment or decrement at the next positive 
edge of the clock signal. 

The counter increments if the input data sample is high but decrement if the input sample is low.  The 
counter then progresses up towards 15 if, on average, the J1850_RX signal remains high or progress down 
towards 0 if, on average, the J1850_RX signal remains low.  

When the counter eventually reaches the value 15, the digital filter decides that the condition of the 
J1850_RX signal is at a stable logic level one and the Data Latch is set, causing the Filtered Rx Data signal 
to become a logic level one.  Furthermore, the counter is prevented from overflowing and can only be 
decremented from this state.

Alternatively, should the counter eventually reach the value 0, the digital filter decides that the condition 
of the J1850_RX signal is at a stable logic level zero and the Data Latch is reset, causing the Filtered Rx 
Data signal to become a logic level zero.  Furthermore, the counter is prevented from underflowing and 
can only be incremented from this state.  

The Data Latch retains its value until the counter next reaches the opposite end point, signifying a definite 
transition of the J1850_RX signal.  

7.4.3.3 Performance

The performance of the digital filter is best described in the time domain rather than the frequency domain.

If the signal on the J1850_RX signal transitions, there is a delay before that transition appears at the 
Filtered Rx Data output signal. This delay is between 15 and 16 clock periods, depending on where the 
transition occurs with respect to the sampling points. This filter delay must be taken into account when 
performing message arbitration.

4-Bit Up/Down Counter

up/down out d qd q
4Rx Data

From
J1850_RX Pad

Edge
and

Count
Comparator

MUX Interface
Clock

Filtered
Rx Data
Out

Input Sync

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-37

For example, if the frequency of the MUX Interface clock (fbdlc) is 1.0486MHz, then the period (tbdlc) is 
954ns and the maximum filter delay in the absence of noise is 15.259us. 

The effect of random noise on the J1850_RX signal depends on the characteristics of the noise itself. 
Narrow noise pulses on the J1850_RX signal is completely ignored if they are shorter than the filter delay. 
This provides a degree of low pass filtering.

If noise occurs during a symbol transition, the detection of that transition may be delayed by an amount 
equal to the length of the noise burst. This is a reflection of the uncertainty of where the transition is truly 
occurring within the noise. 

Noise pulses that are wider than the filter delay, but narrower than the shortest allowable symbol length is 
detected by the next stage of the BDLC module’s receiver as an invalid symbol. 

Noise pulses that are longer than the shortest allowable symbol length is normally detected as an invalid 
symbol or as invalid data when the frame’s CRC is checked.

7.4.4 Protocol Handler

The Protocol Handler is responsible for framing, collision detection, arbitration, CRC 
generation/checking, and error detection. The Protocol Handler conforms to SAE J1850 - Class B Data 
Communications Network Interface. Refer to Figure 7-1.

7.4.4.1 Protocol Architecture

The Protocol Handler contains the State Machine, Rx Shadow Register, Tx Shadow Register, Rx Shift 
Register, Tx Shift Register, and Loopback Multiplexer as shown in Figure 7-19.

7.4.4.1.1 Rx and Tx Shift Registers

The Rx Shift Register gathers received serial data bits from the J1850 bus and makes them available in 
parallel form to the Rx Shadow Register. The Tx Shift Register takes data, in parallel form, from the Tx 
Shadow Register and presents it serially to the State Machine so that it can be transmitted onto the J1850 
bus.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-38 Freescale Semiconductor

Figure 7-19. BDLC Protocol Handler Outline

7.4.4.1.2 Rx and Tx Shadow Registers

Immediately after the Rx Shift Register has completed shifting in a byte of data, this data is transferred to 
the Rx Shadow Register and RDRF or RXIFR is set and interrupt is generated if the interrupt enable bit 
(IE) in BDLC Control Register 1 is set. After the transfer takes place, this new data byte in the Rx Shadow 
Register is available to the CPU, and the Rx Shift Register is ready to shift in the next byte of data. Data 
in Rx Shadow Register must be retrieved by the CPU before it is overwritten by new data from the Rx Shift 
Register.

After the Tx Shift Register has completed its shifting operation for the current byte, the data byte in the Tx 
Shadow Register is loaded into the Tx Shift Register. After this transfer takes place, the Tx Shadow 
Register is ready to accept new data from the CPU.

Rx Shift Register

To IP Bus Interface and Rx/Tx Buffers

State Machine

To Pad Drivers

R
x 

D
at

a

T
x 

D
at

a

C
on

tr
ol8

Tx Shift Register

J1
85

0_
T

X

C
on

tr
ol

8

Rx Shadow Register Tx Shadow Register

Loopback

J1850_RX J1850_TX

Multiplexer

BDLC

DLOOP from DLCBCR2
Loopback Control

D
ig

ita
l F

ilt
er

 IN

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-39

7.4.4.1.3 Digital Loopback Multiplexer

The digital loopback multiplexer connects the input of the receive digital filter (See Figure 7-19) to either 
the transmit signal out to the pad (J1850_TX) or the receive signal from the pad (J1850_RX), depending 
on the DLOOP bit in BDLC Control Register 2 register.

7.4.4.1.4 State Machine

All of the functions associated with performing the protocol are executed or controlled by the State 
Machine. The State Machine is responsible for framing, collision detection, arbitration, CRC 
generation/checking, and error detection. The following sections describe the BDLC module’s actions in 
a variety of situations.

7.4.4.1.5 4X Mode

The BDLC module can exist on the same J1850 bus as modules that use a special 4X (41.6 kbps) mode of 
J1850 VPW operation. The BDLC module can transmit and receive messages in 4X mode, if the 4XE bit 
is set in BDLC Control Register 2. If the 4XE bit is not set in the BDLC Control Register 2, any 4X 
message on the J1850 bus is treated as noise by the BDLC module and is ignored. Likewise, 4X messages 
transmitted on the SAE J1850 bus when the BDLC module is in normal mode is interpreted as noise on 
the network by the BDLC module.

7.4.4.1.6 Receiving a Message in Block Mode

Although not a part of the SAE J1850 protocol, the BDLC module allows for a special block mode of 
operation for the receiver. As far as the BDLC module is concerned, a block mode message is simply a 
long J1850 frame that contains an indefinite number of data bytes. All of the other features of the frame 
remain the same, including the SOF, CRC, and EOD symbols.

Another node wishing to send a block mode transmission must first inform all other nodes on the network 
that this is about to happen. This is usually accomplished by sending a special predefined message.

7.4.4.1.7 Transmitting a Message in Block Mode

A Block mode message is transmitted inherently by simply loading the bytes one by one into the BDLC 
Data Register register until the message is complete. The programmer should wait until the TDRE flag is 
set prior to writing a new byte of data into the BDLC Data Register register. The BDLC module does not 
contain any predefined maximum J1850 message length requirement.

7.4.5 Transmitting A Message 

The design of the BDLC module enables you to manage message reception and message transmission 
separately. All received messages can be managed almost identially, regardless of their origin.

This chapter only describes the steps necessary for transmitting a message and does not address the 
resulting reception of that message by the BDLC module. Message reception is described in Section 7.4.6, 
“Receiving A Message”. Later sections deal with transmitting and receiving In-Frame Responses on the 
SAE J1850 bus.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-40 Freescale Semiconductor

7.4.5.1 BDLC Transmission Control Bits

There is only one BDLC module control bit which is used when transmitting a message onto the SAE 
J1850 bus. This bit, the Transmit End of Data (TEOD) bit, is set by the user to indicate to the BDLC 
module that the last byte of that part of the message frame has been loaded into the BDLC Data Register. 
The TEOD bit, located in BDLC Control Register 2, is also used when transmitting an In-Frame Response 
(IFR), but that usage is described in Section 7.4.7, “Transmitting an In-Frame Response (IFR)”. Setting 
the TEOD bit indicates to the BDLC module that the last byte written to the BDLC Data Register is the 
final byte to be transmitted, and that following this byte a CRC byte and EOD symbol should be 
transmitted automatically. Setting the TEOD bit also inhibits any further TDRE interrupts until TEOD is 
cleared. The TEOD bit is cleared on the rising edge of the first bit of the transmitted CRC byte, or if an 
error or loss of arbitration is detected on the bus. 

7.4.5.1.1 BDLC Data Register

The BDLC data register is a double-buffered register which is used for handling the transmitted and 
received message bytes. Bytes to be transmitted onto the SAE J1850 bus are written to the BDLC data 
register, and bytes received from the bus by the BDLC module are read from the BDLC data register. 
Because this register is double buffered, bytes written into it cannot be read by the CPU. If this is 
attempted, the read byte is the last byte placed in the BDLC data register by the BDLC module, not the last 
byte written to the BDLC data register by the CPU. For an illustration of the BDLC data register, refer to 
Section 7.3.2.5, “BDLC Data Register (DLCBDR)”.

7.4.5.1.2 Transmitting a Message with the BDLC

To transmit a message using the BDLC module, the user writes the first byte of the message to be 
transmitted into the BDLC Data Register, initiating the transmission process. When the TDRE status 
appears in the BDLC State Vector Register, the user writes the next byte into the BDLC Data Register. 
After all of the bytes have been loaded into the BDLC Data Register, the user sets the TEOD bit, and the 
BDLC module completes the message transmission. What follows is an overview of the basic steps 
required to transmit a message onto an SAE J1850 network using the BDLC module. For an illustration of 
this sequence, refer to Figure 7-20.

NOTE
Due to the byte-level architecture of the BDLC module, the 12-byte limit on 
message length as defined in SAE J1850 must be enforced by the user’s 
software. The number of bytes in a message (transmitted or received) has no 
meaning to the BDLC module.

1. Write the First Byte into the BDLC Data Register
To initiate a message transmission, the CPU simply loads the first byte of the message to be 
transmitted into the BDLC Data Register. The BDLC module then performs the necessary bus 
acquisition duties to determine when the message transmission can begin.
After the BDLC module determines that the SAE J1850 bus is free, a Start of Frame (SOF) symbol 
is transmitted, followed by the byte written to the BDLC Data Register. After the BDLC module 
readies this byte for transmission, the BDLC State Vector Register reflects that the next byte can 
be written to the BDLC Data Register (TDRE interrupt).

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-41

NOTE
If the user writes the first byte of a message to be transmitted to the BDLC 
Data Register and then determines that a different message should be 
transmitted, the user can write a new byte to the BDLC Data Register up 
until the transmission begins. This new byte replaces the original byte in the 
BDLC Data Register.

2. When TDRE is Indicated, Write the Next Byte into the BDLC Data Register
When a TDRE state is reflected in the BDLC State Vector Register, the CPU writes the next byte 
to be transmitted into the BDLC Data Register. This step is repeated until the last byte to be 
transmitted is written to the BDLC Data Register.

NOTE
Due to the design and operation of the BDLC module, when transmitting a 
message the user may write two, or possibly even three of the bytes to be 
transmitted into the BDLC Data Register before the first RDRF interrupt 
occurs. For this reason, the user should never use receive interrupts to 
control the sequencing of bytes to be transmitted.

3. Write the Last Byte to the BDLC Data Register and Set TEOD
After the user has written the last byte to be transmitted into the BDLC Data Register, the user then 
sets the TEOD bit in BDLC Control Register 2. When the TEOD bit is set, once the byte written 
to the BDLC Data Register is transmitted onto the bus, the BDLC module begins transmitting the 
8-bit CRC byte, as specified in SAE J1850. Following the CRC byte, the BDLC module transmits 
an EOD symbol onto the SAE J1850 bus, indicating that this part of the message has been 
completed. If no IFR bytes are transmitted following the EOD, an EOF is recognized and the 
message is complete.
Setting the TEOD bit is the last step the CPU needs to take to complete the message transmission, 
and no further transmission-related interrupts occur. After the message has been completely 
received by the BDLC module, an EOF interrupt is generated. However, this is technically a 
receive function that can be managed by the message reception routine.

NOTE
While the TEOD bit is typically set immediately following the write of the 
last byte to the BDLC Data Register, it is also acceptable to wait until a 
TDRE interrupt is generated before setting the TEOD bit. While the 
example flowchart in Figure 7-20 shows the TEOD bit being set after the 
write to the BDLC Data Register, either method is correct. If a TDRE 
interrupt is pending, it is cleared when the TEOD bit is set.

7.4.5.2 Transmitting Exceptions

While this is the basic transmit flow, at times the message transmit process is interrupted. This can be due 
to a loss of arbitration to a higher priority message or due to an error being detected on the network. For 
the transmit routine, either of these events can be dealt with in a similar manner.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-42 Freescale Semiconductor

7.4.5.2.1 Loss of Arbitration

If a loss of arbitration (LOA) occurs while the BDLC module is transmitting onto the SAE J1850 bus, the 
BDLC module immediately stops transmitting, and a LOA status is reflected in the BDLC State Vector 
Register. If the loss of arbitration has occurred on a byte boundary, an RDRF interrupt may also be pending 
once the LOA interrupt is cleared.

When a loss of arbitration occurs, the J1850 message handling software should immediately switch into 
the receive mode. If the TEOD bit was set, it is cleared automatically. If another attempt is to be made to 
transmit the same message, the user must start the transmit sequence over from the beginning of the 
message.

7.4.5.2.2 Error Detection

Similar to a loss of arbitration, if any error (except a CRC error) is detected on the SAE J1850 bus during 
a transmission, the BDLC module stops transmitting immediately. The transmitted byte is discarded, and 
the symbol invalid or out of range status is reflected in the BDLC State Vector Register. As with the loss 
of arbitration, if the TEOD bit was set, it is cleared automatically and any attempt to transmit the same 
message has to start from the beginning.

If a CRC error occurs following a transmission, this is also reflected in the BDLC State Vector Register. 
However, since the CRC error is really a receive error based on the received CRC byte, at this point all 
bytes of the message have been transmitted. It is therefore up to the user’s software to determine if another 
attempt should be made to transmit the message in which the error occurred.

7.4.5.2.3 Transmitter Underrun

A transmitter underrun can occur when a TDRE interrupt is not serviced in a timely fashion. If the last byte 
loaded into the BDLC Data Register is completely transmitted onto the network before the next byte is 
loaded into the BDLC Data Register, a transmitter underrun occurs. If this does happen, the BDLC module 
transmits two additional logic ones to ensure that the partial message which was transmitted onto the bus 
does not end on a byte boundary. This is followed by an EOD and EOF symbol. The only indication to the 
CPU that an underrun occurred is the Symbol Invalid or Out of Range error indicated in the BDLC State 
Vector Register. As with the other errors, it is up to the user’s software to determine if another transmission 
attempt should be made.

7.4.5.2.4 In-Frame Response to a Transmitted Message

If an In-Frame Response (IFR) is received following the transmission of a message, the status indicating 
that an IFR byte has been received is indicated in the BDLC State Vector Register before an EOF is 
indicated. Refer to Section 7.4.8, “Receiving An In-Frame Response (IFR)” for a description of how to 
manage the reception of IFR bytes.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-43

Figure 7-20. Basic BDLC Transmit Flowchart

Enter BDLC Module
Transmit Routine

Write First Message
Byte to be Transmitted

into DLCBDR

Is DLCBSVR = 0x00?

Yes

No

Load Next Byte to be
Transmitted into DLCBDR

(Clears TDRE)

Is DLCBSVR=0x1C?
Yes

No

Is DLCBSVR=0x14?
Yes

No

Is DLCBSVR=0x10?

Yes

No

(TDRE)

(LOA)

(Invalid Symbol)

Attempt Another
Yes

No

Transmission?

Is This the Last

Yes

No

Byte?

A

A

Jump to BDLC Module
Receive Routine

After BDLC Module
Detects EOF, Transmit

Set TEOD Bit
in DLCBCR2

Attempt is Complete

Yes

No

IFR Received? Jump to Receive IFR
Handling Routine

Exit BDLC Module
Transmit Routine

B
B

C

C

Go to BDLC Module
BREAK/Error Handling

Routine

For interrupt driven systems, 
this marks the beginning of 
the transmit section of the 
BDLC module interrupt 
service routine

NOTE: The EOF and CRC error interrupts are handled in the BDLC Module Receive Routine

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-44 Freescale Semiconductor

7.4.5.3 Aborting a Transmission

The BDLC module does not have a mechanism designed specifically for aborting a transmission. Because 
the module transmits each message on a byte-by-byte basis, there is little need to implement an abort 
mechanism. If the user has loaded a byte into the BDLC Data Register to initiate a message transmission 
and decides to send a different message, the byte in the BDLC Data Register can be replaced, right up to 
the point that the message transmission begins.

If the user has loaded a byte into the BDLC Data Register and then decides not to send any message at all, 
the user can let the byte transmit, and when the TDRE interrupt occurs let the transmitter underrun. This 
causes two extra logic ones followed by an EOF to be transmitted. While this method may require a small 
amount of bus bandwidth, the need to do this should be rare. Replacing the byte originally written to the 
BDLC Data Register with 0xFF also increases the probability of the transmitter losing arbitration if 
another node begins transmitting at the same time, also reducing the bus bandwidth needed.

7.4.6 Receiving A Message

The design of the BDLC module makes it especially easy to use for receiving messages off of the SAE 
J1850 bus. When the first byte of a message comes in, the BDLC State Vector Register indicates to the 
CPU that a byte has been received. As each successive byte is received, it is in turn be reflected in the 
BDLC State Vector Register. When the message is complete and the EOF has been detected on the bus, 
the BDLC State Vector Register reflects this, indicating that the message is complete.

The basic steps required for receiving a message from the SAE J1850 bus are outlined below. For more 
information on receiving IFR bytes, refer to Section 7.4.8, “Receiving An In-Frame Response (IFR)”.

7.4.6.1 BDLC Reception Control Bits

The only control bit which is used for message reception, the IMSG bit, is actually used to prevent message 
reception. When the IMSG bit is set BDLC module interrupts of the CPU are inhibited until the next SOF 
symbol is received. This allows the BDLC module to ignore the remainder of a message once the CPU has 
determined that it is of no interest. This helps reduce the amount of CPU overhead used to service 
messages received from the SAE J1850 network, since otherwise the BDLC module would require 
attention from the CPU for each byte broadcast on the network. The IMSG bit is cleared when the BDLC 
module receives an SOF symbol, or it can also be cleared by the CPU.

NOTE
While the IMSG bit can be used to prevent the CPU from having to service 
the BDLC module for every byte transmitted on the SAE J1850 bus, the 
IMSG bit should never be used to ignore the BDLC module’s own 
transmission. Because setting the IMSG bit prevents all BDLC State Vector 
Register bits from being updated until an SOF is received, the user would 
not receive any further transmit-related interrupts until another SOF was 
received, making it difficult for the CPU to complete the transmission 
correctly.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-45

7.4.6.2 Receiving a Message with the BDLC Module

Receiving a message using the BDLC module is extremely straight-forward. As each byte of a message is 
received and placed into the BDLC Data Register, the BDLC module indicates this to the CPU with an Rx 
Data Register Full (RDRF) status in the BDLC State Vector Register. When an EOF symbol is received, 
indicating to the CPU that the message is complete, this is reflected in the BDLC State Vector Register.

Outlined below are the basic steps to be followed for receiving a message from the SAE J1850 bus with 
the BDLC module. For an illustration of this sequence, refer to Figure 7-21.

1. When RDRF Interrupt Occurs, Retrieve Data Byte
When the first byte of a message following a valid SOF symbol is received that byte is placed in 
the BDLC Data Register, and an RDRF state is reflected in the BDLC State Vector Register. No 
indication of the SOF reception is made, since the end of the previous message is marked by an 
EOF indication. The first RDRF state following this EOF indication should allow the user to 
determine when a new message begins.
The RDRF interrupt is cleared when the received byte is read from the BDLC Data Register. After 
this is done, no further CPU intervention is necessary until the next byte is received, and this step 
is repeated.
All bytes of the message, including the CRC byte, are placed into the BDLC Data Register as they 
are received for the CPU to retrieve.

2. When an EOF is Received, the Message is Complete
After all bytes (including the CRC byte) have been received from the bus, the bus is idle for a time 
period equal to an EOD symbol. After the EOD symbol is received, the BDLC module verifies that 
the CRC byte is correct. If the CRC byte is not correct, this is reflected in the BDLC State Vector 
Register.
If no In-Frame Response bytes are transmitted following the EOD symbol, the EOD transitions 
into an EOF symbol. When the EOF is received it is reflected in the BDLC State Vector Register, 
indicating to the user that the message is complete. If IFR bytes do follow the first EOD symbol, 
once they are complete another EOD is transmitted, followed by an EOF.
After the EOF state is reflected in the BDLC State Vector Register, this indicates to the user that 
the message is complete, and that when another byte is received it is the first byte of a new message.

7.4.6.3 Filtering Received Messages

No message filtering hardware is included on the BDLC module, so all message filtering functions must 
be performed in software. Because the BDLC module handles each message on a byte-by-byte basis, 
message filtering can be done as each byte is received, rather than after the entire message is complete. 
This enables the CPU to decide while a message remains in progress whether or not that message is of any 
interest.

At any point during a message, if the CPU determines that the message is of no interest the IMSG bit can 
be set. Setting the IMSG bit commands the BDLC module not to update the BDLC State Vector Register 
until the next valid SOF is received. This prevents the CPU from having to service the BDLC module for 
each byte of every message sent over the network.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-46 Freescale Semiconductor

7.4.6.4 Receiving Exceptions

As with a message transmission, this basic message reception flow can be interrupted if errors are detected 
by the BDLC module. This can occur if an incorrect CRC is detected or if an invalid or out of range symbol 
appears on the SAE J1850 bus. A problem can also arise if the CPU fails to service the BDLC Data 
Register in a timely manner during a message reception.

7.4.6.4.1 Receiver Overrun

After a message byte has been received, the CPU must service the BDLC Data Register before the next 
byte is received, or the first byte is lost. If the BDLC Data Register is not serviced quickly enough, the next 
byte received is written over the previous byte in the BDLC Data Register. No receiver overrun indication 
is made to the CPU. If the CPU fails to service the BDLC module during the reception of an entire 
message, the byte remaining in the BDLC Data Register is the last byte received (usually a CRC byte).

After a receiver overrun occurs, there is no way for the CPU to recover the lost byte(s), so the entire 
message should be discarded. To prevent receiver overrun, the user should ensure that a BDLC RDRF 
interrupt is serviced before the next byte can be received. When polling the BDLC State Vector Register, 
the user should select a polling interval that provides timely monitoring of the BDLC module.

7.4.6.4.2 CRC Error

If a CRC error is detected during a message reception, this is reflected in the BDLC State Vector Register 
once an EOD time is recognized by the BDLC module. Because all bytes of the message have been 
received when this error is detected, it is up to the user to ensure that all the received message bytes are 
discarded.

7.4.6.4.3 Invalid or Out of Range Symbol

If an invalid or out of range symbol, a framing error or a BREAK symbol is detected on the SAE J1850 
bus during the reception of a message, the BDLC module immediately stops receiving the message and 
discard any partially received byte. The symbol invalid or out of range status is immediately reflected in 
the BDLC State Vector Register. Following this, the BDLC module waits until the bus has been idle for a 
time period equal to an EOF symbol before receiving another message. As with the CRC error, the user 
should discard any partially received message if this occurs.

7.4.6.4.4 In-Frame Response to a Received Message

As mentioned above, if one or more IFR bytes are received following the reception of a message, the status 
indicating the reception of the IFR byte(s) is indicated in the BDLC State Vector Register before the EOF 
is indicated. Refer to Section 7.4.8, “Receiving An In-Frame Response (IFR)” for a description of how to 
deal with the reception of IFR bytes.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-47

Figure 7-21. Basic BDLC Receive Flowchart

Enter BDLC Module 

Is DLCBSVR 

No

Store Received Byte
(In Case of LOA)

Is this Message
Yes

No

Yes

No

Is DLCBSVR = 0x04?

No

Yes

(EOF)

of Any Interest?

Is This a Transmit

Yes

No

Reflection?

Yes

A

B

Jump to Receive IFR
Handling Routine

Go to BDLC Module
BREAK/Error Handling

Yes

No

Is DLCBSVR

Jump to Transmit IFR
Handling Routine

Exit BDLC Module
Receive Routine

B

Routine(Error Detected)

(RDRF)
Read Byte in DLCBDR

Filter Received Byte

Set IMSG BitStore Received Byte

Is an IFR toYes

No

be Transmitted?

B

Receive Routine

= 0x1C/0x18?

 = 0x0C?

Is This an IFR
Reception?

A

in DLCBCR1

Once BDLC Module
Detects EOF,

Message Reception
is Complete

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-48 Freescale Semiconductor

7.4.7 Transmitting an In-Frame Response (IFR) 

The BDLC module can be used to transmit all four types of In-Frame Response (IFR) which are defined 
in SAE J1850. A brief definition of each IFR type is given below. For a more detailed description of each, 
refer the SAE J1850 document.

The explanation regarding IFR support by the BDLC module assumes familiarity with the use of IFRs as 
defined in SAE J1850 and understands the message header bit encoding and normalization bit formats 
used with the different types of IFRs. For more information on this, refer to the SAE J1850 document.

7.4.7.1 IFR Types Supported by the BDLC Module

SAE J1850 defines four distinct types of IFR. The first IFR is Type 0, or no IFR. IFR types 1, 2 and 3 are 
each made up of one or more bytes and, depending upon the type used, may be followed by a CRC byte. 
The BDLC module is designed to allow the user to transmit and receive all types of SAE J1850 IFRs, but 
only the network framing/error checking/bus acquisition duties are performed by the BDLC module. The 
user is responsible for determining the type of IFR to be transmitted, the number of retries to be made (if 
allowed), and the maximum number of bytes to be transmitted.

7.4.7.1.1 IFR Type 0: No Response

Generally, no IFR is used. The Type 0 IFR, as defined in SAE J1850, is no response. The EOD and EOF 
symbols follow directly after the CRC byte at the end of the message frame being transmitted. This type 
of IFR is inherently supported by the BDLC module, with no additional user intervention required.

7.4.7.1.2 IFR Type 1: Single Byte from a Single Responder

SAE J1850 defines the Type 1 IFR as a single byte from a single receiver. This type of IFR is used to 
acknowledge to the transmitter that the message frame was transmitted successfully on the network, and 
that at least one receiver received it correctly. A Type 1 IFR generally consists of the physical node ID of 
the receiver responding to the message, with no CRC byte appended. This type of response is used for 
broadcast-type messages, where there may be several intended receivers for a message, but the transmitter 
only wants to know that at least one node received it. In this case, all receivers begin transmitting their 
node ID following the EOD. Because all nodes on an SAE J1850 network have a unique node ID, if 
multiple nodes begin transmitting their node ID simultaneously, arbitration takes place. The node with the 
highest priority (lowest value) ID wins this arbitration process, and that node’s ID makes up the IFR. No 
retries are attempted by the nodes which lose arbitration during a Type 1 IFR transmission.

A Type 1 IFR can also be used as a response to a physically addressed message, where the only intended 
receiver is the one which responds. In this case, no arbitration would take place during the IFR 
transmission, but the resulting IFR would consist of a single byte.

7.4.7.1.3 IFR Type 2: Single Byte from Multiple Responders

The Type 2 IFR, as defined in SAE J1850, is a series of single bytes, each transmitted by a different 
responder. This IFR type not only acknowledges to the transmitter that the message was transmitted 
successfully, but also reveals which receivers actually received the message. As with the Type 1 IFR, no 
CRC byte is appended to the end of a Type 2 IFR.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-49

This IFR type is typically used with Function-type messages, where the original transmitter may need to 
know which nodes actually received the message. The basic difference between this type of IFR and the 
Type 1 IFR is that the nodes which lose arbitration while attempting to transmit their node ID during a 
Type 2 IFR wait until the byte which wins arbitration is transmitted and then again attempt to transmit their 
node ID onto the bus. The result is a series of node IDs, one from each receiver of the original message.

7.4.7.1.4 IFR Type 3: Multiple Bytes from a Single Responder

The last type of IFR defined by SAE J1850 is the Type 3 IFR. This IFR type consists of one or more bytes 
from a single responder. This type of IFR is used to return data to the original transmitter within the 
original message frame. This type of IFR may or may not have a CRC byte appended to it.

The Type 3 IFR is typically used with Function Read-type or Function Query-type messages, where the 
original transmitter is requesting data from the intended receiver. The node requesting the data transmits 
the initial portion of the message, and the intended receiver responds by transmitting the desired data in an 
IFR. In most cases, the original message requiring a Type 3 IFR is addressed to one particular node, so no 
arbitration should take place during the IFR portion of the message.

7.4.7.2 BDLC IFR Transmit Control Bits

The BDLC module has three bits which are used to control the transmission of an In-Frame Response. 
These bits, all located in BDLC Control Register 2, are TSIFR, TMIFR1 and TMIFR0. Each is used in 
conjunction with the TEOD bit to transmit one of three IFR types defined in SAE J1850. What follows is 
a brief description of each bit. 

Because each of the bits used for transmitting an IFR with the BDLC module is used to transmit a 
particular type of IFR, only one bit should be set by the CPU at a time. However, should more than one of 
these bits get set at one time, a priority encoding scheme is used to determine which type of IFR is sent. 
This scheme prevents unpredictable operation caused by conflicting signals to the BDLC module. 
Table 7-22 illustrates which IFR bit is acted upon by the BDLC module should multiple IFR bits get set at 
the same time.

NOTE
As with transmitted messages, IFRs transmitted by the BDLC module are 
also received by the BDLC module. For a description of how IFR bytes 
received by the BDLC module should be handled, refer to Section 7.4.8, 
“Receiving An In-Frame Response (IFR)”.

Table 7-22. IFR Control Bit Priority Encoding

READ/WRITE ACTUAL

TSIFR TMIFR1 TMIFR0 TSIFR TMIFR1 TMIFR0

0 0 0 0 0 0

1 — — 1 0 0

0 1 — 0 1 0

0 0 1 0 0 1

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-50 Freescale Semiconductor

7.4.7.3 Transmit Single Byte IFR

The Transmit Single Byte IFR (TSIFR) bit in BDLC Control Register 2 is used to transmit Type 1 and Type 
2 IFRs onto the SAE J1850 bus. If this bit is set after a byte is loaded into the BDLC Data Register, the 
BDLC module attempts to send that byte, preceded by the appropriate Normalization Bit, as a single byte 
IFR without a CRC. If arbitration is lost, the BDLC module automatically attempts to transmit the byte 
again (without a Normalization Bit) as soon as the byte winning arbitration completes transmission. 
Attempts to transmit the byte continue until the byte is successfully transmitted, the TEOD bit is set by the 
user, or an error is detected on the bus.

The user must set the TSIFR bit before the EOD following the main part of the message frame is received, 
or no IFR transmit attempts are made for the current message. If another node does transmit an IFR to this 
message or a reception error occurs, the TSIFR bit is cleared. If not, the IFR is transmitted after the EOD 
of the next received message.

The TSIFR bit is automatically cleared after the EOD following one or more IFR bytes has been received 
or an error is detected on the bus. 

7.4.7.4 Transmit Multi-Byte IFR 1

The Transmit Multi-Byte IFR 1 (TMIFR1) bit is used to transmit an SAE J1850 Type 3 IFR with a CRC 
byte appended. If this bit is set after the user has loaded the first byte of a multi-byte IFR into the BDLC 
Data Register, the BDLC module begins transmitting that byte, preceded by the appropriate Normalization 
Bit, onto the SAE J1850 bus. After this happens, a TDRE interrupt occurs, indicating to the user that the 
next IFR byte should be loaded into the BDLC Data Register. When the last byte to be transmitted is 
written to the BDLC Data Register, the user sets the TEOD bit. This causes a CRC byte and an EOD 
symbol to be transmitted following the last IFR byte.

As with the TSIFR bit, the TMIFR1 bit must be set before the EOD symbol is received or it remains cleared 
and no IFR transmit attempts are made. The TMIFR1 bit is cleared after the CRC byte and EOD are 
transmitted, if an error is detected on the bus, if a loss of arbitration occurs during the IFR transmission or 
if a transmitter underrun occurs when the user fails to service the TDRE interrupt in a timely manner. If a 
loss of arbitration occurs while the Type 3 IFR is being transmitted, transmission halts immediately and 
the loss of arbitration is indicated in the BDLC State Vector Register.

7.4.7.5 Transmit Multi-Byte IFR 0

The Transmit Multi-Byte IFR 0 (TMIFR0) bit is used to transmit an SAE J1850 Type 3 IFR without a CRC 
byte appended. If this bit is set after the user has loaded the first byte of a multi-byte IFR into the BDLC 
Data Register, the BDLC module begins transmitting that byte, preceded by the appropriate Normalization 
Bit, onto the SAE J1850 bus. After this happens, a TDRE interrupt occurs, indicating to the user that the 
next IFR byte should be loaded into the BDLC Data Register. When the last byte to be transmitted is 
written to the BDLC Data Register, the user sets the TEOD bit. This causes an EOD symbol to be 
transmitted following the last IFR byte.

As with the TSIFR and TMIFR1 bits, the TMIFR0 bit must be set before the EOD symbol is received or 
it remains cleared and no IFR transmit attempts are made. The TMIFR0 bit is cleared after the CRC byte 
and EOD are transmitted, if an error is detected on the bus, if a loss of arbitration occurs during the IFR 

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-51

transmission or if a transmitter underrun occurs when the user fails to service the TDRE interrupt in a 
timely manner. If a loss of arbitration occurs while the Type 3 IFR is being transmitted, transmission halts 
immediately and the loss of arbitration is indicated in the BDLC State Vector Register.

NOTE
The TMIFR0 bit should not be used to transmit a Type 1 IFR. If a loss of 
arbitration occurs on the last bit of a byte being transmitted using the 
TMIFR0 bit, two extra logic ones are transmitted to ensure that the IFR does 
not end on a byte boundary. This can cause an error in a Type 1 IFR.

7.4.7.6 Transmitting An IFR with the BDLC module

While the design of the BDLC module makes the transmission of each type of IFR similar, the steps 
necessary for sending each is discussed. Again, a discussion of the bytes making up any particular IFR is 
not within the scope of this document. For a more detailed description of the use of IFRs on an SAE J1850 
network, refer to the SAE J1850 document.

7.4.7.6.1 Transmitting a Type 1 IFR

To transmit a Type 1 IFR, the user loads the byte to be transmitted into the BDLC Data Register and sets 
both the TSIFR bit and the TEOD bit. This directs the BDLC module to attempt transmitting the byte 
written to the BDLC Data Register one time, preceded by the appropriate Normalization Bit. If the 
transmission is not successful, the byte is discarded and no further transmission attempts are made. For an 
illustration of the steps described below, refer to Figure 7-22.

1. Load the IFR Byte into the BDLC Data Register
The user begins initiation of a Type 1 IFR by loading the desired IFR byte into the BDLC Data 
Register. If a byte has already been written into the BDLC Data Register for transmission as a new 
message, the user can simply write the IFR byte to the BDLC Data Register, replacing the 
previously written byte. This must be done before the first EOD symbol is received.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-52 Freescale Semiconductor

Figure 7-22. Transmitting A Type 1 IFR

2. Set the TSIFR and TEOD Bits
The final step in transmitting a Type 1 IFR with the BDLC module is to set the TSIFR and TEOD 
bits in BDLC Control Register 2. Setting both bits directs the BDLC module to make one attempt 
at transmitting the byte in the BDLC Data Register as an IFR. If the byte is transmitted successfully, 
or if an error or loss of arbitration occurs, TEOD and TSIFR are cleared and no further transmit 
attempts are made.

7.4.7.6.2 Transmitting a Type 2 IFR

To transmit a Type 2 IFR, the user loads the byte to be transmitted into the BDLC Data Register and sets 
the TSIFR bit. After this is done, the BDLC module attempts to transmit the byte in the BDLC Data 
Register as a single byte IFR, preceded by the appropriate Normalization Bit. If the first BDLC module 
loses arbitration on the first attempt, it makes repeated attempts to transmit this byte until it is successful, 

Enter Type 1 IFR
transmit routine

Is DLCBSVR=0x1C?
No

Yes

(error detected)

Set TSIFR and TEOD

Is DLCBSVR=0x14?

No

Yes

(LOA)

Exit Type 1 IFR
transmit routine

Jump to receive IFR
handling routine

IFR byte is discarded

IFR Byte is discarded

Load IFR byte
into DLCBDR

After BDLC module detects
EOF, IFR transmit

attempt is completed

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-53

an error occurs or the user sets the TEOD bit. For an illustration of the steps described below, refer to 
Figure 7-23.

1. Load the IFR Byte into the BDLC Data Register
As with the Type 1 IFR, the user begins initiation of a Type 2 IFR by loading the desired IFR byte 
into the BDLC Data Register. If a byte has already been written into the BDLC Data Register for 
transmission as a new message, the user can simply write the IFR byte to the BDLC Data Register, 
replacing the previously written byte. This must be done before the first EOD symbol is received.

2. Set the TSIFR Bit
The second step necessary for transmitting a Type 2 IFR is to set the TSIFR bit in BDLC Control 
Register 2. Setting this bit directs the BDLC module to attempt to transmit the byte in the BDLC 
Data Register as an IFR until it is successful. If the byte is transmitted successfully or if an error or 
loss of arbitration occurs, TSIFR is cleared and no further transmit attempts are made.

3. If Necessary, Set the TEOD Bit
The third step in transmitting a Type 2 IFR is only necessary if the user wishes to halt the 
transmission attempts. This may be necessary if the BDLC module’s attempt to transmit the byte 
loaded into the BDLC Data Register continually loses arbitration, and the overall message length 
approaches the 12-byte limit as defined in SAE J1850.
If it becomes necessary to halt the IFR transmission attempts, the user simply sets the TEOD bit in 
BDLC Control Register 2. If the BDLC module is between transmission attempts, it makes one 
more attempt to transmit the IFR byte. If it is transmitting the byte when TEOD is set, the BDLC 
module continues the transmission until it is successful or it loses arbitration to another transmitter. 
At this point, it then discards the byte and make no more transmit attempts.

NOTE
When transmitting a Type 2 IFR, the user should monitor the number of IFR 
bytes received to ensure that the overall message length does not exceed the 
12-byte limit for the length of SAE J1850 messages. The user should set the 
TEOD bit when the 11th byte is received, which prevents the 12-byte limit 
from being exceeded.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-54 Freescale Semiconductor

Figure 7-23. Transmitting A Type 2 IFR

7.4.7.6.3 Transmitting a Type 3 IFR

Transmitting a Type 3 IFR, with or without a CRC byte, is done in a fashion similar to transmitting a 
message frame. The user loads the first byte to be transmitted into the BDLC Data Register and then sets 
the appropriate TMIFR bit, depending upon whether a CRC byte is desired. When the last byte is written 
to the BDLC Data Register, the TEOD bit is set, and a CRC byte (if desired) and an EOD are then 
transmitted. Because the two versions of the Type 3 IFR are transmitted identically, the description that 
follows discusses both. For an illustration of the Type 3 IFR transmit sequence, refer to Figure 7-24.

Is DLCBSVR=0x1C?
No

Yes

(error detected)
Is DLCBSVR=0x14?

No

Yes

(LOA)

IFR byte IFR Byte

No

Yes

No

Yes

Set TEOD

Enter Type 2 IFR
transmit routine

Load IFR byte
into DLCBDR

Set TSIFR
in DLCBCR2

Jump to receive IFR
handling routine

Was this the last
transmit attempt?

Was the eleventth
MSG Byte
received?

Exit Type 1 IFR
transmit routine

Jump to receive IFR
handling routine

After BDLC module detects
EOF, IFR transmit

attempt is complete

in DLCBCR2is discarded is discarded

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-55

Figure 7-24. Transmitting A Type 3 IFR

Enter Type 3 IFR
Transmit Routine

Set Desired
TMIFR Bit in DLCBCR2

Is DLCBSVR=0x00?
Yes

No

Is DLCBSVR=0x1C?
Yes

No

Is DLCBSVR=0x14?
Yes

No

Is DLCBSVR=0x10?

Yes

No

(TDRE)

(LOA)

(Invalid Symbol)

Is This the Last

Yes

No

Byte?

A

A

Jump to IFR
Receive Routine

After BDLC Module Detects
EOF, IFR Transmit

Set TEOD Bit
in DLCBCR2

Attempt is Complete

B

B
Abandon IFR

Transmit Attempt

For interrupt driven systems, 
this marks the beginning of the 
transmit Type 3 IFR section of 
the BDLC module interrupt 
service routine

Note: The EOF and CRC Error Interrupts 
are handled in the IFR Receive 
Routine

Write First IFR
Byte to be Transmitted

into DLCBDR

Set TEOD Bit in Only One Byte toYes

No

Transmit?DLCBCR2

Load Next Byte to be
Transmitted into DLCBDR

(Clears TDRE)

Exit Type 3 IFR
Transmit Routine

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-56 Freescale Semiconductor

1. Load the First IFR Byte into the BDLC Data Register
The user begins initiation of a Type 3 IFR, as with each of the other IFR types, by loading the 
desired IFR byte into the BDLC Data Register. If a byte has already been written into the BDLC 
Data Register for transmission as a new message, the user can simply write the first IFR byte to the 
BDLC Data Register, replacing the previously written byte. This must be done before the first EOD 
symbol is received.

2. Set the TMIFR Bit
The second step necessary for transmitting a Type 3 IFR is to set the desired TMIFR bit in BDLC 
Control Register 2, depending upon whether or not a CRC is desired. As previously described in 
Section 7.4.7.2, “BDLC IFR Transmit Control Bits”, the TMIFR1 bit should be set if the user 
requires a CRC byte to be appended following the last byte of the Type 3 IFR, and TMIFR0 if no 
CRC byte is required.
Setting the TMIFR1 or TMIFR0 bit directs the BDLC module to transmit the byte in the BDLC 
Data Register as the first byte of a single or multi-byte IFR preceded by the appropriate 
Normalization Bit. After this has occurred, the BDLC State Vector Register reflects that the next 
byte of the IFR can be written to the BDLC Data Register (TDRE interrupt).

NOTE
The user must set the TMIFR1 or TMIFR0 bit before the EOD following the 
main part of the message frame is received or no IFR transmit attempts are 
made for the current message. If another node does transmit an IFR to this 
message or a reception error occurs, the TMIFR1 or TMIFR0 bit is cleared. 
If not, the IFR is transmitted after the EOD of the next received message.

3. When TDRE is Indicated, Write the Next IFR Byte into the BDLC Data Register
When a TDRE state is reflected in the BDLC State Vector Register, the CPU writes the next IFR 
byte to be transmitted into the BDLC Data Register, clearing the TDRE interrupt. This step is 
repeated until the last IFR byte to be transmitted is written to the BDLC Data Register.

NOTE
When transmitting a Type 3 IFR, you may write two or three of the bytes to 
be transmitted into the BDLC Data Register before the first Rx IFR interrupt 
occurs. For this reason, never use receive IFR byte interrupts to control the 
sequencing of IFR bytes to be transmitted.

4. Write the Last IFR Byte into the BDLC Data Register and Set TEOD
After the last IFR byte to be transmitted is written to the BDLC Data Register, the CPU then sets 
the TEOD bit in BDLC Control Register 2. After the TEOD bit is set and the last IFR byte written 
to the BDLC Data Register is transmitted onto the bus (if the TMIFR1 bit has been set), the BDLC 
module begins transmitting the CRC byte, followed by an EOD. If the TMIFR0 bit has been set, 
the last IFR byte is immediately followed by the transmission of an EOD. Following the EOD, EOF 
is recognized and the message is complete.
If a loss of arbitration occurs at any time during the transmission of a Type 3 IFR, the TMIFR bit 
is set, and the TEOD bit (if set) is cleared, any IFR byte being transmitted is discarded and the loss 
of arbitration state is reflected in the BDLC State Vector Register. Likewise, if an error is detected 

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-57

during the transmission of a Type 3 IFR the IFR control bits are cleared, the byte being transmitted 
is discarded, and the BDLC State Vector Register reflects the detected error.
If the Type 3 IFR being transmitted is made up of a single byte, the appropriate TMIFR bit and the 
TEOD bit can be set at the same time. The BDLC module then treats that byte as the first and last 
IFR byte to be sent.

7.4.7.7 Transmitting IFR Exceptions

This basic IFR transmitting flow can be interrupted for the same reasons as a normal message transmission. 
The IFR transmit process can be adversely affected due to a loss of arbitration, an Invalid or Out of Range 
Symbol, or due to a transmitter underrun caused by the CPU failing to service a TDRE interrupt in a timely 
fashion. For a description of how these exceptions can affect the IFR transmit process, refer to 
Section 7.4.5.2, “Transmitting Exceptions”.

7.4.8 Receiving An In-Frame Response (IFR)

Receiving an In-Frame Response with the BDLC module is similar to receiving a message frame. As each 
byte of an IFR is received, the BDLC State Vector Register indicates this to the CPU. An EOF indication 
in the BDLC State Vector Register indicates that the IFR (and message) is complete. Also, the IMSG bit 
can also be used to command the BDLC module to mask any further network activity from the CPU, 
including IFR bytes being received, until the next valid SOF is received.

NOTE
As with a message transmission, the IMSG bit should never be used to 
ignore the BDLC module’s own IFR transmissions. This is again due to the 
BDLC State Vector Register bits being inhibited from updating until IMSG 
is cleared, preventing the CPU from detecting any IFR-related state changes 
which may be of interest.

7.4.8.1 Receiving an IFR with the BDLC Module

Receiving an IFR from the SAE J1850 bus requires the same procedure that receiving a message does, 
except that as each byte is received the Received IFR Byte (RxIFR) state is indicated in the BDLC State 
Vector Register. All other actions are the same. For an illustration of the steps described below, refer to 
Figure 7-25.

1. When RxIFR Interrupt Occurs, Retrieve IFR Byte
When the first byte of an IFR following a valid EOD symbol is received that byte is placed in the 
BDLC Data Register, and an RxIFR state is reflected in the BDLC State Vector Register. No 
indication of the EOD reception in made because the RxIFR state indicates that the main portion 
of the message has ended and the IFR portion has begun.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-58 Freescale Semiconductor

.

Figure 7-25. Receiving An IFR with the BDLC Module

The RxIFR interrupt is cleared when the received IFR byte is read from the BDLC Data Register. 
After this is done, no further CPU intervention is necessary until the next IFR byte is received, and 
this step is repeated. As with a message reception, all bytes of the IFR, including the CRC byte, are 
placed into the BDLC Data Register as they are received for the CPU to retrieve.

2. When an EOF is Received, the IFR (and Message) is Complete
After all IFR bytes (including the possible CRC byte) have been received from the bus, the bus is 
idle again for a time period equal to an EOD symbol. Following this, the BDLC module determines 

Enter IFR Receive
Routine

Is DLCBSVR=0x1C/0x18?

No

Is this IFR
Yes

No

Is DLCBSVR = 0x04?

No

Yes

(EOF)

of any interest?

Yes

No

Yes
B

After BDLC Module
Detects EOF, IFR

Discard Received
IFR Bytes

Reception is Complete

Yes

No

Is DLCBSVR = 0x08?

B

(Error Detected)

(RxIFR)

Read Byte

Filter Received

Set IMSG bit

Store Received

B

A

in DLCBCR1

in DLCBDR

IFR Byte

Store Received
IFR Byte

(in Case of LOA)

A

Exit IFR
Receive Routine

IFR Byte

Is this an IFR
transmit

reflection?

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-59

whether or not the last byte of the IFR is a CRC byte, and if so verify that the CRC byte is correct. 
If the CRC byte is not correct, this is reflected in the BDLC State Vector Register.
After an additional period of time, the EOD symbol transitions into an EOF symbol. When the EOF 
is received, it is reflected in the BDLC State Vector Register, indicating to the user that the IFR and 
the message is complete.

7.4.8.2 Receiving IFR Exceptions

This basic IFR receiving flow can be interrupted for the same reasons as a normal message reception. The 
IFR receiving process can be adversely affected due to a CRC error, an Invalid or Out of Range Symbol 
or due to a receiver overrun caused by the CPU failing to service an RxIFR interrupt in a timely fashion. 
For a description of how these exceptions can affect the IFR receiving process, refer to Section 7.4.6.4, 
“Receiving Exceptions”.

7.4.9 Special BDLC Module Operations

There are a few special operations which the BDLC module can perform. What follows is a brief 
description of each of these functions and when they might be used. 

7.4.9.1 Transmitting Or Receiving A Block Mode Message

The BDLC module, because it handles each message on a byte-by-byte basis, has the inherent capability 
of handling messages any number of bytes in length. While during normal operation this requires the user 
to carefully monitor message lengths to ensure compliance with SAE J1850 message limits, often in a 
production or diagnostic environment messages which exceed the SAE J1850 limits can be beneficial. 
This is especially true when large amounts of configuration data need to be downloaded over the SAE 
J1850 network.

Because of the BDLC module’s architecture, it can both transmit and receive messages of unlimited 
length. The CRC calculations for transmitting and receiving are not limited to eight bytes, but are instead 
calculated and verified using all bytes in the message, regardless of the number. All control bits, including 
TEOD and IMSG, also work in an identical manner, regardless of the length of the message.

To transmit or receive these block mode messages, no extra BDLC module control functions must be 
performed. The user simply transmits or receives as many bytes as desired in one message frame, and the 
BDLC module operates as if a message of normal length was being used.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-60 Freescale Semiconductor

Figure 7-26. Basic BDLC Module Transmit Flowchart

Write First Message
Byte to be Transmitted

into DLCBDR

Is DLCBSVR=0x00?

Yes

No

Is DLCBSVR=0x1C?
Yes

No

Is DLCBSVR=0x14?
Yes

No

Is DLCBSVR=0x10?

Yes

No

(TDRE)

(LOA)

(Invalid Symbol)

Attempt Another
Yes

No

Transmission?

Is This the Last

Yes

No

Byte?

A

A

Jump to BDLC Module
Receive Routine

After BDLC Module
Detects EOF, Transmit

Set TEOD Bit
in DLCBCR2

Attempt is Complete

Yes

No

IFR Received?

Exit BDLC Module
Transmit Routine

B
B

C

C

Go to BDLC Module
BREAK/Error Handling

Routine

For interrupt driven systems, 
this marks the beginning of 
the transmit section of the 
BDLC module interrupt 
service routine

NOTE: The EOF and CRC Error Interrupts are handled in the BDLC Module Receive Routine

Enter BDLC Module
Transmit Routine

Jump to Receive IFR
Handling Routine

Load Next Byte to be
Transmitted into DLCBDR

(Clears TDRE)

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-61

7.4.9.2 Transmitting Or Receiving A Message In 4X Mode

In a diagnostic or production environment large amounts of data may need to be downloaded across the 
network to a component or module. This data is often sent in a large block mode message (see above) 
which violates the SAE J1850 limit for message length. To speed up the downloading of these large blocks 
of data, they are sometimes transmitted at four times (4X) the normal bit rate for the Variable Pulse Width 
modulation version of SAE J1850. This higher speed transmission, nominally 41.6kbps, allows these large 
blocks to be transmitted much more quickly.

The BDLC module is designed to receive and transmit messages at this higher speed. By setting the 4XE 
bit in BDLC Control Register 2, the user can command the BDLC module to transmit and receive any 
message over the network at a 4X rate.

If the BDLC module is placed in this 4X mode, messages transmitted at the normal bit rate are not received 
correctly. Likewise, 4X messages transmitted on the SAE J1850 bus when the BDLC module is in normal 
mode are interpreted as noise on the network by the BDLC module. For more information on the 4XE bit, 
refer to 4X Mode.

7.5 Initialization Information
To initialize the BDLC module, the user should first write the desired data to the configuration bits. The 
BDLC module should then be taken out of digital and analog loopback mode and enabled. Exiting from 
loopback mode entails change of state indications in the BDLC State Vector Register which must be dealt 
with. After this is complete, CPU interrupts can be enabled (if desired), and then the BDLC module is 
capable of SAE J1850 serial network communication. For an illustration of the sequence necessary for 
initializing the BDLC module, refer to Figure 7-27.

7.5.1 Initializing the Configuration Bits

The first step necessary for initializing the BDLC module following an MCU reset is to write the desired 
values to each of the BDLC module control registers. This is best done by storing predetermined 
initialization values directly into these registers. The following description outlines a basic flow for 
initializing the BDLC module. This basic flow does not detail more elaborate initialization routines, such 
as performing digital and analog loopback tests before enabling the BDLC module for SAE J1850 
communication. However, from the following descriptions and the BDLC module specification, the user 
should be able to develop routines for performing various diagnostic procedures such as loopback tests.

1. Initialize BDLC Analog Round Trip Delay Register
Begin initialization of the configuration bits by writing the desired analog transceiver 
configuration data into the BDLC Analog Round Trip Delay Register. Following this write to 
BDLC Analog Round Trip Delay Register, all of these bits become read only.

2. Initialize BDLC Baud Rate Select Register
The next step in BDLC module initialization is to write the desired bus clock divisor minus one 
into the BDLC Baud Rate Select RegisterBDLC Baud Rate Select Register. The divisor should be 
chosen to generate a 1 MHz or 1.048576 MHz mux interface clock (fbdlc). Following this write to 
BDLC Baud Rate Select Register, all of these bits become read only.

3. Initialize BDLC Control Register 2

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-62 Freescale Semiconductor

The next step in BDLC module initialization should be writing the configuration bits into the 
BDLC Control Register 2 register. This initialization description assumes the BDLC module is put 
into normal mode (not 4X mode), and that the BDLC module should not yet exit digital or analog 
loopback mode. Therefore, this step should write SMRST and DLOOP as logic ones, 4XE as a 
logic zero, write NBFS to the desired level, and write TEOD, TSIFR, TMIFR1 and TMIFR0 as 
logic zeros. These last four bits MUST be written as logic zeros to prevent undesired operation of 
the BDLC module.

4. Initialize BDLC Control Register 1
The next step in BDLC module initialization is to write the configuration bits in BDLC Control 
Register 1. The CLKS bit should be written to its desired values at this time, following which it 
becomes read-only. The IE bit should be written as a logic zero at this time so BDLC module 
interrupts of the CPU remain masked for the time being. The IMSG bit should be written as a logic 
one to prevent any receive events from setting the BDLC State Vector Register until a valid SOF 
(or BREAK) symbol has been received by the BDLC module.

7.5.2 Exiting Loopback Mode and Enabling the BDLC Module

After the configuration bits have been written to the desired values, the BDLC module should be taken out 
of loopback and connected to the SAE J1850 bus. This is done by clearing the DLOOP bit and then setting 
the BDLCE bit in the BDLC Control Register.

1. Perform Loopback Tests (optional)
After the BDLC module is configured for desired operation, the user may wish to perform digital 
and/or analog loopback tests to determine the integrity of the link to the SAE J1850 network. This 
would involve leaving the DLOOP bit (BDLC Control Register 2) set, setting the BDLCE bit, 
preforming the desired loopback tests and finally exiting digital loopback mode by clearing 
DLOOP in the BDLC Control Register 2.

2. Exit Loopback Mode and Enable the BDLC Module
If loopback mode tests are not to be preformed the BDLC module can be removed from digital 
loopback mode by clearing the DLOOP bit. The BDLC module can then be enabled by setting the 
BDLCE bit in the BDLC Control Register.

After DLOOP is cleared and BDLCE is set, the BDLC module is ready for SAE J1850 communication. 
However, to ensure that the BDLC module does not attempt to receive a message already in progress or to 
transmit a message while another device is transmitting, the BDLC module must first observe an EOF 
symbol on the bus before the receiver is activated. To activate the transmitter, the BDLC module needs to 
observe an Inter-Frame Separator symbol.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

Freescale Semiconductor 7-63

7.5.3 Enabling BDLC Interrupts

The final step in readying the BDLC module for proper communication is to clear any pending interrupt 
sources and then, if desired, enable BDLC module interrupts of the CPU.

1. Clear Pending BDLC Interrupts
To ensure that the BDLC module does not immediately generate a CPU interrupt when interrupts 
are enabled, the user should read the BDLC State Vector Register to determine if any BDLC 
module interrupt sources are pending before setting the IE bit in the BDLC Control Register 1. If 
the BDLC State Vector Register reads as a %00000000, no interrupts are pending and the user is 
free to enable BDLC interrupts, if desired.
If the BDLC State Vector Register indicates that an interrupt is pending, the user should perform 
whatever actions are necessary to clear the interrupt source before enabling the interrupts. Whether 
any interrupts are pending depends primarily upon how much time passes between the exit from 
loopback modes and enabling the BDLC module and the enabling of interrupts. It is a good practice 
to always clear any source of interrupts before enabling interrupts on any MCU subsystem.
If any interrupts are pending (BDLC State Vector Register not %00000000), then each interrupt 
source should be dealt with accordingly. After all of the interrupt sources have been dealt with, the 
BDLC State Vector Register should read %00000000, and the user is then free to enable BDLC 
interrupts.

2. Enable BDLC Interrupts
The last step in initializing the BDLC module is to enable interrupts to the CPU, if so desired. This 
is done by simply setting the IE bit in the BDLC Control Register 1. Following this, the BDLC 
module is ready for operating in interrupt mode. If the user chooses not to enable interrupts, the 
BDLC State Vector Register must be polled periodically to ensure that state changes in the BDLC 
module are detected and dealt with appropriately.

MPC5121e Microcontroller Reference Manual, Rev. 2



Byte Data Link Controller (BDLC)

7-64 Freescale Semiconductor

Figure 7-27. Basic BDLC Module initialization Flowchart

BDLC Module Enters Run Mode
from Reset Mode

Write Desired Config.
Data into DLCBARD

Write Desired Config.
Data into DLCBCR1

Read DLCBSVR

Write Desired Config.
Data into DLCBCR2

Set IE Bit in DLCBCR1
to Enable Interrupts

Proceed to Remaining
MCU Initialization

Is DLCBSVR = 0x00?

Yes

No

Process Pending
BDLC Interrupt

Exit Loopback Mode
by Clearing 

DLOOP

Enable BDLC Module
by Setting BDLCE
 Bit in DLCSCR

Preform
Loopback Tests

Exit Loopback Mode
by Clearing

DLOOP

Enable BDLC Module
by Setting BDLCE
 Bit in DLCSCR

Write Desired Divisor –1
into DLCBRSR

Perform Digital and
Analog Loopback

Mode Tests

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 8-1

Chapter 8   
Clock Frequency Measurement (CFM)

8.1 Introduction 

8.1.1 Overview

The CFM, clock frequency measurement, is the module used to measure the frequency of the muxed input 
clocks of MPC5121e in digital way. The module measures the frequency of input clock as a function of 
the frequency of IPG_CLK and stores the result in the register. Figure 8-1 displays the block diagram of 
CFM. The FreqMeas Circuit can calculate the relation value between the system clock(IPG_CLK) and the 
clocks to be measured (Input_clk shown in the figure, be selected from one of CLK_IN1-CLK_IN4). The 
measure result is stored in the FreqMeas Register. The Config Register controls the clock selection logic 
and provides parameter for FreaMeas Circuit. All registers can be accessed via IPS bus.

Figure 8-1. Diagram of the CFM 

8.1.2 Features
• 4-Channel frequency measurement of externally received slave clocks
• Support a sufficient measurement of audio waveform frequency range (64*Audio_Sample, The 

Audio_Sample ranged in 32 kHz, 44.1 kHz, 48 kHz, 64 kHz, 88.2 kHz, and 96 kHz)
• Accuracy of measurement: the result with no more than 1e-4 relative error can be get after 1e7 

IPG_CLK cycles measurement time.
• The gain1 value configurable to adjust the measurement result to fill a 32-bit register

1. The gain value can be used to adjust the result of frequency measure. The frequency measure result is a ratio between the 
frequency of measured clock and IPG_CLK and is stored in a 32-bit register. A suitable gain value can make the result close 
to a 32-bit value.

FreqMeas Circuit

Config Register FreqMeas Register

IPG_CLK

IPS Bus

CLK_IN1

CLK_IN2

CLK_IN3

CLK_IN4

Input_clk

MPC5121e Microcontroller Reference Manual, Rev. 2



Clock Frequency Measurement (CFM)

8-2 Freescale Semiconductor

8.2 Memory Map and Register Definition

8.2.1 Memory Map

Table 8-1 displays the CFM memory-mapped 32-bit registers, described in Register Descriptions. The 
bit 0 is MSB, bit 31 is LSB.

Table 8-1. CFM Block Memory Map

Address
CFM_BAS+

Register Access Section/Page

0x00 PhaseConfig (FPC)—Freqency measure configuration register R/W 8.2.2.1/8-3

0x08 FreqMeas (FMS)—Freqency measure result register R 8.2.2.2/8-4

MPC5121e Microcontroller Reference Manual, Rev. 2



Clock Frequency Measurement (CFM)

Freescale Semiconductor 8-3

8.2.2 Register Descriptions

8.2.2.1 PhaseConfig Register

The PhaseConfig is R/W register, which includes the information of coef(gain) selection and clock source 
selection for frequency measurement as follows.

Offset: CFM_BAS + 0x00Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0
CoefSel ClkSrc_Sel

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 8-2. PhaseConfig Register

Table 8-2. PhaseConfig Field Descriptions

Field Description

CoefSel This is the gain value for measurement result. To make the measue result more close to a 32-bit value. For 
instance, a smaller value could be selected responding to a lower frequency of measued clock.
COEF selection:
000 24
001 16
010 12
011 8
100 6
101 4
Others: 3

ClkSrc_Sel Clock source selection:
000 CLK_IN1
001 CLK_IN2
010 CLK_IN3
011 CLK_IN4

Others: Reserved

Totally 4 clock sources can be selected to be measured: CLK_IN1-CLK_IN4(reference to Figure 8-1). All of 
them come from clock module.

For the detail of these 4 clock sources, please reference 6.4.1.20: CFM Clock Control Register (CCCR) 
register description in Clocks and Low-Power Modes Chapter. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Clock Frequency Measurement (CFM)

8-4 Freescale Semiconductor

8.2.2.2 FreqMeas Register

This register is used to save the result of frequency measurement of the input clock source. It is read only.

Offset: CFM_BAS + 0x08Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R FreqMeas

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FreqMeas

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 8-3. FreqMeas Register

Table 8-3. FreqMeas Field Descriptions

Field Description

FreqMeas The result of frequency measurement. It’s a frequency ratio between measured clock and IPG_CLK: 
Freqmeas_CLK/IPG_CLK * (2**28) * COEF

MPC5121e Microcontroller Reference Manual, Rev. 2



Clock Frequency Measurement (CFM)

Freescale Semiconductor 8-5

8.3 Functional Description
The diagram of frequency measurement is shown in Figure 8-1. 

Associated with it, are 2 registers, PhaseConfig and FreqMeas. The GAIN (Coef) is programmable by 
CPU writing the CoefSel bits field of the register PhaseConfig. This register is also responsible for the 
testing clock selection, CLK_IN1~CLK_IN4. The register FreqMeas is used to save the measurement 
result in 32-bit and it can be read by CPU through bus.

The circuit measures the frequency of the incoming clock Freqmeas_CLK(muxed from clk_in1~clk_in4) 
as a function of the IPG_CLK, as follows.

Freqmeas_CLK = FreqMeas[31:0] * IPG_CLK * /((2**28) * COEF) -- -- -- -- -- (1)

The circuit is a second-order filter. The output is a value represented by an unsigned number stored in the 
32-bit FreqMeas register, giving the ratio of testing clock frequency vs bus clock frequency. In the circuit, 
the frequency measure value shrinks to certain values after enough waiting period. Therefore, after 
configuration, it needs a certain period (generally 6 million IPG_CLK cycles) before reading the FreqMeas 
register to get an accurate result. A more accurate result is generated with more time. 

8.4 Application Example
Here is an example for application. If the CLK_IN2 need to be FreqMeased, and COEF is selected as 8, 
the steps are as following.

1. Write the register PhaseConfig as 32’h0000_0019.
2. Wait for 1e7 IPG_CLK cycles, then read the register FreqMeas to get the result no more than 

100ppm(ppm means 1e-6) relative error.
3. Use formula (1) to get the actual frequency of CLK_IN2 .

If another clock need to be measured, repeat step 1 – 3.

MPC5121e Microcontroller Reference Manual, Rev. 2



Clock Frequency Measurement (CFM)

8-6 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 9-1

Chapter 9  
CPU e300 Core Power Architecture

9.1 Introduction
The following sections are contained in this document:

• e300c4lp Processor Core Functional Overview 
• e300c4lp Core Reference Manual
• Unsupported e300c4lp Core Features

9.2 e300c4lp Processor Core Functional Overview
The module integrates a e300c4lp processor core based on, and compatible with, the 603e which is a Power 
Architecture compliant microprocessor. The e300c4lp core is completely embedded, as its address, data, 
and control signals are not externally visible. The e300c4lp core has the following features:

• e300 Power Architecture Core
• Dual Issue, superscalar architecture
• 32-Kbyte instruction cache, 32K data cache
• Double precision FPU
• Instruction and data MMU
• Power management modes:

— Nap
— Doze
— Sleep

• Standard and critical interrupt capability

For additional information on the capabilities and features of the e300c4lp core, refer to e300 user 
documentation.

After power-on or hard reset, initial boot instructions are fetched from the LocalPlus bus, with CS0 active, 
or from page 0 of NAND flash. To facilitate high speed execution, boot code is typically copied from a 
flash or ROM device to SDRAM. The e300c4lp core can execute code from the on-chip SRAM. 

The e300c4lp core has memory mapped access to all resources, including:
• All on-chip programming registers
• External SDRAM
• Internal SRAM

MPC5121e Microcontroller Reference Manual, Rev. 2



CPU e300 Core Power Architecture

9-2 Freescale Semiconductor

• PCI-controlled address space
• External disk drive control register space (via PIO mode), etc.

Bursting is supported on the CS Bus. Critical word first protocol is employed when the e300c4lp core 
attempts to fill its address and data caches.

The ID values for the MPC5121e are shown in Table 9-1.

9.3 e300c4lp Core Reference Manual
A complete specification for the e300c4lp core implementation used on the module is obtained through a 
collection of documentation. 

• Power Architecture Microprocessor Family: The Programming Environments for 32-bit 
Microprocessors, Rev. 2: MPCFPE32B/AD

• e300 Power Architecture Core Family Reference Manual, Rev. 4

The programming environments manual provides information about resources defined by the Power 
Architecture architecture common to Power Architecture processors. Implementation variances relative to 
Rev. 2 of the Programming Environments Manual are available in the e300 Core Reference Manual. 

The e300 Power Architecture Core Family Reference Manual can be obtained from the Freescale 
Literature Distribution center at http://www.freescale.com.

9.4 Unsupported e300c4lp Core Features

9.4.1 Instructions

Two Power Architecture instructions are not supported by the module. These two instructions are eciwx 
and ecowx. The execution of both instructions generates a TEA signal on CSB. This causes a machine 
check exception or a checkstop.

9.4.2 CSB Parity

Enabling of the address or data parity error check by setting the HID0[EBA, EBD] bits generates a 
machine check exception or a checkstop depending on the HID0[EMCP] bit.

Table 9-1. ID Values for the MPC5121e

M36P Mask Set

PVR 0x8086_2010

MPC5121e SVR 0x8018_0020

MPC5123 SVR 0x8018_0030 

PCI Device ID
PCI Vendor ID

0x580C
0x1957

JTAG ID Code 0x1540_a01d

MPC5121e Microcontroller Reference Manual, Rev. 2



CPU e300 Core Power Architecture

Freescale Semiconductor 9-3

9.4.3 Performance Monitor Event

The Performance Monitor Event input (e300_pm_event_in) is deactivated. It is tied to 0.

MPC5121e Microcontroller Reference Manual, Rev. 2



CPU e300 Core Power Architecture

9-4 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 10-1

Chapter 10  
CSB Arbiter and Bus Monitor

10.1 Introduction
This chapter describes operation theory of the CSB arbiter in the MPC5121e device. In addition, it 
describes configuration, control and status registers of the arbiter. 

The CSB arbiter is responsible for providing coherent system bus arbitration. It tracks all the address and 
data tenures, and provides all the arbitration signals to masters and slaves. In addition, it monitors the bus 
and reports on errors and protocol violations.

10.1.1 Features

The CSB arbiter includes the following features:
• Supports a programmable pipeline depth (from 1 to 4)
• Supports four levels of priority for bus arbitration
• Supports repeat request mode: number of programmable consecutive transactions from the same 

master (up to eight transactions)
• Supports data streaming operations
• Supports programmable address bus parking mode: disable, park to last bus owner, park to s/w 

selected master
• Claims address only, reserved, and illegal transaction types, report on it and can raise maskable 

interrupt
• Provides timers for address tenure time-out and data tenure time-out detection and can issue 

maskable interrupt, if any timer expired
• Reports on transfer error and can issue maskable interrupt
• Can issue regular or machine check interrupt for each type of error event (programmable)

10.1.1.1 Coherent System Bus Overview

Coherent system bus is the central bus. Any data transaction from master to slave in the device passes 
through the coherent system bus. The coherent system bus supports pipelined transactions. It has 
independent address and data tenures. Pipeline depth determines the number of address tenures that can be 
started before the first data tenure is finished. 

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

10-2 Freescale Semiconductor

Basic burst size is equal to cache line length of Power Architecture core, which is 32 bytes. Using repeat 
request mode enables up to eight consecutive bursts to be executed by the same master. Maximum number 
of consecutive transactions can be limited by programming arbiter configuration register (See 
Section 10.2.1.1, “Arbiter Configuration Register (ACR)” for more details).

10.2 Memory Map/Register Definition
Table 10-1 shows the memory map for arbiter’s configuration, control and status registers.

Table 10-1. Arbiter Register Map

Memory
Offset (Hex)

Register Access Section/Page

0x00 ACR—Arbiter Configuration Register 4-byte R/W 10.2.1.1/10-3

0x04 ATR—Arbiter Timers Register 4-byte R/W 10.2.1.2/10-5

0x08 ATER—Arbiter Transfer Error Register 4-byte R/W 10.2.1.3/10-6

0x0c AER—Arbiter Event Register 4-byte R/W 10.2.1.4/10-7

0x10 AIDR—Arbiter Interrupt Definition Register 4-byte R/W 10.2.1.5/10-9

0x14 AMR—Arbiter Mask Register 4-byte R/W 10.2.1.6/10-10

0x18 AEATR—Arbiter Event Attributes Register 4-byte R 10.2.1.7/10-12

0x1c AEADR—Arbiter Event Address Register 4-byte R 10.2.1.8/10-15

0x20 AERR—Arbiter Event Response Register 4-byte R/W 10.2.1.9/10-16

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

Freescale Semiconductor 10-3

10.2.1 Register Descriptions

10.2.1.1 Arbiter Configuration Register (ACR)

Arbiter configuration register (ACR) defines the arbiter modes and parked master on the bus. Figure 10-1 
shows the fields of ACR.

Offset 0x00Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 DTO_
DIS

ATO_
DIS

CORE
DIS

0 0
AACKWS

0
PIPE_DEP

W

Reset 0 0 0 0 0 0 0 01 0 0 01 01 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0
PCI_RPTCNT

0
RPTCNT

0 W
PARK

APARK PARKM
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. The reset value of COREDIS and AACKWS is determined from reset configuration word.

= Unimplemented or Reserved

Figure 10-1. Arbiter Configuration Register (ACR)
(The register is repeated for reference.)

Table 10-2. ACR Field Descriptions

Field Description

DTO_DIS Data time out detection disable
1 Stop the DTO counter and prevent data time out detection

ATO_DIS Address time out detection disable
1 Stop the ATO counter and prevent address time out detection

COREDIS This bits needs always be set to zero.

AACKWS Reserved. Write should preserve reset value.
Address acknowledge wait states. Specifies minimum number of address tenure wait states. This is the 
minimum delay between assertion of TS and assertion of AACK.
00 AACK is asserted minimum 1 cycle after TS
01 AACK is asserted minimum 2 cycles after TS
10 AACK is asserted minimum 3 cycles after TS
11 AACK is asserted minimum 4 cycles after TS
Note: 00 option can be used only if the processor is not operating in 1:1 or 3:2 bus clock ratios

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

10-4 Freescale Semiconductor

PIPE_DEP Pipeline depth (number of outstanding transactions).
000 Pipeline depth 1 (1 outstanding transaction)
001 Pipeline depth 2 (2 outstanding transactions)
010 Pipeline depth 3 (3 outstanding transactions)
011 Pipeline depth 4 (4 outstanding transactions)
100 Reserved (Pipeline depth 5)
101 Reserved (Pipeline depth 6)
110 Reserved (Pipeline depth 7)
111 Reserved (Pipeline depth 8)

PCI_RPTCNT PCI/PCI DMA repeat count.Specifies the maximum number of consecutive transactions, that PCI/PCI DMA 
master can perform, using REPEAT request mode. 
000 1 consecutive transaction (REPEAT request mode disable)
001 2 consecutive transactions
010 3 consecutive transactions
011 4 consecutive transactions
100 5 consecutive transactions
101 6 consecutive transactions
110 7 consecutive transactions
111 8 consecutive transactions

RPTCNT Repeat count. Specifies the maximum number of consecutive transactions, that any master (except PCI/PCI 
DMA) can perform, using REPEAT request mode. 
000 1 consecutive transactions (REPEAT request mode disable)
001 2 consecutive transactions
010 3 consecutive transactions
011 4 consecutive transactions
100 5 consecutive transactions
101 6 consecutive transactions
110 7 consecutive transactions
111 8 consecutive transactions
Note: It is recommended not to program this field for more than 4 consecutive transactions.

WPARK WOP Parking. Specifies, whether bus is parked to CPU on WOP cycle (cycle after ARTRY assertion).
0 Park to CPU
1 Don’t park bus to any master at WOP cycle

APARK Address parking. Specifies arbiter bus parking mode.
00 Park to master. Arbiter parks the address bus to the master, that is selected by numeric value of PARKM 

field.
01 Park to last owner. Arbiter parks the address bus to last bus owner.
10 Disable. Arbiter does not assert BG to any master, if no BR is present.
11 Reserved

PARKM Parking master.
0000 Power Architecture Core
0001 PCI/PCI DMA
0010 TPR2MG/SAP
0011 Reserved
0100 Reserved
0101 Reserved
0110–1111 Reserved

Table 10-2. ACR Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

Freescale Semiconductor 10-5

10.2.1.2 Arbiter Timers Register (ATR)

Arbiter timers register (ATR) defines the arbiter address time out (ATO), data time out (DTO) timer’s 
values. Figure 10-2 shows the fields of ATR.

Offset 0x04Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DTO

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ATO

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 10-2. Arbiter Timers Register (ATR)

Table 10-3. ATR Field Descriptions

Field Description

DTO Data time out. Specifies the time-out period for the data tenure. The granularity of this field is 128 bus clocks. 
The maximum value is 8388480 coherent system bus clocks. Data time_out occurs, if the data tenure was 
not ended before the specified time-out period timer expires between the assertion of DBB until the assertion 
of last TA. When DTO = n, the timeout cycle is n*128.
0x0000 Reserved
0x0001 128 clock cycles 
0x0002 256 clock cycles 
0x0003 384 clock cycles 
............................
0xFFFF 8388480 clock cycles

ATO Address time out. Specifies the time-out period for the address tenure. The granularity of this field is 128 bus 
clocks. Maximum value is 8388480 coherent system bus clocks. Address time-out occurs, if the address 
tenure was not ended before the specified time-out period timer expires between assertion of TS signal until 
the assertion of AACK signal. When ATO = n, the timeout cycle is n*128.
0x0000 Reserved
0x0001 128 clock cycles 
0x0002 256 clock cycles 
0x0003 384 clock cycles 
............................
0xFFFF 8388480 clock cycles

Figure 10-3. 

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

10-6 Freescale Semiconductor

10.2.1.3 Arbiter Transfer Error Register (ATER)

Arbiter transfer error register (ATER) specifies which kind of events are considered error events. If event 
is defined as non error event, it also won’t be reported neither in event register nor in event attributes and 
address registers. For transfer types, that are not defined as error events, arbiter also does not end 
address/data tenures. Figure 10-4 shows the fields of ATER.

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

Freescale Semiconductor 10-7

10.2.1.4 Arbiter Event Register (AER)

The arbiter uses arbiter event register (AER) to report on erroneous transactions. This register is cleared 
by writing 1’s. Figure 10-5 shows the fields of AER.

Offset 0x08Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0
ETEA RES ECW AO DTO ATO

W

Reset 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

= Unimplemented or Reserved

Figure 10-4. Arbiter Transfer Error Register (ATER)

Table 10-4. ATER Field Descriptions

Field Description

ETEA External TEA. Specifies, whether assertion of TEA signal by one of the slaves is reported in arbiter event 
registers.
0  Assertion of TEA signal by one of the slaves isn’t reported in arbiter event registers.

1 Assertion of TEA signal by one of the slaves is reported in arbiter event registers.

RES Reserved transfer type. Specifies, whether transaction with reserved transfer type is reported in arbiter event 
registers.
0 Reserved transaction isn’t reported in arbiter event registers.
1 Reserved transaction is reported in arbiter event registers.

ECW External Control Word transfer type. Specifies, whether transaction with external control word transfer type 
is reported in arbiter event registers.
0 External control word read/write transaction isn’t reported in arbiter event registers.

1 External control word read/write transaction is reported in arbiter event registers.

AO Address Only transfer type. Specifies, whether transaction with address only transfer type is reported in 
arbiter event registers.
0 Address only transaction isn’t reported in arbiter event registers.

1 Address only transaction is reported in arbiter event registers.

DTO Data Time Out. Specifies, whether data tenure time out is reported in arbiter event registers.
0 Data time out isn’t reported in arbiter event registers.

1 Data time out is reported in arbiter event registers.

ATO Address Time Out. Specifies, whether address tenure time out is reported in arbiter event registers.
0 Address time out isn’t reported in arbiter event registers.
1 Address time out is reported in arbiter event registers.

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

10-8 Freescale Semiconductor

Offset 0x0cAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0
ETEA RES ECW AO DTO ATO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 10-5. Arbiter Event Register (AER)

Table 10-5. AER Field Descriptions

Field Description

ETEA Transfer error. External TEA. Reports on detection of transfer error assertion of TEA signal by one of the 
slaves.
0 No transfer error detected TEA signal is not asserted by one of the slaves.
1 Transfer error detected TEA signal is asserted by one of the slaves.

RES Reserved transfer type. Reports on transaction with reserved transfer type. See Section 10.3.2.5, “Reserved 
Transaction Type,” for more information.
0 No transaction with reserved transfer type occurred.
1 Transaction with reserved transfer type occurred.

ECW External control word transfer type. Reports on transaction with external control word transfer type. See 
Section 10.3.2.6, “Illegal (ECIWX/ECOWX) Transaction Type,” for more information.
0 No transaction with external control word transfer type occurred.
1 Transaction with external control word transfer type occurred.

AO Address Only transfer type. Reports on transaction with address only transfer type. See Section 10.3.2.4, 
“Address Only Transaction Type,” for more information.
0 No transaction with address only transfer type occurred.
1 Transaction with address only transfer type occurred.

DTO Data time out. Reports on data tenure time out.
0 Data time out timer is not expired.
1 Data time out timer is expired.

ATO Address time out. Reports on address tenure time out.
0 Address time out timer is not expired.
1 Address time out timer is expired.

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

Freescale Semiconductor 10-9

10.2.1.5 Arbiter Interrupt Definition Register (AIDR)

Arbiter interrupt definition register (AIDR) determines the interrupt that responds to different error 
conditions. Setting a bit defines the corresponding interrupt as MCP interrupt; clearing a bit defines the 
corresponding interrupt as regular interrupt. Figure 10-6 shows the fields of AIDR.

Offset 0x10Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0
ETEA RES ECW AO DTO ATO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 10-6. Arbiter Interrupt Definition Register (AIDR)

Table 10-6. AIDR Field Descriptions

Field Description

ETEA Transfer error. External TEA. Detection of transfer error assertion of TEA signal by one of the slaves interrupt 
definition.
0 Detection of transfer error assertion of TEA signal by one of the slaves causes regular interrupt.
1 Detection of transfer error assertion of TEA signal by one of the slaves causes MCP interrupt.

RES Reserved transfer type. Transaction with reserved transfer type interrupt definition.
0 Transaction with reserved transfer type causes regular interrupt.
1 transaction with reserved transfer type causes MCP interrupt.

ECW External control word transfer type. Transaction with external control word transfer type interrupt definition.
0 Transaction with external control word transfer type causes regular interrupt.
1 Transaction with external control word transfer type causes MCP interrupt.

AO Address only transfer type. Transaction with address only transfer type interrupt definition.
0 Transaction with address only transfer type causes regular interrupt.
1 Transaction with address only transfer type causes MCP interrupt.

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

10-10 Freescale Semiconductor

10.2.1.6 Arbiter Mask Register (AMR)

Arbiter mask register (AMR) is used to mask interrupts or reset requests. Setting a mask bit enables the 
corresponding interrupt or reset request; clearing a bit masks it. Regular interrupts, MCP interrupts and 
reset requests can be masked by AMR register. Figure 10-7 shows the fields of AMR.

DTO Data time out. Data tenure time out interrupt definition.
0 Data tenure time out causes regular interrupt.
1 Data tenure time out causes MCP interrupt.

ATO Address time out. Address tenure time out interrupt definition.
0 Address tenure time out causes regular interrupt.
1 Address tenure time out causes MCP interrupt.

Offset 0x14Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0
ETEA RES ECW AO DTO ATO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 10-7. Arbiter Mask Register (AMR)

Table 10-7. AMR Field Descriptions

Field Description

ETEA Transfer error. External TEA. Detection of transfer error assertion of TEA signal by one of the slaves interrupt 
mask bit.
0 Detection of transfer error assertion of TEA signal by one of the slaves interrupt disabled.
1 Detection of transfer error assertion of TEA signal by one of the slaves interrupt enabled.

RES Reserved transfer type.Transaction with reserved transfer type interrupt mask bit.
0 Transaction with reserved transfer type interrupt disabled.
1 Transaction with reserved transfer type interrupt enabled.

Table 10-6. AIDR Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

Freescale Semiconductor 10-11

ECW External control word transfer type.Transaction with external control word transfer type interrupt mask bit.
0 Transaction with external control word transfer type interrupt disabled.
1 Transaction with external control word transfer type interrupt enabled.

AO Address only transfer type. Transaction with address only transfer type interrupt mask bit.
0 Transaction with address only transfer type interrupt disabled.
1 Transaction with address only transfer type interrupt enabled.

DTO Data time out. Data tenure time out interrupt mask bit.
0 Data tenure time out interrupt disabled.
1 Data tenure time out interrupt enabled.

ATO Address time out. Address tenure time out interrupt mask bit.
0 Address tenure time out interrupt disabled.
1 Address tenure time out interrupt enabled.

Table 10-7. AMR Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

10-12 Freescale Semiconductor

10.2.1.7 Arbiter Event Attributes Register (AEATR)

Arbiter event attributes register (AEATR) reports the type of transaction that causes error, which is 
specified in the event register. See Section 10.2.1.4, “Arbiter Event Register (AER),” for more 
information. AEATR is cleared only by power-on reset. The attributes of the first error event are stored. 
As AEATR is not effected by soft or hard reset, software can read this register and determine the cause of 
the bus failure, even if the bus is stalled. Figure 10-8 shows the fields of AEATR.

Offset 0x18Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 EVENT 0 0 0 MSTR_ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 TBST TSIZE 0 0 0 TTYPE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 10-8. Arbiter Event Attributes Register (AEATR)

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

Freescale Semiconductor 10-13

Table 10-8. AEATR Field Descriptions (Sheet 1 of 2)

Field Description

EVENT Event type.
000 Address time out
001 Data time out
010 Address only transfer type
011 External control word transfer type
100 Reserved transfer type
101 Transfer error External TEA
110 Reserved
111 Reserved

MSTR_ID Master Id. 
00000 Power Architecture core data transaction
00001 Reserved
00010 Power Architecture core instruction fetch
00011–01001 Reserved
01010 JTAG
01011 TPR
01011–01100 Reserved
01101 PCI
01110 Reserved
01111 PCI DMA
10000–11111 Reserved
Note: Master Id reflects the source of transaction and is used for debug purpose.

TBST Transfer burst.
0 Transfer size is up to 8 bytes.
1 Transfer size is greater than 8 bytes.

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

10-14 Freescale Semiconductor

TSIZE Transfer Size. Transfer size encoding depends on the value of TBST.
TBST = 1:

0011 Byte 
0102 Bytes
0113 Bytes
1004 Bytes
1015 Bytes
1106 Bytes
1117 Bytes
0008 Bytes

TBST = 0:
00016 Bytes
00124 Bytes
01032 Bytes
011–111Reserved

TTYPE Transfer Type. 
00000 Address-only
00001  Address-only
00010  Single beat or burst write
00011  Reserved
00100  Address-only
00101  Reserved
00110  Burst write
00111  Reserved
01000  Address-only
01001  Address-only
01010  Single beat or burst read
01011  Single beat or burst read
01100  Address-only
01101  Address-only
01110  Burst read
01111  Reserved
10000  Address-only
1XX01  Reserved
10010  Single beat write
1XX11  Reserved
10100  ECOWX—Illegal single beat write
10110  Reserved
11000  Address-only
11010  Single beat or burst read
11100  ECIWX—Illegal single beat read
11110  Burst read

Table 10-8. AEATR Field Descriptions (Sheet 2 of 2)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

Freescale Semiconductor 10-15

10.2.1.8 Arbiter Event Address Register (AEADR)

Arbiter event address register (AEADR) reports the address of transaction that causes the error, which is 
specified in the event register. See Section 10.2.1.4, “Arbiter Event Register (AER),” for more 
information. AEADR is cleared only by power-on reset. The address of the first error event is stored. As 
AEADR is not effected by soft or hard reset, software can read this register and determine the cause of the 
bus failure, even if the bus is stalled.

Figure 10-9 shows the fields of AEADR.

Offset 0x1cAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 10-9. Arbiter Event Address Register (AEADR)

Table 10-9. AEADR Field Descriptions

Field Description

ADDR Address of the event, reported in AEATR register. See Section 10.2.1.7, “Arbiter Event Attributes Register 
(AEATR),” for more information.

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

10-16 Freescale Semiconductor

10.2.1.9 Arbiter Event Response Register (AERR)

Arbiter event response register (AERR) determines whether different error conditions cause interrupt or 
reset request. Setting a bit defines the corresponding error condition to cause reset request; clearing a bit 
defines the corresponding error condition to cause interrupt. Figure 10-10 shows the fields of AERR.

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

Freescale Semiconductor 10-17

Offset 0x20Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0
ETEA RES ECW AO DTO ATO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 10-10. Arbiter Event Response Register (AERR)

Table 10-10. AERR Field Descriptions

Field Description

ETEA Transfer error. External TEA. Detection of transfer error assertion of TEA signal by one of the slaves event 
response.
0 Detection of transfer error assertion of TEA signal by one of the slaves causes interrupt.
1 Detection of transfer error assertion of TEA signal by one of the slaves causes reset request.

RES Reserved transfer type. Transaction with reserved transfer type interrupt definition.
0 Transaction with reserved transfer type causes interrupt.
1 Transaction with reserved transfer type causes reset request.

ECW External control word transfer type. Transaction with external control word transfer type interrupt definition.
0 Transaction with external control word transfer type causes interrupt.
1 Transaction with external control word transfer type causes reset request.

AO Address only transfer type. Transaction with address only transfer type interrupt definition.
0 Transaction with address only transfer type causes interrupt.
1 Transaction with address only transfer type causes reset request.

DTO Data time out. Data tenure time out interrupt definition.
0 Data tenure time out causes interrupt.
1 Data tenure time out causes reset request.

ATO Address time out. Address tenure time out interrupt definition.
0 Address tenure time out causes interrupt.
1 Address tenure time out causes reset request.

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

10-18 Freescale Semiconductor

10.3 Functional Description
The following sections describe arbiter functionality: arbitration policy and bus error detection.

10.3.1 Arbitration Policy

The arbitration process involves the masters and the arbiter. The masters arbitrate on the privilege to own 
the address tenure. For the data tenure, the CSB arbiter uses the same order of transactions as address 
tenures. Figure 10-11 shows the interface signals between the CSB arbiter and masters that are involved 
in the address bus arbitration.

Figure 10-11. Address Bus Arbitration

A master has to acquire the address bus ownership before it starts any transaction. The master asserts its 
own bus request signal along with the arbitration attribute signals REPEAT & PRIORITY[0:1]. The arbiter 
later asserts the corresponding address bus grant signal to the requesting master depending on the system 
states and arbitration scheme. See Section 10.3.1.1, “Address Bus Arbitration With PRIORITY[0:1],” for 
details information on arbitration scheme. When address bus grant is received the master can start the 
address tenure.

BR

Arbiter
Master 2

REPEAT

PRIORITY[0:1]

BG

BR

REPEAT

PRIORITY[0:1]

BG

Master N

BR

REPEAT

PRIORITY[0:1]

BG

Master 1

•
•
•

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

Freescale Semiconductor 10-19

10.3.1.1 Address Bus Arbitration With PRIORITY[0:1]

When a master asserts its bus request to acquire the address bus ownership, it can drive its PRIORITY[0:1] 
signals to indicate request priority. The master would be served sooner because of its higher priority level. 
The arbiter takes this extra information into consideration to yield better service for a higher priority 
request than a lower priority request. Therefore, the arbiter operates according to the following priority 
based arbitration scheme:

1. For every priority level fair arbitration scheme is used (a simple Round Robin scheme)
2. For every priority level other than 0, one place is reserved as a place holder for lower level 

arbitration rings.
3. Each master can change it’s priority level at any time.

Figure 10-12 shows an example of priority based arbitration algorithm with 4 priority levels. In this 
example, if all masters request the bus continuously, the following order of bus grants occurs with the 
specific bandwidth:

• M6 gets 1/2 of the bus bandwidth
• M4 & M5 each gets 1/6 of the bus bandwidth
• M0 & M3 each gets 1/18 of the bus bandwidth
• M1 & M2 each gets 1/36 of the bus bandwidth

Figure 10-12. An Example of Priority Based Arbitration Algorithm

Level 3

M6

Level 2

M4

Level 1

M0

Level 0

M1

M6 Z M6 Z ...

M6 M4 M6 M5 M6 M0 M6 M4
M6 M5 M6 M3 M6 M4 M6 M5
M6 M1 M6 M4 M6 M5 M6 M0
M6 M4 M6 M5 M6 M3 M6 M4
M6 M5 M6 M2 ...

M4 M5 Y M4 M5 Y ...

M4 M5 M0 M4 M5 M3 M4 M5 M1
M4 M5 M0 M4 M5 M3 M4 M5 M2 ...

M0 M3 X M0 M3 X ...

M0 M3 M1 M0 M3 M2 M0 M3 M1 ...

M1 M2 M1 M2 ...

M2

M3

M5

Z

Y

X

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

10-20 Freescale Semiconductor

10.3.1.2 Address Bus Arbitration With REPEAT

When a master owns the current address bus and wants to perform another transaction, it can assert bus 
request along with REPEAT, to make a repeat request to the arbiter. Consequently, the arbiter asserts bus 
grant to the same master if the current address tenure is not being ARTRY’d. This happens regardless of 
the priority level of bus request from other masters. In another word, repeat request overrides the priority 
scheme. 

Even though repeat request can improve the page hit ratio and the overall memory bandwidth efficiency, 
it can increase the worst case latency of individual master. Therefore, the arbiter has programmable 
counter to limit the maximum number of consecutive transactions that are performed by masters. When 
the counter expires, arbiter ignores the REPEAT signal and falls back to the regular arbitration scheme. 
PCI master has a dedicated repeat counter as it might need more repeated transactions before accepting 
read requests. PCI ordering rules require that the PCI bridge should empty all queued write operations 
before any new read operation can begin. See Section 3.2.5, Transaction Ordering and Posting, of the PCI 
Local Bus Specifications Rev 2.2 for more information.

See Section 10.2.1.1, “Arbiter Configuration Register (ACR),” for more details about programming 
ACR[RPTCNT] and ACR[PCI_RPTCNT].

10.3.1.3 Address Bus Arbitration After ARTRY

The ARTRY protocol is used primarily by the CPU to interrupt a transaction that hits to a modified line in 
its D-cache, so that it can maintain data coherency by performing the snoop copyback. In addition, any 
master and/or slave can ARTRY a transaction for whatever reason. 

When an address tenure is ARTRY’d, all masters must negate their bus request signals during the cycle 
after ARTRY except the master, that asserted ARTRY signal. In addition, PCI master is allowed to request 
the bus, if the PCI slave asserted ARTRY signal. The cycle after ARTRY is called WOP (Window Of 
Opportunity). 

During the WOP cycle, the arbiter performs the arbitration the same way as in regular arbitration cycle, 
except parking master policy does not apply. When CPU asserts ARTRY, the bus is immediately granted 
to the CPU to perform snoop copyback. After the completion of snoop copyback, the arbiter grants the bus 
back to the master that had its transaction ARTRY’d. If ARTRY was asserted by any other master or slave, 
the arbiter performs the arbitration the same way as it would perform it for regular arbitration cycle. The 
master, that had its transaction ARTRYed by any master or slave except CPU, is put at the end of priority 
list. It can be programmed to park the bus to CPU on WOP cycle or not to park it to any master. Refer to 
Section 10.2.1.1, “Arbiter Configuration Register (ACR)” for more detail about ACR[WPARK].

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

Freescale Semiconductor 10-21

10.3.1.4 Address Bus Parking

The arbiter supports address bus parking. This feature implies that when no master is requesting the bus 
(all bus requests are negated), the arbiter can choose to park the address bus (or assert the address bus 
grant) to a master. The parked master can skip the bus request and assume the bus mastership directly. This 
reduces the access latency for parked master.

See Section 10.2.1.1, “Arbiter Configuration Register (ACR),” for more details about ACR[APARK] and 
ACR[PARKM].

10.3.1.5 Data Bus Arbitration

For every committed address tenure, if the transfer type indicates that it is not address-only or 
reserved-type transaction, a data tenure is required to complete the transaction.

In the MPC5121e system, the arbiter controls the issuing of data bus grants to a master and a slave, which 
are involved in a data tenure of a previously performed address tenure. 

• In data tenure without data streaming (master or slave or both doesn’t support data streaming), the 
arbiter guarantees that the data bus grants is asserted only when the data bus is idle.

• In data tenure with data streaming (both master and slave support data streaming), the arbiter 
guarantees that the data bus grants is asserted when the data bus is either idle or waiting for last 
transfer acknowledge.

10.3.2 Bus Error Detection

The arbiter is responsible for tracking the following cases on the bus:
• Address time out
• Data time out 
• Transfer error External TEA
• Address only transaction type
• Reserved transaction type
• Illegal (ECWIX/ECWOX) transaction type 

10.3.2.1 Address Time Out

Address time out occurs, if the address tenure was not ended before the specified time-out period 
(programmed by ATR[ATO]) expires between the assertion of the TS signal until the assertion of the 
AACK signal. In this case, the arbiter performs as follows:

1. Ends the address tenure by asserting AACK.
2. Starts data tenure and ends it by asserting transfer error TEA.
3. Reports on the event to AER[ATO] if reporting enabled by ATER[ATO].
4. Issues reset request, MCP or regular interrupt according to AERR[ATO] and AIDR[ATO] if 

enabled by AMR[ATO] and if reporting enabled by ATER[ATO].
5. Updates transaction attributes and address of AEATR and AEADR for the first error event.

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

10-22 Freescale Semiconductor

10.3.2.2 Data Time Out

Data time out occurs, if the data tenure was not ended before the specified time-out period (programmed 
by ATR[DTO]) expires between the assertion of DBB until the assertion of last TA. In this case, the arbiter 
performs as follows:

1. Ends the data tenure by asserting transfer error TEA.
2. Reports on this event in AER[DTO] if reporting enabled by ATER[DTO].
3. Issues reset request, MCP or regular interrupt according to AERR[DTO] and AIDR[DTO], if 

enabled by AMR[DTO] and if reporting enabled by ATER[DTO].
4. Updates transaction attributes and address of AEATR and AEADR for the first error event.

10.3.2.3 Transfer errorExternal TEA

The arbiter tracks the transfer errorTEA signal that is asserted by one of the slaves. In this case, the arbiter 
performs as follows: 

1. Reports on the event to AER[ETEA] if reporting enabled by ATER[ETEA].
2. Issues reset request, MCP or regular interrupt according to AERR[ETEA] and AIDR[ETEA] if 

enabled by AMR[ETEA] and if reporting enabled by ATER[ETEA].
3. Updates transaction attributes and address of AEATR and AEADR for the first error event.

10.3.2.4 Address Only Transaction Type

Table 10-11 shows transaction types, which are defined as address only:

The arbiter allows address-only (AO) transactions on the bus and the e300 core can issue address-only 
(AO) transactions (see HID0 [ABE] in the Power Architecture Core Family Reference Manual). Because 
there is no advantage in using AO transaction in this system, the bus monitor allows the detection of AO 
transactions and treats them as an error.

Table 10-11. Address Only Transaction Type Encoding

TTYPE[0:4] Bus Command

00000 Clean block

00100 Flush block

01000 Sync

01100 Kill block

10000 eieio

11000 TLB Invalidate

00001 lwarx reservation set

01001 tlbsync

01101 icbi

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

Freescale Semiconductor 10-23

The transaction with an address only transfer type, the arbiter performs as follows:
1. Ends the address tenure by asserting AACK.
2. Reports on the event to AER[AO] if reporting enabled by ATER[AO].
3. Issues reset request, MCP or regular interrupt according to AERR[AO] and AIDR[AO] if enabled 

by AMR[AO] and if reporting enabled by ATER[AO].
4. Updates transaction attributes and address of AEATR and AEADR for the first error event.

10.3.2.5 Reserved Transaction Type

Table 10-12 shows transaction types, which are defined as reserved:

The transaction with a reserved transfer type, the arbiter performs as follows:
1. Ends the address tenure by asserting AACK.
2. Reports on the event to AER[RES] if reporting enabled by ATER[RES].
3. Issues reset request, MCP or regular interrupt according to AERR[RES] and AIDR[RES], if 

enabled by AMR[RES] and if reporting enabled by ATER[RES].
4. Updates transaction attributes and address of AEATR and AEADR for the first error event.

10.3.2.6 Illegal (ECIWX/ECOWX) Transaction Type 

Table 10-13 shows transaction types, which are defined as illegal.

Table 10-12. Reserved Transaction Type Encoding

TTYPE[0:4] Bus Command

00101 Reserved

1XX01 Reserved for customer

10110 Reserved

00011 Reserved

00111 Reserved

01111 Reserved

1XX11 Reserved for customer

Table 10-13. Illegal Transaction Type Encoding

TTYPE[0:4] Bus Command

10100 External control word write (ecowx)

11100 External control word read (eciwx)

MPC5121e Microcontroller Reference Manual, Rev. 2



CSB Arbiter and Bus Monitor

10-24 Freescale Semiconductor

The transaction with an illegal (ECIWX, ECOWX) transfer type, the arbiter performs as follows:
1. Ends the address tenure by asserting AACK.
2. Starts data tenure and ends data tenure by asserting TEA.
3. Reports on the event in AER[ECW] if reporting enabled by ATER[ECW].
4. Issues reset request, MCP or regular interrupt according to AERR[ECW] and AIDR[ECW], if 

enabled by AMR[ECW] and if reporting enabled by ATER[ECW].
5. Updates transaction attributes and address of AEATR and AEADR for the first error event.

See Section 10.2.1.3, “Arbiter Transfer Error Register (ATER),” Section 10.2.1.4, “Arbiter Event Register 
(AER),” Section 10.2.1.5, “Arbiter Interrupt Definition Register (AIDR),” Section 10.2.1.6, “Arbiter 
Mask Register (AMR),” Section 10.2.1.7, “Arbiter Event Attributes Register (AEATR),” Section 10.2.1.8, 
“Arbiter Event Address Register (AEADR),” and Section 10.2.1.9, “Arbiter Event Response Register 
(AERR)” for more information.

10.4 Initialization/Applications Information
The following sections describe the initialization and error handling sequences for the arbiter:

10.4.1 Initialization Sequence

The following initialization sequence is recommended:
1. Write to ACR register to configure pipeline depth, address bus parking mode, global maximum 

repeat count, PCI maximum repeat count and address acknowledge wait states.
2. Write to ATER register to define which event is considered error event and which won’t.
3. Write to AERR to define whether different error events causes reset request or interrupt.
4. Write to AIDR to define the kind of interrupt (regular or MCP) that is caused by every error event. 

This is only necessary if interrupts are enabled and AERR defines error events to cause interrupt.
5. Write to AMR to enable interrupts. 
6. Write to ATR to set the ATO and DTO timers. This is only necessary if the required timers are less 

than the maximum value (which is default).

10.4.2 Error Handling Sequence

The following error handling sequence is recommended:
1. Read the AER register to find out about the error that occurred in the system. Also, read the values 

of AEATR and AEADR to check on the first error event in the system.
2. If those registers are not accessible because of a stalled bus, reset the chip and read the values of 

the AEATR and AEADR registers to check on the event that causes this problem to the system. 
Use HRESET to reset the chip to guarantee, that the information stored in AEATR and AEADR is 
not lost.

3. Clear all the previous events by writing 1’s to the AER register. This register is also cleared after 
reset.

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 11-1

Chapter 11  
Direct Memory Access (DMA)

11.1 Introduction
The direct memory access (DMA) module provides a flexible and efficient way to move blocks of data 
within the system. The DMA controller reduces the workload on the microprocessor, allowing it to 
continue execution of system software.

The DMA module includes a DMA engine, interfaces to peripheral buses and a dynamic clock gating 
controller. The DMA engine performs source and destination address calculations, actual data movement 
operations, and has a local memory containing the transfer control descriptors (TCD) for the channels. The 
interfaces to peripheral buses grab data from source peripherals or pass data to destination peripherals. The 
dynamic clock gating controller monitors the DMA engine and interface activities, turns off clocks to the 
DMA engine, and DMA interfaces after detecting that the bus is idle.

11.1.1 Features
• Programmable multi-channel interface to peripherals

— Supports 64 channels, 32-bit data path widths
— Supports data movement of peripherals: MDDRC, PSC_FIFO, SDHC, NFC, PATA, LPC, 

SPDIF, and MBX (not available in MPC5123).
• Unrestricted data movement within physical memory address space

— All data movement via dual-address transfers: read from source, write to destination
— The transfer control descriptors(TCD) supports two-deep, nested transfer operations: An inner 

data transfer loop defined by a minor byte transfer count, and an outer data transfer loop defined 
by a major iteration count.

• Support for external DMA request over GPIO interface
— 31 GPIO pins can be used as DMA requestors

• Flexible protocol programmability
— Programmable source, destination addresses, transfer size
— Transfer control descriptors(TCD) organized to support two-deep, nested transfer operations
— Supports fixed-priority and round-robin channel arbitration
— Channel completion reported via interrupt requests
— Supports scatter/gather DMA processing

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-2 Freescale Semiconductor

11.2 Memory Map and Register Definition
Table 11-1. DMA Block Memory Map

 Offset Register Access Section/Page

0x0000 DMACR—DMA Control Register R/W 11.2.1.1/11-6

0x0004 DMAES—DMA Error Status R 11.2.1.2/11-7

0x0008 DMAERQH—DMA Enable Request High (Channels 63-32) R/W 11.2.1.3/11-9

0x000c DMAERQL—DMA Enable Request Low (Channels 31-00) R/W 11.2.1.3/11-9

0x0010 DMAEEIH—DMA Enable Error Interrupt High (Channels 63-32) R/W 11.2.1.4/11-11

0x0014 DMAEEIL—DMA Enable Error Interrupt Low (Channels 31-00) R/W 11.2.1.4/11-11

0x0018

DMASERQ—
DMA Set 
Enable Request 

DMACERQ—
DMA Clear 
Enable Request 

DMASEEI—
DMA Set 
Enable Error 
Interrupt

DMACEEI—
DMA Clear 
Enable Error 
Interrupt

R/W 11.2.1.5/11-13, 11.2.1.6/11-13, 
11.2.1.7/11-14, 11.2.1.8/11-14

0x001c

DMACINT—
DMA Clear 
Interrupt 
Request

DMACERR—
DMA Clear 
Error

DMASSRT—
DMA Set Start 
Bit

DMACDNE—
DMA Clear 
Done 
Status Bit

R/W 11.2.1.9/11-15, 11.2.1.10/11-16, 
11.2.1.11/11-16, 
11.2.1.12/11-17

0x0020 DMAINTH—DMA Interrupt Request High (Channels 63-32) R/W 11.2.1.13/11-17

0x0024 DMAINTL—DMA Interrupt Request Low (Channels 31-00) R/W 11.2.1.13/11-17

0x0028 DMAERRH—DMA Error High (Channels 63-32) R/W 11.2.1.14/11-20

0x002c DMAERRL—DMA Error Low (Channels 31-00) R/W 11.2.1.14/11-20

0x0030 DMAHRSH—DMA Hardware Request Status High (Channels 63-32) R 11.2.1.15/11-22

0x0034 DMAHRSL—DMA Hardware Request Status Low (Channels 31-00) R 11.2.1.15/11-22

0x0038 DMAIHSA—DMA Interrupt High Select AXE (Channels 63-32) R/W 11.2.1.16/11-23

0x003c DMAILSA—DMA Interrupt Low Select AXE (Channels 31-00) R/W 11.2.1.16/11-23

0x0040-
0x00fc

Reserved

0x0100

DCHPRI0—
DMA 
Channel 0
Priority

DCHPRI1—
DMA 
Channel 1
Priority

DCHPRI2—
DMA 
Channel 2
Priority

DCHPRI3—
DMA 
Channel 3
Priority

R/W 11.2.1.17/11-24

0x0104

DCHPRI4—
DMA 
Channel 4
Priority

DCHPRI5—
DMA 
Channel 5
Priority

DCHPRI6—
DMA 
Channel 6
Priority

DCHPRI7—
DMA 
Channel 7
Priority

R/W 11.2.1.17/11-24

0x0108

DCHPRI8—
DMA 
Channel 8
Priority

DCHPRI9—
DMA 
Channel 9
Priority

DCHPRI10—
DMA 
Channel 10
Priority

DCHPRI11—
DMA 
Channel 11
Priority

R/W 11.2.1.17/11-24

0x010c
DCHPRI12—D
MA Channel 12
Priority

DCHPRI13—D
MA Channel 13
Priority

DCHPRI14—D
MA Channel 14
Priority

DCHPRI15—D
MA Channel 15
Priority ()

R/W 11.2.1.17/11-24

0x0110
DCHPRI16—D
MA Channel 16
Priority

DCHPRI17—D
MA Channel 17
Priority

DCHPRI18—D
MA Channel 18
Priority

DCHPRI19—D
MA Channel 19
Priority

R/W 11.2.1.17/11-24

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-3

0x0114
DCHPRI20—
DMA Channel 
20 Priority

DCHPRI21—
DMA Channel 
21 Priority

DCHPRI22—
DMA Channel 
22 Priority

DCHPRI23—
DMA Channel 
23 Priority

R/W 11.2.1.17/11-24

0x0118
DCHPRI24—
DMA Channel 
24 Priority

DCHPRI25—
DMA Channel 
25 Priority

DCHPRI26—
DMA Channel 
26 Priority

DCHPRI27—
DMA Channel 
27 Priority

R/W 11.2.1.17/11-24

0x011c
DCHPRI28—
DMA Channel 
28 Priority

DCHPRI29—
DMA Channel 
29 Priority

DCHPRI30—
DMA Channel 
30 Priority

DCHPRI31—
DMA Channel 
31 Priority

R/W 11.2.1.17/11-24

0x0120
DCHPRI32—
DMA Channel 
32 Priority

DCHPRI33—
DMA Channel 
33 Priority

DCHPRI34—
DMA Channel 
34 Priority

DCHPRI35—
DMA Channel 
35 Priority 

R/W 11.2.1.17/11-24

0x0124
DCHPRI36—
DMA Channel 
36 Priority 

DCHPRI37—
DMA Channel 
37 Priority

DCHPRI38—
DMA Channel 
38 Priority

DCHPRI39—
DMA Channel 
39 Priority

R/W 11.2.1.17/11-24

0x0128
DCHPRI40—
DMA Channel 
40 Priority

DCHPRI41—
DMA Channel 
41 Priority

DCHPRI42—
DMA Channel 
42 Priority

DCHPRI43—
DMA Channel 
43 Priority

R/W 11.2.1.17/11-24

0x012c
DCHPRI44—
DMA Channel 
44 Priority

DCHPRI45—
DMA Channel 
45 Priority

DCHPRI46—
DMA Channel 
46 Priority

DCHPRI47—
DMA Channel 
47 Priority

R/W 11.2.1.17/11-24

0x0130
DCHPRI48—
DMA Channel 
48 Priority

DCHPRI49—
DMA Channel 
49 Priority

DCHPRI50—
DMA Channel 
50 Priority

DCHPRI51—
DMA Channel 
51 Priority

R/W 11.2.1.17/11-24

0x0134
DCHPRI52—
DMA Channel 
52 Priority

DCHPRI53—
DMA Channel 
53 Priority

DCHPRI54—
DMA Channel 
54 Priority

DCHPRI55—
DMA Channel 
55 Priority

R/W 11.2.1.17/11-24

0x0138
CHPRI56D—
DMA Channel 
56 Priority)

DCHPRI57—
DMA Channel 
57 Priority

DCHPRI58—
DMA Channel 
58 Priority

DCHPRI59—
DMA Channel 
59 Priority

R/W 11.2.1.17/11-24

0x013c
DCHPRI60—
DMA Channel 
60 Priority

DCHPRI61—
DMA Channel 
61 Priority 

DCHPRI62—
DMA Channel 
62 Priority

DCHPRI63—
DMA Channel 
63 Priority

R/W 11.2.1.17/11-24

0x0140-0
x0ffc

Reserved

0x1000-0
x11fc

TCD00-TCD15 R/W 11.2.1.18/11-25

0x1200-0
x13fc

TCD16-TCD31 R/W 11.2.1.18/11-25

0x1400-0
x15fc

TCD32-TCD47 R/W 11.2.1.18/11-25

0x1600-0
x17fc

TCD48-TCD63 R/W 11.2.1.18/11-25

0x1800-0
x3fff

Reserved

Table 11-1. DMA Block Memory Map (continued)

 Offset Register Access Section/Page

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-4 Freescale Semiconductor

Table 11-2. DMA Channel Assignments

Requester DMA Channel DMA Request Enable DMA Interrupt Request DMA Error

GPIO0 DMA_REQ63 ERQ63 INT63 ERR63

GPIO1 DMA_REQ62 ERQ62 INT62 ERR62

GPIO2 DMA_REQ61 ERQ61 INT61 ERR61

GPIO3 DMA_REQ60 ERQ60 INT60 ERR60

GPIO4 DMA_REQ59 ERQ59 INT59 ERR59

GPIO5 DMA_REQ58 ERQ58 INT58 ERR58

GPIO6 DMA_REQ57 ERQ57 INT57 ERR57

GPIO7 DMA_REQ56 ERQ56 INT56 ERR56

GPIO8 DMA_REQ55 ERQ55 INT55 ERR55

GPIO9 DMA_REQ54 ERQ54 INT54 ERR54

GPIO10 DMA_REQ53 ERQ53 INT53 ERR53

GPIO11 DMA_REQ52 ERQ52 INT52 ERR52

GPIO12 DMA_REQ51 ERQ51 INT51 ERR51

GPIO13 DMA_REQ50 ERQ50 INT50 ERR50

GPIO14 DMA_REQ49 ERQ49 INT49 ERR49

GPIO15 DMA_REQ48 ERQ48 INT48 ERR48

GPIO16 DMA_REQ47 ERQ47 INT47 ERR47

GPIO17 DMA_REQ46 ERQ46 INT46 ERR46

GPIO18 DMA_REQ45 ERQ45 INT45 ERR45

GPIO19 DMA_REQ44 ERQ44 INT44 ERR44

GPIO20 DMA_REQ43 ERQ43 INT43 ERR43

GPIO21 DMA_REQ42 ERQ42 INT42 ERR42

GPIO22 DMA_REQ41 ERQ41 INT41 ERR41

GPIO23 DMA_REQ40 ERQ40 INT40 ERR40

GPIO24 DMA_REQ39 ERQ39 INT39 ERR39

GPIO25 DMA_REQ38 ERQ38 INT38 ERR38

GPIO26 DMA_REQ37 ERQ37 INT37 ERR37

GPIO27 DMA_REQ36 ERQ36 INT36 ERR36

GPIO28 DMA_REQ35 ERQ35 INT35 ERR35

GPIO29 DMA_REQ34 ERQ34 INT34 ERR34

GPIO30 DMA_REQ33 ERQ33 INT33 ERR33

MDDRC DMA_REQ32 ERQ32 INT32 ERR32

MBX1 DMA_REQ31 ERQ31 INT31 ERR31

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-5

SDHC DMA_REQ30 ERQ30 INT30 ERR30

NFC DMA_REQ29 ERQ29 INT29 ERR29

PATA_TX_FIFO_ALARM DMA_REQ28 ERQ28 INT28 ERR28

PATA_RX_FIFO_ALARM DMA_REQ27 ERQ27 INT27 ERR27

LPC DMA_REQ26 ERQ26 INT26 ERR26

SPDIF_RX DMA_REQ25 ERQ25 INT25 ERR25

SPDIF_TX DMA_REQ24 ERQ24 INT24 ERR24

PSC_FIFO_TX11 DMA_REQ23 ERQ23 INT23 ERR23

PSC_FIFO_TX10 DMA_REQ22 ERQ22 INT22 ERR22

PSC_FIFO_TX9 DMA_REQ21 ERQ21 INT21 ERR21

PSC_FIFO_TX8 DMA_REQ20 ERQ20 INT20 ERR20

PSC_FIFO_TX7 DMA_REQ19 ERQ19 INT19 ERR19

PSC_FIFO_TX6 DMA_REQ18 ERQ18 INT18 ERR18

PSC_FIFO_TX5 DMA_REQ17 ERQ17 INT17 ERR17

PSC_FIFO_TX4 DMA_REQ16 ERQ16 INT16 ERR16

PSC_FIFO_TX3 DMA_REQ15 ERQ15 INT15 ERR15

PSC_FIFO_TX2 DMA_REQ14 ERQ14 INT14 ERR14

PSC_FIFO_TX1 DMA_REQ13 ERQ13 INT13 ERR13

PSC_FIFO_TX0 DMA_REQ12 ERQ12 INT12 ERR12

PSC_FIFO_RX11 DMA_REQ11 ERQ11 INT11 ERR11

PSC_FIFO_RX10 DMA_REQ10 ERQ10 INT10 ERR10

PSC_FIFO_RX9 DMA_REQ9 ERQ9 INT9 ERR9

PSC_FIFO_RX8 DMA_REQ8 ERQ8 INT8 ERR8

PSC_FIFO_RX7 DMA_REQ7 ERQ7 INT7 ERR7

PSC_FIFO_RX6 DMA_REQ6 ERQ6 INT6 ERR6

PSC_FIFO_RX5 DMA_REQ5 ERQ5 INT5 ERR5

PSC_FIFO_RX4 DMA_REQ4 ERQ4 INT4 ERR4

PSC_FIFO_RX3 DMA_REQ3 ERQ3 INT3 ERR3

PSC_FIFO_RX2 DMA_REQ2 ERQ2 INT2 ERR2

PSC_FIFO_RX1 DMA_REQ1 ERQ1 INT1 ERR1

PSC_FIFO_RX0 DMA_REQ0 ERQ0 INT0 ERR0

1  Not available in MPC5123. In this don’t enable DMA_REQ31 and corresponding interrupt requests.

Table 11-2. DMA Channel Assignments (continued)

Requester DMA Channel DMA Request Enable DMA Interrupt Request DMA Error

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-6 Freescale Semiconductor

11.2.1 Register Descriptions

11.2.1.1 DMA Control Register (DMACR)

The 32-bit DMA control register (DMACR) defines the basic operating configuration of the DMA. 

The DMA arbitrates channel service requests in groups of 16 channels. The 64 channel configurations 
have four groups (3, 2, 1, and 0). Group 3 contains channels 63-48. Group 2 contains channels 47-32. 
Group 1 contains channels 31-16. Group 0 contains channels 15-0.

Arbitration within a group can be configured to use a fixed priority or a round robin. In fixed priority 
arbitration, the highest priority channel requesting service is selected to execute. The priorities are 
assigned by the channel priority registers. In round robin arbitration mode, the channel priorities are 
ignored and the channels within each group are cycled through without regard to priority.

The group priorities operate in a similar fashion. In group fixed priority arbitration mode, channel service 
requests in the highest priority group are executed first where priority level 3 is the highest and priority 
level 0 is the lowest. The group priorities are assigned in the GRPnPri registers. All group priorities must 
have unique values before any channel service requests occur. Otherwise, a configuration error is reported. 
Unused group priority registers, per configuration, are unimplemented in the DMACR. In group round 
robin mode, the group priorities are ignored and the groups are cycled through without regard to priority.

Offset: 0x0000

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EDCG

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
GRP3PRI GRP2PRI GRP1PRI GRP0PRI

0 0 0 0
ERGA ERCA EDBG 0

W

Reset 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 11-1. DMA Control Register (DMACR) (continued)

Table 11-3. DMACR Field Descriptions

Field Description

EDCG Enable Clock Dynamic Gating
0 Disable Clock Dynamic Gating
1 Enable Clock Dynamic Gating

GRP3PRI Channel Group 3 Priority. Group 3 priority level when fixed priority group arbitration is enabled.

GRP2PRI Channel Group 2 Priority. Group 2 priority level when fixed priority group arbitration is enabled.

GRP1PRI Channel Group 1 Priority. Group 1 priority level when fixed priority group arbitration is enabled.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-7

11.2.1.2 DMA Error Status (DMAES)

The DMAES register provides information concerning the last recorded channel error. Channel errors can 
be caused by a configuration error (an illegal setting in the transfer control descriptor or an illegal priority 
register setting in fixed arbitration mode) or an error termination to a bus master read or write cycle.

A configuration error is caused when the starting source or destination address, source or destination 
offsets, minor loop byte count and the transfer size represent an inconsistent state. The addresses and 
offsets must be aligned on transfer_size boundaries, and the minor loop byte count must be a multiple of 
the source and destination transfer sizes. All source reads and destination writes must be configured to the 
natural boundary of the programmed transfer size respectively. In fixed arbitration mode, a configuration 
error is caused by any two channel priorities being equal within a group, or any group priority levels being 
equal among the groups. All channel priority levels within a group must be unique and all group priority 
levels among the groups must be unique when fixed arbitration mode is enabled. If a scatter/gather 
operation is enabled upon channel completion, a configuration error is reported if the scatter/gather 
address (DLAST_SGA) is not aligned on a 32-byte boundary. If minor loop channel linking is enabled 
upon channel completion, a configuration error is reported when the link is attempted if the 
TCD.CITER.E_LINK bit does not equal the TCD.BITER.E_LINK bit. All configuration error conditions 
except scatter/gather and minor loop link error are reported as the channel is activated and asserts an error 
interrupt request, if enabled. A scatter/gather configuration error is reported when the scatter/gather 
operation begins at major loop completion when properly enabled. A minor loop channel link 
configuration error is reported when the link operation is serviced at minor loop completion.

If a system bus read or write is terminated with an error, the data transfer is stopped and the appropriate 
bus error flag set. In this case, the state of the channel’s transfer control descriptor is updated by the 
DMA_ENGINE with the current source address, destination address, and current iteration count at the 
point of the fault. When a system bus error occurs, the channel is terminated after the read or write 
transaction already pipelined after errant access, has completed. If a bus error occurs on the last read prior 
to beginning the write sequence, the write executes using the data captured during the bus error. If a bus 
error occurs on the last write prior to switching to the next read sequence, the read sequence executes 
before the channel is terminated due to the destination bus error.

GRP0PRI Channel Group 0 Priority. Group 0 priority level when fixed priority group arbitration is enabled.

ERGA Enable Round Robin Group Arbitration 
0 Fixed priority arbitration is used for selection among the groups.
1 Round robin arbitration is used for selection among the groups.

ERCA Enable Round Robin Channel Arbitration
0 Fixed priority arbitration is used for channel selection within each group.
1 Round robin arbitration is used for channel selection within each group.

EDBG Enable Debug
0 Ignore DMA debug input.
1 Setting of TEST dmadbg bit, AXE halt, or e300 breakpoint causes the DMA to stall the start of a new 

channel. Executing channels are allowed to complete. Channel execution resumes when EST dmadbg bit 
is cleaed, AXE resumes execution, e300 resumes execution, or the EDBG bit is cleared.

Note: AXE and e300 halt need to be enalbed by seperate TEST dma_halt_en bits.

Table 11-3. DMACR Field Descriptions

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-8 Freescale Semiconductor

The occurrence of any type of error causes the DMA_ENGINE to immediately stop, and the appropriate 
channel bit in the DMA error register to be asserted. At the same time, the details of the error condition 
are loaded into the DMAES register. The major loop complete indicators, setting the transfer control 
descriptor done flag and the possible assertion of an interrupt request, are not affected when an error is 
detected.

Offset: 0x0004

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R VLD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R GPE CPE ERRCHN[5:0] SAE SOE DAE DOE NCE SGE SBE DBE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 11-2. DMA Error Status Register (DMAES)

Table 11-4. DMAES Field Descriptions

Field Description

VLD Logical OR of all DMAERRH
and DMAERRL status bits.
0 No DMAERR bits are set.
1 At least one DMAERR bit is set indicating a valid error exists that has not been cleared.

GPE Group Priority Error
0 No group priority error.
1 The last recorded error was a configuration error among the group priorities. All group priorities are not 

unique.

CPE Channel Priority Error
0 No channel priority error.
1 The last recorded error was a configuration error in the channel priorities within a group. All channel 

priorities within a group are not unique.

ERRCHN[5:0] Error Channel Number
The channel number of the last recorded error (excluding GPE and CPE errors).

SAE Source Address Error
0 No source address configuration error.
1 The last recorded error was a configuration error detected in the TCD.SADDR field. TCD.SADDR is 

inconsistent with TCD.SSIZE.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-9

11.2.1.3 DMA Enable Request (DMAERQH, DMAERQL)

The DMAERQ{H,L} registers provide a bit map for the implemented 64 channels to enable the request 
signal for each channel. DMAERQH supports channels 63-32, while DMAEQRL covers channels 31-00. 
The state of any given channel enable is directly affected by writes to this register; it is also affected by 
writes to the DMASERQ and DMACERQ registers. The DMA{S,C}ERQ registers are provided so that 
the request enable for a single channel can easily be modified without the need to perform a 
read-modify-write sequence to the DMAERQ{H,L} registers.

The DMA request input signal and this enable request flag must be asserted before a channel’s hardware 
service request is accepted. The state of the DMA enable request flag does not affect a channel service 
request made explicitly through software or a linked channel request.

As a given channel completes the processing of its major iteration count, there is a flag in the transfer 
control descriptor that may affect the ending state of the DMAERQ bit for that channel. If the 

SOE Source Offset Configuration
0 No source offset configuration error.
1 The last recorded error was a configuration error detected in the TCD.SOFF field. TCD.SOFF is 

inconsistent with TCD.SSIZE.

DAE Destination Address Error
0 No destination address configuration error.
1 The last recorded error was a configuration error detected in the TCD.DADDR field. TCD.DADDR is 

inconsistent with TCD.DSIZE.

DOE Destination Offset Error
0 No destination offset configuration error.
1 The last recorded error was a configuration error detected in the TCD.DOFF field. TCD.DOFF is 

inconsistent with TCD.DSIZE.

NCE Nbytes/Citer Configuration Error
0 No nbytes/citer configuration error.
1 The last recorded error was a configuration error detected in the TCD.NBYTES or TCD.CITER fields. 

TCD.NBYTES is not a multiple of TCD.SSIZE and TCD.DSIZE, or TCD.CITER is equal to zero, or 
TCD.CITER.E_LINK is not equal to TCD.BITER.E_LINK.

SGE Scatter/Gather Configuration Error
0 No scatter/gather configuration error.
1 The last recorded error was a configuration error detected in the TCD.DLAST_SGA field. This field is 

checked at the beginning of a scatter/gather operation after major loop completion if TCD.E_SG is 
enabled. TCD.DLAST_SGA is not on a 32-byte boundary.

SBE Source Bus Error
0 No source bus error.
1 The last recorded error was a bus error on a source read.

DBE Destination Bus Error
No destination bus error.
1 The last recorded error was a bus error on a destination write.

Table 11-4. DMAES Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-10 Freescale Semiconductor

TCD.D_REQ bit is set, the corresponding DMAERQ bit is cleared, disabling the DMA request. If the 
D_REQ bit is cleared, the state of the DMAERQ bit is unaffected.

Offset: 0x0008

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ERQ63 ERQ62 ERQ61 ERQ60 ERQ59 ERQ58 ERQ57 ERQ56 ERQ55 ERQ54 ERQ53 ERQ52 ERQ51 ERQ50 ERQ49 ERQ48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ERQ47 ERQ46 ERQ45 ERQ44 ERQ43 ERQ42 ERQ41 ERQ40 ERQ39 ERQ38 ERQ37 ERQ36 ERQ35 ERQ34 ERQ33 ERQ32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Offset: 0x000C

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ERQ31 ERQ30 ERQ29 ERQ28 ERQ27 ERQ26 ERQ25 ERQ24 ERQ23 ERQ22 ERQ21 ERQ20 ERQ19 ERQ18 ERQ17 ERQ16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ERQ15 ERQ14 ERQ13 ERQ12 ERQ11 ERQ10 ERQ09 ERQ08 ERQ07 ERQ06 ERQ05 ERQ04 ERQ03 ERQ02 ERQ01 ERQ00

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11-3. DMA Enable Request Registers (DMAERQH and DMAERQL)

Table 11-5. DMAERQH and DMAERQL Field Descriptions

Field Description

ERQn Enable DMA Request n
0 The DMA request signal for channel n is disabled.
1 The DMA request signal for channel n is enabled.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-11

11.2.1.4 DMA Enable Error Interrupt (DMAEEIH, DMAEEIL)

The DMAEEI{H,L} registers provide a bit map for the implemented 64 channels to enable the error 
interrupt signal for each channel. DMAEEIH supports channels 63-32, while DMAEEIL covers channels 
31-00. The state of any given channel’s error interrupt enable is directly affected by writes to this register; 
it is also affected by writes to the DMASEEI and DMACEEI registers. The DMA{S,C}EEI registers are 
provided so that the error interrupt enable for a single channel can easily be modified without the need to 
perform a read-modify-write sequence to the DMAEEI{H,L} registers.

The DMA error indicator and this error interrupt enable flag must be asserted before an error interrupt 
request for a given channel is asserted. See Figure 11-4 and Table 11-6 for the DMAEEI definition.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-12 Freescale Semiconductor

Offset: 0x0010

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EEI63 EEI62 EEI61 EEI60 EEI59 EEI58 EEI57 EEI56 EEI55 EEI54 EEI53 EEI52 EEI51 EEI50 EEI49 EEI48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EEI47 EEI46 EEI45 EEI44 EEI43 EEI42 EEI41 EEI40 EEI39 EEI38 EEI37 EEI36 EEI35 EEI34 EEI33 EEI32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Offset: 0x0014

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EEI31 EEI30 EEI29 EEI28 EEI27 EEI26 EEI25 EEI24 EEI23 EEI22 EEI21 EEI20 EEI19 EEI18 EEI17 EEI16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EEI15 EEI14 EEI13 EEI12 EEI11 EEI10 EEI09 EEI08 EEI07 EEI06 EEI05 EEI04 EEI03 EEI02 EEI01 EEI00

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11-4. DMA Enable Error Registers (DMAEEIH and DMAEEIL)

Table 11-6. DMAEEIH and DMAEEIL Field Descriptions

Field Description

EEIn Enable Error Interrupt n
0    The error signal for channel n does not generate an error interrupt.
1    The assertion of the error signal for channel n generate an error interrupt request.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-13

11.2.1.5 DMA Set Enable Request (DMASERQ)

The DMASERQ register provides a simple memory-mapped mechanism to set a given bit in the 
DMAERQ{H,L} registers to enable the DMA request for a given channel. The data value on a register 
write causes the corresponding bit in the DMAERQ{H,L} register to be set. A data value of 64 to 127 
(regardless of the number of implemented channels) provides a global set function, forcing the entire 
contents of DMAERQ{H,L} to be asserted. Reads of this register return all zeroes. See Figure 11-5 and 
Table 11-7 for the DMASERQ definition.

11.2.1.6 DMA Clear Enable Request (DMACERQ)

The DMACERQ register provides a simple memory-mapped mechanism to clear a given bit in the 
DMAERQ{H,L} registers to disable the DMA request for a given channel. The data value on a register 
write causes the corresponding bit in the DMAERQ{H,L} register to be cleared. A data value of 64 to 127 
(regardless of the number of implemented channels) provides a global clear function, forcing the entire 
contents of the DMAERQ{H,L} to be zeroed, disabling all DMA request inputs. Reads of this register 
return all zeroes. See Figure 11-6 and Table 11-8 for the DMACERQ definition.

Offset: 0x0018

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W SERQ[6:0]

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 11-5. DMA Set Enable Request Register (DMASERQ)

Table 11-7. DMASERQ Field Descriptions

Field Description

SERQ[6:0] Set Enable Request
0-63  Set the corresponding bit in DMAERQ{H,L}
64-127  Set all bits in DMAERQ{H,L}

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-14 Freescale Semiconductor

11.2.1.7 DMA Set Enable Error Interrupt (DMASEEI)

The DMASEEI register provides a simple memory-mapped mechanism to set a given bit in the 
DMAEEI{H,L} registers to enable the error interrupt for a given channel. The data value on a register 
write causes the corresponding bit in the DMAEEI{H,L} register to be set. A data value of 64 to 127 
(regardless of the number of implemented channels) provides a global set function, forcing the entire 
contents of DMAEEI{H,L} to be asserted. Reads of this register return all zeroes. See Figure 11-7 and 
Table 11-9 for the DMASEEI definition.

11.2.1.8 DMA Clear Enable Error Interrupt (DMACEEI)

The DMACEEI register provides a simple memory-mapped mechanism to clear a given bit in the 
DMAEEI{H,L} registers to disable the error interrupt for a given channel. The data value on a register 
write causes the corresponding bit in the DMAEEI{H,L} register to be cleared. A data value of 64 to 127 
(regardless of the number of implemented channels) provides a global clear function, forcing the entire 

Offset: 0x0019

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W CERQ[6:0]

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 11-6. DMA Clear Enable Request Register (DMACERQ)

Table 11-8. DMACERQ Field Descriptions

Field Description

CERQ[6:0] Clear Enable Request
0-63  Clear corresponding bit in DMAERQ{H,L}
64-127  Clear all bits in DMAERQ{H,L}

Offset: 0x001a

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W SEEI[6:0]

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 11-7. DMA Set Enable Error Interrupt Register (DMASEEI)

Table 11-9. DMASEEI Field Descriptions

Field Description

SEEI[6:0] Set Enable Error Interrupt
0-63  Set the corresponding bit in DMAEEI{H,L}
64-127  Set all bits in DMAEEI{H,L}

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-15

contents of the DMAEEI{H,L} to be zeroed, disabling all DMA request inputs. Reads of this register 
return all zeroes. See Figure 11-8 and Table 11-10 for the DMACEEI definition.

11.2.1.9 DMA Clear Interrupt Request (DMACINT)

The DMACINT register provides a simple memory-mapped mechanism to clear a given bit in the 
DMAINT{H,L} registers to disable the interrupt request for a given channel. The given value on a register 
write causes the corresponding bit in the DMAINT{H,L} register to be cleared. A data value of 64 to 127 
(regardless of the number of implemented channels) provides a global clear function, forcing the entire 
contents of the DMAINT{H,L} to be zeroed, disabling all DMA interrupt requests. Reads of this register 
return all zeroes. See Figure 11-9 and Table 11-11 for the DMACINT definition.

Offset: 0x0018

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W SERQ[6:0]

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 11-8. DMA Clear Enable Error Interrupt Register (DMACEEI)

Table 11-10. DMASEEI Field Descriptions

Field Description

SERQ[6:0] Clear Enable Error Interrupt
0-63 Clear corresponding bit in DMAEEI{H,L}
64-127 Clear all bits in DMAEEI{H,L}

Offset: 0x001c

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W CINT[6:0]

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 11-9. DMA Clear Interrupt Request Register (DMACINT)

Table 11-11. DMACINT Field Descriptions

Field Description

CINT[6:0] Clear Interrupt Request
0-63  Clear corresponding bit in DMAINT{H,L}
64-127 Clear all bits in DMAINT{H,L}

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-16 Freescale Semiconductor

11.2.1.10 DMA Clear Error (DMACERR)

The DMACEER register provides a simple memory-mapped mechanism to clear a given bit in the 
DMAERR{H,L} registers to disable the error condition flag for a given channel. The given value on a 
register write causes the corresponding bit in the DMAERR{H,L} register to be cleared. A data value of 
64 to 127 (regardless of the number of implemented channels) provides a global clear function, forcing the 
entire contents of the DMAERR{H,L} to be zeroed, clearing all channel error indicators. Reads of this 
register return all zeroes. See Figure 11-10 and Table 11-12 for the DMACERR definition.

11.2.1.11 DMA Set START Bit (DMASSRT)

The DMASSRT register provides a simple memory-mapped mechanism to set the START bit in the TCD 
of the given channel. The data value on a register write causes the START bit in the corresponding Transfer 
Control Descriptor to be set. A data value of 64 to 127 (regardless of the number of implemented channels) 
provides a global set function, forcing all START bits to be set. Reads of this register return all zeroes. See 
Figure 11-11 for the TCD START bit definition.

Offset: 0x001d

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W CERR[6:0]

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 11-10. DMA Clear Error Register (DMACERR)

Table 11-12. DMACERR Field Descriptions

Field Description

CERR[6:0] Clear Error Indicator
0-63  Clear corresponding bit in DMAERR{H,L}
64-127 Clear all bits in DMAERR{H,L}

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-17

11.2.1.12 DMA Clear DONE Status (DMACDNE)

The DMACDNE register provides a simple memory-mapped mechanism to clear the DONE bit in the 
TCD of the given channel. The data value on a register write causes the DONE bit in the corresponding 
Transfer Control Descriptor to be cleared. A data value of 64 to 127 (regardless of the number of 
implemented channels) provides a global clear function, forcing all DONE bits to be cleared. Reads of this 
register return all zeroes. See Figure 11-12 for the TCD DONE bit definition.

11.2.1.13 DMA Interrupt Request (DMAINTH, DMAINTL)

The DMAINT{H,L} registers provide a bit map for the implemented 64 channels signaling the presence 
of an interrupt request for each channel. DMAINTH supports channels 63-32, while DMAINTL covers 
channels 31-00. The DMA_ENGINE signals the occurrence of a programmed interrupt upon the 
completion of a data transfer as defined in the transfer control descriptor by setting the appropriate bit in 

Offset: 0x001e

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W SSRT[6:0]

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 11-11. DMA Set START Bit Register (DMASSRT)

Table 11-13. DMASSRT Field Descriptions

Field Description

SSRT[6:0] Set START Bit (Channel Service Request)
0-63  Set the corresponding channel’s TCD.start
64-127 Set all TCD.start bits

Offset: 0x001f

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W CDNE[6:0]

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 11-12. DMA Clear DONE Status Register (DMACDNE)

Table 11-14. DMACDNE Field Descriptions

Field Description

CDNE[6:0] Clear DONE Status Bit
0-63  Clear corresponding channel’s DONE bit
64-127 Clear all TCD DONE bits

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-18 Freescale Semiconductor

this register. The outputs of this register are directly routed to the platform’s interrupt controller. During 
the execution of the interrupt service routine associated with any given channel, it is the software’s 
responsibility to clear the appropriate bit, negating the interrupt request. Typically, a write to the 
DMACINT register in the interrupt service routine is used for this purpose.

The state of any given channel’s interrupt request is directly affected by writes to this register; it is also 
affected by writes to the DMACINT register. On writes to the DMAINT, a one in any bit position clears 
the corresponding channel’s interrupt request. A zero in any bit position has no affect on the corresponding 
channel’s current interrupt status. The DMACINT register is provided so the interrupt request for a single 
channel can easily be cleared without the need to perform a read-modify-write sequence to the 
DMAINT{H,L} registers. 

See Figure 11-13 and Table 11-15 for the DMAINT definition.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-19

Offset: 0x0020

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
INT63 INT62 INT61 INT60 INT59 INT58 INT57 INT56 INT55 INT54 INT53 INT52 INT51 INT50 INT49 INT48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
INT47 INT46 INT45 INT44 INT43 INT42 INT41 INT40 INT39 INT38 INT37 INT36 INT35 INT34 INT33 INT32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Offset: 0x0024

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
INT31 INT30 INT29 INT28 INT27 INT26 INT25 INT24 INT23 INT22 INT21 INT20 INT19 INT18 INT17 INT16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
INT15 INT14 INT13 INT12 INT11 INT10 INT09 INT08 INT07 INT06 INT05 INT04 INT03 INT02 INT01 INT00

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11-13. DMA Interrupt Request Registers (DMAINTH and DMAINTL)

Table 11-15. DMAINTH and DMAINTL Field Descriptions

Field Description

INTn DMA Interrupt Request n
0 The interrupt request for channel n is cleared.
1 The interrupt request for channel n is active.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-20 Freescale Semiconductor

11.2.1.14 DMA Error (DMAERRH, DMAERRL)

The DMAERR{H,L} registers provide a bit map for the implemented 64 channels signaling the presence 
of an error for each channel. DMAERRH supports channels 63-32, while DMAERRL covers channels 
31-00. The DMA_ENGINE signals the occurrence of a error condition by setting the appropriate bit in this 
register. The outputs of this register are enabled by the contents of the DMAEEI register, then logically 
summed across groups of 16, 32 and 64 channels to form several group error interrupt requests routed to 
the platform’s interrupt controller. During the execution of the interrupt service routine associated with any 
DMA errors, it is software’s responsibility to clear the appropriate bit, negating the error interrupt request. 
Typically, a write to the DMACERR register in the interrupt service routine is used for this purpose. Recall 
the normal DMA channel completion indicators, setting the transfer control descriptor done flag and the 
possible assertion of an interrupt request, are not affected when an error is detected.

The contents of this register can also be polled and a non-zero value indicates the presence of a channel 
error, regardless of the state of the DMAEEI register. The state of any given channel’s error indicators is 
affected by writes to this register; it is also affected by writes to the DMACERR register. On writes to the 
DMAERR, a one in any bit position clears the corresponding channel’s error status. A zero in any bit 
position has no affect on the corresponding channel’s current error status. The DMACERR register is 
provided so the error indicator for a single channel can easily be cleared. See Figure 11-14 and Table 11-16 
for the DMAERR definition.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-21

Offset: 0x0028

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ERR63 ERR62 ERR61 ERR60 ERR59 ERR58 ERR57 ERR56 ERR55 ERR54 ERR53 ERR52 ERR51 ERR50 ERR49 ERR48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ERR47 ERR46 ERR45 ERR44 ERR43 ERR42 ERR41 ERR40 ERR39 ERR38 ERR37 ERR36 ERR35 ERR34 ERR33 ERR32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Offset: 0x002c

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ERR31 ERR30 ERR29 ERR28 ERR27 ERR26 ERR25 ERR24 ERR23 ERR22 ERR21 ERR20 ERR19 ERR18 ERR17 ERR16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ERR15 ERR14 ERR13 ERR12 ERR11 ERR10 ERR09 ERR08 ERR07 ERR06 ERR05 ERR04 ERR03 ERR02 ERR01 ERR00

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11-14. DMA Error Registers (DMAERRH and DMAERRL)

Table 11-16. DMAERRH and DMAERRL Field Descriptions

Field Description

ERRn DMA Error n
0    An error in channel n has not occurred.
1    An error in channel n has occurred.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-22 Freescale Semiconductor

11.2.1.15 DMA Hardware Request Status (DMAHRSH, DMAHRSL)

The DMAHRS{H,L} registers provide a bit map for the implemented 64 channels’ current hardware 
request status. DMAHRSH supports channels 63-32, while DMAHRSL covers channels 31-00. Hardware 
request status reflects the current state of the registered and qualified (via DMAERQ field) request lines 
as seen by DMA arbitration logic. This view into the hardware request signals may be used for debug 
purposes.

See Figure 11-15 and Table 11-17 for the DMAHRS definition.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-23

11.2.1.16 DMA Interrupt Select AXE (DMAIHSA, DMAILSA)

The DMAI{H,L}SA registers provide a bit map for the implemented 64 channels’ interrupt direction. 
When a bit in these two registers is set, the corresponding channel’s interrupt is directed to AXE. 
Otherwise, the interrupt is directed to IPIC. DMAIHSA supports channels 63-32, while DMAILSA covers 
channels 31-00.

See Figure 11-16 and Table 11-18 for the DMAHRS definition.

Offset: 0x0030

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R HRS63 HRS62 HRS61 HRS60 HRS59 HRS58 HRS57 HRS56 HRS55 HRS54 HRS53 HRS52 HRS51 HRS50 HRS49 HRS48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R HRS47 HRS46 HRS45 HRS44 HRS43 HRS42 HRS41 HRS40 HRS39 HRS38 HRS37 HRS36 HRS35 HRS34 HRS33 HRS32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Offset: 0x0034

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R HRS31 HRS30 HRS29 HRS28 HRS27 HRS26 HRS25 HRS24 HRS23 HRS22 HRS21 HRS20 HRS19 HRS18 HRS17 HRS16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R HRS15 HRS14 HRS13 HRS12 HRS11 HRS10 HRS09 HRS08 HRS07 HRS06 HRS05 HRS04 HRS03 HRS02 HRS01 HRS00

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11-15. DMA Hardware Request Status Registers (DMAHRSH and DMHRSL)

Table 11-17. DMAHRSH and DMAHRSL Field Descriptions

Field Description

HSAn DMA Hardware Request Status
0 A Hardware service request for channel n is not present.
1 A Hardware service request for channel n is present.
Note: The hardware request status reflects the state of the request as seen by the arbitration logic. Therefore, 
this status is affected by the DMAERQn bit.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-24 Freescale Semiconductor

11.2.1.17 DMA Channel n Priority (DCHPRIn), n = 0,..., {15,31,63}

When the fixed-priority channel arbitration mode is enabled (DMACR[ERCA] = 0), the contents of these 
registers define the unique priorities associated with each channel within a group. The channel priorities 
are evaluated by numeric value (0 is the lowest priority, 1 is the next higher priority, then 2, 3, etc.). 
Software must program the channel priorities with unique values; otherwise, a configuration error is 
reported. The range of the priority value is limited to the values of 0 through 15. When read, the GRPPRI 
bits of the DCHPRIn register reflect the current priority level of the group of channels in which the 

Offset: 0x0038

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ISA63 ISA62 ISA61 ISA60 ISA59 ISA58 ISA57 ISA56 ISA55 ISA54 ISA53 ISA52 ISA51 ISA50 ISA49 ISA48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ISA47 ISA46 ISA45 ISA44 ISA43 ISA42 ISA41 ISA40 ISA39 ISA38 ISA37 ISA36 ISA35 ISA34 ISA33 ISA32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Offset: 0x003c

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ISA31 ISA30 ISA29 ISA28 ISA27 ISA26 ISA25 ISA24 ISA23 ISA22 ISA21 ISA20 ISA19 ISA18 ISA17 ISA16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ISA15 ISA14 ISA13 ISA12 ISA11 ISA10 ISA09 ISA08 ISA07 ISA06 ISA05 ISA04 ISA03 ISA02 ISA01 ISA00

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 11-16. DMA Interrupt Select AXE Registers (DMAIHSA and DMAIHSL)

Table 11-18. DMAIHSA and DMAIHSL Field Descriptions

Field Description

ISAn DMA Interrupt n selects AXE
0 The interrupt of channel n is directed to IPIC
1 The interrupt of channel n is directed to AXE.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-25

corresponding channel resides. GRPPRI bits are not affected by writes to the DCHPRIn registers. The 
group priority is assigned in the DMACR. See Figure 11-1 and Table 11-3 for the DMACR definition. 

Channel preemption is enabled on a per channel basis by setting the ECP bit in the DCHPRIn register. 
Channel preemption allows the executing channel’s data transfers to be temporarily suspended in favor of 
starting a higher priority channel. After the preempting channel has completed all of its minor loop data 
transfers, the preempted channel is restored and resumes execution. After the restored channel completes 
one read/write sequence, it is again eligible for preemption. If any higher priority channel is requesting 
service, the restored channel is suspended and the higher priority channel is serviced. Nested preemption 
(attempting to preempt a preempting channel) is not supported. After a preempting channel begins 
execution, it cannot be preempted. Preemption is only available when fixed arbitration is selected for 
group and channel arbitration modes. See Figure 11-17 and Table 11-19 for the DCHPRIn definition.

11.2.1.18 Transfer Control Descriptor (TCD)

Each channel requires a 32-byte transfer control descriptor for defining the desired data movement 
operation. The channel descriptors are stored in the local memory in sequential order. The definitions of 
the TCD are presented as eight 32-bit values. Table 11-20 is a 32-bit view of the basic TCD structure.

Offset: 0x100 + n

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
ECP

0 GRPPRI[1:0]
CHPRI[3:0]

W

Reset 0 0 Defaults to channel number (n) after reset

= Unimplemented or Reserved

Figure 11-17. DMA Channel n Priority Register (DCHPRIn)

Table 11-19. DCHPRIn Field Descriptions

Field Description

ECP Enable Channel Preemption
0 Channel n cannot be suspended by a higher priority channel’s service request.
1 Channel n can be temporarily suspended by the service request of a higher priority channel.

GRPPRI[1:0] Channel n Current Group Priority. Group priority assigned to this channel group when fixed-priority 
arbitration is enabled. These two bits are read only; writes are ignored.

CHPRI[3:0] Channel n Arbitration Priority. Channel priority when fixed-priority arbitration is enabled.

Table 11-20. TCDn 32-bit Memory Structure

DMA Offset TCDn Field

0x1000 + (32 x n) + 0x00 Source Address (saddr)

0x1000 + (32 x n) + 0x04 Transfer Attributes 
(smod, ssize, dmod, dsize)

Signed Source Address Offset (soff)

0x1000 + (32 x n) + 0x08 Inner Minor Byte Count (nbytes)

0x1000 + (32 x n) + 0x0c Last Source Address Adjustment (slast)

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-26 Freescale Semiconductor

Figure 11-18 and Table 11-21 define word 0 of the TCDn structure, the saddr field.

Figure 11-19 and Table 11-22 define word one of the TCDn structure, the SOFF and transfer attribute 
fields.

0x1000 + (32 x n) + 0x10 Destination Address (daddr)

0x1000 + (32 x n) + 0x14 Current Major Iteration Count (citer) Signed Destination Address Offset (doff)

0x1000 + (32 x n) + 0x18 Last Destination Address Adjustment/Scatter Gather Address (dlast_sga)

0x1000 + (32 x n) + 0x1c
Beginning Major Iteration Count (biter) Channel Control/Status

(BWC, MAJOR.LINKCH, DONE, ACTIVE, 
MAJOR.E_LINK, E_SG, D_REQ, INT_HALF, 

INT_MAJ, START)

DMA_Offset + 0x1000 + (32 x n) + 0x00

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SADDR[31:16]

W

Reset — — — — — — — — — — — — — — — —

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SADDR[15:00]

W

Reset — — — — — — — — — — — — — — — —

Figure 11-18. TCDn Word 0 (TCDn.saddr) Field

Table 11-21. TCDn Word 0 (TCDn.saddr) Field Descriptions

Field Description

SADDR[31:0] Source Address. Memory address pointing to the source data.

Table 11-20. TCDn 32-bit Memory Structure

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-27

DMA_Offset + 0x1000 + (32 x n) + 0x04

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SMOD[4:0] SSIZE[2:0] DMOD[4:0] DSIZE[2:0]

W

Reset — — — — — — — — — — — — — — — —

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SOFF[15:0]

W

Reset — — — — — — — — — — — — — — — —

Figure 11-19. TCDn Word 1 (TCDn.{soff,smod,ssize,dmod,dsize}) Field

Table 11-22. TCDn Word 1 (TCDn.{smod,ssize,dmod,dsize,soff}) Field Descriptions

Field Description

SMOD[4:0] Source address modulo
0 Source address modulo feature is disabled.
non-0 The value defines a specific address bit selected to be the value after SADDR + SOFF calculation is 

performed or the original register value. This feature provides the ability to easily implement a circular 
data queue. For data queues requiring power-of-two size bytes, the queue should be based at a 
zero-modulo-size address and the smod field set to the appropriate value to freeze the upper 
address bits. The bit select is defined as ((1 << smod[4:0]) - 1) where a resulting 1 in a bit location 
selects the next state address for the corresponding address bit location and a 0 selects the original 
register value for the corresponding address bit location. For this application, the SOFF is typically 
set to the transfer size to implement post-increment addressing with the SMOD function constraining 
the addresses to a zero-modulo-size range.

SSIZE[2:0] Source data transfer size
000 8-bit
001 16-bit
010 32-bit
011 Reserved
100 16-byte
101 32-byte
110 Reserved
111 Reserved
The attempted specification of a reserved source size produces a configuration error.

DMOD[4:0] Destination address modulo. See the SMOD[5:0] definition.

DSIZE[2:0] Destination data transfer size. See the SSIZE[2:0] definition.

SOFF[15:0] Source address signed offset. Sign-extended offset applied to the current source address to form the 
next-state value as each source read is completed.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-28 Freescale Semiconductor

Figure 11-20 and Table 11-23 define word two of the TCDn structure, the NBYTES field.

DMA_Offset + 0x1000 + (32 x n) + 0x08

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
NBYTES[31:16]

W

Reset — — — — — — — — — — — — — — — —

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
NBYTES[15:00]

W

Reset — — — — — — — — — — — — — — — —

Figure 11-20. TCDn Word 2 (TCDn.nbytes) Field

Table 11-23. TCDn Word 2 (TCDn.nbytes) Field Descriptions

Field Description

NBYTES[31:0] Inner Minor Byte Transfer Count. Number of bytes to be transferred in each service request of the channel. 
As a channel is activated, the contents of the appropriate TCD is loaded into the DMA_ENGINE, and the 
appropriate reads and writes perform until the complete byte transfer count has been transferred. This is an 
indivisible operation and cannot be stalled or halted. After the minor count is exhausted, the current values 
of the SADDR and DADDR are written back into the local memory, the major iteration count is decremented 
and restored to the local memory. If the major iteration count is completed, additional processing is 
performed.

The nbytes value 0x0000_0000 is interpreted as 0x1_0000_0000, thus specifying a 4-Gbyte transfer.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-29

Figure 11-21 and Table 11-24 define word three of the TCDn structure, the SLAST field.

Figure 11-22 and Table 11-25 define word 4 of the TCDn structure, the daddr field.

DMA_Offset + 0x1000 + (32 x n) + 0x0c

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SLAST[31:16]

W

Reset — — — — — — — — — — — — — — — —

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SLAST[15:00]

W

Reset — — — — — — — — — — — — — — — —

Figure 11-21. TCDn Word 3 (TCDn.slast) Field

Table 11-24. TCDn Word 3 (TCDn.slast) Field Descriptions

Field Description

SLAST[31:0] Last source address adjustment. Adjustment value added to the source address at the completion of the 
outer major iteration count. 

This value can be applied to restore the source address to the initial value, or adjust the address to reference 
the next data structure.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-30 Freescale Semiconductor

DMA_Offset + 0x1000 + (32 x n) + 0x10

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DADDR[31:16]

W

Reset — — — — — — — — — — — — — — — —

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DADDR[15:00]

W

Reset — — — — — — — — — — — — — — — —

Figure 11-22. TCDn Word 4 (TCDn.daddr) Field

Table 11-25. TCDn Word 4 (TCDn.daddr) Field Descriptions

Field Description

DADDR[31:0] Destination address. Memory address pointing to the destination data.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-31

Figure 11-23 and Table 11-26 define word five of the TCDn structure, the CITER and DOFF fields.

DMA_Offset + 0x1000 + (32 x n) + 0x14

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CITER.
E_LINK

CITER[14:9] or
CITER.LINKCH[5:0]

CITER[8:0]
W

Reset — — — — — — — — — — — — — — — —

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DOFF[15:0]

W

Reset — — — — — — — — — — — — — — — —

Figure 11-23. TCDn Word 5 (TCDn.{citer,doff}) Field

Table 11-26. TCDn Word 5 (TCDn.{citer,doff}) Field Descriptions

Field Description

CITER.E_LINK Enable Channel-to-Channel Linking on Minor Loop Complete. As the channel completes the inner minor 
loop, this flag enables the linking to another channel, defined by CITER.LINKCH[5:0]. The link target 
channel initiates a channel service request via an internal mechanism that sets the TCD.START bit of the 
specified channel. If channel linking is disabled, the citer value is extended to 15 bits in place of a link 
channel number. If the major loop is exhausted, this link mechanism is suppressed in favor of the 
MAJOR.E_LINK channel linking. This bit must be equal to the BITER.E_LINK bit otherwise a configuration 
error is reported.

0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

CITER[14:9]
or

CITER.LINKCH[5:0]

Current Major Iteration Count
or
Link Channel Number

If TCD.CITER.E_LINK equals 0,
No channel-to-channel linking (or chaining) is performed after the inner minor loop is exhausted. TCD 
word 5, bits [30:25] are used to form a 15 bit citer field.
or
After the minor loop is exhausted, the DMA_ENGINE initiates a channel service request at the channel 
defined by CITER.LINKCH[5:0] by setting that channel’s TCD.start bit.

The value contained in citer.linkch[5:0] must not exceed the number of implemented channels.

CITER[8:0] Current major iteration count

DOFF[15:0] Destination address signed offset

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-32 Freescale Semiconductor

Figure 11-24 and Table 11-27 define word six of the TCDn structure, the DLAST_SGA field.

DMA_Offset + 0x1000 + (32 x n) + 0x18

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DLAST_SGA[31:16]

W

Reset — — — — — — — — — — — — — — — —

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DLAST_SGA[15:00]

W

Reset — — — — — — — — — — — — — — — —

Figure 11-24. TCDn Word 6 (TCDn.dlast_sga) Field

Table 11-27. TCDn Word 6 (TCDn.dlast_sga) Field Descriptions

Field Description

DLAST_SGA[31:
0]

Last destination address adjustment or the memory address for the next transfer control descriptor to be 
loaded into this channel (scatter/gather)

If TCD.e_sg equals 0,

Adjustment value is added to the destination address at the completion of the outer major iteration count. 

This value can be applied to restore the destination address to the initial value or adjust the address to 
reference the next data structure.

or1

This address points to the beginning of a 0-modulo-32 region containing the next transfer control descriptor 
to be loaded into this channel. This channel reload is performed as the major iteration count completes. The 
scatter/gather address must be 0-modulo-32 or a configuration error is reported.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-33

Figure 11-25 and Table 11-28 define word seven of the TCDn structure, the BITER and 
CONTROL/STATUS fields.

DMA_Offset + 0x1000 + (32 x n) + 0x1c

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R BITE
R.

E_LI
NK

BITER[14:9] OR
BITER.LINKCH[5:0]

BITER[8:0]W

Reset — — — — — — — — — — — — — — — —

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

BWC MAJOR.LINKCH[5:0]
DON

E
ACTI
VE

MAJ
OR.
E_LI
NK

E_SG
D_RE

Q
INT_
HALF

INT_
MAJ

STAR
T

W

Reset — — — — — — — — — — — — — — — —

Figure 11-25. TCDn Word 7 (TCDn.{biter,control/status}) Fields
(Register is repeated for reference.)

Table 11-28. TCDn Word 7 (TCDn.{biter,control/status}) Field Descriptions (Sheet 1 of 4)

Field Description

BITER.E_LINK Enable channel-to-channel linking on major loop complete. This is the initial value copied into the 
CITER.E_LINK field when the major loop is completed. The CITER.E_LINK field controls channel linking 
during channel execution. This bit must be equal to the CITER.E_LINK bit otherwise a configuration error is 
reported.
0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

BITER[14:9]
or

BITER.LINKCH[5
:0]

Beginning major iteration count or beginning link channel number. This is the initial value copied into the citer 
field or CITER.LINKCH field when the major loop is completed. The CITER fields controls the interation count 
and linking during channel execution.

If TCD.BITER.E_LINK equals 0,

No channel-to-channel linking (or chaining) is performed after the inner minor loop is exhausted. TCD word 
5, bits [30:25] are used to form a 15 bit biter field.

or

After the minor loop is exhausted, the DMA_ENGINE initiates a channel service request at the channel 
defined by BITER.LINKCH[5:0] by setting that channel’s TCD.START bit.

The value contained in BITER.LINKCH[5:0] must not exceed the number of implemented channels.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-34 Freescale Semiconductor

BITER[8:0] Beginning major iteration count. This is the initial value copied into the CITER field or ciTer.LINKCH field when 
the major loop is completed. The citer fields controls the interation count and linking during channel 
execution.

This 9- or 15-bit count represents the beginning major loop count for the channel. As the major iteration count 
is exhausted, the contents of the entire 16-bit BITER entry is reloaded into the 16-bit CITER entry.

When the BITER field is initially loaded by software, it must be set to the same value as that contained in the 
citer field.

If the channel is configured to execute a single service request, the initial values of BITER and CITER should 
be 0x0001.

BWC[1:0] Bandwidth control. This two-bit field provides a mechanism to effectively throttle the amount of bus bandwidth 
consumed by the DMA. In general, as the DMA processes the inner minor loop, it continuously generates 
read/write, read/write, etc. sequences until the minor count is exhausted. This field forces the DMA to stall 
after the completion of each read/write access to control the bus request bandwidth seen by the platform’s 
cross-bar arbitration switch. To minimize start-up latency, bandwidth control stalls are suppressed for the first 
two AHB bus cycles and after the last write of each minor loop.
The dynamic priority elevation setting elevates the priority of the DMA as seen by the cross-bar arbitration 
switch for the executing channel. Dynamic priority elevation is suppressed during the first two AHB bus 
cycles.
00 No DMA_ENGINE stalls
01 Dynamic priority elevation
10 DMA_ENGINE stalls for four cycles after each r/w
11 DMA_ENGINE stalls for eight cycles after each r/w

DMA_Offset + 0x1000 + (32 x n) + 0x1c

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R BITE
R.

E_LI
NK

BITER[14:9] OR
BITER.LINKCH[5:0]

BITER[8:0]W

Reset — — — — — — — — — — — — — — — —

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

BWC MAJOR.LINKCH[5:0]
DON

E
ACTI
VE

MAJ
OR.
E_LI
NK

E_SG
D_RE

Q
INT_
HALF

INT_
MAJ

STAR
T

W

Reset — — — — — — — — — — — — — — — —

Figure 11-25. TCDn Word 7 (TCDn.{biter,control/status}) Fields
(Register is repeated for reference.)

Table 11-28. TCDn Word 7 (TCDn.{biter,control/status}) Field Descriptions (Sheet 2 of 4)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-35

MAJOR.LINKCH[
5:0]

Link channel number 
If TCD.MAJOR.E_LINK equals 0,
No channel-to-channel linking (or chaining) is performed after the outer major loop counter is exhausted.

or

After the major loop counter is exhausted, the DMA_ENGINE initiates a channel service request at the 
channel defined by MAJOR.LINKCH[5:0] by setting that channel’s TCD.START bit.

The value contained in MAJOR.LINKCH[5:0] must not exceed the number of implemented channels.

DONE Channel done. This flag indicates the DMA has completed the outer major loop. It is set by the DMA_ENGINE 
as the citer count reaches zero; it is cleared by software or the hardware when the channel is activated.
This bit must be cleared to write the MAJOR.E_LINK or E_SG bits.

ACTIVE Channel active. This flag signals the channel is currently in execution. It is set when channel service begins, 
and is cleared by the DMA_ENGINE as the inner minor loop completes or if any error condition is detected.

MAJOR.E_LINK Enable channel-to-channel linking on major loop complete. As the channel completes the outer major loop, 
this flag enables the linking to another channel, defined by MAJOR.LINKCH[5:0]. The link target channel 
initiates a channel service request via an internal mechanism that sets the TCD.START bit of the specified 
channel. To support the dynamic linking coherency model, this field is forced to zero when written to while 
the TCD.DONE bit is set.
0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

E_SG Enable scatter/gather processing. As the channel completes the outer major loop, this flag enables 
scatter/gather processing in the current channel. If enabled, the DMA_ENGINE uses DLAST_SGA as a 
memory pointer to a 0-modulo-32 address containing a 32-byte data structure which is loaded as the transfer 
control descriptor into the local memory. To support the dynamic scatter/gather coherency model, this field is 
forced to zero when written to while the TCD.DONE bit is set.
0 The current channel’s TCD is normal format.
1 The current channel’s TCD specifies a scatter gather format. The DLAST_SGA field provides a memory 
pointer to the next TCD to be loaded into this channel after the outer major loop completes its execution.

DMA_Offset + 0x1000 + (32 x n) + 0x1c

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R BITE
R.

E_LI
NK

BITER[14:9] OR
BITER.LINKCH[5:0]

BITER[8:0]W

Reset — — — — — — — — — — — — — — — —

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

BWC MAJOR.LINKCH[5:0]
DON

E
ACTI
VE

MAJ
OR.
E_LI
NK

E_SG
D_RE

Q
INT_
HALF

INT_
MAJ

STAR
T

W

Reset — — — — — — — — — — — — — — — —

Figure 11-25. TCDn Word 7 (TCDn.{biter,control/status}) Fields
(Register is repeated for reference.)

Table 11-28. TCDn Word 7 (TCDn.{biter,control/status}) Field Descriptions (Sheet 3 of 4)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-36 Freescale Semiconductor

D_REQ Disable request. If this flag is set, the DMA hardware automatically clears the corresponding DMAERQ bit 
when the current major iteration count reaches zero.
0 The channel’s DMAERQ bit is not affected.
1 The channel’s DMAERQ bit is cleared when the outer major loop is complete.

INT_HALF Enable an interrupt when major counter is half complete. If this flag is set, the channel generates an interrupt 
request by setting the appropriate bit in the DMAINT register when the current major iteration count reaches 
the halfway point. Specifically, the comparison performed by the DMA_ENGINE is (citer == (biter >> 1)). This 
halfway point interrupt request is provided to support double-buffered schemes or other types of data 
movement where the processor needs an early indication of the transfer’s progress. The halfway complete 
interrupt is disabled when BITER values are less than two. 
0 The half-point interrupt is disabled.
1 The half-point interrupt is enabled.

INT_MAJ Enable an interrupt when major iteration count completes. If this flag is set, the channel generates an interrupt 
request by setting the appropriate bit in the DMAINT register when the current major iteration count reaches 
zero.
0 The end-of-major loop interrupt is disabled.
1 The end-of-major loop interrupt is enabled.

START Channel start. If this flag is set, the channel is requesting service. The DMA hardware automatically clears 
this flag after the channel begins execution.
0 The channel is not explicitly started.
1 The channel is explicitly started via a software initiated service request.

DMA_Offset + 0x1000 + (32 x n) + 0x1c

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R BITE
R.

E_LI
NK

BITER[14:9] OR
BITER.LINKCH[5:0]

BITER[8:0]W

Reset — — — — — — — — — — — — — — — —

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

BWC MAJOR.LINKCH[5:0]
DON

E
ACTI
VE

MAJ
OR.
E_LI
NK

E_SG
D_RE

Q
INT_
HALF

INT_
MAJ

STAR
T

W

Reset — — — — — — — — — — — — — — — —

Figure 11-25. TCDn Word 7 (TCDn.{biter,control/status}) Fields
(Register is repeated for reference.)

Table 11-28. TCDn Word 7 (TCDn.{biter,control/status}) Field Descriptions (Sheet 4 of 4)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-37

11.3 Initialization/Application Information

11.3.1 DMA Initialization 

A typical initialization of the DMA would be: 
1. Write the DMACR register if a configuration other than the default is desired
2. Write the channel priority levels into the DCHPRIn registers if a configuration other than the 

default is desired
3. Enable error interrupts in the DMAEEI registers if so desired
4. Write the 32 byte TCD for each channel that may request service
5. Enable any hardware service requests via the DMAERQ register
6. Request channel service by either software (setting the TCD.START bit) or by hardware (slave 

device asserting its IPD_REQ signal)

After any channel requests service, a channel is selected for execution based on the arbitration and priority 
levels written into the programmer's model. The DMA_ENGINE reads the entire TCD for the selected 
channel into its internal address path module. As the TCD is being read, the first transfer is initiated on the 
AHB bus unless a configuration error is detected. Transfers from the source (as defined by the source 
address, TCD.SADDR) to the destination (as defined by the destination address, TCD.DADDR) continue 
until the specified number of bytes (TCD.NBYTES) have been transferred. When the transfer is complete, 
the DMA_ENGINE'S local TCD.SADDR, TCD.DADDR, and TCD.CITER are written back to the main 
TCD memory and any minor loop channel linking is performed, if enabled. If the major loop is exhausted, 
further post processing is executed, i.e. interrupts, major loop channel linking, and scatter/gather 
operations, if enabled. 

11.3.2 DMA Programming Errors 

The DMA performs various tests on the transfer control descriptor to verify consistency in the descriptor 
data. Most programming errors are reported on a per channel basis with the exception of two errors, group 
priority error (GPE) and channel priority error (CPE) in the DMAES register. 

For all error types other than group or channel priority errors, the channel number causing the error is 
recorded in the DMAES register. If the error source is not removed before the next activation of the 
problem channel, the error is detected and recorded again.

The typical application enables error interrupts for all channels. You receive an error interrupt, but the 
channel number for the DMAERR register and the error interrupt request line may be wrong because they 
reflect the selected channel.

Channel priority errors are identified within a group after that group has been selected as the active group. 
For example:

1. The DMA is configured for fixed-group and fixed-channel arbitration modes.
2. Group3 is the highest priority and all channels are unique in that group.
3. Group2 is the next highest priority and has two channels with the same priority level.
4. If Group3 has any service requests, those requests are executed.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-38 Freescale Semiconductor

5. After all of Group3 requests have completed, Group2 is the next active group.
6. If Group2 has a service request, an undefined channel in Group2 is selected and a channel priority 

error occurs.
7. This repeats until the all of the Group2 requests have been removed or a higher priority Group3 

request comes in.

A group priority error is global and any request in any group causes a group priority error.

In general, if priority levels are not unique, the highest (channel/group) priority with an active request is 
selected, but the lowest numbered (channel/group) with that priority is selected by arbitration and executed 
by the DMA_ENGINE. The hardware service request handshake signals, error interrupts, and error 
reporting is associated with the selected channel.

11.3.3 DMA Arbitration Mode Considerations 

11.3.3.1 Fixed Group Arbitration, Fixed Channel Arbitration

In this mode, the channel service request from the highest priority channel in the highest priority group is 
selected to execute. If the DMA is programmed so the channels within one group use fixed priorities and 
that group is assigned the highest fixed priority of all groups, that group may take all the bandwidth of the 
DMA controller. No other groups are serviced if there is always at least one DMA request pending on a 
channel in the highest priority group when the controller arbitrates the next DMA request.

The advantage of this scenario is that latency can be small for channels that need to be serviced quickly. 

Preemption is available in this scenario only.

11.3.3.2 Round Robin Group Arbitration, Fixed Channel Arbitration

The occurrence of one or more DMA requests from one or more groups, the channel with the highest 
priority from a specific group is serviced first. Groups are serviced starting with the highest group number 
with a service request and rotating through to the lowest group number containing a service request.

After the channel request is serviced, the group round robin algorithm selects the highest pending request 
from the next group in the round robin sequence. Servicing continues round robin, always servicing the 
highest priority channel in the next group in the sequence or skipping a group if it has no pending requests.

If a channel requests service at a rate that equals or exceeds the round robin service rate, that channel is 
always serviced before lower priority channels in the same group. Therefore, the lower priority channels 
are never serviced.

The advantage of this scenario is that no one group consumes all the DMA bandwidth.

The highest priority channel selection latency is potentially greater than fixed/fixed arbitration.

Excessive request rates on high priority channels could prevent the servicing of lower priority channels in 
the same group.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-39

11.3.3.3 Round Robin Group Arbitration, Round Robin Channel Arbitration

Groups are serviced as described in section Section 11.3.3.2, “Round Robin Group Arbitration, Fixed 
Channel Arbitration,” but channels are serviced in channel number order this time. Only one channel is 
serviced from each requesting group for each round robin pass through the groups.

Within each group, channels are serviced starting with the highest channel number and rotating through to 
the lowest channel number without regard to channel priority levels.

Because channels are serviced in round robin manner, any channel that generates DMA requests faster than 
a combination of the group round robin service rate and the channel service rate for its group does not 
prevent the servicing of other channels in its group. Any DMA requests not serviced are simply lost, but 
at least one channel is serviced.

This scenario ensures all channels are guaranteed service at some point, regardless of the request rates. 
However, the potential latency could be quite high.

All channels are treated equally. Priority levels are not used in round robin mode.

11.3.3.4 Fixed Group Arbitration, Round Robin Channel Arbitration

The highest priority group with a request is serviced. Lower priority groups are serviced if no pending 
requests exist in the higher priority groups.

Within each group, channels are serviced starting with the highest channel number and rotating through to 
the lowest channel number without regard to the channel priority levels assigned within the group.

This scenario could cause the same bandwidth consumption problem as indicated in section 
Section 11.3.3.1, “Fixed Group Arbitration, Fixed Channel Arbitration,” but all the channels in the highest 
priority group are serviced.

Service latency is short on the highest priority group, but could potentially become longer as the group 
priority decreases.

11.3.4 DMA Transfer 

11.3.4.1 Single Request 

To perform a single transfer of n bytes of data with one activation, set the major loop to one 
(TCD.CITER = TCD.BITER = 1). The data transfer begins after the channel service request is 
acknowledged and the channel is selected to execute. After the transfer is complete, the TCD.DONE bit is 
set and an interrupt is generated if properly enabled.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-40 Freescale Semiconductor

For example, the following TCD entry is configured to transfer 16 bytes of data. The DMA is programmed 
for one iteration of the major loop transferring 16 bytes per iteration. The source memory has a byte wide 
memory port located at 0x1000. The destination memory has a word wide port located at 0x2000. The 
address offsets are programmed in increments to match the size of the transfer; one byte for the source and 
four bytes for the destination. The final source and destination addresses are adjusted to return to their 
beginning values.

TCD.citer =TCD.biter = 1
TCD.nbytes=16
TCD.saddr =0x1000
TCD.soff  =1
TCD.ssize =0
TCD.slast =-16
TCD.daddr =0x2000
TCD.doff  =4
TCD.dsize =2
TCD.dlast_sga=-16
TCD.int_maj =1
TCD.start =1 (TCD.word7 should be written last after all other fields have

been initialized)
All other TCD fields = 0

These settings generate the following sequence of events:
1. IPS write to the TCD.start bit requests channel service
2. The channel is selected by arbitration for servicing
3. DMA_ENGINE writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1
4. DMA_ENGINE reads: channel TCD data from local memory to internal register file
5. The source to destination transfers are executed as follows:

a) READ_BYTE(0X1000), READ_BYTE(0X1001), READ_BYTE(0X1002), 
READ_BYTE(0X1003)

b) WRITE_WORD(0x2000) → first iteration of the minor loop
c) READ_BYTE(0X1004), READ_BYTE(0X1005), READ_BYTE(0X1006), 

READ_BYTE(0X1007)
d) WRITE_WORD(0x2004) → second iteration of the minor loop
e) READ_BYTE(0X1008), READ_BYTE(0X1009), READ_BYTE(0X100A), 

READ_BYTE(0X100B)
f) WRITE_WORD(0x2008) → third iteration of the minor loop
g) READ_BYTE(0X100C), READ_BYTE(0X100D), READ_BYTE(0X100E), 

READ_BYTE(0X100F)
h) WRITE_WORD(0x200c) → last iteration of the minor loop → major loop complete

6. DMA_ENGINE writes: TCD.SADDR = 0X1000, TCD.DADDR = 0X2000, TCD.CITER = 1 
(TCD.BITER)

7. DMA_ENGINE writeS: TCD.ACTIVE = 0, TCD.DONE = 1, DMAINT[n] = 1
8. The channel retires

The DMA becomes idle or services next channel.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-41

11.3.4.2 Multiple Requests

The next example is the same as previous with the exception of transferring 32 bytes via two hardware 
requests. The only fields that change are the major loop iteration count and the final address offsets. The 
DMA is programmed for two iterations of the major loop transferring 16 bytes per iteration. After the 
channel’s hardware requests are enabled in the DMAERQ register, channel service requests are initiated 
by the slave device.

TCD.citer =  TCD.biter  =  2
TCD.slast = -32
TCD.dlast_sga= -32

These settings generate the following sequence of events:
1. First hardware (IPD_REQ) request for channel service
2. The channel is selected by arbitration for servicing
3. DMA_ENGINE writes: TCD.done = 0, TCD.start = 0, TCD.active = 1
4. DMA_ENGINE reads: channel TCD data from local memory to internal register file
5. The source to destination transfers are executed as follows:

a) READ_BYTE(0X1000), READ_BYTE(0X1001), READ_BYTE(0X1002), 
READ_BYTE(0X1003)

b) WRITE_WORD(0x2000) → first iteration of the minor loop
c) READ_BYTE(0X1004), READ_BYTE(0X1005), READ_BYTE(0X1006), 

READ_BYTE(0X1007)
d) WRITE_WORD(0x2004) → second iteration of the minor loop
e) READ_BYTE(0X1008), READ_BYTE(0X1009), READ_BYTE(0X100A), 

READ_BYTE(0X100B)
f) WRITE_WORD(0x2008) → third iteration of the minor loop
g) READ_BYTE(0X100C), READ_BYTE(0X100D), READ_BYTE(0X100E), 

READ_BYTE(0X100F)
h) WRITE_WORD(0x200c) → last iteration of the minor loop

6. DMA_ENGINE writes: TCD.SADDR = 0X1010, TCD.DADDR = 0X2010, TCD.CITER = 1
7. DMA_ENGINE writes: TCD.ACTIVE = 0
8. The channel retires → one iteration of the major loop

The DMA goes idle or services next channel.
9. Second hardware (IPD_REQ) requests channel service
10. The channel is selected by arbitration for servicing
11. DMA_ENGINE writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1
12. DMA_ENGINE reads: channel TCD data from local memory to internal register file, 
13. The source to destination transfers are executed as follows:

a) READ_BYTE(0X1010), READ_BYTE(0X1011), READ_BYTE(0X1012), 
READ_BYTE(0X1013)

b) WRITE_WORD(0x2010) → first iteration of the minor loop

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-42 Freescale Semiconductor

c) READ_BYTE(0X1014), READ_BYTE(0X1015), READ_BYTE(0X1016), 
READ_BYTE(0X1017)

d) WRITE_WORD(0x2014) → second iteration of the minor loop
e) READ_BYTE(0X1018), READ_BYTE(0X1019), READ_BYTE(0X101A), 

READ_BYTE(0X101B)
f) WRITE_WORD(0x2018) → third iteration of the minor loop
g) READ_BYTE(0X101C), READ_BYTE(0X101D), READ_BYTE(0X101E), 

READ_BYTE(0X101F)
h) WRITE_WORD(0x201c) → last iteration of the minor loop → major loop complete

14. DMA_ENGINE writes: TCD.SADDR = 0X1000, TCD.DADDR = 0X2000, TCD.CITER = 2 
(TCD.BITER)

15. DMA_ENGINE writes: TCD.ACTIVE = 0, TCD.DONE = 1, DMAINT[N] = 1
16. The channel retires → major loop complete

The DMA becomes idle or services the next channel.

11.3.5 TCD Status 

11.3.5.1 Minor Loop Complete

There are two methods to test for minor loop completion when using software initiated service requests. 
The first method is to read the TCD.CITER field and test for a change. Another method may be extracted 
from the sequence shown below. The second method is to test the TCD.START bit and the TCD.ACTIVE 
bit. The minor loop complete condition is indicated by both bits reading zero after the TCD.START was 
written to a one. Polling the TCD.ACTIVE bit may be inconclusive because the active status may be 
missed if the channel execution is short in duration.

The TCD status bits execute the following sequence for a software activated channel:
1. TCD.START = 1, TCD.ACTIVE = 0, TCD.DONE = 0 (channel service request via software)
2. TCD.START = 0, TCD.ACTIVE = 1, TCD.DONE = 0 (channel is executing)
3. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 0 (channel completed minor loop and is idle) 
4. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 1 (channel completed major loop and is idle)

The best method to test for minor loop completion when using hardware initiated service requests is to 
read the TCD.CITER field and test for a change. The hardware request and acknowledge handshakes 
signals are not visible in the programmer’s model.

The TCD status bits execute the following sequence for a hardware activated channel:
1. IPD_REQ asserts (channel service request via hardware)
2. TCD.START = 0, TCD.ACTIVE = 1, TCD.DONE = 0 (channel is executing)
3. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 0 (channel completed minor loop and is idle) 
4. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 1 (channel completed major loop and is idle)

For both activation types, the major loop complete status is explicitly indicated via the TCD.DONE bit. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-43

The TCD.START bit is cleared automatically when the channel begins execution regardless of how the 
channel was activated.

11.3.5.2 Active Channel TCD Reads

The DMA reads back the true TCD.SADDR, TCD.DADDR, and TCD.NBYTES values if read while a 
channel is executing. The true values of the SADDR, DADDR, and NBYTES are the values the 
DMA_ENGINE is currently using in its internal register file and not the values in the TCD local memory 
for that channel. The addresses (SADDR and DADDR) and NBYTES (decrements to zero as the transfer 
progresses) can give an indication of the progress of the transfer. All other values are read back from the 
TCD local memory. 

11.3.5.3 Preemption Status

Preemption is only available when fixed arbitration is selected for group and channel arbitration modes. A 
preemptable situation is when a preempt-enabled channel is running and a higher priority request becomes 
active. When the DMA_ENGINE is not operating in fixed group, fixed channel arbitration mode, the 
determination of the relative priority of the actively running and the outstanding requests become 
undefined. Channel and/or group priorities are treated as equal (or more exactly, constantly rotating) when 
round-robin arbitration mode is selected. 

The TCD.ACTIVE bit for the preempted channel remains asserted throughout the preemption. The 
preempted channel is temporarily suspended while the preempting channel executes one iteration of the 
major loop. Two TCD.ACTIVE bits set at the same time in the overall TCD map indicates a higher priority 
channel is actively preempting a lower priority channel. 

The worst case latency when switching to a preempt channel is the summation of:
• Arbitration latency (2 cycles)
• Bandwidth control stalls (if enabled)
• The time to execute two read/write sequences (including AHB bus holds; a system dependency 

driven by the slave devices or the crossbar)

11.3.6 Channel Linking

Channel linking (or chaining) is a mechanism where one channel sets the TCD.START bit of another 
channel (or itself) that initiates a service request for that channel. This operation is automatically 
performed by the DMA_ENGINE at the conclusion of the major or minor loop when properly enabled. 

The minor loop channel linking occurs at the completion of the minor loop (or one iteration of the major 
loop). The TCD.CITER.E_LINK field is used to determine whether a minor loop link is requested. When 
enabled, the channel link is made after each iteration of the major loop except for the last. When the major 
loop is exhausted, only the major loop channel link fields are used to determine if a channel link should be 
made.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-44 Freescale Semiconductor

For example, with the initial fields of:
TCD.citer.e_link= 1
TCD.citer.linkch= 0xC
TCD.citer value= 0x4
TCD.major.e_link= 1
TCD.major.linkch= 0x7

Execute as:
1. Minor loop done → set channel 12 TCD.start bit
2. Minor loop done → set channel 12 TCD.start bit
3. Minor loop done → set channel 12 TCD.start bit
4. Minor loop done, major loop done → set channel 7 TCD.start bit

When minor loop linking is enabled (TCD.CITER.E_LINK = 1), the TCD.CITER field uses a 9-bit vector 
to form the current iteration count.

When minor loop linking is disabled (TCD.CITER.E_LINK = 0), the TCD.CITER field uses a 15- bit 
vector to form the current iteration count. The bits associated with the TCD.CITER.LINKCH field are 
concatenated onto the citer value to increase the range of the citer.

NOTE
The TCD.CITER.E_LINK bit and the TCD.BITER.E_LINK bit must equal 
or a configuration error is reported. The citer and biter vector widths must 
be equal to calculate the major loop, half-way done interrupt point.

11.3.7 Dynamic Programming

This section provides recommended methods to change the programming model during channel execution.

11.3.7.1 Dynamic Priority Changing

The following two options are recommended for dynamically changing channel priority levels:
• Switch to round-robin channel arbitration mode, change the channel priorities, and then switch 

back to fixed arbitration mode
• Disable all the channels within a group, change the channel priorities within that group only, and 

then enable the appropriate channels.

The following two options are available for dynamically changing group priority levels:
• Switch to round-robin group arbitration mode, change the group priorities, and then switch back to 

fixed arbitration mode,
• Disable all channels, change the group priorities, and then enable the appropriate channels.

11.3.7.2 Dynamic Channel Linking and Dynamic Scatter/Gather

Dynamic channel linking and dynamic scatter/gather is the process of changing the 
TCD.MAJOR.E_LINK or TCD.E_SG bits during channel execution. These bits are read from the TCD 

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

Freescale Semiconductor 11-45

local memory at the end of channel execution, allowing you to enable either feature during channel 
execution. 

Because you can change the configuration during execution, a coherency model is needed. Consider the 
scenario where you attempt to execute a dynamic channel link by enabling the TCD.MAJOR.E_LINK bit 
at the same time the DMA_ENGINE is retiring the channel. The TCD.MAJOR.E_LINK would be set in 
the programmer’s model, but it would be unclear whether the actual link was made before the channel 
retired.

The following coherency model is recommended when executing a dynamic channel link or dynamic 
scatter/gather request:

1. Set the TCD.MAJOR.E_LINK bit.
2. Read back the TCD.MAJOR.E_LINK bit.
3. Test the TCD.MAJOR.E_LINK request status.
4. If the bit is set, the dynamic link attempt was successful.
5. If the bit is cleared, the attempted dynamic link did not succeed. The channel was already retiring.

This same coherency model is true for dynamic scatter/gather operations. For both dynamic requests, the 
TCD local memory controller forces the TCD.MAJOR.E_LINK and TCD.E_SG bits to zero on any writes 
to a channel’s TCD.WORD7 after that channel’s TCD.DONE bit is set, indicating the major loop is 
complete. 

NOTE
Clear the TCD.DONE bit before writing the TCD.MAJOR.E_LINK or 
TCD.E_SG bits. The TCD.DONE bit is cleared automatically by the 
DMA_ENGINE after a channel begins execution.

MPC5121e Microcontroller Reference Manual, Rev. 2



Direct Memory Access (DMA)

11-46 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 12-1

Chapter 12  
Display Interface Unit (DIU)

12.1 Introduction
The DIU is a display controller designed to manage TFT LCD display. Besides generating all the signals 
required to drive the display, the DIU manages real-time blending of up to three planes onto the display. 

12.1.1 Features
• Display color depth: up to 24 bpp
• Display interfaces: parallel TTL
• Maximum number of physical input planes: 3

— Memory write-back mode to store intermediate resultes, extending the number of graphics 
planes 

• Input pixel formats: RGB and 256-level grayscale
• Programmable bit order definition up to 8 bits per component
• Hardware cursor: 32x32 pixels, 16 bpp
• α-blending range: up to 256 levels
• Chroma Keying: Selectable by range
• Independent programmable gamma adjustments for each color component

12.1.2 Modes of Operation

The DIU has five modes of operation:
Mode 0: DIU OFF. In this mode, the DIU is disabled.
Mode 1: All three planes output to display. This is the typical operating mode of the DIU.
Mode 2: Plane 1 to display, Planes 2 and 3 written back to memory. This mode is used to display a 
plane while processing (and writing back to memory) the data for other planes.
Mode 3: All three planes written back to memory. This mode is used to process (and write back to 
memory) the data for the planes without displaying any of them.
Mode 4: Color Bar Generation. This is a debug mode to check the operation of the DIU without 
the need for setting up the display memory structures in memory.

These modes are set by programming the DIU_MODE register. See Section 12.3.3.8, “DIU_MODE 
Register for more information.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-2 Freescale Semiconductor

12.2 External Signal Description
Table 12-2 describes the DIU input and output signals, the meaning of their different states, and relative 
timing information for assertion and negation.

Table 12-2. Display Interface Detailed Signal Descriptions

Signal I/O Description

DIU_CLK1

1 Refer to the system clock chapter for details on this clock.

O Pixel clock. This signals is used to drive the display panel.

DIU_VSYNC O Vertical synchronizing signal. This signal indicates the beginning of a new frame. This signal may 
alternately be programmed to output a composite sync (CSYNC) signal by programing 
SYN_POL[BP_VS]. See Section 12.3.3.16, “SYN_POL Register for more information. The 
composite sync signal combines the horizontal and vertical synchronizing signals to form a 
composite synchronizing signal. It includes both the HSYNC pulse and the VSYNC pulse. The 
default output is DIU_VSYNC.

State 
Meaning

Asserted at the beginning of a new frame.

Timing Asserted with the first cycle of the frame period. The length of the pulse is programmable.

DIU_HSYNC O Horizontal synchronizing signal. This signal indicates the beginning of a new line. This signal may 
alternately be programmed to output a composite sync (CSYNC) signal by programing 
SYN_POL[BP_HS]. See Section 12.3.3.16, “SYN_POL Register for more information. The 
composite sync signal combines the horizontal and vertical synchronizing signals to form a 
composite synchronizing signal. It includes both the HSYNC pulse and the VSYNC pulse. The 
default output is DIU_HSYNC.

State 
Meaning

Asserted at the beginning of a new line.

Timing Asserted with the first cycle of a new line. The length of the pulse is programable.

DIU_DE O Data enable. This signal qualifies the data on the data output signals (DIU_LD)

State 
Meaning

Deasserted: DIU_LD data is not valid
Asserted: DIU_LD data is valid.

DIU_LD[23:0] O Data output signals.
• DIU_LD[23:16] = Red[7:0].

DIU_LD[23] is the most significant bit, and DIU_LD[16] is the least significant bit of the Red 
component.

• DIU_LD[15:8] = Green[7:0].
DIU_LD[15] is the most significant bit, and DIU_LD[8] is the least significant bit of the Green 
component.

• DIU_LD[7:0] = Blue[7:0].

DIU_LD[7] is the most significant bit, and DIU_LD[0] is the least significant bit of the Blue 
component.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-3

12.3 Memory Map and Register Definition

12.3.1 Memory Map

Table 12-3 shows the register memory map for the DIU memory controller.
Table 12-3. DIU Memory Map

Offset Register Access Section/Page 

0x00 DESC_1 — Pointer to the Area Descriptor of Plane1 R/W 12.3.3.1/12-8

0x04 DESC_2 — Pointer to the Area Descriptor of Plane2 R/W 12.3.3.2/12-9

0x08 DESC_3 — Pointer to the Area Descriptor of Plane3 R/W 12.3.3.3/12-10

0x0c GAMMA — Pointer to Gamma Table R/W 12.3.3.4/12-11

0x10 PALETTE — Pointer to Palette R/W 12.3.3.5/12-12

0x14 CURSOR — Pointer to Cursor Bitmap R/W 12.3.3.6/12-13

0x18 CURS_POS — Position of the cursor in the display R/W 12.3.3.7/12-13

0x1c DIU_MODE — DIU Mode of Operation R/W 12.3.3.8/12-15

0x20 BGND — Background Color R/W 12.3.3.9/12-16

0x24 BGND_WB — Background Color in write back Mode R/W 12.3.3.10/12-17

0x28 DISP_SIZE — Display Size R/W 12.3.3.11/12-18

0x2c WB_SIZE — Write back Plane Size R/W 12.3.3.12/12-18

0x30 WB_MEM_ADDR — Address to Store the write back Plane R/W 12.3.3.13/12-19

0x34 HSYN_PARA — Horizontal synchronization pulse parameters R/W 12.3.3.14/12-20

0x38 VSYN_PARA — Vertical synchronization pulse parameters R/W 12.3.3.15/12-20

0x3c SYN_POL — Synchronization Signals Polarity R/W 12.3.3.16/12-22

0x40 THRESHOLDS — The Thresholds R/W 12.3.3.17/12-23

0x44 INT_STATUS — Interrupt Status Register R 12.3.3.18/12-24

0x48 INT_MASK — Interrupt Mask Register R/W 12.3.3.19/12-25

0x4c COLORBAR_1 — Color #1 in the Color Bar, Black R/W 12.3.3.20/12-25

0x50 COLORBAR_2 — Color #2 in the Color Bar, Blue R/W 12.3.3.20/12-25

0x54 COLORBAR_3 — Color #3 in the Color Bar, Cyan R/W 12.3.3.20/12-25

0x58 COLORBAR_4 — Color #4 in the Color Bar, Green R/W 12.3.3.20/12-25

0x5c COLORBAR_5 — Color #5 in the Color Bar, Yellow R/W 12.3.3.20/12-25

0x60 COLORBAR_6 — Color #6 in the Color Bar, Red R/W 12.3.3.20/12-25

0x64 COLORBAR_7 — Color #7in the Color Bar, Purple R/W 12.3.3.20/12-25

0x68 COLORBAR_8 — Color #8 in the Color Bar, White R/W 12.3.3.20/12-25

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-4 Freescale Semiconductor

12.3.2 Register Summary

0x6c FILLING — Input, output buffer filling status, for debug purpose R 12.3.3.21/12-30

0x70 PLUT — Priority Look Up Table R/W 12.3.3.22/12-31

Table 12-4. DIU Block Register Summary  (Sheet 1 of 4)

Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DESC_1
0x00

R
DESC_1[31:16]

W

R
DESC_1[15: 0]

W

DESC_2
0x04

R
DESC_2[31:16]

W

R
DESC_2[15: 0]

W

DESC_3
0x08

R
DESC_3[31:16]

W

R
DESC_3[15: 0]

W

GAMMA
0x0c

R
GAMMA[31:16]

W

R
GAMMA[15: 0]

W

PALETTE
0x10

R
PALETTE[31:16]

W

R
PALETTE[15: 0]

W

CURSOR
0x14

R
CURSOR[31:16]

W

R
CURSOR[15: 0]

W

Table 12-3. DIU Memory Map (continued)

Offset Register Access Section/Page 

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-5

CURS_POS
0x18

R 0 0 0 0 0 0
CURSOR_Y[10: 0]

W

R 0 0 0 0 0 0
CURSOR_X[10: 0]

W

DIU_MODE
0x1c

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0
DIU_MODE[2:0]

W

BGND
0x20

R 0 0 0 0 0 0 0 0
BGND_R[7:0]

W

R
BGND_G[7:0] BGND_B[7:0]

W

BGND_WB
0x24

R 0 0 0 0 0 0 0 0
BGND_WB_R[7:0]

W

R
BGND_WB_G[7:0] BGND_WB_B[7:0]

W

DISP_SIZE
0x28

R 0 0 0 0 0
DELTA_Y[10: 0]

W

R 0 0 0 0 0
DELTA_X[10: 0]

W

WB_SIZE
0x2c

R 0 0 0 0 0
DELTA_Y_WB[10: 0]

W

R 0 0 0 0 0
DELTA_X_WB[10: 0]

W

WB_MEM_AD
DR

0x30

R
WB_MEM_ADDR[31:16]

W

R
WB_MEM_ADDR[15: 0]

W

HSYN_PARA
0x34

R
BP_H[9:0]

0
PW_H[9:5]

W

R
PW_H[4:0]

0
FP_H[9:0]

W

Table 12-4. DIU Block Register Summary  (Sheet 2 of 4)

Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-6 Freescale Semiconductor

VSYN_PARA
0x38

R
BP_V[9:0]

0
PW_V[9:5]

W

R
PW_V[4:0]

0
FP_V[9:0]

W

SYN_POL
0x3c

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0

B
P

_V
S

B
P

_H
S

IN
V

_C
S

IN
V

_V
S

IN
V

_H
S

W

THRESHOLDS
0x40

R 1 0 0 0 0
LS_BF_VS[10:0]

W

R 1 1 1 1 1 0 0 0
OUT_BUF_LOW[7:0]

W

INT_STATUS
0x44

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0
W

B
_P

E
N

D

LS
_B

F
_V

S

PA
R

E
R

R

U
N

D
R

U
N

V
S

Y
N

C
_W

B

V
S

Y
N

C

W

INT_MASK
0x48

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0

M
_W

B
_P

E
N

D

M
_L

S
_B

F
_V

S

M
_P

A
R

E
R

R

M
_U

N
D

R
U

N

M
_V

S
Y

N
_W

B

M
_V

S
Y

N
C

W

COLBAR_1
0x4c

R 1 1 1 1 1 1 1 1
COLBAR_1_R[7:0]

W

R
COLBAR_1_G[7:0] COLBAR_1_B[7:0]

W

COLBAR_2
0x50

R 1 1 1 1 1 1 1 1
COLBAR_2_R[7:0]

W

R
COLBAR_2_G[7:0] COLBAR_2_B[7:0]

W

Table 12-4. DIU Block Register Summary  (Sheet 3 of 4)

Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-7

COLBAR_3
0x54

R 1 1 1 1 1 1 1 1
COLBAR_3_R[7:0]

W

R
COLBAR_3_G[7:0] COLBAR_3_B[7:0]

W

COLBAR_4
0x58

R 1 1 1 1 1 1 1 1
COLBAR_4_R[7:0]

W

R
COLBAR_4_G[7:0] COLBAR_4_B[7:0]

W

COLBAR_5
0x5c

R 1 1 1 1 1 1 1 1
COLBAR_5_R[7:0]

W

R
COLBAR_5_G[7:0] COLBAR_5_B[7:0]

W

COLBAR_6
0x60

R 1 1 1 1 1 1 1 1
COLBAR_6_R[7:0]

W

R
COLBAR_6_G[7:0] COLBAR_6_B[7:0]

W

COLBAR_7
0x64

R 1 1 1 1 1 1 1 1
COLBAR_7_R[7:0]

W

R
COLBAR_7_G[7:0] COLBAR_7_B[7:0]

W

COLBAR_8
0x68

R 1 1 1 1 1 1 1 1
COLBAR_8_R[7:0]

W

R
COLBAR_8_G[7:0] COLBAR_8_B[7:0]

W

FILLING
0x6c

R 0 0 0 0 0 0 FILLING_OBF[9:0]

W

R FILLING_WB[3:0] FILLING_P3[3:0] FILLING_P2[3:0] FILLING_P1[3:0]

W

PLUT
0x70

R
PRIORITY_7[3:0] PRIORITY_6[3:0] PRIORITY_5[3:0] PRIORITY_4[3:0]

W

R
PRIORITY_3[3:0] PRIORITY_2[3:0] PRIORITY_1[3:0] PRIORITY_0[3:0]

W

Table 12-4. DIU Block Register Summary  (Sheet 4 of 4)

Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-8 Freescale Semiconductor

12.3.3 Register Descriptions

12.3.3.1 DESC_1 Register

Offset 0x00Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DESC_1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DESC_1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-1. Plane 1 Area Descriptor Pointer Register (DESC_1)

Table 12-5. DESC_1 Field Descriptions

Field Description

DESC_1 DESC_1 register is the plane one area descriptor pointer. It sets the base address of the first plane one AD 
(Area Descriptor). This address must be 64-bit boundary aligned (set the lowest 3 bits to 0). DESC_1 = 
0x0000_0000 means no AD available for this plane.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-9

12.3.3.2 DESC_2 Register

Offset 0x04Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DESC_2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DESC_2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-2. Plane 2 Area Descriptor Pointer Register (DESC_2)

Table 12-6. DESC_2 Field Descriptions

Field Description

DESC_2 DESC_2 register is the plane two area descriptor pointer. It sets the base address of the first plane two AD. 
This address must be 64-bit boundary aligned (set the lowest 3 bits to 0) .DESC_2 = 0x0000_0000 means 
no AD available for this plane.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-10 Freescale Semiconductor

12.3.3.3 DESC_3 Register

Offset 0x08Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DESC_3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DESC_3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-3. Plane 3 Area Descriptor Pointer Register (DESC_3)

Table 12-7. DESC_3 Field Descriptions

Field Description

DESC_3 DESC_3 register is the plane three area descriptor pointer. It sets the base address of the first plane three 
AD. This address must be 64-bit boundary aligned (set the lowest 3 bits to 0). DESC_3 = 0x0000_0000 
means no AD available for this plane.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-11

12.3.3.4 GAMMA Register

Offset 0x0cAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
GAMMA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
GAMMA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-4. GAMMA Register

Table 12-8. GAMMA Field Descriptions

Field Description

GAMMA GAMMA register sets the base address to the GAMMA table in memory. Writing to this register causes the 
DIU to load the new GAMMA table from there. This address must be 64-bit boundary aligned (set the lowest 
3 bits to 0). 32-byte boundary aligned address is more efficient.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-12 Freescale Semiconductor

12.3.3.5 PALETTE Register

Offset 0x10Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PALETTE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PALETTE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-5. PALETTE Register

Table 12-9. PALETTE Field Descriptions

Field Description

PALETTE PALETTE register sets the base address to the Palette table in memory. Writing to this register causes the 
DIU to load the new Palette table from there. This address must be 64-bit boundary aligned (set the lowest 3 
bits to 0). 32-byte boundary aligned address is more efficient.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-13

12.3.3.6 CURSOR Register

12.3.3.7 CURS_POS Register

CUR_POS register sets the position of the cursor in the display. Table 12-11 shows it’s field descriptions. 

Offset 0x14Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
CURSOR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CURSOR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-6. CURSOR Register

Table 12-10. CURSOR Field Descriptions

Field Description

CURSOR CURSOR register sets the base address to the CURSOR bitmap in memory. Writing to this register causes 
the DIU to load the new CURSOR bitmap from there. This address must be 64-bit boundary aligned (set the 
lowest 3 bits to 0). 32-byte boundary aligned address is more efficient.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-14 Freescale Semiconductor

Offset 0x18Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0
CURSOR_Y

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0
CURSOR_X

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-7. CURS_POS Register

Table 12-11. CURS_POS Field Descriptions

Field Description

CURSOR_Y Vertical position of the cursor (in pixels), from the top-left corner.

CURSOR_X Horizontal position of the cursor (in pixels), from the top-left corner.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-15

12.3.3.8 DIU_MODE Register

DIU_MODE register sets the operation mode of the DIU. See Table 12-12 for it’s field descriptions.

Offset 0x1cAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0
DIU_MODE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-8. DIU_MODE Register

Table 12-12. DIU_MODE Field Descriptions

Field Description

DIU_MODE DIU Operation Mode
000 Encoding Mode 0: DIU OFF.
001 Encoding Mode 1: All three planes output to display.
010 Encoding Mode 2: Plane 1 to display, Planes 2 and 3 written back to memory.
011 Encoding Mode 3: All three planes written back to memory.
100 Encoding Mode 4: Color Bar Generation.
All other encodings are reserved1

1 Writing a reserved value is blocked and doesn’t affect the register value.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-16 Freescale Semiconductor

12.3.3.9 BGND Register

BGND register sets the default background color for plane one (for mode 1 or 2). This is the color used to 
fill the areas for which no data is assigned in the area descriptor.

Offset 0x20Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0
BGND_R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BGND_G BGND_B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-9. BGBD Register

Table 12-13. BGBD Field Descriptions

Field Description

BGND_R BGND_R represents the red component of the background.

BGND_G BGND_G represents the green component of the background.

BGND_B BGND_B represents the blue component of the background.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-17

12.3.3.10 BGND_WB Register

BGND_WB sets default background color for the write back planes (plane two in mode 2 or plane one in 
mode 3). This is the color used to fill the areas for which no data is assigned in the area descriptor.

Offset 0x24Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0
BGND_WB_R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BGND_WB_G BGND_WB_B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-10. BGBD_WB Register

Table 12-14. BGBD_WB Field Descriptions

Field Description

BGND_WB_R BGND_WB_R represents the red component of the background for the write back planes.

BGND_WB_G BGND_WB_G represents the green component of the background for the write back planes.

BGND_WB_B BGND_WB_B represents the blue component of the background for the write back planes.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-18 Freescale Semiconductor

12.3.3.11 DISP_SIZE Register

DISP_SIZE register sets the display size (in pixels).

12.3.3.12 WB_SIZE Register

WB_SIZE register sets the write back frame size (in pixels). 

Offset 0x28Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0
DELTA_Y

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0
DELTA_X

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-11. DISP_SIZE Register

Table 12-15. DISP_SIZE Field Descriptions

Field Description

DELTA_Y DELTA_Y represents the vertical resolution.

DELTA_X DELTA_X represents the horizontalresolution.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-19

12.3.3.13 WB_MEM_ADDR Register

Offset 0x2cAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0
DELTA_Y_WB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0
DELTA_X_WB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-12. WB_SIZE Register

Table 12-16. WB_SIZE Field Descriptions

Field Description

DELTA_Y_WB DELTA_Y_WB represents the vertical resolution.

DELTA_X_WB DELTA_X_WB represents the horizontal resolution.

Offset 0x30Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
WB_MEM_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
WB_MEM_ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-13. WB_MEM_ADDR Register

Table 12-17. WB_MEM_ADDR Field Descriptions

Field Description

WB_MEM_
ADDR

WB_MEM_ADDR register sets the base address where the write back frame is written to in the memory. 
Write to this register triggers a write back frame refresh. This address must be 64-bit boundary aligned (set 
the lowest 3 bits to 0). 32-byte boundary aligned address is more efficient.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-20 Freescale Semiconductor

12.3.3.14 HSYN_PARA Register

HSYN_PARA register sets timing parameters related to the horizontal synchronization signal generation. 
See Figure 12-49, the display timing diagrams, for detailed signal meaning.

12.3.3.15 VSYN_PARA Register

VSYN_PARA register sets timing parameters related to the vertical synchronization signal generation. See 
Figure 12-50, the display timing diagram, for detailed signal meaning.

Offset 0x34Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BP_H

0
PW_H

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PW_H

0
FP_H

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-14. HSYN_PARA Register

Table 12-18. HSYN_PARA Field Descriptions

Field Description

BP_H HSYNC back-porch pulse width (in pixel clock cycles). It can be 0.

PW_H HSYNC active pulse width (in pixel clock cycles). It must be greater than or equal to 1.

FP_H HSYNC front-porch pulse width (in pixel clock cycles). It can be 0.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-21

Offset 0x38Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BP_V

0
PW_V

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PW_V

0
FP_V

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-15. VSYN_PARA Register

Table 12-19. VSYN_PARA Field Descriptions

Field Description

BP_V VSYNC back-porch pulse width (in HSYNC signal cycles) It can be 0.

PW_V VSYNC active pulse width (in HSYNC signal cycles). It must be greater than or equal to 1.

FP_V VSYNC front-porch pulse width (in HSYNC signal cycles). it can be 0.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-22 Freescale Semiconductor

12.3.3.16 SYN_POL Register

SYN_POL register selects polarity for corresponding synchronize signals (HSYNC, VSYNC, CSYNC) 
and controls the bypass of HSYNC or VSYNC with CSYNC signal.

Offset 0x3cAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 BP_
VS

BP_
HS

INV_
CS

INV_
VS

INV_
HSW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-16. SYN_POL Register

Table 12-20. SYN_POL Field Descriptions

Field Description

BP_VS Bypass Vertical Synchronize Signal (internal pin muxing)
0 Not bypass VSYNC signal output
1 CSYNC bypass VSYNC signal, output CSYNC instead of VSYNC

BP_HS Bypass Horizontal Synchronize Signal (internal pin muxing)
0 Not bypass HSYNC signal output
1 CSYNC bypass HSYNC signal, output CSYNC instead of HSYNC

INV_CS Invert Composite Synchronize Signal
0 Not invert CSYNC signal, active HIGH
1 Invert CSYNC signal, active LOW

INV_VS Invert Vertical Synchronize Signal
0 Not invert VSYNC signal, active HIGH
1 Invert VSYNC signal, active LOW

INV_HS Invert Horizontal Synchronize Signal
0 1 Not invert HSYNC signal, active HIGH
1 Invert HSYNC signal, active LOW

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-23

12.3.3.17 THRESHOLDS Register1

THRESHOLDS register sets three useful threshold values related to DIU operations.

1. The reserved fields {bit 31, bit 15-8} should aways be written with the value of 0x1f8, same value it reset to.

Offset 0x40Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 1 0 0 0 0
LS_BF_VS

W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 1 1 1 1 1 0 0 0
OUT_BUF_LOW

W

Reset 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-17. THRESHOLDS Register

Table 12-21. THRESHOLDS Field Descriptions

Field Description

LS_BF_VS Lines Before Vsync Threshold. It’s a threshold value used to generate the LS_BF_VS interrupt status. Sets 
the number of lines ahead of vertical front porch (FP_V) when the interrupt is generated.

OUT_BUF_LOW Output Buffer Filling Low Threshold (in pixels). It’s used to generate the buffer under run exception. An 
underrun exception is generated if display needs data and output buffer filling is lower than or equal to the 
OUT_BUF_LOW threshold.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-24 Freescale Semiconductor

12.3.3.18 INT_STATUS Register

INT_STATUS register indicates the interrupt status. DIU has only one interrupt signal. The CPU reads the 
INT_STATUS register to decide which exception occurs when an interrupt is detected. The read operation 
also clears the register.

Offset 0x44Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

0 0 0 0 0 0 0 0 0 0

W
B

_P
E

N
D

LS
_B

F
_V

S

PA
R

E
R

R

U
N

D
R

U
N

V
S

Y
N

C
_W

B

V
S

Y
N

C

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-18. INT_STATUS Register

Table 12-22. INT_STATUS Field Descriptions

Field Description

WB_PEND Write Back Pending Interrupt: This interrupt is generated in mode 2 (the combined display and write back 
mode), while write back operation doesn’t complete before the display frame parallel to it, if enabled. This is 
considered as an error and the user can select either to redo the write back frame or ignore it.

LS_BF_VS Lines before VSYNC interrupt. This interrupt is generated threshold LS_BF_VS number of lines ahead of the 
vertical front porch (FP_V), if enabled.

PARERR Display parameter error interrupt. This interrupt is generated if the user sets the display parameters wrongly, 
if enabled.

UNDRUN Under run exception interrupt. This interrupt is generated when display needs data and output buffer filling is 
lower than or equal to the OUT_BUF_LOW threshold, if enabled.

VSYNC_WB Vertical Synchronize Interrupt for write back operation. This interrupt is generated at the end of a write back 
frame, if enabled. Used in mode 2 and 3 only.

VSYNC Vertical synchronization interrupt. This interrupt is generated at the beginning of a frame, if enabled.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-25

12.3.3.19 INT_MASK Register

12.3.3.20 COLBAR Registers

The COLBAR registers are used to generate color bars in functional test mode. Eight different pixel values 
are taken as input data to display eight color bars on the display. After reset, they take default values, 
including 0xff000000 (Black), 0xff0000ff (Blue), 0xff00ffff (Cyan), 0xff00ff00 (Green), 0xffffff00 
(Yellow), 0xffff0000 (Red), 0xffff00ff (Purple), and 0xffffffff (White).

Offset 0x48Access: User read/write

Power

Architect

ure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventi

onal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architect

ure

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventi

onal

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0

M
_W

B
_P

E
N

D

M
_L

S
_B

F
_V

S

M
_P

A
R

E
R

R

M
_U

N
D

R
U

N

M
_V

S
Y

C
_W

B

M
_V

S
Y

N
C

W

Reset 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

= Unimplemented or Reserved

Figure 12-19. INT_MASK Register

Table 12-23. INT_MASK Field Descriptions

Field Description

M_WB_PEND INT_MASK register enables or masks corresponding interrupt status to become an interrupt.
1 – mask the interrupt
0 – enable the interrupt

M_LS_BF_VS

M_PARERR

M_UNDRUN

M_VSYN_WB

M_VSYNC

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-26 Freescale Semiconductor

12.3.3.20.1 COLBAR_1 Register1

12.3.3.20.2 COLBAR_2 Register

1. Programming the COLBAR registers at the middle of a frame affects the display immediately, so the user should reprogram 
them after VSYNC interrupt is detected.

Offset 0x4cAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 1 1 1 1 1 1 1 1
COLBAR_1_R

W

Reset 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
COLBAR_1_G COLBAR_1_B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-20. COLBAR_1 Register (Black)

Offset 0x50Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 1 1 1 1 1 1 1 1
COLBAR_2_R

W

Reset 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
COLBAR_2_G COLBAR_2_B

W

Reset 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Figure 12-21. COLBAR_2 Register (Blue)

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-27

12.3.3.20.3 COLBAR_3 Register

12.3.3.20.4 COLBAR_4 Register

Offset 0x54Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 1 1 1 1 1 1 1 1
COLBAR_3_R

W

Reset 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
COLBAR_3_G COLBAR_3_B

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 12-22. COLBAR_3 Register (Cyan)

Offset 0x58Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 1 1 1 1 1 1 1 1
COLBAR_4_R

W

Reset 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
COLBAR_4_G COLBAR_4_B

W

Reset 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Figure 12-23. COLBAR_4 Register (Green)

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-28 Freescale Semiconductor

12.3.3.20.5 COLBAR_5 Register

12.3.3.20.6 COLBAR_6 Register

Offset 0x5cAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 1 1 1 1 1 1 1 1
COLBAR_5_R

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
COLBAR_5_G COLBAR_5_B

W

Reset 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Figure 12-24. COLBAR_5 Register (Yellow)

Offset 0x60Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 1 1 1 1 1 1 1 1
COLBAR_6_R

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
COLBAR_6_G COLBAR_6_B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-25. COLBAR_6 Register (Red)

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-29

12.3.3.20.7 COLBAR_7 Register

12.3.3.20.8 COLBAR_8 Register

Offset 0x64Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 1 1 1 1 1 1 1 1
COLBAR_7_R

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
COLBAR_7_G COLBAR_7_B

W

Reset 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Figure 12-26. COLBAR_7 Register (Purple)

Offset 0x68Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 1 1 1 1 1 1 1 1
COLBAR_8_R

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
COLBAR_8_G COLBAR_8_B

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 12-27. COLBAR_8 Register (White)

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-30 Freescale Semiconductor

12.3.3.21 FILLING Register

FILLING register is a read-only register for debug purpose. It indicates current filling status of the input 
and output buffers.

Offset 0x6cAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 FILLING_OBF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FILLING_WB FILLING_P3 FILLING_P2 FILLING_P1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-28. FILLING Register

Table 12-24. FILLING Field Descriptions

Field Description

FILLING_OBF Filling status of the output buffer (in pixels, 24 bits per pixel).

FILLING_WB Filling status of the write back pixel buffer (number of filled buffers out of the 8 256-byte buffers).

FILLING_P3 Filling status of plane three input pixel buffer (number of filled buffers out of the 8 256-byte buffers).

FILLING_P2 Filling status of plane two input pixel buffer (number of filled buffers out of the 8 256-byte buffers).

FILLING_P1 Filling status of plane one input pixel buffer (number of filled buffers out of the 8 256-byte buffers).

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-31

12.3.3.22 PLUT Register

The PLUT register, shown in Figure 12-29, determines the priority of the DIU transactions relative to other 
initiators on the DDR DRAM buses. PLUT register includes the 8 Priority Look Up Table components. A 
4-bit priority output is selected from this look up table according to the input buffer filling status. This 
register must be configured so that the DIU can escalate it’s priority dynamically. See Section 12.4.12, 
“Dynamic Priority Generation for details on how to configure it.

Offset 0x70Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PRIORITY_7 PRIORITY_6 PRIORITY_5 PRIORITY_4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PRIORITY_3 PRIORITY_2 PRIORITY_1 PRIORITY_0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-29. PLUT Register

Table 12-25. PLUT Field Descriptions

Field Description

PRIORITY_7 The Priority Look Up Table components.
PRIORITY_0: The highest priority;
PRIORITY_7: The lowest priority.

PRIORITY_6

PRIORITY_5

PRIORITY_4

PRIORITY_3

PRIORITY_2

PRIORITY_1

PRIORITY_0

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-32 Freescale Semiconductor

12.4 Functional Description
The DIU does not have internal frame buffers. It reads the data from the main memory (DDR DRAM) at 
the same rate it refreshes the display.

Besides generating all the signals required to drive the display, the DIU manages real time blending of up 
to three planes onto the display. Alpha blending is performed between the planes. Chroma key support is 
also present to help relieve the host processor from all the computational and bandwidth consuming 
blending tasks while simultaneously allowing the users to maintain the graphics quality required by many 
applications.

Figure 12-30. Three Plane Blending

12.4.1 Area Descriptor

The area descriptor (AD) defines each area to be displayed on a plane. A plane can display more than one 
area as long as they don’t share a scan line.

The areas (for a plane) must be sorted in vertical order from top to bottom. The area descriptor is set up in 
the system’s main memory (DDR DRAM) and then retrieved by the DIU directly from there.

Change the displayed data between frames by changing the data in the current area descriptor or create a 
new one and change the pointer in the DIU while keeping the previous one for future use or reference. It 
is always assumed that the bitmaps are stored pixel by pixel in memory, starting from the top-left most 
pixel in the image and continued sequentially until the last pixel (the bottom-right most pixel) by scanning 
the image always from left to right and top to bottom.

Figure 12-31 and Figure 12-32 show graphical representations of the area descriptor parameters that 
define an area. Figure 12-31 shows the parameters that specify how the source bitmap located in memory 
is interpreted by the DIU. You might want to display only a limited area of the bitmap by specifying an 
area of interest (AOI) as a subset of this bitmap.

Plane 1

WELCOME
TO AUSTIN

Plane 2

Plane 3

Display

WELCOME
TO AUSTIN

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-33

Figure 12-31. Source Bitmap Parameters

The complete source bitmap is specified by its starting address in memory, its pixel format, and its 
dimensions. The subset to be displayed is defined by its relative position to the beginning of the bitmap 
(top left corner) and its own size, which can be as large as the original image for the case where the whole 
image is to be displayed. The DIU automatically fetches the data, optimizing the accesses to minimize the 
bandwidth consumed by the operation.

There are some limitations on the size of an AOI, which include:
• The height and width of an AOI (Δyi, Δxi) must be greater than or equal to two pixels.
• The first AOI of a plane must be greater than or equal to 32 bytes of pixel data.

Figure 12-32 shows the parameters that specify how the image is to be displayed.

Figure 12-32. Display Parameters

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-34 Freescale Semiconductor

There are two parameters that determine how this image is to be displayed. The first is its relative position 
with respect to the top-left corner of the display, and the second is its orientation (by flipping the image in 
its x-axis or y-axis, but not both simultaneously). The size of the display is not part of the area descriptor 
because it is common to all area descriptors of all planes.

12.4.2 Area Descriptor Format

Each AD is composed of a ten-word data structure. The general format for an AD is shown in Table 12-26.

The following sections describe the individual components that make up the area descriptor.

NOTE
The area descriptor uses little-endian byte ordering. Do a 32-bit word endian 
swap for each word before writing it to memory.

Table 12-26. Area Descriptor Format

Offset General Format

0x00 Word 0 – Pixel format

0x04 Word 1 – Bitmap address

0x08 Word 2 – Source size/Global alpha

0x0C Word 3 – AOI size

0x10 Word 4 – AOI offset

0x14 Word 5 – Display offset

0x18 Word 6 – Chroma key max

0x1C Word 7 – Chroma key min

0x20 Word 8 – Next AD

0x24 Word 9 – Reserved

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-35

12.4.2.1 Area Descriptor Word 0 – Pixel Format

Figure 12-33 shows the fields of AD Word 0, which defines the pixel format. Table 12-27 describes the 
pixel format fields.

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BYTE_F ALPHA_C BLUE_C GREEN_C RED_C
PAL
LET

E
PIXEL_S

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COMP_3 COMP_2 COMP_1 COMP_0

= Unimplemented or Reserved

Figure 12-33. Area Descriptor Word 0 – Pixel Format

Table 12-27. Area Descriptor Word 0 – Pixel Format

Field Description

COMP_0 Number of bits for component 0. Valid range is 0 through 8.

COMP_1 Number of bits for component 1. Valid range is 0 through 8.

COMP_2 Number of bits for component 2. Valid range is 0 through 8.

COMP_3 Number of bits for component 3. Valid range is 0 through 8.

PIXEL_S Pixel size. Specifies the number of bytes per pixel. The actual number of bytes per pixel is PIXEL_S+1.
00 1 byte per pixel
01 2 bytes per pixel
10 3 bytes per pixel
11 4 bytes per pixel

PALETTE Palette mode. Determines whether palette mode is used.
0 Palette mode disabled
1 Palette mode enabled

RED_C Red Component assignment.. This field assigns the component number used for the red channel.
00 Component 0
01 Component 1
10 Component 2
11 Component 3
Default value is 10.

GREEN_C Green component assignment. This field assigns the component number used for the green channel.
00 Component 0
01 Component 1
10 Component 2
11 Component 3
Default value is 01.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-36 Freescale Semiconductor

12.4.2.2 Area Descriptor Word 1 – Bitmap Address

Figure 12-34 shows the fields of AD Word 1, which defines the bitmap address. Table 12-28 describes the 
bitmap address fields.

BLUE_C Blue component assignment. This field assigns the component number used for the blue channel.
00 Component 0
01 Component 1
10 Component 2
11 Component 3
Default value is 00.

ALPHA_C Alpha component assignment. This field assigns the component number used for the alpha channel.
000 Component 0
001 Component 1
010 Component 2
011 Component 3
100 Global alpha
Default value is 011.

BYTE_F Byte flip disable. When cleared, flips the byte order for the pixel data. See Section 12.4.3, “Pixel Structure 
for more information.
0 Bytes are flipped
1 Bytes are not flipped

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BM_ADDR

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BM_ADDR

= Unimplemented or Reserved

Figure 12-34. Area Descriptor Word 1 – Bitmap Address

Table 12-28. Area Descriptor Word 1 – Bitmap Address

Field Description

BM_ADDR Bitmap address pointer. It points to the bitmap data in memory.

Table 12-27. Area Descriptor Word 0 – Pixel Format (continued)

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-37

12.4.2.3 Area Descriptor Word 2 – Source Size/Global Alpha

Figure 12-35 shows the fields of AD Word 2, which defines the source size and the global alpha value. 
Table 12-29 describes the source size/global alpha fields.

12.4.2.4 Area Descriptor Word 3 – AOI Size

Figure 12-36 shows the fields of AD Word 3, which defines the size of the area of interest. Table 12-30 
describes the area of interest size fields.

Figure 12-36. Area Descriptor Word 3 – AOI Size

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

G_ALPHA DELTA_YS

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DELTA_YS DELTA_XS

= Unimplemented or Reserved

Figure 12-35. Area Descriptor Word 2 – Source Size/Global Alpha

Table 12-29. Area Descriptor Word 2 – Source Size/Global Alpha

Field Description

DELTA_XS The Δxs parameter that defines the horizontal size (in pixels) of the source bitmap.

DELTA_YS The Δys parameter that defines the vertical size (in pixels) of the source bitmap.

G_ALPHA Global alpha. Value used for the alpha channel for all pixels in the area when the data format does not include 
an alpha component or when the user wants to override the alpha values in the data (ALPHA_C = 100). 
Pixels to be displayed on Plane 1 ignore the alpha value.

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FLIP DELTA_YI

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DELTA_XI

= Unimplemented or Reserved

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-38 Freescale Semiconductor

12.4.2.5 Area Descriptor Word 4 – AOI Offset

Figure 12-37 shows the fields of AD Word 4, which defines the offset for the area of interest. Table 12-31 
describes the area of interest offset fields.

Table 12-30. Area Descriptor Word 3 – AOI Size

Field Description

DELTA_XI The Δxi parameter that defines the horizontal size (in pixels) of the area of interest.

DELTA_XI The Δxi parameter that defines the horizontal size (in pixels) of the area of interest.

FLIP Area of interest image flip. Flips the bitmap image either horizontally or vertically within the area of interest.
00 Normal
01 Flip image horizontally (about the y-axis)
10 Flip image vertically (about the x-axis)
11 Reserved

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OFFSET_YI

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OFFSET_XI

= Unimplemented or Reserved

Figure 12-37. Area Descriptor Word 4 – AOI Offset

Table 12-31. Area Descriptor Word 4 – AOI Offset

Field Description

OFFSET_XI The xi parameter that defines the horizontal offset (in pixels) of the area of interest from the start of the source 
bitmap in memory.

OFFSET_XI The xi parameter that defines the horizontal offset (in pixels) of the area of interest from the start of the source 
bitmap in memory.

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-39

12.4.2.6 Area Descriptor Word 5 – Display Offset

Figure 12-38 shows the fields of AD Word 5, which defines the offset for the area of interest in the display. 
Table 12-32 describes the display offset fields.

12.4.2.7 Area Descriptor Word 6 – Chroma Key Max

Figure 12-39 shows the fields of AD Word 6, which defines the maximum values for chroma key. See 
Section 12.4.6, “Chroma Keying for more information. Table 12-33 describes the chroma key max fields.

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OFFSET_YD

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OFFSET_XD

Figure 12-38. Area Descriptor Word 5 – Display Offset

Table 12-32. Area Descriptor Word 5 – Display Offset

Field Description

OFFSET_XD The xd parameter that defines the horizontal offset (in pixels) of the area of interest in the display.

OFFSET_XD The xd parameter that defines the horizontal offset (in pixels) of the area of interest in the display.

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CKMAX_B

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CKMAX_G CKMAX_R

= Unimplemented or Reserved

Figure 12-39. Area Descriptor Word 6 – Chroma Key Max

Table 12-33. Area Descriptor Word 6 – Chroma Key Max

Field Description

CKMAX_R Chroma key maximum red component value

CKMAX_G Chroma key maximum green component value

CKMAX_B Chroma key maximum blue component value

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-40 Freescale Semiconductor

12.4.2.8 Area Descriptor Word 7 – Chroma Key Min

Figure 12-40 shows the fields of AD Word 7, which defines the minimum values for chroma key. See 
Section 12.4.6, “Chroma Keying for more information. Table 12-34 describes the chroma key min fields.

12.4.2.9 Area Descriptor Word 8 – Next AD

Figure 12-41 shows the fields of AD Word 8, which defines the next AD address. If more than one area is 
to be displayed in the same plane, the next AD points to the next area descriptor. If this is the last AD in 
the current frame, the next AD address must be set to 0x0000_0000. The next AD address must be aligned 
to an 8-byte boundary (that is, the lowest three bits should be 000). Table 12-35 describes the next area 
descriptor address fields.

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CKMIN_B

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CKMIN_G CKMIN_R

= Unimplemented or Reserved

Figure 12-40. Area Descriptor Word 7 – Chroma Key Min

Table 12-34. Area Descriptor Word 7 – Chroma Key Min

Field Description

CKMIN_R Chroma key minimum red component value

CKMIN_G Chroma key minimum green component value

CKMIN_B Chroma key minimum blue component value

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

NEXT_AD_ADDR

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NEXT_AD_ADDR

= Unimplemented or Reserved

Figure 12-41. Area Descriptor Word 8 – Next AD

Table 12-35. Area Descriptor Word 8 – Next AD

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-41

NEXT_AD_
ADDR

The next Area Descriptor address pointer. It’s used to point to the next AD in memory when more than one
area is to be displayed in a plane. This field must be set to 0x0000_0000 if this is the last AD in the current
frame. This address must be 64-bit boundary aligned (set the lowest 3 bits to 0).

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

NEXT_AD_ADDR

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NEXT_AD_ADDR

= Unimplemented or Reserved

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-42 Freescale Semiconductor

12.4.3 Pixel Structure

The DIU has been designed for maximum flexibility in the format of its input data. Each pixel can contain 
up to four basic components: alpha, red, green, and blue. The contents of several registers in an area 
descriptor (see Figure 12-33) determine how the DIU parses the bitmap data into the pixel components.

The first step is to define the size of each pixel (PIXEL_S+1) and the number of bits for each component 
of a pixel (COMP_0 to COMP_3) in the data stream. The next step is to assign the components of the pixel 
(alpha, R, G, and B) to the components of the data stream (COMP_0 to COMP_3). The RED_C, 
GREEN_C, BLUE_C, and ALPHA_C fields in the pixel format (word 0) of the AD are used to control the 
assignments, selecting which component is red, which is green and so on. The three color components (red, 
green, and blue) must be mapped to one of the components of the data stream; alpha can be assigned to a 
fourth component of the data stream or the pixel can use the global alpha value specified for the current 
area descriptor (G_ALPHA in word 2).

The pixel format (word 0) of the AD also contains the BYTE_F bit, which can have a significant impact 
on the way the DIU interprets the pixel data. If the BYTE_F bit in the AD is set (that is, flipping is disabled) 
then the pixel is constructed as shown in Figure 12-42.

Figure 12-42. 24-bit ARGB 8:5:6:5 Pixel Structure Definition when BYTE_F = 1

If the BYTE_F bit in the AD is cleared (that is, bytes in the pixel are flipped) then the pixel is constructed 
as shown in Figure 12-43. The DIU performs the byte flipping on each pixel before it performs the 
mapping.

Figure 12-43. 24-bit ARGB 8:5:6:5 Pixel Structure Definition when BYTE_F = 0

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Conventional 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte 0 Byte 1 Byte 2

COMP_3 (8-bits) COMP_2 (5-bits) COMP_1 (6-bits) COMP_0 (5-bits)

Alpha Red Green Blue

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Conventional 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte 0 Byte 1 Byte 2

COMP_1
(3 lsbs)

COMP_0
(5-bits)

COMP_2
(5-bits)

COMP_1
(3 msbs)

COMP_3
(8-bits)

Green_low Blue Red Green_high Alpha

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-43

12.4.4 Pixel Format Conversion

The DIU is designed to support a variety of pixel bit formats. Table 12-36 lists some examples of DIU 
supported pixel formats.

Internally, all the calculations are performed using pixels represented by 8 bits per component. For those 
pixel formats you specify less than 8 bits per color components, the specified bits are used as MSB and the 
LSB are filled with zeros. The alpha values are extended to 8 bits too, but the LSB are filled by sign 
extension to make sure that minimum value is 0 and the maximum value is extended to 255.

If the original data bitmap does not include alpha, you can specify it in the global alpha (G_ALPHA) field 
of the area descriptor and/or use chroma keying.

12.4.4.1 Palette Mode

As an alternate to the larger bitmap formats, the DIU supports an 8-bit pixel format through a palette table 
(256 x 32-bit look up table). The palette table maps an 8-bit input pixel to a 32-bit color format. The palette 
table is stored in a 256 x 32 bit embedded SRAM. It is accessed by the hardware as an indexed matrix such 
that palettized_pixel [31-0] = palette_table[input_pixel [7-0]].

The palette table should be created in advance in memory (DDR DRAM) as a consecutive sequence of 256 
x 64 bits (with bits 32 to 63 filled with zeros). Writing to the PALETTE register (12.3.3.5/12-12) causes 
the DIU to automatically reload a new palette table from memory before it starts processing the next frame. 
Figure 12-44 shows the format of the palette table in main memory.

Table 12-36. Examples of DIU Supported Pixel Formats

Component Order
3, 2, 1, 0

Number of Bits per 
Component

G.Alpha Palette

A:R:G:B 8:8:8:8 No No

R:G:B 8:8:8 Yes No

A:R:G:B 8:5:6:5 No No

R:G:B 5:6:5 Yes No

A:R:G:B 4:4:4:4 No No

A:R:G:B 1:5:5:5 No No

n/a n/a no Yes

R:G:B:A 8:8:8:8 No No

R:G:B:A 5:6:5:8 No No

R:G:B:A 4:4:4:4 No No

R:G:B:A 5:5:5:1 No No

n/a 8 Yes No

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-44 Freescale Semiconductor

Figure 12-44. Palette Table Format in Memory

12.4.5 Alpha Blending

For each pixel, besides the color components (R, G, B), there is a fourth component that defines the 
transparency of the pixel. This transparency value is called alpha and has a range between 0 (pixel is 
completely transparent) to 255 (pixel is completely opaque). The following equation represents the 
transfer function of the blending operation including the alpha values. There is no alpha component 
defined for plane1 because there are no planes behind it.

Eqn. 12-1

For mode 2, when only plane 2 and 3 are blended to write back, the equation changes to:

Eqn. 12-2

12.4.6 Chroma Keying

For each area (see Section 12.4.1, “Area Descriptor”), specify a maximum and a minimum value for the 
chroma keying function. The maximum and minimum values are specified as R,G, and B values to which 
every pixel in the bitmap is compared and if all the components are greater or equal to the minimum and 
less than or equal to the max then the alpha component for that particular pixel is replaced with 0. The 
chroma keying operation is performed after the color format conversion with all the components extended 
to 8 bits.

To turn the chroma keying off, set the minimum to 255 and the max to 0, for each component. To produce 
a green-screen type of effect in which all green pixels (0,255,0) are to be turned transparent, the max and 
min should both be set to (0,255,0).

Palette 
Entry

PALETTE 
Offset

Local Address [2:0]

000 001 010 011 100 101 110 111

0 0x000 P0_B P0_G P0_R P0_A 0x00 0x00 0x00 0x00

1 0x008 P1_B P1_G P1_R P1_A 0x00 0x00 0x00 0x00

2 0x010 P2_B P2_G P2_R P2_A 0x00 0x00 0x00 0x00

3 0x018 P3_B P3_G P3_R P3_A 0x00 0x00 0x00 0x00

......

254 0x7F0 P254_B P254_G P254_R P254_A 0x00 0x00 0x00 0x00

255 0x7F8 P255_B P255_G P255_R P255_A 0x00 0x00 0x00 0x00

out_pixel=
pixel_1 255 α2–( ) 255 α3–( ) pixel_2 α2 255 α3–( ) pixel_3 255 α3××+××+××

2552
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

writeback
plane2 255 α3–( ) plane3 α3×+×

255
----------------------------------------------------------------------------------------=

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-45

12.4.7 Gamma Correction

The gamma table allows the user to define a completely arbitrary transfer function at the output of each 
color component. The gamma table should be created in memory as a consecutive sequence of 256 bytes 
for each color component accessed by the hardware as an indexed matrix so that 
output_color_component = gamma_table[input_color_component].

All three gamma tables must be stored in memory (DDR DRAM) consecutively beginning with red, then 
green, and blue at the end.

Similar to the palette, the gamma table is also automatically loaded by the DIU from memory into an 
embedded SRAM before it starts on processing the next frame if the CPU writes to the GAMMA register 
(12.3.3.4/12-11).

The size of the SRAM is 3 x 256 bytes, but it’s organized as 96 x 64 bits. So address range for each color 
component table is,:

• Gamma_red: 0x0~0x0ff,
• Gamma_green: 0x100~0x1ff
• Gamma_blue: 0x200~0x2ff.

Figure 12-45 shows the format of the gamma table in main memory.

Figure 12-45. Gamma Table Format in Memory

Color 
Component

GAMMA 
Offset

Local Address [2:0]

000 001 010 011 100 101 110 111

Red 0x000 G0red G1red G2red G3red G4red G5red G6red G7red

0x008 G8red G9red G10red G11red G12red G13red G14red G15red

......

0x0F0 G240red G241red G242red G243red G244red G245red G246red G247red

0x0F8 G248red G249red G250red G251red G252red G253red G254red G255red

Green 0x100 G0green G1green G2green G3green G4green G5green G6green G7green

0x108 G8green G9green G10green G11green G12green G13green G14green G15green

......

0x1F0 G240green G241green G242green G243green G244green G245green G246green G247green

0x1F8 G248green G249green G250green G251green G252green G253green G254green G255green

Blue 0x200 G0blue G1blue G2blue G3blue G4blue G5blue G6blue G7blue

0x208 G8blue G9blue G10blue G11blue G12blue G13blue G14blue G15blue

......

0x2F0 G240blue G241blue G242blue G243blue G244blue G245blue G246blue G247blue

0x2F8 G248blue G249blue G250blue G251blue G252blue G253blue G254blue G255blue

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-46 Freescale Semiconductor

12.4.8 Cursor

The DIU supports a 32 x 32 hardware cursor that is overlapped on top of all three planes. Figure 12-46 
shows the structure of the cursor bitmap in memory (DDR DRAM). In Figure 12-47, each cursor pixel is 
labeled as C(n,m) where n indicates the row and m indicates the column of the 32 x 32 matrix. The cursor 
bitmap data is stored in memory as a continuous sequence of 16-bit pixels, starting from the top left corner, 
C(0,0), and continuing across the row (left to right) and then on to the next column (top to bottom) until 
the last cursor pixel, C(31,31), is at the bottom right corner.

Figure 12-46. Cursor Structure in Memory

Cursor
Pixel
Row

CURSOR 
Offset

Local Address [2:0]

000 001 010 011 100 101 110 111

0 0x000 C(0,0) C(0,1) C(0,2) C(0,3)

0x008 C(0,4) C(0,5) C(0,6) C(0,7)

......

0x038 C(0,28) C(0,29) C(0,30) C(0,31)

1 0x040 C(1,0) C(1,1) C(1,2) C(1,3)

0x048 C(1,4) C(1,5) C(1,6) C(1,7)

......

0x078 C(1,28) C(1,29) C(1,30) C(1,31)

2 0x080 C(2,0) C(2,1) C(2,2) C(2,3)

0x088 C(2,4) C(2,5) C(2,6) C(2,7)

......

0x0B8 C(2,28) C(2,29) C(2,30) C(2,31)

......

31 0x7C0 C(31,0) C(31,1) C(31,2) C(31,3)

......

0x7F0 C(31,24) C(31,25) C(31,26) C(31,27)

0x7F8 C(31,28) C(31,29) C(31,30) C(31,31)

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-47

Each cursor pixel is in 16-bit, GLBARGH 3:5:1:5:2 format, as shown in Figure 12-47. The field 
descriptions for a cursor pixel are provided in Table 12-37.

NOTE
The cursor pixel uses little-endian byte ordering. Do a 16-bit halfword 
endian swap for each pixel while rendering the cursor bitmap in software.

To achieve cursors with shapes other than the basic square set the alpha value to 0 in those pixels that are 
to be transparent. To make the cursor disappear set the alpha value to 0 for all the pixels.

Similar to the palette and gamma, the cursor bitmap is also automatically loaded by the DIU from memory 
into an embedded SRAM before it starts on processing the next frame if the CPU write to the CURSOR 
register (See Section 12.3.3.6, “CURSOR Register). The SRAM size is, 256 x 64 bits.

The cursor position is determined by the register CURSOR_POS (See Section 12.3.3.7, “CURS_POS 
Register); the specified coordinate corresponds to the top, left corner of the cursor bitmap. The cursor can 
be partially or totally off the screen.

12.4.9 Write Back Operation

Besides driving the LCD display, the DIU supports two operating modes (mode 2 and 3) with memory 
write-back operation. Intermediate blending results are stored back into the memory (DDR DRAM). These 
intermediate results can be then forwarded to other processing or display units or blended with other image 
source(s) again in the DIU, virtually extending the number of graphics planes.

DIU mode 1 supports the blending and display of up to 3 planes. If an application requires the display of 
an image blended from four or more planes, this can be accomplished in DIU mode 2. Plane 1 is used to 
display one frame while the following frame is blended by the DIU. Planes 2 and 3 are used initially to 
read in the first and second planes to be combined, and the DIU writes back a combined plane 1+2. Then, 
while the DIU displays the same frame on plane 1, the DIU reads back in on plane 2 the intermediate plane 
1+2, and on plane 3 the new third plane, writing back a combined plane 1+2+3. Then (while the DIU 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Alpha Red Greeen Blue

= Unimplemented or Reserved

Figure 12-47. Cursor Pixel Format

Table 12-37. Field Descriptions for Cursor Pixel

Field Description

Alpha Alpha component of cursor pixel C(n,m).

Red Red component of cursor pixel C(n,m).

Green Green component of the cursor pixel is made up of GreenHigh||GreenLow.

Blue Blue component of cursor pixel C(n,m).

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-48 Freescale Semiconductor

displays the same frame on plane 1), the DIU reads back in on plane 2 the intermediate plane 1+2+3, and 
on plane 3 the new fourth plane, writing back the combined plane 1+2+3+4. This combined plane is then 
ready to be displayed on plane 1 in the following frame, or extra steps can be added to blend more than 
four planes.

The write back pixel format is always 24-bit RGB 8:8:8. stored in the memory continuously and 
packed.Figure 12-48 shows the format of the write-back pixels in main memory.

Figure 12-48. Write-Back Pixel Format in Memory

The register WB_MEM_ADDR (12.3.3.13/12-19) specifies the address in the memory where the write 
back data should be written to. Writing to this address triggers a write back frame refresh. A VSYNC_WB 
interrupt occurs at the end of a write back frame if enabled.

Write back frame size is specified by the WB_SIZE register (12.3.3.12/12-18).

NOTE
In mode 2, the DIU works on the basis that the writeback frame completes 
before the end of the display frame parallel to it (i.e. before the vertical front 
porch). A WB_PEND interrupt can be generated if enabled, indicating the 
writeback operation doesn’t complete in time.

12.4.10 Color Bar Generation

For testing purposes, it is desirable to generate color bars within the DIU itself. This is achieved by setting 
the DIU_MODE register to 4. The pattern produced is a simple one with eight vertical color bars. This 
mode allows the user to verify that the DIU is operational without the need to interact with the system 
memory. A basic color sequence is preloaded, but the user can overwrite the default values if needed. See 
Section 12.3.3.20, “COLBAR Registers for more information.

The size of the bars is set by dividing the horizontal resolution by 8 using integer math. If the horizontal 
resolution is not divisible by 8 exactly, not all color bars have the same width.

12.4.11 Interrupt Generation

The DIU generates interrupt through a single line controlled by the contents of two registers: 
INT_STATUS (12.3.3.18/12-24) and INT_MASK(12.3.3.19/12-25). When an interrupt occurs, the host 

Memory 
Offset

Local Address [2:0]

000 001 010 011 100 101 110 111

0x00 B0 G0 R0 B1 G1 R1 B2 G2

0x08 R2 B3 G3 R3 B4 G4 R4 B5

0x10 G5 R5 B6 G6 R6 B7 G7 R7

0x18 B8 G8 R8 B9 G9 R9 B10 G10

0x20 R10 ... ... ... ... ... ... ...

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-49

needs to read the INT_STATUS register to find the source of the interrupt. The read operation also clears 
the register.

There are six defined interrupt statuses: VSYNC -- Vertical Synchronization, VSYNC_WB -- Vertical 
Synchronization for Write Back, UNDRUN -- Under Run Exception, PARERR -- Display Parameter 
Error, LS_BF_VS -- Lines Before VSYNC, and WB_PEND -- Writeback Pending.

A display parameter error interrupt is generated if the user set the display parameters incorrectly. 
Table 12-38 gives a list of parameter error conditions under different DIU operating mode. When a 
PARERR interrupt is detected, the user can select turn off the DIU (program the DIU_MODE to 0), correct 
the wrong parameter(s), and turn it on again. The DIU is initialized internally.

12.4.12 Dynamic Priority Generation

The multi-port DRAM controller has built-in arbiters that use a 4-bit priority signal (i.e. 16 levels of 
priority). The DRAM controller tries to service the request with the highest priority first. The task of 
setting the priorities is done by the DRAM Controller Priority Manager block, the priority manager. It 
dynamically sets the priorities of the DRAM busses in such a way that bandwidth is divided fairly and each 
master receives its fair share of the bandwidth. Programming the look-up tables in the priority manager 
allows controlling relative priority to other channels and the average share of the bandwidth the current 
master gets.

The DIU outputs a 4-bit priority signal to the priority manager. The priority is a function of the internal 
input buffer filling level (buffer full → low priority, buffer empty → high priority). The buffer filling level 
ranges from 0 to 7 and it’s used to select a LUT component from the PLUT register as the priority. Filling 
level 0 selects PRIORITY_0 and filling level 7 selects PRIORITY_7.

The priority manager can be programmed to take the DIU priority ouput directly (option 1) or to follow 
the normal priority schema (option 2). It’s recommended to use option 2, the default option.

Table 12-38. Parameter Error Conditions

Mode 1 & 2 DELTA_XI > DELTA_XS

DELTA_YI > DELTA_YS

DELTA_XI + OFFSET_XD  > DELTA_X

DELTA_YI + OFFSET_YD > DELTA_Y

DELTA_XI + OFFSET_XI > DELTA_XS

DELTA_YI + OFFSET_YI > DELTA_YS

Mode 2 & 3 DELTA_XI > DELTA_X_WB

DELTA_YI > DELTA_Y_WB

DELTA_XI + OFFSET_XD  > DELTA_X_WB

DELTA_YI + OFFSET_YD > DELTA_Y_WB

DELTA_XI + OFFSET_XI > DELTA_XS

DELTA_YI + OFFSET_YI > DELTA_YS

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-50 Freescale Semiconductor

To use option 1, the user should set PRIOMAN_CONFIG2[DIU-OVERRULE] (refer to DRAM 
Controller Priority Manager chapter), and program a set of priority values in the PLUT register 
(PRIORITY_0 to PRIORITY_7 from high to low). The priority value ranges from 0 to 15 and accesses 
are blocked if the priority value is 0.

To use option 2, it’s recommended to program PRIOMAN_CONFIG2[LUT SEL0] to 3, so that the priority 
manager selects the alternate look-up table for the DIU if DIU incoming priority bit 3 is high. So the user 
can set the DIU priority low in the main look-up table and set it high in the alternate look-up table, and 
program the PLUT register so for example its priority bit 3 is high (0x8) when the buffer is lower than half 
full. The purpose to do this is to only escalate the DIU priority when necessary, and save the DRAM 
bandwidth to the other masters like the Power Architecture e300 core.

12.4.13 Display Signal Timing

The first step to generate appropriate timing signals for the selected display is to adjust the frequency of 
the pixel clock to a frequency within the specified parameters of the display (see Section 12.4.13.1, 
“Refresh Rate”). Program the SCFR1 register in the system clock module, SCFR1[DIU_DIV], to set the 
divide ratio for the DIU pixel clock (refer to the system clock chapter). 

Then the horizontal and vertical synchronize signals are generated based on the pixel clock. The 
relationship between pixel clock, HSYNC, and VSYNC signals is shown in diagram Figure 12-49 and 
Figure 12-50.

Refer to Section 12.3.3.11, “DISP_SIZE Register”, Section 12.3.3.14, “HSYN_PARA Register”, 
Section 12.3.3.15, “VSYN_PARA Register”, Section 12.3.3.16, “SYN_POL Register” for related display 
parameter configuration registers.

Figure 12-49. Horizontal Sync Signals

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-51

Figure 12-50. Vertical Sync Signals

By default, the DIU outputs (data and sync signals) switch at same time with the pixel clock rising edge. 
To provide flexibility in meeting the timing requirements of different LCD display drivers, the user can 
perform minor tuning of the timing of the pixel clock found on the DIU_CLK pin relative to all the other 
DIU signals (DIU_LD[23:0], DIU_VSYNC, DIU_HSYNC, DIU_DE). This phase tuning is done using 
programmable parameters in the DCCR register, specifically DCCR[CLK_INV] and DCCR[DLY_NUM] 
(refer to the system clock chapter). Phase tuning using CLK_INV and DLY_NUM does not change the 
pixel clock frequency or duty cycle.

12.4.13.1 Refresh Rate

The refresh rate (or frame rate) is the number of times that the display is updated in a second. It can be 
calculated from the timing parameters using this formula:

Because the user probably have a set target refresh rate (RR), the PIX_CLK value has been set already and 
the DELTA_X and DELTA_Y values are determined exactly by the panel used. The rest of the parameters 
in this equation must be chosen to approach the desired refresh rate while complying with the requirements 
established in the panel’s data sheet for the front and back porches.

12.5 Initialization/Application Information

12.5.1 DIU Initialization

The procedure to bring up the DIU out of hardware reset state, start executing data processing, and display 
functions is as follows:

1. Hardware reset.
2. Configure I/O function multiplexing and drive strength for DIU related pins.
3. Program the display timing signal generation related registers. Failing to set appropriate values for 

the display timing parameters may result in damage to the display.

rr pix_clk
delta_x fp_h pw_h bp_h+ ++( ) delta_y fp_v pw_v bp_v+ + +( )×

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------=

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-52 Freescale Semiconductor

4. Program DIU pixel clock divide ratio and turn on the clock in the system clock module. Enable 
pixel clock inversion or the programmable pixel clock delay if necessary so that the interface AC 
timing requirement can be met.

5. Program the DIU PLUT register and the DRAM controller priority manager as appropriate so that 
the DIU priority can be escalated dynamically, to make sure no buffer underrun would be hit.

6. Prepare the palette, gamma tables, cursor bitmap in memory (DDR DRAM) and set the pointers to 
them. This step is not strictly required because the user might be using it in an application without 
palette, gamma, or cursor. However, it’s recommended to load zero contents in this case so that the 
internal SRAM can be initialized. The gamma table is always in use except in mode 3.

7. Prepare the area descriptors in memory (DDR DRAM) and set the pointers to them. This step is 
also not strictly required because the default background colors can be displayed or a mode that 
does not require area descriptors (mode 4) may be selected.

8. Program the INT_MASK register and enable the interrupts needed for the application (by default, 
all interrupts are disabled after hardware reset).

9. Configure the WB_MEM_ADDR register if the operating mode is mode 2 or 3.
10. Set the operating mode (by configuring the DIU_MODE register) to turn on the DIU.

12.5.2 Controlling DIU Planes after the DIU is Enabled

The DIU is initialized by correctly configuring its registers before enabling the DIU by setting the 
DIU_MODE to a legal, non-zero value. The DIU supports up to 3 planes which are:

• activated by setting the corresponding DESC_n register to a non-zero value
• deactivated by setting the corresponding DESC_n register to 0x0000_0000

12.5.3 Synchronize With the Host

Three interrupt status bits are defined in the DIU for synchronization purpose. They are VSYNC, 
LS_BF_VS, and VSYNC_WB.

If enabled the VSYNC status bit is always asserted first cycle while the VSYNC pulse is active. With this 
interrupt the host can always observe the beginning of a new frame. Beside this, another interrupt, 
LS_BF_VS (lines before vsync) can be used to set a deadline for the host to program the DIU for the next 
frame. This interrupt is asserted user specified lines (set by the LS_BF_VS threshold, Figure 12-17) before 
the vertical front porch (FP_V).

Figure 12-51 shows a timing diagram on how these two interrupts can be used to synchronize the host and 
the DIU. At the end of each frame the DIU starts processing the next frame by first loading the necessary 
AD, palette, cursor, and gamma information from external memory pointed to by its internal register 
values. All of this takes place in the time window marked by the two dotted blue lines in Figure 12-51. The 
host needs to make sure the proper data is in external memory and proper address values are programmed 
into the DIU’s registers before this window. Reprogramming the palette, gamma, cursor, or AD pointers 
in this time window is blocked. For this reason the host should use the LS_BF_VS interrupt to start setting 
up the DIU for the next frame, while the LS_BF_VS threshold should be set to trigger the interrupt before 

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

Freescale Semiconductor 12-53

FP_V pulse of the current frame (set it to greater than 0) or the host does not have enough time to properly 
reprogram the DIU. Use the VSYNC_WB interrupt for mode 3.

Figure 12-51. Synchronize the Host and the DIU

For operating mode with write back operation, a VSYNC_WB interrupt can be used to find the end of a 
write back frame. To enable the DIU to work on the next write back frame, the user need to reprogram the 
DESC_1/DESC_2/DESC_3 pointers for related planes, and the WB_MEM_ADDR register after the 
VSYNC_WB interrupt is detected.

12.5.4 Recover From Parameter Error

A parameter error exception occurs under the conditions detailed in Table 12-38. If enabled, a PARERR 
interrupt is issued to the host. On reception of a PARERR interrupt, the user should turn off the DIU, 
correct the wrong parameters, and then turn it on again (by programing the DIU_MODE register). The 
DIU is initialized internally.

12.5.5 Recover From Underrun Error

In a heavily loaded system, the DIU may hit buffer underrun error because of long DRAM access latency. 
To eliminate buffer underrun issue the user should program the MPC5121E DRAM controller priority 
manager so that the DIU has higher priority compare to the other masters, or program the priority manager 
and the DIU PLUT register to enable dynamic DIU priority escalation so that the DIU priority can be high 
enough while it’s buffer filling is low.

If a single buffer underrun occurs and it’s short, the DIU may repeat the pixel before the underrun and then 
recover automatically when the underrun is gone to minimize impact to the display. Slight underrun 
error(s) do not propergate between frames, but if underrun error takes place frequently the user should turn 
off the DIU, escalate the DIU priority if necessary, and then turn it on again so that it can display normally.

FP_V PW_V BP_V FP_V PW_V BP_V

VSYNC InterruptLS_BF_VS Interrupt VSYNCLS_BF_VS

Start of

DIU load cursor,palette,gamma
Area Descriptors for FRAME n

Host Window

Start of

CPU program the
registers for FRAME n+1

DIU Window

RES_V
FRAME n FRAME n+1

MPC5121e Microcontroller Reference Manual, Rev. 2



Display Interface Unit (DIU)

12-54 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 13-1

Chapter 13  
DRAM Controller

13.1 Introduction 
The DDR DRAM controller is a multi-port DRAM controller (5 ports). It supports Mobile-DDR1, DDR-1, 
and DDR-2 memories.

A block diagram of the multi-port DRAM controller is given in Figure 13-1.

13.1.1 Overview

The DRAM controller is a multi-port controller that listens to incoming requests on the five incoming 
busses and decides on each rising clock edge what command needs to be sent to the DRAM.

Each incoming bus is a 64-bit bus. The five incoming busses are: 
• Bus 0: the DIU , VIU
• Bus 1: the Power Architecture e300 core, PCI controller
• Bus 2: AXE audio processor
• Bus 3: MBX graphics accelerator2

• Bus 4: DMA, USB, FEC, SATA

The block supports connection of 1 DRAM rank (1 chip select) and supports the three mayor classes of 
DRAM:

• Mobile-DDR (LPDDR)
• DDR1
• DDR2

It supports these memories in 16-bit or 32-bit wide configurations.

The DRAM controller listens to the incoming requests to the five busses in parallel and then sends 
commands to the DRAM from the highest priority bus at the current time the, while the DRAM is ready 
to receive the command from this particular bus. If the DRAM is blocked because it needs to meet a timing 
requirement, the controller sends a command from a bus where there is no blockage. 

For example, suppose bus one has an incoming request on priority four, and it hits in bank 1 and the page 
is not open (the bank needs a precharge+activate command before the request can be serviced). Bus two 
has an incoming request on priority five, it hits in bank two and the correct page is already open. In this 
case, the DRAM controller accepts the bus two request first. While its reading from the appropriate bank, 

1. JEDEC standard calls these LPDDR. Most DRAM vendors call them Mobile-DDR.
2. MBX only available on MPC5121e, not on MPC5123

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

13-2 Freescale Semiconductor

it issues the active+precharge command for the bus one request. Because the DRAM controller sees it 
cannot issue the read for the bus one request (the bank needs precharge + activate), it takes the bus two 
request first. Because it can issue the read, the correct page is open. During this, it issues the precharge + 
activate for the bus 1 request in the background. This request does not suffer from the bus two request 
being serviced first.

The embedded priority manager determines the relative priority of each bus, and this is used by the DRAM 
controller to determine which requests are more urgent. 

Figure 13-1. Block Diagram of the Multi-port DRAM Controller

DRAM_CS
DRAM_RAS

DRAM_CAS

DRAM_WE

DRAM_BA[2:0]

DRAM_ADDRESS[15:0]

DDR Bus 0 

DDR Bus 1

DDR Bus 2

DDR Bus 3

DDR Bus 4

DDR_DQS_IN
DDR_DQ_IN

CONFIG

DDR_DQS_OUT

DDR_DM_OUT

DDR_DQ_OUT
DRAM_ODT

CONFIG

CONFIG
CONFIG

All Config

Command
Bypass

IPS BUS

SELF_REFRESH_REQ

SELF_REFRESH_ACK

DRAM_CLK

DRAM_CLKB

INT_REQ

DRAM_ODT

DRAM_CKE

DDR
Read Block

DDR
Write Block

DRAM
Command

Engine

Timing
Manager

Bus
Interface

Write
Buffers

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

Freescale Semiconductor 13-3

13.2 Features
• Supports CAS latency of 2, 3, and 4 clock cycles.
• Master busses

— Five incoming master busses
— Supports 16-byte and 32-byte bursts
— Supports byte enables
— Supports 4-bit priority signal for each bus.

• Arbitration protocol
— Inside the arbiter block, there are a total of six different arbiters that each take out the highest 

priority request in a certain class. All the arbiters are DRAM state aware, meaning they 
disregard requests that cannot be sent to the DRAM because of DRAM timing limitations.
– Arbiter - 1: Looks for highest priority read command
– Arbiter - 2: Looks for highest priority write command
– Arbiter - 3: Looks for highest priority activate-for-read command
– Arbiter - 4: Looks for highest priority activate-for-write command
– Arbiter - 5: Looks for highest priority precharge-for-read command
– Arbiter - 6: Looks for highest priority precharge-for-write command

— After the first prioritization, the next round of arbitrating between the different arbiters is done. 
A fixed-priority schema is followed:
– Read and write commands have highest priority
– Activate has next-highest priority
– Precharge has lowest priority
– The DRAM is in read or write mode. In read mode, reads have priority over writes. In write 

mode, writes have priority over read.
– DRAM only switches from read to write mode or vice-versa if:

A high-priority write is found, and the write buffer is full.
A high-priority read is found.
The device is in read mode, but no more reads pending
The device is in write mode, but no more writes pending.

• Write buffer contains five 32-byte entries.
• Supports 16-wide and 32-wide DDR1/DDR2 and Mobile-DDR DRAM devices
• Controller supports one chip select, 8-bank DRAM system
• Supports dynamic on-die termination in the host device and in the DRAM.

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

13-4 Freescale Semiconductor

13.3 Memory Map and Register Definition

13.3.1 Memory Map

Table 13-1. DRAM Controller Memory Map

Offset or Address Register Access

(base) + 0 DDR_SYS_CONFIG R/W

(base) + 4 DDR_TIME_CONFIG0 R/W

(base) + 8 DDR_TIME_CONFIG1 R/W

(base) + 0xC DDR_TIME_CONFIG2 R/W

(base) + 0x10 DDR_COMMAND R/W

(base) + 0x14 DDR_COMPACT_COMMAND R/W

(base) + 0x18 SELF_REFRESH_CMD_0 R/W

(base) + 0x1C SELF_REFRESH_CMD_1 R/W

(base) + 0x20 SELF_REFRESH_CMD_2 R/W

(base) + 0x24 SELF_REFRESH_CMD_3 R/W

(base) + 0x28 SELF_REFRESH_CMD_4 R/W

(base) + 0x2C SELF_REFRESH_CMD_5 R/W

(base) + 0x30 SELF_REFRESH_CMD_6 R/W

(base) + 0x34 SELF_REFRESH_CMD_7 R/W

(base) + 0x38 DQS config offset count R/W

(base) + 0x3C DQS config offset time R/W

(base) + 0x40 DQS delay status R

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

Freescale Semiconductor 13-5

13.3.2 Register Descriptions

13.3.2.1 DDR System Configuration Register

Offset: 0x0000Access: Read/Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
RST_

B
CKE

CLK 
ON

CMD 
MOD

E

DRAM_ROW_SELE
CT

DRAM_BANK_SELECT READ_TEST
SELF 
REF 
EN

16BIT
MOD

E

RDLY
[3]W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

RDLY[2:0]
HALF 
DQS 
DLY

QUA
RT 

DQS 
DLY

WDLY[2:0]
EARL

Y 
ODT

ON 
DIE 
TER
MI- 

NATE

FIFO 
OV 

PEN
D

FIFO 
UV 

PEN
D FIFO 

OV 
EN

FIFO 
UV 
ENW FIFO 

OV 
CLEA

R

FIFO 
UV 

CLEA
R

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-2. DDR System Configuration Register (Sheet 1 of 3)
(Register is repeated for reference.)

Table 13-2. DDR System Configuration Register Field Descriptions

Field Description

RST_B DRAM controller soft reset. When this bit is 0, the DRAM controller is in the reset state. When this bit is 1, 
the DRAM controller is out of reset. The bit controls the reset to the internal state machines. The configuration 
registers are reset by the resets from the hardware reset block, not by this bit.

CKE Value on the DRAM CKE pin. For functional operation, this needs to be high. During power-down, value can 
be low.

CLK ON When this bit is 1, the DRAM clock is running. When this bit is 0, the DRAM clock is stopped

CMD MODE When this bit is 0, the DRAM controller is in normal operation. When this bit is 1, the DRAM controller is in 
command mode and does not respond to requests on the incoming busses. Command mode is used for 
DRAM initialization and to switch the DRAM into and out of the different power-down and self-refresh modes.

DRAM_ROW_SE
LECT
and 

DRAM_BANK_S
ELECT

These fields control the multiplexing of the bus address to the DRAM bank and row address. Table 13-6 and 
Table 13-7 give the details. DRAM column address depends on 16-bit mode bit, and relationship is given in 
Table 13-6.

READ_TEST These fields are for production test. Don’t use.

SELFREFEN Self-refresh enable. When this bit is 1, the DRAM controller autonomously enters and exits the self-refresh 
using the self-refresh command registers when requested by the PMC. When the bit is 0, the transition is 
blocked.

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

13-6 Freescale Semiconductor

16-BIT MODE When this bit is set, the DRAM controller assumes a 16-bit wide memory is used. When this bit is cleared, a 
32-bit wide memory is assumed.
Note: This does not configure the pins for 16-bit mode. That must be done in the pin configuration.

RDLY[3:0] This field controls the expected delay between sending a read command to the DRAM and receiving the read 
data from the DRAM.

RDLY, HALF DQS DLY, and QUART DQS delay together to code for tDQSEN. 

The tDQSEN is the delay between the read command and when the internal DQS enable goes high. See 
Figure 13-3. Timing is internally compensated, and is referred to timing at the device pins. tDQSEN should be 
selected so the L-H transition of DQS enable is always in the preamble of the DQS input of the READ 
command. Required tDQSEN value depends on the CAS latency (CL), the distance between the DRAM and 
the device, and the type of DRAM used. Table 13-3 gives the detail on programming tDQSEN.

HALF DQS DLY This field is an extra field to control the expected read delay between issuing the read command and getting 
read data from the DRAM. This field offers 1/2 CSB clock granularity when programming the delay. See 
description of field RDLY for details

QUART DQS DLY This field is an extra field to control the expected read delay between issuing the read command, and getting 
read data from the DRAM. This field offers 1/4 csb clock granularity when programming the delay. - see 
description of field RDLY for details rdly, hald

WDLY[2:0] This field controls the write latency (WL) for write commands. See Table 13-4.

EARLY ODT This bit needs to be set if write latency is 1 (wdly[2:0] = 001) and on die termination is used with DDR2 DRAM. 
It makes sure the DRAM controller asserts the ODT signal going to the DRAM one clock ahead of issuing the 
write command. 

Offset: 0x0000Access: Read/Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
RST_

B
CKE

CLK 
ON

CMD 
MOD

E

DRAM_ROW_SELE
CT

DRAM_BANK_SELECT READ_TEST
SELF 
REF 
EN

16BIT
MOD

E

RDLY
[3]W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

RDLY[2:0]
HALF 
DQS 
DLY

QUA
RT 

DQS 
DLY

WDLY[2:0]
EARL

Y 
ODT

ON 
DIE 
TER
MI- 

NATE

FIFO 
OV 

PEN
D

FIFO 
UV 

PEN
D FIFO 

OV 
EN

FIFO 
UV 
ENW FIFO 

OV 
CLEA

R

FIFO 
UV 

CLEA
R

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-2. DDR System Configuration Register (Sheet 2 of 3)
(Register is repeated for reference.)

Table 13-2. DDR System Configuration Register Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

Freescale Semiconductor 13-7

ON DIE 
TERMINATE

If this bit is 1, the internal pads generates on-die termination during read. If the bit is clear, there is no on die 
termination. This bit controls ODT in the controller. The ODT in the DRAM is controlled via the DRAM internal 
configuration registers registers. Please consult DRAM data sheet for it.

FIFO OV CLEAR
FIFO UV CLEAR

FIFO OV 
PENDING
FIFO UV 

PENDING
FIFO OV EN
FIFO UV EN

These bits control the interrupt generation by the DRAM controller. The DRAM controller has two interrupts: 
FIFO OV pending and FIFO UV pending. These interrupts are set on overflow or underflow of the FIFO in the 
read block. When a read command is sent to the DRAM, it is entered into a FIFO. The DRAM is expected to 
answer by sending back the read data with some up and down edges on the DQS lines (the DQS strobes) 
used to clock the data. The DRAM controller clocks the read data with the DQS strobes supplied by the 
DRAM and retrieves the read command from the FIFO after receiving the correct number of read strobes. 
When the read data strobes returned by the DRAM do not match the expectations of the controller, the FIFO 
may underflow (if too many clocks are coming back from the DRAM) or overflow (if not enough clocks are 
coming back). These underflows and overflows are basically the result of problems with the DRAM interface 
or incorrect parameter settings in the controller or the DRAM. Care has been taken during the design of the 
DRAM controller not to enter a hang-up state when this occurs. However, read data is corrupt and CPU is 
informed via the FIFO overflow and FIFO underflow interrupts. The issue is also discussed in Section Bus 
Interface on page 13-28. 
 • FIFO_OV_PENDING and FIFO_UV_PENDING signal to the CPU if an overflow or underflow interrupt is 

pending
 • FIFO_OV_EN and FIFO_UV_EN bits are interrupt enable bits. If the pending + enable bit is set at the same 

time, the interrupt is sent to the e300 CPU.
 • FIFO_OV_CLEAR and FIFO_UV_CLEAR are clear bits. Writing a 1 to either of these clears the pending 

interrupt.

Offset: 0x0000Access: Read/Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
RST_

B
CKE

CLK 
ON

CMD 
MOD

E

DRAM_ROW_SELE
CT

DRAM_BANK_SELECT READ_TEST
SELF 
REF 
EN

16BIT
MOD

E

RDLY
[3]W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

RDLY[2:0]
HALF 
DQS 
DLY

QUA
RT 

DQS 
DLY

WDLY[2:0]
EARL

Y 
ODT

ON 
DIE 
TER
MI- 

NATE

FIFO 
OV 

PEN
D

FIFO 
UV 

PEN
D FIFO 

OV 
EN

FIFO 
UV 
ENW FIFO 

OV 
CLEA

R

FIFO 
UV 

CLEA
R

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-2. DDR System Configuration Register (Sheet 3 of 3)
(Register is repeated for reference.)

Table 13-2. DDR System Configuration Register Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

13-8 Freescale Semiconductor

Figure 13-3. tDQSEN

Table 13-3. Programming tDQSEN

{rdly[3:0],half_dqs_dly,quart_dqs_dly} tDQSEN (CSB Clock Periods)

1000 0 0 0.5

1000 0 1 0.75

1000 1 0 1.0

1000 1 1 1.25

0100 0 0 1.5

0100 0 1 1.75

0100 1 0 2.0

0100 1 1 2.25

0010 0 0 2.5

0010 0 1 2.75

0010 1 0 3.0

0010 1 1 3.25

0001 0 0 3.5

0001 0 1 3.75

0001 1 0 4.0

0001 1 1 4.25

0000 0 0 4.5

0000 0 1 4.75

0000 1 0 5.0

0000 1 1 5.25

Table 13-4. Write Latency

WDLY[2:0] Write Latency (CSB Clocks)

100 4

011 3

Read
tDQSEN

DRAM Clock

DRAM Command

DQS Enable (Internal)

DQS (in)

DQS enable L-to-H must
fall in preample of DQS (in)

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

Freescale Semiconductor 13-9

010 2

001 1

Table 13-5. Number of DRAM Banks Addressed and Mapping of Address to DRAM Bank Address

DRAM_BANK_SELECT
Number of 

Banks
DRAM_BANK

0 4 DRAM_BANK[1:0] = address[11:10]

1 4 DRAM_BANK[1:0] = address[12:11]

2 8 DRAM_BANK[2:0] = address[13:11]

3 4 DRAM_BANK[1:0] = address[13:12]

4 8 DRAM_BANK[2:0] = address[14:12]

5 4 DRAM_BANK[1:0] = address[14:13]

6 8 DRAM_BANK[2:0] = address[15:13]

7 4 DRAM_BANK[1:0] = address[15:14]

8 8 DRAM_BANK[2:0] = address[16:14]

9 4 DRAM_BANK[1:0] = address[25:24]

10 8 DRAM_BANK[2:0] = address[26:24]

11 4 DRAM_BANK[1:0] = address[26:25]

12 8 DRAM_BANK[2:0] = address[27:25]

13 8 DRAM_BANK[2:0] = address[28:26]

14 8 DRAM_BANK[2:0] = address[29:27]

15 8 DRAM_BANK[2:0] = address[30:28]

Table 13-6. Mapping of Address to DRAM Column Address 

16-Bit Mode DRAM_COLUMN[12:0]

0 DRAM_COLUMN[12:0] = address[14:2]

1 DRAM_COLUMN[12:0] = address[13:1]

Table 13-4. Write Latency (continued)

WDLY[2:0] Write Latency (CSB Clocks)

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

13-10 Freescale Semiconductor

13.3.2.2 Timing Configuration

NOTE
In 16 bit mode (16BITMODE = 1), DDR memories with column address 
line 0 to 7 are not supported.

Table 13-7. Mapping of Address to DRAM Row Address

DRAM_ROW_SELECT
[2:0]

DRAM_ROW[15:0]

0 DRAM_ROW[15:0] = address[25:10]

1 DRAM_ROW[15:0] = address[26:11]

2 DRAM_ROW[15:0] = address[27:12]

3 DRAM_ROW[15:0] = address[28:13]

4 DRAM_ROW[15:0] = address[29:14]

5 DRAM_ROW[15:0] = address[30:15]

6 DRAM_ROW[14:0] = address[30:16]

7 DRAM_ROW[13:0] = address[30:17]

Offset: 0x0004 Access: Read/Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DRAM_REFRESH_TIME[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DRAM_COMMAND_TIME[7:0] DRAM_BANK_PRE_TIME[7:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13-4. DDR Time Config0 Register

Table 13-8. DDR Time Config0 Register Field Descriptions

Field Description

DRAM_REFRES
H_TIME[15:0]

Refresh interval of the DRAM. Program in this register the number of CSB clocks between any two refresh 
requests. This register should contain the maximum number of CSB clocks between two refresh requests.
The average time in CSB clock periods between two refreshes to the DRAM is this number.

DRAM_COMMA
ND_TIME[7:0]

Time-out after sending a command to the DRAM in bypass mode. For command sent to the DRAM using the 
DDR_COMMAND and DDR_COMPACT_COMMAND register, the normal checking of the timing parameters 
is not done. Instead, any new command to the DRAM is disabled for DRAM_COMMAND_TIME[7:0] dram 
clock periods. This parameter needs to be programmed for the worst-case time-out. 

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

Freescale Semiconductor 13-11

DRAM_BANK_
PRE_TIME[7:0]

Time-out. Any active bank, that has no outstanding requests, is automatically precharged by the DRAM 
controller after this time-out has elapsed since the last access to the bank. This time can be set short, which 
results in open banks being precharged quite fast to long, which results in open banks left open for long time. 
The value is a time count in dram clock periods. 

Offset: 0x0008Access: Read/Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DRAM_TIME_RFC[5:0] DRAM_TIME_WR1[4:0]

DRAM_TIME_WTR1
[3:0]

DRAM_
TIME_
RRD[5]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DRAM_TIME_RRD[4:0] DRAM_TIME_RC[5:0] DRAM_TIME_RAS[4:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13-5. DDR Time Config1 Register

Offset: 0x0004 Access: Read/Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DRAM_REFRESH_TIME[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DRAM_COMMAND_TIME[7:0] DRAM_BANK_PRE_TIME[7:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13-4. DDR Time Config0 Register

Table 13-8. DDR Time Config0 Register Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

13-12 Freescale Semiconductor

DDR_TIME_CONFIG1 and DDR_TIME_CONFIG2 registers need to be programmed with the 
DDR1/DDR2 timing parameters. All times are given in clock cycles. 

The timing parameters are conceived so the controller CSB clock cycles match with the Jedec DDR2 
specification. To interface with DDR1 or Mobile-DDR(LPDDR), some timing parameters need not be 
enforced, or are calculated differently. Refer to DRAM datasheet to determine their value. The timing 
parameters need to be programmed in function of this DRAM requirement. Table 13-9 gives the details.

Offset: 0x000C Access: Read/Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DRAM_TIME_RCD[3:0] DRAM_TIME_FAW[4:0] DRAM_TIME_RTW1[3:0]

DRAM_TIME_CCD[
3:1]W

Reset 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DRA
M_TI
ME_
CCD[

0]

DRAM_TIME_RTP[4:0] DRAM_TIME_RP[4:0] DRAM_TIME_RPA[4:0]
W

Reset 0 0 0 0 0 0 0 0 0 0

Figure 13-6. DDR Time Config2 Register

Table 13-9. Timing Parameters

Timing Parameter
Controls Jedec 

Parameter
(Jedec spec)

Formulae
(All times in CSB clock 

periods)
Description

DRAM_TIME_RFC tRFC DRAM_TIME_RFC = tRFC REFRESH to ACTIVE or REFRESH to REFRESH 
command interval

DRAM_TIME_RRD tRRD DRAM_TIME_RRD = tRRD ACTIVE bank A to ACTIVE bank B command

DRAM_TIME_RC tRC DRAM_TIME_RC = tRC ACTIVE to ACTIVE (same bank) command

DRAM_TIME_RAS tRAS DRAM_TIME_RAS = tRAS ACTIVE to PRECHARGE command

DRAM_TIME_RCD tRCD DRAM_TIME_RCD = tRCD ACTIVE to READ or WRITE delay

DRAM_TIME_FAW tFAW DRAM_TIME_FAW1 = tFAW 4-bank activate period

DRAM_TIME_CCD tCCD DRAM_TIME_CCD2 = 
max(tCCD,2) (32-bit mode)
max(tCCD,4)(16-bit mode)

CAS to CAS delay
Because time is needed for data to be sent over, 
this time is minimum two clocks in 32-bit mode and 
four clocks in 16-bit mode

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

Freescale Semiconductor 13-13

DRAM_TIME_RTP tRTP DRAM_TIME_RTP3 =
tRTP (32-bit mode, DDR2)

tRTP+2 (16-bit mode, DDR2)

Read to precharge delay.
DRAM_TIME_RTP is the read-to-precharge delay 
and tRTP is the internal read-to-precharge delay, 
hence, the difference for 16-bit mode.
Figure 13-7 gives the details.

DRAM_TIME_RP tRP DRAM_TIME_RP = tRP Precharge command period

DRAM_TIME_RPA tRP DRAM_TIME_RPA4 = tRP + 1 
(8 bank device)

DRAM_TIME_RPA = tRP (4 
bank device)

Precharge all command period

DRAM_TIME_WR1 tWR DRAM_TIME_WR1 = 
WL + tWR + 2 (32-bit mode)
WL + tWR + 4 (16-bit mode)

DRAM_TIME_WR1 is the write recovery time, 
measured in clocks between write command and 
precharge command. For this reason, WL (the 
write latency) and the length of the actual write (2 
or 4) need to be added to tWR.
Figure 13-8 gives the details.

DRAM_TIME_WTR1 tWTR DRAM_TIME_WTR1 = 
WL + tWTR + 2 (32-bit mode)
WL + tWTR + 4 (16-bit mode)

DRAM_TIME_WTR1 is the write to read time, 
measured in clocks between write command and 
read command. For this reason, WL (the write 
latency) and the length of the actual write (2 or 4) 
need to be added to tWTR.
Figure 13-9 gives the details

DRAM_TIME_RTW1 — DRAM_TIME_RTW1 = 
CL - WL + 2 + tBTA (32-bit)
CL - WL + 4 + tBTA (16-bit)

DRAM_TIME_RTW1 is the read-to-write time, 
measured in clocks between the read and write 
command. There is no limitation on the DRAM on 
how to set this parameter. The parameter should 
be set such that there is no contention on the DQ 
data bus when switching from read to write. 
Equation given at left tries to come up with a 
formulae that defines the minimum value of 
DRAM_TIME_RTW1 to avoid contention. CL is the 
cas latency, WL is the write latency, and tBTA is the 
bus turn-around time. tBTA is the minimum dead 
time that needs to be put on the bus between the 
5121e driving the bus and the DRAM driving the 
bus to take into account the transit delay on the 
PCB, the pad delay, the DRAM skew, and the 
on-chip delay. 

1 For DRAMs that do not need this check, set equal to 4 * tRRD
2 For DDR1 and Mobile-DDR tCCD is 2 for 32-bit operation, 4 for 16-bit operation.
3 For DDR1 and Mobile-DDR mode, tRTP is not explicitely given. It is equal to 4 for 16-bit mode, equal to 2 for 32-bit mode.
4 This timing parameter controls precharge all command period duration. The equations shown are the Jedec definition of the 

tRPA. Some DRAM vendors do not follow Jedec on this, and list tRPA directly. In this case, set DRAM_TIME_RPA = tRPA.

Table 13-9. Timing Parameters (continued)

Timing Parameter
Controls Jedec 

Parameter
(Jedec spec)

Formulae
(All times in CSB clock 

periods)
Description

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

13-14 Freescale Semiconductor

Figure 13-7. Read to Precharge Timing Diagram

Figure 13-8. Write to Precharge Timing Diagram

Figure 13-9. Write to Read Timing Diagram

D1 D2 D3 D4

dram_time_rtp

READ NOP NOP PRECHG

Bank ABank A

dram_clk

dram_command

dram_address

dram_dqs

dram_dq

D1 D2 D3 D4

WRITE NOP NOP

Bank A

DRAM_CLK

DRAM_COMMAND

DRAM_ADDRESS

DRAM_DQS

DRAM_DQ

Bank a/all
tWR

DRAM_TIME_WRL

PRECHG

D1 D2 D3 D4

WRITE NOP NOP

DRAM_CLK

DRAM_COMMAND

DRAM_ADDRESS

DRAM_DQS

DRAM_DQ

tWTR

DRAM_TIME_WTR1

READ

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

Freescale Semiconductor 13-15

Figure 13-10. Read to Write Timing Diagram
D1 D2 D3 D4

DRAM_CLK

DRAM_COMMAND

DRAM_ADDRESS

DRAM_DQS

DRAM_DQ

DRAM_TIME_WTR1

READ NOP NOP WRITE

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

13-16 Freescale Semiconductor

13.3.2.3 Command Register

Offset: 0x0010 Access: Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W CMD
REQ

DRAM_COMMAND[23:16]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W DRAM_COMMAND[15:0]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-11. DRAM Command Register

Table 13-10. DRAM Command Register Field Descriptions

Field Description

CMD REQ
DRAM_COMMA

ND

The DRAM command register gives the option to send commands directly to the DRAM. This register only 
operates when the command mode bit (bit 29) is set in the DDR_SYS_CONFIG register.

When this bit is set and a 1 is written to bit 24 (CMD req) of this register, the value written to bits [23:0] of this 
register is output on the DRAM address group with following mapping:
 • DRAM_ADDRESS[14:0] = DRAM_COMMAND[15:0]
 • DRAM_ADDRESS[15] = 0
 • if(DRAM_COMMAND[15] == 1) turn off CKE DRAM attribute bit1

 • DRAM_BA[2:0] = DRAM_COMMAND[18:16]
 • DRAM_WEB = DRAM_COMMAND[19]
 • DRAM_CAS = DRAM_COMMAND[20]
 • DRAM_RAS = DRAM_COMMAND[21]
 • DRAM_CS = DRAM_COMMAND[22]
Note: The intended use of the command interface is to initialize the DRAM and to put the DRAM into or out 

of the self-refresh and power-down modes.
1 If the CKE is turned off, it is turned off the clock cycle after the command is written to the DRAM.

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

Freescale Semiconductor 13-17

13.3.2.4 Compact Command Register

Offset: 0x0014 Access: Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W DRAM_COMPACT_COMMAND[15:0]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-12. Compact Command Register

Table 13-11. Compact Command Register Field Descriptions

Field Description

DRAM_COMPAC
T_

COMMAND[15:0]

The compact command register gives the option to sent commands to the DRAM using 16-bit writes. See 
Table 13-12

Table 13-12. Compact Command Register Options

compact_command[15:14]

00 Write DRAM attributes and wait (wait time = wait time till next command) Wait is executed after 
writing attributes.
 • CKE = COMPACT_COMMAND[13]
 • Self Ref En = COMPACT_COMMAND[12]
 • CLK ON = COMPACT_COMMAND[11]
 • CMD MODE = COMPACT_COMMAND[10]
 • If(compact_command[7] == 1’b1)
 • Wait time = (compact_command[6:0] * 512) dram clock periods
Or
 • Wait time = (compact_command[6:0] * 32) dram clock periods

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

13-18 Freescale Semiconductor

The COMPACT_COMMAND register’s main purpose is to be written during enter/exit of self-refresh (the 
auto-sequencer). This is described in the following section.

The compact command register allows three types of actions to be executed:
• Write DRAM attributes and wait. Wait is executed after updating the DRAM attributes. It is 

possible to update the CKE bit, the self-refresh enable, the CLK configuration (on/off), and the 
CMD mode setting.
— If, during the time the wait is executed, another command is written to the CompactCommand 

register, this write is delayed until the wait is over. 
During this time, the peripheral bus and all busses connected to it block and are not able to 
process any other read or write.

• Write a command to DRAM without controlling the address. In this mode, it is possible to send 
refresh, activate, and precharge commands to the DRAM

• Write a DRAM mode register.

01 DRAM command
 • DRAM_CS = COMPACT_COMMAND[12]
 • DRAM_RAS = COMPACT_COMMAND[11]
 • DRAM_CAS = COMPACT_COMMAND[10]
 • DRAM_WEB = COMPACT_COMMAND[9]
 • DRAM_BA[2:0] = COMPACT_COMMAND[8:6]
 • DRAM_ADDRESS[10] = COMPACT_COMMAND[5]
 • if(COMPACT_COMMAND[4] == 1’b1) turn off CKE DRAM attribute bit1

1x DRAM set mode registers
 • DRAM_CS = 0
 • DRAM_RAS = 0
 • DRAM_CAS = 0
 • DRAM_WEB = 0
 • DRAM_ADDRESS[13] = 0 
 • DRAM_BA[2] = 0
 • DRAM_ADDRESS[12:0] = COMPACT_COMMAND[12:0]
 • DRAM_ADDRESS[14:13] = COMPACT_COMMAND[14:13]

1 CKE is turned off the clock cycle after sending the requested command to the DRAM.

Table 13-12. Compact Command Register Options

compact_command[15:14]

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

Freescale Semiconductor 13-19

13.3.2.5 Enter/Exit Self-Refresh Registers

Offset: 0x0018 Access: Read/Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SELF_REFRESH_CMD0[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-13. Self-Refresh Command 0 Register

Offset: 0x001C Access: Read/Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SELF_REFRESH_CMD1[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-14. Self-Refresh Command 1 Register

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

13-20 Freescale Semiconductor

Offset: 0x0020 Access: Read/Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SELF_REFRESH_CMD2[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-15. Self-Refresh Command 2 Register

Offset: 0x0024 Access: Read/Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SELF_REFRESH_CMD3[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-16. Self-Refresh Command 3 Register

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

Freescale Semiconductor 13-21

Offset: 0x0028 Access: Read/Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SELF_REFRESH_CMD4[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-17. Self-Refresh Command 4 Register

Offset: 0x002C Access: Read/Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SELF_REFRESH_CMD5[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-18. Self-Refresh Command 5 Register

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

13-22 Freescale Semiconductor

The self-refresh command registers contain the commands sent to the DRAM when a self-refresh request 
is given. Figure 13-21 gives the details.

Figure 13-21. Enter/exit Self-Refresh Command Protocol

When the DRAM controller sees a low-to-high transition on the incoming self-refresh REQ signal coming 
from the PMC controller, its reaction depends on the state of the internal self-refresh EN command bit. 

Offset: 0x0030 Access: Read/Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SELF_REFRESH_CMD6[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-19. Self-Refresh Command 6 Register

Offset: 0x0034 Access: Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SELF_REFRESH_CMD7[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-20. Self-Refresh Command 7 Register

Self-refresh REQ

Self-refresh ACK

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

Freescale Semiconductor 13-23

• If the self-refresh EN bit is set, the DRAM controller writes self-refresh CMD[0:3] registers, 
starting with reg 0 and ending with reg 3, to the compact command register. After the last register 
has been written and its wait time has expired (if any), it pulls high the self-refresh ACK signal to 
the PMC to acknowledge the enter of self-refresh mode.

• If the self-refresh EN bit is clear, the DRAM controller does not react to the request and keeps 
self-refresh ACK signal low.

When the DRAM controller sees a high-to-low transition on the incoming self-refresh REQ signal coming 
from the PMC controller, its reaction is similar and depends on the state of the internal self-refresh EN 
command bit again.

• If the self-refresh EN bit is set, the DRAM controller writes self-refresh CMD[4:7] registers, 
starting with reg four and ending with reg seven, to the compact command register. After the last 
register has been written and its wait time has expired (if any), it pulls low the self-refresh ACK 
signal to the PMC to acknowledge the exit of the self-refresh mode.

• If the self-refresh EN bit is clear, the DRAM controller does not react to the request and keeps 
self-refresh ACK signal high.

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

13-24 Freescale Semiconductor

13.3.2.6 DQS Config Offset Count and DQS Config Offset Time

Offset: 0x0038 Access: Read/Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DQS SLAVE 3 OFFSET COUNT[6:0] DQS SLAVE 2 OFFSET COUNT[6:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DQS SLAVE 1 OFFSET COUNT[6:0] DQS SLAVE 0 OFFSET COUNT[6:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-22. DQS Config Offset Count Register

Table 13-13. Compact Command Register Field Descriptions

Field Description

DQS_SLAVE_[3:
0]_OFFSET_CO

UNT 

There is a separate field for each DQS input to the controller. These fields code for an offset counted in 
elemental gate delay increments applied to each DQS slave. The number is a two-complement number that 
can be positive and negative.
This register can be used to compensate systematic delay shift in the DRAM controller due to processing. 
Leave this register all-zero, unless Freescale issues a report giving a different value.

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

Freescale Semiconductor 13-25

Offset: 0x003C Access: Read/Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DQS SLAVE 3 OFFSET TIME[4:0] DQS SLAVE 2 OFFSET TIME[4:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DQS SLAVE 1 OFFSET TIME[4:0] DQS SLAVE 0 OFFSET TIME[4:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-23. DQS Config Offset Time Register

Table 13-14. Compact Command Register Field Descriptions

Field Description

DQS_SLAVE_[3:
0]_OFFSET_TIM

E

There is a separate field for each DQS input to the controller. These fields code for an offset counted in time 
units. 
This register can be used to advance or delay the read strobe. Negative values advance the read strobe, 
positive values retard the read strobe.
Time delay coded = <field value (2-complement)> * Tdram-clock/256. 
The applied offset range for a 200 MHz clock is approximately ± 290 pS. 

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

13-26 Freescale Semiconductor

13.3.2.7 DQS Delay Status

13.4 Functional Description
The DRAM controller is a multi-port DRAM controller. It listens to incoming requests on multiple busses 
and decides on each rising clock edge what command needs to be sent to the DRAM.

A block diagram is given in Figure 13-1. The major blocks of the DRAM controller are described below.

13.4.1 Interfacing with the DRAM

13.4.1.1 Connecting the DRAM

• 32-bit DRAM systems need to be connected to all DQ, DM, DQS lines.
• 16-bit DRAM systems need to connected to the low order bits of the data bus.

(DQ[15:0], DQS[1:0] and DM[1:0])
•  row/column address pins need to be connected starting bit [0] and ending with the highest order 

DRAM bit. Leave MSB’s unconnected if the DRAM has less address pins than the controller.
• DRAM bank address pins need to be connected starting bit [0] and ending with the highest order 

bank address bit. Leave MSB unconnected if the DRAM has less bank address pins than the 
controller.

Offset: 0x0040 Access: Write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R DQS MASTER COUNT 2[11:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DQS MASTER COUNT 1[11:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-24. DQS Delay Status Register

Table 13-15. DQS Delay Status Register Field Descriptions

Field Description

DQS MASTER 
COUNT 2

Delay count output by the controller for the first DQS master to code for 1/4 CSB clock delay

DQS MASTER 
COUNT 1

Delay count output by the controller for the second DQS master to code for 1/4 CSB clock delay

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

Freescale Semiconductor 13-27

13.4.2 Programming DRAM Device Internal Configuration Register
• Set burst type to sequential
• Burst length is always 16-byte. Means 4-beat bursts in a 32-bit system, 8-beat burst in a 16-bit 

system
• Set CAS latency to lowest value DRAM can tolerate at intended speed, and then set write latency 

and read latency accordingly.
• Set posted CAS additive latency to 0
• Controller never uses auto-precharge on read or write.
• Configure DQS operation for single-ended operation.
• Rtt and output drive strength configuration depends on electricals. 

13.4.3 DRAM Command Engine

This block decides what command to send to the DRAM controller next. There are four different 
commands that can be sent to the DRAM to service incoming requests from the five incoming busses.

• Precharge
• Activate
• Read
• Write

On every rising clock edge, the DRAM command engine first determines with parallel logic what is 
highest priority pending precharge, activate, read and write command. Next, it decides which of these 
commands to send to the DRAM.

The arbiters that make the decisions about what command to send next to the DRAM are aware of the 
current state the DRAM is in. When arbitrating a command on the DRAM bus, the following information 
is processed:

• For each bank, if it is precharged or not
• For each incoming request, if it hits in an already active bank or not
• For each bank, if the DRAM currently can accept a precharge command to it
• For each bank, if the DRAM currently can accept an activate command to it
• For each bank, if the DRAM currently can accept a read command to it
• For each bank, if the DRAM currently can accept a write command to it

The logic keeping track of what is currently possible on each of the banks is not in the DRAM command 
engine. It is part of the timing manager, whose task is to signal to the DRAM command engine that 
commands are currently possible.

13.4.4 Write Buffer

All incoming writes are sent first to the write buffer, part of the command engine. Writes are sent to the 
DRAM in background, whenever possible. The DRAM tries to postpone the writes until there are no 
further outstanding read requests. However, when the write buffer is full, or when there is a new request 

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

13-28 Freescale Semiconductor

for an address already inside the write buffer, the DRAM controller writes the content of the write buffer 
to the DRAM.

13.4.5 Timing Manager

The timing manager consists of a bank of counters. These counters keeps track of all DRAM timing 
parameters and signals to the DRAM command engine when a precharge, activate, read or write command 
is possible. This information is supplied to the DRAM command engine for each bank separately.

All timing parameters are programmable in software.

13.4.6 DRAM Read Block and DRAM Write Block

Sending a read or write command to the DRAM is a two-step process. First, the command is sent, which 
is done by the command engine. After some clock cycles, the data must follow.

Manipulating the read data is done by the read block. For every read command sent to the DRAM, the 
command engine informs the read block. Upon receiving the read command, the read block delays this to 
account for DRAM pipelining. Then, it receives the correct amount of data from the DRAM DQ inputs 
and forward this data to the correct bus.

Manipulating the write data is done by the write block. It works the same way as the read block. The 
command engine informs the write block of a pending write. Upon receiving the command, the write block 
delays this to account for DRAM pipelining. Then, it receives the relevant data from the write buffer and 
transmits this to the DRAM. 

13.4.7 Bus Interface

The bus interface accepts a slave peripheral bus. The bus interface fulfills several functions:
• It contains all configuration registers
• It contains logic to send an error interrupt to the processor. The error interrupt is active when the 

FIFO overflow or FIFO underflow error condition and corresponding interrupt enable in register 
DDR_SYS_CONFIG is set. The register summary is given in Figure 13-2. 
The FIFO overflow and underflow flags are tied to a FIFO that keeps track of the number of DQS 
strobes the DRAM is expected to produce. If a read command is sent to the DRAM, the DRAM is 
expected to answer after producing the read data on its DQ outputs, with some edges on its DQS 
output used by the controller to clock the read data. If the DRAM controller produces the read 
strobes at an incorrect time, or produces not enough or too many read strobes, the DRAM controller 
may detect some error conditions because they result in an overflow or underflow of the FIFO that 
keeps track of the number of outstanding DQS pulses. These bits do not detect timing configuration 
errors. Underflows and overflows signaled by the read FIFO point to following possible error 
sources:
— Incorrect configuration of the DRAM. Burst length set incorrectly
— Incorrect configuration of the DRAM controller. 

– Incorrect RDLY

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

Freescale Semiconductor 13-29

– Incorrect HALF_DQS_DLY
– Incorrect QUART_DQS_DLY
– Incorrect DRAM timing parameters or mis-match between various settings.

— Problems with the electrical connections between the DRAM controller and the DRAM
• It contains a bypass path to send commands to the DRAM. This is because the DRAM controller 

contains no logic to take care of DRAM initialization, programming the mode registers, or putting 
the DRAM into or out of the sleep and standby modes like self-refresh. Essentially, these functions 
are made available over the peripheral bus. To program the mode registers, the DRAM controller 
needs to be put in a bypass mode, where incoming requests are not serviced. In this bypass mode, 
commands are sent from the peripheral interface directly to the DRAM to program the mode 
registers or to put the DRAM into or out of sleep mode.

• During bypass mode, all reads and writes are blocked. Refresh keeps running, but can be separately 
disabled.

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller

13-30 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 14-1

Chapter 14  
DRAM Controller Priority Manager

14.1 Introduction

Figure 14-1. Priority Manager Block Diagram

The multi-port DRAM controller services the highest priority request from five different busses using a 
4-bit priority signal. This 4-bit priority is dynamically set by the DRAM controller priority manager based 
on register settings and the most recent activity on each bus. In general, the DRAM priority manager 
increases the priority of a channel if it has not been recently serviced and decreases the priority of channels 
that have been recently serviced.

A block diagram of the priority manager is given in Figure 14-1. It accepts the request and ACK-signals 
for all five DRAM busses, and produces the priority signals for the five busses.

The priority manager uses an ACK-based schema; the priority is dependent on how many times for the last 
N requests accepted by the DRAM controller the current own bus won the request. A running average 
counter keeps track of how many acknowledgements out of the last N acknowledgements have been for a 
specific bus. This number is then put in a look-up table configurable by writing some config registers. The 
output of the look-up table is the priority for the next request on this bus.

This priority schema is versatile because programming the look-up table allows controlling relative 
priority to other channels and the average share of the bandwidth the current master gets. The priority 
schema introduces fairness because the look-up table can be programmed to reduce the priority of a bus 
that has won a large share of requests and increase the priority of a bus that lost a large share of requests.

IPMX4_PRIO[3:0]
IPMX3_PRIO[3:0]

IPMX2_PRIO[3:0]

IPMX1_PRIO[3:0]
IPMX0_PRIO[3:0]

IPMX0_PRIO(DIU,VIU)

Priority Manager

IPS Interface

IPMX0_REQ

IPMX1_REQ

IPMX2_REQ

IPMX3_REQ

IPMX4_REQ

IPMX0_ACK

IPMX1_ACK

IPMX2_ACK

IPMX3_ACK
IPMX4_ACK

IP Bus

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

14-2 Freescale Semiconductor

14.1.1 Features
• Dynamic priority calculation based on ACKing history 

— Fully programmable using look-up table.
– Can be configured for high or low latency and high or low bandwidth
– Separate control over average latency and average bandwidth
– Versatile so it can mimic the CSB arbitration schema.

— Fairness guaranteed by reducing priority of channels that receive a lot of grants, and increasing 
priority of channels that are denied the bus often.

— Repeat transfer built into the DRAM controller. Priority manager can set the maximum repeat 
count by controlling when lowest priority occurs.

• Feed-through mode where DIU and VIU priority is controlled directly by the DIU and VIU.

14.2 Bus Connections
The following masters are connected to five busses.

• Bus 0 : DIU, VIU
• Bus 1 : Power architecture e300, PCI
• Bus 2 : AXE audio engine
• Bus 3 : MBX graphics engine1

• Bus 4 : USB, DMA, FEC, SATA

14.3 Memory Map and Register Definition

14.3.1 Memory Map

1. Only on MPC5121e. Not on MPC5123

Table 14-1. Prioman Memory Map

Offset or 
Address

Register Access Section/Page

0x80 PRIOMAN_CONFIG1 R/W 14.3.2.1/14-4

0x84 PRIOMAN_CONFIG2 R/W 14.3.2.1/14-4

0x88 HIPRIO_CONFIG R/W 14.3.2.2/14-6

0x8C LUT table 0 main upper R/W 14.3.2.3/14-7

0x90 LUT table 1 main upper R/W 14.3.2.3/14-7

0x94 LUT table 2 main upper R/W 14.3.2.3/14-7

0x98 LUT table 3 main upper R/W 14.3.2.3/14-7

0x9C LUT table 4 main upper R/W 14.3.2.3/14-7

0xA0 LUT table 0 main lower R/W 14.3.2.4/14-8

0xA4 LUT table 1 main lower R/W 14.3.2.4/14-8

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

Freescale Semiconductor 14-3

0xA8 LUT table 2 main lower R/W 14.3.2.4/14-8

0xAC LUT table 3 main lower R/W 14.3.2.4/14-8

0xB0 LUT table 4 main lower R/W 14.3.2.4/14-8

0xB4 LUT table 0 alternate upper R/W 14.3.2.5/14-9

0xB8 LUT table 1 alternate upper R/W 14.3.2.5/14-9

0xBC LUT table 2 alternate upper R/W 14.3.2.5/14-9

0xC0 LUT table 3 alternate upper R/W 14.3.2.5/14-9

0xC4 LUT table 4 alternate upper R/W 14.3.2.5/14-9

0xC8 LUT table 0 alternate lower R/W 14.3.2.6/14-10

0xCC LUT table 1 alternate lower R/W 14.3.2.6/14-10

0xD0 LUT table 2 alternate lower R/W 14.3.2.6/14-10

0xD4 LUT table 3 alternate lower R/W 14.3.2.6/14-10

0xD8 LUT table 4 alternate lower R/W 14.3.2.6/14-10

0xDC Performance monitor config R/W 14.3.2.7/14-11

0xE0 Event time counter R/W 14.3.2.8/14-12

0xE4 Event time preset R/W 14.3.2.9/14-13

0xE8 Performance monitor 1 address low R/W 14.3.2.10/14-13

0xEC Performance monitor 2 address low R/W 14.3.2.10/14-13

0xF0 Performance monitor 1 address hi R/W 14.3.2.10/14-13

0xF4 Performance monitor 2 address hi R/W 14.3.2.10/14-13

0x100 Performance monitor 1 read counter R 14.3.2.11/14-14

0x104 Performance monitor 2 read counter R 14.3.2.11/14-14

0x108 Performance monitor 1 write counter R 14.3.2.11/14-14

0x10C Performance monitor 2 write counter R 14.3.2.11/14-14

0x110 Granted ack counter 0 R 14.3.2.12/14-15

0x114 Granted ack counter 1 R 14.3.2.12/14-15

0x118 Granted ack counter 2 R 14.3.2.12/14-15

0x11C Granted ack counter 3 R 14.3.2.12/14-15

0x120 Granted ack counter 4 R 14.3.2.12/14-15

0x124 Cumulative wait counter 0 R 14.3.2.13/14-15

0x128 Cumulative wait counter 1 R 14.3.2.13/14-15

0x12C Cumulative wait counter 2 R 14.3.2.13/14-15

0x130 Cumulative wait counter 3 R 14.3.2.13/14-15

0x134 Cumulative wait counter 4 R 14.3.2.13/14-15

0x138 Summed priority counter 0 R 14.3.2.14/14-16

0x13C Summed priority counter 1 R 14.3.2.14/14-16

Table 14-1. Prioman Memory Map (continued)

Offset or 
Address

Register Access Section/Page

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

14-4 Freescale Semiconductor

14.3.2 Register Descriptions

14.3.2.1 PRIOMAN_CONFIG1, PRIOMAN_CONFIG2

0x140 Summed priority counter 2 R 14.3.2.14/14-16

0x144 Summed priority counter 3 R 14.3.2.14/14-16

0x148 Summed priority counter 4 R 14.3.2.14/14-16

0x80 PRIOMAN_CONFIG1 read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R LUT 
SEL4[1:0]

LUT 
SEL3[1:0]

LUT 
SEL2[1:0]

LUT 
SEL1[1:0]

LUT 
SEL0[1:0]

ACK_COUNT4[3:0]
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ACK_COUNT3[2:0] ACK_COUNT2[3:0] ACK_COUNT1[3:0] ACK_COUNT0[3:0]

W

Reset 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

= Unimplemented or Reserved

Figure 14-2. PRIOMAN_CONFIG1 Register

Table 14-1. Prioman Memory Map (continued)

Offset or 
Address

Register Access Section/Page

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

Freescale Semiconductor 14-5

0x84 prioman_config2 read/write

Power

Architecture

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Conventional 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CON
GEST

ED

DIU/
VIU 
OVE

RRUL
E

ACK 
SEL4

ACK 
SEL3

ACK 
SEL2

ACK 
SEL1

ACK 
SEL0

W

Reset 0 0 0 0 0 0 0 0 0 - 0 1 0 0 0 1

= Unimplemented or Reserved

Figure 14-3. PRIOMAN_CONFIG2 Register

Table 14-2. PRIOMAN CONFIG Fields

Field Description

CONGESTED Read only
1: Congested flag is set
0: Congested flag is cleared

DIU/VIU-OVER
RULE

1: Priority for channel 0 taken from DIU/VIU directly
0: DIU/VIU priority follows normal schema.

ACK SEL4
ACK SEL3
ACK SEL2
ACK SEL1
ACK SEL0

There is one of these bits for each priority manager channel. They determine what happens if the current 
channel is not requesting
1: If current channel is not requesting, every ACK for other channel is treated like an ACK for the current 
channel. Regulates default priority to low value
0: No special overrule. Regulates default priority to high value

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

14-6 Freescale Semiconductor

14.3.2.2 HIPRIO_CONFIG

The HIPRIO_CONFIG register controls the hiprio detection logic. The hiprio detection logic detects what 
percentage of the requests ACKed by the DRAM controller are ACKed with a priority larger than eight.

LUT SEL4
LUT SEL3
LUT SEL2
LUT SEL1
LUT SEL0

Selectors between primary and secondary Look-Up table configuration register
0: Select main look-up table configuration register
1: Select alternate look-up table configuration register
2: Select alternate look-Up table configuration register if congested flag is set1

3: Select alternate look-up table configuration register if DIU/VIU incoming priority bit 3 is high.2

ACK_COUNT4
[3:0]

ACK_COUNT3
[3:0]

ACK_COUNT2
[3:0]

ACK_COUNT1
[3:0]

ACK_COUNT0
[3:0]

Configuration fields. One for every channel. Determines how many requests the number of ACKs for the 
self-channel is counted.3

0 : 1 
1 : 2 
2 : 3
3 : 4
4 : 6
5 : 8
6 : 12
7 : 16
8 : 24
9 : 32
10 : 48
11 : 63

1 Congested flag is explained in Section 14.3.2.2, “HIPRIO_CONFIG”
2 The switch for all tables is based on the DIU/VIU flag. If LUT_SEL1 = 3, the e300/PCI table switches to the alternate table if the 

DIU/VIU flag is set.
3 Look-up table input is running average of the number of acks for the self channel counted over the grant total of the last N acks. 

ack_count[2:0] controls the parameter N.

0x88 HIPRIO_CONFIG read/write

Power

Architecture

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Conventional 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SET_CONGEST_LEVEL[11:4] CLEAR_CONGEST_LEVEL[11:4]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FILTER 
BANDWIDTH

AVERAGE_HIPRIORITY[12:0]

W

Reset 0 0 0 - - - - - - - - - - - - -

= Unimplemented or Reserved

Figure 14-4. HIPRIO_CONFIG Register

Table 14-2. PRIOMAN CONFIG Fields

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

Freescale Semiconductor 14-7

14.3.2.3 LUT0 – LUT4 Main Upper

These registers contain the upper eight entries of the look-up tables for channels 0 to 4, main table. All 
registers contain identical fields. 

Table 14-3. HIPRIO_CONFIG Fields

Field Description

AVERAGE_HIPRIORIT
Y[12:0]

Average number of high priority requests to DRAM, coded between values 0x1000 and 0x0000
0x1000: 100% high-priority requests
0x0000: 0% high-priority requests

FILTER 
BANDWIDTH[2:0]

This setting controls the averaging time of the filter used for average_hipriority[12:0]1

0: Time constant W0 = 8 ACKS, K = 0.125
1: Time constant W0 = 16 ACKS, K = 0.0625
2: Time constant W0 = 32 ACKS, K = 0.0312
3: Time constant W0 = 64 ACKS, K = 0.0156
4: Time constant W0 = 128 ACKS, K = 0.0078
5: Time constant W0 = 256 ACKS, K = 0.0039
6: Time constant W0 = 512 ACKS, K = 0.0020
7: Time constant W0 = 1024 ACKS, K = 0.0010

1 Refer to Equation 14-1and Equation 14-2 for relationshit between filter bandwidth and filter behavior.

SET_CONGEST_LEVE
L[11:4]

If(average_hipriority[12:4] > set_congest_level[12:4]) -> set the congested flag

CLEAR_CONGEST_
LEVEL[112:4]

If(average_hipriority[12:4] < clear_congest_level[12:4]) -> clear the congested flag

0x8C
0x90
0x94
0x98
0x9C

LUT0 main upper
LUT1 main upper
LUT2 main upper
LUT3 main upper
LUT4 main upper

read/write

Power

Architecture

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Conventional 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PRIO153:0] PRIO14[3:0] PRIO13[3:0] PRIO12[3:0]

W

Reset 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PRIO11[3:0] PRIO10[3:0] PRIO9[3:0] PRIO8[3:0]

W

Reset 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0

Figure 14-5. LUT0 – LUT4 Main Upper Register

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

14-8 Freescale Semiconductor

14.3.2.4 LUT0 – LUT4 Main Lower

These registers contain the upper eight entries of the look-up tables for channels 0 to 4, main table. All 
registers contain identical fields. 

Table 14-4. LUT Table Main Upper Fields

Field Description

PRIO15[3:0] Priority setting if 15 or more ACK’s for own channel counted

PRIO14[3:0] Priority setting if 14 ACK’s for own channel counted

PRIO13[3:0] Priority setting if 13 ACK’s for own channel counted

PRIO12[3:0] Priority setting if 12 ACK’s for own channel counted

PRIO11[3:0] Priority setting if 11 ACK’s for own channel counted

PRIO10[3:0] Priority setting if 10 ACK’s for own channel counted

PRIO9[3:0] Priority setting if 9 ACK’s for own channel counted

PRIO8[3:0] Priority setting if 8 ACK’s for own channel counted

0xA0
0xA4
0xA8
0xAC
0xB0

LUT0 main lower
LUT1 main lower
LUT2 main lower
LUT3 main lower
LUT4 main lower

read/write

Power

Architecture

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Conventional 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PRIO73:0] PRIO6[3:0] PRIO5[3:0] PRIO4[3:0]

W

Reset 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PRIO3[3:0] PRIO2[3:0] PRIO1[3:0] PRIO0[3:0]

W

Reset 0 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0

Figure 14-6. LUT – LUT4 Main Lower Register

Table 14-5. LUT Table Main Lower Fields

Field Description

PRIO7[3:0] Priority setting if seven ACKs for own channel counted

PRIO6[3:0] Priority setting if six ACKs for own channel counted

PRIO5[3:0] Priority setting if five ACKs for own channel counted

PRIO4[3:0] Priority setting if four ACKs for own channel counted

PRIO3[3:0] Priority setting if three ACKs for own channel counted

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

Freescale Semiconductor 14-9

14.3.2.5 LUT0 – LUT4 Alternate Upper

These registers contain the upper eight entries of the look-up tables for channels 0 to 4, main table. All 
registers contain identical fields. 

PRIO2[3:0] Priority setting if two ACKs for own channel counted

PRIO1[3:0] Priority setting if one ACK for own channel counted

PRIO0[3:0] Priority setting if zero ACKs for own channel counted

0xB4
0xB8
0xBC
0xC0
0xC4

LUT0 alternate upper
LUT1 alternate upper
LUT2 alternate upper
LUT3 alternate upper
LUT4 alternate upper

read/write

Power

Architecture

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Conventional 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PRIO15’3:0] PRIO14[3:0] PRIO13[3:0] PRIO12[3:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PRIO11[3:0] PRIO10[3:0] PRIO9[3:0] PRIO8[3:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 14-7. LUT – LUT4 Alternate Upper Register

Table 14-6. LUT Table Alternate Upper Fields

Field Description

PRIO15[3:0] Priority setting if 15 or more ACKs for own channel counted

PRIO14[3:0] Priority setting if 14 ACKs for own channel counted

PRIO13[3:0] Priority setting if 13 ACKs for own channel counted

PRIO12[3:0] Priority setting if 12 ACKs for own channel counted

PRIO11[3:0] Priority setting if 11 ACKs for own channel counted

PRIO10[3:0] Priority setting if 10 ACKs for own channel counted

PRIO9[3:0] Priority setting if 9 ACKs for own channel counted

PRIO8[3:0] Priority setting if 8 ACKs for own channel counted

Table 14-5. LUT Table Main Lower Fields

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

14-10 Freescale Semiconductor

14.3.2.6 LUT0 – LUT4 Alternate Lower

These registers contain the upper eight entries of the look-up tables for channels 0 to 4, alternate table. All 
registers contain identical fields. 

0xC8
0xCC
0xD0
0xD4
0xD8

LUT0 alternate lower
LUT1 alternate lower
LUT2 alternate lower
LUT3 alternate lower
LUT4 alternate lower

read/write

Power

Architecture

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Conventional 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PRIO7’3:0] PRIO6[3:0] PRIO5[3:0] PRIO4[3:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PRIO3[3:0] PRIO2[3:0] PRIO1[3:0] PRIO0[3:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 14-8. LUT Table [4:0] Alternate Lower Register

Table 14-7. LUT Table Alternate Lower Fields

Field Description

PRIO7[3:0] Priority setting if seven ACKs for own channel counted

PRIO6[3:0] Priority setting if six ACKs for own channel counted

PRIO5[3:0] Priority setting if five ACKs for own channel counted

PRIO4[3:0] Priority setting if four ACKs for own channel counted

PRIO3[3:0] Priority setting if three ACKs for own channel counted

PRIO2[3:0] Priority setting if two ACKs for own channel counted

PRIO1[3:0] Priority setting if one ACK for own channel counted

PRIO0[3:0] Priority setting if zero ACKs for own channel counted

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

Freescale Semiconductor 14-11

14.3.2.7 PERMON_CONFIG

0xDC permon_config read/write

Power

Architecture

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Conventional 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
INT

INTE
N

DMA
REQ

DMA
REQ
STOP

EVEN
TCO
UNTF
REE
RUN

W
INTC
LEAR

EVEN
TCO
UNTT
RIG

Reset — 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
LUT SEL4 LUT SEL3 LUT SEL2 LUT SEL1 LUT SEL0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 14-9. Performance Monitor Config Register

Table 14-8. Performance Monitor Config Register Fields

Field Description

INT Read-Only Sticky Bit. Interrupt pending register. Set when interrupt is made pending.

INTCLEAR Write-Only. Writing this bit 1 clears bit INT to zero.

INTEN Interrupt Enable. When this bit is 1 and bit INT is 1, the processor gets an interrupt request.

DMAREQ Read-Only. DMA request. Set when event counter time reaches zero.
Cleared when first counter register is read.

DMAREQSTOP1

1 This bit should be set as long as the DMA channel is not configured to manage the request. After configuring the DMA, clear 
the bit, and data starts to be transferred on every time tick.

Read/Write. When this bit is 1, the DMA request is cleared and cannot get set.
When this bit is 0, the DMAreq functions as expected.

EVENTCOUNT 
FREERUN

1: Event Counter Free Run. After reaching zero, the event time counter is reloaded from event time 
preset and a new cycle starts. 
0 : Event Counter Single-Shot. After reaching zero, the event time counter stays at 0 and is not 
reloaded.

EVENTCOUNT 
TRIGGER

Write-Only Bit. Writing to this bit causes all count registers to be transferred to the buffer registers, 
and subsequent be cleared. It causes the event counter to be reloaded from the event time preset 
register. No interrupt or DMA request is generated on writing this register, but both are generated 
when the event time counter register reaches zero.

LUT SEL4
LUT SEL3
LUT SEL2
LUT SEL1
LUT SEL0

Selectors between primary and secondary look-up table configuration register
These selectors determine which LUT table is used for the summed priority counters. The priorities 
entered into these counters may depend on a different LUT table than the priorities sent to the DRAM 
controller.
0: Select main look-up table configuration register
1: Select alternate look-up table configuration register
2: Select alternate look-up table configuration register if congested flag is set2

3: Select alternate look-up table configuration register if DIU/VIU incoming priority bit 3 is high

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

14-12 Freescale Semiconductor

14.3.2.8 Event Time Counter

This 32-bit register has only one field - the 24-bit EVENT_TIME_COUNTER. The counter decrements 
to zero. The interrupt and the DMA request are made pending when it reachers zero. On reaching zero, the 
counter reloads from event count preset register if the bit eventCountFreeRun is set in the perfmon_config 
register.

On reaching zero, all performance monitor count registers are loaded in the performance monitor buffer 
registers, and cleared.

The register is read/write. 

2 Congested flag is explained in section congestion detector.

0xE0 EVENT_TIME_COUNTER read/write

Power

Architecture

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Conventional 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
EVENT_TIME_COUNTER[23:0]

W

Reset — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
EVENT_TIME_COUNTER[23:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 14-10. Event Time Counter Register

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

Freescale Semiconductor 14-13

14.3.2.9 Event Time Preset

The EVENT_TIME_PRESET register contains the 24-bit preset value to be loaded into the event time 
counter register in case this preloads.

14.3.2.10 Performance Monitor 1 and 2 Address Registers

0xE4 EVENT_TIME_PRESET read/write

Power

Architecture

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Conventional 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
EVENT_TIME_PRESET[23:0]

W

Reset — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
EVENT_TIME_PRESET[23:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 14-11. Event Time Preset Register

0xE8
0xEC
0xF0
0xF4

Performance monitor 1 address low
Performance monitor 2 address low
Performance monitor 1 address high
Performance monitor 2 address high

read/write

Power

Architecture

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Conventional 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PERFORMANCE MONITOR {1,2} ADDRESS {LOW,HIGH}[31:16]

W

Reset — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PERFORMANCE MONITOR {1,2} ADDRESS {LOW, HIGH} [15:5]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 14-12. Performance Monitor Address Registers

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

14-14 Freescale Semiconductor

These registers determine if a Power Architecture (e300) processor access hits in the performance monitor 
1 or performance monitor 2 address space.

• If ((e300 CPU address >= performance monitor 1 address low) &&
(e300 CPU address < performance monitor 1 address hi))
Increment performance monitor 1 read counter on reads
Increment performance monitor 1 write counter on writes.

• If ((e300 CPU address >= performance monitor 2address low) &&
(e300 CPU address < performance monitor 3address hi))
Increment performance monitor 2 read counter on reads
Increment performance monitor 2 write counter on writes.

14.3.2.11 Performance Monitor Counters

0x100
0x104
0x108
0x10C

Performance monitor 1 read counter
Performance monitor 2 read counter
Performance monitor 1 write counter
Performance monitor 2 write counter

Power

Architecture

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Conventional 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PERFORMANCE MONITOR 1, 2 READ/WRITE 
COUNTER[23:16]

W

Reset — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PERFORMANCE MONITOR 1, 2 READ/WRITE COUNTER[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 14-13. Performance Monitor Counter Registers

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

Freescale Semiconductor 14-15

14.3.2.12 Granted Ack Counters

14.3.2.13 Cumulative Wait Counters

0x110
0x114
0x118
0x11C
0x120

Granted ACK counter 0
Granted ACK counter 1
Granted ACK counter 2
Granted ACK counter 3
Granted ACK counter 4

read

Power

Architecture

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Conventional 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R GRANTED ACK COUNTER 0 – 4[23:16]

W

Reset — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R GRANTED ACK COUNTER 0 – 4[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 14-14. Granted ACK Counter 0 – 4 Registers

0x124
0x128
0x12C
0x130
0x134

Cumulative wait counter 0
Cumulative wait counter 1
Cumulative wait counter 2
Cumulative wait counter 3
Cumulative wait counter 4

read

Power

Architecture

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Conventional 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CUMULATIVE WAIT COUNTER 0 – 4[23:16]

W

Reset — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CUMULATIVE WAIT COUNTER 0 – 4[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 14-15. Cumulative Wait Counter 0 – 4 Registers

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

14-16 Freescale Semiconductor

14.3.2.14 Summed Priority Counters

0x138
0x13C
0x140
0x144
0x148

Summed priority counter 0
Summed priority counter 1
Summed priority counter 2
Summed priority counter 3
Summed priority counter 4

read

Power

Architecture

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Conventional 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SUMMED PRIORITY COUNTER 0 – 4[23:16]

W

Reset — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SUMMED PRIORITY COUNTER 0 – 4[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 14-16. Summed Priority Counter 0 – 4 Registers

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

Freescale Semiconductor 14-17

14.3.2.15 Counter Register Descriptions and Values

The counter registers contain 19 different 24-bit counter values. All these counter values count certain 
events. Table 14-9 gives the details on the nature of the event. Counter values Summed Priority Counter 
2, Summed Priority Counter 3 and Summed Priority Counter 4 are available in two sets of registers. They 
are available in registers with the same name, but they are also available in a set of three other registers 
(granted ack counter or cumulative wait counter registers). The multiple-mapping of the three upper 
Summed Priority Counter registers allows easy and compact DMA transfer to memory. Because of the 
multiple mapping, all 19 count values can be transferred to memory with a 64-byte DMA transfer starting 
at address 0x100. The multiple mapping allows the DMA to get all information with a 64-byte transfer, 
but some decompression is needed on decoding the data, while the CPU can read the 19 registers and mask 
out the upper eight bits to get relevant information.

Figure 14-17. Monitor Counters

Table 14-9. Monitor Counter Descriptions

Field Description

PERFORMANCE MONITOR 1-2 
READ COUNTER

Every time the Processor or PCI performs a read access with an address that hits in 
the address window for counter 1 or 2, the respective counter is incremented. An 
address hits in the address window for performance monitor read counter 1 if the 
address is higher or equal than the performance monitor 1 address low, and lower than 
the performance monitor 1 address high. Similar for the second counter.

PERFORMANCE MONITOR 1-2 
WRITE COUNTER

Every time the Processor or PCI performs a write access with an address that hits in 
the address window for counter 1 or 2, the respective counter is incremented. An 
address hits in the address window for performance monitor write counter 1 if the 
address is higher or equal than the performance monitor 1 address low, and lower than 
the performance monitor 1 address high. Similar for the second counter.

GRANTED ACK COUNTER 0-4 Every time the Multi-port DRAM controller grants a request for channel 0 – 4, the 
respective counter is incremented.

CUMULATIVE WAIT COUNTER 0-4 Every time there is a request pending to the multi-port DRAM controller for channel 
0 – 4 and its not granted in the current cycle, the respective counter is incremented.

SUMMED PRIORITY COUNTER 0-4 Every time a request is granted by the multi-port DRAM controller for channel 0 – 4, a 
priority code is added to the respective counter. See text for details.

Readable value

Buffer register

En
R

+1

Counter register

Trigger Condition condition

Event

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

14-18 Freescale Semiconductor

All counters in Table 14-9 are double-buffered and Figure 14-17 gives details. There are always two 
registers associated with every counter. The first register is the counter. It counts the events mentioned in 
the table. When the trigger condition occurs, the time event counter reaches zero, and the counter register 
is transferred to the buffer register, the counter register is then cleared. When accessing the register, the 
buffer register value is always returned.

The priority code added may or may not be the same as the priority code the request used on the DRAM 
controller. The codes are equal if the LUT SEL field for the channel is the same in registers 
PRIOMAN_CONFIG and PERFMON_CONFIG. If the LUT SEL fields differ, the field in 
PRIOMAN_CONFIG is used to calculate the channel priority code on the DRAM, and the field in 
PERFMON_CONFIG is used to calculate the priority code added to this register.

The possibility to use unequal LUT SEL fields makes it possible to use the main look-up tables for DRAM 
priority programming and the alternate look-up tables for performance monitoring. Making the look-up 
tables independent increases the possibility of what can be monitored.

14.4 Functional Description
The priority manager calculates the outgoing priority for all five channels of multi-port DRAM controller. 
The priority of any channel at a given time is a function of the request granting history of the DRAM 
controller. A granted request is called an ACK, so this schema is called an ACK-based schema, because 
the priority is determined by the history of which channels have been ack-ed in the past and when.

The priority manager calculates the priorities in a dynamic way. This means, a priority is never constant, 
but changes over time, even when the request is not serviced. As a request ages while its not being 
serviced, its priority escalates to a higher level , and as the level increases, it is eventually serviced.

The DRAM controller has a built-in preference to offer repeat for any incoming read request. The repeat 
goes on as long as the requesting channel keeps requesting, and its priority is greater than 0. When the 
outgoing priority for any channel is 0, the DRAM controller no longer services or repeats the request. This 
feature allows the priority manager to control the maximum repeat count for any incoming channel.

14.4.1 Description of Operation — Overview

Priority calculation for all channels is independent. There is no direct cross-dependency of the priority of 
one channel on the priority of another channel. The algorithm looks at the last N arbitration cycles on the 
bus. N is a programmable number, set by fields ack_count in register prio_man, described in Figure 14-2. 
For the last N arbitration cycles, the number of times the own channel won the bus, is summed up, and 
saturated to a maximum of 15. This number of 0 to 15 is input into the applicable look-up table. LUT table 
0 is for channel 0, LUT table 1 is for channel 1, and so on. The value for the particular number is the 
priority code going to the multiport DRAM controller. If N is set to 16 and the own channel was granted 
the bus four times in the last 16 bus grant, the index into the look-up table is four. The field prio4[3:0] of 
the relevant look-up table is the priority going to the multi-port DRAM controller. 

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

Freescale Semiconductor 14-19

There are two look-up tables for every channel, the main and the alternate. The algorithm may switch 
between both, depending on some settings. The default look-up table is the main. However, the alternate 
is used if:

• The particular channel has been configured to look at the DIU/VIU incoming priority, and the 
DIU/VIU incoming priority is eight or higher.

• The particular channel has been configured to look at the congestion monitor, and this block 
indicates the multi-port DRAM is congested.

14.4.2 Block Diagram

Figure 14-18 contains a block diagram of the block.

Figure 14-18. Priority Channel Block Diagram

Shift register shifts in information of the recent ACKs. Its a 63-stage shift register and contains information 
on the last 63 bus cycles of the DRAM controller.

The shift register is shifted any time a read or write request has been granted to the DRAM (An ACK to 
the requesting bus) or when there is an IDLE_PULSE. An idle pulse is generated every time the DRAM 
is idle for four consecutive clock cycles. Idle means none of the five incoming busses is making a request.

The shift data in is the corrected ACK for the self channel. If the shift register shifts because the current 
cycle is granted to the self channel, a 1 is shifted in, if not a 0 is shifted in. It always occurs like this when 
the own channel is requesting access. However, if the own channel is not requesting access, depending on 
control bit ACK_SEL, a 1 or a 0 is shifted in. If ACK_SEL is 1, a 1 is shifted in all the time when the self 
channel is not requesting and there is an ACK on any other channel or an idle pulse. If ACK_SEL is 0, 
zeros are shifted in. 

The correction for the non-requesting channel allows you to steer the default priority, the priority that the 
channel gets, when it has not been requesting for some time. If ACK_SEL is set 1, the default priority is 
low. This setting is appropriate for peripherals with (large) FIFOs. When they are not requesting, the FIFO 
is quite full. When they do get on the bus, they can start with low priority and escalate to higher after some 
time. 

en
Read or write on 
any channel OR
idle pulse

Data
in

Own channel
serviced OR
Own channel not
requesting

Combinatorial
Logic

ack_count

63-bit

Look-up
Table

0 1

alternate look-up table
main look-up table

0 1 LUT sel

DIU_priority[3]
congested

1 2

3

4

5

6

7

D

DIU overrule

1

0

DIU priority[3:0]

chan_priority[3:0]

8 9

20

21

22
23

24

25
26

27

28 29

30

ONLY DIU channel

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

14-20 Freescale Semiconductor

Setting ACK_SEL to 0 is appropriate for peripherals that desire high priority. The Power Architecture 
processor and AXE core are in this case. When they are not on the bus, its because they find the instruction 
or data that they need in the processor caches, so they don’t request. When the cache misses, the request 
comes on the bus, and needs to be serviced fast. Therefore, ACK_SEL is set 0, the default priority is high 
and servicing fast. If Power Architecture Processor and/or AXE get on the bus a lot (due to a lot of cache 
swapping), the priority manager detects this and degrades their priorities over time. The other masters 
continue to receive their fair share of bus bandwidth.

The output of the shift register is ANDED in to look at only the last N ACKs. Combinatorial logic decodes 
the ANDing code from register field ACK_COUNT. The number of ones after the ANDing is added up in 
ADDER 4 and saturated. The result out of ADDER 4 is a number from 0 to 15. This number is input in 
the look-up table. Table look-up content is taken for channel 1 from register lut table 1 main[63:0] or lut 
table 1 alternate[63:0]. Because of the 64-bit nature of the registers, four 32-bit registers are involved. The 
description is given in Figure 14-5, Figure 14-6, Figure 14-7, and Figure 14-8.

The MUX selects whether to use the main or the alternate register. The MUX condition has two possible 
sources again, selected by MUX 7, by means of control bit LUT SEL described in register 
PRIOMAN_CONFIG, with details in Figure 14-2.

If LUT SEL is 1, the alternate table is selected when the multi-port controller is congested. If LUT sel is 0, 
the alternate table is selected when DIU/VIU incoming priority is higher than eight.

Pipeline register is present purely for implementation reasons. It has no algorithmic function. 

For the DIU and VIU, an additional bypass mux is present. It overrules the prioman logic and inserts the 
incoming DIU/VIU priority in the output if control bit DIU/VIU overrule is set. This bit is present in 
register PRIOMAN_CONFIG, with details in Figure 14-2.

14.4.3 Congestion Detector

The congestion detectors purpose is to detect when the multi-port DRAM controller is congested. 
Congestion is assumed if the share of the requests with priorities equal or greater than eight is more than 
a certain percentage. If congestion occurs, the priority manager may react by exchanging the look-up 
tables with the alternate look-up tables. This reduces the average priority of the incoming requests. The 
reduced priorities mean that on average, every incoming channel gets a lower priority and the DRAM 
controller tries harder to optimize on bandwidth and less to optimize to service the high-priority requests 
first. The switch-over is driven by the congestion state. If many requests come in on high priority, they all 
need to be serviced first, the congested flag goes high, and the controller reacts to this by reducing the 
request priorities (by switching in the alternate tables). Therefore, it can concentrate on the ones that are 
important and have room again for optimized bandwidth.

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

Freescale Semiconductor 14-21

Figure 14-19. Congestion Detector – Simplified Block Diagram

A block diagram of the congestion detector is given in Figure 14-19. The congestion detector consists of 
an averaging block, followed by a comparator with hysteresis. The averaging block calculates the 
weighted average of the percentage of high-priority requests, like given below.

Eqn. 14-1

The weighted average uses an exponential weighting when looking at the past granted requests. Requests 
granted in a more distant past have a lower weighting coefficient. The weighting coefficient uses an 
exponential back-off, following the formulae. 

Eqn. 14-2

In this formula, weight(k) is the weighting coefficient used for the request granted k acknowledges ago, 
meaning k other requests have been granted after this one. The coefficient W0 is programmable, dependent 
on the control field filter bandwidth in register HIPRIO_CONFIG, detailed in Figure 14-4. 

The value input in the weighting block, val(k) is dependent on the priority of the request granted. It is 0 if 
the priority was seven or lower; it is 0x1000 if the priority was eight or higher.

The result of the weighted average is a number between 0 and 0x1000 input in the comparator with 
hysteresis. This result, AVERAGE_HIPRIORITY, can be monitored in register HIPRIO_CONFIG 
(Figure 14-4).

The weighted averaging block is followed by a comparator with hysteresis, with a programmable low 
treshold.

• If AVERAGE_HIPRIORITY is greater than SET_CONGEST_LEVEL, the congested flag is set.
• If AVERAGE_HIPRIORITY is lower than CLEAR_CONGEST_LEVEL, the congested flag is 

cleared.

Requests granted

Requests granted to 
high or low priority

Weighted average over 

Programmable averaging 

past granted requests

depth

Set congest level

Clear congest level

Comparator 
with hysteresis

CongestedAverage 
hipriority

average priority weigth k( ) val k( )⋅∑=

weight k( ) 1
W0
--------- k

W0
---------–⎝ ⎠

⎛ ⎞exp⋅=

MPC5121e Microcontroller Reference Manual, Rev. 2



DRAM Controller Priority Manager

14-22 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 15-1

Chapter 15  
External Memory Bus (EMB)

15.1 Introduction 

15.1.1 Overview

The EMB includes three different parallel interfaces. They are LocalPlus bus, NAND flash bus, and 
parallel ATA bus. The different buses are time multiplexed. The NFC bus and the ATA bus can work 
together at the same time. No multiplexing for this function is needed.

An EMB arbiter controls the multiplexing of the external pin (address and data lines) and grants the 
different bus masters to allow them to drive the external bus. The arbiter can be configured via the EMB 
Share and Wait Count Register and EMB Pause Control Register within the LPC memory map.

15.1.2 Features
• Arbitration between LPC and NFC/pATA

— LPC CSB transfers cannot be paused.
— LPC CSB request pauses NFC and pATA DMA transactions immediately or after share counter 

expires.
— LPC FIFO request pauses NFC and pATA DMA transactions after share counter expires
— pATA PIO transactions cannot be paused
— pATA PIO request pauses LPC FIFO transaction within a BPT transfer (dynamic bus sizing), 

depending on the ATA_P bit setting (EMB Pause Control Register)
— pATA DMA and NFC requests cannot pause LPC FIFO transaction within a BPT transfer.

• Pin muxing between LPC and NFC/pATA

15.2 Functional Description

15.2.1 EMB Mux

The EMB mux switches, depending on EMB arbiter state, between the three different functions. The 
activated, granted module can drive the external bus.

Table 15-1 describes which functionality is at the EMB bus depending on the activated, granted module.

MPC5121e Microcontroller Reference Manual, Rev. 2



External Memory Bus (EMB)

15-2 Freescale Semiconductor

Table 15-1. EMB_AD Multiplexing

Activated, Granted 
Module

Multiplexed Functionality at 
EMB_AD[31:16]

Multiplexed Functionality at 
EMB_AD[15:0]

Multiplexed Functionality at 
EMB_AX[2:0]

LPC LPC_AD[31:16] LPC_AD[15:0] LPC_AX[2:0]

NFC/pATA NFC_AD[15:0] PATA_DATA[15:0] PATA_ADDRESS[2:0]

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 16-1

Chapter 16  
Fast Ethernet Controller (FEC)

16.1 Introduction

16.1.1 FEC Top Level

The block diagram of the FEC is shown in Figure 16-1. To implement the FEC, a combination of hardware 
and microcode is employed. The network interfaces are shwon on the bottom of the diagram, complying 
with industry and IEEE 802.3 standards.

Figure 16-1. FEC Block Diagram

Internal bus interface

Control/Status 

Descriptor
Controller

MII
ReceiveTransmit

Bus

Internal bus

Controller

Bus
Requests

MDCMDIO

RX_CLK
RX_DV

RXD[3:0]
RX_ERTX_CLK

TX_EN
TXD[3:0]
TX_ER

CRS,COL

MIB

(RISC + 
Microcode)

I/O
PAD

MDO
MDEN MDI

FEC

Counters

MII/7-WIRE DATA
OPTION

RAM I/F

FIFO
Controller

internal 

FEC BUS

DMA

Internal bus

Register FIFO RAM

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-2 Freescale Semiconductor

A RISC-based controller, called the descriptor controller, provides the following functions in the FEC:
• Initialization (those internal registers not initialized by the user or hardware)
• High-level control of the DMA channels (initiating DMA transfers)
• Interpreting buffer descriptors
• Address recognition for receive frames
• Random number generation for transmit collision backfill timer

NOTE
DMA references in this section refer to the FEC’s DMA engine. This DMA 
engine transfers FEC data only and is not related to the DMA controller in 
MPC5121e.

NOTE
The FIFO is used by FEC itself and can only be accessed by the DMA. You 
can configure the transmit/receive FIFO boundary(R_FSTART register).

The RAM is the central point of all data flow in the Fast Ethernet controller. The RAM is divided into 
transmit and receive FIFOs and the boundary is programmable (R_FSTART register). User data flows 
to/from the DMA unit from/to the receive/transmit FIFOs. Transmit data flows from the transmit FIFO 
into the transmit block and receive data flows from the receive block into the receive FIFO.

The bus controller decides which block is the tbus master on each clock. All of the blocks receive their 
control information from the tbus and, for the most part, provide status information over this same bus.

The user controls FEC by writing into control registers located in each block. The CSR(control and status 
register) block provides global control (e.g., Ethernet reset and enable, mode control) and interrupt 
managing registers.

The MII block provides a serial channel for control/status communication with the external physical layer 
device (transceiver). This serial channel consists of the MDC (clock) and MDIO (bidirectional data) lines 
of the MII interface.

The FEC DMA block (not to be confused with DMA controller) provides multiple channels allowing 
transmit data, transmit descriptor, receive data and receive descriptor accesses to run independently.

The transmit and receive blocks provide the Ethernet MAC functionality (with some assist from 
microcode). Internal to these blocks are clock domain boundaries between the system clock and the 
network clocks.

The MIB block is an optional block that maintains counters for a variety of network events and statistics. 
It is not necessary for operation of the FEC but provides valuable counters for network management. The 
counters supported are the RMON (RFC 1757) Ethernet Statistics group and some of the IEEE 802.3 
counters.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-3

16.1.2 Features

The fast Ethernet controller (FEC) incorporates several features/design goals important to its market:
• Support for different Ethernet physical interfaces:

— 100 Mbps IEEE 802.3 MII
— 10 Mbps IEEE 802.3 MII
— 10 Mbps 7-wire interface (industry standard)

• IEEE 802.3 full-duplex flow control
• Programmable maximum frame length supports IEEE 802.1 VLAN tags and priority
• Support for full-duplex operation (200 Mbps throughput) with a minimum system clock rate of 

50 MHz
• Support for half-duplex operation (100 Mbps throughput) with a minimum system clock rate of 

25 MHz
• Retransmission from transmit FIFO following a collision (no processor bus utilization)
• Automatic internal flushing of the receive FIFO for runts (collision fragments) and address 

recognition rejects (no processor bus utilization)
— Address recognition
— Frames with broadcast address may always be accepted or always be rejected
— Exact match for single 48-bit individual (unicast) address
— Hash (64-bit hash) check of individual (unicast) addresses
— Hash (64-bit hash) check of group (multicast) addresses
— Promiscuous mode

16.1.3 Modes of Operation

The primary operational modes are described in this section.
• Full- and half-duplex operation

This is determined by the FDEN bit in the X_CNTRL register. Full-duplex mode is intended for 
use on point-to-point links between switches or end node to switch. Half-duplex mode is used in 
connections between an end node and a repeater or between repeaters. 
Full-duplex flow control is an option that may be enabled in full-duplex mode. Refer to the 
RFC_PAUSE and TFC_PAUSE bits in Section 16.3.5.12, “Transmit Control Register 
(X_CNTRL), the FCE bit in Section 16.3.5.10, “Receive Control Register (R_CNTRL) and 
Section 16.6.4, “Full-Duplex Flow Control for more details.

• 10 Mbps and 100 Mbps MII interface operation
The MAC-PHY interface operates in MII mode by asserting the MII_MODE bit in the R_CNTRL 
register. The MII is the media-independent interface defined by the 802.3 standard for 
10/100 Mbps operation.
The speed of operation is determined by the TX_CLK and RX_CLK pins, which are driven by the 
transceiver. The transceiver auto-negotiates the speed or may be controlled by software via the 

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-4 Freescale Semiconductor

serial management interface (MDC/MDIO pins) to the transceiver. Refer to the MII_DATA and 
MII_SPEED register descriptions as well as the section on the MII for a description of how to read 
and write registers in the transceiver via this interface.

• 10 Mbps 7-wire interface operation
The FEC support 7-wire interface used by many 10Mbps Ethernet transceivers.The MII_MODE 
bit in the R_CNTRL register controls this functionality. If this bit is cleared, MII mode is disabled 
and the 10Mbps 7-wire mode is enabled.

• Address recognition options
Refer to the R_CNTRL register for address recognition options. Also, refer to Section 16.6.3, 
“Ethernet Address Recognition for a detailed description. The options supported are promiscuous, 
broadcast reject, individual address hash, or exact match and multicast hash match.

• Internal loopback
Internal loopback mode is selected via the LOOP bit in the R_CNTRL register. Also, refer to 
Section 16.6.7, “Internal and External Loopback for a detailed description. 

16.2 External Signal Description (Off Chip)

16.2.1 I/O Signal Overview

This section defines the FEC to chip pin I/O. 

The FEC network interface supports multiple options. One is the MII option, which requires 18 I/O pins 
and supports both data and an out-of-band serial management interface to the PHY (transceiver) device. 
The MII option supports both 10 and 100 Mbps Ethernet rates. The second is referred to as the 7-wire 
interface and supports only 10 Mbps Ethernet data. The 7-wire interface uses a subset of the MII signals.

Table 16-1 details the network interface signals. This table lists 18 signals, all of which are used for the 
10/100 MII interface. The MDIO pin is bidirectional and corresponds to the MDI, MDO and MDIO pins 
on the FEC block. A subset of these signals is used for the 7-wire or SMII interface option.

Table 16-1. Signal Properties

Signal Name Function Reset

COL MII - collision input
7-wire — collision input

undefined

CRS MII — carrier sense input undefined

MDC MII — management clock output 0

MDIO MII — management data bidirect Hi-Z
(input)

RX_CLK MII — receive clock input
7 Wire — receive clock input

undefined

RX_DV MII — receive data valid input
7-wire — rena input

undefined

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-5

16.2.2 Detailed Signal Descriptions

This section gives a detailed description of the Ethernet MAC-PHY Interface. First, an overview of 
Ethernet interfaces is presented, followed by a description of the interface signals. Next, the two different 
types of MII frames are described. Then, a brief overview of the MII management function is given. This 
is followed by a section on MII signal timing. Finally, the electrical specifications for this interface are 
given.

16.2.2.1 Ethernet MAC-PHY Interface

FEC support two kinds of Ethernet MAC-PHY interface: 7-wire and MII. A description of their interface 
follows. 

16.2.2.1.1 Seven-Wire Ethernet MAC-PHY Interface

The Ethernet module can operate in a 10 Mbps mode using a 7-wire interface to an external physical 
interface. Serial mode connections to the external transceiver are defined in Table 16-2.

RDATA[3] MII — receive data bit 3 input undefined

RDATA[2] MII — receive data bit 2 input undefined

RDATA[1] MII — receive data bit 1 input undefined

RDATA[0] MII — receive data bit 0 input
7-wire — receive data input

undefined

RX_ER MII — receive error input undefined

TX_CLK MII — transmit clock input
7-wire — transmit clock input

undefined

TDATA[3] MII — transmit data bit 3 output undefined

TDATA[2] MII — transmit data bit 2 output undefined

TDATA[1] MII — transmit data bit 1 output undefined

TDATA[0] MII — transmit data bit 0 output
7-Wire — transmit data output

undefined

TX_EN MII — transmit data valid output
7-Wire — transmit data valid output

0

TX_ER MII — transmit error output 0

Table 16-2. 7-Wire Interface

Signal Description FEC Pin

Transmit clock TX_CLK

Transmit enable TX_EN

Transmit Data TXD[0]

Collision COL

Table 16-1. Signal Properties (continued)

Signal Name Function Reset

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-6 Freescale Semiconductor

16.2.2.1.2 MII Ethernet MAC-PHY Interface

MII interface is defined in the IEEE 803.3 standard. Table 16-1 lists the MII interface with keyword MII.

16.2.2.2 Signal Description

The MII interface consists of 18 signals. The transmit and receive functions require seven signals each: 
four data signals, a delimiter, error, and clock. In addition, there are two signals that indicate the status of 
the media; one indicates the presence of a carrier and the second indicates a collision has occurred. The 
remaining two signals provide a management interface. Each MII signal is described in Table 16-3.

Receive Clock RX_CLK

Receive Enable RX_DV

Receive Data RXD[0]

Unused FEC inputs — tie to GND RX_ER, CRS, RXD[3:1], MDI

Unused FEC outputs — ignore TX_ER, TXD[3:1], MDC, MDO, MDEN

Table 16-3. Detailed Signal Descriptions

Signal I/O Description

TX_CLK I State 
Meaning

Asserted—A continuous clock that provides a timing reference for TX_EN, TXD, and TX_ER.

Timing Asserted—The frequency of TX_CLK is 25% of the transmit data rate, +/- 100 ppm. Duty cycle 
is 35%-65%, inclusive.

RX_CLK I State 
Meaning

Asserted—A continuous clock that provides a timing reference for RX_DV, RXD, and RX_ER.

Timing Asserted—The frequency of RX_CLK is 25% of the receive data rate, with a duty cycle between 
35% and 65%.

TX_EN O State 
Meaning

Asserted—Assertion of this signal indicates there are valid nibbles being presented on the MII.

Timing Asserted—This signal is asserted with the first nibble of preamble and is negated prior to the 
first TX_CLK following the final nibble of the frame.

TXD O State 
Meaning

Asserted—TXD<3:0> represent a nibble of data when TX_EN is asserted and has no meaning 
when TX_EN is deasserted. 

Timing Asserted—Table 16-1 summarizes the permissible encoding of TXD.

TX_ER O State 
Meaning

Asserted—Assertion of this signal for one or more clock cycles while TX_EN is asserted 
causes the PHY to transmit one or more illegal symbols. 

Timing Asserted—Asserting TX_ER has no effect when operating at 10 Mbps or when TX_EN is 
deasserted. This signal transitions synchronously with respect to TX_CLK.

RX_DV I State 
Meaning

Asserted—When this signal is asserted, the PHY indicates a valid nibble is present on the MII.

Timing Asserted—This signal remains asserted from the first recovered nibble of the frame through the 
last nibble. Assertion of RX_DV must start no later than the SFD and excludes any EOF.

Table 16-2. 7-Wire Interface (continued)

Signal Description FEC Pin

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-7

Table 16-4 below provides the interpretation of the possible encodings of TX_EN and TX_ER.

A false carrier condition occurs if the PHY detects a bad start-of-stream delimiter. This condition is 
signaled to the MII by asserting RX_ER and placing 1110 on RXD. RX_DV must also be deasserted. The 
valid encodings of RX_DV, RX_ER, and RXD[3:0] are shown in Table 16-5.

RXD I State 
Meaning

Asserted—RXD<3:0> represents a nibble of data to be transferred from the PHY to the MAC 
when RX_DV is asserted. A completely formed SFD must be passed across the MII. 

Timing Asserted—When RX_DV is not asserted, RXD has no meaning. There is an exception to this 
explained later. Table 16-5 summarizes the permissible encoding of RXD.

RX_ER I State 
Meaning

Asserted—When RX_ER and RX_DV are asserted, the PHY has detected an error in the 
current frame.

Timing Asserted—When RX_DV is not asserted, RX_ER has no effect. This signal transitions 
synchronously with RX_CLK.

CRS I State 
Meaning

Asserted—This signal is asserted when the transmit or receive medium is not idle. If a collision 
occurs, CRS remains asserted through the duration of the collision. 

Timing Asserted—This signal is not required to transition synchronously with TX_CLK or RX_CLK.

COL I State 
Meaning

Asserted—This signal is asserted upon detection of a collision and remains asserted while the 
collision persists. The behavior of this signal is not specified when in full-duplex mode. 

Timing Asserted—This signal is not required to transition synchronously with TX_CLK or RX_CLK.

MDC O State 
Meaning

Asserted—This signal provides a timing reference to the PHY for data transfers on the MDIO 
signal. MDC is aperiodic and has no maximum high or low times. 

Timing Asserted—The minimum high and low times are 160ns; the minimum period is 400ns.

MDIO I/O State 
Meaning

Asserted—This signal transfers control/status information between the PHY and MAC. It 
transitions synchronously to MDC. The MDIO pin is a bidirectional pin. The internal FEC signals 
that connect to this pad are MDI (data in), MDO (data out), and MD_EN (direction control, high 
for output).

Table 16-4. MII: Valid Encoding of TXD, TX_EN and TX_ER

TX_EN TX_ER TXD Indication

0 0 0000 through 1111 Normal inter-frame

0 1 0000 through 1111 Reserved

1 0 0000 through 1111 Normal data transmission

1 1 0000 through 1111 Transmit error propagation

Table 16-5. MII: Valid Encoding of RXD, RX_ER, and RX_DV

RX_DV RX_ER RXD Indication

0 0 0000 through 1111 Normal inter-frame

0 1 0000 Normal inter-frame

0 1 0001 through 1101 Reserved

0 1 1110 False carrier

Table 16-3. Detailed Signal Descriptions (continued)

Signal I/O Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-8 Freescale Semiconductor

16.2.2.2.1 MII Data Frame

Ethernet/802.3 data frames transmitted across the MII have the following format:
<inter-frame><preamble><sfd><data><efd>

The inter-frame period is an unspecified amount of time during which no data activity occurs on the MII. 
The deassertion of RX_DV and TX_EN indicates the absence of data activity.

The preamble begins a frame and has a bit value of the following:
10101010 10101010 10101010 10101010 10101010 10101010 10101010

The left-most 1 represents the LSB of the byte.

The SFD represents the start of a frame and has the bit value 10101011.

The data portion of the frame consists of N octets that corresponds to 2N nibbles being transmitted. The 
order of each nibble is defined in Figure 16-2. 

Figure 16-2. MII Nibble/Octet to Octet/Nibble Mapping

The end-of-frame delimiter is indicated by the deassertion of the TX_EN signal for data on TXD. For data 
on RXD, the deassertion of RX_DV constitutes an end-of-frame delimiter.

0 1 1111 Reserved

1 0 0000 through 1111 Normal data reception

1 1 0000 through 1111 Data reception with errors

Table 16-5. MII: Valid Encoding of RXD, RX_ER, and RX_DV (continued)

RX_DV RX_ER RXD Indication

D0 D1 D2 D3 D4 D5 D6 D7

D0

D1

D2

D3

LSB

MSB

First
Bit

LSB First Nibble Second Nibble MSB

MII Nibble

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-9

16.2.2.2.2 MII Management Frame Structure

A transceiver management frame transmitted on the MII management interface uses the MDIO and MDC 
pins. A transaction or frame on this serial interface has the following format:

<preamble><st><op><phyad><regad><ta><data><idle>

The (optional) preamble consists of a sequence of 32 continuous logic ones.

The start of frame (ST) is indicated by a <01> pattern. 

The operation code (OP) for a read instruction is <10>. For a write operation, the operation code is <01>.

The PHYAD is a 5-bit field that allows for up to 32 PHYs to be addressed. The first address bit transmitted 
is the MSB of the address.

The REGAD is a 5-bit field that allows for 32 registers to be addressed within each PHY. The first register 
bit transmitted is the MSB of the address.

The TA field is a 2-bit field that provides spacing between the register address field and the data field, 
avoiding contention on the MDIO signal during a read operation. 

The data field is 16 bits wide. The first data bit transmitted and received is data bit 15.

During the idle condition, MDIO is in the high impedance state.

The MII management register set located in the PHY may consist of a basic register set and an extended 
register set, as defined in Table 16-6.

16.3 Memory Map and Register Definition

16.3.1 Overview

The FEC is programmed by a combination of control/status registers (CSRs) and buffer descriptors. The 
CSRs are used for mode control, interrupts, and to extract status information. The descriptors are used to 
pass data buffers and related buffer or frame information between the hardware and software.

Table 16-6. MII Management Register Set

Register Address Register Name Basic/Extended

0 Control B

1 Status B

2,3 PHY Identifier E

4 Auto-negotiation advertisement E

5 AN link partner ability E

6 AN expansion E

7 AN next page transmit E

8-15 Reserved E

16-31 Vendor specific E

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-10 Freescale Semiconductor

All accesses to and from the registers must be via 32-bit accesses. There is no support for accesses other 
than 32-bit.

This section defines the memory map and the registers, and then defines the buffer descriptors.

16.3.2 Top-Level Module Memory Map

The FEC implementation requires a 1-Kbyte memory map space. This is divided into two sections of 512 
bytes each. The first is used for control/status registers. The second contains event/statistic counters held 
in the MIB block. Table 16-7 defines the top-level memory map.

16.3.3 Detailed Memory Map – Control/Status Registers

Table 16-8 shows the address of the register, what block the register pertains to, the name of the register, 
and a brief description of the register.

The following table defines the subset of FEC address space used for control/status registers. These fall in 
the 000–1FF address offset range.

The block column indicates in which internal module the register resides.

Table 16-7. Module Memory Map

Address Function

0x000–1FF Control/status registers

0x200–3FF MIB block counters

Table 16-8. Control/Status Registers (Offset 000–1FF)

Offset or 
Address

Register Mnemonic Section/Page

000 FEC_ID register FEC_ID 16.3.5.1/16-14

004 Interrupt event 
register

IEVENT 16.3.5.2/16-15

008 Interrupt mask 
register

IMASK 16.3.5.3/16-17

010 Receive ring updated 
flag

R_DES_ACTIVE 16.3.5.4/16-19

014 Transmit ring updated 
flag

X_DES_ACTIVE 16.3.5.5/16-20

024 Ethernet control 
register

ECNTRL 16.3.5.6/16-21

040 MII data register MII_DATA 16.3.5.7/16-22

044 MII speed register MII_SPEED 16.3.5.8/16-24

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-11

064 MIB control/status 
register

MIB_CONTROL 16.3.5.9/16-25

084 Receive control 
register

R_CNTRL 16.3.5.10/16-26

088 Receive hash R_HASH 16.3.5.11/16-28

0C4 Transmit control 
register

X_CNTRL 16.3.5.12/16-29

0E4 Physical address low PADDR1 16.3.5.13/16-31

0E8 Physical address high 
+ type field

PADDR2 16.3.5.14/16-32

0EC Opcode + pause 
duration

OP_PAUSE 16.3.5.15/16-33

118 Upper 32 bits of 
individual hash table

IADDR1 16.3.5.16/16-34

11C Lower 32 bits of 
individual hash table

IADDR2 16.3.5.17/16-35

120 Upper 32 bits of group 
hash table

GADDR1 16.3.5.18/16-36

124 Lower 32 bits of group 
hash table

GADDR2 16.3.5.19/16-37

144 Transmit FIFO 
watermark

X_WMRK 16.3.5.20/16-38

14C End of RAM R_BOUND 16.3.5.21/16-39

150 Receive FIFO start 
address

R_FSTART 16.3.5.22/16-40

180 Beginning of receive 
descriptor ring

R_DES_START 16.3.5.23/16-41

184 Pointer to beginning 
of transmit descriptor 

ring

X_DES_START 16.3.5.24/16-42

188 Receive buffer size R_BUFF_SIZE 16.3.5.25/16-43

1F4 DMA control for 
IP bus 

AMBA IF
+

DMA revision

DMA_CONTROL 16.3.5.26/16-44

Table 16-8. Control/Status Registers (Offset 000–1FF) (continued)

Offset or 
Address

Register Mnemonic Section/Page

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-12 Freescale Semiconductor

16.3.4 MIB Block Counters Memory Map

Table 16-9 defines the MIB counters memory map, which defines the locations in the MIB RAM space 
where hardware-maintained counters reside. These fall in the 200–3FF address offset range. The counters 
are divided into two groups. 

RMON counters cover the Ethernet statistics counters defined in RFC 1757. In addition to the counters 
defined in the Ethernet statistics group, a counter is included to count truncated frames because the FEC 
only supports frame lengths up to 2047 bytes. The RMON counters are implemented independently for 
transmit and receive to ensure accurate network statistics when operating in full-duplex mode.

IEEE counters support the mandatory and recommended counter packages defined in section 5 of 
ANSI/IEEE Std. 802.3 (1998 edition). The IEEE basic package objects are supported by the FEC, but do 
not require counters in the MIB block. In addition, some of the recommended package objects that are 
supported do not require MIB counters. Counters for transmit and receive full-duplex flow control frames 
are also included.

Table 16-9. MIB Counters (Offset 200–3FF) (Sheet 1 of 3)

Address Mnemonic Description

0x200 RMON_T_DROP Frames counted incorrectly

0x204 RMON_T_PACKETS RMON TX packet count

0x208 RMON_T_BC_PKT RMON TX broadcast packets

0x20C RMON_T_MC_PKT RMON TX multicast packets

0x210 RMON_T_CRC_ALIGN RMON TX packets with CRC/align error

0x214 RMON_T_UNDERSIZE RMON TX packets < 64 bytes; good CRC

0x218 RMON_T_OVERSIZE RMON TX packets > MAX_FL bytes; good CRC

0x21C RMON_T_FRAG RMON TX packets < 64 bytes; bad CRC

0x220 RMON_T_JAB RMON TX packets > MAX_FL bytes; bad CRC

0x224 RMON_T_COL RMON TX collision count

0x228 RMON_T_P64 RMON TX 64-byte packets

0x22C RMON_T_P65TO127 RMON TX 65- to 127-byte packets

0x230 RMON_T_P128TO255 RMON TX 128- to 255-byte packets

0x234 RMON_T_P256TO511 RMON TX 256- to 511-byte packets

0x238 RMON_T_P512TO1023 RMON TX 512- to 1023-byte packets

0x23C RMON_T_P1024TO2047 RMON TX 1024- to 2047-byte packets

0x240 RMON_T_P_GTE2048 RMON TX packets with > 2048 bytes

0x244 RMON_T_OCTETS RMON TX octets

0x248 IEEE_T_DROP Frames counted incorrectly

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-13

0x24C IEEE_T_FRAME_OK Frames transmitted OK

0x250 IEEE_T_1COL Frames transmitted with single collision

0x254 IEEE_T_MCOL Frames transmitted with multiple collisions

0x258 IEEE_T_DEF Frames transmitted after deferral delay

0x25c IEEE_T_LCOL Frames transmitted with late collision

0x260 IEEE_T_EXCOL Frames transmitted with excessive collisions

0x264 IEEE_T_MACERR Frames transmitted with TX FIFO underrun

0x268 IEEE_T_CSERR Frames transmitted with carrier sense error

0x26C IEEE_T_SQE Frames transmitted with SQE error

0x270 T_FDXFC Flow control pause frames transmitted

0x274 IEEE_T_OCTETS_OK Octet count for frames transmitted without error

0x278–0x27C Reserved Reserved

0x280 RMON_R_DROP Frames counted incorrectly

0x284 RMON_R_PACKETS RMON RX packet count

0x288 RMON_R_BC_PKT RMON RX broadcast packets

0x28C RMON_R_MC_PKT RMON RX multicast packets

0x290 RMON_R_CRC_ALIGN RMON RX packets with CRC/align error

0x294 RMON_R_UNDERSIZE RMON RX packets < 64 bytes; good CRC

0x298 RMON_R_OVERSIZE RMON RX packets > MAX_FL bytes; good CRC

0x29C RMON_R_FRAG RMON RX packets < 64 bytes; bad CRC

0x2A0 RMON_R_JAB RMON RX packets > MAX_FL bytes; bad CRC

0x2A4 RMON_R_RESVD_0

0x2A8 RMON_R_P64 RMON RX 64-byte packets

0x2AC RMON_R_P65TO127 RMON RX 65- to 127-byte packets

0x2B0 RMON_R_P128TO255 RMON RX 128- to 255-byte packets

0x2B4 RMON_R_P256TO511 RMON RX 256- to 511-byte packets

0x2B8 RMON_R_P512TO1023 RMON RX 512- to 1023-byte packets

0x2BC RMON_R_P1024TO2047 RMON RX 1024- to 2047-byte packets

0x2C0 RMON_R_P_GTE2048 RMON RX packets with > 2048 bytes

0x2C4 RMON_R_OCTETS RMON RX octets

0x2C8 IEEE_R_DROP Frames counted incorrectly

Table 16-9. MIB Counters (Offset 200–3FF) (Sheet 2 of 3)

Address Mnemonic Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-14 Freescale Semiconductor

16.3.5 Register Descriptions

16.3.5.1 FEC ID Register (FEC_ID)

The FEC_ID register (FEC_ID) is a read-only register. The FEC_ID register is used to identify the FEC 
block and revision.

0x2CC IEEE_R_FRAME_OK Frames received OK

0x2D0 IEEE_R_CRC Frames received with CRC error

0x2D4 IEEE_R_ALIGN Frames received with alignment error

0x2D8 IEEE_R_MACERR Receive FIFO overflow count

0x2DC R_FDXFC Flow control pause frames received

0x2E0 IEEE_R_OCTETS_OK Octet count for frames received without error

0x2E4–0x2FC Reserved Reserved

0x300–0x3FF Reserved Reserved

Register address: 000

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R FEC_ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 DMA FIFO SMII FEC_REV

W

Reset 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 16-3. FEC_ID Register

Table 16-9. MIB Counters (Offset 200–3FF) (Sheet 3 of 3)

Address Mnemonic Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-15

16.3.5.2 Interrupt Event Register (IEVENT)

When an event occurs that sets a bit in the interrupt event register, an interrupt is generated if the 
corresponding bit in the interrupt enable register (IMASK) is also set. The bit in the interrupt event register 
is cleared if a 1 is written to that bit position. Writing 0 has no effect. This register is cleared upon hardware 
reset.

These interrupts can be divided into operational interrupts, transceiver/network error interrupts, and 
internal error interrupts. Interrupts that may occur in normal operation are GRA, TFINT, TXB, RFINT, 
RXB, and MII. Interrupts resulting from errors/problems detected in the network or transceiver are 
HBERR, BABR, BABT, LATE_COL and COL_RETRY_LIM. Interrupts resulting from internal errors 
are EBERR and XFIFO_UN.

Some of the error interrupts are independently counted in the MIB block counters. Software may choose 
to mask off these interrupts because these errors are visible to network management via the MIB counters.

• HBERR — ieee_t_sqe
• BABR — rmon_r_oversize (good CRC), rmon_r_jab (bad CRC)
• BABT — rmon_t_oversize (good CRC), rmon_t_jab (bad CRC)
• LATE_COL — ieee_t_lcol
• COL_RETRY_LIM — ieee_t_excol
• XFIFO_UN — ieee_t_macerr

Table 16-10. FEC_ID Field Descriptions

Field Description

FEC_ID Unique identifier for FEC
0000 

DMA DMA function included in the FEC 
1 FEC includes DMA (DMA_CONTROL register contains DMA revision)
0 EC does not include DMA

FIFO FIFO function included in the FEC 
1 FEC includes a FIFO (FIFO_ID register contains the FIFO revision)
0 FEC does not include a FIFO

SMII The Ethernet PHY interface configuration.
1 SMII (serial MII) interface. This 6-pin serial MII option requires that the MII_MODE bit of the R_CNTRL 

register is set equal to 1.
0 MII (18 pins) or 7-wire (select MII or 7-wire via the MII_MODE bit of the R_CNTRL register)

FEC_REV Value identifies the revision of the FEC.
00 Initial revision

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-16 Freescale Semiconductor

Address 004 

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

HBE
RR

BABR BABT GRA
TFIN

T
TXB

RFIN
T

RXB MII
EBER

R
LATE
_COL

COL_
RETR
Y_LI

M

XFIF
O_U

N

0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 16-4. IEVENT Register

Table 16-11. IEVENT Field Descriptions

Field Description

HBERR Heartbeat error. 
This interrupt indicates HBC is set in the X_CNTRL register and the COL input was not asserted within the 
heartbeat window following a transmission.

BABR Babbling receive error.
This bit indicates a frame was received with length in excess of R_CNTRL.MAX_FL bytes.

BABT Babbling transmit error. 
This bit indicates the transmitted frame length has exceeded R_CNTRL.MAX_FL bytes. This condition is 
usually caused by a frame that is too long being placed into the transmit data buffer(s). Truncation does not 
occur.

GRA Graceful stop complete. 
This interrupt is asserted for one of three reasons. Graceful stop means that the transmitter is put into a 
pause state after completion of the frame currently being transmitted.
1 A graceful stop, which was initiated by the setting of the GTS bit of the X_CNTRL register, is now 

complete.
2 A graceful stop, which was initiated by the setting of the FC_PAUSE bit of the X_CNTRL register, is now 

complete.

3 A graceful stop, which was initiated by the reception of a valid full-duplex flow control pause frame, is now 
complete. Refer to Section 16.6.4, “Full-Duplex Flow Control.

TFINT Transmit frame interrupt. 

This bit indicates a frame has been transmitted and the last corresponding buffer descriptor has been 
updated.

TXB Transmit buffer interrupt. 

This bit indicates a transmit buffer descriptor that had the R bit set in its status word has been updated.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-17

16.3.5.3 Interrupt Mask Register (IMASK)

The interrupt mask register provides control over which possible interrupt events are allowed to generate 
an actual interrupt. All implemented bits in this CSR are read/write. This register is cleared upon a 
hardware reset. If the corresponding bits in both the IEVENT and IMASK registers are set, the interrupt 
is signalled to the CPU. The interrupt signal remains asserted until a 1 is written to the IEVENT bit (write 
1 to clear) or a 0 is written to the IMASK bit.

RFINT Receive frame interrupt. 

This bit indicates a frame has been received and the last corresponding buffer descriptor has been updated.

RXB Receive buffer interrupt. 

This bit indicates a receive buffer descriptor that had the E bit set in its status word has been updated.

MII MII interrupt. 

This bit indicates the MII has completed the requested data transfer.

EBERR Ethernet bus error. 
This bit indicates a system bus error occurred when a DMA transaction was underway. When the EBERR bit 
is set, the ETHER_EN of the of the ECNTRL register is cleared, halting frame processing by the FEC. 

LATE_COL Late collision. 
This bit indicates a collision occurred beyond the collision window (slot time) in half-duplex mode. The frame 
is truncated with a bad CRC and the remainder of the frame is discarded.

COL_RETRY_
LIM

Collision retry limit. 
This bit indicates a collision occurred on each of 16 successive attempts to transmit the frame. The frame is 
discarded without being transmitted and transmission of the next frame commences. This situation can only 
occur in half-duplex mode.

XFIFO_UN Transmit FIFO underrun. 

This bit indicates the transmit FIFO became empty before the complete frame was transmitted. A bad CRC 
is appended to the frame fragment and the remainder of the frame is discarded.

Table 16-11. IEVENT Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-18 Freescale Semiconductor

Register address: 008

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
HBEE

N
BREN BTEN

GRAE
N

TFIEN TBIEN RFIEN RBIEN MIIEN
EBER
REN

LCEN
CRLE

N
XFUN 

EN
Reserved

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 16-5. IMASK Register

Table 16-12. IMASK Field Descriptions

Field Description

HBEEN Heartbeat error interrupt enable

BREN Babbling receiver interrupt enable

BTEN Babbling transmitter interrupt enable

GRAEN Graceful stop interrupt enable

TFIEN Transmit frame interrupt enable

TBIEN Transmit buffer interrupt enable

RFIEN Receive frame interrupt enable

RBIEN Receive buffer interrupt enable

MIIEN MII interrupt enable

EBERREN Ethernet controller bus error enable

LCEN Late collision enable

CRLEN Collision retry limit enable

XFUNEN Transmit FIFO underrun enable

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-19

16.3.5.4 CSR Receive Descriptor Active Register (R_DES_ACTIVE)

The CSR descriptor active register is a command register that should be written to indicate the receive 
descriptor ring has been updated (empty receive buffers have been produced by the driver with the E bit 
set).

The R_DES_ACTIVE bit is set when the register is written. This is independent of the data actually 
written. When set, the FEC polls the receive descriptor ring and processes receive frames, provided 
ECNTRL.ETHER_EN is also set. After the FEC polls a receive descriptor whose ownership bit is not set, 
the FEC clears the R_DES_ACTIVE bit and cease receive descriptor ring polling until you set the bit 
again, signifying additional descriptors have been placed into the receive descriptor ring.

The R_DES_ACTIVE register is cleared at reset and by the clearing of the ETHER_EN bit of the 
ECNTRL register.

Register address: 010

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventiona

l

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

0 0 0 0 0 0 0

R_
DES_
ACTIV

E

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventiona

l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 16-6. R_DES_ACTIVE Register

Table 16-13. R_DES_ACTIVE Field Descriptions

Field Description

R_DES_ACTIVE This bit is set to 1 when this register is written, regardless of the value written. It is cleared by the FEC device 
when no additional ready descriptors remain in the receive ring.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-20 Freescale Semiconductor

16.3.5.5 CSR Transmit Descriptor Active Register (X_DES_ACTIVE)

The CSR descriptor active register is a command register that should be written to indicate the transmit 
descriptor ring has been updated (transmit buffers have been produced by the driver with the R bit set in 
the buffer descriptor).

The X_DES_ACTIVE bit is set when the register is written. This is independent of the data actually 
written. When set, the FEC polls the transmit descriptor ring and process transmit frames, provided 
ETHER_EN bit of the ECNTRL register is also set. After the FEC polls a transmit descriptor whose 
ownership bit is not set, the FEC clears the X_DES_ACTIVE bit and ceases transmit descriptor ring 
polling until you set the bit again, signifying additional descriptors have been placed into the transmit 
descriptor ring.

The X_DES_ACTIVE register is cleared at reset and by the clearing of the ETHER_EN bit of the 
ECNTRL register.

Register address: 014

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventiona

l

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

0 0 0 0 0 0 0

X_
DES_
ACTIV

E

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventiona

l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 16-7. X_DES_ACTIVE Register

Table 16-14. X_DES_ACTIVE Field Descriptions

Field Description

X_DES_ACTIVE This bit is set to 1 when this register is written, regardless of the value written. It is cleared by the FEC device 
when no additional ready descriptors remain in the transmit ring.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-21

16.3.5.6 Ethernet Control Register (ECNTRL)

The Ethernet control register (ENCNTRL) is a read/write user register; however, some fields may be 
altered by hardware as well. The ENCNTRL register enables/disables the FEC.The Reserved bits must be 
cleared.

Register address: 024

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 Reser
ved

0 0 0 0 0 0 0 0 0 0

W

Reset 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 Reser
ved

ETHER
_EN

RE-
SETW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 16-8. ECNTRL Register

Table 16-15. ECNTRL Field Descriptions

Field Description

ETHER_EN Ethernet enable. When this bit is set, the fast Ethernet controller is enabled, and reception and transmission 
is possible. When this bit is cleared, reception is immediately stopped and transmission is stopped after a 
bad CRC is appended to any frame currently being transmitted. The buffer descriptor(s) for an aborted 
transmit frame are not updated following deassertion of ETHER_EN. When ETHER_EN is deasserted, the 
DMA, buffer descriptor, and FIFO control logic are reset, including buffer descriptor and FIFO pointers. The 
ETHER_EN bit is altered by hardware under the following conditions:
 • If ecntrl.RESET is written to a 1 by software, ETHER_EN is cleared
 • If error conditions occur, causing the EBERR bit of the IEVENT register to set, ETHER_EN is cleared.

RESET Ethernet controller reset. When this bit is set, the equivalent of a hardware reset is performed, but it is local 
to the FEC. ETHER_EN is cleared and all other FEC registers take their reset values. Also, any 
transmission/reception currently in progress is abruptly aborted. This bit is automatically cleared by 
hardware during the reset sequence. The reset sequence takes approximately eight clock cycles after reset 
is written with a 1.It’s recommended to read ECNTRL register back and this can give enough time to go 
through reset sequence

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-22 Freescale Semiconductor

16.3.5.7 MII Management Frame Register (MII_DATA)

The MII_DATA register does not reset to a defined value. The MII_DATA register communicates with the 
attached MII-compatible PHY device, providing read/write access to MII registers. Performing a write to 
the MII_DATA register causes a management frame to be sourced, unless the MII_SPEED register has 
been programmed to 0. Writing to MII_DATA when MII_SPEED equals 0, and the MII_SPEED register 
is then written to a non-zero value, an MII frame is generated with the data previously written to the 
MII_DATA register. This allows MII_DATA and MII_SPEED to be programmed in either order if 
MII_SPEED is currently zero.

Write the MII_DATA register to perform a read or write operation on the MII management interface. To 
generate a valid read or write management frame, the ST field must be written with a 01 pattern, the OP 
field must be written with a 01 (management register write frame) or 10 (management register read frame), 
and the TA field must be written with a 10. If other patterns are written to these fields, a frame is generated, 

Register address: 040

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ST OP PA RA TA

W

Reset

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DATA

W

Reset

Figure 16-9. MII_DATA Register

Table 16-16. MII_DATA Field Descriptions

Field Description

ST Start of frame delimiter. These bits must be programmed to 01 for a valid MII management frame.

OP Operation code. This field must be programmed to 10 (read) or 01(write) to generate a valid MII management 
frame. A value of 11 produces read frame operation, while a value of 00 produces write frame operation, but 
these frames are not MII-compliant.

PA PHY address. This field specifies one of up to 32 attached PHY devices.

RA Register address. This field specifies one of up to 32 registers within the specified PHY device.

TA Turn around. This field must be programmed to 10 to generate a valid MII management frame.

DATA Management frame data. This is the field for data to be written to or read from the PHY register.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-23

but does not comply with the IEEE 802.3 MII definition. When op field equals 1x, it produces a read-frame 
operation, while op equals 0x produces a write-frame operation.

To generate an 802.3-compliant MII management interface write frame (write to a PHY register), write 
{01 01 PHYAD REGAD 10 DATA} to the MII_DATA register. Writing this pattern causes the control 
logic to shift out the data in the MII_DATA register following a preamble generated by the control state 
machine. During this time, the contents of the MII_DATA register is altered as the contents are serially 
shifted, and are unpredictable if read by the user. The MII interrupt is generated after the write management 
frame operation has been completed. At this time, the contents of the MII_DATA register match the 
original value written.

To generate an MII management interface read frame (read a PHY register), write {01 10 PHYAD REGAD 
10 XXXX} to the MII_DATA register (the content of the data field is a don’t care). Writing this pattern 
causes the control logic to shift out the data in the MII_DATA register following a preamble generated by 
the control state machine. During this time, the contents of the MII_DATA register are altered as the 
contents are serially shifted and are unpredictable if read. The MII interrupt is generated after the read 
management frame operation has completed. At this time, the contents of the MII_DATA register match 
the original value written, except for the data field, where contents have been replaced by the value read 
from the PHY register.

If the MII_DATA register is written while frame generation is in progress, the frame contents are altered. 
Software should use the MII_STATUS register and/or the MII_DATAIO_COMPL interrupt to avoid 
writing to the MII_DATA register while frame generation is in progress.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-24 Freescale Semiconductor

16.3.5.8 MII Speed Control Register (MII_SPEED)

The MII_SPEED register provides control of the MII clock (MDC pin) frequency, allows dropping the 
preamble on the MII management frame, and provides observability (intended for manufacturing test) of 
an internal counter used in generating the MDC clock signal.

To be compliant with the IEEE MII specification, the MII_SPEED field must be programmed with a value 
that provides an MDC frequency of less than or equal to 2.5 MHz. The MII_SPEED bit must be set to a 
non-zero value to source a read or write management frame. After the management frame is complete, the 
MII_SPEED register may optionally be set to 0 to turn off the MDC. The MDC generated has a 50% duty 
cycle, except when MII_SPEED is changed during operation (the change takes effect following a rising or 
falling edge of MDC).

If the system clock is 25 MHz, programming this register to 0x0000_0005 resultS in an MDC frequency 
of 25 MHz * 1/(2*5) = 2.5 MHz. Table 16-18 shows optimum values for MII_SPEED as a function of 
system clock frequency.

Register address: 044

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventiona

l

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventiona

l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 DIS_
PRE-
AMBL

E

MII_SPEED
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 16-10. MII_SPEED Register

Table 16-17. MII_SPEED Field Descriptions

Field Description

DIS_PREAMBLE Asserting this bit causes preamble (32 ones) not to be prepended to the MII management frame. The MII 
standard allows the preamble to be dropped if the attached PHY device(s) does not require it.

MII_SPEED MII_SPEED controls the frequency of the MII management interface clock (MDC) relative to system clock. 
A value of 0 in this field turns off the MDC and leaves it in a low-voltage state. Any non-zero value results in 
the MDC frequency of 1/(mii_speed*2) of the system clock frequency.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-25

16.3.5.9 MIB Control Register (MIB_CONTROL) 

The MIB_CONTROL register is a read/write register that provides control of and observes the state of the 
MIB block. If it is necessary to disable the MIB block operation, this register is accessed by user software. 
For example, to clear all MIB counters in RAM, disable the MIB block, clear all the MIB RAM locations, 
and then enable the MIB block. The MIB_DISABLE bit is reset to 1.

Table 16-18. Programming Examples for MII_SPEED Register

IPS Clock Frequency MII_SPEED (Field in Register) MDC Frequency

25 MHz 0x5 2.5 MHz

33 MHz 0x7 2.36 MHz

40 MHz 0x8 2.5 MHz

50 MHz 0xA 2.5 MHz

66MHz 0xE 2.36MHz

83MHz 0x11 2.44MHz

Register address: 064

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventiona

l

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R MIB_
DIS-
ABL

E

MIB_
IDLE

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventiona

l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 16-11. MIB_CONTROL Register

Table 16-19. MIB_CONTROL Field Descriptions

Field Description

MIB_DISABLE This is a read/write control bit. If set, the MIB logic halts and does not update any MIB counters.

MIB_IDLE This is a read-only status bit. If set, the MIB block is not currently updating any MIB counters.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-26 Freescale Semiconductor

16.3.5.10 Receive Control Register (R_CNTRL)

The R_CNTRL register controls the operational mode of the receive block and should only be written 
when the ETHER_EN bit of the ECNTRL register equals 0 (initialization time).

Register address: 084

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0
MAX_FL

W

Reset 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0
FCE

BC_
REJ

PRO
M

MII_
MOD

E
DRT LOOP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

= Unimplemented or Reserved

Figure 16-12. R_CNTRL Register

Table 16-20. R_CNTRL Field Descriptions

Field Description

MAX_FL Maximum frame length. This is a user read/write field that resets to decimal 1518. Length is measured 
starting at DA (destination address) and includes the CRC at the end of the frame. Transmit frames longer 
than MAX_FL causes a BABT interrupt to occur. Receive frames longer than MAX_FL cause a BABR 
interrupt to occur and set the LG bit in the end-of-frame buffer descriptor. The recommended default value 
to be programmed is 1518 or 1522 (if VLAN tags are supported).

FCE Flow control enable. If asserted, the receiver detects pause frames. The transmitter stops transmitting data 
frames for a given duration when pause frames are detected.

BC_REJ Broadcast frame reject. If asserted, frames with DA = FFFF_FFFF_FFFF are rejected unless the PROM bit 
is set. If BC_REJ and PROM equal 1 individually, frames with broadcast DA are accepted and the MISS (M) 
bit is set in the receive buffer descriptor.

PROM Promiscuous mode. All frames are accepted, regardless of address matching.

MII_MODE Selects external interface mode. Setting this bit to 1 selects MII mode; setting this bit equal to 0 selects 7-wire 
mode (used only for serial 10 Mbps). This bit controls the interface mode for both transmit and receive blocks.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-27

DRT Disable receive on transmit. 
0 Receive path operates independently of transmit (use for full-duplex or to monitor transmit activity in 

half-duplex mode).
1 Disable reception of frames while transmitting (normally used for half-duplex mode).

LOOP Internal loopback. If set, transmitted frames are looped back internal to the device and the transmit output 
signals are not asserted. The system clock is substituted for the TX_CLK when loop is asserted. DRT must 
be set to 0 when asserting loop.

Register address: 084

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0
MAX_FL

W

Reset 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0
FCE

BC_
REJ

PRO
M

MII_
MOD

E
DRT LOOP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

= Unimplemented or Reserved

Figure 16-12. R_CNTRL Register

Table 16-20. R_CNTRL Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-28 Freescale Semiconductor

16.3.5.11 R_HASH Register

This read-only register provides address recognition information from the receive block about the frame 
currently being received. This field is read by the FEC. These bits provide the FEC with information used 
in the address recognition subroutine.

NOTE
FCE_DC, MULT CAST, and HASH are not affected by PORESET or 
HRESET.

Register address: 088

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventiona

l

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
FCE
_DC

MULT
-CAS

T
HASH 0 0 0 0 0 0 0 0

W

Reset

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventiona

l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset

= Unimplemented or Reserved

Figure 16-13. R_HASH Register

Table 16-21. R_HASH Field Descriptions

Field Description

FCE_DC This is a read-only view of the FCE bit in the R_CNTRL register.

MULTCAST This bit is set if the current receive frame contained a multicast destination address (the least significant bit 
of the DA was set). It is cleared if the current receive frame does not correspond to a multicast address.

HASH Corresponds to the hash value of the current receive frame’s destination address. The hash value is a 6-bit 
field extracted from the least significant portion of the CRC register.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-29

16.3.5.12 Transmit Control Register (X_CNTRL)

This register is read/write and is written to configure the transmit block. This register is cleared at system 
reset. Bits FDEN and HBC should be modified only when the ETHER_EN bit of the ECNTRL register 
equals 0.

Register address: 0C4

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventiona

l

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventiona

l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 0 0 0 0 0 0 0 0 0

RFC_
PAUS

E
TFC_
PAUS

E

FDE
N

HBC GST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 16-14. X_CNTRL Register

Table 16-22. X_CNTRL Field Descriptions

Field Description

RFC_PAUSE This read-only status bit is asserted when a full-duplex flow control pause frame has been received and the 
transmitter is paused for the duration defined in this pause frame. This bit automatically clears when the 
pause duration is complete.

TFC_PAUSE This bit is asserted to transmit a pause frame. When this bit is set, the MAC stops transmission of data 
frames after the current transmission is complete. At this time, the GRA interrupt in the INTR_EVENT 
register is asserted. With transmission of data frames stopped, the MAC transmits a MAC control pause 
frame. Next, the MAC clears the TFC_PAUSE bit and resumes transmitting data frames. If the transmitter is 
paused due to assertion of GTS or reception of a pause frame, the MAC may continue to transmit a MAC 
control pause frame.

FDEN Full-duplex enable. If set, frames are transmitted independent of carrier sense and collision inputs. This bit 
should be modified only when ETHER_EN bit of the ECNTRL register is deasserted.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-30 Freescale Semiconductor

HBC Heartbeat control. If set, the heartbeat check is performed following the end of transmission and the HB bit 
in the status register is set if the collision input does not assert within the heartbeat window. This bit should 
be modified only when the ETHER_EN bit of the ECNTRL register is deasserted.

GTS Graceful transmit stop. When this bit is set, the MAC stops transmission after completion of any frame 
currently being transmitted, and the GRA interrupt in the INTR_EVENT register is asserted. If frame 
transmission is not currently underway, the GRA interrupt is asserted immediately. After transmission is 
complete, a restart can be accomplished by clearing the GTS bit. The next frame in the transmit FIFO is then 
transmitted. If an early collision occurs during transmission when GTS equals 1, transmission stops after the 
collision. The frame is transmitted again after GTS is cleared. There may be old frames in the transmit FIFO 
that are transmitted when GTS is reasserted. To avoid this, deassert ETHER_EN bit of the ECNTRL register 
following the GRA interrupt.

Register address: 0C4

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventiona

l

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventiona

l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 0 0 0 0 0 0 0 0 0

RFC_
PAUS

E
TFC_
PAUS

E

FDE
N

HBC GST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 16-14. X_CNTRL Register

Table 16-22. X_CNTRL Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-31

16.3.5.13 Physical Address Low (PADDR1)

This register contains the lower 32 bits (bytes 0, 1, 2, 3) of the 48-bit address used in the address 
recognition process to compare with the destination address (DA) field of receive frames with an 
individual DA. In addition, this register is used in bytes 0–3 of the 6-byte source address field when 
transmitting pause frames. This register is not reset and must be initialized by the user.

Register address: 0E4

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PADDR1

W

Reset

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PADDR1

W

Reset

Figure 16-15. PADDR1 Register

Table 16-23. PADDR1 Field Descriptions

Field Description

PADDR1 This field comprises bytes 0 (bits 31:24), 1 (bits 23:16), 2 (bits 15:8), and 3 (bits 7:0) of the 6-byte individual 
address to be used for exact match, and the source address field in pause frames.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-32 Freescale Semiconductor

16.3.5.14 Physical Address High (PADDR2)

This register contains the upper 16 bits (bytes 4 and 5) of the 48-bit address used in the address recognition 
process to compare with the DA field of receive frames with an individual DA. In addition, this register is 
used in bytes 4 and 5 of the 6-byte source address field when transmitting pause frames. Bits 16:31 of 
PADDR2 contain a constant-type field (hex 8808) used for transmission of pause frames. This register is 
not reset and bits 0:15 must be initialized.

Register address: 0E8

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventiona

l

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PADDR2

W

Reset

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventiona

l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R TYPE

W

Reset 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

= Unimplemented or Reserved

Figure 16-16. PADDR2 Register

Table 16-24. PADDR2 Field Descriptions

Field Description

PADDR2 This field comprises bytes 4 (bits 31:24) and 5 (bits 23:16) of the 6-byte individual address to be used for an 
exact match, and the source address field in pause frames.

TYPE This is the type field in pause frames. These 16-bits are a constant value of hex 8808.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-33

16.3.5.15 Opcode/Pause Duration Register (OP_PAUSE) 

The OP_PAUSE register is read/write accessible. This register contains the 16-bit opcode, and 16-bit 
pause duration fields used in transmission of a pause frame. The opcode field is a constant value, hex 0001. 
When another node detects a pause frame, that node pauses transmission for the duration specified in the 
pause duration field. This register is not reset and must be initialized.

Register address: 0EC

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventiona

l

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R OPCODE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventiona

l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PAUSE_DUR

W

Reset

= Unimplemented or Reserved

Figure 16-17. OP_PAUSE Register

Table 16-25. OP_PAUSE Field Descriptions

Field Description

OPCODE This is the opcode field used in pause frames. These bits are a constant, hex 0001.

PAUSE_DUR This is the pause duration field used in pause frames.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-34 Freescale Semiconductor

16.3.5.16 Descriptor Individual Address 1 (IADDR1) 

This register contains the upper 32 bits of the 64-bit individual address hash table used in the address 
recognition process to check for a possible match between the DA field of receive frames and an individual 
DA. This register is not reset and must be initialized.

Register address: 118

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventiona

l

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
IADDR1

W

Reset

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventiona

l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IADDR1

W

Reset

Figure 16-18. IADDR1 Register

Table 16-26. IADDR1 Field Descriptions

Field Description

IADDR1 This field is the upper 32 bits of the 64-bit hash table used in the address recognition process for receive 
frames with a unicast address. Bit 31 of IADDR1 contains hash index bit 63. Bit 0 of IADDR1 contains hash 
index bit 32.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-35

16.3.5.17 Descriptor Individual Address 2 (IADDR2)

This register contains the lower 32 bits of the 64-bit individual address hash table used in the address 
recognition process to check for possible match between the DA field of receive frames and an individual 
DA. This register is not reset and must be initialized.

Register address: 11C

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventiona

l

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
IADDR2

W

Reset

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventiona

l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IADDR2

W

Reset

Figure 16-19. IADDR2 Register

Table 16-27. IADDR2 Field Descriptions

Field Description

IADDR2 This field is the upper 32 bits of the 64-bit hash table used in the address recognition process for receive 
frames with a unicast address. Bit 31 of IADDR2 contains hash index bit 63. Bit 0 of IADDR2 contains hash 
index bit 32.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-36 Freescale Semiconductor

16.3.5.18 Descriptor Group Address 1 (GADDR1)

This register contains the upper 32 bits of the 64-bit hash address table used in the address recognition 
process for receive frames with a multicast address. This register is not affected by PORESET or HRESET 
and must be initialized.

Register address: 120

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
GADDR1

W

Reset

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
GADDR1

W

Reset

Figure 16-20. GADDR1 Register

Table 16-28. GADDR1 Field Descriptions

Field Description

GADDR1 The GADDR1 register contains the upper 32 bits of the 64-bit hash table address used in the address 
recognition process for receive frames with a multicast address. Bit 31 of GADDR1 contains hash index bit 
63. Bit 0 of GADDR1 contains hash index bit 32.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-37

16.3.5.19 Descriptor Group Address 2 (GADDR2)

The GADDR2 register contains the lower 32 bits of the 64-bit hash table used in the address recognition 
process for receive frames with a multicast address. This register is not affected by PORESET or HRESET 
and must be initialized.

Register address: 124

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventiona

l

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
GADDR2

W

Reset

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventiona

l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
GADDR2

W

Reset

Figure 16-21. GADDR2 Register

Table 16-29. GADDR2 Field Descriptions

Field Description

GADDR2 The GADDR2 register contains the lower 32 bits of the 64-bit hash table used in the address recognition 
process for receive frames with a multicast address. Bit 31 of GADDR2 contains hash index bit 31. Bit 0 of 
GADDR2 contains hash index bit 0.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-38 Freescale Semiconductor

16.3.5.20 FIFO Transmit FIFO Watermark (X_WMRK)

The X_WMRK register is a 2-bit read/write register programmed to control the amount of data required 
in the transmit FIFO before transmission of a frame can begin. This allows you to minimize transmit 
latency (X_WMRK = 0X) or allow for larger bus access latency (X_WMRK = 11) due to contention for 
the system bus. Setting the watermark to a high value minimizes the risk of transmit FIFO underrun due 
to contention for the system bus. The byte counts associated with the X_WMRK field may need to be 
modified to match a given system requirement (worst case bus access latency by the transmit data DMA 
channel). The X_WMRK register resets to zero.

The logic and definition of this register may need to change for a specific instantiation/application of the 
FEC to be compatible with specific FIFO/system bus access latency requirements.

Register address: 144

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventiona

l

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventiona

l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X_WMRK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 16-22. X_WMRK Register

Table 16-30. X_WMRK Field Descriptions

Field Description

X_WMRK Transmit FIFO watermark. Frame transmission begins when the number of bytes selected by this field have 
been written into the transmit FIFO if an end-of-frame has been written to the FIFO or if the FIFO is full before 
the selected number of bytes have been written. The options are:
0X 64 bytes written to xFIFO
10 128 bytes written to xFIFO
11 192 bytes written to xFIFO

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-39

16.3.5.21 FIFO Receive Bound Register (R_BOUND)

The R_BOUND register is an 8-bit register that can be read to determine the upper address bound of the 
FIFO RAM. The highest address of FIFO_RAM is R_BOUND-1.Drivers can use the value of R_BOUND, 
along with the R_FSTART register value, to appropriately divide the available FIFO RAM between the 
transmit and receive data paths.

The R_BOUND register is read-only.

Register address: 14C

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 1 R_BOUND 0 0

W

Reset 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 16-23. R_BOUND Register

Table 16-31. R_BOUND Field Descriptions

Field Description

R_BOUND Read-only; determine the highest valid FIFO RAM address.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-40 Freescale Semiconductor

16.3.5.22 FIFO Receive Start Register (R_FSTART)

The R_FSTART register is an 8-bit register programmed to indicate the starting address of the receive 
R_FSTART marks the boundary between the transmit and receive FIFOs. The transmit FIFO uses 
addresses from 0 to R_FSTART-4. The receive FIFO uses addresses from R_FSTART to R_BOUND-1, 
inclusive.

The R_FSTART register is initialized by hardware at reset. Write R_FSTART to change the default value.

Register address: 150

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventiona

l

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventiona

l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 1
R_FSTART

0 0

W

Reset 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 16-24. R_FSTART Register

Table 16-32. R_FSTART Field Descriptions

Field Description

R_FSTART This is the address of the first receive FIFO location. It acts as a delimiter between the receive and transmit 
FIFOs.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-41

16.3.5.23 Beginning of Receive Descriptor Ring (R_DES_START)

This register is a pointer to the start of the circular receive buffer descriptor queue in external memory. 
This pointer must be 32-bit aligned; Write bits 30, 31 to 0. It is strongly recommended to be quad 
word-aligned (evenly divisible by 16) to get better system performance; write bits 28, 29, 30, and 31 to 0.

This register is not reset and must be initialized prior to operation.

Register address: 180

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
R_DES_START

W

Reset

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
R_DES_START

0 0

W

Reset

= Unimplemented or Reserved

Figure 16-25. R_DES_START Register

Table 16-33. R_DES_START Field Descriptions

Field Description

R_DES_START This is a pointer to the start of the receive buffer descriptor queue.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-42 Freescale Semiconductor

16.3.5.24 Beginning of Transmit Descriptor Ring (X_DES_START)

This register is a pointer to the start of the circular transmit buffer descriptor queue in external memory. 
This pointer must be 32-bit aligned, write bits 30 ,31 to 0. It is strongly recommended to be quad 
word-aligned (evenly divisible by 16) to get better system performance; write bits 28, 29, 30 and 31 to 0.

This register is not reset and must be initialized prior to operation.

Register address: 184

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventiona

l

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
X_DES_START

W

Reset

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventiona

l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
X_DES_START

0 0

W

Reset

= Unimplemented or Reserved

Figure 16-26. X_DES_START Register

Table 16-34. X_DES_START Field Descriptions

Field Description

X_DES_START This is a pointer to the start of the transmit buffer descriptor queue.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-43

16.3.5.25 Receive Buffer Size Register (R_BUFF_SIZE)

The R_BUFF_SIZE registers dictates the maximum size of all receive buffers. Only bits 21 – 27 are used, 
because receive frames are truncated at 2k-1 bytes. This value should take into consideration that the 
receive CRC is always written into the last receive buffer. To allow one maximum-sized frame per buffer, 
R_BUFF_SIZE must be set to R_CNTRL.MAX_FL or larger. The R_BUFF_SIZE must be evenly 
divisible by 16. To ensure this, bits 3-0 are forced to 0. To minimize bus utilization (descriptor fetches), it 
is recommended that R_BUFF_SIZE be greater than or equal to 256 bytes.

The R_BUF_SIZE register is not affected by reset and must be initialized.

Register address: 188

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventiona

l

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventiona

l

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0
R_BUFF_SIZE

0 0 0 0

W

Reset

= Unimplemented or Reserved

Figure 16-27. R_BUFF_SIZE Register Definition

Table 16-35. R_BUFF_SIZE Field Descriptions

Field Description

R_BUFF_SIZE This is the receive buffer size.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-44 Freescale Semiconductor

16.3.5.26 DMA Function Control Register (DMA_CONTROL)

The DMA_CONTROL register contains the function code and byte order fields used during each transfer 
between the DMA and the FEC interface. These bits can be written/read by the user. This register should 
be programmed only when the ETHER_EN bit of the ECNTRL register equals 0.

Register address: 1F4

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R DATA
_B0

DESC
_B0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 DMA_REV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 16-28. DMA_CONTROL Register

Table 16-36. DMA_CONTROL Field Descriptions

Field Description

DATA_BO The byte order control for data DMA transfers.
0 Little endian (bytes 0 and 3 swapped, bytes 1 and 2 swapped)
1 Big endian (no byte swapping)
Note: This bit is not affected by reset and must be initialized before using the DMA controller. 

DESC_BO The byte order control for descriptor DMA transfers.
0 Little endian (bytes 0 and 3 swapped, bytes 1 and 2 swapped)
1 Big endian (no byte swapping)
Note: The DATA_BO and DESC_BO fields are muxed to generate the IPM_BO signal on the master 

interface.
Note: This bit is not affected by reset and must be initialized before using the DMA controller. 

DMA_REV DMA revision; read only

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-45

16.4 Initialization Information
This section describes which registers are reset due to hardware reset, which are reset by the FEC 
RISC(shown in Figure 16-1), and what locations must be initialized prior to enabling FEC.

16.4.1 Initialization (Prior to Asserting ETHER_EN)

Initialize portions of the FEC prior to setting the ETHER_EN bit of the ECNTRL register. The exact values 
depend on the particular application. The sequence is not important. Ethernet MAC registers requiring 
initialization are defined in Table 16-37.

FEC FIFO/DMA registers requiring initialization are defined in Table 16-38.

Table 16-37. Initialization Before ETHER_EN

Description

Start FEC Clock (SCCR.1.FEC_EN)

Initialize IMASK

Clear IEVENT (write FFFF_FFFF)

 X_WMRK (optional)

 IADDR2/IADDR1

GADDR1/GADDR2

PADDR1/PADDR2

OP_PAUSE (only needed for FDX flow control)

R_CNTRL

X_CNTRL

MII_SPEED (optional)

Clear MIB_RAM (locations 200 – 2E3)

Table 16-38. FEC Initialization (Before ETHER_EN)

Description

Initialize R_FSTART (optional)

Initialize R_BUFF_SIZE

Initialize R_DES_START

Initialize X_DES_START

Initialize DMA_CONTROL

Initialize (empty) transmit descriptor ring

Initialize (empty) receive descriptor ring

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-46 Freescale Semiconductor

16.4.1.1 Descriptor Controller Initialization

In the fast Ethernet controller, the descriptor control RISC initializes some registers after ETHER_EN is 
asserted. After the descriptor controller initialization sequence is complete, the hardware is ready for 
operation.

The following table shows FEC RISC(shown in Figure 0-1) initialization operations.

The following table shows FEC RISC initialization operations specific to FEC.

16.4.1.2 Initialization (After Asserting ETHER_EN)

After asserting the ETHER_EN bit of the ECNTRL register, you can set up the buffer/frame descriptors 
and write to X_DES_ACTIVE and R_DES_ACTIVE.

16.5 Buffer Descriptors

16.5.1 Driver/DMA Operation with Buffer Descriptors

The data for the FEC frames must reside in memory external to the FEC. The data for a frame is placed in 
one or more buffers. A buffer descriptor (BD) that contains a starting address (pointer) and data length for 
the buffer is associated with each buffer. In addition to pointing to the buffer, the most significant bit of 
the BD is an ownership bit, which defines the current state of the buffer. Other bits in the buffer descriptor 
are used to communicate status/control information between the Ethernet MAC and the driver. To permit 
maximum user flexibility, the BDs used by the FEC DMA engineers also located in external memory.

Table 16-39. Descriptor Controller Initialization 

Description

Initialize Backoff random number seed

Activate receiver

Activate transmit

Table 16-40. Descriptor Controller Initialization (FEC-Specific)

Description

Clear transmit FIFO
X_LAG, X_READ, X_WRITE = 0

Clear receive FIFO
R_LAG, R_READ, R_WRITE = R_FSTART

Initialize transmit ring pointer
RDES_ADDR = R_DES_START

Initialize receive ring pointer
XDES_ADDR = X_DES_START

Initialize FIFO count registers
R_COUNT = X_COUNT = 0

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-47

Software produces buffers by allocating/initializing memory and initializing buffer descriptors. Setting the 
R/E (ownership) bit in the most significant word of the transmit (receive) buffer descriptor produces the 
buffer. A software write to either the X_DES_ACTIVE or R_DES_ACTIVE register tells the FEC that a 
buffer has been placed in external memory for the transmit or receive data traffic, respectively. The 
hardware reads the BDs and consumes the buffers after they have been produced. After the data DMA is 
complete and the buffer descriptor status bits have been written by the DMA engine, the R(E) bit is cleared 
by hardware to signal the buffer has been consumed. Software may poll the BDs to detect when the buffers 
have been consumed or may rely on the buffer/frame interrupts. These buffers may then be processed by 
the driver and returned to the free list. 

The ETHER_EN signal operates as a reset to the BD/DMA logic. When ETHER_EN is deasserted, the 
DMA engine BD pointers are reset to point to the starting transmit and receive BDs. The buffer descriptors 
are not initialized by hardware during reset. At least one transmit and receive buffer descriptor must be 
initialized by software (write 0x0000_0000 to the most significant word of buffer descriptor) before the 
ETHER_EN bit is set.

The buffer descriptors operate as a ring. R_DES_START defines the starting address for receive BDs and 
X_DES_START defines the starting address for transmit BDs. The last buffer descriptor in each ring is 
defined by the wrap (W) bit. When set, w indicates that the next descriptor in the ring is at the location 
pointed to by R_DES_START and X_DES_START for the receive and transmit rings, respectively. Buffer 
descriptor rings must start on a 32-bit boundary; it is strongly recommeneded they are made 128-bit 
aligned.

16.5.1.1 Driver/DMA Operation with Transmit BDs

Typically, a transmit frame is divided between multiple buffers. An example is to have an Ethernet/802.3 
header in the first buffer, an IP header in a second buffer, a TCP header in a third buffer, and an application 
payload in the last buffer. The Ethernet MAC does not prepend the Ethernet header (destination address, 
source address, length/type fields), so this must be provided by the driver in one of the transmit buffers. 
The Ethernet MAC can append the Ethernet CRC to the frame. Whether the CRC is appended by the MAC 
or by the driver is determined by the TC bit in the transmit BD, which must be set by the driver. When the 
DMA of the transmit frame is complete, the DMA controller appends a control word to the frame. The 
requirement for the control word is that the TC and ABC bits must be in the same position, as defined by 
the transmit BD. The simplest solution is to copy the most significant 32 bits of the transmit BD into the 
transmit FIFO at the end of the frame.

In a typical end station application, the TC bit always equals 1. For a switch/router application, the TC bit 
may be 1 or 0, depending on what type of port the frame arrived on and whether the frame contents were 
modified. The append bad CRC (ABC) bit is 0 unless an error has occurred (for example, a data parity 
error during DMA transfer) that results in data corruption.

The driver (TxBD software producer) should set up TxBDs in such a way that a complete transmit frame 
is given to the hardware at once. If a transmit frame consists of three buffers, the BDs should be initialized 
with pointer, length, and control (W, L, TC, ABC), and then the ownership (R) bits should be set equal to 1 
in reverse order (BD 3, BD 2, BD 1) to ensure the complete frame is ready in memory before the DMA 
begins. If the TxBDs are set up in order, the DMA Controller could DMA the first BD before the second 
was made available, potentially causing a transmit FIFO underrun.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-48 Freescale Semiconductor

In the FEC, the driver notifies the DMA that new transmit frame(s) are available by writing to the 
X_DES_ACTIVE register. When data is written to this register (data value is not significant), the FEC 
RISC tells the DMA to read the next transmit BD in the ring. After the start, the RISC + DMA continue 
reading and interpreting transmit BDs in order and DMA the associated buffers until a transmit BD is 
encountered with the R bit cleared to 0. At this point, the FEC polls this BD one more time. If the 
R bit equals 0 a second time, the RISC stops the transmit descriptor read process until software sets up 
another transmit frame and writes to X_DES_ACTIVE.

When the DMA of each transmit buffer is complete, the DMA writes back to the BD to clear the R 
(ownership) bit, indicating that the hardware consumer is finished with the buffer. A second driver task 
(TxBD software consumer) processes the transmit descriptor ring and return buffers consumed by the 
hardware to the free list.

16.5.1.2 Driver/DMA Operation with Receive BDs

Unlike transmit, the length of the receive frame is unknown by the driver ahead of time. Therefore, the 
driver must set a variable to define the length of all receive buffers. In the FEC, this variable is written to 
the R_BUFF_SIZE register. 

The driver (receive BD software producer) should set up some number of empty buffers for the Ethernet 
by initializing the address field and the E and W bits of the associated receive BDs. The hardware (receive 
DMA) consumes these buffers by filling them with data as frames are received and clearing the E bit and 
writing to the Lbit (1 indicates last buffer in frame), the frame status bits (if L= 1), and the length field.

If a receive frame spans multiple receive buffers, the L bit is only set for the last buffer in the frame. For 
any other buffer, the length field in the receive BD is written with the default receive buffer length value 
by the DMA (at the same time the e bit is cleared). For end-of-frame buffers, the receive BD is written with 
L set and information written to the status bits (M, BC, MC, LG, NO, SH, CR, OV.TR). Some of the status 
bits are error indicators which, if set, indicate the receive frame should be discarded and not given to higher 
layers. The frame status/length information is written into the receive FIFO following the end of the frame 
(as a single 32-bit word) by the receive logic. The length field for the end-of-frame buffer is written with 
the length of the entire frame, not the length of the last buffer.

For simplicity, the driver may assign the default receive buffer length to be large enough to contain an 
entire frame, keeping in mind that a malfunction on the network or out-of-specification implementation 
could result in giant frames. Frames of 2 Kbytes (2048 Kbytes) or larger are truncated by the FEC at 2047 
bytes, so software is guaranteed never to see a receive frame larger than 2047 bytes.

Similar to transmit, the FEC polls the receive descriptor ring after the driver sets up receive BDs and writes 
to the R_DES_ACTIVE register. As frames are received, the FEC fills receive buffers and updates the 
associated BDs, and then reads the next BD in the receive descriptor ring. If the FEC reads a receive BD 
and finds the E bit equal to 0, it polls this BD once more. If the BD equals 0 a second time, the FEC stops 
reading receive BDs until the driver writes to R_DES_ACTIVE.

16.5.2 Ethernet Receive Buffer Descriptor (RxBD)

In the RxBD, initialize the E and W bits in the first word and the pointer in the second word. When the 
buffer has been filled by DMA, the Ethernet controller modifies the E, L, M, BC, MC, LG, NO, CR, OV, 

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-49

and TR bits and also writes the data length into the first word. If a single receive buffer descriptor is used, 
the data length is the portion of the data buffer used (the total length of the frame). If the received message 
spans several data buffers, the data length in all but the last receive buffer (those with the L bit equaling 0) 
is R_BUFF_SIZE. The data length of the last receive buffer descriptor (the descriptor where the L bit is 
equal to 1) is the total length of the frame.. The M, BC, MC, LG, NO, CR, OV, and TR bits in the first word 
of the buffer descriptor are only modified by the Ethernet controller when the l bit is set.

Figure 16-29. RxBD — Receive Buffer Descriptor

The first word of the RXBD contains control and status bits. Its format is detailed in Table 16-41.

Table 16-41. RxBD — Receive Buffer Field Descriptions

Field Description

E Empty, written by the FEC (=0) and user (=1). 
0 The data buffer associated with this BD has been filled with received data or data reception has been aborted due 

to an error condition. The status and length fields have been updated as required.
1 The data buffer associated with this BD is empty or reception is currently in progress.

RO1 Receive software ownership bit
This field is reserved for use by software. This read/write bit must not be modified by hardware. Its value does not 
affect hardware.

W Wrap, written by user.
0 The next buffer descriptor is found in the consecutive location
1 The next buffer descriptor is found at the location defined in RAM.R_DES_START

RO2 Receive software ownership bit
This field is reserved for use by software. This read/write bit must not be modified by hardware. Its value does not 
affect hardware.

L Last in frame, written by the FEC.
0 The buffer is not the last in a frame
1 The buffer is the last in a frame

M Miss, written by the FEC.
This bit is set by the FEC for frames that were accepted in promiscuous mode, but were flagged as a miss by the 
internal address recognition. Therefore, while in promiscuous mode, you can use the M bit to determine whether the 
frame was destined to this station. This bit is valid only if the L and the PROM bits are set.
0 The frame was received because of an address recognition hit
1 The frame was received because of promiscuous mode

BC Set if the DA is broadcast (FF-FF-FF-FF-FF-FF)

MC Set if the DA is multicast and not bc.

Offset + 0

Offset + 2

Offset + 4

Offset + 6 RX Data Buffer Pointer — A[15:0]

Data Length

0123456789101112131415

RX Data Buffer Pointer — A[31:16]

TROVCR—NOLGMCBCM——LRO2WRO1E

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-50 Freescale Semiconductor

16.5.3 Ethernet Transmit Buffer Descriptor

Data is presented to the FEC for transmission by arranging the data in buffers referenced by the channel’s 
TxBDS. The Ethernet controller confirms transmission by clearing an ownership bit (R bit) when the 
buffer’s DMA is complete. In the TxBD, initialize the R, W, L, and TC bits and the length (in bytes) in the 
first word and the buffer pointer in the second word.

The FEC clears the R bit equal to 0 in the first word of the BD when the buffer has been addressed by the 
direct memory access controllers. Status bits for the buffer/frame are not included in the transmit buffer 
descriptors. Transmit frame status is indicated via individual interrupt bits (error conditions) and in statistic 
counters in the MIB block.

The TxBD fields are detailed in Figure 16-30.

LG RX frame length violation, written by the FEC.
A frame length greater than R_CNTRL.MAX_FL was recognized. This bit is valid only if the L bit is set. The receive 
data is not altered in any way unless the length exceeds 2047 bytes.

NO RX non-octet aligned frame, written by the FEC.
A frame that contains a number of bits not divisible by 8 was received, and the CRC check that occurred at the 
preceding byte boundary generated an error. This bit is valid only if the L bit is set. If this bit is set, the CR bit is not set.

CR RX CRC error, written by the FEC.
This frame contains a CRC error and is an integral number of octets in length. This bit is valid only if the l bit is set.

OV Overrun, written by the FEC.
A receive FIFO overrun occurred during frame reception. If this bit is set, the other status bits (M, LG, NO, SH, CR, 
and CL) lose their normal meaning and is zero. This bit is valid only if the L bit is set.

TR Set if the receive frame is truncated (frame length > 2047 bytes). If the TR bit is set, the frame should be discarded 
and the other error bits should be ignored because they may be incorrect.

Data 
Length

Written by the FEC.
If a single receive buffer descriptor is being used, the data length is the number of octets written by the FEC into this 
BD's data buffer (the total length of the frame). If the received message spans several data buffers, the data length 
is R_BUFF_SIZE in all but the last receive buffer descriptor (those with the L bit equaling 0) . The data length of the 
last receive buffer descriptor (the descriptor where the L bit is equal to 1) is the total length of the frame in octets.

Rx Buffer 
Pointer

Written by user.
The receive buffer pointer, which always points to the first location of the associated data buffer, must always be 
evenly divisible by 16. The buffer must reside in memory external to the FEC.

Note: Any time the software driver sets an E bit in one or more receive descriptors, the driver should follow that with a write to 
R_DES_ACTIVE.

Table 16-41. RxBD — Receive Buffer Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-51

Figure 16-30. Transmit Buffer Descriptor (TxBD)

NOTE
The TX data buffer pointer must be evenly divisble by four.

Table 16-42. Transmit Buffer Field Descriptions

Field Description

R Ready, written by FEC and user.
0 The data buffer associated with this BD is not ready for transmission. You are free to manipulate this BD or its 

associated data buffer. The FEC clears this bit after the buffer has been transmitted or after an error condition is 
encountered.

1 The data buffer, which has been prepared for transmission, has not been transmitted or is currently being 
transmitted. No fields of this BD may be modified after this bit is set.

TO1 Transmit software ownership bit.
This field is reserved for use by software. This read/write bit must not be modified by hardware. Its value does not 
affect hardware.

W Wrap, written by user.
This field is reserved for use by software. This read/write bit must not be modified by hardware. Its value does not 
affect hardware.
0 The next buffer descriptor is found in the consecutive location
1 The next buffer descriptor is found at the location defined in X_DES_START

TO2 Transmit software ownership bit
This field is reserved for use by software. This read/write bit must not be modified by hardware. Its value does not 
affect hardware.

L Last in frame, written by user.
0 The buffer is not the last in the transmit frame
1 The buffer is the last in the transmit frame 

TC TX CRC, written by user (only valid if L equals 1).
0 End transmission immediately after the last data byte
1 Transmit the CRC sequence after the last data byte

ABC Append bad CRC, written by user (only valid if l = 1)
0 No effect 
1 Transmit an invalid CRC sequence after the last data byte (regardless of TC value)

Data 
Length

Data length, written by user.
Data length is the number of octets the FEC should transmit from this BD’s data buffer. It is never modified by the 
FEC. Bits [21:31] are used by the DMA engine. Bits [16:20] are ignored.

Offset + 0

Offset + 2

Offset + 4

Offset + 6 TX Data Buffer Pointer — A[15:0]

Data Length

0123456789101112131415

TX Data Buffer Pointer — A[31:16]

ABCTCLTO2WTO1R

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-52 Freescale Semiconductor

16.6 Network Interface Options
The FEC supports an MII interface for 10/100 Mbps Ethernet and a 7-wire serial interface for 10 Mbps 
Ethernet. The interface mode is selected by the MII_MODE bit in the R_CNTRL register. In MII mode, 
(R_CNTRL.MII_MODE = 1), there are 18 signals defined by the 802.3 standard and supported by the 
EMAC. Table 16-43 shows these.

Serial mode connections to the external transceiver are shown in Table 16-44.

Transmit 
Date 
Buffer 
Pointer

TX buffer pointer, written by user.
The transmit buffer pointer, which contains the address of the associated data buffer, must always be evenly divisible 
by 4. The buffer must reside in memory external to the FEC. This value is never modified by the Ethernet controller.

Note: After the software driver has set up the buffers for a frame, it should set up the corresponding BDs. The last step in setting 
up the BDs for a transmit frame should be to set the r bit in the first BD for the frame. The driver should follow that with a 
write to X_DES_ACTIVE, which triggers the FEC to poll the next BD in the ring.

Table 16-43. MII Interface

Signal Description FEC signals name

Transmit clock TX_CLK

Transmit enable TX_EN

Transmit data TXD[3:0]

Transmit error TX_EN

Collision COL

Carrier sense CRS

Receive clock RX_CLK

Receive enable RX_DV

Receive data RXD[3:0]

Receive error RX_ER

Management channel clock MDC

Management channel serial data MDIO

Table 16-44. 7-Wire Interface

Signal Description FEC signal name

Transmit clock TX_CLK

Transmit enable TX_EN

Transmit data TXD[0]

Collision COL

Receive clock TX_CLK

Table 16-42. Transmit Buffer Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-53

16.6.1 FEC Frame Transmission

The Ethernet transmitter is designed to work with almost no intervention from software. After 
ETHER_EN is asserted and data appears in the transmit FIFO, the Ethernet MAC is able to transmit onto 
the network.

When the transmit FIFO fills to the watermark (defined by the X_WMRK register), the MAC transmit 
logic asserts TX_EN and starts transmitting the preamble sequence, the start frame delimiter, and then the 
frame information from the FIFO. However, the controller defers the transmission if the network is busy 
(carrier sense is asserted). Before transmitting, the controller waits for carrier sense to become inactive, 
and then determines if carrier sense stays inactive for 60 bit times. If so, then the transmission begins after 
waiting an additional 36 bit times (96 bit times after carrier sense originally became inactive).

If a collision occurs during transmission of the frame (half-duplex mode), the Ethernet controller follows 
the specified backoff procedures and attempts to retransmit the frame until the retry limit threshold is 
reached. The transmit FIFO stores at least the first 64 bytes of the transmit frame, so the first 64 bytes do 
not have to be retrieved again from system memory in case of a collision. This improves bus utilization 
and latency in case immediate retransmission is necessary.

When all the frame data has been transmitted, the FCS (32-bit CRC) bytes are appended if the TC bit is 
set in the transmit frame control word. If the ABC bit is set in the transmit frame control word, a bad CRC 
is appended to the frame data regardless of the TC bit value. Following the transmission of the CRC, the 
Ethernet controller writes the frame status information to the MIB block. Short frames are automatically 
padded by the transmit logic (if the TC bit in the transmit buffer descriptor for the end-of-frame buffer 
equals 1).

Both buffer (TXB, FEC only) and frame (TFINT, FEC) interrupts may be generated as determined by the 
settings in the IMASK register.

Transmit error interrupts are HBERR, BABT, LATE_COL, COL_RETRY_LIM, XFIFO_UN and 
XFIFO_ERROR. If the transmit frame length exceeds MAX_FL bytes, the BABT interrupt is asserted; 
however, the entire frame is transmitted (no truncation).

To pause transmission, set the graceful transmit stop (GTS) bit in the X_CNTRL register. When the GTS 
is set, the FEC transmitter stops immediately if transmission is not in progress; otherwise, it continues 
transmission until the current frame finishes or terminates with a collision. After the transmitter has 
stopped, the GRA interrupt is asserted. If GTS is cleared, the FEC resumes transmission with the next 
frame. 

Receive enable RX_DV

Receive data RXD[0]

Unused 860t inputs — tie to GND RX_ER,CRS,RXD[3:1]

Unused 860t outputs — ignore TX_ER,TXD[3:1],MDC,M
DIO

Table 16-44. 7-Wire Interface (continued)

Signal Description FEC signal name

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-54 Freescale Semiconductor

The Ethernet controller transmits bytes least significant bit (LSB) first.

16.6.1.1 Duplicate Frame Transmission

The FEC fetches transmit buffer descriptors (TxBDs) and the corresponding transmit data continuously 
until the transmit FIFO is full. It does not determine whether the TxBD to be fetched is already being 
processed internally (as a result of a wrap). As the FEC nears the end of the transmission of one frame, it 
begins to DMA the data for the next frame. To remain one BD ahead of the DMA, it also fetches the TxBD 
for the next frame. It is possible that the FEC fetches from memory a BD that has already been processed 
but not yet written back (it is read a second time with the R bit remains set). In this case, the data is fetched 
and transmitted again.

Using at least three TxBDs fixes this problem for large frames, but not for small frames. To ensure correct 
operation for large or small frames, one of the following must be true:

• The FEC software driver ensures that there is always at least one TxBD with the ready bit cleared.
• Every frame uses more than one TxBD and every TxBD but the last is written back immediately 

after the data is fetched.
• The FEC software driver ensures a minimum frame size, n. The minimum number of TxBDs is 

then (Tx FIFO Size ÷ (n + 4)) rounded up to the nearest integer (though the result cannot be less 
than three). The default Tx FIFO size is 192 bytes; this size is programmable.

16.6.2 FEC Frame Reception

The FEC receiver is designed to work with almost no intervention from the host and can perform address 
recognition, CRC checking, short frame checking, and maximum frame length checking.

When the driver enables the FEC receiver by asserting ETHER_EN, it immediately starts processing 
receive frames. When RX_DV asserts, the receiver checks for a valid PA/SFD header. If the PA/SFD is 
valid, it is stripped and the frame is processed by the receiver. If a valid PA/SFD is not found, the frame is 
ignored. 

NOTE
The FEC receive block transfers blocks of 16 bytes to the receive buffer 
even if the message length is not divisble by 16 bytes. Therefore, if the 
message length is not divisible by 16 bytes, extra bytes are added.

In serial mode, the first 16 bit times of RX_D0 following assertion of RX_DV (RENA) are ignored. 
Following the first 16 bit times, the data sequence is checked for alternating 1/0s. If a 11 or 00 data 
sequence is detected during bit times 17 to 21, the remainder of the frame is ignored. After bit time 21, the 
data sequence is monitored for a valid SFD (11). If a 00 is detected, the frame is rejected. When a 11 is 
detected, the PA/SFD sequence is complete. 

In MII mode, the receiver checks for at least one byte matching the SFD. Zero or more PA bytes may occur, 
but if a 00 bit sequence is detected prior to the SFD byte, the frame is ignored.

After the first six bytes of the frame have been received, the FEC performs address recognition on the 
frame. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-55

After a collision window (64 bytes) of data has been received, and if address recognition has not rejected 
the frame, the receive FIFO is signalled that the frame has been accepted and may be passed on to the 
DMA. If the frame is a runt (due to collision) or is rejected by address recognition, the receive FIFO is 
notified to reject the frame. Thus, no collision fragments are presented except late collisions, which 
indicate serious LAN problems. 

During reception, the Ethernet controller checks for various error conditions and after the entire frame is 
written into the FIFO, a 32-bit frame status word is written into the FIFO. This status word contains the 
M, BC, MC, LG, NO, SH, CR, OV and TR status bits and the frame length.

Receive buffer (RXB, FEC only) and frame (RFINT, FEC only) interrupts may be generated if enabled by 
the IMASK register. BABR and RFIFO_ERROR are receive error interrupts. Receive frames are not 
truncated if they exceed the MAX_FL byte length; however, the BABR interrupt occurs and the LG bit in 
the receive BD is set.

When the receive frame is complete, the FEC sets the l bit in the receive BD, writes the other frame status 
bits into the receive BD, and clears the E bit. Next, the Ethernet controller generates a maskable interrupt 
(RFINT bit in IEVENT, maskable by RFIEN bit in IMASK), indicating a frame has been received and is 
in memory. The Ethernet controller then waits for a new frame. 

The Ethernet controller receives serial data LSB first.

16.6.3 Ethernet Address Recognition

The FEC filters the received frames based on destination address (DA) type — individual (unicast), group 
(multicast), or broadcast (all-ones group address). The difference between an individual address and a 
group address is determined by the I/G bit in the destination address field. A flowchart for address 
recognition on received frames is illustrated in the following figures.

Address recognition is accomplished through the use of the receive block and ucode running on the 
descriptor controller. The flowchart shown in Figure 16-31 illustrates the address recognition decisions 
made by the receive block, while Figure 16-32 illustrates the decisions made by the descriptor controller. 

If the DA is a broadcast address and broadcast reject (BC_REJ bit is deasserted, the frame is accepted 
unconditionally, as shown in Figure 16-31. Otherwise, if the DA is not a broadcast address, the descriptor 
controller runs the address recognition subroutine, as shown in Figure 16-32. 

If the DA is a group (multicast) address and flow control is disabled, the descriptor controller performs a 
group hash table lookup using the 64-entry hash table programmed in GADDR1 and GADDR2. If a hash 
match occurs, address recognition hash match bar (AR_HM_B) is set to 0 and the receiver accepts the 
frame. If flow control is enabled, the descriptor controller does an exact address match check between the 
DA and the designated pause DA in registers FDXFC_DA1 and FDXFC_DA2. If a pause DA exact match 
occurs, the address recognition exact match bar (AR_EM_B) is set to 0. If the receive block determines 
the received frame is a valid pause frame, the frame is rejected. The receiver detects a pause frame with 
the DA field set to the designated pause DA or the unicast physical address.

If the DA is the individual (unicast) address, the descriptor controller performs an individual exact match 
comparison between the DA and 48-bit physical address that you program in the PADDR1 and PADDR2 
registers. If an exact match occurs, AR_EM_B is set to 0; otherwise, the descriptor controller does an 

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-56 Freescale Semiconductor

individual hash table lookup using the 64-entry hash table programmed in the IADDR1 and IADDR2 
registers. In the case of an individual hash match, AR_HM_B is set to 0. Again, the receiver accepts or 
rejects the frame based on pause frame detection, shown in Figure 16-31.

If neither a hash match (group or individual), nor an exact match (group or individual) occur, then both 
ar_hm_b and ar_em_b are set to 1. In this case, if promiscuous mode is enabled (r_cntrl.prom = 1), the 
frame is accepted and the MISS bit in the receive buffer descriptor is set. Otherwise, the frame is rejected 
and the MISS bit is cleared.

Similarly, if the DA is a broadcast address, broadcast reject (R_CNTRL.BC_REJ) is asserted, and 
promiscuous mode is enabled, the frame is accepted, and the MISS bit in the receive buffer descriptor is 
set. Otherwise, the frame is rejected and the MISS bit is cleared.

In general, when a frame is rejected, it is flushed from the FIFO.

Figure 16-31. Ethernet Address Recognition — Receive Block Decisions

Accept/Reject

Broadcast Addr
?

?

PROM = 1
?

Receive
Address

True

NOTES:
BC_REJ — field in R_CNTRL register (BroadCast REJect)

FalseTrue

 False
BC_REJ = 1

?

Frame

Hash Match

?
Exact Match

?
Pause Frame

False

False

False

False

True

True

True

True

Receive Frame Receive Frame

Receive Frame Receive Frame

Reject Frame

Reject Frame

PROM — field in R_CNTRL register (PROMiscous mode)
Pause Frame — valid PAUSE frame received

Set BC bit in Receive BD Set MC bit in Receive BD if multicast

Set M (Miss) bit in Receive BD
Set MC bit in Receive BD if multicast
Set BC bit in Receive BD if broadcast

Flush from FIFO

Flush from FIFO

Recognition

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-57

Figure 16-32. Ethernet Address Recognition — Ucode Decisions

The hash table algorithm used in the group and individual hash filtering operates as follows. The 48-bit 
destination address is mapped into one of 64 bits, which are represented by 64 bits stored in 
GADDR1/GADDR2 (group address hash match) or IADDR1/IADDR2 (individual address hash match). 
This mapping is performed by passing the 48-bit address through the on-chip 32-bit CRC generator and 
selecting the 6 most significant bits of the CRC-encoded result to generate a number between 0 and 63. 
The MSB of the CRC result selects GADDR1 (MSB = 1) or GADDR2 (MSB = 0). The least significant 5 
bits of the hash result select the bit within the selected register. If the CRC generator selects a bit set in the 
hash table, the frame is accepted. Otherwise, it is rejected. 

For example, if eight group addresses are stored in the hash table and random group addresses are received, 
the hash table prevents roughly 56/64 (or 87.5%) of the group address frames from reaching memory. 
Those that do reach memory must be further filtered by the processor to determine if they truly contain 
one of the eight desired addresses. 

The effectiveness of the hash table declines as the number of addresses increases.

The hash table registers must be initialized. The FEC does not support the set group address command, 
which can be used in the CPM ethernet controllers. You may compute the hash for a particular address in 

Receive Address

I/G Address
?

Exact Match
?

Hash Search
Group Table

Match
?

Hash Search
Individual Table

False

Match
?

False False

True
True

True

NOTES:
FCE — field in R_CNTRL register (Flow Control Enable)
I/G — Individual/Group bit in Destination Address (least significant bit in first byte received in MAC frame)

IndividualGroup

Receive Frame

 

True

Receive Frame

Reject Frame Receive Frame 

False

True

False

?
Pause Address

FCE
?

Receive Frame

Reject Frame
Flush from FIFO

Recognition

Flush from FIFO

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-58 Freescale Semiconductor

software or use the set group address command in an off-line CPM channel, retrieve the result and use it 
to program the FEC hash table registers. The CRC32 polynomial to use in computing the hash is:

X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X4 + X2 + X + 1 Eqn. 16-1

Table 16-45 includes example destination addresses and corresponding hash values for reference.
Table 16-45. Destination Address to 6-Bit Hash

48-Bit DA 6-Bit Hash (in Hex) Hash Decimal Value

65:ff:ff:ff:ff:ff 0x0 0

55:ff:ff:ff:ff:ff 0x1 1

15:ff:ff:ff:ff:ff 0x2 2

35:ff:ff:ff:ff:ff 0x3 3

b5:ff:ff:ff:ff:ff 0x4 4

95:ff:ff:ff:ff:ff 0x5 5

d5:ff:ff:ff:ff:ff 0x6 6

f5:ff:ff:ff:ff:ff 0x7 7

db:ff:ff:ff:ff:ff 0x8 8

fb:ff:ff:ff:ff:ff 0x9 9

bb:ff:ff:ff:ff:ff 0xa 10

8b:ff:ff:ff:ff:ff 0xb 11

0b:ff:ff:ff:ff:ff 0xc 12

3b:ff:ff:ff:ff:ff 0xd 13

7b:ff:ff:ff:ff:ff 0xe 14

5b:ff:ff:ff:ff:ff 0xf 15

27:ff:ff:ff:ff:ff 0x10 16

07:ff:ff:ff:ff:ff 0x11 17

57:ff:ff:ff:ff:ff 0x12 18

77:ff:ff:ff:ff:ff 0x13 19

f7:ff:ff:ff:ff:ff 0x14 20

c7:ff:ff:ff:ff:ff 0x15 21

97:ff:ff:ff:ff:ff 0x16 22

a7:ff:ff:ff:ff:ff 0x17 23

99:ff:ff:ff:ff:ff 0x18 24

b9:ff:ff:ff:ff:ff 0x19 25

f9:ff:ff:ff:ff:ff 0x1a 26

c9:ff:ff:ff:ff:ff 0x1b 27

59:ff:ff:ff:ff:ff 0x1c 28

79:ff:ff:ff:ff:ff 0x1d 29

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-59

29:ff:ff:ff:ff:ff 0x1e 30

19:ff:ff:ff:ff:ff 0x1f 31

d1:ff:ff:ff:ff:ff 0x20 32

f1:ff:ff:ff:ff:ff 0x21 33

b1:ff:ff:ff:ff:ff 0x22 34

91:ff:ff:ff:ff:ff 0x23 35

11:ff:ff:ff:ff:ff 0x24 36

31:ff:ff:ff:ff:ff 0x25 37

71:ff:ff:ff:ff:ff 0x26 38

51:ff:ff:ff:ff:ff 0x27 39

7f:ff:ff:ff:ff:ff 0x28 40

4f:ff:ff:ff:ff:ff 0x29 41

1f:ff:ff:ff:ff:ff 0x2a 42

3f:ff:ff:ff:ff:ff 0x2b 43

bf:ff:ff:ff:ff:ff 0x2c 44

9f:ff:ff:ff:ff:ff 0x2d 45

df:ff:ff:ff:ff:ff 0x2e 46

ef:ff:ff:ff:ff:ff 0x2f 47

93:ff:ff:ff:ff:ff 0x30 48

b3:ff:ff:ff:ff:ff 0x31 49

f3:ff:ff:ff:ff:ff 0x32 50

d3:ff:ff:ff:ff:ff 0x33 51

53:ff:ff:ff:ff:ff 0x34 52

73:ff:ff:ff:ff:ff 0x35 53

23:ff:ff:ff:ff:ff 0x36 54

13:ff:ff:ff:ff:ff 0x37 55

3d:ff:ff:ff:ff:ff 0x38 56

0d:ff:ff:ff:ff:ff 0x39 57

5d:ff:ff:ff:ff:ff 0x3a 58

7d:ff:ff:ff:ff:ff 0x3b 59

fd:ff:ff:ff:ff:ff 0x3c 60

dd:ff:ff:ff:ff:ff 0x3d 61

9d:ff:ff:ff:ff:ff 0x3e 62

bd:ff:ff:ff:ff:ff 0x3f 63

Table 16-45. Destination Address to 6-Bit Hash (continued)

48-Bit DA 6-Bit Hash (in Hex) Hash Decimal Value

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-60 Freescale Semiconductor

16.6.4 Full-Duplex Flow Control

Full-duplex flow control allows you to transmit pause frames and to detect received pause frames. Upon 
detection of a pause frame, MAC data frame transmission stops for a given pause duration.

To enable pause frame detection, the FEC must operate in full-duplex mode (X_CNTRL.FDEN asserted) 
and flow control enable (R_CNTRL.FCE) must be asserted. The FEC detects a pause frame when the 
fields of the incoming frame match the pause frame specifications, as shown in Table 16-46. In addition, 
the receive status associated with the frame should indicate that the frame is valid. 

Pause frame detection is performed by the receiver and descriptor controller modules. The descriptor 
controller runs an address recognition subroutine to detect the specified pause frame destination address, 
while the receiver detects the type and opcode pause frame fields. On detection of a pause frame, graceful 
transmit stop is asserted by the FEC internally. When transmission has paused, the graceful stop complete 
(GRA) interrupt is asserted and the pause timer begins to increment. The pause timer makes use of the 
transmit backoff timer hardware, which is used for tracking the appropriate collision backoff time in 
half-duplex mode. The pause timer increments once every slot time, until pause_duration slot times have 
expired. When pause_duration expires, graceful transmit stop is deasserted, allowing MAC data frame 
transmission to resume. The receive flow control pause (RFC_PAUSE) status bit is asserted while the 
transmitter is paused due to reception of a pause frame.

To transmit a pause frame, the FEC must operate in full-duplex mode and software must assert flow control 
pause (TFC_PAUSE). On assertion of TFC_PAUSE, the transmitter asserts graceful transmit stop 
internally. When the transmission of data frames stops, the graceful stop complete (GRA) interrupt asserts. 
Following GRA assertion, the pause frame is transmitted. When pause frame transmission is complete, 
TFC_PAUSE and graceful transmit stop are deasserted internally. 

During pause frame transmission, the transmit hardware places data into the transmit data stream from the 
registers shown in Table 16-47.

Table 16-46. PAUSE Frame Field Specification

48-Bit Destination Address 0180_c200_0001 or Physical Address

48-bit source address any

16-bit type 8808

16-bit opcode 0001

16-bit pause duration 0000 to ffff

Table 16-47. Transmit Pause Frame Registers

PAUSE Frame Fields FEC Register Register Contents

48-bit destination address {FDXFC_DA1[0:31], fDXFC_DA2[0:15]} 0180_c200_0001 

48-bit source address {PADDR1[0:31], PADDR2[0:15]} Physical address

16-bit type PADDR2[16:31] 8808

16-bit opcode OP_PAUSE[0:15] 0001

16-bit pause duration OP_PAUSE[16:31] 0000 to ffff

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-61

Specify the desired pause duration in the OP_PAUSE register.

When the transmitter is paused due to receiver/descriptor controller pause frame detection, transmit flow 
control pause (TFC_PAUSE) may continue to be asserted and cause the transmission of a single pause 
frame. In this case, the GRA interrupt is not asserted.

16.6.5 Inter-Packet Gap Time

The minimum inter-packet gap time for back-to-back transmission is 96 bit times. After completing a 
transmission or after the backoff algorithm completes, the transmitter waits for carrier sense to be negated 
before starting its 96 bit time IPG counter. Frame transmission may begin 96 bit times after carrier sense 
is negated if it stays negated for at least 60 bit times. If carrier sense asserts during the last 36 bit times, it 
is ignored and a collision occurs.

The receiver receives back-to-back frames with a minimum spacing of at least 28 bit times. If an 
inter-packet gap between receive frames is less than 28 bit counts, the following frame may be discarded 
by the receiver.

16.6.6 Collision Handling

If a collision occurs during frame transmission, the Ethernet controller continues the transmission for at 
least 32 bit times, transmitting a jam pattern consisting of 32 ones. If the collision occurs during the 
preamble sequence, the jam pattern is sent after the end of the preamble sequence.

If a collision occurs within 64 byte times, the retry process is initiated. The transmitter waits a random 
number of slot times. A slot time is 512 bit times. If a collision occurs after 64 byte times, no 
retransmission is performed and the end-of-frame buffer is closed with an LC error indication. 

16.6.7 Internal and External Loopback

Internal and external loopback are supported by the Ethernet controller. In loopback mode, both of the 
FIFOs are used and the FEC actually operates in a full-duplex fashion. Internal and external loopback are 
configured using combinations of the LOOP and DRT bits in the R_CNTRL register and the FDEN bit in 
the X_CNTRL register.

For internal and external loopback, set FDEN equal to 1.

For internal loopback, set LOOP equal to 1 and DRT equal to 0. TX_EN and TX_ER do not assert during 
internal loopback. During internal loopback, the transmit/receive data rate is higher than in normal 
operation because the internal system clock is used by the transmit and receive blocks instead of the clocks 
from the external transceiver. This causes an increase in the required system bus bandwidth for transmit 
and receive data being direct memory addressed to/from external memory. It may be necessary to pace the 
frames on the transmit side and/or limit the size of the frames to prevent transmit FIFO underrun and 
receive FIFO overflow.

For external loopback, set LOOP equal to 0 and DRT equal 0, and then configure the external transceiver 
for loopback.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-62 Freescale Semiconductor

16.6.8 Ethernet Error-Handling Procedure

The Ethernet controller reports frame reception and transmission error conditions using the FEC receive 
BDs, the IEVENT register and the MIB block counters.

16.6.9 Transmission Errors
• Transmitter Underrun 

— If this error occurs, the FEC sends 32 bits that ensure a CRC error and stops transmitting. All 
remaining buffers for that frame are then flushed and closed. The UN bit is set in the 
X_STATUS register. The FEC then continues to the next transmit buffer descriptor and begins 
transmitting the next frame.

— The XFIFO_UN interrupt is asserted if enabled in the IMASK register

• Carrier Sense Lost During Frame Transmission 
— When this error occurs and no collision is detected in the frame, the FEC sets the CSL bit in 

X_STATUS register. The frame is transmitted normally. No retries are performed as a result of 
this error. 

— No interrupt is generated as a result of this error
• Retransmission Attempts Limit Expired 

— When this error occurs, the FEC terminates transmission. All remaining buffers for that frame 
are then flushed and closed, and the RL bit is set in the X_STATUS register. The FEC then 
continues to the next transmit buffer descriptor and begins transmitting the next frame.

— The COL_RETRY_LIM interrupt is asserted if enabled in the IMASK register
• Late Collision 

— When a collision occurs after the slot time (512 bits starting at the Preamble), the FEC 
terminates transmission. All remaining buffers for that frame are then flushed and closed, and 
the LC bit is set in the X_STATUS register. The FEC then continues to the next transmit buffer 
descriptor and begins transmitting the next frame.

— The LATE_COL interrupt is asserted if enabled in the IMASK register
• Heartbeat 

— Some transceivers have a self-test feature called heartbeat or signal quality error. To signify a 
good self-test, the transceiver indicates a collision to the FEC within 20 clocks after completion 
of a frame transmitted by the Ethernet controller. This indication of a collision does not imply 
a real collision error on the network, but is rather an indication that the transceiver seems to be 
functioning properly. This is called the heartbeat condition. 

— If the HBC bit is set in the X_CNTRL register and the heartbeat condition is not detected by 
the FEC after a frame transmission, a heartbeat error occurs. When this happens, the FEC 
closes the buffer, sets the HB bit in the X_STATUS register, and generates the HBERR interrupt 
if it is enabled.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

Freescale Semiconductor 16-63

16.6.10 Reception Errors
• Overrun Error 

— If the receive block has data to put into the receive FIFO and the receive FIFO is full, the FEC 
sets the OV bit in the receive status word. All subsequent data in the frame is discarded and 
subsequent frames may also be discarded until the receive FIFO is serviced by the DMA and 
space becomes available. At this point, the receive frame/status word is written into the FIFO 
with the OV bit set. This frame must be discarded by the driver.

• Non-Octet Error (Dribbling Bits) 
— The Ethernet controller manages up to seven dribbling bits when the receive frame terminates 

non-octet aligned and it checks the CRC of the frame on the last octet boundary. If there is a 
CRC error, the frame non-octet aligned (no) error is reported in the receive BD. If there is no 
CRC error, no error is reported.

• CRC Error 
— When a CRC error occurs with no dribble bits, the FEC closes the buffer and sets the CR bit in 

the RxBD. CRC checking cannot be disabled, but the CRC error can be ignored if checking is 
not required.

• Frame Length Violation
— When the receive frame length exceeds MAX_FL bytes, the BABT interrupt is generated and 

the LG bit in the end-of-frame receive BD is set. The frame is not truncated (truncation occurs 
if the frame length exceeds 2047 bytes).

• Truncation
— When the receive frame length exceeds 2047 bytes, the frame is truncated and the TR bit is set 

in the receive BD.

MPC5121e Microcontroller Reference Manual, Rev. 2



Fast Ethernet Controller (FEC)

16-64 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 17-1

Chapter 17  
General Purpose Timers (GPT)

17.1 Introduction
Eight general-purpose timer (GPT) pins are configurable for:

• Input capture
• Output compare
• Pulse width modulation (PWM) output
• Simple GPIO
• Internal CPU timer

The General Purpose Timer provides 8 independent Timer Channels that perform General Purpose I/O, 
Input Capture, Output Compare, Pulse Width Modulation and Internal CPU timer functions. An external 
I/O pin is associated with each Timer Channel. A separate 16-bit prescaler and 16-bit counter is associated 
with each timer channel, thus achieving a range of 32-bits (but only 16-bit resolution).

17.1.1 Modes of Operation
• Input Capture—In this mode the I/O pin is an Input. There are two counters used for each timer 

channel in this mode. The first counter is the Internal counter and the second is the Updown 
counter. After enabled, when specified capture event occurs (rising edge, falling edge, either edge, 
or pulse - two consecutive edges), the internal counter value is latched in the status register. If 
enabled, a CPU interrupt is generated. The Input Capture function has the following submodes, 
which are controlled by the ICM bits in section Section 17.2.2, “Register Descriptions” GPT 
Enable and Mode Select Register:

– Normal input capture mode. Only internal counter is active.
– Up submode as well as normal input capture submode. Both updown counter and internal 

counter are active.
– Updown submode as well as input capture submode. Both counters are active. A pair of 

timer channels are used to implement this mode.
– Rotary counter as well as input capture counter mode.Both counters are active. A pair of 

timer channels are used to implement this mode.
– When changing from one submode into another submode, the TIMER should be disabled 

first.
• Output Compare—In this mode the I/O pin is an Output. When enabled, the counters run until they 

reach the programmed Terminal Count value. At this point, the specified output event is generated 
(toggle, pulse high, or pulse low). If enabled, a CPU interrupt is generated.

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

17-2 Freescale Semiconductor

• PWM—In this mode the I/O pin is an Output. The user can program period and width values to 
create an adjustable, repeating output waveform on the I/O pin. A CPU interrupt can be generated 
at the beginning of each PWM Period, at which time a new Width value can be loaded. The new 
Width value, which represents ON time, is automatically applied at the beginning of the next 
period. There is no interrupt at the beginning of the first PWM Period. This mode is suitable for 
PWM audio encoding.

• Simple GPIO—In this mode the I/O pin operates as a GPIO pin. It can be specified as Input or 
Output, according to the programmable GPIO field. GPIO mode is mutually exclusive of Input 
Capture, Output Compare and PWM modes. 

• CPU Timer—The I/O pin is not used in this mode. After enabled, the counters run until they reach 
a programmed Terminal Count. When this occurs, an interrupt can be generated to the CPU. This 
Timer mode can be used simultaneously with the Simple GPIO mode.

17.1.2 Detailed Signal Descriptions

Table 17-1 provides detailed descriptions of the external GPTimer signals.

17.2 Memory Map and Register Definition
Each GPT Timer Channel uses 4 32-bit registers. These registers are located at an offset from IMMRBAR 
of 0x0B00. Register addresses are relative to this offset. Therefore, the actual register address is: 
IMMRBAR + 0x0B00 + Register Offset = register address.

17.2.1 Memory Map

Table 17-2 shows the memory map for the local access registers:

Table 17-1. GPIO External Signals—Detailed Signal Descriptions

Signal I/O Description

GPTimer[0:7] I/O GPTimer 0—7. Each pin can be individually set to act as input or output, according to application 
needs.

State
Meaning

Asserted/Negated—Defined per application.

Timing Assertion/Negation —Inputs can be asserted completely asynchronously.
Outputs are asynchronous to any externally visible clock

Table 17-2. GPTimer Memory Map

Offset or 
Address

Register Access Section/Page

General Registers

0x0B00 GPT0 Enable and Mode Select Register R/W 17.2.2.1/17-4

0x0B10 GPT1 Enable and Mode Select Register R/W 17.2.2.1/17-4

0x0B20 GPT2 Enable and Mode Select Register R/W 17.2.2.1/17-4

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

Freescale Semiconductor 17-3

0x0B30 GPT3 Enable and Mode Select Register R/W 17.2.2.1/17-4

0x0B40 GPT4 Enable and Mode Select Register R/W 17.2.2.1/17-4

0x0B50 GPT5 Enable and Mode Select Register R/W 17.2.2.1/17-4

0x0B60 GPT6 Enable and Mode Select Register R/W 17.2.2.1/17-4

0x0B70 GPT7 Enable and Mode Select Register R/W 17.2.2.1/17-4

0x0B04 GPT0 Counter Input and Updown Counter Output Register R/W 17.2.2.2/17-8

0x0B14 GPT1 Counter Input and Updown Counter Output Register R/W 17.2.2.2/17-8

0x0B24 GPT2 Counter Input and Updown Counter Output Register R/W 17.2.2.2/17-8

0x0B34 GPT3 Counter Input and Updown Counter Output Register R/W 17.2.2.2/17-8

0x0B44 GPT4 Counter Input and Updown Counter Output Register R/W 17.2.2.2/17-8

0x0B54 GPT5 Counter Input and Updown Counter Output Register R/W 17.2.2.2/17-8

0x0B64 GPT6 Counter Input and Updown Counter Output Register R/W 17.2.2.2/17-8

0x0B74 GPT7 Counter Input and Updown Counter Output Register R/W 17.2.2.2/17-8

0x0B08 GPT0 PWM Configuration Register R/W 17.2.2.3/17-9

0x0B18 GPT1 PWM Configuration Register R/W 17.2.2.3/17-9

0x0B28 GPT2 PWM Configuration Register R/W 17.2.2.3/17-9

0x0B38 GPT3 PWM Configuration Register R/W 17.2.2.3/17-9

0x0B48 GPT4 PWM Configuration Register R/W 17.2.2.3/17-9

0x0B58 GPT5 PWM Configuration Register R/W 17.2.2.3/17-9

0x0B68 GPT6 PWM Configuration Register R/W 17.2.2.3/17-9

0x0B78 GPT7 PWM Configuration Register R/W 17.2.2.3/17-9

0x0B0C GPT0 Status Register R 17.2.2.4/17-10

0x0B1C GPT1 Status Register R 17.2.2.4/17-10

0x0B2C GPT2 Status Register R 17.2.2.4/17-10

0x0B3C GPT3 Status Register R 17.2.2.4/17-10

0x0B4C GPT4 Status Register R 17.2.2.4/17-10

0x0B5C GPT5 Status Register R 17.2.2.4/17-10

0x0B6C GPT6 Status Register R 17.2.2.4/17-10

0x0B7C GPT7 Status Register R 17.2.2.4/17-10

Table 17-2. GPTimer Memory Map (continued)

Offset or 
Address

Register Access Section/Page

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

17-4 Freescale Semiconductor

17.2.2 Register Descriptions

17.2.2.1 GPT0 – GPT7 Enable and Mode Select Registers
NOTE

Register address offset from IMMRBAR of 0x0B00: 
0x0B00, 0x0B10, 0x0B20, 0x0B30, 0x0B40, 0x0B50, 0x0B60, 0x0B70

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
OCPW OCT ICM ICT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CE

Stop_
Cont

Open
_Drn

IntEn GPIO Timer_MS
W S1

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 17-1. GPT0–GPT7 Enable and Mode Select Registers
(The register is repeated for reference.)

Table 17-3. GPT0–GPT7 Enable and Mode Select Field Descriptions (Sheet 1 of 4)

Field Description

OCPW Output Compare Pulse Width. Applies to OC Pulse types only. This field specifies the number of IP bus clocks 
(non-prescaled) to create a short output pulse at each Output Event. This pulse is generated at the end of 
the OC period and overlays the next OC period (rather than adding to the period).

OCT Output Compare Type. Describes action to occur at each output compare event, as follows:
00 Special case, output is immediately forced low without respect to each output compare event.
01 Output pulse highs, initial value is low (OCPW field applies).
10 Output pulses low, initial value is high (OCPW field applies).
11 Output toggles.
GPIO modalities can be used to achieve an initial output state prior to enabling OC mode. It is important to 
move directly from one GPIO output mode to another OC mode and not to pass through the Timer_MS=000 
state.
To prevent the Internal Timer Mode from engaging during the GPIO state, CE bit should be held low during 
the configuration steps.
GPIO initialization is needed when presetting a Timer I/O to 1 in conjunction with a simple toggle OCT 
setting.
Note: For Stop Mode operation (see Stop_Cont bit below) it is necessary to pass through the mode_sel = 0 

state to restart the output compare counters with their programmed values. See prescale and count 
fields in 17.1.1/17-1.

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

Freescale Semiconductor 17-5

ICM Input Capture Mode—describes the input capture sub-mode as follows:
00 Normal input capture submode.
01 Up submode as well as normal input capture submode. Timer updown counter increases one if it detects 

IC event.
10 Updown submode as well as input capture submode. Timers must be used in pairs. Timer 0 is paired with 

Timer 1, Timer 2 is paired with Timer 3, Timer 4 is paired with Timer 5 and Timer 6 is paired with Timer 
7. For example, the timer0 updown counter increases by one if timer0 detects IC event. The Timer 0 
Updown Counter decreases by one if timer1 detects an IC event. The timer 0 Updown Counter remains 
unchanged if an IC event occurs on both channels during a single prescaled clock count. Timers 2 and 
3, Timers 4 and 5, and Timers 6 and 7 operate in a similar fashion.

11 Rotary submode as well as input capture submode. When an IC event is detected on Timer 0, the Timer 
0 Updown Counter is incremented by 1 if Timer 1 is driven to a logic 0. the Timer 0 Updown Counter 
decrements by 1 if Timer 1 is driven to a logic 1. Timers 2 and 3, Timers 4 and 5 and Timers 6 and 7 
operate in a similar fashion. When updown counter overflow or underflow occurs, a CPU interrupt can be 
generated if the interrupt enable bit is set.

The IC event type is defined by the ICT field.

Note: The updown counter value can be read from 17.2.2.2/17-8 bits 16-31. The value represents how many 
times an event happens. It is independent of the IC counter, which runs when enabled and latches the 
value when the IC event happens. Normally counter means IC counter (input capture counter) when 
timer is in Input Capture mode.When changing from one submode into another submode, the TIMER 
should be disabled.

ICT Input Capture Type. Describes the input transition type required to trigger an input capture event, as follows:
00 Any input transition causes an IC event.
01 IC event occurs at input rising edge.
10 IC event occurs at input falling edge.
11 IC event occurs at any input pulse (i.e., at 2nd input edge).

BE AWARE: For ICT 11 (pulse capture), status register records only the pulse width. 

Register address offset from IMMRBAR of 0x0B00: 
0x0B00, 0x0B10, 0x0B20, 0x0B30, 0x0B40, 0x0B50, 0x0B60, 0x0B70

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
OCPW OCT ICM ICT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CE

Stop_
Cont

Open
_Drn

IntEn GPIO Timer_MS
W S1

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 17-1. GPT0–GPT7 Enable and Mode Select Registers
(The register is repeated for reference.)

Table 17-3. GPT0–GPT7 Enable and Mode Select Field Descriptions (Sheet 2 of 4)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

17-6 Freescale Semiconductor

CE Counter Enable. Bit enables or resets the internal counter during Internal timer modes only. CE must be high 
to enable these modes. If low, counter is held in reset.

This bit is secondary to the timer mode select bits (Timer_MS). If the Timer_MS contains 1XX, the internal 
timer modes are enabled. CE can then enable or reset the internal counter without changing the Timer_MS 
field.

GPIO operation is also available in this mode. 1 = enabled

STOP_CONT Stop Continuous—Applies to multiple modes, as follows:
0 Stop
1 Continuous

IC mode
 • Stop operation—At each IC event, counter is reset.
 • Continuous operation—counter is not reset at each IC event.
 • Effect is to create Status count values that are cumulative between Capture events. If the Pulse Mode 

Capture mode is specified, the Stop_Cont bit is not used, operation fixed as if it were Stop.

OC mode
 • Stop operation—Counter resets and stops at first OC event. 
Note: Software needs to pass through Timer_MS=000 state to restart timer.
 • Continuous operation—counter resets and continues at each OC event.
 • Effect to is create back-to-back periodic OC events.

PWM mode
 • Bit not used, operation is always Continuous.

CPU Timer mode
 • Stop operation—On counter expiration, Timer waits until Status bit is cleared by passing through 

Timer_MS=000 state before beginning a new cycle. 
 • Continuous operation—On counter expiration, Timer resets and immediately begin a new cycle. 
 • Effect is to generate fixed periodic timeouts.

GPIO modes
 • Bit not used.

Register address offset from IMMRBAR of 0x0B00: 
0x0B00, 0x0B10, 0x0B20, 0x0B30, 0x0B40, 0x0B50, 0x0B60, 0x0B70

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
OCPW OCT ICM ICT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CE

Stop_
Cont

Open
_Drn

IntEn GPIO Timer_MS
W S1

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 17-1. GPT0–GPT7 Enable and Mode Select Registers
(The register is repeated for reference.)

Table 17-3. GPT0–GPT7 Enable and Mode Select Field Descriptions (Sheet 3 of 4)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

Freescale Semiconductor 17-7

OPEN-DRN Open Drain
0 Normal I/O
1 Open Drain emulation—affects all modes that drive the I/O pin (GPIO, OC, & PWM). Any output 1 is 

converted to a tri-state condition on the I/O pin.

INTEN Enable interrupt—enables interrupt generation to the CPU for all modes (IC, OC, PWM, and Internal Timer). 

GPIO GPIO mode type. Simple GPIO functionality that can be used simultaneously with the Internal Timer mode. 
It is not compatible with IC, OC, or PWM modes, since these modes require the usage of the I/O pin.
0x Timer enabled as simple GPIO input
10 Timer enabled as simple GPIO output, value=0
11 Timer enabled as simple GPIO output, value=1 (tri-state if Open_Drn=1)
While in GPIO modes, internal timer mode is also available. To prevent undesired timer expiration, set the CE 
bit low.

TIMER_MS Timer Mode Select (and module enable).
000 Timer module not enabled. Associated I/O pin is in input state. All Timer operation is completely 

disabled. Control and status registers remain accessible. This mode should be entered when timer is 
to be re-configured, except where the user does not want the I/O pin to become an input.

001 Timer enabled for input capture. Sub-mode can be set in field ICM.
010 Timer enabled for output compare.
011 Timer enabled for PWM.
1xx timer enabled for simple GPIO. Internal timer modes available. CE bit controls timer counter.

1 Special- This bit must be set as 0 in normal working mode.

Register address offset from IMMRBAR of 0x0B00: 
0x0B00, 0x0B10, 0x0B20, 0x0B30, 0x0B40, 0x0B50, 0x0B60, 0x0B70

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
OCPW OCT ICM ICT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CE

Stop_
Cont

Open
_Drn

IntEn GPIO Timer_MS
W S1

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 17-1. GPT0–GPT7 Enable and Mode Select Registers
(The register is repeated for reference.)

Table 17-3. GPT0–GPT7 Enable and Mode Select Field Descriptions (Sheet 4 of 4)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

17-8 Freescale Semiconductor

17.2.2.2 GPT0 – GPT7 Input and Up/Down Counter Output Register

Register address offset from IMMRBAR of 0x0B00: 
0x0B04, 0x0B14, 0x0B24, 0x0B34, 0x0B44, 0x0B54, 0x0B64, 0x0B74

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Prescale

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Count

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-2. GPT0–GPT7 Input and Up/Down Counter Output Registers
(The register is repeated for reference.)

Table 17-4. GPT0–GPT7 Counter Input and Updown Counter Output Field Descriptions

Field Description

PRESCALE Prescale amount applied to internal counter (in IP bus clocks).
Note: The prescale field should be written prior to enabling any timer mode. A prescale of 0x0001 means one 

IP bus clock per count increment. If prescale is 0 when any timer mode is started, it results in an 
effective prescale of 64K. The counter immediately begins and an output event occurs with the 64K 
prescale, rather than the desired value.

COUNT Input
Sets number of prescaled counts applied to reference events, as follows:
OC—Number of prescaled counts counted before creating output event.
PWM—Number of prescaled counts defining the PWM output period.
Internal Timer—Number of prescaled counts counted before timerexpires.
Note: Reading this register only returns the programmed value, intermediate values of the internal counter 

are not available to software.

Output
IC—When ICM is equal to 01/10/11, reading this field returns the internal updown counter value. 
Note: Internal updown counter starts at 0. Writing this field has no effect.

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

Freescale Semiconductor 17-9

17.2.2.3 GPT0 – GPT7 PWM Configuration Register

Register address offset from IMMRBAR of 0x0B00: 
0x0B08, 0x0B18, 0x0B28, 0x0B38, 0x0B48, 0x0B58, 0x0B68, 0x0B78

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
WIDTH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PWM
OP

LOAD
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 17-3. GPT0–GPT7 PWM Configuration Registers)

Table 17-5. GPT0–GPT7 PWM Configuration Field Descriptions

Field Description

WIDTH PWM only. Defines ON time for output in prescaled counts. The PWM period is determined by the GPT 
Counter Input and Updown Counter Output Register. ON time overlays the period time. 
If WIDTH = 0, output is always OFF.
If WIDTH exceeds count value, output is always ON. 
ON and OFF polarity is set by the PWMOP bit.

PWMOP Pulse Width Mode Output Polarity. Defines PWM output polarity for OFF time. Opposite state is ON time 
polarity. PWM cycles begin with ON time.
0 = OFF TIME is a logic 0.
1 = OFF TIME is a logic 1.

LOAD Bit forces immediate period update. Bit auto clears itself. A new period begins immediately with the current 
count and width settings. 
If LOAD = 0, new count or width settings are not updated until end of current period.
If LOAD =1, new Count and Width settings take effect immediately.
Note: Prescale setting is not part of this process. Changing prescale value while PWM is active causes 

unpredictable results for the period in which it was changed. The same is true for PWMOP bit.

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

17-10 Freescale Semiconductor

17.2.2.4 GPT0 – GPT7 Status Register

This is a read-only register
.

Register address offset from IMMRBAR of 0x0B00: 
0x0B0C, 0x0B1C, 0x0B2C, 0x0B3C, 0x0B4C, 0x0B5C, 0x0B6C, 0x0B7C

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CAPTURE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R OVF PIN UDOV TEXP PWMP COMP CAFT

W w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 17-4. GPT0–GPT7 PWM Configuration Registers
(The register is repeated for reference.)

Table 17-6. GPT0–GPT7 PWM Configuration Field Descriptions

Field Description

CAPTURE Read of internal counter, latch at reference event. This is pertinent only in IC mode, in which case it 
represents the count value at the time the Input Event occurred. Capture status does not shadow the internal 
counter while an event is pending, it is updated only at the time the Input Event occurs.
Note: If ICT is set to 11, which is Pulse Capture Mode, the Capture value records the width of the pulse. Also, 

the Stop_Cont bit is irrelevant in Pulse Capture Mode, operation is as if Stop_Cont were 0.

OVF Represents how many times internal counter has rolled over. This is pertinent only during IC mode and would 
represent an extremely long period of time between Input Events. However, if Stop_Cont = 1 (indicating 
cumulative reporting of Input Events), this field could come into play.
Note: This field is cleared by any sticky bit status write in the 5 bit fields below (27,28, 29, 30, 31).

PIN Registered state of the I/O PIN (all modes). The IP Bus Clock registers the state of the I/O input. Valid, even 
if Timer is not enabled.

UDOV Updown counter have wrapped in up/updown/rotary IC submode, i.e. overflowed from 0xFFFF to 0x0000 or 
underflowed from 0x0000 to 0xFFFF. Cleared by writing 1 to this bit position. Also cleared if Timer_MS is 000 
(i.e., Timer not enabled). See Note.

TEXP Timer Expired in Internal Timer mode. Cleared by writing 1 to this bit position. Also cleared if Timer_MS is 
000 (i.e., Timer not enabled). See Note.

PWMP PWM end of period occurred. Cleared by writing 1 to this bit position. Also cleared if Timer_MS is 000 (i.e., 
Timer not enabled). See Note.

COMP OC reference event occurred. Cleared by writing 1 to this bit position. Also cleared if Timer_MS is 000 (i.e., 
Timer not enabled). See Note.

CAFT IC reference event occurred. Cleared by writing 1 to this bit position. Also cleared if Timer_MS is 000 (i.e., 
Timer not enabled). See Note.

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

Freescale Semiconductor 17-11

17.3 Functional Description
The General Purpose Timer provides 8 independent Timer Channels that perform General Purpose I/O, 
Input Capture, Output Compare, Pulse Width Modulation and Internal CPU timer functions. An external 
I/O pin is associated with each Timer Channel. A separate 16-bit prescaler and 16-bit Internal Counter is 
associated with each timer channel, thus achieving a range of 32-bits (but only 16-bit resolution). The 
16-bit Internal Counter is not visible to the user. Thus, its value cannot be modified or read directly by 
software. In general, this 16-bit Internal Counter is used in one of two basic methods. The value of this 
counter can be captured upon the occurrence of some event. Then, the contents of the Internal Counter can 
be captured again at a second event. The difference between the two values is the number of prescaled 
clock counts between the two events. The second methodology involves adding a value to the Internal 
Counter and putting this value into a compare register. When the counter increments to this calculated 
value, a predetermined event can be programmed to occur.

An UP-DOWN counter is also implemented. This counter is visible to the user. In general, this counter 
increments in response to certain events and decrement in response to other events. The use of this counter 
is discussed below.

Note: To clear any of these bits, it is necessary to clear all of them. An 1F must be written to bits 27:31.

Register address offset from IMMRBAR of 0x0B00: 
0x0B0C, 0x0B1C, 0x0B2C, 0x0B3C, 0x0B4C, 0x0B5C, 0x0B6C, 0x0B7C

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CAPTURE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R OVF PIN UDOV TEXP PWMP COMP CAFT

W w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 17-4. GPT0–GPT7 PWM Configuration Registers
(The register is repeated for reference.)

Table 17-6. GPT0–GPT7 PWM Configuration Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

17-12 Freescale Semiconductor

17.3.1 Input Capture Mode

In this mode the Timer I/O pin is an Input. There are two counters used for each timer channel in this mode. 
The first counter is the Internal counter, and the second counter is the Updown counter. After enabled, 
when the specified capture event occurs (rising edge, falling edge, either edge, or pulse—two consecutive 
edges), the Internal Counter value is latched in the status register. If enabled, a CPU interrupt is generated. 
The input capture function has the following submodes, which are controlled by the ICM bits in section 
Section 17.2.2, “Register Descriptions”: normal input capture mode, up mode, up down mode, and rotary 
mode.

17.3.1.1 Normal Input Capture Mode (IC MODE)

Only the Internal Counter is active in this mode. The IC Mode is selected by setting the ICM field of the 
GPT Enable and Mode Select Register associated with a particular timer channel to 00. In this mode, the 
ICT bits of the GPT Enable and Mode Select Register is used to configure the Timer Channel pin as an 
input and to respond to any transition, a positive transition, a negative transition, or a pulse consisting of 
two consecutive edges. In the cases of any transition, positive transition or negative transition, the value 
of the Internal Counter is latched into the CAPTURE field of the GPT Status Register associated with the 
particular timer channel. If enabled by the IntEn bit of the GPT Enable and Mode Select Register for a 
particular channel, an interrupt to the CPU is generated.

17.3.1.2 UP Submodule

When a Timer Channel is programmed to use the UP Mode, both the Updown Counter and Internal 
Counter are active. The Updown counter is incremented by one each time an Input Capture Event, as 
defined by the ICT field of the GPT Enable and Mode Select Register, occurs. The value of the Updown 
counter can be obtained by reading the COUNT field of the GPT Counter Input and Updown Counter 
Output Register for the particular timer channel.

An interrupt is generated, if enabled, when the UP Down Counter overflows.

The UP DOWN Counter cannot be modified by software.

17.3.1.3 UP DOWN Mode

When using the UP DOWN submode, the Updown Counter and Internal Counter are active. A pair of GPT 
channels must be used to implement this mode. Timer Channel 0 is paired with Timer Channel 1, Timer 
Channel 2 is paired with Timer Channel 3, Timer Channel 4 is paired with Timer Channel 5 and Timer 
Channel 6 is paired with Timer Channel 7. The ICM field of the GPT Enable and Mode Select Register for 
both timer channels must be set to 10.

The ICT field in the GPT Enable and Mode Select Register for both channels must be programmed to 
detect the desired transitions. After a pair of channels is properly programmed, the Updown Counter of 
one channel increments each time an Input Capture Event occurs on this channel of the pair and 
decrements by 1 when an Input Capture Event occurs on the other channel of the pair. That is, for the pair 
of channels consisting of Timer Channel 0 and Timer Channel 1, the Updown counter associated with 
Timer Channel 0 increments if an Input Capture event occurs on Timer Channel 0 and decrements if an 
Input Capture event occurs on Timer Channel 1.

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

Freescale Semiconductor 17-13

An interrupt is generated, if enabled, when the Updown Counter either underflows or overflows.

17.3.1.4 Rotary Mode

When using the ROTARY submode, both the Updown Counter and Internal Counter are active. A pair of 
GPT channels must be used to implement this mode. Timer Channel 0 is paired with Timer Channel 1, 
Timer Channel 2 is paired with Timer Channel 3, Timer Channel 4 is paired with Timer Channel 5 and 
Timer Channel 6 is paired with Timer Channel 7. The ICM field of the GPT Enable and Mode Select 
Register for both timer channels must be set to 11.

The ICT field in the GPT Enable and Mode Select Register for one channel of the pair must be 
programmed to detect the desired transitions. After a pair of channels is properly programmed, the 
Updown Counter increments each time an Input Capture Event occurs on one channel of the pair if the 
logic level on the input of the other Channel of the pair is a logic 0. The Updown counter decrements each 
time an Input Capture Event occurs on one channel of the pair if the logic level on the input of the other 
Channel of the pair is a logic 1.

For instance, if Timer Channel 0 is programmed to recognize positive transitions, the Updown counter 
associated with Timer Channel 0 increments each time a positive transition is detected on Timer Channel 
0 if the logic level on Timer Channel 1 is a logic 0. The Updown counter associated with Timer Channel 
0 decrements each time a positive transition is detected on Timer Channel 0 if the logic level on Timer 
Channel 1 is a logic 1. 

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

17-14 Freescale Semiconductor

17.3.2 Changing Sub-Modes

When using any mode of the GPT, unpredictable results can occur by arbitrarily switching from one mode 
to another mode. Before re-configuring a timer channel to a different mode of operation, the Timer 
Channel should be disabled by setting the TIMER_MS field in the GPT Enable and Mode Select Register 
to 000.

17.3.3 Output Compare

In this mode the I/O pin is an Output. When enabled the counters run until they reach the programmed 
Terminal Count value. At this point, the specified output event is generated (toggle, pulse hi, or pulse low). 
If enabled, a CPU interrupt is generated.

17.3.4 Force Output Low Immediately

The OCT field of the GPT Enable and Mode Select Register for a particular Timer Channel is written to 00 
to force its associated Timer Channel Pin to a logic 0. No Output Compare event has to occur to force the 
Timer pin to a logic 0.

17.3.5 Output Pulse High

A GPT Timer Channel can be programmed to issue a single pulse with positive polarity in response to an 
Output Compare Event. The OCT field and the TIMER_MS field of the GPT Enable and Mode Select 
Register must respectively be programmed to 01 and 010 to enable this mode. The High Time of the pulse, 
specified in non-prescaled IP Bus clocks, is programmed into the OCPW field of the GPT Enable and 
Mode Select Register. To create an Output Compare Event, a value can be written to the COUNT field of 
the GPT Counter Input and Updown Counter Output Register that specifies the time, expressed in 
prescaled IP Bus Clocks, when the next Output Compare event occurs. For example, if the OCPW field is 
written to 3, the PRESCALE field is written to 2 and the Count field is written to 4 the result is a positive 
pulse which is 3 IP Bus clocks wide that occurs eight (Prescale = 2, Count = 4) IP Bus clocks after writing 
the TIMER_MS field of the GPT Enable and Mode Select Register to 010. If the STOP_CONT bit is set 
to 1 - continuous operation, the following wave form is generated. 

Figure 17-5. Output Pulse High Time Example

3 Non-Prescaled
IP Bus Clocks

1st OC Event

4 Prescaled IP
Bus Clocks

(8 IP Bus Clocks)

4 Prescaled IP
Bus Clocks

(8 IP Bus Clocks)

4 Prescaled IP
Bus Clocks

(8 IP Bus Clocks)

3 Non-Prescaled
IP Bus Clocks

3 Non-Prescaled
IP Bus Clocks

2nd OC Event 3rd OC Event
Set Prescale = 2
Set Count = 4
Timer_MS = 010
OCT = 01

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

Freescale Semiconductor 17-15

NOTE

It is the responsibility of the system software to set the Timer pin to the 
desired state before setting up the PRESCALE and COUNT fields in the 
GPT Counter Input and Updown Counter Output Register.

17.3.6 Output Pulse Low

A GPT Timer Channel can be programmed to issue a single pulse with negative polarity in response to an 
Output Compare Event. The OCT field and the TIMER_MS field of the GPT Enable and Mode Select 
Register must respectively be programmed to 10 and 010 to enable this mode. The LOW Time of the pulse, 
specified in non-prescaled IP Bus clocks, is programmed into the OCPW field of the GPT Enable and 
Mode Select Register. To create an Output Compare Event, a value can be written to the COUNT field of 
the GPT Counter Input and Updown Counter Output Register that specifies the time, expressed in 
prescaled IP Bus Clocks, when the next Output Compare event occurs. For example, if the OCPW field is 
written to 3, the PRESCALE field is written to 2 and the Count field is written to four the result is a positive 
pulse which is 3 IP Bus clocks wide that occurs eight (Prescale = 2, Count = 4) IP Bus clocks after writing 
the TIMER_MS field of the GPT Enable and Mode Select Register to 010. If the STOP_CONT bit is set 
to 1, continuous operation, the following waveform is generated. 

Figure 17-6. Output Pulse Low Time Example

NOTE

It is the responsibility of the system software to set the Timer pin to the 
desired state before setting up the PRESCALE and COUNT fields in the 
GPT Counter Input and Updown Counter Output Register.

3 Non-Prescaled
IP Bus Clocks

1st OC Event

4 Prescaled IP
Bus Clocks

(8 IP Bus Clocks)

4 Prescaled IP
Bus Clocks

(8 IP Bus Clocks)

4 Prescaled IP
Bus Clocks

(8 IP Bus Clocks)

3 Non-Prescaled
IP Bus Clocks

3 Non-Prescaled
IP Bus Clocks

2nd OC Event 3rd OC Event

Set Prescale = 2
Set Count = 4
Timer_MS = 010
OCT = 01

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

17-16 Freescale Semiconductor

17.3.7 Output Toggle

A GPT Timer Channel can be programmed to toggle from its present value in response to an Output 
Compare Event. The OCT field and the TIMER_MS field of the GPT Enable and Mode Select Register 
must respectively be programmed to 11 and 010 to enable this mode.

To create an Output Compare Event, a value can be written to the COUNT field of the GPT Counter Input 
and Updown Counter Output Register that specifies the time, expressed in prescaled IP Bus Clocks, when 
the next Output Compare event occurs. If the PRESCALE field is written to 5 and the Count field is written 
to 6 the result is a transition at 30 (Prescale = 5, Count = 6) IP Bus clock intervals after setting the OCT 
field to 11 and the Timer_MS field of the GPT Enable and Mode Select Register to 010. If the 
STOP_CONT bit is set to 1, continuous operation, the following wave form is generated. If the 
STOP_CONT bit is set to 0, only one Output compare Event occurs and the Timer Channel pin toggles 
only once. 

Figure 17-7. Output Compare Toggle Example

NOTE

It is the responsibility of the system software to set the Timer pin to the 
desired state before setting up the PRESCALE and COUNT fields in the 
GPT Counter Input and Updown Counter Output Register.

17.3.8 Pulse Width Modulation

In this mode the I/O pin is an Output. The user can program Period and Width values to create an 
adjustable, repeating output waveform on the I/O pin. A CPU interrupt can be generated at the beginning 
of each PWM Period, at which time a new Width value can be loaded. The new Width value, which 
represents ON time, is automatically applied at the beginning of the next period. There is no interrupt at 
the beginning of the first PWM Period. This mode is suitable for PWM audio encoding.

The ON TIME for the PWM signal is programmed into the WIDTH field of the GPT PWM Configuration 
Register in prescaled IP Bus Clocks. The Period of the PWM signal is programmed into the COUNT field 
of the GPT Counter Input Register. The PRESCALE field of the GPT Counter Input Register applies to 
both the COUNT value and the WIDTH Value. The ON TIME overlays the total period. That is, the 
WIDTH field determines the total period of the PWM signal.

1st OC Event

6 Prescaled IP
Bus Clocks

(30 IP Bus Clocks)

6 Prescaled IP
Bus Clocks

(30 IP Bus Clocks)

2nd OC Event

Set Prescale = 5
Set Count = 6
Timer_MS = 11
OCT = 010

6 Prescaled IP
Bus Clocks

(30 IP Bus Clocks)

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

Freescale Semiconductor 17-17

In the following example, the Prescale field equals 8, the Count field equals 6 and the Width field equals 2.

Figure 17-8. PWM Example with OFF TIME = LOW

NOTE
It is the responsibility of the system software to set the logic level on the 
TIMER pin to the desired value before involving the PWM Mode.

NOTE
When the TIMER_MS field is set to 011 to start the PWM signal, the first 
period is at the logic level specified by the PWMOP bit. The active pulse 
whose width is specified by the WIDTH field overlays the following period.

NOTE
In the present example, it is assumed that the TIMER pin is at a logic 0 at 
the time that the TIMER_MS field is written. From a practical standpoint, 
this effectively means that the first active pulse occurs one full PWM period 
after writing the TIMER_MS field. If the TIMER pin is at a logic 1 at the 
time that the TIMER_MS field is written, it appears as though the first pulse 
is one full PWM period wide. Therefore, it is important to program the 
TIMER pin such that it is in a known state before writing to the TIMER_MS 
field.

The following example is similar to the example shown in Figure 17-8 with the exception that the OFF 
TIME is HIGH. In this case, PRESCALE = 9, COUNT = 4, WIDTH = 3, and PWMOP = 1.

2 Prescaled
IP Bus Clocks

1st OC Event

6 Prescaled IP
Bus Clocks

(48 IP Bus Clocks)

6 Prescaled IP
Bus Clocks

(48 IP Bus Clocks)

6 Prescaled IP
Bus Clocks

(48 IP Bus Clocks)

2 Prescaled
IP Bus Clocks

2 Prescaled
IP Bus Clocks

2nd OC Event 3rd OC Event

Set Prescale = 8
Set Count = 6
Width = 2
Timer_MS = 011

(16 IP Bus Clocks) (16 IP Bus Clocks) (16 IP Bus Clocks)

PWMOP = 0

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

17-18 Freescale Semiconductor

Figure 17-9. PWM Example with OFF TIME = HIGH

NOTE
It is the responsibility of the system software to set the logic level on the 
TIMER pin to the desired value before involving the PWM Mode.

NOTE
When the TIMER_MS field is set to 011 to start the PWM signal, the first 
period is at the logic level specified by the PWMOP bit. The active pulse 
whose width is specified by the WIDTH field overlays the following period.

NOTE
In the present example, it is assumed that the TIMER pin is at a logic 1 at 
the time that the TIMER_MS field is written. From a practical standpoint, 
this effectively means that the first active pulse occurs one full PWM period 
after writing the TIMER_MS field. If the TIMER pin is at a logic 0 at the 
time that the TIMER_MS field is written, it appears as though the first pulse 
is one full PWM period wide. Therefore, it is important to program the 
TIMER pin such that it is in a known state before writing to the TIMER_MS 
field.

1st OC Event

4 Prescaled IP
Bus Clocks

(36 IP Bus Clocks)

4 Prescaled IP
Bus Clocks

(36 IP Bus Clocks)

4 Prescaled IP
Bus Clocks

(36 IP Bus Clocks)

2nd OC Event 3rd OC Event

Set Prescale = 9
Set Count = 4
Width = 3
Timer_MS = 011
PWMOP = 1

 3 Prescaled IP Bus 
Clocks(27 IP Bus Clocks)

3 Prescaled IP Bus
 Clocks(27 IP Bus Clocks)

3 Prescaled IP Bus
Clocks(27 IP Bus Clocks)

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

Freescale Semiconductor 17-19

17.3.9 Simple GPIO

In this mode the I/O pin operates as a GPIO pin. Each Timer pin can individually be specified as Input or 
Output, according to the programmable GPIO field. GPIO mode is mutually exclusive of Input Capture, 
Output Compare and PWM modes. That is, in the GPIO mode, the TIMER pin cannot be used for input 
capture or to output a timer waveform. In GPIO mode, CPU Timer modes remain available.

17.3.9.1 CPU Timer

The I/O pin is not used in this mode. After enabled, the counters run until they reach a programmed 
Terminal Count. When this occurs, an interrupt can be generated to the CPU. This Timer mode can be used 
simultaneously with the Simple GPIO mode.

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose Timers (GPT)

17-20 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 18-1

Chapter 18  
General Purpose I/O (GPIO)

18.1 Introduction
This chapter describes the general purpose I/O module, including pin descriptions, register settings and 
interrupt capabilities. 

The GPIO module supports 28 general-purpose I/O pins. Each pin can be configured as an input or as an 
output. The module also supports 4 general purpose input pins. If a pin is configured as an input, it can 
optionally generate an interrupt upon detection of a change in state. If a pin is configured as an output, it 
can be configured as an open-drain output or a fully active output. When a GPIO pin is configured as an 
input, it can serve as a DMA request signal. 

See Figure 18-1.

18.2 Features
The GPIO unit implements the following features:

• Thirty-two input/output pins
• All pins are configured as inputs when the MPC5121e reset signal is asserted
• Open-drain capability on all pin
• All pins, when configured as inputs, can optionally generate an interrupt upon detection of a 

change of state.
• When a GPIO pin is configured as an output, its DMA request functionality is disabled

The following sections provide an overview and detailed descriptions of the GPIO signals.

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose I/O (GPIO)

18-2 Freescale Semiconductor

Figure 18-1. GPIO Module Block Diagram

18.3 Memory Map/Register Definition
All GPIO registers are 32 bits wide and are located on 32-bit address boundaries. All addresses used in this 
chapter are offsets from the GPIO module base address. A GPIO module memory map is shown in 
Table 18-1. Reading undefined portions of the memory map returns all zeros; writing has no effect.

Table 18-1. GPIO Register Address Map

Offset Register Access Section/ Page

0x00 GPIO Direction Register (GPDIR) R/W 18.3.1.1/18-3

0x04 GPIO Open Drain Register (GPODR) R/W 18.3.1.2/18-4

0x08 GPIO Data register (GPDAT) R/W 18.3.1.3/18-5

0x0C GPIO Interrupt Event Register (GPIER) R/W 18.3.1.4/18-6

0x10 GPIO Interrupt Mask Register (GPIMR) R/W 18.3.1.5/18-7

0x14 GPIO External Interrupt Control Register 1 (GPICR1) R/W 18.3.1.6/18-7

0x18 GPIO External Interrupt Control Register 2 (GPICR2) R/W 18.3.1.6/18-7

Register

I/F
GPIO[0:31]GPDAT

Register

GPDIR/

To/From
Peripheral Bus

GPIER/
GPIMR/
GPICR

Registers

gpio_int

GPODR
Registers

DMA REQUEST [0:31]

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose I/O (GPIO)

Freescale Semiconductor 18-3

18.3.1 Register Descriptions

18.3.1.1 GPIO Direction Register (GPDIR)

The GPIO direction register (GPDIR) shown in Figure 18-2 defines the direction of individual GPIO pins. 

NOTE
Bits D0–D31 set the I/O state of the GPIO 0–31 pins. 

Register address: 0x00

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: 0x02

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27

D28 D29 D30 D31

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-2. GPIO Direction Register (GPDIR)

Table 18-2. GPDIR Field Descriptions

Field Description

D[0:31] Direction. Indicates whether a pin is used as an input or an output. 
0 The corresponding pin is an input.
1 The corresponding pin is an output.

Figure 18-3. 

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose I/O (GPIO)

18-4 Freescale Semiconductor

18.3.1.2 GPIO Open Drain Register (GPODR)

The GPIO open drain register (GPODR) shown in Figure 18-4 defines the individual GPIO pins output 
drive structure.

NOTE
Bits D0 – D31 set the drive structure of the GPIO 0 –3 1 pins. 

Register address: 0x04

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: 0x06

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-4. GPIO Open Drain Register (GPODR)

Table 18-3. GPODR Field Descriptions

Field Description

D[0:31] Output drive configuration. Indicates whether a pin is actively driven as an output or is an open-drain driver. 
0 The I/O pin is actively driven as an output.
1 The I/O pin is an open-drain driver. As an output, the pin is driven active-low, otherwise it is tri-stated.

Figure 18-5. 

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose I/O (GPIO)

Freescale Semiconductor 18-5

18.3.1.3 GPIO Data Register (GPDAT)

The GPIO data register (GPDAT) shown in Figure 18-6 carries the data in/out for individual GPIO pins.

NOTE
Bits D0 – 31 are driven on the GPIO 0 – 31 pins when configured as outputs. 
Bits D0 – 31 reflect the state of GPIO 0 –31 pins when configured as inputs.

Register address: 0x08

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: 0x0A

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-6. GPIO Data Register (GPDAT)

Table 18-4. GPDAT Field Descriptions

Field Description

D[0:31] Data. Write data is latched and presented on external pins if GPDIR has configured the GPIO pin as an output. Read 
operation always returns the data at the pin.

Figure 18-7. 

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose I/O (GPIO)

18-6 Freescale Semiconductor

18.3.1.4 GPIO Interrupt Event Register (GPIER)

The GPIO interrupt event register (GPIER) shown in Figure 18-8 carries information about the events that 
cause an interrupt. Each bit in the interrupt event register (GPIER), corresponds to an individual interrupt 
source. GPIER bits are cleared by writing ones. Writing zero has no effect.

NOTE
Bits D0 – D31 are set in response to interrupt events occurring on 
GPIO 0 – 31 pins. 

Register address: 0x0C

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

W

Reset1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: 0x0E

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31

W

Reset1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. This register should be initialized by writing the following: 0x FF FF FFFF.

Figure 18-8. GPIO Interrupt Event Register (GPIER)

Table 18-5. GPIER Field Descriptions

Field Description

D[0:31] Interrupt events. Indicates whether the interrupt event occurred on the corresponding GPIO pin. 
0 No interrupt event occurred on the corresponding GPIO pin.
1 Interrupt event occurred on the corresponding GPIO pin.

Figure 18-9. 

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose I/O (GPIO)

Freescale Semiconductor 18-7

18.3.1.5 GPIO Interrupt Mask Register (GPIMR)

The GPIO interrupt mask register (GPIMR) shown in Figure 18-10 defines the interrupt masking for the 
individual GPIO pins. When a masked interrupt occurs, the corresponding GPIER bit is set, regardless of 
the GPIMR state. When one or more non-masked interrupt events occur, the GPIO module issues an 
interrupt to the Power Architecture core.

NOTE
Bits D0 – D31 mask interrupts from GPIO 0 – 31 pins. 

18.3.1.6 GPIO Interrupt Control Register 1 and 2 (GPICR1 and GPICR2)

The GPIO interrupt control register 1 (GPICR1) and GPIO interrupt control register 2 (GPICR2) shown 
in Figure 18-13 determines which type of event causes each individual GPIO pin to set their associated bit 
in the GPIO interrupt event register and, if enabled, causes an interrupt to be asserted to the CPU.

The D [0:31] fields of the GPIO interrupt control registers specify which type of event causes an interrupt 
for GPIO [0:31). The interrupt function for each GPIO pin is individually programmable. For example, 
GPIO0 is controlled by the D0 field, GPICR1[0:1]; GPIO16 is controlled by the D16 field, GPICR2[0:1].

Register address: 0x10

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: 0x12

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-10. GPIO Interrupt Mask Register (GPIMR)

Table 18-6. GPIMR Field Descriptions

Field Description

D[0:31] Interrupt mask. Indicates whether an interrupt event is masked or non-masked. 
0 The input interrupt pin is masked (disabled).
1 The input interrupt pin is non-masked (enabled).

Figure 18-11. 

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose I/O (GPIO)

18-8 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose I/O (GPIO)

Freescale Semiconductor 18-9

NOTE
Bit fields D0 – D31 specify the interrupt event type for GPIO 0 – 31 pins. 

Register address: 0x14 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
D0 D1 D2 D3 D4 D5 D6 D7

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address:0x16

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
D8 D9 D10 D11 D12 D13 D14 D15

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-12. GPIO Interrupt Control Register (GPICR1)

Register address: 0x18 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
D16 D17 D18 D19 D20 D21 D22 D23

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: 0x1a 

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
D24 D25 D26 D27 D28 D29 D30 D31

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18-13. GPIO Interrupt Control Register (GPICR2)

Table 18-7. GPICR1 and GPICR2 Field Descriptions

Field Description

D[0:31] Edge detection mode. The corresponding GPIO pin asserts an interrupt request according to the following: 
00 Any change on the state of the GPIO pin generates an interrupt request.
01 Low-to-high change on the GPIO pin generates an interrupt request.
10 High-to-low change on the GPIO pin generates an interrupt request.
11 Pulse (any 2 transitions) on the GPIO pin generates an interrupt request.

MPC5121e Microcontroller Reference Manual, Rev. 2



General Purpose I/O (GPIO)

18-10 Freescale Semiconductor

18.4 Functional Description
The GPIO module supports 32 general purpose I/O pins. Each GPIO pin can be configured as an input or 
output. If a GPIO pin is configured as an input, the pin can optionally generate an interrupt upon the 
detection of a change in state. If the GPIO interrupt control register bits for a particular GPIO pin are 
configured as 00, the GPIO pin detects any change of state, set its corresponding bit in the GPIO interrupt 
event register (GPIER) and, if enabled, generate an interrupt. If the GPIO interrupt control register bits for 
a particular GPIO pin are configured as 01 or 10, the GPIO pin respectively detects a low-to-high transition 
or a high-to-low transition, set the corresponding bit in the GPIO interrupt event register (GPIER) and, if 
enabled, generate an interrupt. As an input, GPIO 0 through 30 can serve as a DMA requestor. GPIO31 
cannot act as a DMA requester. If a GPIO pin is configured as an output, it can be individually configured 
as an open-drain or a fully active output.

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 19-1

Chapter 19  
IIM/Fusebox

19.1 Introduction
The IC Identification Module (IIM) provides an interface for reading and programming information stored 
in on-chip fuse elements.

19.2 Overview
The IIM provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among 
other uses, e-fuses can be used for unique chip identifiers, cryptographic keys, and various control signals 
requiring permanent non-volatility. 

The IIM consists of a master controller, a fuse value shadow cache, and a set of registers to hold the values 
of signals visible outside the module. Two 256 bits fuse banks are implemented on the MPC5121e.

The e-Fuses may be blown under software control at the customer factory or in the field. They include a 
mechanism to inhibit further blowing of fuses (write-protect) to support secure computing environments. 
The fuse values may also be overridden by software without modifying the fuse element. Similar to the 
write-protect functionality, the override functionality can also be permanently disabled. 

19.2.1 Features
• Two fuse banks, each fuse bank size is 256 bits
• Ability to write-protect e-Fuses on a per-bank basis

19.2.2 Modes of Operation

The IIM is in its functional mode (all specified functionality available) any time it is out of reset and 
supplied with the proper clocks.

For programming the external FUSE programming supply, AVDD_FUSEWR must be applied.

19.3 Memory Map and Register Definition
Section 19.3.2, “Register Descriptions” provides the detailed register descriptions for all of the IIM 
registers

MPC5121e Microcontroller Reference Manual, Rev. 2



IIM/Fusebox

19-2 Freescale Semiconductor

19.3.1 Memory Map

All registers are 8-bit wide, but addressable on 32-bit boundaries. Only the bottom 8 bits (the usable bits) 
of each register are shown in the following diagrams. The top 24 bits always read as 0 and writes to them 
are ignored. Table 19-1 shows the IIM memory map.

19.3.2 Register Descriptions

This section contains the detailed register descriptions for the IIM registers.

19.3.2.1 Status Register (STAT)

See Figure 19-1 for illustration of valid bits in the status register and Table 19-2 for description of the bit 
fields.

Table 19-1. IIM Memory Map

Address Offset Register Access Section/Page

0x000 STAT – Status register R/W

0x004 STATM – Status IRQ Mask register R/W

0x008 ERR – Module Errors register R/W

0x00C EMASK – Error IRQ Mask register R/W

0x010 FCTL – Fuse Control register R/W

0x014 UA – Upper Address register R/W

0x018 LA – Lower Address register R/W

0x01C SDAT – Explicit Sense Data register Read-only

0x028 PREG_P – Program Protection register R/W

0x03C DIVIDE – Divide Factor register R/W

0x0C00 FBAC1 – Fuse bank 1 Protection Register R/W

0x0C04 ... 0x0C7C FB1W1 – Fuse bank 1 Data (available for user) R/W

MPC5121e Microcontroller Reference Manual, Rev. 2



IIM/Fusebox

Freescale Semiconductor 19-3

Offset IIM_BASE +0x00Access: Supervisor read-only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R BUSY PRGD SNSD

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 — — — — — 0

= Unimplemented or Reserved

Figure 19-1. Status Register (STAT)

Table 19-2. STAT Field Descriptions

Field Description

BUSY Indicates whether the IIM is busy with a program or sense cycle. Any attempt to access the IIM registers other 
than STAT while it is busy with a program or sense cycle (BUSY asserted) results in a bus error.
0 The IIM is not busy with a program or sense cycle
1 The IIM is busy with a program or sense cycle

PRGD Program Done. Indicates an e-Fuse program operation is done. Assertion causes an interrupt request  if 
PRGD_M is set in the status IRQ mask register. 
This bit is automatically set by hardware upon completion of an e-Fuse program cycle; software must clear 
the bit by writing 1 to it.
0 Program operation has not finished (read); no meaning (write)
1 Program operation has finished (read); clear bit (write)

SNSD Explicit Sense Cycle Done. Indicates that an explicit fuse sense cycle is done, and the data is available in 
SDAT. Assertion causes an interrupt request if SNSD_M is set in the status IRQ mask register. This bit is 
automatically set by hardware and must be cleared by software by writing 1 to it.
0 No explicit sense cycle has finished (read); no meaning (write)

1 An explicit sense cycle has finished (read); clear bit (write)

MPC5121e Microcontroller Reference Manual, Rev. 2



IIM/Fusebox

19-4 Freescale Semiconductor

19.3.2.2 Status IRQ Mask (STATM)

See Figure 19-2 for illustration of valid bits in the status IRQ mask register and Table 19-3 for description 
of the bit fields.

Offset IIM_BASE +0x04Access: Supervisor read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PRGD_M SNSD_M

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 19-2. Status IRQ Mask Register (STATM)

Table 19-3. STATM Field Descriptions

Field Description

PRGD_M Program Mask. Masks or unmasks IRQ generation due to PRGD events.
0 PRGD events do not cause an IRQ

1 PRGD events cause an IRQ

SNSD_M Explicitly Sense Cycle Done Mask. Masks or unmasks IRQ generation due to SNSD events.
0 SNSD events do not cause an IRQ

1 SNSD events cause an IRQ

MPC5121e Microcontroller Reference Manual, Rev. 2



IIM/Fusebox

Freescale Semiconductor 19-5

19.3.2.3 Module Errors Register (ERR)

See Figure 19-3 for illustration of valid bits in the module errors register and Table 19-4 for description of 
the bit fields.

Offset IIM_BASE +0x08Access: Supervisor read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
WPE OPE RPE WLRE SNSE PARITYE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — u

= Unimplemented or Reserved

Figure 19-3. Module Errors Register (ERR)

Table 19-4. NAME Field Descriptions

Field Description

WPE Write Protect Error. Indicates an e-Fuse program operation was attempted to a write-protected fuse bank, a 
locked words, or when the value of PRG_P is not 0XAA. Assertion causes an interrupt request if WPE_M is 
set in the errors IRQ mask register. This bit is automatically set by hardware and must be cleared by software 
by writing 1 to it.
0 There was no write-protect error (read); no meaning (write)

1 There was a write-protect error (read); clear bit (write)

OPE Override Protect Error. Indicates an attempt was made to override the values in an override-protected fuse 
bank or a locked words. Assertion causes an interrupt request if OPE_M is set in the errors IRQ mask register. 
This bit is automatically set by hardware and must be cleared by software by writing 1 to it.
0 There was no override-protect error (read); no meaning (write)

1 There was an override-protect error (read); clear bit (write)

RPE Read Protect Error. Indicates an attempt was made to read values from a read-protected fuse bank or SCC. 
Assertion causes an interrupt request if RPE_M is set in the errors IRQ mask register. This bit is automatically 
set by hardware and must be cleared by software by writing 1 to it.
0 There was no read-protect error (read); no meaning (write)
1 There was a read-protect error (read); clear bit (write)

WLRE Write to Locked Register Error. Indicates an attempt was made to write to a locked SCS register. Assertion 
causes an interrupt request if WLRE_M is set in the errors IRQ mask register. This bit is automatically set by 
hardware and must be cleared by software by writing 1 to it.
0 There was no write-to-locked-register error (read); no meaning (write)

1 There was a write-to-locked-register error (read); clear bit (write)

MPC5121e Microcontroller Reference Manual, Rev. 2



IIM/Fusebox

19-6 Freescale Semiconductor

SNSE Explicit Sense Cycle Error. Indicates that an explicit fuse sense was refused, because FBESP is set to 1 or 
more than two bits of SNS_N, SNS_1, SNS_0, and PRG are asserted at the same moment. Assertion causes 
an interrupt request if SNSE_M is set in the errors IRQ mask register. This bit is automatically set by hardware 
and must be cleared by software by writing 1 to it.
0 There was no explicit sense error (read); no meaning (write)

1 There was an explicit sense error (read); clear bit (write)

PARITYE Parity Error of Cache. Indicates that a parity error was detected in the hardware or software fuse cache. 
Assertion causes an interrupt request if PARITYE_M is set in the errors IRQ mask register. This bit is 
automatically set by hardware and must be cleared by software by writing 1 to it.
0 There was no parity error (read); no meaning (write)
1 There was an parity error (read); clear bit (write)

Offset IIM_BASE +0x08Access: Supervisor read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
WPE OPE RPE WLRE SNSE PARITYE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — u

= Unimplemented or Reserved

Figure 19-3. Module Errors Register (ERR)

Table 19-4. NAME Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



IIM/Fusebox

Freescale Semiconductor 19-7

19.3.2.4 Error IRQ Mask Register (EMASK)

See Figure 19-4 for illustration of valid bits in the error IRQ mask register and Table 19-5 for description 
of the bit fields.

19.3.2.5 Fuse Control Register (FCTL)

See Figure 19-5 for illustration of valid bits in the fuse control register and Table 19-6 for description of 
the bit fields.

Offset IIM_BASE +0x0CAccess: Supervisor read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R WPE_

M

OPE_

M

RPE_

M

WLRE_

M

SNSE_

M

PARITYE

_MW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 19-4. Error IRQ Mask Register (EMASK)

Table 19-5. EMASK Field Descriptions

Field Description

WPE_M Write Protect Error Mask. Masks or unmasks IRQ generation due to WPE events.
0 WPE events do not cause an IRQ

1 WPE events cause an IRQ

OPE_M Override Protect Error Mask. Masks or unmasks IRQ generation due to OPE events.
0 OPE events do not cause an IRQ

1 OPE events cause an IRQ

RPE_M Read Protect Error Mask. Masks or unmasks IRQ generation due to RPE events.
0 RPE events do not cause an IRQ

1 RPE events cause an IRQ

WLRE_M Write to Locked Register Error Mask. Masks or unmasks IRQ generation due to WLRE events.
0 WLRE events do not cause an IRQ

1 WLRE events cause an IRQ

SNSE_M Explicit Sense Cycle Error Mask. Masks or unmasks IRQ generation due to SNSE events.
0 SNSE events do not cause an IRQ

1 SNSE events cause an IRQ

PARITYE_M Parity Error of Cache Mask. Masks or unmasks IRQ generation due to PARITYE events.
0 PARITYE events do not cause an IRQ

1 PARITYE events cause an IRQ

MPC5121e Microcontroller Reference Manual, Rev. 2



IIM/Fusebox

19-8 Freescale Semiconductor

Offset IIM_BASE +0x10Access: Supervisor read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PRG_LENGTH[2:0] ESNS_N ESNS_0 ESNS_1 PRG

W

Reset 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

= Unimplemented or Reserved

Figure 19-5. Fuse Control Register (FCTL)

Table 19-6. FCTL Field Descriptions

Field Description

PRG_LENGTH 
[2:0]

Program Length. These thee bits define the length of program pulse.
PRG_LENGTH*(peroid of 32k clock)

ESNS_N Explicit Sense—Normal. Writing 1 to this bit initiates an unstressed (normal) explicit sense cycle. Reading of 
this bit always returns zero. FSM generates a done signal when the operation completes. This bit is cleared 
automatically by hardware when sense operation completes. Only one of ESNS_N, ESNS_0, ESNS_1, and 
PRG can be asserted. Otherwise, ESNS_E is asserted to indicate this error.
0 Return 0 for all read (read); No meaning (write)

1 Initiate an unstressed explicit sense cycle (write)

ESNS_0 Explicit Sense—0 Stressed. Writing 1 to this bit initiates a 0-stressed explicit sense cycle. Reading of this bit 
always returns zero. FSM generates a done signal when the operation completes. This bit is cleared 
automatically by hardware when sense operation completes. During 0-stressed explicit sense cycles, the 
EPM_READSENSE0 signal is asserted to the fuse banks. Only one of ESNS_N, ESNS_0, ESNS_1, and PRG 
can be asserted. Otherwise, ESNS_E is asserted to indicate this error.
0 Return 0 for all read (read); No meaning (write)
1 Initiate a 0-stressed explicit sense cycle (write)

ESNS_1 Explicit Sense—1 Stressed. Writing 1 to this bit initiates a 1-stressed explicit sense cycle. Reading of this bit 
always returns zero. FSM generates a done signal when the operation completes. This bit is cleared 
automatically by hardware when sense operation completes. During 1-stressed explicit sense cycles, the 
EPM_READSENSE1 signal is asserted to the fuse banks. Only one of ESNS_N, ESNS_0, ESNS_1, and PRG 
can be asserted. Otherwise, ESNS_E is asserted to indicate this error.
0 Return 0 for all read (read); No meaning (write)

1 Initiate a 1-stressed explicit sense cycle (write)

PRG Program. Writing 1 to this bit initiates a fuse program cycle. Reading of this bit always returns zero. FSM 
generate a done signal when the operation complete. This bit is cleared automatically by hardware when 
program operation completes. Only one of ESNS_N, ESNS_0, ESNS_1, and PRG can be asserted. 
Otherwise, ESNS_E is asserted to indicate this error.
0 Return 0 for all read (read); No meaning (write)

1 Initiate a program cycle (write)

MPC5121e Microcontroller Reference Manual, Rev. 2



IIM/Fusebox

Freescale Semiconductor 19-9

19.3.2.6 Upper Address Register (UA)

This register contains the top part of the address of the e-Fuse bit to be programmed or the word to be 
sensed in an explicit sense cycle. Programming is done on a bit-basis, so the program address is a full-bit 
address. Sensing is done on a word (8-bit) basis, so the bottom three bits of the address are ignored.

See Figure 19-6 for illustration of valid bits in the upper address register and Table 19-7 for description of 
the bit fields.

Offset IIM_BASE +0x14Access: Supervisor read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
A[13:8]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 19-6. Upper Address Register (UA)

Table 19-7. UA Field Descriptions

Field Description

A[13:8] The top six bits of the address of the e-Fuse bit to be programmed or the word to be sensed explicitly. The 
address must be written prior to setting the PRG or ESNS_x bit in FCTL to initiate the program/sense 
operation.

A[13:11] select the fuse bank. A[10:8] provide the most significant portion of the row address within the bank.

MPC5121e Microcontroller Reference Manual, Rev. 2



IIM/Fusebox

19-10 Freescale Semiconductor

19.3.2.7 Lower Address Register (LA)

This register contains the bottom eight bits of the address of the e-Fuse bit to be programmed or word to 
be explicitly sensed.

See Figure 19-7 for illustration of valid bits in the lower address register and Table 19-8 for description of 
the bit fields.

Offset IIM_BASE +0x18Access: Supervisor read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
A[7:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 19-7. Lower Address Register (LA)

Table 19-8. UA Field Descriptions

Field Description

A[7:0] The bottom eight bits of the address of the e-Fuse bit to be programmed or word to be sensed explicitly. The 
address must be written prior to setting the PRG or ESNS_x bit in FCTL to initiate a program or sense 
operation.

A[7:3] provides the least significant portion of the row address. A[2:0] select the bit position within the 
selected row.

MPC5121e Microcontroller Reference Manual, Rev. 2



IIM/Fusebox

Freescale Semiconductor 19-11

19.3.2.8 Explicit Sense Data Register (SDAT)

See Figure 19-8 for illustration of valid bits in the explicit sense data register and Table 19-9 for 
description of the bit fields.

On an explicit sense cycle, the data sensed from the fuses is placed in this register at the conclusion of the 
sense cycle. Software can recognize the conclusion of the sense cycle by the assertion of SNSD in STAT.

Offset IIM_BASE +0x1CAccess: Supervisor read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R D[7:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 19-8. Explicit Sense Data Register (SDAT)

Table 19-9. SDAT Field Descriptions

Field Description

D[7:0] The data sensed from the fuses.

MPC5121e Microcontroller Reference Manual, Rev. 2



IIM/Fusebox

19-12 Freescale Semiconductor

19.3.2.9 Program Protection Register (PRG_P)

This register is to prevent accidental fuse programming. The fuses can be blown only when the value of 
this register is 0xAA. Software should only program this register to 0xAA while actively blowing fuses. 
After the program operation is complete, this register should be immediately reprogrammed to a different 
value.

See Figure 19-9 for illustration of valid bits in the program protection register and Table 19-10 for 
description of the bit fields.

Offset IIM_BASE +0x28Access: Supervisor read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PROTECTION_REG[7:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 19-9. Program Protection Register (PRG_P)

Table 19-10. PRG_P Field Descriptions

Field Description

PROTECTION_
REG[7:0]

The fuses can be blown only when the value of this register is 0xAA. Any attempt to program the fuse while 
the value is other than 0xAA is terminated with error, and the WPE bit is asserted.

MPC5121e Microcontroller Reference Manual, Rev. 2



IIM/Fusebox

Freescale Semiconductor 19-13

19.3.2.10 Divide Factor Register (DIVIDE)

This register contains the divide factor to generate a 32 kHz clock for programming the fuses from the IPS 
clock. The unit of IPS clock is MHz.

See Figure 19-10 for illustration of valid bits in the divide factor register and Table 19-11 for description 
of the bit fields.

Offset IIM_BASE +0x3CAccess: Supervisor read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DIVIDE[7:0]

W

Reset 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

= Unimplemented or Reserved

Figure 19-10. Divide Factor Register (DIVIDE)

Table 19-11. DIVIDE Field Descriptions

Field Description

DIVIDE[7:0] This register provides a divide factor with which IPG_CLK can be divided to an 1 MHz clock. Then the 1 MHz 
clock is divided to 32 kHz. Its value should be the frequency of IPS clock (unit: MHz), but the minimum is 1. 
The default vaule is 0x42.

MPC5121e Microcontroller Reference Manual, Rev. 2



IIM/Fusebox

19-14 Freescale Semiconductor

19.3.2.11 Fuse Bank 1 Protection Register (FBAC1)

This register corresponds to the first word in fuse bank 1, which holds the fuse bank access protection 
information. The fuses associated with this register must be sensed out when IIM come out of reset.

See Figure 19-11 for illustration of valid bits in the fuse bank 1 access protection register and Table 19-12 
for description of the bit fields.

Offset IIM_BASE +0x0C00Access: Supervisor read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventio

nal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventio

nal

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FBWP FBOP FBRP FBSP FBESP

W

Reset 0 0 0 0 0 0 0 0 — — — — — — — —

= Unimplemented or Reserved

Figure 19-11. Fuse Bank 1 Protection Register (FBAC1)

Table 19-12. FBAC1 Field Descriptions

Field Description

FBWP Fuse Bank Write Protect. Controls whether this fuse bank (Fuse Bank 1) may be programmed.
0 (Unblown) = Fuse bank 1 may be programmed
1 (Blown) = Fuse bank 1 may not be programmed (it is write-protected)

FBOP Fuse Bank Override Protect. Controls whether this fuse bank (Fuse Bank 1) may be overridden.
0 (Unblown) = Fuse bank 1 may be overridden
1 (Blown) = Fuse bank 1 may not be overridden (it is override-protected)

FBRP Fuse Bank Read Protect. Controls whether this fuse bank (Fuse Bank 1) may be read.
0 (Unblown) = Fuse bank 1 may be read by software
1 (Blown) = Fuse bank 1 may not be read by software (it is read-protected)

FBSP Reserved

FBESP Fuse Banks Explicit Sense Protect. Controls whether this fuse bank (Fuse Bank 1) may be explicitly sensed. 
The state of this fuse controls whether the IIM state machine  allow explicit sense cycles (normal, 0-stress, or 
1-stress).
0  (Unblown) = Fuse bank 1 may be explicitly sensed by software
1 (Blown) = Fuse bank 1 may not be explicitly sensed by software (it is sense-protected)

Note: Reading these bits returns the fuse state (0 = unblown; 1 = blown) so long as FBAC1[FBRP] is 0 (unblown). Disallowed 
reads always return 0 and cause ERR[RPE] to be set. Writing these bits overrides the values without modifying the fuse 
elements. Overriding is allowed so long as FBAC1[FBOP] is 0 (unblown). Disallowed attempts to override are ignored and 
cause ERR[OPE] to be set. The corresponding fuse elements may be programmed (blown) using the fuse programming 
sequence, so long as FBAC1[FBWP] is 0 (unblown). Disallowed attempts to program fuses are ignored and cause 
ERR[WPE] to be set.

MPC5121e Microcontroller Reference Manual, Rev. 2



IIM/Fusebox

Freescale Semiconductor 19-15

19.3.2.12 Fuse Bank 1 Data Register (FB1W1)

19.4 Functional Description
The IIM consists of a master controller, a fuse value shadow cache, and a set of registers to hold the values 
of signals visible outside the module. Two 256 bits fuse banks are implemented on the MPC5121e.

Program operations are done on a bit basis. For programming, the external FUSE programming supply 
AVDD_FUSEWR must be applied.

19.4.1 Fuse Bank 0

Fuse bank 0 (256 bits) is reserved for Freescale internal use only. 

19.4.2 Fuse Bank 1

Fuse bank 1 (256 bits) is available for user data.

Offset IIM_BASE +0x0C04 – 0x0C7CAccess: Supervisor read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DATA[7:0]

W

Reset 0 0 0 0 0 0 0 0 — — — — — — — —

= Unimplemented or Reserved

Figure 19-12. Fuse Bank 1 Data Register (FB1W1)

Table 19-13. FB1W1 Field Descriptions

Field Description

DATA[7:0] Reading these bits returns the fuse state (0 = unblown; 1 = blown) so long as FBAC1[FBRP] is 0 (unblown). 
Disallowed reads always return 0 and cause ERR[RPE] to be set. Writing these bits overrides the values 
without modifying the fuse elements. Overriding is allowed so long as FBAC1[FBOP] equals zero. Disallowed 
attempts to override are ignored and cause ERR[OPE] to be set. The corresponding fuse elements may be 
programmed (blown) using the fuse programming sequence, so long as FBAC1[FBWP] is 0. Disallowed 
attempts to program fuses are ignored and cause ERR[WPE] to be set.

MPC5121e Microcontroller Reference Manual, Rev. 2



IIM/Fusebox

19-16 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 20-1

Chapter 20  
Integrated Programmable Interrupt Controller (IPIC)

20.1 Introduction
This chapter describes the IPIC interrupt protocol, various types of interrupt sources controlled by the IPIC 
unit, and the IPIC registers with some programming guidelines. The MPC5121e IPIC unit prioritizes and 
manages interrupts from the following controller units: 

• DDR memory controller (DDR) 
• LocalPlus controller (LPC) 
• PCI
• Four-channel PCI DMA controller (DMA)
• Message unit (MU) 
• Ethernet controller (FEC) 
• Programmable serial controllers (PSC)
• USB controllers (USB) 
• NAND flash controller (NFC)
• Parallel ATA controller (PATA)
• System bus arbiter (SBA) 
• Real time clock timer (RTC)
• Eight global timers (GTM) 
• Software watchdog timer (WDT)
• I2C controllers (I2C)
• Controller area network (CAN)
• Byte data link controller (BDLC)
• Audio accelerator (AXE)
• Display interface unit (DIU)
• Sony/Phillips digital interface (SPDIF)
• Secure digital host controller (SDHC)
• Direct memory access (DMA2) 
• Power management controller (PMC)
• General-purpose IO controller (GPIO) 
• Serial ATA controller (SATA)
• PCS FIFO controller (FIFOC)
• Graphics controller (MBX)1

1. Not available in MPC5123

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-2 Freescale Semiconductor

• Temperature sensor (TEMP)
• IC identification (IIM)
• Video In (VIU)

The interrupt sources controlled by the IPIC unit cause exceptions in the processor core. The internal 
interrupt signal (int) is the main interrupt output from the IPIC to the Power Architecture core and causes 
the regular interrupt exception. The cint signal is the critical interrupt output from the IPIC to the e300 core 
and causes the critical interrupt exception. The smi signal is the system management interrupt output from 
the IPIC to the Power Architecture core and causes the system management interrupt exception. The 
machine check exception is caused by the internal mcp signal generated by the IPIC, informing the host 
processor of error conditions, assertion of the external IRQ0 machine-check request (enabled when 
SEMSR[SIRQ0]=1), and other conditions. 

Figure 20-1 shows the relationship of the various functional blocks and external signals of the MPC5121e 
to the IPIC unit.

The IPIC receives interrupt request signals from the sources external and internal to the integrated device. 

The unit selects the highest priority interrupt from all current interrupts and forwards it to the internal 
processor core. 

The IPIC also manages an internal non-maskable machine-check processor signal (mcp) and interrupt 
generated by the off-chip interrupt sources (IRQ[1:0]). 

The interrupt router of the IPIC monitors the outputs of the internal configuration registers. When the 
priority is highest in one of the received interrupt signals, the IPIC sets the corresponding bit in one of the 
interrupt pending registers (SIPNR or SEPNR). If the interrupt is not masked, the IPIC asserts the int, cint, 
or smi signal to indicate an interrupt request to the processor. When the processor is executing the specific 
interrupt handler code, the processor must vectorize the external interrupt handler by explicitly reading (in 
software) the corresponding interrupt vector register (SIVCR, SCVCR or SMVCR). In response to this 
read, the IPIC unit returns the vector (associated with the interrupt source) to the interrupt handler routine. 
In addition, the handler can vectorize different branches of interrupt handling.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-3

Figure 20-1. MPC5121e Interrupts Block Diagram

Global

DDR SDRAM
Controller

USB 2.0

CSB
Arbiter

PCI
controller

I2C

NAND Flash

8

int

cint

IRQ[1:0]

Controller

DMA 

MU

Local Plus
Controller

PowePC

PSC

4

Timers

WDT

RTC

smi

mcp

2

Core

12

PATA

SDHC

2

3

GPIO

DMA2

PMC

SPDIF

BDLC

CAN

FEC

4

SATA

FIFOC

2

MBX

DIU

TEMP
2

IIM

2

MPC5121e
Interrupt

Controller

VIU

Not available in MPC5123

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-4 Freescale Semiconductor

The IPIC can receive 65 separate interrupts from three different interrupt domains as follows:
• Two external interrupts – off-chip interrupt signals sources are IRQ[1:0]
• Fifty-Eight internal interrupts – on-chip interrupt signals sources are DDR, LPC, NFC, PATA, PCI, 

DMA, MU, FEC, PSC, FIFOC, USB, CSB arbiter, CAN, BDLC, DIU, AXE, SPDIF, SDHC, RTC, 
GTM, I2C, GPIO, GPT, SATA, MBX1, TEMP, IIM, VIU, and PMC.

• 1 external and five internal non-maskable machine check exceptions – off-chip interrupt signal 
source can be IRQ0. On-chip MCP interrupt signals sources are software watchdog timer (WDT), 
PCI, TEMP, and system bus arbiter (SBA).

The interrupt controller provides the ability to mask each interrupt source. Multiple events within GPIO 
or SBA peripheral event are also maskable.

When the IPIC receives an internal or external interrupt, its configuration register is checked to determine 
if it should be serviced as a normal external interrupt by the processor core (through the int signal). As a 
third alternative, if the incoming interrupt has been configured as a critical or system management 
interrupt, the IPIC completes the processing of the interrupt by asserting cint or smi to the core. The 
assertion of the cint or smi signal to the core causes the interrupt to be serviced as a critical or a system 
management interrupt, respectively.

20.1.1 Overview

The interrupt controller provides interrupt management responsible for receiving hardware-generated 
interrupts from different sources (both internal and external). It also prioritizes and delivers the interrupts 
to the CPU for servicing.

20.1.2 Features

The IPIC unit implements the following features:
• Supports two external and 58 internal discrete vectorized interrupt sources
• Supports one external and five internal machine check processor (MCP) interrupt sources
• Programmable highest priority request (can be programmed to support a critical (cint) or system 

management (smi) interrupt type)
• Two programmable priority mixed groups of four on-chip and four external interrupt signals with 

two priority schemes for each group: grouped and spread
• Four programmable priority internal groups of 8 on-chip interrupt signals with two priority 

schemes for each group: grouped and spread
• Two highest priority interrupts from each group can be programmed to support a critical (cint) or 

system management (smi) interrupt type
• External and internal interrupts directed to host processor
• Unique vector number for each interrupt source

1. Not available in MPC5123

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-5

20.2 Memory Map/Register Definition

20.2.1 Register Summary

The IPIC programmable register map occupies 256 bytes of memory-mapped space. Reading undefined 
portions of the memory map returns all zeros; writing has no effect.

All IPIC registers are 32 bits wide and they are located on 32-bit address boundaries. Software can perform 
byte, half-word, or word accesses to any IPIC registers. All addresses used in this chapter are offsets from 
the IPIC base, as defined in Chapter 2, “System Configuration and Memory Map (XLBMEN + Mem 
Map)”.

Table 20-1 shows memory map of the IPIC unit.

Table 20-1. IPIC Register Address Map

Offset Register Access Reset Value Section/ Page

0x00 System Global Interrupt Configuration Register (SICFR) R/W 0x0000_0000 20.2.1.1/20-6

0x04 System Global Interrupt Vector Register (SIVCR) R 0x0000_0000 20.2.1.2/20-8

0x08 System Internal Interrupt Pending Register (SIPNR_H) R 0x0000_0000 20.2.1.3/20-11

0x0C System Internal Interrupt Pending Register (SIPNR_L) R 0x0000_0000 20.2.1.3/20-11

0x10 System Internal Interrupt Group A Priority Register (SIPRR_A) R/W 0x0530_9770 20.2.1.4/20-13

0x14 System Internal Interrupt Group B Priority Register (SIPRR_B) R/W 0x0530_9770 20.2.1.5/20-14

0x18 System Internal Interrupt Group C Priority Register (SIPRR_C) R/W 0x0530_9770 20.2.1.6/20-15

0x1C System Internal Interrupt Group D Priority Register (SIPRR_D) R/W 0x0530_9770 20.2.1.7/20-16

0x20 System Internal Interrupt Mask Register (SIMSR_H) R/W 0x0000_0000 20.2.1.8/20-17

0x24 System Internal Interrupt Mask Register (SIMSR_L) R/W 0x0000_0000 20.2.1.8/20-17

0x28 System Internal Interrupt Control Register (SICNR) R/W 0x0000_0000 20.2.1.9/20-19

0x2C System External Interrupt Pending Register (SEPNR) R/W Special 20.2.1.10/20-21

0x30 System Mixed Interrupt Group A Priority Register (SMPRR_A) R/W 0x0530_9770 20.2.1.11/20-22

0x34 System Mixed Interrupt Group B Priority Register (SMPRR_B) R/W 0x0530_9770 20.2.1.12/20-23

0x38 System External Interrupt Mask Register (SEMSR) R/W 0x0000_0000 20.2.1.13/20-24

0x3C System External Interrupt Control Register (SECNR) R/W 0x0000_0000 20.2.1.14/20-26

0x40 System Error Status Register (SERSR) R/W 0x0000_0000 20.2.1.15/20-27

0x44 System Error Mask Register (SERMR) R/W 0xE580_0000 20.2.1.16/20-28

0x48–0x4F Reserved — —

0x50 System Internal Interrupt Force Register (SIFCR_H) R/W 0x0000_0000 20.2.1.17/20-29

0x54 System Internal Interrupt Force Register (SIFCR_L) R/W 0x0000_0000 20.2.1.17/20-29

0x58 System External Interrupt Force Register (SEFCR) R/W 0x0000_0000 20.2.1.18/20-31

0x5C System Error Force Register (SERFR) R/W 0x0000_0000 20.2.1.19/20-32

0x60 System critical interrupt vector register (SCVCR) R 0x0000_0000 20.2.1.20/20-33

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-6 Freescale Semiconductor

20.2.1.1 System Global Interrupt Configuration Register (SICFR)

SICFR, shown in Figure 20-2, defines the highest priority interrupt and whether interrupts are grouped or 
spread in the priority table. See Table 20-27 for more information.

0x64 System management interrupt vector register (SMVCR) R 0x0000_0000 20.2.1.21/20-34

0x68– 0xFF Reserved — —

Offset 0x00Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0
HPI

0
MPSB MPSA

0
IPSD IPSC IPSB IPSA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0
HPIT

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-2. System Global Interrupt Configuration Register (SICFR)
(The register is repeated for reference.)

Table 20-2. SICFR Field Descriptions

Field Description

HPI Highest Priority Interrupt. Specifies the 7-bit unique interrupt number/vector (Table 20-4) of the single 
interrupt controller interrupt source advanced to the highest priority in the IPIC Priority table (Table 20-27). 
HPI can be modified dynamically.

MPSB Mixed interrupts Priority Scheme for group B. Selects the relative MIXB priority scheme. It cannot be changed 
dynamically.
0 Grouped. The MIXBs are grouped by priority at the top of the table.
1 Spread. The MIXBs are spread by priority in the table.

MPSA Mixed interrupts Priority Scheme for group A. Selects the relative MIXA priority scheme. It cannot be changed 
dynamically.
0 Grouped. The MIXAs are grouped by priority at the top of the table.
1 Spread. The MIXAs are spread by priority in the table.

IPSD Internal interrupts Priority Scheme for group D. Selects the relative SYSD priority scheme. It cannot be 
changed dynamically.
0 Grouped. The SYSDs are grouped by priority at the top of the table.
1 Spread. The SYSDs are spread by priority in the table.

Table 20-1. IPIC Register Address Map (continued)

Offset Register Access Reset Value Section/ Page

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-7

IPSC Internal interrupts Priority Scheme for group C. Selects the relative SYSC priority scheme. It cannot be 
changed dynamically.
0 Grouped. The SYSCs are grouped by priority at the top of the table.
1 Spread. The SYSCs are spread by priority in the table.

IPSB Internal interrupts Priority Scheme for group B. Selects the relative SYSB priority scheme. It cannot be 
changed dynamically.
0 Grouped. The SYSBs are grouped by priority at the top of the table.
1 Spread. The SYSBs are spread by priority in the table.

IPSA Internal Interrupts Priority Scheme for Group A. Selects the relative SYSA priority scheme. It cannot be 
changed dynamically.
0 Grouped. The SYSAs are grouped by priority at the top of the table.
1 Spread. The SYSAs are spread by priority in the table.

HPIT HPI Priority Position IPIC Output Interrupt Type. Defines type of the IPIC output interrupt signal (int, cint, or 
smi) asserts its request to the core in the HPI priority position. These bits cannot be changed dynamically. If 
S/W really wants to change it, it has to make sure the corresponding interrupt source is masked or it won’t 
happen during the change. 
The definition of HPIT is as follows:
00 int request is asserted to the core for HPI.
01 smi request is asserted to the core for HPI.
10 cint request is asserted to the core for HPI.
11 Reserved.

Offset 0x00Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0
HPI

0
MPSB MPSA

0
IPSD IPSC IPSB IPSA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0
HPIT

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-2. System Global Interrupt Configuration Register (SICFR)
(The register is repeated for reference.)

Table 20-2. SICFR Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-8 Freescale Semiconductor

20.2.1.2 System Global Interrupt Vector Register (SIVCR)

SIVCR, shown in Figure 20-3, contains a 7-bit code (Table 20-3) representing the unmasked interrupt 
source of the highest priority level.

Table 20-4 shows the definition of IVEC.

NOTE
Interrupt vector numbers are assigned to each module and cannot be 
changed. For example, the PCI module always returns 0x000.0001 as its 
interrupt vector regardless of its relative priority in the SYSC group.

Offset 0x04Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 IVEC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-3. System Global Interrupt Vector Register (SIVCR)

Table 20-3. SIVCR Field Descriptions

Field Description

IVEC Interrupt Vector. Specifies a 7-bit unique number of the IPIC’s highest priority interrupt source, pending to the 
core. When an interrupt request occurs, SIVCR can be read. If there are multiple interrupt sources, SIVCR 
latches the highest priority interrupt. 
Note: The value of SIVEC cannot change while it is being read.

Table 20-4. IVEC Field Values (Sheet 1 of 3)

Interrupt 
Number

Meaning
Interrupt
Vector

Default Group 
Programing

0 Error (No Interrupt) 0x000_0000 —

1 PCI 0x000_0001 SYSC0(Grouped)

2 PCI DMA 0x000_0010 SYSC1(Grouped)

3 PCI MU 0x000_0011 SYSC2(Grouped)

4 FEC 0x000_0100 SYSC3(Grouped)

5 PATA 0x000_0101 SYSC4(Grouped)

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-9

6 NFC 0x000_0110 SYSC5(Grouped)

7 LPC 0x000_0111 SYSC6(Grouped)

8 SDHC 0x000_1000 SYSC7(Grouped)

9 I2C1 0x000_1001 SYSD0(Grouped)

10 I2C2 0x000_1010 SYSD1(Grouped)

11 I2C3 0x000_1011 SYSD2(Grouped)

12 MSCAN1 0x000_1100 SYSD3(Grouped)

13 MSCAN2 0x000_1101 SYSD4(Grouped)

14 BDLC 0x000_1110 SYSD5(Grouped)

15 GPT0 0x000_1111 SYSD6(Grouped)

16 GPT1 0x001_0000 SYSD7(Grouped)

17 ipp_ind_ext_int[1] 0x001_0001 MIXA5(Grouped)

18 ipp_ind_ext_int[2] 0x001_0010 MIXA6(Grouped)

19 ipp_ind_ext_int[3] 0x001_0011 MIXA7(Grouped)

20 Reserved 0x001_0100 MIXB4(Grouped)

21 Reserved 0x001_0101 MIXB5(Grouped)

22 Reserved 0x001_0110 MIXB6(Grouped)

23 Reserved 0x001_0111 MIXB7(Grouped)

24 Reserved 0x001_1000 Fixed priority

25 Reserved 0x001_1001 Fixed priority

26 Reserved 0x001_1010 Fixed priority

27 Reserved 0x001_1011 Fixed priority

28 Reserved 0x001_1100 Fixed priority

29 Reserved 0x001_1101 Fixed priority

30 Reserved 0x001_1110 Fixed priority

31 Reserved 0x001_1111 Fixed priority

32 PSC4 0x010_0000 SYSA0(Grouped)

33 PSC5 0x010_0001 SYSA1(Grouped)

34 PSC6 0x010_0010 SYSA2(Grouped)

35 PSC7 0x010_0011 SYSA3(Grouped)

36 PSC8 0x010_0100 SYSA4(Grouped)

37 PSC9 0x010_0101 SYSA5(Grouped)

38 PSC10 0x010_0110 SYSA6(Grouped)

39 PSC11 0x010_0111 SYSA7(Grouped)

40 FIFOC 0x010_1000 SYSB0(Grouped)

41 SPDIF 0x010_1001 SYSB1(Grouped)

42 AXE 0x010_1010 SYSB2(Grouped)

43 USB ULPI 0x010_1011 SYSB3(Grouped)

44 USB UTMI 0x010_1100 SYSB4(Grouped)

Table 20-4. IVEC Field Values (Sheet 2 of 3)

Interrupt 
Number

Meaning
Interrupt
Vector

Default Group 
Programing

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-10 Freescale Semiconductor

45 SATA 0x010_1101 SYSB5(Grouped)

46 Reserved 0x010_1110 SYSB6(Grouped)

47 Reserved 0x010_1111 SYSB7(Grouped)

48 ipp_ind_ext_int[0] 0x011_0000 MIXA4(Grouped)

49–63 Reserved 0x011_0001 – 
0x011_1111

Reserved

64 ipi_int_internal[32] 0x100_0000 MIXA0(Grouped)

65 ipi_int_internal[33] 0x100_0001 MIXA1(Grouped)

66 ipi_int_internal[34]1 0x100_0010 MIXA2(Grouped)

67 ipi_int_internal[35] 0x100_0011 MIXA3(Grouped)

68 PSC0 0x100_0100 MIXB0(Grouped)

69 PSC1 0x100_0101 MIXB1(Grouped)

70 PSC2 0x100_0110 MIXB2(Grouped)

71 PSC3 0x100_0111 MIXB3(Grouped)

72 GPT2 0x100_1000 Fixed priority

73 GPT3 0x100_1001 Fixed priority

74 GPT4 0x100_1010 Fixed priority

75 GPT5 0x100_1011 Fixed priority

76 GPT6 0x100_1100 Fixed priority

77 GPT7 0x100_1101 Fixed priority

78 GPIO 0x100_1110 Fixed priority

79 RTC SEC 0x100_1111 Fixed priority

80 RTC ALARM 0x101_0000 Fixed priority

81 DDR 0x101_0001 Fixed priority

82 SBA 0x101_0010 Fixed priority

83 PMC 0x101_0011 Fixed priority

84 USB ULPI WKUP 0x101_0100 Fixed priority

85 USB UTMI WKUP 0x101_0101 Fixed priority

86 SATA CMD 0x101_0110 Fixed priority

87 TEMP 105C 0x101_0111 Fixed priority

88 IIM 0x101_1000 Fixed priority

89 DDR PRIOMAN 0x101_1001 Fixed priority

90 MSCAN3 0x101_1010 Fixed priority

91 MSCAN4 0x101_1011 Fixed priority

92 Reserved 0x101_1100 Fixed priority

93 Reserved 0x101_1101 Fixed priority

95 Reserved 0x101_1110 Fixed priority

95 Reserved 0x101_1111 Fixed priority

1 Not available in MPC5123. Therefore, it is reserved.

Table 20-4. IVEC Field Values (Sheet 3 of 3)

Interrupt 
Number

Meaning
Interrupt
Vector

Default Group 
Programing

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-11

20.2.1.3 System Internal Interrupt Pending Registers (SIPNR_H and SIPNR_L)

Each bit in the system internal interrupt pending registers (SIPNR_H and SIPNR_L), shown in Figure 20-4 
and Figure 20-5, corresponds to an internal interrupt source. When an interrupt is received, the interrupt 
controller sets the corresponding SIPNR bit. When a pending interrupt is managed, clear the SIPNR bit by 
clearing the corresponding event register bit. 

Offset 0x08Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PSC4 PSC5 PSC6 PSC7 PSC8 PSC9 PSC10 PSC11 FIFOC SPDIF AXE

USB
ULPI

USB
UTMI

SATA

W 0 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PCI

P
C

I D
M

A

P
C

I M
U

FEC PATA NFC LPC SDHC I2C1 I2C2 I2C3

M
S

C
A

N
1

M
S

C
A

N
2

BDLC GPT0 GPT1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-4. System Internal Interrupt Pending Register (SIPNR_H)

Table 20-5. SIPNR_H Field Descriptions

Field Description

[31:0] Each bit corresponds to an internal interrupt source. When an interrupt is received, the interrupt controller 
sets the corresponding SIPNR bit. When a pending interrupt is managed, clear the corresponding SIPNR bit. 
However, if an event register exists, the unmasked event register bits should be cleared instead, causing the 
SIPNR bit to be cleared. 

SIPNR bits are read only. Writing to this register has no effect. 
Note: The SIPNR bit positions are not changed according to their relative priority.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-12 Freescale Semiconductor

Offset 0x0CAccess: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ipi_int
_inter
nal[32

]

ipi_int_i
nternal[

33]

ipi_int
_inter
nal[34

]1

1 Not available in MPC5123.

ipi_int
_inter
nal[35

]

PSC0 PSC1 PSC2 PSC3 GPT2 GPT3 GPT4 GPT5 GPT6 GPT7 GPIO RTC 
SEC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RTC 

ALARM
DDR SBA PMC

USB 
ULPI 

WKUP

USB 
UTMI 
WKUP

SATA 
CMD

TEMP 
105C

IIM

DDR 
PRI-
OMA

N

MSCA
N3

MSCA
N4

W 0 0 0 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-5. System Internal Interrupt Pending Register (SIPNR_L)

Table 20-6. SIPNR_L Field Descriptions

Field Description

[31:0] Each bit corresponds to an internal interrupt source. When an interrupt is received, the interrupt controller 
sets the corresponding SIPNR bit. When a pending interrupt is managed, clear the corresponding SIPNR bit. 
However, if an event register exists, the unmasked event register bits should be cleared instead, causing the 
SIPNR bit to be cleared. 
SIPNR bits are read only. Writing to this register has no effect. 
Note: The SIPNR bit positions are not changed according to their relative priority.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-13

20.2.1.4 System Internal Interrupt Group A Priority Register (SIPRR_A)

The system internal interrupt group A priority register (SIPRR_A), shown in Figure 20-6, defines the 
priority between PSC4, PSC5, PSC6, PSC7, PSC8, PSC9, PSC10, and PSC11 internal interrupt signals.

Offset 0x10Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SYSA0P SYSA1P SYSA2P SYSA3P

0 0 0 0

W

Reset 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SYSA4P SYSA5P SYSA6P SYSA7P

0 0 0 0

W

Reset 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0

= Unimplemented or Reserved

Figure 20-6. System Internal Interrupt Group A Priority Register (SIPRR_A)

Table 20-7. SIPRR_A Field Descriptions

Field Description

SYSA0P SYSA0 Priority Order. Defines which interrupt source asserts its request in the SYSA0 priority position. Do 
not program the same code to more than one priority position (0–7). These bits can be changed dynamically. 
The definition of SYSA0P is shown as follows:
000 PSC4 asserts its request in the SYSA0 position.
001 PSC5 asserts its request in the SYSA0 position.
010 PSC6 asserts its request in the SYSA0 position.
011 PSC7 asserts its request in the SYSA0 position.
100 PSC8 asserts its request in the SYSA0 position.
101 PSC9 asserts its request in the SYSA0 position.
110 PSC10 asserts its request in the SYSA0 position.
111 PSC11 asserts its request in the SYSA0 position.

SYSA1P–
SYSA7P

Same as SYSA0P, but for SYSA1P–SYSA7P.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-14 Freescale Semiconductor

20.2.1.5 System Internal Interrupt Group B Priority Register (SIPRR_B)

The System Internal Interrupt Group B Priority Register (SIPRR_B), shown in Figure 20-7, defines the 
priority between FIFOC, SPDIF, AXE, USB ULPI, USB UTMI, SATA, Reserved, and Reserved internal 
interrupt signals.

Offset 0x14Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SYSB0P SYSB1P SYSB2P SYSB3P

0 0 0 0

W

Reset 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SYSA4P SYSA5P SYSB6P SYSB7P

0 0 0 0

W

Reset 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0

= Unimplemented or Reserved

Figure 20-7. System Internal Interrupt Group B Priority Register (SIPRR_B)

Table 20-8. SIPRR_B Field Descriptions

Field Description

SYSB0P SYSB0 Priority order. Defines which interrupt source asserts its request in the SYSB0 priority position. Do 
not program the same code to more than one priority position (0–7). These bits can be changed dynamically. 
The definition of SYSB0P is shown as follows:
000 FIFOC asserts its request in the SYSB0 position.
001 SPDIF asserts its request in the SYSB0 position.
010 AXE asserts its request in the SYSB0 position.
011 USB ULPI asserts its request in the SYSB0 position.
100 USB UTMI asserts its request in the SYSB0 position.
101 SATA asserts its request in the SYSB0 position.
110 Reserved asserts its request in the SYSB0 position.
111 Reserved asserts its request in the SYSB0 position.

SYSB1P–
SYSB7P

Same as SYSB0P, but for SYSB1P–SYSB7P.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-15

20.2.1.6 System Internal Interrupt Group C Priority Register (SIPRR_C)

The System Internal Interrupt Group C Priority Register (SIPRR_C), shown in Figure 20-8, defines the 
priority between PCI, PCI DMA, PCI MU, FEC, PATA, NFC, LPC, and SDHC internal interrupt signals.

Offset 0x18Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SYSC0P SYSC1P SYSC2P SYSC3P

0 0 0 0

W

Reset 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SYSC4P SYSC5P SYSC6P SYSC7P

0 0 0 0

W

Reset 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0

= Unimplemented or Reserved

Figure 20-8. System Internal Interrupt Group C Priority Register (SIPRR_C)

Table 20-9. SIPRR_C Field Descriptions

Field Description

SYSC0P SYSC0 Priority order. Defines which interrupt source asserts its request in the SYSC0 priority position. Do 
not program the same code to more than one priority position (0–7). These bits can be changed dynamically. 
The definition of SYSC0P is shown as follows:
000 PCI asserts its request in the SYSC0 position.
001 PCI DMA asserts its request in the SYSC0 position.
010 PCI MU asserts its request in the SYSC0 position.
011 FEC asserts its request in the SYSC0 position.
100 PATA asserts its request in the SYSC0 position.
101 NFC asserts its request in the SYSC0 position.
110 LPC asserts its request in the SYSC0 position.
111 SDHC asserts its request in the SYSC0 position.

SYSC1P–
SYSC7P

Same as SYSC0P, but for SYSC1P–SYSC7P.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-16 Freescale Semiconductor

20.2.1.7 System Internal Interrupt Group D Priority Register (SIPRR_D)

The system internal interrupt group D priority register (SIPRR_D), shown in Figure 20-9, defines the 
priority between I2C1, I2C2, I2C3, MSCAN1, MSCAN2, BDLC, GPT0, and GPT1 internal interrupt 
signals.

Offset 0x1CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SYSD0P SYSD1P SYSD2P SYSD3P

0 0 0 0

W

Reset 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SYSD4P SYSD5P SYSD6P SYSD7P

0 0 0 0

W

Reset 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0

= Unimplemented or Reserved

Figure 20-9. System Internal Interrupt Group D Priority Register (SIPRR_D)

Table 20-10. SIPRR_D Field Descriptions

Field Description

SYSD0P SYSD0 Priority order. Defines which interrupt source asserts its request in the SYSD0 priority position. Do 
not program the same code to more than one priority position (0–7). These bits can be changed dynamically. 
The definition of SYSD0P is shown as follows:
000 I2C1 asserts its request in the SYSD0 position.
001 I2C2 asserts its request in the SYSD0 position.
010 I2C3 asserts its request in the SYSD0 position.
011 MSCAN1 asserts its request in the SYSD0 position.
100 MSCAN2 asserts its request in the SYSD0 position.
101 BDLC asserts its request in the SYSD0 position.
110 GPT0 asserts its request in the SYSD0 position.
111 GPT1 asserts its request in the SYSD0 position.

SYSD1P–
SYSD7P

Same as SYSD0P, but for SYSD1P–SYSD7P.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-17

20.2.1.8 System Internal Interrupt Mask Register (SIMSR_H and SIMSR_L)

Each implemented bit in the SIMSR_H and SIMSR_L, shown in Figure 20-10 and Figure 20-11, 
corresponds to an internal interrupt source. Mask an interrupt by setting the corresponding SIMSR bit. 
When an interrupt request occurs, the corresponding SIPNR bit is set, regardless of the SIMSR bit. 
However, if the corresponding SIMSR bit is cleared, no interrupt request is passed to the core. 

When the SIMSR bit is cleared at the same time an interrupt source requests an interrupt service, the 
request stops. If you set the SIMSR bit later, a previously pending interrupt request is processed by the 
core according to its assigned priority. 

Offset 0x20Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PSC4 PSC5 PSC6 PSC7 PSC8 PSC9 PSC10 PSC11 FIFOC SPDIF AXE USB 
ULPI

USB 
UTMI

SATA 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PCI

PCI 
DMA

PCI 
MU

FEC PATA NFC LPC SDHC I2C1 I2C2 I2C3
MSC
AN1

MSC
AN2

BDLC GPT0 GPT1
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-10. System Internal Interrupt Mask Register (SIMSR_H)

Table 20-11. SIMSR_H Field Descriptions

Field Description

Refer to 
Figure 20-10

Each bit corresponds to an external interrupt source. Mask an interrupt by clearing the SIMSR bit. An interrupt 
can be enabled by setting the corresponding SIMSR bit. The SIMSR can be read at any time.
Note:  
 • SIMSR bit positions are not changed according to their relative priority.
 • You can clear pending register bits set by multiple interrupt events only by clearing all unmasked events in 

the corresponding event register. 
 • If an SIMSR bit is masked at the same time the corresponding SIPNR bit causes an interrupt request to 

the core, the error vector is issued (if no other interrupts pending). Therefore, always include an error.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-18 Freescale Semiconductor

Offset 0x24Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ipi_int
_inter
nal[32

]

ipi_int_
inter-

nal[33]

ipi_int_
inter-

nal[34]
1

1 Not available in MPC5123

ipi_int_
inter-

nal[35]
PSC0 PSC1 PSC2 PSC3 GPT2 GPT3 GPT4 GPT5 GPT6 GPT7 GPIO

RTC 
SEC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RTC 

ALARM
DDR SBA PMC

USB 
ULPI 

WKUP

USB 
UTMI 
WKUP

SATA 
CMD

TEMP 
105C

IIM
DDR 
PRI-

OMAN

MSCA
N3

MSCA
N4

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-11. System Internal Interrupt Mask Register (SIMSR_L)

Table 20-12. SIMSR_L Field Descriptions

Field Description

[31:0] Each bit corresponds to an external interrupt source. Mask an interrupt by clearing the SIMSR bit. An interrupt 
can be enabled by setting the corresponding SIMSR bit. The SIMSR can be read at any time.
Note:  
 • SIMSR bit positions are not changed according to their relative priority.
 • You can clear pending register bits that were set by multiple interrupt events only by clearing all unmasked 

events in the corresponding event register. 
 • If an SIMSR bit is masked at the same time the corresponding SIPNR bit causes an interrupt request to 

the core, the error vector is issued (if no other interrupts pending). Therefore, always include an error.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-19

20.2.1.9 System Internal Interrupt Control Register (SICNR)

SICNR, shown in Figure 20-12, defines the IPIC output interrupt type (int, cint, or smi) in the 
SYSA0-SYSA1, SYSB0-SYSB1, SYSC0-SYSC1, and SYSD0-SYSD1 priority positions. All other 
priority positions assert an INT signal to the core.

Offset 0x28Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SYSD0T SYSD1T

0 0 0 0
SYSC0T SYSC1T

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SYSB0T SYSB1T

0 0 0 0
SYSA0T SYSA1T

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-12. System Internal Interrupt Control Register (SICNR)
(Register is repeated for reference.)

Table 20-13. SICNR Field Descriptions

Field Description

SYSDxT SYSDx Priority Position IPIC Output Interrupt Type. Defines which type of IPIC output interrupt (int, cint, or 
smi) asserts its request to the core in the SYSDx priority position. These bits cannot be changed dynamically. 
To change it, software must make sure the corresponding interrupt source is masked or it cannot happen 
during the change. 
The definition of SYSDxT is as follows:
00 int request is asserted to the core for SYSDx.
01 smi request is asserted to the core for SYSDx.
10 cint request is asserted to the core for SYSDx.
11 Reserved

SYSCxT SYSCx Priority Position IPIC Output Interrupt Type. Defines which type of IPIC output interrupt (int, cint, or 
smi) asserts its request to the core in the SYSCx priority position. These bits cannot be changed dynamically. 
To change it, software must make sure the corresponding interrupt source is masked or it cannot happen 
during the change. 
The definition of SYSCxT is as follows:
00 int request is asserted to the core for SYSCx.
01 smi request is asserted to the core for SYSCx.
10 cint request is asserted to the core for SYSCx.
11 Reserved

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-20 Freescale Semiconductor

SYSBxT SYSBx Priority Position IPIC Output Interrupt Type. Defines which type of IPIC output interrupt (int, cint, or 
smi) asserts its request to the core in the SYSBx priority position. These bits cannot be changed dynamically. 
To change it, software must make sure the corresponding interrupt source is masked or it cannot happen 
during the change. 
The definition of SYSBxT is as follows:
00 int request is asserted to the core for SYSBx.
01 smi request is asserted to the core for SYSBx.
10 cint request is asserted to the core for SYSBx.
11 Reserved

SYSAxT SYSAx Priority Position IPIC Output Interrupt Type. Defines which type of IPIC output interrupt (int, cint, or 
smi) asserts its request to the core in the SYSAx priority position. These bits cannot be changed dynamically. 
To change it, software must make sure the corresponding interrupt source is masked or it cannot happen 
during the change. 
The definition of SYSAxT is as follows:
00 int request is asserted to the core for SYSAx.
01 smi request is asserted to the core for SYSAx.
10 cint request is asserted to the core for SYSAx.
11 Reserved

Offset 0x28Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SYSD0T SYSD1T

0 0 0 0
SYSC0T SYSC1T

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SYSB0T SYSB1T

0 0 0 0
SYSA0T SYSA1T

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-12. System Internal Interrupt Control Register (SICNR)
(Register is repeated for reference.)

Table 20-13. SICNR Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-21

20.2.1.10 System External Interrupt Pending Register (SEPNR)

Each bit in the SEPNR, shown in Figure 20-13, corresponds to an external interrupt source. When an 
interrupt is received, the interrupt controller sets the corresponding SEPNR bit.

Offset 0x2CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ipp_in
d_ext_
int[0]1

1 This bit is valid only if the ipp_ind_ext_int[0] signal is configured as an external maskable interrupt 
(SEMSR[Sipp_ind_ext_int[0]] = 0)

ipp_in
d_ext
_int[1]

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset Note2

2 Reflect the state of external IRQ# pins. User should take care to drive all IRQ inputs to inactive state prior to reset negation

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-13. System External Interrupt Pending Register (SEPNR)

Table 20-14. SEPNR Field Descriptions

Field Description

[31:0] Each bit corresponds to an external interrupt source. When an interrupt is received, the interrupt controller 
sets the corresponding SEPNR bit.
When a pending interrupt is managed, clear the corresponding SEPNR bit. For level triggered case, s/w 
needs to negate the IRQx that automatically clears the bit in SEPNR, and for edge triggered case, s/w needs 
to clear SEPNR.
SEPNR bits are cleared by writing ones to them. Because the user can only clear bits in this register, writing 
zeros to this register has no effect. 
Note: The SEPNR bit positions are not changed according to their relative priority.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-22 Freescale Semiconductor

20.2.1.11 System Mixed Interrupt Group A Priority Register (SMPRR_A)

The SMPRR_A, shown in Figure 20-14, defines the priority between ipi_int_internal[32], 
ipi_int_internal[33], ipi_int_internal[34], ipi_int_internal[35], ipp_ind_ext_int[0], ipp_ind_ext_int[1], 
ipp_ind_ext_int[2], and ipp_ind_ext_int[3]. 

Offset 0x30Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MIXA0P MIXA1P MIXA2P MIXA3P

0 0 0 0

W

Reset 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MIXA4P MIXA5P MIXA6P MIXA7P

0 0 0 0

W

Reset 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0

= Unimplemented or Reserved

Figure 20-14. System Mixed Interrupt Group A Priority Register (SMPRR_A)

Table 20-15. SMPRR_A Field Descriptions

Field Description

MIXA0P MIXA0 Priority order. Defines which interrupt source asserts its request in the MIXA0 priority position. Do not 
program the same code to more than one priority position (0–7). These bits can be changed dynamically. The 
definition of MIXA0P is as follows:
000 ipi_int_internal[32] asserts its request to the MIXA0 position.
001 ipi_int_internal[33] asserts its request to the MIXA0 position.
010 ipi_int_internal[34] asserts its request to the MIXA0 position.
011 ipi_int_internal[35] asserts its request to the MIXA0 position.
100 ipp_ind_ext_int[0] asserts its request to the MIXA0 position. This field for MIXA0 position is valid (must 

not be ignored) if ipp_ind_ext_int[0] signal configured as an external maskable interrupt 
(SEMSR[Sipp_ind_ext_int[0]] = 0).

101 ipp_ind_ext_int[1] asserts its request to the MIXA0 position.
110 ipp_ind_ext_int[2] asserts its request to the MIXA0 position.
111 ipp_ind_ext_int[3] asserts its request to the MIXA0 position.

MIXA1P–
MIXA7P

Same as MIXA0P, but for MIXA1P–MIXA7P.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-23

20.2.1.12 System Mixed Interrupt Group B Priority Register (SMPRR_B)

The system mixed interrupt group B priority register (SMPRR_B), shown in Figure 20-15, defines the 
priority between PSC0, PSC1, PSC2 PSC3, Reserved, Reserved, Reserved, and Reserved. 

Offset 0x34Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MIXB0P MIXB1P MIXB2P MIXB3P

0 0 0 0

W

Reset 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MIXB4P MIXB5P MIXB6P MIXB7P

0 0 0 0

W

Reset 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0

= Unimplemented or Reserved

Figure 20-15. System Mixed Interrupt Group B Priority Register (SMPRR_B)

Table 20-16. SMPRR_B Field Descriptions

Field Description

MIXB0P MIXB0 Priority order. Defines which interrupt source asserts its request in the MIXB0 priority position. Do not 
program the same code to more than one priority position (0–7). These bits can be changed dynamically. The 
definition of MIXB0P is as follows:
000 PSC0 asserts its request to the MIXB0 position.
001 PSC1 asserts its request to the MIXB0 position.
010 PSC2 asserts its request to the MIXB0 position.
011 PSC3 asserts its request to the MIXB0 position.
100 Reserved asserts its request to the MIXB0 position. 
101 Reserved asserts its request to the MIXB0 position.
110 Reserved asserts its request to the MIXB0 position.
111 Reserved asserts its request to the MIXB0 position.

MIXB1P–
MIXB7P

Same as MIXB0P, but for MIXB1P–MIXB7P.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-24 Freescale Semiconductor

20.2.1.13 System External Interrupt Mask Register (SEMSR)

Each bit in the SEMSR, shown in Figure 20-16, corresponds to an external interrupt source. Mask an 
interrupt by clearing the corresponding SEMSR bit. An interrupt is unmasked (enabled) by setting the 
SEMSR bit. 

When an external interrupt request occurs, the corresponding SEPNR bit is set regardless of the SEMSR 
bit. However, if the corresponding SEMSR bit is cleared, no interrupt request is passed to the core.

When the SEMSR bit is cleared at the same time an interrupt source requests an interrupt service, the 
request stops. If you set the SEMSR bit later, a previously pending interrupt request is processed by the 
core according to its assigned priority. The SEMSR can be read at any time.

Offset 0x38Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ipp_in
d_ext_
int[0]1

1 This bit is valid only if the ipp_ind_ext_int[0] signal is configured as an external maskable interrupt 
(SEMSR[Sipp_ind_ext_int[0]] = 0)

ipp_in
d_ext
_int[1]

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Sipp_i
nd_ext
_int[0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-16. System External Interrupt Mask Register (SEMSR)

Table 20-17. SEMSR Field Descriptions

Field Description

Refer to 
Figure 20-16

Each bit corresponds to an external interrupt source. Mask an interrupt by clearing the SEMSR bit. An 
interrupt can be enabled by setting the corresponding SEMSR bit. 
The SEMSR can be read by the user at any time.
Note:
 • SEMSR bit positions are not affected by their relative priority.
 • You can clear pending register bits set by multiple interrupt events only by clearing all unmasked events in 

the corresponding event register.
 • If an SEMSR bit is masked at the same time the corresponding SEPNR bit causes an interrupt request to 

the core, the error vector is issued (if no other interrupts pending). Thus, you must always include an error 
vector routine, even if it contains only an RFI instruction. The error vector cannot be masked.

SIRQ0 Steer ipp_ind_ext_int[0].
0 ipp_ind_ext_int[0] is used as external interrupt request
1 ipp_ind_ext_int[0] is used as external MCP request

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-25

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-26 Freescale Semiconductor

20.2.1.14 System External Interrupt Control Register (SECNR)

The SECNR, shown in Figure 20-17, defines the edge detect mode for external IRQ interrupt signals, 
determines whether the corresponding IRQx signal asserts an interrupt request upon either a high-to-low 
change or low assertion on the pin. It also defines the IPIC output interrupt type (int, cint, or smi) in the 
MIXA0-MIXA1 and MIXB0-MIXB1 priority positions.

Offset 0x3CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MIXB0T MIXB1T

0 0 0 0
MIXA0T MIXA1T

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EDI0 EDI1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-17. System External Interrupt Control Register (SECNR)
(The register is repeated for reference.)

Table 20-18. SECNR Field Descriptions

Field Description

MIXB0T MIXB0 priority position IPIC output interrupt Type. Defines which type of the IPIC output
interrupt signal (int, cint, or smi) asserts its request to the core in the MIXB0 priority position.
These bits can be changed dynamically. The definition of MIXB0T is as follows:
00 int request is asserted to the core for MIXB0.
01 smi request is asserted to the core for MIXB0.
10 cint request is asserted to the core for MIXB0.
11 Reserved

MIXB1T Same as MIXB0T, but for MIXB1T.

MIXA0T MIXA0 priority position IPIC output interrupt Type. Defines which type of the IPIC output
interrupt signal (int, cint, or smi) asserts its request to the core in the MIXB0 priority position.
These bits can be changed dynamically. The definition of MIXA0T is as follows:
00 int request is asserted to the core for MIXA0.
01 smi request is asserted to the core for MIXA0.
10 cint request is asserted to the core for MIXA0.
11 Reserved

MIXA0T Same as MIXA0T, but for MIXA1T.

EDIx Each bit defines the edge detect mode for the external IRQ interrupt signals, and determines whether the 
corresponding IRQx signal asserts an interrupt request upon either a high-to-low change or low assertion on 
the pin. The corresponding IRQx signal asserts an interrupt request as follows:
0 Low assertion on IRQx generates an interrupt request.
1 High-to-low change on IRQx generates an interrupt request.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-27

20.2.1.15 System Error Status Register (SERSR)

Each bit in the SERSR, shown in Figure 20-18, corresponds to an external and an internal non-maskable 
error source machine check (mcp). When an error interrupt signal is received, the interrupt controller sets 
the corresponding SERSR bit.

Offset 0x40Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ipp_in
d_ext
_int[0]

WDT SBA 
0 0

PCI
0

MU
0

TEMP 
125C

0 0 0 0 0 0

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-18. System Error Status Register (SERSR)

Table 20-19. SERSR Field Descriptions

Field Description

Refer to 
Figure 20-18

Each bit in the system error status register (SERSR), shown in Figure 20-18, corresponds to an external and 
an internal error source (MCP). When an error interrupt signal is received, the interrupt controller sets the 
corresponding SERSR bit.
SERSR bits are cleared by writing ones to them. The unmasked event register bits should be cleared before 
clearing of SERSR. Because you can only clear bits in this register, writing zeros to this register has no effect. 
SERSR bits are reset only by power on reset. Soft and hard reset are not affected SERSR bit states.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-28 Freescale Semiconductor

20.2.1.16 System Error Mask Register (SERMR)

Each bit in SERMR, shown in Figure 20-19, corresponds to an external and an internal mcp source. Mask 
a MCP by clearing and enables a MCP by setting the corresponding SERMR bit. When a masked MCP 
occurs, the corresponding SERSR bit is set, regardless of the SERMR bit although no MCP request is 
passed to the core. The SERMR can be read by the user at any time.

Offset 0x44Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ipp_in
d_ext
_int[0]

WDT SBA 
0 0

PCI
0

MU 1
TEMP 
125C

0 0 0 0 0 0

W

Reset 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0

Power

Architecture
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-19. System Error Mask Register (SERMR)

Table 20-20. SERMR Field Descriptions

Field Description

Refer to 
Figure 20-19

Each bit in the System Error Status Register (SERMR), shown in Figure 20-19, corresponds to an external 
and an internal MCP source. Mask an MCP by clearing and enables a MCP by setting the corresponding 
SERMR bit. When a masked MCP occurs, the corresponding SERSR bit is set, regardless of the SERMR bit, 
although no MCP request is passed to the core. 
The SERMR can be read by the user at any time.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-29

20.2.1.17 System Internal Interrupt Force Register (SIFCR_H and SIFCR_L)

Each bit in SIFCR_H and SIFCR_L, shown in Figure 20-20 and Figure 20-21, corresponds to an internal 
interrupt source. When a bit is set, the interrupt controller generate the corresponding interrupt (sets the 
corresponding SIPNR bit). The SIFCR can be read by the user at any time.

NOTE
If an internal interrupt is generated by setting the corresponding SIFCR bit, 
the corresponding SIPNR bit is set until the corresponding SIFCR bit is 
cleared. 

Offset 0x50Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PSC4 PSC5 PSC6 PSC7 PSC8 PSC9

PSC
10

PSC
11

FIFOC
SP-
DIF

AXE
USB 
ULPI

USB 
UTMI

SATA
0 0

W

Reset

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PCI

PCI 
DMA

PCI 
MU

FEC PATA NFC LPC SDHC I2C1 I2C2 I2C3
MSC
AN1

MSC
AN2

BDLC GPT0 GPT1
W

Reset

= Unimplemented or Reserved

Figure 20-20. System Internal Interrupt Force Register (SIFCR_H)

Table 20-21. SIFCR_H Field Descriptions

Field Description

Refer to 
Figure 20-20

Each bit corresponds to an interrupt source. Force an interrupt by setting the SIFCR bit. An interrupt can be 
enabled by setting the corresponding SIFCR bit. 
Note: SIFCR bit positions are not changed according to their relative priority.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-30 Freescale Semiconductor

Offset 0x54Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ipi_int
_inter
nal[32

]

ipi_int_
inter-

nal[33]

ipi_int_
inter-

nal[34]
1

1 Not available in MPC5123

ipi_int_
inter-

nal[35]
PSC0 PSC1 PSC2 PSC3 GPT2 GPT3 GPT4 GPT5 GPT6 GPT7 GPIO

RTC 
SEC

W

Reset

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RTC 

ALARM
DDR SBA PMC

USB 
ULPI 

WKUP

USB 
UTMI 
WKUP

SATA 
CMD

TEMP 
105C

IIM
DDR 
PRI-

OMAN

MSCA
N3

MSCA
N4

0 0 0 0

W

Reset

= Unimplemented or Reserved

Figure 20-21. System Internal Interrupt Force Register (SIFCR_L)

Table 20-22. SIFCR_L Field Descriptions

Field Description

Refer to 
Figure 20-21

Each bit corresponds to an interrupt source. Force an interrupt by setting the SIFCR bit. An interrupt can be 
enabled by setting the corresponding SIFCR bit. 
Note: SIFCR bit positions are not changed according to their relative priority.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-31

20.2.1.18 System External Interrupt Force Register (SEFCR)

Each bit in SEFCR, shown in Figure 20-22, corresponds to an external interrupt source. When a bit is set, 
the interrupt controller generates the corresponding external interrupt (sets the corresponding SEPNR bit).

The SEFCR can be read by the user at any time.

NOTE
If an external interrupt is configured to operate in level-sensitive mode and 
generated by setting the SEFCR bit, the corresponding SEPNR bit is set 
until the corresponding SEFCR bit is cleared.

Offset 0x58Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ipp_in
d_ext_
int[0]1

1 This bit is valid only if the ipp_ind_ext_int[0] signal is configured as an external maskable interrupt 
(SEMSR[Sipp_ind_ext_int[0]] = 0)

ipp_in
d_ext
_int[1]

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset

= Unimplemented or Reserved

Figure 20-22. System External Interrupt Force Register (SEFCR)

Table 20-23. SEFCR Field Descriptions

Field Description

IRQ0–IRQ1 Each bit corresponds to an external interrupt source. Force an interrupt by setting the SIFCR bit. An interrupt 
can be enabled by setting the corresponding SIFCR bit. 
Note: SIFCR bit positions are not changed according to their relative priority.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-32 Freescale Semiconductor

20.2.1.19 System Error Force Register (SERFR)

Each bit in SERFR, shown in Figure 20-23, corresponds to an external MCP source. When a bit is set, the 
interrupt controller generates the corresponding MCP interrupt (sets the corresponding SERSR bit).

The SERFR can be read by the user at any time.

Offset 0x5CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ipp_in
d_ext
_int[0]

1

WDT SBA 

0 0

PCI

0

MU
Re-

serve
d

TEMP 
125C

0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

1. This bit is valid only if the ipp_ind_ext_int[0] signal is configured as an external MCP interrupt 
(SEMSR[Sipp_ind_ext_int[0]] = 1)

Figure 20-23. System Error Force Register (SERFR)

Table 20-24. SERFR Field Descriptions

Field Description

Refer to 
Figure 20-23

Each bit corresponds to an external MCP source. You can force an MCP by setting the SERFR bit. 
Note: SERFR bit positions are not affected by their relative priority.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-33

20.2.1.20 System Critical Interrupt Vector Register (SCVCR)

SCVCR, shown in Figure 20-24, contains a 7-bit code (Table 20-25) representing the unmasked critical 
interrupt (cint) source of the highest priority level. 

Offset 0x60Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 CVEC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-24. System Critical Interrupt Vector Register (SCVCR)

Table 20-25. SCVCR Field Descriptions

Field Description

CVEC Critical interrupt vector. Specifies a 7-bit unique number of the IPIC’s highest priority critical interrupt source, 
pending to the core. When a critical interrupt request occurs, SCVCR can be read. If there are multiple critical 
interrupt sources, SCVCR latches the highest priority critical interrupt. The CVEC field correctly reflects all of 
the interrupt vectors (See Table 20-4 for details).
The value of SCVEC cannot change while it is being read.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-34 Freescale Semiconductor

20.2.1.21 System Management Interrupt Vector Register (SMVCR)

SMVCR, shown in Figure 20-25, contains a 7-bit code (Table 20-26) representing the unmasked system 
management interrupt (SMI) source of the highest priority level.

Offset 0x64Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 MVEC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 20-25. System Management Interrupt Vector Register (SMVCR)

Table 20-26. SMVCR Field Descriptions

Field Description

MVEC System management interrupt vector. Specifies a 7-bit unique number of the IPIC’s highest priority system 
management interrupt source, pending to the core. When a system management interrupt request occurs, 
SMVCR can be read. If there are multiple system management interrupt sources, SMVCR latches the highest 
priority system management interrupt. The MVEC field correctly reflects all interrupt vectors (See Table 20-4 
for details).
The value of SMVEC cannot change while it is being read.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-35

20.3 Functional Description
The following sections describe the type of interrupts, interrupt configurations, and their priorities.

20.3.1 Interrupt Types

The IPIC is responsible for receiving hardware-generated interrupts from different sources (both internal 
and external) along with prioritizing and delivering them to the CPU for servicing. The interrupt sources 
are controlled by the IPIC unit and may cause three types of exceptions in the processor core. The int signal 
is the main interrupt output from the IPIC to the processor core and causes the external interrupt 
exception.The cint signal is the critical interrupt output from the IPIC to the processor core and causes the 
critical external interrupt exception. The smi signal is the system management interrupt output from the 
IPIC to the processor core and causes the system management interrupt exception. The machine check 
exception is caused by the internal mcp signal generated by the IPIC, informing the processor of error 
conditions, assertion of the external MCP request, and other conditions. 

20.3.2 Interrupt Configuration

Figure 20-26 shows the interrupt configuration of the MPC5121e.

The interrupt controller allows masking of each interrupt source. When an unmasked interrupt source is 
pending in the SIPNR register, the interrupt controller sends an interrupt request to the core. When an 
interrupt is taken, the interrupt mask bit in the machine state register is cleared to disable further interrupt 
requests to the Power Architecture core until software can manage them. 

All interrupt sources are prioritized and bits are set in the system interrupt pending register (SIPNR, 
SEPNR) as interrupts occur regardless of whether they are masked in the IPIC. The prioritization of the 
interrupt sources is flexible within the following groups:

• The relative priority of the PSC4, PSC5, PSC6, PSC7, PSC8, PSC9, PSC10, and PSC11 internal 
interrupt signals can be modified.

• The relative priority of the FIFOC, SPDIF, AXE, USB ULPI, USB UTMI, SATA internal interrupt 
signals can be modified.

• The relative priority of the PCI, PCI DMA, PCI MU, FEC, PATA, NFC, LPC, and SDHC internal 
interrupt signals can be modified.

• The relative priority of the I2C1, I2C2, I2C3, MSCAN1, MSCAN2, BDLC, GPT0, and GPT1 
internal interrupt signals can be modified.

• The relative priority of the ipp_ind_ext_int[0], ipp_ind_ext_int[1] external interrupts, and 
ipi_int_internal[32], ipi_int_internal[33], ipi_int_internal[34]1, and ipi_int_internal[35] internal 
interrupts can be modified.

• The relative priority of the PSC0, PSC1, PSC2 and PSC3 internal interrupts can be modified.
• One interrupt source can be assigned to be the programmable highest priority. 

All other interrupt sources have a fixed interrupt priority. For details see Table 20-27.

The SIVEC is updated with a 7-bit vector corresponding to the sub-block with the highest current priority. 
1. Not available in MPC5123

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-36 Freescale Semiconductor

..

Figure 20-26. MPC5121e Interrupt Structure

4

SMI

e300

(PCI) DMA
GPT[7:0]

CAN

PATA
USB

I2C S
ys

te
m

 In
te

rr
up

ts

PSC[11:0]

NFC

LPC

BDLC

RTC

PCI 

DDR PRIOMAN

2

GPIO

4

INT CINT

MCP

WDT

CSB Arbiter

mcp

mcp

ext mcp

M
C

P
 In

te
rr

up
ts

 
(in

te
rn

al
 a

nd
 E

xt
er

na
l)

ext int

 (
in

te
rn

al
 a

nd
 E

xt
er

na
l)

2

12

ETH
CSB Arbiter

Core

3

IRQ[1:0]

IRQ[0]

2

8

DIU
AXE

SPDIF

mcp
PCI

(PCI) MU

SDHC
DMA2

FIFOC

SATA

Temp 125C
mcp

MU
mcp

MBX

Temp 105C

2

IIM

MPC5121e
Inerrupt

Controller

VIU

DDR

Not available in MPC5123

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-37

20.3.3 Internal Interrupts Group Relative Priority

The relative priority in each internal group is programmable and can be changed dynamically. The group 
priorities are programmed in the IPIC internal interrupt priority registers (SIPRRx) and can be changed 
dynamically to implement a rotating priority. 

In addition, the grouping of the locations of the interrupt entries has the following two options:
• Grouped. In the group scheme, all interrupts are grouped together at the top of Table 20-27, ahead 

of most other interrupt sources. This scheme is ideal for applications where all interrupt sources 
function at a high data rate and interrupt latency is important. 

• Spread. In the spread scheme, priorities are spread over Table 20-27 so other sources can have 
lower interrupt latencies. This scheme is also programmed but cannot be changed dynamically.

20.3.4 Mixed Interrupts Group Relative Priority

The relative priority between up to four internal and four external interrupts in each group is programmable 
and can be changed dynamically. The group priorities are programmed in the IPIC mixed interrupt priority 
registers (SMPRRx) and can be changed dynamically to implement a rotating priority. 

In addition, the grouping of the locations of the mixed interrupt entries has the following two options:
• Grouped. In the group scheme, all interrupts are grouped together at the top of the priority table, 

ahead of most other interrupt sources. See Table 20-27 for more information. This scheme is ideal 
for applications where all interrupt sources function at a high data rate and interrupt latency is 
important. 

• Spread. In the spread scheme, priorities are spread over the table so other sources can have lower 
interrupt latencies. This scheme is also programmed but cannot be changed dynamically.

20.3.5 Highest Priority Interrupt

In addition to the group relative priority option, SICFR[HPI] can be used to specify one interrupt source 
as having the highest priority. This interrupt remains within the same interrupt level as the other interrupt 
controller interrupts, but is serviced before any other interrupt in Table 20-27.

If the highest priority feature is not used, the IPIC selects the interrupt request in MIXA0 to be the highest 
priority interrupt and the standard interrupt priority order is used from Table 20-27. SICFR[HPI] can be 
updated dynamically to allow you to change a normally low-priority source into a high-priority source for 
a period as needed. 

20.3.6 Interrupt Source Priorities

Each of the IPIC’s internal and external interrupt sources can independently assert one interrupt request to 
the core. Table 20-27 shows the prioritization of these interrupt sources. As described in previous sections, 
flexibility exists in the relative ordering of the interrupts, but in general, relative priorities are as shown. A 
single interrupt priority number is associated with each table entry.

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-38 Freescale Semiconductor

Table 20-27. Interrupt Source Priority Levels (Sheet 1 of 4)

Priority Level Interrupt Source Description Multiple Events

0 Highest —

1 MIXA0 (Spread) Yes (No for ext. interrupts)

2 MIXA0 (Grouped) Yes (No for ext. interrupts)

3 MIXA1 (Grouped) Yes (No for ext. interrupts)

4 MIXA2 (Grouped) Yes (No for ext. interrupts)

5 MIXA3 (Grouped) Yes (No for ext. interrupts)

6 MIXB0 (Spread) Yes (No for ext. interrupts)

7 SYSB0 (Grouped) Yes

8 SYSB1 (Grouped) Yes

9 SYSB2 (Grouped) Yes

10 SYSB3 (Grouped) Yes

11 MIXA1 (Spread) Yes (No for ext. interrupts)

12 SYSB4 (Grouped) Yes

13 SYSB5 (Grouped) Yes

14 SYSB6 (Grouped) Yes

15 SYSB7 (Grouped) Yes

16 MIXB0 (Grouped) Yes (No for ext. interrupts)

17 MIXB1 (Grouped) Yes (No for ext. interrupts)

18 MIXB2 (Grouped) Yes (No for ext. interrupts)

19 MIXB3 (Grouped) Yes (No for ext. interrupts)

20 MIXB1 (Spread) Yes (No for ext. interrupts)

21 SYSA0 (Grouped) Yes

22 SYSA1 (Grouped) Yes

23 SYSA2 (Grouped) Yes

24 SYSA3 (Grouped) Yes

25 MIXA2 (Spread) Yes (No for ext. interrupts)

26 SYSA4 (Grouped) Yes

27 SYSA5 (Grouped) Yes

28 SYSA6 (Grouped) Yes

29 SYSA7 (Grouped) Yes

30 MIXA4 (Grouped) Yes (No for ext. interrupts)

31 MIXA5 (Grouped) Yes (No for ext. interrupts)

32 MIXA6 (Grouped) Yes (No for ext. interrupts)

33 MIXA7 (Grouped) Yes (No for ext. interrupts)

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-39

34 MIXB2 (Spread) Yes (No for ext. interrupts)

35 SYSC0 (Grouped) Yes

36 SYSC1 (Grouped) Yes

37 SYSC2 (Grouped) Yes

38 SYSC3 (Grouped) Yes

39 MIXA3 (Spread) Yes (No for ext. interrupts)

40 SYSC4 (Grouped) Yes

41  SYSC5 (Grouped) Yes

42 SYSC6 (Grouped) Yes

43 SYSC7 (Grouped) Yes

44 MIXB4 (Grouped) Yes (No for ext. interrupts)

45 MIXB5 (Grouped) Yes (No for ext. interrupts)

46 MIXB6 (Grouped) Yes (No for ext. interrupts)

47 MIXB7 (Grouped) Yes (No for ext. interrupts)

48 MIXB3 (Spread) Yes (No for ext. interrupts)

49 SYSD0 (Grouped) Yes

50  SYSD1 (Grouped) Yes

51 SYSD2 (Grouped) Yes

52 SYSD3 (Grouped) Yes

53 MIXA4 (Spread) Yes (No for ext. interrupts)

54 SYSD4 (Grouped) Yes

55  SYSD5 (Grouped) Yes

56 SYSD6 (Grouped) Yes

57 SYSD7 (Grouped) Yes

58 MIXB4 (Spread) Yes (No for ext. interrupts)

59 GPT2 Yes

60 SYSB0 (Spread) Yes

61 SYSA0 (Spread) Yes

62 GPT3 Yes

63 SYSC0 (Spread) Yes

64 SYSD0 (Spread) Yes

65 Reserved No

66 GPT4 Yes

67 MIXA5 (Spread) Yes (No for ext. interrupts)

Table 20-27. Interrupt Source Priority Levels (Sheet 2 of 4)

Priority Level Interrupt Source Description Multiple Events

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-40 Freescale Semiconductor

68 GPT5 Yes

69 SYSB1 (Spread) Yes

70 SYSA1 (Spread) Yes

71 GPT6 Yes

72 SYSC1 (Spread) Yes

73 SYSD1 (Spread) Yes

74 Reserved No

75 GPT7 Yes

76 MIXB5 (Spread) Yes (No for ext. interrupts)

77 GPIO Yes

78 SYSB2 (Spread) Yes

79 SYSA2 (Spread) Yes

80 RTC SEC Yes

81 SYSC2 (Spread) Yes

82 SYSD2 (Spread) Yes

83 Reserved No

84 RTC ALARM Yes

85 MIXA6 (Spread) Yes (No for ext. interrupts)

86 DDR Yes

87 SYSB3 (Spread) Yes

88 SYSA3 (Spread) Yes

89 SBA Yes

90 SYSC3 (Spread) Yes

91 SYSD3 (Spread) Yes

92 Reserved No

93 PMC Yes

94 MIXB6 (Spread) Yes (No for ext. interrupts)

95 USB ULPI WKUP Yes

96 SYSB4 (Spread) Yes

97 SYSA4 (Spread) Yes

98 USB UTMI WKUP Yes

99 SYSC4 (Spread) Yes

100 SYSD4 (Spread) Yes

101 Reserved No

102 SATA CMD Yes

Table 20-27. Interrupt Source Priority Levels (Sheet 3 of 4)

Priority Level Interrupt Source Description Multiple Events

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

Freescale Semiconductor 20-41

20.3.7 Masking Interrupt Sources 

By programming the system interrupt mask registers, SIMSRx and SEMSR, you can mask interrupt 
requests to the core. Each SIMSRx and SEMSR bit corresponds to an interrupt source. To enable an 
interrupt, set the corresponding SIMSR or SEMSR bit. When a masked interrupt source has a pending 
interrupt request, the corresponding SIPNRx or SEMSR bit is set, even though the interrupt is not 
generated to the core. You can mask all interrupt sources to implement a polling interrupt servicing 
scheme.

103 MIXA7 (Spread) Yes (No for ext. interrupts)

104 TEMP 105C Yes

105 SYSB5 (Spread) Yes

106 SYSA5 (Spread) Yes

107 IIM Yes

108 SYSC5 (Spread) Yes

109 SYSD5 (Spread) Yes

110 Reserved No

111 DDR PRIOMAN Yes

112 MIXB7 (Spread) Yes (No for ext. interrupts)

113 MSCAN3 Yes

114 SYSB6 (Spread) Yes

115 SYSA6 (Spread) Yes

116 MSCAN4 Yes

117 SYSC6 (Spread) Yes

118 SYSD6 (Spread) Yes

119 Reserved No

120 Reserved Yes

121 Reserved Yes

122 SYSB7 (Spread) Yes

123 SYSA7 (Spread) Yes

124 Reserved Yes

125 SYSC7 (Spread) Yes

126 SYSD7 (Spread) Yes

127 Reserved No

128 Reserved Yes

Table 20-27. Interrupt Source Priority Levels (Sheet 4 of 4)

Priority Level Interrupt Source Description Multiple Events

MPC5121e Microcontroller Reference Manual, Rev. 2



Integrated Programmable Interrupt Controller (IPIC)

20-42 Freescale Semiconductor

When an interrupt source has multiple interrupting events, you can individually mask these events by 
programming a mask register within that particular block. Table 20-27 shows which interrupt sources have 
multiple interrupting events. Figure 20-27 shows an example of how the masking occurs, using a DDR as 
an example.

Figure 20-27. DDR Interrupt Request Masking

20.3.8 Interrupt Vector Generation and Calculation

Pending unmasked interrupts are presented to the core in order of priority according to Table 20-27. The 
interrupt vector that allows the core to locate the interrupt service routine is made available to the core by 
interrupt handler software reading SIVCR, SCVCR or SMVCR. The interrupt controller passes an 
interrupt vector corresponding to the highest-priority, unmasked, pending interrupt in response to a read 
of SIVCR, SCVCR or SMVCR. Table 20-4 lists the encodings for the seven low-order bits of the interrupt 
vector.

20.3.9 Machine Check Interrupts 

There are 5 non-maskable machine check interrupts (MCP), coming from the internal sources and one 
programmable MCP from the external source.

DDR EVENT

DDR MASK

XX Input (or 

SIPNR

Mask
Bit

SIMSR

(Other Unmasked Requests)

Request to
the core

 

Mask
Bit

Event
Bit

XX Event Bits)

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 21-1

Chapter 21  
Inter-Integrated Circuit (I2C)

21.1 Introduction 

21.1.1 Overview

The Inter-Integrated Circuit (I2C) interface is a two-wire, bidirectional serial bus that provides a simple, 
efficient method for data exchange among devices. The MPC5121e contains three identical and 
independent I2C modules.

I2C module operates up to a maximum bus load and timing of 400 Kbps. Also, I2C modules are capable 
of operating at higher baud rates, up to a maximum frequency equal to IPS_clock/20  with reduced bus 
loading (where, the value 20 is the minimum SCL Divider in the block). 

A maximum bus capacitance of 400 pF limits the maximum communication length and number of 
possibly connected devices. The module can operate up to a baud rate of 400kbps. This bus is suitable for 
applications requiring occasional communications over a short distance among a number of devices. It also 
provides flexibility, allowing more devices to be connected to the bus for further expansion and system 
development.

I2C is a true multi-master bus including collision detection and arbitration to prevent data corruption if 
two or more masters attempt to control the bus simultaneously. This feature provides the capability for 
complex applications with multi-processor control. It may also be used for rapid testing and alignment of 
end products via external connections to an assembly-line computer. Figure 21-1 shows a block diagram 
of the I2C module. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

21-2 Freescale Semiconductor

Figure 21-1. Block Diagram – I2C Module

21.1.2 Features

The I2C module has these key features:
• Compatible with I2C bus standard version 2.1
• Multi-master operation
• Software programmable for different serial clock frequencies
• Software selectable acknowledge bit
• Interrupt driven byte-by-byte data transfer

Address

Data Shift
Register

In/Out

Start, Stop
& Arbitration

Control

Control
Clock

Registers

SCL_1

SDA_1I2C1

Data Shift
Register

In/Out

Start, Stop
and Arbitration

Control

Control
Clock

Registers

SCL_2

SDA_2I2C2

Data Shift
Register

In/Out

Start, Stop
& Arbitration

Control

Control
Clock

Registers

SCL_3

SDA_3I2C3

IP Bus

Compare

Address
Compare

Address
Compare

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

Freescale Semiconductor 21-3

• Arbitration loss with automatic mode switching from master to slave
• Calling address identification interrupt
• Start and stop signal generation/detection
• Repeated start signal generation
• Acknowledge bit generation/detection
• Bus busy detection
• Programmable glitch filter

21.1.3 I2C Controller

The I2C is a simple bidirectional two-wire bus for efficient device-to-device communication. The two 
wires, serial data line (SDA) and serial clock line (SCL), carry information between this module and other 
devices connected to the bus. A unique address recognizes each device. Also, each device can operate as 
transmitter or receiver, depending on the function of the device. In addition to the transmitters and 
receivers, devices can be masters or slaves. A master is the device that initiates a data transfer on the bus 
and generates clock signals to permit that transfer. At that time, any device addressed is considered a slave. 
See Table 21-1.

Standard communication usually has four functional areas:
• START signal
• Slave address transmission
• Data transfer
• STOP signal

These activities are briefly described in the following sections. 

21.1.4 START Signal

A START signal is a high-to-low transition of SDA while SCL is high. This signal denotes the beginning 
of a new data transfer and wakes up all slaves. Each data transfer may contain several data bytes.

When the bus is free (no master device is engaging the bus), SCL and SDA lines are at a logical high. A 
master sends a START signal to initiate communications.

Table 21-1. I2C Terminology

Term Description

Transmitter Device that sends data to bus.

Receiver Device that receives data from bus.

Master Device that initiates transfer, generates SCL, and terminates transfer.

Slave Device that is addressed by master.

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

21-4 Freescale Semiconductor

21.1.5 STOP Signal

A STOP signal is a low-to-high transition of SDA while SCL is high.

The master generates a STOP signal to terminate communication, which frees the bus. The master can 
generate a STOP even if the slave has generated an acknowledge, at which point the slave must release the 
bus.

The master can generate a repeated start and address for other devices. At this time, the bus remains busy 
if a repeated start is generated instead of a stop.

21.1.5.1 Slave Address Transmission

The first byte of data transfered by the master immediately after a START signal is the slave address. This 
is a 7-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired direction of data 
transfer.

• 0 = Master writes data (W), becomes transmitter
• 1 = Master reads data (R), becomes receiver

Only a slave with a calling address matching the address transmitted by the master responds by sending 
back an acknowledge bit. This is done by pulling SDA low at the ninth clock as shown in Figure 21-2.

Figure 21-2. Timing Diagram – Start, Address Transfer and Stop Signal

21.1.5.2 Data Transfer

Data transfer proceeds byte-by-byte in a direction specified by the R/W bit sent by the calling master. Each 
data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while SCL 
is high.

There is one clock pulse on SCL for each data bit. The MSB is transferred first. Each data byte must be 
followed by an acknowledge bit signalled from the receiving device by pulling SDA low at the ninth clock. 
One complete 8-bit data byte transfer needs nine clock pulses as shown in Figure 21-3.

Bit5 Bit4 Bit3Bit6 Bit2 Bit1 Bit0(R/W)Bit7SDA

SCL 1 2 3 4 5 6 7 8 9

Start

MASTER Drives Data and Clock Lines

Ack Bit StopSlave
Release SDA

Master Release SDA
Slave Drives SDA Low

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

Freescale Semiconductor 21-5

Figure 21-3. Timing Diagram – Start, Address Transfer and Stop Signal

21.1.6 Acknowledge

Figure 21-4 shows the transmitter releasing the SDA line after bit 0 is transmitted.  All devices driving the 
SDA line must have an open-collector configuration.  A pull-up register is required to ensure the SDA line 
goes to a logic 1 when not driven by the master device.  The receiver pulls the SDA line low during the 
acknowledge clock pulse to signal correct reception of the data.

If a slave-receiver does not acknowledge the byte transfer, SDA must be left HIGH by the slave. The 
master then generates a STOP condition to abort the transfer.

If a master-receiver does not acknowledge the slave transmitter after a byte transmission, it means 
End-Of-Data (EOD) to the slave. The slave then releases the SDA line for the master to generate a STOP 
or START signal.

Figure 21-4. Timing Diagram – Receiver Acknowledgement

21.1.6.1 Repeated Start

A repeated START signal is a START signal generated without first generating a STOP signal to terminate 
the communication. The master uses this to communicate with another slave or with the same slave in a 
different mode without releasing the bus.

Various combinations of read/write formats are possible. Figure 21-5 shows examples of:
• The master-transmitter transmitting to a slave-receiver. The transfer direction is not changed.

Bit5 Bit4 Bit3Bit6 Bit2 Bit1 Bit0Bit7SDA

SCL 1 2 3 4 5 6 7 8 9

Start Stop

Bit5 Bit4 Bit3Bit6 Bit2 Bit1 Bit0(R/W)Bit7

1 2 3 4 5 6 7 8 9

No Ack Bit
Slave Address DATA

Acknowledgement
From Receiver

Interrupt Bit Set
(Byte Complete)

SCL Held Low While
Interrupt Is Serviced

Bit5 Bit4 Bit3Bit6 Bit2 Bit1 Bit0(R/W)Bit7

1 2 3 4 5 6 7 8 9SCL

SDA By
Transmitter

SDA By
Receiver

Start

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

21-6 Freescale Semiconductor

• The master reading a slave immediately after first byte. At the moment of the first acknowledge, 
the master-transmitter becomes a master-receiver and the slave-receiver becomes a 
slave-transmitter. 

• The START condition and slave address both repeated using the repeated START signal. This 
communicates with the same slave in a different mode without releasing the bus. The master 
transmits data to the slave first, and then the master reads data from the slave by reversing the R/W 
bit.

Figure 21-5. Data Transfer, Combined Format

21.1.6.2 Clock Synchronization

I2C is a true multi-master bus. If two or more masters try to control the bus at the same time, a clock 
synchronization procedure determines the bus clock. 

Because wire-AND logic is used on the SCL line, a high-to-low transition on the SCL line affects all 
devices connected on the bus. The devices start counting their low period. After a device clock goes low, 
it holds the SCL line low until the clock high state is reached. However, the change of low-to-high in this 
device clock may not change the SCL line state if another device clock remains within its low period. 
Therefore, the synchronized clock SCL is held low by the device with the longest low period. Devices with 
shorter low periods enter a high wait state during this time. See Figure 21-6.

When all devices concerned have counted off their low period, the synchronized clock SCL line is released 
and pulled high. No difference exists between device clocks and the SCL line state. All devices start 
counting their high periods. The first device to complete its high period pulls the SCL line low again.

ST A7-Bit Slave Address 0 ARegister Address DATA A/A

R/W

SP

From Master to Slave

From Slave to Master

ST = Start
SP = Stop
A = Acknowledge (SDA low)
A = Not Acknowledge (SDA high)

ST 7-Bit Slave Address 1 ADATA DATA A

R/W

SP

ST 7-Bit 1 A/A

R/W

Rept 7-Bit 

R/W

Rept ST = Repeated Start

Slave Address ST Slave AddressA DATA A0 ADATA DATA A/A SP

A

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

Freescale Semiconductor 21-7

Figure 21-6. Timing Diagram – Clock Synchronization

21.1.7 Arbitration

A data arbitration procedure determines the relative priority of contending masters. A bus master loses 
arbitration if it transmits logic 1 while another master transmits logic 0. Losing masters immediately 
switch to slave-receive mode and stop driving SDA output. In this case, transition from master to slave 
mode does not generate a STOP condition. A status bit is hardware set to indicate loss of arbitration. 
Figure 21-7 shows an example of two masters arbitrating for the I2C bus.

Figure 21-7. Timing Diagram – Arbitration Procedure

21.2 External Signal Description
Table 21-2. Signal Properties

Name Function I/O Reset Pull Up

SCL I2C serial clock line, bidirectional I/O 1 Yes

SDA I2C serial data line, bidirectional I/O 1 Yes

Wait State

Start Counting
High Period

SCL By

SCL By

SCL

Master1

Master2

SCL

SDA By
Master1

SDA By
Master2

SDA

Master 2 Loses Arbitration,
and Becomes Slave Receiver

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

21-8 Freescale Semiconductor

21.3 Memory Map and Register Definition
The I2C is controlled by 17 32-bit registers. The registers are located at an offset from I2C base address, 
I2C_BASE, which is memory mapped on the IPBus address. The I2C1 base address (I2C1_base_address) 
is I2C_BASE + 0x00. The I2C2 base address (I2C2_base_address) is I2C_BASE + 0x20. The I2C3 base 
address (I2C3_base_address) is I2C_BASE + 0x40. Each of their own private registers addresses are 
relative to their base offset. There are two common registers for the three I2C modules: I2C interrupt 
control register and glitch filter control register.

The I2C Interface registers are provided below:

Table 21-3. I2C Block Memory Map

Offset Register Access Section/Page

General Registers

0x00 MADR1 – I2C1 Address Register R/W 21.3.1.1/21-9

0x04 MFDR1 – I2C1 Frequency Divider Register R/W 21.3.1.2/21-10

0x08 MCR1 – I2C1 Control Register R/W 21.3.1.3/21-21

0x0C MSR1 – I2C1 Status Register R/W 21.3.1.4/21-23

0x10 MDR1 – I2C1 Date I/O Register R/W 21.3.1.5/21-26

0x20 MADR2 – I2C2 Address Register R/W 21.3.1.1/21-9

0x24 MFDR2 – I2C2 Frequency Divider Register R/W 21.3.1.2/21-10

0x28 MCR2 – I2C2 Control Register R/W 21.3.1.3/21-21

0x2C MSR2 – I2C2 Status Register R/W 21.3.1.4/21-23

0x30 MDR2 – I2C2 Date I/O Register R/W 21.3.1.5/21-26

0x40 MADR3 – I2C3 Address Register R/W 21.3.1.1/21-9

0x44 MFDR3 – I2C3 Frequency Divider Register R/W 21.3.1.2/21-10

0x48 MCR3 – I2C3 Control Register R/W 21.3.1.3/21-21

0x4C MSR3 – I2C3 Status Register R/W 21.3.1.4/21-23

0x50 MDR3 – I2C3 Date I/O Register R/W 21.3.1.5/21-26

0x60 MSB – I2C Interrupt Control Register R/W 21.3.1.6/21-27

0x64 MIFR – I2C Filter Register R/W 21.3.1.7/21-28

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

Freescale Semiconductor 21-9

21.3.1 Register Descriptions

21.3.1.1 I2C Address Register (MADR)

Offset I2C1/2/3_base_address + 0x00/0x20/0x40                                                                                                                         Access: 
User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ADR[7:1]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 21-8. I2C Address Register (MADR)

Table 21-4. MADR Field Descriptions

Field Description

ADR[7:1] Bits 0 to 6 contains the address I2C responds to when addressed as a slave. 
This is not the address sent on the bus during address transfer.

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

21-10 Freescale Semiconductor

21.3.1.2 I2C Frequency Divider Register (MFDR)

The frequency divide register determines the SCL or serial bit-clock frequency. Table 21-5  must be used 
to select FDR bits that produce an appropriate SCL. The following relationships, one through four, 
illustrate the connection between Table 21-6 and the signals in the I2C timing specification.

1. SCL (in kHz) = (1/1000) * [IPS clock speed (in Hz)]/(SCL Period)
2. SDA Hold Time (in us) = 1000 * (SDA Hold/SCL Period)/[SCL (in kHz)]
3. SCL Hold Time of START (in us) = 1000 * (SDA Hold of START/SCL Period)/[SCL (in kHz)] 
4. SCL Hold Time of STOP (in us) = 1000 * (SDA Hold of STOP/SCL Period))/[SCL (in kHz)] 

Figure 21-10 illustrates the relationship between IPS clock and the I2C signals.

Offset I2C1/2/3_base_address + 0x04/0x24/0x44
Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
FDR[7:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 21-9. I2C Frequency Divider Register (MFDR)

Table 21-5. MFDR Field Descriptions

Field Description

FDR[7:6] These two bits act as a prescale divider of the input module clock.

FDR[5:0] This field prescales the clock for bit-rate selection.

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

Freescale Semiconductor 21-11

Figure 21-10. Timing Diagram of I2C Signal Relationships

For standard mode I2C, the I2C specification states:

(SCL <= 100 kHz) Eqn. 21-1

and

(0.3 us <= SDA Hold Time <= 3.45 μs) Eqn. 21-2

and

(SCL Hold of START >= 4 μs) Eqn. 21-3

and

(SCL Hold of STOP >= 4 μs) Eqn. 21-4

This means the system programmer must choose SCL Period, SDA Hold, SCL Hold of START, and SCL 
Hold of STOP from Table 21-6 to satisfy Equation 21-5 through Equation 21-8.

SCL Period) >= (1/100,000) * [IPS clock speed (in Hz) Eqn. 21-5

and

(0.0003)*[SCL (in kHz)]*(SCL Period) <= SDA Hold <= (0.00345)*[SCL (in kHz)]*(SCL Period) Eqn. 21-6

and

System
Clock

SCL

SDA

SDA

  SCL

START Condition STOP Condition

SCL Hold of START
SCL Hold of STOP

SCL Period

SDA Hold

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

21-12 Freescale Semiconductor

SCL Hold of START >= (0.004)*[SCL (in kHz)]*(SCL Period) Eqn. 21-7

and

SCL Hold of STOP >= (0.004)*[SCL (in kHz)]*(SCL Period) Eqn. 21-8

In this case, the simplest strategy for the system programmer to use is:
1. Identify all rows of Table 21-6 where SCL period satisfies criteria in Equation 21-5. This set of 

rows limits the choices of SCL allowed for this particular IPS clock.
2. Calculate the SCL associated with these rows according to Equation 21-1 and decide which speeds 

are acceptable (fast enough or slow enough) for the system.
3. Find the subset of those rows associated with the acceptable I2C clock speeds such that SDA hold 

satisfies criteria in Equation 21-6.
4. Choose the preferred FDR setting from among the subset that meets Equation 21-5 and 

Equation 21-6.
5. Check that the preferred FDR setting also satisfies Equation 21-7 and Equation 21-8. Usually, it 

does. If not, choose a different FDR setting that meets Equation 21-5, Equation 21-6, 
Equation 21-7, and Equation 21-8.

Likewise, for fast mode I2C, it must also meet the fast-mode I2C bus specification.

(SCL <= 400 kHz) Eqn. 21-9

and

(0.3 us <= SDA Hold Time <= 0.9 μs) Eqn. 21-10

and

(SCL Hold of START >= 0.6 μs) Eqn. 21-11

and

(SCL Hold of STOP >= 0.6 μs) Eqn. 21-12

That means the system programmer must choose SCL Period, SDA hold, SCL hold of START, and SCL 
hold of STOP from Table 21-6 to satisfy Equation 21-9 through Equation 21-12:

SCL Period) >= (1/400,000) * [IPS clock speed (in Hz) Eqn. 21-13

and

(0.0003)*[SCL (in kHz)]*(SCL Period) <= SDA Hold <= (0.0009)*[SCL (in kHz)]*(SCL Period) Eqn. 21-14

and

SCL Hold of START >= (0.0006)*[SCL (in kHz)]*(SCL Period) Eqn. 21-15

and

SCL Hold of STOP >= (0.0006)*[SCL (in kHz)]*(SCL Period) Eqn. 21-16

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

Freescale Semiconductor 21-13

In this case, the strategy to choose FDR value is like the one for standard mode device, but based on the 
different timing requirements.

In Table 21-6, the SCL Divider has the same meaning as SCL Periold shown in Figure 21-10, which uses 
the IPS clock as a time unit. For example, from the table, if the SCL Divider equals 20, the SCL Period is 
equal to 20 IPS clocks.

Table 21-6. I2C Frequency Divider Bit Selection (Sheet 1 of 9)

FDR 
Value

SCL 
Divider

SDA Hold
SCL Hold 
of START

SCL Hold 
of STOP

0x20 20 7 6 11

0x21 22 7 7 12

0x22 24 8 8 13

0x23 26 8 9 14

0x24 28 7 10 15

0x00 28 9 10 15

0x01 30 9 11 16

0x25 32 7 12 17

0x02 34 10 13 18

0x26 36 9 14 19

0x27 40 9 16 21

0x03 40 10 16 21

0x60 40 14 12 22

0x04 44 11 18 23

0x61 44 14 14 24

0x28 48 9 18 25

0x05 48 11 20 25

0x62 48 16 16 26

0x63 52 16 18 28

0x29 56 9 22 29

0x06 56 13 24 29

0x64 56 14 20 30

0x40 56 18 20 30

0x41 60 18 22 32

0x2A 64 13 26 33

0x65 64 14 24 34

0x07 68 13 30 35

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

21-14 Freescale Semiconductor

0x42 68 20 26 36

0x2B 72 13 30 37

0x66 72 18 28 38

0x2C 80 9 38 41

0x08 80 17 34 41

0x67 80 18 32 42

0x43 80 20 32 42

0xA0 80 28 24 44

0xE0 80 28 24 44

0x09 88 17 38 45

0x44 88 22 36 46

0xA1 88 28 28 48

0xE1 88 28 28 48

0x2D 96 9 46 49

0x68 96 18 36 50

0x45 96 22 40 50

0xA2 96 32 32 52

0xE2 96 32 32 52

0x0A 104 21 46 53

0xA3 104 32 36 56

0xE3 104 32 36 56

0x2E 112 17 54 57

0x69 112 18 44 58

0x46 112 26 48 58

0xA4 112 28 40 60

0xE4 112 28 40 60

0x80 112 36 40 60

0xC0 112 36 40 60

0x81 120 36 44 64

0xC1 120 36 44 64

0x2F 128 17 62 65

0x0B 128 21 58 65

Table 21-6. I2C Frequency Divider Bit Selection (Sheet 2 of 9)

FDR 
Value

SCL 
Divider

SDA Hold
SCL Hold 
of START

SCL Hold 
of STOP

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

Freescale Semiconductor 21-15

0x6A 128 26 52 66

0xA5 128 28 48 68

0xE5 128 28 48 68

0x47 136 26 60 70

0x82 136 40 52 72

0xC2 136 40 52 72

0x0C 144 25 70 73

0x6B 144 26 60 74

0xA6 144 36 56 76

0xE6 144 36 56 76

0x30 160 17 78 81

0x6C 160 18 76 82

0x0D 160 25 78 81

0x48 160 34 68 82

0xA7 160 36 64 84

0xE7 160 36 64 84

0x83 160 40 64 84

0xC3 160 40 64 84

0x49 176 34 76 90

0x84 176 44 72 92

0xC4 176 44 72 92

0x31 192 17 94 97

0x6D 192 18 92 98

0x0E 192 33 94 97

0xA8 192 36 72 100

0xE8 192 36 72 100

0x85 192 44 80 100

0xC5 192 44 80 100

0x4A 208 42 92 106

0x32 224 33 110 113

0x6E 224 34 108 114

0xA9 224 36 88 116

Table 21-6. I2C Frequency Divider Bit Selection (Sheet 3 of 9)

FDR 
Value

SCL 
Divider

SDA Hold
SCL Hold 
of START

SCL Hold 
of STOP

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

21-16 Freescale Semiconductor

0xE9 224 36 88 116

0x86 224 52 96 116

0xC6 224 52 96 116

0x0F 240 33 118 121

0x33 256 33 126 129

0x6F 256 34 124 130

0x4B 256 42 116 130

0xAA 256 52 104 132

0xEA 256 52 104 132

0x87 272 52 120 140

0xC7 272 52 120 140

0x10 288 49 142 145

0x4C 288 50 140 146

0xAB 288 52 120 148

0xEB 288 52 120 148

0x34 320 33 158 161

0x70 320 34 156 162

0xAC 320 36 152 164

0xEC 320 36 152 164

0x11 320 49 158 161

0x4D 320 50 156 162

0x88 320 68 136 164

0xC8 320 68 136 164

0x89 352 68 152 180

0xC9 352 68 152 180

0x35 384 33 190 193

0x71 384 34 188 194

0xAD 384 36 184 196

0xED 384 36 184 196

0x12 384 65 190 193

0x4E 384 66 188 194

0x8A 416 84 184 212

Table 21-6. I2C Frequency Divider Bit Selection (Sheet 4 of 9)

FDR 
Value

SCL 
Divider

SDA Hold
SCL Hold 
of START

SCL Hold 
of STOP

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

Freescale Semiconductor 21-17

0xCA 416 84 184 212

0x36 448 65 222 225

0x72 448 66 220 226

0xAE 448 68 216 228

0xEE 448 68 216 228

0x13 480 65 238 241

0x4F 480 66 236 242

0x37 512 65 254 257

0x73 512 66 252 258

0xAF 512 68 248 260

0xEF 512 68 248 260

0x8B 512 84 232 260

0xCB 512 84 232 260

0x14 576 97 286 289

0x50 576 98 284 290

0x8C 576 100 280 292

0xCC 576 100 280 292

0x38 640 65 318 321

0x74 640 66 316 322

0xB0 640 68 312 324

0xF0 640 68 312 324

0x15 640 97 318 321

0x51 640 98 316 322

0x8D 640 100 312 324

0xCD 640 100 312 324

0x39 768 65 382 385

0x75 768 66 380 386

0xB1 768 68 376 388

0xF1 768 68 376 388

0x16 768 129 382 385

0x52 768 130 380 386

0x8E 768 132 376 388

Table 21-6. I2C Frequency Divider Bit Selection (Sheet 5 of 9)

FDR 
Value

SCL 
Divider

SDA Hold
SCL Hold 
of START

SCL Hold 
of STOP

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

21-18 Freescale Semiconductor

0xCE 768 132 376 388

0x3A 896 129 446 449

0x76 896 130 444 450

0xB2 896 132 440 452

0xF2 896 132 440 452

0x17 960 129 478 481

0x53 960 130 476 482

0x8F 960 132 472 484

0xCF 960 132 472 484

0x3B 1024 129 510 513

0x77 1024 130 508 514

0xB3 1024 132 504 516

0xF3 1024 132 504 516

0x18 1152 193 574 577

0x54 1152 194 572 578

0x90 1152 196 568 580

0xD0 1152 196 568 580

0x3C 1280 129 638 641

0x78 1280 130 636 642

0xB4 1280 132 632 644

0xF4 1280 132 632 644

0x19 1280 193 638 641

0x55 1280 194 636 642

0x91 1280 196 632 644

0xD1 1280 196 632 644

0x3D 1536 129 766 769

0x79 1536 130 764 770

0xB5 1536 132 760 772

0xF5 1536 132 760 772

0x1A 1536 257 766 769

0x56 1536 258 764 770

0x92 1536 260 760 772

Table 21-6. I2C Frequency Divider Bit Selection (Sheet 6 of 9)

FDR 
Value

SCL 
Divider

SDA Hold
SCL Hold 
of START

SCL Hold 
of STOP

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

Freescale Semiconductor 21-19

0xD2 1536 260 760 772

0x3E 1792 257 894 897

0x7A 1792 258 892 898

0xB6 1792 260 888 900

0xF6 1792 260 888 900

0x1B 1920 257 958 961

0x57 1920 258 956 962

0x93 1920 260 952 964

0xD3 1920 260 952 964

0x3F 2048 257 1022 1025

0x7B 2048 258 1020 1026

0xB7 2048 260 1016 1028

0xF7 2048 260 1016 1028

0x1C 2304 385 1150 1153

0x58 2304 386 1148 1154

0x94 2304 388 1144 1156

0xD4 2304 388 1144 1156

0x7C 2560 258 1276 1282

0xB8 2560 260 1272 1284

0xF8 2560 260 1272 1284

0x1D 2560 385 1278 1281

0x59 2560 386 1276 1282

0x95 2560 388 1272 1284

0xD5 2560 388 1272 1284

0x7D 3072 258 1532 1538

0xB9 3072 260 1528 1540

0xF9 3072 260 1528 1540

0x1E 3072 513 1534 1537

0x5A 3072 514 1532 1538

0x96 3072 516 1528 1540

0xD6 3072 516 1528 1540

0x7E 3584 514 1788 1794

Table 21-6. I2C Frequency Divider Bit Selection (Sheet 7 of 9)

FDR 
Value

SCL 
Divider

SDA Hold
SCL Hold 
of START

SCL Hold 
of STOP

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

21-20 Freescale Semiconductor

0xBA 3584 516 1784 1796

0xFA 3584 516 1784 1796

0x1F 3840 513 1918 1921

0x5B 3840 514 1916 1922

0x97 3840 516 1912 1924

0xD7 3840 516 1912 1924

0x7F 4096 514 2044 2050

0xBB 4096 516 2040 2052

0xFB 4096 516 2040 2052

0x5C 4608 770 2300 2306

0x98 4608 772 2296 2308

0xD8 4608 772 2296 2308

0xBC 5120 516 2552 2564

0xFC 5120 516 2552 2564

0x5D 5120 770 2556 2562

0x99 5120 772 2552 2564

0xD9 5120 772 2552 2564

0xBD 6144 516 3064 3076

0xFD 6144 516 3064 3076

0x5E 6144 1026 3068 3074

0x9A 6144 1028 3064 3076

0xDA 6144 1028 3064 3076

0xBE 7168 1028 3576 3588

0xFE 7168 1028 3576 3588

0x5F 7680 1026 3836 3842

0x9B 7680 1028 3832 3844

0xDB 7680 1028 3832 3844

0xBF 8192 1028 4088 4100

0xFF 8192 1028 4088 4100

0x9C 9216 1540 4600 4612

0xDC 9216 1540 4600 4612

0x9D 10240 1540 5112 5124

Table 21-6. I2C Frequency Divider Bit Selection (Sheet 8 of 9)

FDR 
Value

SCL 
Divider

SDA Hold
SCL Hold 
of START

SCL Hold 
of STOP

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

Freescale Semiconductor 21-21

21.3.1.3 I2C Control Register (MCR)

0xDD 10240 1540 5112 5124

0x9E 12288 2052 6136 6148

0xDE 12288 2052 6136 6148

0x9F 15360 2052 7672 7684

0xDF 15360 2052 7672 7684

Offset I2C1/2/3_base_address + 0x08/0x28/0x48
Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EN IEN STA TX TXAK RSTA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 21-11. I2C Control Register (MCR)
(Register repeats for reference.)

Table 21-7. MCR Field Descriptions

Field Description

EN I2C Enable. Bit controls software reset of entire I2C module. If I2C module is enabled in the middle of a byte 
transfer, interface behaves as follows:
Slave mode ignores current bus transfer and starts operating when a subsequent start condition is detected.
Master mode is not aware if bus is busy. If a start cycle is initiated, current bus cycle may become corrupt. 
Ultimately, this results in the current bus master or I2C module losing arbitration, after which bus operation 
returns to normal.
0 Module is reset and disabled. This is the Power-ON reset. When low the interface is held in reset, but 

registers can continue to be accessed.
1 I2C module is enabled. Bit must be set before other CR bits have any effect.

IEN I2C Interrupt Enable
0 Interrupts from I2C module are disabled. This does not clear currently pending interrupt conditions.
1 Interrupts from I2C module are enabled. An I2C interrupt occurs, provided the status register IF bit is also 

set.

Table 21-6. I2C Frequency Divider Bit Selection (Sheet 9 of 9)

FDR 
Value

SCL 
Divider

SDA Hold
SCL Hold 
of START

SCL Hold 
of STOP

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

21-22 Freescale Semiconductor

STA Master/Slave Mode Select. Bit clears on reset. When bit changes from 0 to 1, a START signal is generated 
on the bus and master mode is selected.

When bit changes from 1 to 0, a STOP signal is generated and operation mode changes from master to slave.
STA is cleared without generating a STOP signal when the master loses arbitration.
0 Slave Mode
1 Master Mode

TX Transmit/Receive Mode Select. Bit selects master/slave transfer direction. When addressed as slave, 
software should set according to status register SRW bit.

When in master mode, bit should be set according to type of transfer required.
For address cycles, bit is always high.
0 Receive
1 Transmit

TXAK Transmit Acknowledge Enable. Bit specifies value driven to SDA during acknowledge cycles for  master and 
slave receivers. Values are used only when I2C is a receiver, not a transmitter.
0 Acknowledge signal is sent to bus at 9th clock bit after receiving 1Byte of data.
1 No acknowledge signal response is sent ( i.e., acknowledge bit = 1)

RSTA Repeat Start. Writing 1 to this bit generates a repeated START condition on the bus, provided it is the current 
bus master. Bit is always read low.

If the bus is owned by another master, attempting a repeated start at the wrong time results in loss of 
arbitration.
1 Generate repeat start cycle

Offset I2C1/2/3_base_address + 0x08/0x28/0x48
Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EN IEN STA TX TXAK RSTA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 21-11. I2C Control Register (MCR)
(Register repeats for reference.)

Table 21-7. MCR Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

Freescale Semiconductor 21-23

21.3.1.4 I2C Status Register (MSR)

Offset I2C1/2/3_base_address + 0x0C/0x2C/0x4C
Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CF AAS BB
AL AKF

SRW
IF

RXAK

W

Reset 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 21-12. I2C Status Register (MSR)
(The register is repeated for reference.)

Table 21-8. MSR Field Descriptions1

Field Description

CF Data transferring. Bit clears while 1byte of data is being transferred. Bit is set by falling edge of ninth clock of 
a byte transfer.
0 Transfer in progress
1 Transfer complete

AAS Addressed As Slave. Bit sets when its own specific address (I2C Address Register) is matched with the 
calling address. The CPU is interrupted provided IEN is set. The CPU needs to check the SRW bit and set 
its Tx/Rx mode accordingly. Writing to the I2C control register clears this bit.
0 Not addressed
1 Addressed as a slave

BB Bus Busy. Bit indicates bus status. When a START signal is detected, BB is set. If a STOP signal is detected, 
it is cleared.
0 Bus is idle
1 Bus is busy

AL Arbitration Lost.Hardware sets the bit when the arbitration procedure is lost. Arbitration is lost in the following 
circumstances:
 • SDA sampled low when master drives high during an address or data Tx cycle.
 • SDA sampled low when master drives high during a data Rx cycle acknowledge bit.
 • Start cycle is attempted when bus is busy.
 • A repeated start cycle is requested in slave mode.
 • Stop condition is detected when not requested by master.
0   No arbitration lost
1   Arbiration lost
 Software must clear this bit by writing 0 in the interrupt routine after detecting arbitration lost and interrupt 

flag(IF) bit is asserted.

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

21-24 Freescale Semiconductor

AKF Acknowledge Cycle Falling Edge when Arbitration Lost and Addressed as Slave. Hardware sets the bit upon 
the falling edge of the acknowledge cycle after arbitration has been lost and addressed as slave. In this  
specific case, the interrupt (IF=1) is really the second one set by the hardware (which is a side-effect of a fix 
to make the I2C module fully I2C-spec compliant - see note in section 18.5.3 Special note on AKF). The 
software must use this bit to distinguish if the interrupt is the first one (set upon rising edge of acknowledge 
cycle) or the second one (set upon falling edge of acknowledge cycle). The software should only take action 
for AL and AAS if the interrupt is the second one, the traditional time for the interrupt.
0 First interrupt on rising edge of acknowledge cycle – software should not take AL and AAS action (see later 

section for typical software flow diagram).
1 Second interrupt on falling edge of acknowledge – software should take AL and AAS action
If AKF bit is set to 1 by hardware, Software must clear this bit by writing it 0 in the interrupt routine.

SRW Slave Read/Write. When set, bit indicates the R/W command bit value of the calling address sent from the 
master.
Note: Bit is valid only when I2C is in slave mode, a complete address transfer occurred with an address 

match, and no other transfers were initiated. Checking this bit, the CPU can select slave Tx/Rx mode 
according to the master command.

0 Slave receive, master writing to slave
1 Slave transmit, master reading from slave

IF I2C Interrupt. Sets when an interrupt is pending. If IEN is set, a processor interrupt request is generated. IF 
sets when one of the following events occurs:
 • Complete 1-Byte transfer (set at falling edge of ninth clock).
 • A Rx calling address matches its own specific address in slave mode.
 • Arbitration is lost.
0     No interrupt is generated
1     An interrupt is generated under the above listed condtion.
Software must clear this interrupt bit by writing it 0 in the interrupt routine.

Offset I2C1/2/3_base_address + 0x0C/0x2C/0x4C
Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CF AAS BB
AL AKF

SRW
IF

RXAK

W

Reset 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 21-12. I2C Status Register (MSR)
(The register is repeated for reference.)

Table 21-8. MSR Field Descriptions1 (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

Freescale Semiconductor 21-25

RXAK Receive Acknowledge. SDA value during the bus cycle acknowledge bit.

If bit is low, it indicates an acknowledge signal was received after completion of 8 bits of data transmission 
on the bus.

If bit is high, it means no acknowledge signal is detected at the 9th clock.
0 Acknowledge received
1 No acknowledge received 

1 This status register is read-only with the exception of bit 6 (IF), bit 4 (AKF) and bit 3 (AL), which are software clearbale by 
writing 0. Writing 1 to these three bits (AL,AKF and IF bit), i2c does nothing, but writing 0 to them, I2c does the clear operation. 
To avoid clearing these three flags unintentioally, force the cleared bit to 0 and the non-cleared bit  should be set to 1. For 
example, if you want to clear the AL bit, only  the AL bit must be set to 0 (AL=0). The other two flags should be equal to 1 
(AKF=1, IF=1). 

Offset I2C1/2/3_base_address + 0x0C/0x2C/0x4C
Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CF AAS BB
AL AKF

SRW
IF

RXAK

W

Reset 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 21-12. I2C Status Register (MSR)
(The register is repeated for reference.)

Table 21-8. MSR Field Descriptions1 (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

21-26 Freescale Semiconductor

21.3.1.5 I2C Data I/O Register (MDR) 

Offset I2C1/2/3_base_address + 0x10/0x30/0x50
Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
D7 D6 D5 D4 D3 D2 D1 D0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 21-13. I2C Data I/O Register (MDR)

Table 21-9. MDR Field Descriptions

Field Description

D[7:0] Master Transmit Mode. When data is written to this register, a data transfer is initiated. The most significant 
bit is sent first. 
Note: In this mode, the first data byte written to DR. Assertion of STA is used for the address transfer and 

should be comprised of the calling address (in position D[7]:D[1]) concatenated with the required 
R/W bit (in position D0).

In Master Receive Mode, reading this register initiates next byte data receiving.
In Slave Mode, the same functions are available after an address match occurs.

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

Freescale Semiconductor 21-27

21.3.1.6 I2C Interrupt Control Register (ICR)

The interrupt control register is common to three MPC5121e I2C modules. Each module generates an 
internal interrupt that can be routed to the CPU if the respective IE bit is set to 1.

Reset condition is IE set, and all other enable bits clear.

The BNBE bit lets the module generate an interrupt when the bus becomes not-busy. This implies receipt 
of a STOP condition, for which the module normally does not generate an interrupt. Because bus-not-busy 

Offset I2C_base_address + 0x60                                                                                                                                     Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BNBE3 IE3 BNBE2 IE2 BNBE1 IE1

W

Reset 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 21-14. I2C Interrupt Control Register (ICR)

Table 21-10. ICR Field Descriptions

Field Description

BNBE3 Bus Not Busy Enable 3. This bit lets module 3 generate an interrupt when the bus is not busy. BNBE3 
indicates an idle condition.
To clear the interrupt, software must write 0 to the bit position.
Reset condition disables BNBE3.

IE3 Interrupt Enable 3, This bit routes the interrupt for module 3 to the CPU.
Clear by writing 0 to this bit position. 
Reset condition enables IE3.

BNBE2 Bus Not Busy Enable 2, This bit lets module 2 generate an interrupt when the bus is not busy. BNBE2 
indicates an idle condition.
To clear the interrupt, software must write 0 to the bit position.
Reset condition disables BNBE2.

IE2 Interrupt Enable 2, This bit routes the interrupt for module 2 to the CPU.
Clear by writing 0 to this bit position. 
Reset condition enables IE2.

BNBE1 Bus Not Busy Enable 1, This bit lets module 1 generate an interrupt when the bus is not busy. BNBE1 
indicates an idle condition.
To clear the interrupt, software must write 0 to the bit position.
Reset condition disables this bit.

IE1 Interrupt Enable 1, This bit routes the interrupt for module 1 to the CPU. 
Clear by writing 0 to this bit position.
Reset condition enables IE1.

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

21-28 Freescale Semiconductor

is an idle condition, it is necessary for software responding to this interrupt to clear the BNBE bit to clear 
the interrupt condition. Otherwise, the interrupt condition persists until another I2C transaction is initiated.

21.3.1.7 I2C Filter Register (MIFR)

This filter can absorb  glitches on the I2C clock and data lines for each I2C module. The width of the glitch 
to absorb is specified in terms of number of IPS clock cycles. This glitch filter control register is provided 
for all three I2C modules.

Offset I2C_base_address + 0x64                                                                                                              Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
FR3 FR2 FR1 FR0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 21-15. I2C Filter Register (MIFR)

Table 21-11. MIFR Field Descriptions

Field Description

FR[7:4] Bits 7 to 4 contain the programming controls for the width of glitch (in terms of IPS clock cycles) the filter 
should absorb; in other words, the filter does not let glitches less than or equal to this width setting pass.
FR[]
3210
0000 No Filter/Bypass
0001 Filter glitches up to width of 1 IPS clock cycle
0010 Filter glitches up to width of 2 IPS clock cycles
0011 Filter glitches up to width of 3 IPS clock cycles
0100 Filter glitches up to width of 4 IPS clock cycles
0101 Filter glitches up to width of 5 IPS clock cycles
0110 Filter glitches up to width of 6 IPS clock cycles
0111 Filter glitches up to width of 7 IPS clock cycles
1000 Filter glitches up to width of 8 IPS clock cycles
1001 Filter glitches up to width of 9 IPS clock cycles
1010 Filter glitches up to width of 10 IPS clock cycles
1011 Filter glitches up to width of 11 IPS clock cycles
1100 Filter glitches up to width of 12 IPS clock cycles
1101 Filter glitches up to width of 13 IPS clock cycles
1110 Filter glitches up to width of 14 IPS clock cycles
1111 Filter glitches up to width of 15 IPS clock cycles

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

Freescale Semiconductor 21-29

The programming of the glitch filter is simple; the programmer only needs to specify the size of glitch (in 
terms of IPS cycles) for the filter to absorb and not pass.

21.4 Initialization Sequence
Reset puts the I2C control register to its default status. Before the interface can transfer serial data, the 
following initialization procedure must be done:

Update the frequency divider register and select the required division ratio to obtain the SCL frequency 
from the IPS clock.

1. Calculate the divider according to the ips clock frequency and the expected scl frequency: 
scl_divider = f_IPS/f_SCL.

2. Look up the table 39-6 I2C Frequency Divider Bit Selection to find out value of FDR bit file in 
MFDR register according to the calculated divider.

3. Set the prescaler in frequency divider register equal to FDR obtain from look-up table.

Update the I2C address register to define a slave address.

Set the control register EN bit to enable the I2C interface system.

Modify the control register bits to select master/slave mode, transmit/receive mode, and interrupt enable 
or not.

21.5 Transfer Initiation and Interrupt
In master transmit mode, a data transfer is initiated when data is written to the DATA register. The most 
significant bit is sent first.

In master receive mode, reading this register initiates next byte data receiving.

In slave mode, the same functions are available after an address match occurs. Data transfer is initiated by:
• Writing to the DATA register for slave transmits

or
• A dummy reading from the DATA register in slave receive mode occurs.

The I2C interrupt STATUS register bit is set when an interrupt is pending. If the CONTROL register 
interrupt enable bit is set, the I2C interrupt STATUS register bit, if set, causes a processor interrupt request. 
The interrupt bit sets when one of the following events occurs:

• A complete 1-Byte transfer (set at falling edge of ninth clock) occurs.
• A receive calling address matches its own specific address in slave receive mode.
• Arbitration is lost.

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

21-30 Freescale Semiconductor

21.5.1 Post-Transfer Software Response

In the interrupt service routine, software must clear the IF status bit first. The CF status bit is cleared 
automatically by reading from the data I/O register (MDR) in receive mode or writing to MBDR in 
transmit mode. 

Software may service the bus I/O in the main program by monitoring the IF status bit if the interrupt 
function is disabled. Polling should monitor the IF status bit rather than the CF bit because its operation is 
different when arbitration is lost.

When an interrupt occurs at the end of the address cycle, the master is always in transmit mode, i.e. the 
address is transmitted. If master receive mode is required, indicated by R/W bit in the DATA register, the 
TX control bit should be toggled at this stage.

During slave mode address cycles (AAS = 1), the SRW bit in the STATUS register is read to determine the 
direction of the subsequent transfer and the TX control bit is programmed accordingly. The SRW bit is not 
valid for data cycles (AAS = 0) when operating in slave mode. Therefore, the TX bit in the control register 
should be read to determine the direction of the current transfer.

21.5.2 Slave Mode

In the slave interrupt service routine, the AAS bit should be tested to determine if a calling of its own 
address was received. If AAS is set, software should set the Tx/Rx mode select bit (control register Tx 
bit) according to the R/W command bit (SRW). Writing to the CONTROL register automatically clears 
AAS. The slave interrupt service routine should also move the data, depending on whether it acts as a 
transmitter or a receiver, as follows: 

• For a slave transmitter, the slave interrupt service routine must initiate a data transfer by writing 
information to the DATA register. 

• For a slave receiver, the slave interrupt service routine must initiate a transfer by performing a 
dummy read from the DATA register. The slave drives SCL low between byte transfers. SCL is 
released when the DATA register is accessed in the required mode.

In slave transmitter routine, RXAK must be tested before transmitting the next data byte. Setting RXAK 
means an end of data signal from the master receiver. Then, software causes a switch from transmitter 
mode to receiver mode. A dummy read then releases the SCL line letting the master generate a STOP 
signal.

21.5.3 Special Note on AKF

When the I2C module loses arbitration(AL) and is addressed as slave(AAS), the I2C module generates two 
interrupt (IF) requests: one on the rising edge of the acknowledge clock pulse and one on the falling edge 
of the acknowledge clock pulse (the legacy time to do so). In this specific case, the interrupt (IF=1) is really 
the second one set by the hardware.

The software programmer must use this AKF bit to distinguish the first interrupt request (non-legacy) from 
the second interrupt request (legacy) and may use the value of AKF (in addition to all the usual bits the 
software checks) to determine when to take action for the AL and AAS.

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

Freescale Semiconductor 21-31

• First interrupt on rising edge of acknowledge cycle — software should not take AL and AAS action 
• Second interrupt on falling edge of acknowledge — software should take AL and AAS action

The AKF bit is set only for the second interrupt and must be cleared by software writing it low in the 
interrupt routine.

Figure 21-16 on typical software flow for I2C routines clearly illustrates how the AKF bit may be used. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Inter-Integrated Circuit (I2C)

21-32 Freescale Semiconductor

Figure 21-16. Software Flowchart of Typical I2C Interrupt Routine

Clear

Master 
Mode 

?

Tx/Rx 
?

Last Byte 
Transmitted

?

RXAK=0 
?

End Of 
Addr Cycle 
(Master Rx) 

?

Write Next
Byte to MDR

Switch To 
Rx Mode

Dummy Read 
from MDR

Generate 
Stop Signal

Read Data 
from MDR 
and Store

Set TXAK =1 Generate 
Stop Signal

Second Last 
Byte to Be Read 

?

Last 
Byte to Be Read 

?

Arbitration
Lost

?

AAS=1 
?

AAS=1 
?

SRW=1 
?

TX/RX 
?

Set TX 
Mode

Write Data 
to MDR

Set RX 
Mode

Dummy Read 
from MDR

ACK From
Receiver 

?

Tx Next 
Byte

Read Data 
From MDR 
and Store

Switch to 
Rx Mode

Dummy Read 
from MDR

RTI

Y N

Y

Y Y

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

N

N

N

Y

TX RX

RX

TX

(Write)

(Read)

N

IF

Address 

Data Transfer

Transfer

Clear AL

AKF=1 
?

N

Clear AKF, AL

Y

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 22-1

Chapter 22  
IO Control

22.1 Introduction

22.1.1 Overview

The IO control block controls the functional muxing and configuration of the pads. Configurable 
parameters include slew rate, Schmitt-Trigger input, pull-down/-up, and PCI hold timing. Additionally, the 
IO control block implements a fifth layer of pin muxing between the GPTimer[7:0] and GPIO[7:0].

22.1.2 Features
• Functional Pin muxing control

— Control for the IO macros
— Muxing of GPTimer with GPIO

• Pad Slewrate control
• Pad Schmitt-Trigger control
• Pad Pull-down/-up control
• PCI timing delay cell control

22.2 Memory Map and Register Definition

22.2.1 Memory Map

Table 22-1. IO Control Memory Map (Sheet 1 of 7)

Offset or 
Address

Register Access

General Registers

0x000  IO_CONTROL_MEM -- MEM pad control register  R/W

0x004  IO_CONTROL_GP -- GP pad control register  R/W

0x008  IO_CONTROL_LPC_CLK -- LPC_CLK pad control register  R/W

0x00C  IO_CONTROL_LPC_OE -- LPC_OE pad control register  R/W

0x010  IO_CONTROL_LPC_R/W -- LPC_R/W pad control register  R/W

0x014  IO_CONTROL_LPC_ACK -- LPC_ACK pad control register  R/W

0x018  IO_CONTROL_LPC_CS0 -- LPC_CS0 pad control register  R/W

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-2 Freescale Semiconductor

0x01C  IO_CONTROL_NFC_CE0 -- NFC_CE0 pad control register  R/W

0x020  IO_CONTROL_LPC_CS1 -- LPC_CS1 pad control register  R/W

0x024  IO_CONTROL_LPC_CS2 -- LPC_CS2 pad control register  R/W

0x028  IO_CONTROL_LPC_AX03 -- LPC_AX03 pad control register  R/W

0x02C  IO_CONTROL_EMB_AX02 -- EMB_AX02 pad control register  R/W

0x030  IO_CONTROL_EMB_AX01 -- EMB_AX01 pad control register  R/W

0x034  IO_CONTROL_EMB_AX00 -- EMB_AX00 pad control register  R/W

0x038  IO_CONTROL_EMB_AD31 -- EMB_AD31 pad control register  R/W

0x03C  IO_CONTROL_EMB_AD30 -- EMB_AD30 pad control register  R/W

0x040  IO_CONTROL_EMB_AD29 -- EMB_AD29 pad control register  R/W

0x044  IO_CONTROL_EMB_AD28 -- EMB_AD28 pad control register  R/W

0x048  IO_CONTROL_EMB_AD27 -- EMB_AD27 pad control register  R/W

0x04C  IO_CONTROL_EMB_AD26 -- EMB_AD26 pad control register  R/W

0x050  IO_CONTROL_EMB_AD25 -- EMB_AD25 pad control register  R/W

0x054  IO_CONTROL_EMB_AD24 -- EMB_AD24 pad control register  R/W

0x058  IO_CONTROL_EMB_AD23 -- EMB_AD23 pad control register  R/W

0x05C  IO_CONTROL_EMB_AD22 -- EMB_AD22 pad control register  R/W

0x060  IO_CONTROL_EMB_AD21 -- EMB_AD21 pad control register  R/W

0x064  IO_CONTROL_EMB_AD20 -- EMB_AD20 pad control register  R/W

0x068  IO_CONTROL_EMB_AD19 -- EMB_AD19 pad control register  R/W

0x06C  IO_CONTROL_EMB_AD18 -- EMB_AD18 pad control register  R/W

0x070  IO_CONTROL_EMB_AD17 -- EMB_AD17 pad control register  R/W

0x074  IO_CONTROL_EMB_AD16 -- EMB_AD16 pad control register  R/W

0x078  IO_CONTROL_EMB_AD15 -- EMB_AD15 pad control register  R/W

0x07C  IO_CONTROL_EMB_AD14 -- EMB_AD14 pad control register  R/W

0x080  IO_CONTROL_EMB_AD13 -- EMB_AD13 pad control register  R/W

0x084  IO_CONTROL_EMB_AD12 -- EMB_AD12 pad control register  R/W

0x088  IO_CONTROL_EMB_AD11 -- EMB_AD11 pad control register  R/W

0x08C  IO_CONTROL_EMB_AD10 -- EMB_AD10 pad control register  R/W

0x090  IO_CONTROL_EMB_AD09 -- EMB_AD09 pad control register  R/W

0x094  IO_CONTROL_EMB_AD08 -- EMB_AD08 pad control register  R/W

0x098  IO_CONTROL_EMB_AD07 -- EMB_AD07 pad control register  R/W

0x09C  IO_CONTROL_EMB_AD06 -- EMB_AD06 pad control register  R/W

0x0A0  IO_CONTROL_EMB_AD05 -- EMB_AD05 pad control register  R/W

0x0A4  IO_CONTROL_EMB_AD04 -- EMB_AD04 pad control register  R/W

Table 22-1. IO Control Memory Map (Sheet 2 of 7)

Offset or 
Address

Register Access

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

Freescale Semiconductor 22-3

0x0A8  IO_CONTROL_EMB_AD03 -- EMB_AD03 pad control register  R/W

0x0AC  IO_CONTROL_EMB_AD02 -- EMB_AD02 pad control register  R/W

0x0B0  IO_CONTROL_EMB_AD01 -- EMB_AD01 pad control register  R/W

0x0B4  IO_CONTROL_EMB_AD00 -- EMB_AD00 pad control register  R/W

0x0B8  IO_CONTROL_PATA_CE1 -- PATA_CE1 pad control register  R/W

0x0BC  IO_CONTROL_PATA_CE2 -- PATA_CE2 pad control register  R/W

0x0C0  IO_CONTROL_PATA_ISOLATE -- PATA_ISOLATE pad control register  R/W

0x0C4  IO_CONTROL_PATA_IOR -- PATA_IOR pad control register  R/W

0x0C8  IO_CONTROL_PATA_IOW -- PATA_IOW pad control register  R/W

0x0CC  IO_CONTROL_PATA_IOCHRDY -- PATA_IOCHRDY pad control register  R/W

0x0D0  IO_CONTROL_PATA_INTRQ -- PATA_INTRQ pad control register  R/W

0x0D4  IO_CONTROL_PATA_DRQ -- PATA_DRQ pad control register  R/W

0x0D8  IO_CONTROL_PATA_DACK -- PATA_DACK pad control register  R/W

0x0DC  IO_CONTROL_NFC_WP -- NFC_WP pad control register  R/W

0x0E0  IO_CONTROL_NFC_RB -- NFC_RB pad control register  R/W

0x0E4  IO_CONTROL_NFC_ALE -- NFC_ALE pad control register  R/W

0x0E8  IO_CONTROL_NFC_CLE -- NFC_CLE pad control register  R/W

0x0EC  IO_CONTROL_NFC_WE -- NFC_WE pad control register  R/W

0x0F0  IO_CONTROL_NFC_RE -- NFC_RE pad control register  R/W

0x0F4  IO_CONTROL_PCI_AD31 -- PCI_AD31 pad control register  R/W

0x0F8  IO_CONTROL_PCI_AD30 -- PCI_AD30 pad control register  R/W

0x0FC  IO_CONTROL_PCI_AD29 -- PCI_AD29 pad control register  R/W

0x100  IO_CONTROL_PCI_AD28 -- PCI_AD28 pad control register  R/W

0x104  IO_CONTROL_PCI_AD27 -- PCI_AD27 pad control register  R/W

0x108  IO_CONTROL_PCI_AD26 -- PCI_AD26 pad control register  R/W

0x10C  IO_CONTROL_PCI_AD25 -- PCI_AD25 pad control register  R/W

0x110  IO_CONTROL_PCI_AD24 -- PCI_AD24 pad control register  R/W

0x114  IO_CONTROL_PCI_AD23 -- PCI_AD23 pad control register  R/W

0x118  IO_CONTROL_PCI_AD22 -- PCI_AD22 pad control register  R/W

0x11C  IO_CONTROL_PCI_AD21 -- PCI_AD21 pad control register  R/W

0x120  IO_CONTROL_PCI_AD20 -- PCI_AD20 pad control register  R/W

0x124  IO_CONTROL_PCI_AD19 -- PCI_AD19 pad control register  R/W

0x128  IO_CONTROL_PCI_AD18 -- PCI_AD18 pad control register  R/W

0x12C  IO_CONTROL_PCI_AD17 -- PCI_AD17 pad control register  R/W

0x130  IO_CONTROL_PCI_AD16 -- PCI_AD16 pad control register  R/W

Table 22-1. IO Control Memory Map (Sheet 3 of 7)

Offset or 
Address

Register Access

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-4 Freescale Semiconductor

0x134  IO_CONTROL_PCI_AD15 -- PCI_AD15 pad control register  R/W

0x138  IO_CONTROL_PCI_AD14 -- PCI_AD14 pad control register  R/W

0x13C  IO_CONTROL_PCI_AD13 -- PCI_AD13 pad control register  R/W

0x140  IO_CONTROL_PCI_AD12 -- PCI_AD12 pad control register  R/W

0x144  IO_CONTROL_PCI_AD11 -- PCI_AD11 pad control register  R/W

0x148  IO_CONTROL_PCI_AD10 -- PCI_AD10 pad control register  R/W

0x14C  IO_CONTROL_PCI_AD09 -- PCI_AD09 pad control register  R/W

0x150  IO_CONTROL_PCI_AD08 -- PCI_AD08 pad control register  R/W

0x154  IO_CONTROL_PCI_AD07 -- PCI_AD07 pad control register  R/W

0x158  IO_CONTROL_PCI_AD06 -- PCI_AD06 pad control register  R/W

0x15C  IO_CONTROL_PCI_AD05 -- PCI_AD05 pad control register  R/W

0x160  IO_CONTROL_PCI_AD04 -- PCI_AD04 pad control register  R/W

0x164  IO_CONTROL_PCI_AD03 -- PCI_AD03 pad control register  R/W

0x168  IO_CONTROL_PCI_AD02 -- PCI_AD02 pad control register  R/W

0x16C  IO_CONTROL_PCI_AD01 -- PCI_AD01 pad control register  R/W

0x170  IO_CONTROL_PCI_AD00 -- PCI_AD00 pad control register  R/W

0x174  IO_CONTROL_PCI_CBE0 -- PCI_CBE0 pad control register  R/W

0x178  IO_CONTROL_PCI_CBE1 -- PCI_CBE1 pad control register  R/W

0x17C  IO_CONTROL_PCI_CBE2 -- PCI_CBE2 pad control register  R/W

0x180  IO_CONTROL_PCI_CBE3 -- PCI_CBE3 pad control register  R/W

0x184  IO_CONTROL_PCI_GRANT2 -- -- PCI_GRANT2 pad control register  R/W

0x188  IO_CONTROL_PCI_REQ2 -- PCI_REQ2 pad control register  R/W

0x18C  IO_CONTROL_PCI_GRANT1 -- PCI_GRANT1 pad control register  R/W

0x190  IO_CONTROL_PCI_REQ1 -- PCI_REQ1 pad control register  R/W

0x194  IO_CONTROL_PCI_GRANT0 -- PCI_GRANT0 pad control register  R/W

0x198  IO_CONTROL_PCI_REQ0 -- PCI_REQ0 pad control register  R/W

0x19C  IO_CONTROL_PCI_INTA -- PCI_INTA pad control register  R/W

0x1A0  IO_CONTROL_PCI_CLK -- PCI_CLK pad control register  R/W

0x1A4  IO_CONTROL_PCI_RST -- PCI_RST- pad control register  R/W

0x1A8  IO_CONTROL_PCI_FRAME -- PCI_FRAME pad control register  R/W

0x1AC  IO_CONTROL_PCI_IDSEL -- PCI_IDSEL pad control register  R/W

0x1B0  IO_CONTROL_PCI_DEVSEL-PCI_DEVSEL pad control register  R/W

0x1B4  IO_CONTROL_PCI_IRDY -- PCI_IRDY pad control register  R/W

0x1B8  IO_CONTROL_PCI_TRDY -- PCI_TRDY pad control register  R/W

0x1BC  IO_CONTROL_PCI_STOP -- PCI_STOP pad control register  R/W

Table 22-1. IO Control Memory Map (Sheet 4 of 7)

Offset or 
Address

Register Access

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

Freescale Semiconductor 22-5

0x1C0  IO_CONTROL_PCI_PAR -- PCI_PAR pad control register  R/W

0x1C4  IO_CONTROL_PCI_PERR -- PCI_PERR pad control register  R/W

0x1C8  IO_CONTROL_PCI_SERR -- PCI_SERR pad control register  R/W

0x1CC  IO_CONTROL_SPDIF_TXCLK -- SPDIF_TXCLK pad control register  R/W

0x1D0  IO_CONTROL_SPDIF_TX -- SPDIF_TX pad control register  R/W

0x1D4  IO_CONTROL_SPDIF_RX -- SPDIF_RX pad control register  R/W

0x1D8  IO_CONTROL_I2C0_SCL -- I2C0_SCL pad control register  R/W

0x1DC  IO_CONTROL_I2C0_SDA -- I2C0_SDA pad control register  R/W

0x1E0  IO_CONTROL_I2C1_SCL -- I2C1_SCL pad control register  R/W

0x1E4  IO_CONTROL_I2C1_SDA -- I2C1_SDA pad control register  R/W

0x1E8  IO_CONTROL_I2C2_SCL -- I2C2_SCL pad control register  R/W

0x1EC  IO_CONTROL_I2C2_SDA -- I2C2_SDA pad control register  R/W

0x1F0  IO_CONTROL_IRQ0 -- IRQ0 pad control register  R/W

0x1F4  IO_CONTROL_IRQ1 -- IRQ1 pad control register  R/W

0x1F8  IO_CONTROL_CAN1_TX -- CAN1_TX pad control register  R/W

0x1FC  IO_CONTROL_CAN2_TX -- CAN2_TX pad control register  R/W

0x200  IO_CONTROL_J1850_TX -- J1850_TX pad control register  R/W

0x204  IO_CONTROL_J1850_RX -- J1850_RX pad control register  R/W

0x208  IO_CONTROL_PSC_MCLK_IN -- PSC_MCLK_IN pad control register  R/W

0x20C  IO_CONTROL_PSC0_0 -- PSC0_0 pad control register  R/W

0x210  IO_CONTROL_PSC0_1 -- PSC0_1 pad control register  R/W

0x214  IO_CONTROL_PSC0_2 -- PSC0_2 pad control register  R/W

0x218  IO_CONTROL_PSC0_3 -- PSC0_3 pad control register  R/W

0x21C  IO_CONTROL_PSC0_4 -- PSC0_4 pad control register  R/W

0x220  IO_CONTROL_PSC1_0 -- PSC1_0 pad control register  R/W

0x224  IO_CONTROL_PSC1_1 -- PSC1_1 pad control register  R/W

0x228  IO_CONTROL_PSC1_2 -- PSC1_2 pad control register  R/W

0x22C  IO_CONTROL_PSC1_3 -- PSC1_3 pad control register  R/W

0x230  IO_CONTROL_PSC1_4 -- PSC1_4 pad control register  R/W

0x234  IO_CONTROL_PSC2_0 -- PSC2_0 pad control register  R/W

0x238  IO_CONTROL_PSC2_1 -- PSC2_1 pad control register  R/W

0x23C  IO_CONTROL_PSC2_2 -- PSC2_2 pad control register  R/W

0x240  IO_CONTROL_PSC2_3 -- PSC2_3 pad control register  R/W

0x244  IO_CONTROL_PSC2_4 -- PSC2_4 pad control register  R/W

0x248  IO_CONTROL_PSC3_0 -- PSC3_0 pad control register  R/W

Table 22-1. IO Control Memory Map (Sheet 5 of 7)

Offset or 
Address

Register Access

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-6 Freescale Semiconductor

0x24C  IO_CONTROL_PSC3_1 -- PSC3_1 pad control register  R/W

0x250  IO_CONTROL_PSC3_2 -- PSC3_2 pad control register  R/W

0x254  IO_CONTROL_PSC3_3 -- PSC3_3 pad control register  R/W

0x258  IO_CONTROL_PSC3_4 -- PSC3_4 pad control register  R/W

0x25C  IO_CONTROL_PSC4_0 -- PSC4_0 pad control register  R/W

0x260  IO_CONTROL_PSC4_1 -- PSC4_1 pad control register  R/W

0x264  IO_CONTROL_PSC4_2 -- PSC4_2 pad control register  R/W

0x268  IO_CONTROL_PSC4_3 -- PSC4_3 pad control register  R/W

0x26C  IO_CONTROL_PSC4_4 -- PSC4_4 pad control register  R/W

0x270  IO_CONTROL_PSC5_0 -- PSC5_0 pad control register  R/W

0x274  IO_CONTROL_PSC5_1 -- PSC5_1 pad control register  R/W

0x278  IO_CONTROL_PSC5_2 -- PSC5_2 pad control register  R/W

0x27C  IO_CONTROL_PSC5_3 -- PSC5_3 pad control register  R/W

0x280  IO_CONTROL_PSC5_4 -- PSC5_4 pad control register  R/W

0x284  IO_CONTROL_PSC6_0 -- PSC6_0 pad control register  R/W

0x288  IO_CONTROL_PSC6_1 -- PSC6_1 pad control register  R/W

0x28C  IO_CONTROL_PSC6_2 -- PSC6_2 pad control register  R/W

0x290  IO_CONTROL_PSC6_3 -- PSC6_3 pad control register  R/W

0x294  IO_CONTROL_PSC6_4 -- PSC6_4 pad control register  R/W

0x298  IO_CONTROL_PSC7_0 -- PSC7_0 pad control register  R/W

0x29C  IO_CONTROL_PSC7_1 -- PSC7_1 pad control register  R/W

0x2A0  IO_CONTROL_PSC7_2 -- PSC7_2 pad control register  R/W

0x2A4  IO_CONTROL_PSC7_3 -- PSC7_3 pad control register  R/W

0x2A8  IO_CONTROL_PSC7_4 -- PSC7_4 pad control register  R/W

0x2AC  IO_CONTROL_PSC8_0 -- PSC8_0 pad control register  R/W

0x2B0  IO_CONTROL_PSC8_1 -- PSC8_1 pad control register  R/W

0x2B4  IO_CONTROL_PSC8_2 -- PSC8_2 pad control register  R/W

0x2B8  IO_CONTROL_PSC8_3 -- PSC8_3 pad control register  R/W

0x2BC  IO_CONTROL_PSC8_4 -- PSC8_4 pad control register  R/W

0x2C0  IO_CONTROL_PSC9_0 -- PSC9_0 pad control register  R/W

0x2C4  IO_CONTROL_PSC9_1 -- PSC9_1 pad control register  R/W

0x2C8  IO_CONTROL_PSC9_2 -- PSC9_2 pad control register  R/W

0x2CC  IO_CONTROL_PSC9_3 -- PSC9_3 pad control register  R/W

0x2D0  IO_CONTROL_PSC9_4 -- PSC9_4 pad control register  R/W

0x2D4  IO_CONTROL_PSC10_0 -- PSC10_0 pad control register  R/W

Table 22-1. IO Control Memory Map (Sheet 6 of 7)

Offset or 
Address

Register Access

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

Freescale Semiconductor 22-7

22.2.2 Register Descriptions

22.2.2.1 IO_CONTROL_MEM Register

0x2D8  IO_CONTROL_PSC10_1 -- PSC10_1 pad control register  R/W

0x2DC  IO_CONTROL_PSC10_2 -- PSC10_2 pad control register  R/W

0x2E0  IO_CONTROL_PSC10_3 -- PSC10_3 pad control register  R/W

0x2E4  IO_CONTROL_PSC10_4 -- PSC10_4 pad control register  R/W

0x2E8  IO_CONTROL_PSC11_0 -- PSC11_0 pad control register  R/W

0x2EC  IO_CONTROL_PSC11_1 -- PSC11_1 pad control register  R/W

0x2F0  IO_CONTROL_PSC11_2 -- PSC11_2 pad control register  R/W

0x2F4  IO_CONTROL_PSC11_3 -- PSC11_3 pad control register  R/W

0x2F8  IO_CONTROL_PSC11_4 -- PSC11_4 pad control register  R/W

0x304 IO_CONTROL_CKSTP_OUT -- CKSTP_OUT pad control register  R/W

0x310 IO_CONTROL_USB_PHY_DRVVBUS -- USB2_DRVVBUS pad control register  R/W

Offset 0x000 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0
16BIT CONT_DS DATA_DS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 22-1. MEM IO Control Register (IO_CONTROL_MEM)

Table 22-1. IO Control Memory Map (Sheet 7 of 7)

Offset or 
Address

Register Access

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-8 Freescale Semiconductor

Table 22-2. IO_CONTROL_MEM Field Descriptions

Field Description

16BIT Enables pin muxing in DRAM 16 bit mode. 
0 All DDR pads are used for DRAM functionality
1 MDQ[31:16], MDM[3:2] and MDQS[3:2] have GPIO functionality

CONT_DS CONT_DS controls the slew rate/drive strength of all DDR control pads (MCS, MA[15:0], MCK, MCK, MODT, 
MCAS, MRAS, MCKE, MWE, and MBA[2:0]).
000 DDR pad configuration 0
001 DDR pad configuration 1
010 DDR pad configuration 2
011 DDR pad configuration 3
100 Reserved
101 Reserved
110 DDR pad configuration 6
111 Reserved
Note: DDR pad configurations are defined in the Datasheet

DATA_DS DATA_DS controls the slew rate/drive strength of all DDR data pads (MDQ[31:0], MDM[3:0], and MDQS[3:0]).
000 DDR pad configuration 0
001 DDR pad configuration 1
010 DDR pad configuration 2
011 DDR pad configuration 3
100 Reserved
101 Reserved
110 DDR pad configuration 6
111 Reserved
Note: The configured DDR data pads is also valid for the GPIO lines in 16BIT mode configuration.

Note: DDR pad configurations are defined in the Datasheet

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

Freescale Semiconductor 22-9

22.2.2.2 IO_CONTROL_GP Register

Offset 0x004 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

G
P

_M
U

X
0

G
P

_M
U

X
1

G
P

_M
U

X
2

G
P

_M
U

X
3

G
P

_M
U

X
4

G
P

_M
U

X
5

G
P

_M
U

X
6

G
P

_M
U

X
7

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 22-2. GP MUX Control Register (IO_CONTROL_GP)

Table 22-3. IO_CONTROL_GP Field Descriptions

Field Description

GP_MUX7 GP_MUX7 controls the muxing between GPIO7 and GPT7.
0 GPT7 is selected
1 GPIO7 is selected

GP_MUX6 GP_MUX6 controls the muxing between GPIO6 and GPT6.
0 GPT6 is selected
1 GPIO6 is selected

GP_MUX5 GP_MUX5 controls the muxing between GPIO5 and GPT5.
0 GPT5 is selected
1 GPIO5 is selected

GP_MUX4 GP_MUX4 controls the muxing between GPIO4 and GPT4.
0 GPT4 is selected
1 GPIO4 is selected

GP_MUX3 GP_MUX3 controls the muxing between GPIO3 and GPT3.
0 GPT3 is selected
1 GPIO3 is selected

GP_MUX2 GP_MUX2 controls the muxing between GPIO2 and GPT2.
0 GPT2 is selected
1 GPIO2 is selected

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-10 Freescale Semiconductor

22.2.2.3 IO_CONTROL_PAD Registers Descriptions

There are six different types of IO_CONTROL_PAD registers. With all register it is possible to configure 
the slew rate of the pad and to configure the functional muxing. The following different types are used:

• STD
— functional muxing
— programmable slew rate

• STD_PU
— functional muxing
— programmable slew rate
— programmable Pull-up/down resistors

• STD_ST
— functional muxing
— programmable slew rate
— programmable Schmitt-Trigger input

• STD_PU_ST 
— functional muxing
— programmable slew rate
— programmable Schmitt-Trigger input
— programmable Pull-up/down resistors

• PCI
— functional muxing
— programmable slew rate
— programmable PCI output delay timing

• PCI_ST
— functional muxing
— programmable slew rate
— programmable PCI output delay timing
— programmable Schmitt-Trigger input

Figure 22-3, Figure 22-4, Figure 22-5, Figure 22-6, Figure 22-7, and Figure 22-8 describe the different 
type of configuration registers. The Table 22-16 shows which type of configuration register is responsible 
to configure the different pads. Additionally it shows also the different functional muxing possibilities.

GP_MUX1 GP_MUX1 controls the muxing between GPIO1 and GPT1.
0 GPT1 is selected
1 GPIO1 is selected

GP_MUX0 GP_MUX0 controls the muxing between GPIO0 and GPT0.
0 GPT0 is selected
1 GPIO0 is selected

Table 22-3. IO_CONTROL_GP Field Descriptions (continued)

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

Freescale Semiconductor 22-11

22.2.2.3.1 Standard (STD)

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0
FUNCMUX

0 0 0 0 0
DS

W

Reset 0 0 0 0 0 0 0 - - 0 0 0 0 0 - -

Reset values of the register bits is described in Table 22-16

= Unimplemented or Reserved

Figure 22-3. Standard Control Register (STD)

Table 22-4. STD Field Descriptions

Field Description

FUNCMUX FUNCMUX controls the functional pin muxing of the pad.
00 Function 1
01 Function 2
10 Function 3
11 Function 4
Note: Function assignment is listed in Table 22-16

DS DS controls slew rate of General IO pad
00 General IO slew rate configuration 0
01 General IO slew rate configuration 1
10 General IO slew rate configuration 2
11 General IO slew rate configuration 3
Note: General IO slew rate configurations are defined in the Datasheet

Table 22-5. 

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-12 Freescale Semiconductor

22.2.2.3.2 Standard with Pull-up/down Resistors (STD_PU)

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0
FUNCMUX

0 0
PUD PUE

0
DS

W

Reset 0 0 0 0 0 0 0 - - 0 0 - - 0 - -

Reset values of the register bits is described in Table 22-16

= Unimplemented or Reserved

Figure 22-4.  Standard with Pull-up/down Resistors Control Register (STD_PU)

Table 22-6. STD_PU Field Descriptions

Field Description

FUNCMUX FUNCMUX controls the functional pin muxing of the pad.
00 Function 1
01 Function 2
10 Function 3
11 Function 4
Note: Function assignment is listed in Table 22-16

PUD PUD controls the direction of the pull resistors.
0 Pull-down resistor enabled, if PUE is 1
1 Pull-up resistor enabled, if PUE is 1

PUE PUE enables the pull usage
0 No Pull resistor is used
1 Pull resistor is enabled

DS DS controls slew rate of General IO pad
00 General IO slew rate configuration 0
01 General IO slew rate configuration 1
10 General IO slew rate configuration 2
11 General IO slew rate configuration 3
Note: General IO slew rate configurations are defined in the Datasheet

Table 22-7. 

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

Freescale Semiconductor 22-13

22.2.2.3.3 Standard with Schmitt-Trigger Input (STD_ST)

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0
FUNCMUX

0 0 0 0
ST DS

W

Reset 0 0 0 0 0 0 0 - - 0 0 0 0 - - -

Reset values of the register bits is described in Table 22-16

= Unimplemented or Reserved

Figure 22-5.  Standard with Schmitt-Trigger Input Control Register (STD_ST)

Table 22-8. STD_ST Field Descriptions

Field Description

FUNCMUX FUNCMUX controls the functional pin muxing of the pad.
00 Function 1
01 Function 2
10 Function 3
11 Function 4
Note: Function assignment is listed in Table 22-16

ST ST enables the Schmitt Trigger input of the pad
0 Schmitt Trigger input disabled
1 Schmitt Trigger input enabled

DS DS controls slew rate of General IO pad
00 General IO slew rate configuration 0
01 General IO slew rate configuration 1
10 General IO slew rate configuration 2
11 General IO slew rate configuration 3
Note: General IO slew rate configurations are defined in the Datasheet

Table 22-9. 

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-14 Freescale Semiconductor

22.2.2.3.4 Standard with Pull-up/down Resistors and Schmitt-Trigger Input 
(STD_PU_ST)

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Table 22-11. 

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

Freescale Semiconductor 22-15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0
FUNCMUX

0 0
PUD PUE ST DS

W

Reset 0 0 0 0 0 0 0 - - 0 0 - - - - -

Reset values of the register bits is described in Table 22-16

= Unimplemented or Reserved

Figure 22-6.  Standard with Pull-up/down Resistors 
and Schmitt-Trigger Input Control Register (STD_PU_ST)

Table 22-10. STD_PU_ST Field Descriptions

Field Description

FUNCMUX FUNCMUX controls the functional pin muxing of the pad.
00 Function 1
01 Function 2
10 Function 3
11 Function 4
Note: Function assignment is listed in Table 22-16

PUD PUD controls the direction of the pull resistors.
0 Pull-down resistor enabled, if PUE is 1
1 Pull-up resistor enabled, if PUE is 1

PUE PUE enables the pull usage
0 No Pull resistor is used
1 Pull resistor is enabled

ST ST enables the Schmitt Trigger input of the pad
0 Schmitt Trigger input disabled
1 Schmitt Trigger input enabled

DS DS controls slew rate of General IO pad
00 General IO slew rate configuration 0
01 General IO slew rate configuration 1
10 General IO slew rate configuration 2
11 General IO slew rate configuration 3
Note: General IO slew rate configurations are defined in the Datasheet

Table 22-11. 

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-16 Freescale Semiconductor

22.2.2.3.5 PCI (PCI)

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0
FUNCMUX HOLD

0 0 0 0
DS

W

Reset 0 0 0 0 0 0 0 - - - - 0 0 0 0 -

Reset values of the register bits is described in Table 22-16

= Unimplemented or Reserved

Figure 22-7.  PCI Control Register (PCI)

Table 22-12. PCI Field Descriptions

Field Description

FUNCMUX FUNCMUX controls the functional pin muxing of the pad.
00 Function 1
01 Function 2
10 Function 3
11 Function 4
Note: Function assignment is listed in Table 22-16

HOLD HOLD controls the PCI output hold delay
00 PCI pad hold time configuration 0
01 PCI pad hold time configuration 1
10 PCI pad hold time configuration 2
11 PCI pad hold time configuration 3
Note: PCI pad hold time configuration are defined in the Datasheet

DS DS controls slew rate of PCI pad
0 PCI slew rate configuration 0
1 PCI slew rate configuration 1
Note: PCI slew rate configurations are defined in the Datasheet

Table 22-13. 

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

Freescale Semiconductor 22-17

22.2.2.3.6 PCI with Schmitt-Trigger input (PCI_ST)

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0
FUNCMUX HOLD

0 0
ST

0
DS

W

Reset 0 0 0 0 0 0 0 - - - - 0 0 - 0 -

Reset values of the register bits is described in Table 22-16

= Unimplemented or Reserved

Figure 22-8. PCI with Schmitt-Trigger Input Control Register (PCI_ST)

Table 22-14. PCI_ST Field Descriptions

Field Description

FUNCMUX FUNCMUX controls the functional pin muxing of the pad.
00 Function 1
01 Function 2
10 Function 3
11 Function 4
Note: Function assignment is listed in Table 22-16

HOLD HOLD controls the PCI output hold delay
00 PCI pad hold time configuration 0
01 PCI pad hold time configuration 1
10 PCI pad hold time configuration 2
11 PCI pad hold time configuration 3
Note: PCI pad hold time configuration are defined in the Datasheet

ST ST enables the Schmitt Trigger input of the pad
0 Schmitt Trigger input disabled
1 Schmitt Trigger input enabled

DS DS controls slew rate of PCI pad
0 PCI slew rate configuration 0
1 PCI slew rate configuration 1
Note: PCI slew rate configurations are defined in the Datasheet

Table 22-15. 

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-18 Freescale Semiconductor

22.2.2.3.7 Pad IO Control Register
Table 22-16. Pad IO Control Register Table (Sheet 1 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

LPC_CLK 0x008 STD 0_0000_00??1 00 - LPC_CLK
01 - TPA
10 - CKSTP_IN
11 - Reserved

LPC_OE 0x00C STD 0_0000_00??1 00 - LPC_OE
01 - Reserved
10 - Reserved
11 - Reserved

LPC_RW 0x010 STD 0_0000_00??1 00 - LPC_RW
01 - Reserved
10 - Reserved
11 - Reserved

LPC_ACK 0x014 STD_PU 0_0001_10??1 00 - LPC_ACK
01 - LPC_CS_7
10 - Reserved
11 - GPIO24

LPC_CS0 0x018 STD_PU 0_0001_10??1 00 - LPC_CS0
01 - Reserved
10 - Reserved
11 - GPIO25

NFC_CE0 0x01C STD_PU_ST 0_0001_10??2 00 - NFC_CE0
01 - LPC_CS3
10 - PSC_MCLK_IN
11 - GPIO26

LPC_CS1 0x020 STD_PU_ST 0_0001_1000 00 - LPC_CS1
01 - SPDIF_TXCLK
10 - Reserved
11 - GPIO7

LPC_CS2 0x024 STD_PU 0_0001_1000 00 - LPC_CS2
01 - NFC_CE1
10 - Reserved
11 - GPIO0

LPC_AX03 0x028 STD 0_0000_00??1 00 - LPC_AX03
01 - Reserved
10 - Reserved
11 - GPIO1

EMB_AX02 0x02C STD 0_0000_00??1 00 - EMB_AX02
01 - Reserved
10 - Reserved
11 - GPIO2

EMB_AX01 0x030 STD 0_0000_00??1 00 - EMB_AX01
01 - Reserved
10 - Reserved
11 - GPIO3

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

Freescale Semiconductor 22-19

EMB_AX00 0x034 STD 0_0000_00??1 00 - EMB_AX00
01 - Reserved
10 - Reserved
11 - Reserved

EMB_AD31 0x038 STD 1_0000_00??2 00 - Reserved
01 - Reserved
10 - EMB_AD31
11 - Reserved

EMB_AD30 0x03C STD 1_0000_00??3 00 - Reserved
01 - Reserved
10 - EMB_AD30
11 - Reserved

EMB_AD29 0x040 STD 1_0000_00??3 00 - Reserved
01 - Reserved
10 - EMB_AD29
11 - Reserved

EMB_AD28 0x044 STD 1_0000_00??3 00 - Reserved
01 - Reserved
10 - EMB_AD28
11 - Reserved

EMB_AD27 0x048 STD 1_0000_00??3 00 - Reserved
01 - Reserved
10 - EMB_AD27
11 - Reserved

EMB_AD26 0x04C STD 1_0000_00??3 00 - Reserved
01 - Reserved
10 - EMB_AD26
11 - Reserved

EMB_AD25 0x050 STD 1_0000_00??3 00 - Reserved
01 - Reserved
10 - EMB_AD25
11 - Reserved

EMB_AD24 0x054 STD 1_0000_00??3 00 - Reserved
01 - Reserved
10 - EMB_AD24
11 - Reserved

EMB_AD23 0x058 STD 1_0000_0011 00 - Reserved
01 - Reserved
10 - EMB_AD23
11 - Reserved

EMB_AD22 0x05C STD 1_0000_0011 00 - Reserved
01 - Reserved
10 - EMB_AD22
11 - Reserved

Table 22-16. Pad IO Control Register Table (Sheet 2 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-20 Freescale Semiconductor

EMB_AD21 0x060 STD 1_0000_0011 00 - Reserved
01 - Reserved
10 - EMB_AD21
11 - Reserved

EMB_AD20 0x064 STD 1_0000_0011 00 - Reserved
01 - Reserved
10 - EMB_AD20
11 - Reserved

EMB_AD19 0x068 STD 1_0000_0011 00 - Reserved
01 - Reserved
10 - EMB_AD19
11 - Reserved

EMB_AD18 0x06C STD 1_0000_0011 00 - Reserved
01 - Reserved
10 - EMB_AD18
11 - Reserved

EMB_AD17 0x070 STD 1_0000_0011 00 - Reserved
01 - Reserved
10 - EMB_AD17
11 - Reserved

EMB_AD16 0x074 STD 1_0000_0011 00 - Reserved
01 - Reserved
10 - EMB_AD16
11 - Reserved

EMB_AD15 0x078 STD 1_0000_00??1 00 - Reserved
01 - Reserved
10 - EMB_AD15
11 - Reserved

EMB_AD14 0x07C STD 1_0000_00??1 00 - Reserved
01 - Reserved
10 - EMB_AD14
11 - Reserved

EMB_AD13 0x080 STD 1_0000_00??1 00 - Reserved
01 - Reserved
10 - EMB_AD13
11 - Reserved

EMB_AD12 0x084 STD 1_0000_00??1 00 - Reserved
01 - Reserved
10 - EMB_AD12
11 - Reserved

EMB_AD11 0x088 STD 1_0000_00??1 00 - Reserved
01 - Reserved
10 - EMB_AD11
11 - Reserved

Table 22-16. Pad IO Control Register Table (Sheet 3 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

Freescale Semiconductor 22-21

EMB_AD10 0x08C STD 1_0000_00??1 00 - Reserved
01 - Reserved
10 - EMB_AD10
11 - Reserved

EMB_AD09 0x090 STD 1_0000_00??1 00 - Reserved
01 - Reserved
10 - EMB_AD09
11 - Reserved

EMB_AD08 0x094 STD 1_0000_00??1 00 - Reserved
01 - Reserved
10 - EMB_AD08
11 - Reserved

EMB_AD07 0x098 STD 1_0000_00??1 00 - Reserved
01 - Reserved
10 - EMB_AD07
11 - Reserved

EMB_AD06 0x09C STD 1_0000_00??1 00 - Reserved
01 - Reserved
10 - EMB_AD06
11 - Reserved

EMB_AD05 0x0A0 STD 1_0000_00??1 00 - Reserved
01 - Reserved
10 - EMB_AD05
11 - Reserved

EMB_AD04 0x0A4 STD 1_0000_00??1 00 - Reserved
01 - Reserved
10 - EMB_AD04
11 - Reserved

EMB_AD03 0x0A8 STD 1_0000_00??1 00 - Reserved
01 - Reserved
10 - EMB_AD03
11 - Reserved

EMB_AD02 0x0AC STD 1_0000_00??1 00 - Reserved
01 - Reserved
10 - EMB_AD02
11 - Reserved

EMB_AD01 0x0B0 STD 1_0000_00??1 00 - Reserved
01 - Reserved
10 - EMB_AD01
11 - Reserved

EMB_AD00 0x0B4 STD 1_0000_00??1 00 - Reserved
01 - Reserved
10 - EMB_AD00
11 - Reserved

Table 22-16. Pad IO Control Register Table (Sheet 4 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-22 Freescale Semiconductor

PATA_CE1 0x0B8 STD_PU 0_0001_1000 00 - PATA_CE1
01 - LPC_CS4
10 - Reserved
11 - GPIO9

PATA_CE2 0x0BC STD_PU 0_0001_1000 00 - PATA_CE2
01 - LPC_CS5
10 - Reserved
11 - GPIO10

PATA_ISOLATE 0x0C0 STD_PU 0_0001_1000 00 - PATA_ISOLATE
01 - CAN3_TX
10 - Reserved
11 - GPIO11

PATA_IOR 0x0C4 STD 0_0000_0000 00 - PATA_IOR
01 - SDHC_CLK
10 - Reserved
11 - GPIO12

PATA_IOW 0x0C8 STD_PU ?_0000_00??4 00 - PATA_IOW
01 - SDHC_CMD
10 - LPC_AX08
11 - GPIO13

PATA_IOCHRDY 0x0CC STD_PU ?_0001_10??4 00 - PATA_IOCHRDY
01 - SDHC_D0
10 - LPC_AX07
11 - GPIO14

PATA_INTRQ 0x0D0 STD_PU ?_0000_10??4 00 - PATA_INTRQ
01 - SDHC_D1_IRQ
10 - LPC_AX06
11 - GPIO15

PATA_DRQ 0x0D4 STD_PU ?_0000_10??4 00 - PATA_DRQ
01 - SDHC_D2
10 - LPC_AX05
11 - GPIO16

PATA_DACK 0x0D8 STD_PU ?_0000_00??4 00 - PATA_DACK
01 - SDHC_D3_CD
10 - LPC_AX04
11 - GPIO17

NFC_WP 0x0DC STD ?_0000_00115 00 - NFC_WP
01 - SDHC_CLK
10 - LPC_AX09
11 - GPIO18

NFC_R/B 0x0E0 STD_PU ?_0001_10??7 00 - NFC_R/B
01 - SDHC_CMD
10 - LPC_AX08
11 - GPIO19

Table 22-16. Pad IO Control Register Table (Sheet 5 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

Freescale Semiconductor 22-23

NFC_ALE 0x0E4 STD_PU ?_0000_00115 00 - NFC_ALE
01 - SDHC_D0
10 - LPC_AX07
11 - GPIO20

NFC_CLE 0x0E8 STD_PU ?_0000_00115 00 - NFC_CLE
01 - SDHC_D1_IRQ
10 - LPC_AX06
11 - GPIO21

NFC_WE 0x0EC STD_PU ?_0000_00115 00 - NFC_WE
01 - SDHC_D2
10 - LPC_AX05
11 - GPIO22

NFC_RE 0x0F0 STD_PU ?_0000_00115 00 - NFC_RE
01 - SDHC_D3_CD
10 - LPC_AX04
11 - GPIO23

PCI_AD31 0x0F4 PCI_ST 0_0??0_00006 00 - PCI_AD31
01 - USB0_CLK
10 - DIU_LD22
11 - GPIO0

PCI_AD30 0x0F8 PCI 0_0??0_00006 00 - PCI_AD30
01 - USB0_DIR
10 - DIU_LD23
11 - GPIO1

PCI_AD29 0x0FC PCI 0_0??0_00006 00 - PCI_AD29
01 - Reserved
10 - USB1_DATA7
11 - GPIO2

PCI_AD28 0x100 PCI 0_0??0_00006 00 - PCI_AD28
01 - Reserved
10 - USB1_DATA6
11 - GPIO3

PCI_AD27 0x104 PCI 0_0??0_00006 00 - PCI_AD27
01 - Reserved
10 - USB1_DATA5
11 - GPIO4

PCI_AD26 0x108 PCI 0_0??0_00006 00 - PCI_AD26
01 - Reserved
10 - USB1_DATA4
11 - GPIO5

PCI_AD25 0x10C PCI 0_0??0_00006 00 - PCI_AD25
01 - Reserved
10 - USB1_DATA3
11 - GPIO6

Table 22-16. Pad IO Control Register Table (Sheet 6 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-24 Freescale Semiconductor

PCI_AD24 0x110 PCI 0_0??0_00006 00 - PCI_AD24
01 - Reserved
10 - USB1_DATA2
11 - GPIO7

PCI_AD23 0x114 PCI 0_0??0_00006 00 - PCI_AD23
01 - Reserved
10 - USB1_DATA1
11 - GPIO8

PCI_AD22 0x118 PCI 0_0??0_00006 00 - PCI_AD22
01 - Reserved
10 - USB1_DATA0
11 - GPIO9

PCI_AD21 0x11C PCI 0_0??0_00006 00 - PCI_AD21
01 - Reserved
10 - USB1_STOP
11 - GPIO10

PCI_AD20 0x120 PCI 0_0??0_00006 00 - PCI_AD20
01 - Reserved
10 - USB1_NEXT
11 - GPIO11

PCI_AD19 0x124 PCI_ST 0_0??0_00006 00 - PCI_AD19
01 - Reserved
10 - USB1_CLK
11 - GPIO12

PCI_AD18 0x128 PCI 0_0??0_00006 00 - PCI_AD18
01 - Reserved
10 - USB1_DIR
11 - GPIO13

PCI_AD17 0x12C PCI 0_0??0_00006 00 - PCI_AD17
01 - VIU_DATA0
10 - FEC_TXD_3
11 - GPIO14

PCI_AD16 0x130 PCI 0_0??0_00006 00 - PCI_AD16
01 - VIU_DATA1
10 - FEC_TXD_2
11 - GPIO15

PCI_AD15 0x134 PCI 0_0??0_00006 00 - PCI_AD15
01 - VIU_DATA2
10 - FEC_TXD_1
11 - GPIO16

PCI_AD14 0x138 PCI 0_0??0_00006 00 - PCI_AD14
01 - Reserved
10 - FEC_TXD_0
11 - GPIO17

Table 22-16. Pad IO Control Register Table (Sheet 7 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

Freescale Semiconductor 22-25

PCI_AD13 0x13C PCI 0_0??0_00006 00 - PCI_AD13
01 - VIU_DATA3
10 - FEC_RXD_3
11 - GPIO18

PCI_AD12 0x140 PCI 0_0??0_00006 00 - PCI_AD12
01 - VIU_DATA4
10 - FEC_RXD_2
11 - GPIO19

PCI_AD11 0x144 PCI 0_0??0_00006 00 - PCI_AD11
01 - VIU_DATA5
10 - FEC_RXD_1
11 - GPIO20

PCI_AD10 0x148 PCI 0_0??0_00006 00 - PCI_AD10
01 - Reserved
10 - FEC_RXD_0
11 - GPIO21

PCI_AD09 0x14C PCI_ST 0_0??0_00006 00 - PCI_AD09
01 - Reserved
10 - FEC_RX_CLK
11 - GPIO22

PCI_AD08 0x150 PCI_ST 0_0??0_00006 00 - PCI_AD08
01 - Reserved
10 - FEC_TX_CLK
11 - GPIO23

PCI_AD07 0x154 PCI 0_0??0_00006 00 - PCI_AD07
01 - VIU_DATA7
10 - FEC_RX_ER
11 - GPIO24

PCI_AD06 0x158 PCI 0_0??0_00006 00 - PCI_AD06
01 - Reserved
10 - FEC_RX_DV
11 - GPIO25

PCI_AD05 0x15C PCI 0_0??0_00006 00 - PCI_AD05
01 - Reserved
10 - FEC_TX_EN
11 - GPIO26

PCI_AD04 0x160 PCI 0_0??0_00006 00 - PCI_AD04
01 - VIU_PIX_CLK
10 - FEC_TX_ER
11 - GPIO27

PCI_AD03 0x164 PCI 0_0??0_00006 00 - PCI_AD03
01 - VIU_DATA6
10 - FEC_CRS
11 - GPIO0

Table 22-16. Pad IO Control Register Table (Sheet 8 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-26 Freescale Semiconductor

PCI_AD02 0x168 PCI 0_0??0_00006 00 - PCI_AD02
01 - VIU_DATA8
10 - FEC_MDC
11 - GPIO1

PCI_AD01 0x16C PCI 0_0??0_00006 00 - PCI_AD01
01 - VIU_DATA9
10 - FEC_MDIO
11 - GPIO2

PCI_AD00 0x170 PCI 0_0??0_00006 00 - PCI_AD00
01 - Reserved
10 - FEC_COL
11 - GPIO3

PCI_C/BE0 0x174 PCI 0_0??0_00006 00 - PCI_C/BE0
01 - USB0_DATA5
10 - DIU_LD03
11 - GPIO4

PCI_C/BE1 0x178 PCI 0_0??0_00006 00 - PCI_C/BE1
01 - USB0_DATA4
10 - DIU_LD02
11 - GPIO5

PCI_C/BE2 0x17C PCI 0_0??0_00006 00 - PCI_C/BE2
01 - USB0_DATA3
10 - DIU_LD00
11 - GPIO6

PCI_C/BE3 0x180 PCI 0_0??0_00006 00 - PCI_C/BE3
01 - USB0_DATA2
10 - DIU_LD01
11 - GPIO7

PCI_GNT2 0x184 PCI 0_0??0_00006 00 - PCI_GRANT2
01 - Reserved
10 - DIU_LD21
11 - GPIO8

PCI_REQ2 0x188 PCI 0_0??0_00006 00 - PCI_REQ2
01 - Reserved
10 - DIU_LD20
11 - GPIO9

PCI_GNT1 0x18C PCI 0_0??0_00006 00 - PCI_GRANT1
01 - Reserved
10 - DIU_LD19
11 - GPIO10

PCI_REQ1 0x190 PCI 0_0??0_00006 00 - PCI_REQ1
01 - Reserved
10 - DIU_LD18
11 - GPIO11

Table 22-16. Pad IO Control Register Table (Sheet 9 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

Freescale Semiconductor 22-27

PCI_GNT0 0x194 PCI 0_0??0_00006 00 - PCI_GRANT0
01 - Reserved
10 - DIU_LD12
11 - GPIO12

PCI_REQ0 0x198 PCI 0_0??0_00006 00 - PCI_REQ0
01 - Reserved
10 - DIU_LD11
11 - GPIO13

PCI_INTA 0x19C PCI 0_0??0_00006 00 - PCI_INTA
01 - Reserved
10 - DIU_LD15
11 - GPIO14

PCI_CLK 0x1A0 PCI 0_0000_0000 00 - PCI_CLK
01 - Reserved
10 - DIU_LD14
11 - GPIO15

PCI_RST_OUT 0x1A4 PCI 0_0??0_00006 00 - PCI_RST_OUT
01 - Reserved
10 - DIU_LD13
11 - GPIO16

PCI_FRAME 0x1A8 PCI 0_0??0_00006 00 - PCI_FRAME
01 - Reserved
10 - DIU_LD10
11 - GPIO17

PCI_IDSEL 0x1AC PCI 0_0??0_00006 00 - PCI_IDSEL
01 - Reserved
10 - DIU_LD07
11 - GPIO18

PCI_DEVSEL 0x1B0 PCI 0_0??0_00006 00 - PCI_DEVSEL
01 - Reserved
10 - DIU_LD06
11 - GPIO19

PCI_IRDY 0x1B4 PCI 0_0??0_00006 00 - PCI_IRDY
01 - USB0_DATA7
10 - DIU_LD05
11 - GPIO20

PCI_TRDY 0x1B8 PCI 0_0??0_00006 00 - PCI_TRDY
01 - USB0_DATA6
10 - DIU_LD04
11 - GPIO21

PCI_STOP 0x1BC PCI 0_0??0_00006 00 - PCI_STOP
01 - USB0_DATA1
10 - DIU_LD08
11 - GPIO22

Table 22-16. Pad IO Control Register Table (Sheet 10 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-28 Freescale Semiconductor

PCI_PAR 0x1C0 PCI 0_0??0_00006 00 - PCI_PAR
01 - USB0_DATA0
10 - DIU_LD09
11 - GPIO23

PCI_PERR 0x1C4 PCI 0_0??0_00006 00 - PCI_PERR
01 - USB0_STOP
10 - DIU_LD16
11 - GPIO24

PCI_SERR 0x1C8 PCI 0_0??0_00006 00 - PCI_SERR
01 - USB0_NEXT
10 - DIU_LD17
11 - GPIO25

SPDIF_TXCLK 0x1CC STD_ST 0_0000_0100 00 - SPDIF_TXCLK
01 - FEC_RX_DV
10 - DIU_CLK
11 - GPIO26

SPDIF_TX 0x1D0 STD 0_0000_0000 00 - SPDIF_TX
01 - FEC_TX_ER
10 - DIU_VSYNC
11 - GPIO27

SPDIF_RX 0x1D4 STD 0_0000_0000 00 - SPDIF_RX
01 - FEC_CRS
10 - DIU_HSYNC
11 - GPIO0

I2C0_SCL 0x1D8 STD_ST 0_0000_01??7 00 - I2C0_SCL
01 - Reserved
10 - Reserved
11 - GPIO7/GPT7

I2C0_SDA 0x1DC STD_ST 0_0000_01??7 00 - I2C0_SDA
01 - Reserved
10 - Reserved
11 - GPIO1

I2C1_SCL 0x1E0 STD_ST 0_0000_01??7 00 - I2C1_SCL
01 - Reserved
10 - SPDIF_TX
11 - GPIO2

I2C1_SDA 0x1E4 STD_ST 0_0000_01??7 00 - I2C1_SDA
01 - Reserved
10 - SPDIF_RX
11 - GPIO3

I2C2_SCL 0x1E8 STD_ST 0_0000_01??7 00 - I2C2_SCL
01 - Reserved
10 - CAN4_TX
11 - GPIO4

Table 22-16. Pad IO Control Register Table (Sheet 11 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

Freescale Semiconductor 22-29

I2C2_SDA 0x1EC STD_ST 0_0000_01?? 00 - I2C2_SDA
01 - Reserved
10 - CAN4_RX
11 - GPIO5

IRQ0 0x1F0 STD 0_0000_0000 00 - IRQ0
01 - Reserved
10 - CAN3_TX
11 - GPIO4/GPT4

IRQ1 0x1F4 STD_ST 0_0000_0000 00 - IRQ1
01 - SPDIF_TXCLK
10 - CAN3_RX
11 - GPIO5/GPT5

CAN1_TX 0x1F8 STD 0_0000_00??7 00 - CAN1_TX
01 - Reserved
10 - Reserved
11 - GPIO6

CAN2_TX 0x1FC STD 0_0000_00??7 00 - CAN2_TX
01 - Reserved
10 - Reserved
11 - GPIO8

J1850_TX 0x200 STD 0_0000_00??7 00 - J1850_TX
01 - Reserved
10 - GPIO4
11 - CAN4_TX

J1850_RX 0x204 STD_PU 0_0001_10??7 00 - J1850_RX
01 - Reserved
10 - LPC_CS6
11 - CAN4_RX

PSC_MCLK_IN 0x208 STD_ST 0_0000_0100 00 - PSC_MCLK_IN
01 - Reserved
10 - DIU_DE
11 - GPIO6/GPT6

PSC0_0 0x20C STD_ST 0_0000_0100 00 - PSC0_0
01 - FEC_COL
10 - USB0_DATA7
11 - GPIO8

PSC0_1 0x210 STD 0_0000_0000 00 - PSC0_1
01 - FEC_TX_EN
10 - USB0_DATA6
11 - GPIO9

PSC0_2 0x214 STD_ST 0_0000_0000 00 - PSC0_2
01 - FEC_TX_CLK
10 - USB0_DATA5
11 - GPIO10

Table 22-16. Pad IO Control Register Table (Sheet 12 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-30 Freescale Semiconductor

PSC0_3 0x218 STD 0_0000_0000 00 - PSC0_3
01 - FEC_TXD_0
10 - USB0_DATA4
11 - GPIO11

PSC0_4 0x21C STD 0_0000_0000 00 - PSC0_4
01 - FEC_TXD_1
10 - USB0_DATA3
11 - GPIO0/GPT0

PSC1_0 0x220 STD_ST 0_0000_0100 00 - PSC1_0
01 - FEC_TXD_2
10 - USB0_DATA2
11 - GPIO12

PSC1_1 0x224 STD 0_0000_0000 00 - PSC1_1
01 - FEC_TXD_3
10 - USB0_DATA1
11 - GPIO13

PSC1_2 0x228 STD 0_0000_0000 00 - PSC1_2
01 - FEC_MDC
10 - USB0_DATA0
11 - GPIO14

PSC1_3 0x22C STD 0_0000_0000 00 - PSC1_3
01 - FEC_RX_ER
10 - USB0_STOP
11 - GPIO15

PSC1_4 0x230 STD 0_0000_0000 00 - PSC1_4
01 - FEC_RXD_3
10 - USB0_NEXT
11 - GPIO1/GPT1

PSC2_0 0x234 STD_ST 0_0000_0100 00 - PSC2_0
01 - FEC_RXD_2
10 - USB0_CLK
11 - GPIO16

PSC2_1 0x238 STD 0_0000_0000 00 - PSC2_1
01 - FEC_RXD_1
10 - USB0_DIR
11 - GPIO17

PSC2_2 0x23C STD 0_0000_0000 00 - PSC2_2
01 - FEC_RXD_0
10 - Reserved
11 - GPIO18

PSC2_3 0x240 STD 0_0000_0000 00 - PSC2_3
01 - FEC_MDIO
10 - Reserved
11 - GPIO19

Table 22-16. Pad IO Control Register Table (Sheet 13 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

Freescale Semiconductor 22-31

PSC2_4 0x244 STD_ST 0_0000_0000 00 - PSC2_4
01 - FEC_RX_CLK
10 - Reserved
11 - GPIO2/GPT2

PSC3_0 0x248 STD_ST 0_0000_0100 00 - PSC3_0
01 - USB1_DATA0
10 - Reserved
11 - GPIO20

PSC3_1 0x24C STD 0_0000_0000 00 - PSC3_1
01 - USB1_DATA1
10 - Reserved
11 - GPIO21

PSC3_2 0x250 STD 0_0000_0000 00 - PSC3_2
01 - USB1_DATA2
10 - Reserved
11 - GPIO22

PSC3_3 0x254 STD 0_0000_0000 00 - PSC3_3
01 - USB1_DATA3
10 - Reserved
11 - GPIO23

PSC3_4 0x258 STD 0_0000_0100 00 - PSC3_4
01 - LPC_CS6
10 - VIU_PIX_CLK
11 - GPIO3/GPT3

PSC4_0 0x25C STD_ST 0_0000_0100 00 - PSC4_0
01 - USB1_DATA4
10 - VIU_DATA0
11 - GPIO24

PSC4_1 0x260 STD 0_0000_0000 00 - PSC4_1
01 - USB1_DATA5
10 - VIU_DATA1
11 - GPIO25

PSC4_2 0x264 STD 0_0000_0000 00 - PSC4_2
01 - USB1_DATA6
10 - VIU_DATA2
11 - GPIO26

PSC4_3 0x268 STD 0_0000_0000 00 - PSC4_3
01 - USB1_DATA7
10 - VIU_DATA3
11 - GPIO27

PSC4_4 0x26C STD_PU 0_0001_1000 00 - PSC4_4
01 - NFC_CE2
10 - VIU_DATA4
11 - GPIO4/GPT4

Table 22-16. Pad IO Control Register Table (Sheet 14 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-32 Freescale Semiconductor

PSC5_0 0x270 STD_ST 0_0000_0100 00 - PSC5_0
01 - USB1_CLK
10 - VIU_DATA5
11 - GPIO8

PSC5_1 0x274 STD 0_0000_0000 00 - PSC5_1
01 - USB1_NEXT
10 - VIU_DATA6
11 - GPIO9

PSC5_2 0x278 STD 0_0000_0000 00 - PSC5_2
01 - USB1_STOP
10 - VIU_DATA7
11 - GPIO10

PSC5_3 0x27C STD 0_0000_0000 00 - PSC5_3
01 - USB1_DIR
10 - VIU_DATA8
11 - GPIO11

PSC5_4 0x280 STD_PU 0_0001_1000 00 - PSC5_4
01 - NFC_CE3
10 - VIU_DATA9
11 - GPIO5/GPT5

PSC6_0 0x284 STD_ST 0_0000_0100 00 - PSC6_0
01 - LPC_TSIZ1
10 - DIU_CLK
11 - GPIO12

PSC6_1 0x288 STD 0_0000_0000 00 - PSC6_1
01 - LPC_TSIZ2
10 - DIU_HSYNC
11 - GPIO13

PSC6_2 0x28C STD 0_0000_0000 00 - PSC6_2
01 - Reserved
10 - Reserved
11 - GPIO14

PSC6_3 0x290 STD 0_0000_0000 00 - PSC6_3
01 - Reserved
10 - Reserved
11 - GPIO15

PSC6_4 0x294 STD 0_0000_0000 00 - PSC6_4
01 - LPC_TS
10 - DIU_VSYNC
11 - GPIO6/GPT6

PSC7_0 0x298 STD_PU_ST 0_0000_0100 00 - PSC7_0
01 - SDHC_CMD
10 - DIU_LD23
11 - GPIO16

Table 22-16. Pad IO Control Register Table (Sheet 15 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

Freescale Semiconductor 22-33

PSC7_1 0x29C STD_PU 0_0000_0000 00 - PSC7_1
01 - SDHC_D0
10 - DIU_LD22
11 - GPIO17

PSC7_2 0x2A0 STD_PU 0_0000_0000 00 - PSC7_2
01 - SDHC_D1_IRQ
10 - DIU_LD17
11 - GPIO18

PSC7_3 0x2A4 STD_PU 0_0000_0000 00 - PSC7_3
01 - SDHC_D2
10 - DIU_LD16
11 - GPIO19

PSC7_4 0x2A8 STD_PU 0_0000_0000 00 - PSC7_4
01 - SDHC_D3_CD
10 - DIU_LD09
11 - GPIO7/GPT7

PSC8_0 0x2AC STD_ST 0_0000_0000 00 - PSC8_0
01 - Reserved
10 - DIU_LD08
11 - GPIO20

PSC8_1 0x2B0 STD 0_0000_0000 00 - PSC8_1
01 - Reserved
10 - DIU_LD01
11 - GPIO21

PSC8_2 0x2B4 STD 0_0000_0000 00 - PSC8_2
01 - Reserved
10 - DIU_LD00
11 - GPIO22

PSC8_3 0x2B8 STD 0_0000_0000 00 - PSC8_3
01 - Reserved
10 - DIU_LD02
11 - GPIO23

PSC8_4 0x2BC STD 0_0000_0000 00 - PSC8_4
01 - SDHC_CLK
10 - DIU_LD03
11 - GPIO0/GPT0

PSC9_0 0x2C0 STD_ST 0_0000_0000 00 - PSC9_0
01 - Reserved
10 - DIU_LD04
11 - GPIO24

PSC9_1 0x2C4 STD 0_0000_0000 00 - PSC9_1
01 - Reserved
10 - DIU_LD05
11 - GPIO25

Table 22-16. Pad IO Control Register Table (Sheet 16 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-34 Freescale Semiconductor

PSC9_2 0x2C8 STD 0_0000_0000 00 - PSC9_2
01 - Reserved
10 - DIU_LD06
11 - GPIO26

PSC9_3 0x2CC STD 0_0000_0000 00 - PSC9_3
01 - Reserved
10 - DIU_LD07
11 - GPIO27

PSC9_4 0x2D0 STD 0_0000_0000 00 - PSC9_4
01 - Reserved
10 - DIU_LD10
11 - GPIO1/GPT1

PSC10_0 0x2D4 STD_ST 0_0000_0000 00 - PSC10_0
01 - Reserved
10 - DIU_LD11
11 - GPIO8

PSC10_1 0x2D8 STD 0_0000_0000 00 - PSC10_1
01 - Reserved
10 - DIU_LD12
11 - GPIO9

PSC10_2 0x2DC STD 0_0000_0000 00 - PSC10_2
01 - Reserved
10 - DIU_LD13
11 - GPIO10

PSC10_3 0x2E0 STD 0_0000_0000 00 - PSC10_3
01 - Reserved
10 - DIU_LD14
11 - GPIO11

PSC10_4 0x2E4 STD 0_0000_0000 00 - PSC10_4
01 - Reserved
10 - DIU_LD15
11 - GPIO2/GPT2

PSC11_0 0x2E8 STD_ST 0_0000_0000 00 - PSC11_0
01 - Reserved
10 - DIU_LD18
11 - GPIO12

PSC11_1 0x2EC STD 0_0000_0000 00 - PSC11_1
01 - Reserved
10 - DIU_LD19
11 - GPIO13

PSC11_2 0x2F0 STD 0_0000_0000 00 - PSC11_2
01 - Reserved
10 - DIU_LD20
11 - GPIO14

Table 22-16. Pad IO Control Register Table (Sheet 17 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

Freescale Semiconductor 22-35

Note: 1)Slew Rate is 11 if LPC is the boot source. Otherwise it is 00.

2) Slew Rate is 11 if NFC is the boot source. Otherwise it is 00.

3) Slew Rate is 11 if LPC or 16-bit mode NFC is the boot source. Otherwise it is 00.
4) Slew Rate is 11 if LPC is the boot source and the extended LPC address bus (LPC AX [08:04]) is muxed with PATA 

control signals. Otherwise it is 00.
5) The LPC AX [09:04] signals are muxed over the NFC control lines in case the LPC_AX reset configuration is set to 10.

6) The PCI delay is 11 in case M66en reset configuration is 0. If the M66en reset configuration is 1, the PCI delay is 01.

7) Slew Rate is 11 if LPC is the boot source and the extended LPC address bus (LPC AX [09:04]) is muxed with NFC control 
signals. Otherwise it is 00.

PSC11_3 0x2F4 STD 0_0000_0000 00 - PSC11_3
01 - Reserved
10 - DIU_LD21
11 - GPIO15

PSC11_4 0x2F8 STD 0_0000_0000 00 - PSC11_4
01 - USBPHYDBG_IDDIGReserved
10 - DIU_DE
11 - GPIO3/GPT3

CKSTP_OUT 0x304 STD 0_0000_0000 00 - CKSTP_OUT
01 - TPA
10 - Reserved
11 - Reserved

USB_PHY_DRVVBUS 0x310 STD 0_0000_0000 00 - USB2_DRVVBUS
01 - Reserved
10 - Reserved
11 - Reserved

Table 22-16. Pad IO Control Register Table (Sheet 18 of 18)

PAD Name  Address  Type
 Reset Value 

[8:0]
 FUNCMUX

MPC5121e Microcontroller Reference Manual, Rev. 2



IO Control

22-36 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 23-1

Chapter 23  
LocalPlus Bus (LPC)

23.1 Introduction
The LocalPlus Bus (LPC) is the external bus interface of the MPC5121e. This multi-function bus system 
supports interfacing to external boot ROM or flash memories, external SRAM memories, or other memory 
mapped devices. See Figure 23-1 for a block diagram of the LPC.

Figure 23-1. LPC Block Diagram

NOTE
AD is the shared address/data bus. AX is the address extension bus. 

IP Bus Data

LPCSTART_ADDRESS

Variable Width
Address

Variable Width
R/W Data

R/W

ACK

CS[7:0]

AD[31:0]

AD Bus Grant

AD Bus Request

8

TS

OE

LPC_CLK

EMB Arbiter

Clock

IPS_CLK

AX[9:0]

TSIZ[1:0]2

XLBMEN
STOP_ADDRESS

Registers

SCLPC (FIFO)DMA Request

IPG_CLK

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-2 Freescale Semiconductor

23.1.1 Features

The LPC includes:
• Interface to memory mapped or chip selected devices
• Two main modes of operation:

— Non-muxed modes
– Address up to 32 bits, data 8, 16, or 32 bits

— Muxed modes (address latch enable (ALE) usage)
– Address up to 32 bits, data 8, 16, or 32 bits
– Programmable ALE level

• 8 chip-select (CS) signals
— Programmable wait states per CS
— Programmable deadcycles per CS
— Programmable holdcycles per CS
— Programmable byte swapping per CS

• Configurable boot interface supporting Power Architecture architecture code execution
• Dynamic bus sizing
• Support of burst mode flash devices (up to 32 byte bursts)

— Synchronous burst read
— Synchronous burst write
— Asynchronous burst read (page mode)
— Asynchronous burst write (page mode)

• DMA support allows data movement independently from the CPU (up to 56 byte bursts)
• No support of misaligned accesses. This also includes transfers of 3, 5, 6, and 7 bytes.

Table 23-1. Signal Properties

Name Function I/O Reset Pullup

AD[31:0] Address and data lines I/O 0 —

AX[31:0] Non-muxed mode: address lines
Muxed mode: address latch enable (AX[0])
Transfer size (AX[2:1])
Transfer start (AX[3])

O 0 —

ACK No burst transaction: Acknowledge can shorten a transaction
Burst transaction: Indicates that a burst transaction is ongoing.

I/O — Pullup

LPC_CLK LPC clock O — —

CS[7:0] Chip select O 1 —

OE Output enable O 1 —

R/W Read/write bar O 1 —

TSIZ[2:0] Transfer size O 0 —

TS Transfer start O 0 —

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-3

23.2 Memory Map and Register Definition

Table 23-2. LPC Block Memory Map

Offset or 
Address

Register Access Section/Page

General Registers

0x000 Chip Select 0/Boot Configuration Register R/W 23.2.1.1.1/23-4

0x004 Chip Select 1 Configuration Register R/W 23.2.1.1.2/23-8

0x008 Chip Select 2 Configuration Register R/W 23.2.1.1.2/23-8

0x00C Chip Select 3 Configuration Register R/W 23.2.1.1.2/23-8

0x010 Chip Select 4 Configuration Register R/W 23.2.1.1.2/23-8

0x014 Chip Select 5 Configuration Register R/W 23.2.1.1.2/23-8

0x018 Chip Select 6 Configuration Register R/W 23.2.1.1.2/23-8

0x01C Chip Select 7 Configuration Register R/W 23.2.1.1.2/23-8

0x020 Chip Select Control Register R/W 23.2.1.1.3/23-12

0x024 Chip Select Status Register R/W 23.2.1.1.4/23-13

0x028 Chip Select Burst Control R/W 23.2.1.1.5/23-14

0x02C Chip Select Deadcycle Control Register R/W 23.2.1.1.6/23-15

0x030 Chip Select Holdcycle Control Register R/W 23.2.1.1.7/23-16

0x034 Address Latch Timing Register R/W 23.2.1.1.8/23-17

0x100 SCLPC Packet Size Register R/W 23.2.1.2.1/23-18

0x104 SCLPC Start Address Register R/W 23.2.1.2.2/23-19

0x108 SCLPC Control Register R/W 23.2.1.2.3/23-20

0x10C SCLPC Enable Register R/W 23.2.1.2.4/23-21

0x110 SCLPC NextAddress Register R/W 23.2.1.2.5/23-22

0x114 SCLPC Status Register R/W 23.2.1.2.5/23-22

0x118 SCLPC Bytes Done Register R/W 23.2.1.2.6/23-23

0x11C EMB Share Counter Register R/W 23.2.1.2.7/23-24

0x120 EMB Pause Control Register R/W 23.2.1.2.8/23-25

0x140 LPC RX/TX FIFO Data Word Register R/W 23.2.1.3.1/23-26

0x144 LPC RX/TX FIFO Status Register R/W 23.2.1.3.2/23-27

0x148 LPC RX/TX FIFO Control Register R/W 23.2.1.3.3/23-28

0x14C LPC RX/TX FIFO Alarm Register R/W 23.2.1.3.4/23-29

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-4 Freescale Semiconductor

23.2.1 Register Descriptions

23.2.1.1 Chip Select/LPC Registers—0x0000

There are fourteen 32-bit chip select/LPC (CS/LP) registers. These registers are located at an offset from 
IMMR of <lpc_addr_offset>. Register addresses are relative to this offset. Therefore, the actual register 
address is IMMR + <lpc_addr_offset> + register address.

The following registers are available:
Section 23.2.1.1.1, “Chip Select 0/Boot Configuration Register” (0x0000)
Section 23.2.1.1.2, “Chip Select[1:7] Configuration Registers” (0x0004 - 0x0001C)
Section 23.2.1.1.3, “Chip Select Control Register” (0x0020)
Section 23.2.1.1.4, “Chip Select Status Register” (0x0024)
Section 23.2.1.1.5, “Chip Select Burst Control Register” (0x0028)
Section 23.2.1.1.6, “Chip Select Deadcycle Control Register” (0x002C)
Section 23.2.1.1.7, “Chip Select Holdcycle Control Register” (0x0030)
Section 23.2.1.1.8, “Address Latch Timing Register” (0x0034)

23.2.1.1.1 Chip Select 0/Boot Configuration Register

Offset 0x0000Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
WaitP WaitX

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MX ALEV AA CE ALEN DS BM

ADD
RM

WTyp WS RS WO RO
W

Reset cfg 0 0 1 0 0 cfg cfg 0 cfg 0 0 0 0 0 1

Figure 23-2. Chip Select 0/Boot Configuration Register
(Register is repeated for reference.)

Table 23-3. Chip Select 0/Boot Configuration Register Field Descriptions (Sheet 1 of 4)

Field Description

WaitP Number of wait states to insert. Can be applied as a prescale to WaitX or used by itself, as dictated by the 
WTyp bits (see below). Wait states control the number of LPC clocks for which the corresponding CS pin 
remains active in a non-burstable transaction. The default wait time is two LPC clocks. For example, if the 
WaitP is set to four, the CS is asserted as maximum for six clocks. Acknowledge can shorten the WaitP time, 
but not the fixed two LPC clock time.
This parameter describes the time before the burst signal is asserted for a burst transaction. An additional 
two clocks are also available for this read operation. There are an additional two and one-half clocks available 
for write operations.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-5

WaitX The base number of wait states to insert, or to be combined with WaitP, as dictated by the WaitP bits (see 
below). See the WaitP description.

MX The MX bit specifies whether a transaction operates a muxed or non-muxed. A muxed transaction presents 
address and data in different tenures. ALE is asserted during the address tenure. At the end of ALE, the 
address remains driven for at least one LPC clock before the CSx pin is asserted.
0  Non-muxed
1  Muxed

ALEV ALE level.
0 ALE is active low
1 ALE is active high

AA ACK active. This bit defines whether ACK input is active or not.
1 Programmed wait states can be overridden if/when the external device drives the ACK input low.
Wait states remain in effect. If no ACK is received, the cycle terminates at the end of the wait state period.
0 ACK input is not active and cannot shorten the wait state time.

CE An individual enable bit that allows CS operation for the corresponding CS pin. CE must be high to allow 
operation. The chip select control register ME bit must also be high, except when CS[0] is used for boot ROM.
1  External CS is enabled
0  External CS is disabled

ALEN ALE length
00 ALE width is one LPC clock
01 ALE width is two LPC clocks
10 ALE width is three LPC clocks
11 ALE width is four LPC clocks
Note: ALE length configures not only the width of the ALE assertion, but also the width of the isolation cycle 

between ALE deassertion and CS assertion.

DS Data size field, which represents the device data bus size (in bytes):
00 1byte
01 2 bytes
11 4bytes
Note: Table 23-25 and Table 23-29 show on which AD lines the data is located.

Offset 0x0000Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
WaitP WaitX

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MX ALEV AA CE ALEN DS BM

ADD
RM

WTyp WS RS WO RO
W

Reset cfg 0 0 1 0 0 cfg cfg 0 cfg 0 0 0 0 0 1

Figure 23-2. Chip Select 0/Boot Configuration Register
(Register is repeated for reference.)

Table 23-3. Chip Select 0/Boot Configuration Register Field Descriptions (Sheet 2 of 4)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-6 Freescale Semiconductor

BM Burst mode
0 Synchronous burst mode
1 Asynchronous burst mode (page mode)
Note: The asynchronous burst mode setting is only valid for non-muxed transactions. If this bit is set and 

muxed mode is enabled, a synchronous burst is performed.

Note: This bit has no influence if bursting (read or write) is not enabled.

ADDRM Address mode
0 Byte addressing
1 Short or word addressing
An 8-bit data bus always uses a byte addressing.
Note: Table 23-25 and Table 23-29 show on which AD/AX lines the address is located.

WTyp Wait state type bits that define the application of wait states contained in WaitP and WaitX fields as follows:
00 WaitX is applied to read and write cycles (WaitP is ignored)
01 WaitX is applied to read cycles; WaitP is applied to write cycles
10 WaitX is applied to reads; WaitP/WaitX (16-bit value) is applied to writes
11 WaitP/WaitX (as a full 16-bit value) is applied to reads and writes

WS Write swap bit. If high, endian byte swapping occurs during writes to a device. 
 • For 8-bit devices, this bit has no effect
 • For 16-bit devices, byte swapping can occur
 • For 32-bit devices (possible in muxed mode only), byte swapping can occur
1 Swapping can occur
0 Swapping cannot occur
A 2-byte swap is AB to BA; a 4-byte swap is ABCD to DCBA.
Note: Transactions at less than the defined port size (i.e., data size) apply swapping rules as above, 

according to the current transaction size.

RS Read swap bit. Same as ws, but swapping is done when reading data from a device. 
1 Swapping can occur
0 Swapping cannot occur
Note: Transactions at less than the defined port size (i.e., data size) apply swapping rules as above, 

according to the current transaction size.

Offset 0x0000Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
WaitP WaitX

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MX ALEV AA CE ALEN DS BM

ADD
RM

WTyp WS RS WO RO
W

Reset cfg 0 0 1 0 0 cfg cfg 0 cfg 0 0 0 0 0 1

Figure 23-2. Chip Select 0/Boot Configuration Register
(Register is repeated for reference.)

Table 23-3. Chip Select 0/Boot Configuration Register Field Descriptions (Sheet 3 of 4)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-7

WO Write-only bit. If the bit is high, the device is treated as a write-only device. An attempted read access can 
results in an interrupt (as dictated by the Chip Select Control Register ie bit). In any case, no transaction is 
presented to the device. 

RO Read-only bit. If the bit is high, the device is treated as a read-only device. An attempted write accesscan 
results in an interrupt (as dictated by the Chip Select Control Register ie bit). In any case, no transaction is 
presented to the device.
Note: This bit is high from reset, indicating the boot device is read-only.

Offset 0x0000Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
WaitP WaitX

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MX ALEV AA CE ALEN DS BM

ADD
RM

WTyp WS RS WO RO
W

Reset cfg 0 0 1 0 0 cfg cfg 0 cfg 0 0 0 0 0 1

Figure 23-2. Chip Select 0/Boot Configuration Register
(Register is repeated for reference.)

Table 23-3. Chip Select 0/Boot Configuration Register Field Descriptions (Sheet 4 of 4)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-8 Freescale Semiconductor

23.2.1.1.2 Chip Select[1:7] Configuration Registers

Offset:Chip Select 1 Configuration Register 0x0004Access: User read/write
Chip Select 2 Configuration Register 0x0008
Chip Select 3 Configuration Register 0x000C
Chip Select 4 Configuration Register 0x0010
Chip Select 5 Configuration Register 0x0014
Chip Select 6 Configuration Register 0x0018
Chip Select 7 Configuration Register 0x001C

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
WaitP WaitX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MX ALEV AA CE ALEN DS BM

ADD
RM

WTyp WS RS WO RO
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-3. Chip Select[1:7] Configuration Registers
(Register is repeated for reference.)

Table 23-4. Chip Select[1:7] Configuration Registers Field Descriptions (Sheet 1 of 4)

Field Description

WaitP Number of wait states to insert. Can be applied as a prescale to WaitX or used by itself, as dictated by the 
WTyp bits (see below). Wait states control the number of LPC clocks for which the corresponding CS pin 
remains active in a non-burstable transaction. The default wait time is two LPC clocks. For example, if the 
WaitP is set to four, the CS is asserted as maximum for six clocks. Acknowledgment can shorten the WaitP 
time, but not the fixed two LPC clock time.
This parameter describes the time before the burst signal is asserted for a burst transaction. An additional 
two clocks are also available for this read operation. There are an additional two and one-half clocks available 
for write operations.

WaitX The base number of wait states to insert, or to be combined with WaitP, as dictated by the WTyp bits (see 
below). See the WaitP description.

MX The MX bit specifies whether a transaction operates as muxed or non-muxed. A muxed transaction presents 
address and data in different tenures. ALE is asserted during the address tenure. At the end of ALE, the 
address remains driven for at least one LPC clock before the CSx pin is asserted.
0 Non-muxed
1 Muxed

ALEV ALE level
0 ALE is active low
1 ALE is active high

AA ACK active. This bit defines whether ACK input is active or not.
1 Programmed wait states can be overridden if/when the external device drives the ACK input low.
Wait states remains in effect. If no ACK is received, the cycle terminates at the end of wait state period.
0 ACK input is not active and cannot shorten the wait state time.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-9

CE An individual enable bit that allows CS operation for the corresponding CS pin. CE must be high to allow 
operation. The chip select control register ME bit must also be high, except when CS[0] is used for boot ROM.
1 External CS is enabled
0 External CS is disabled

ALEN ALE length
00 ALE width is one LPC clock
01 ALE width is two LPC clocks
10 ALE width is three LPC clocks
11 ALE width is four LPC clocks
Note: ALE length configures not only the width of the ALE assertion, but also the width of the isolation cycle 

between ALE deassertion and CS assertion.

DS Data size field that represents the device data bus size (in bytes):
00 1byte
01 2 bytes
11 4 bytes
Note: Table 23-25 and Table 23-29 show on which AD lines the data is located.

BM Burst mode
0 Synchronous burst mode
1 Asynchronous burst mode (page mode)
Note: The asynchronous burst mode setting is only valid for non-muxed transactions. If this bit is set and 

muxed mode is enabled, a synchronous burst is performed.

Note: This bit has no influence if bursting (read or write) is not enabled.

Offset:Chip Select 1 Configuration Register 0x0004Access: User read/write
Chip Select 2 Configuration Register 0x0008
Chip Select 3 Configuration Register 0x000C
Chip Select 4 Configuration Register 0x0010
Chip Select 5 Configuration Register 0x0014
Chip Select 6 Configuration Register 0x0018
Chip Select 7 Configuration Register 0x001C

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
WaitP WaitX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MX ALEV AA CE ALEN DS BM

ADD
RM

WTyp WS RS WO RO
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-3. Chip Select[1:7] Configuration Registers
(Register is repeated for reference.)

Table 23-4. Chip Select[1:7] Configuration Registers Field Descriptions (Sheet 2 of 4)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-10 Freescale Semiconductor

ADDRM Address mode
0 Byte addressing
1 Short or word addressing
An 8-bit data bus always uses a byte addressing.
Note: Table 23-25 and Table 23-29 show on which AD/AX lines the address is located.

WTyp Wait state type bits that define the application of wait states contained in the WaitP and WaitX fields, as 
follows:
00 WaitX is applied to read and write cycles (WaitP is ignored)
01 WaitX is applied to read cycles; WaitP is applied to write cycles
10 WaitX is applied to reads; WaitP/WaitX (16-bit value) is applied to writes
11 WaitP/WaitX (as a full 16-bit value) is applied to reads and writes

WS Write swap bit. If high, endian byte swapping occurs during writes to a device. 
 • For 8-bit devices, this bit has no effect
 • For 16-bit devices, byte swapping can occur
 • For 32-bit devices (possible in muxed mode only), byte swapping can occur
1 Swapping can occur
0 Swapping cannot occur
A 2-byte swap is AB to BA; a 4-byte swap is ABCD to DCBA.
Note: Transactions at less than the defined port size (i.e., data size) apply swapping rules as above, 

according to the current transaction size.

RS Read swap bit. Same as WS, but swapping is done when reading data from a device. 
1 Swapping can occur
0 Swapping cannot occur
Note: Transactions at less than the defined port size (i.e., data size) apply swapping rules as above, 

according to the current transaction size.

Offset:Chip Select 1 Configuration Register 0x0004Access: User read/write
Chip Select 2 Configuration Register 0x0008
Chip Select 3 Configuration Register 0x000C
Chip Select 4 Configuration Register 0x0010
Chip Select 5 Configuration Register 0x0014
Chip Select 6 Configuration Register 0x0018
Chip Select 7 Configuration Register 0x001C

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
WaitP WaitX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MX ALEV AA CE ALEN DS BM

ADD
RM

WTyp WS RS WO RO
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-3. Chip Select[1:7] Configuration Registers
(Register is repeated for reference.)

Table 23-4. Chip Select[1:7] Configuration Registers Field Descriptions (Sheet 3 of 4)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-11

WO Write-only bit. If the bit is high, the device is treated as a write-only device. An attempted read access can 
results in an interrupt (as dictated by the Chip Select Control Register ie bit). In any case, no transaction is 
presented to the device. 

RO Read only bit. If the bit is high, the device is treated as a read-only device. An attempted write access can 
results in an interrupt (as dictated by the Chip Select Control Register IE bit). In any case, no transaction is 
presented to the device.

Offset:Chip Select 1 Configuration Register 0x0004Access: User read/write
Chip Select 2 Configuration Register 0x0008
Chip Select 3 Configuration Register 0x000C
Chip Select 4 Configuration Register 0x0010
Chip Select 5 Configuration Register 0x0014
Chip Select 6 Configuration Register 0x0018
Chip Select 7 Configuration Register 0x001C

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
WaitP WaitX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MX ALEV AA CE ALEN DS BM

ADD
RM

WTyp WS RS WO RO
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-3. Chip Select[1:7] Configuration Registers
(Register is repeated for reference.)

Table 23-4. Chip Select[1:7] Configuration Registers Field Descriptions (Sheet 4 of 4)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-12 Freescale Semiconductor

23.2.1.1.3 Chip Select Control Register

Offset 0x0020Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
IE ME

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 23-4. Chip Select Control Register

Table 23-5. Chip Select Control Register Field Descriptions

Field Description

IE Interrupt enable bit. An interrupt can be generated if a write is initiated to a read-only define CS; a read is 
initiated to a write-only defined CS; an SCLPC state machine finishes transfer (normal or abort); or an SCLPC 
FIFO detects FIFO errors (underrun or overrun).

ME Master enable bit that is a global module enable bit. If this bit is low, register access can continue to occur, 
but no external transactions are accepted. However, ME does not affect boot ROM operation on CS[0]. For 
software to disable CS[0], it must write 0 to the chip select boot ROM configuration register enable bit (CE).

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-13

23.2.1.1.4 Chip Select Status Register

Offset 0x0024Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
WOerr ROerr

CSxerr

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 23-5. Chip Select Status Register

Table 23-6. Chip Select Status Register Field Descriptions

Field Description

WOerr Write-Only Error. If 1, it indicates a read access was attempted on a device marked as write-only.
This is a sticky bit and must be written with 1 to be cleared. This status bit is always active, regardless of the 
bus error enable bit. The CS number that relates to the error is reflected in the CSxerr field. An interrupt is 
also generated if the IE bit is set.

ROerr Read-Only Error. If 1, it indicates a write access was attempted on a device marked as read-only. 
This is a sticky bit and must be written with 1 to be cleared. This status bit is always active, regardless of the 
bus error enable bit. The CS number that relates to the error is reflected in the CSxerr field. An interrupt is 
also generated if the IE bit is set.

CSxerr Chip select error that indicates CS number associated with last Write-Only or Read-Only Error, as long as 
only one error type happens (write- or read-only). When the other type is happening, CSxerr points to the first 
violating CS of the opposite type. This is the case until one of the Error flags gets cleared.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-14 Freescale Semiconductor

23.2.1.1.5 Chip Select Burst Control Register

Offset 0x0028Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
CW7 SLB7 BWE7 BRE7 CW6 SLB6 BWE6 BRE6 CW5 SLB5 BWE5 BRE5 CW4 SLB4 BWE4 BRE4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CW3 SLB3 BWE3 BRE3 CW2 SLB2 BWE2 BRE2 CW1 SLB1 BWE1 BRE1 CW0 SLB0 BWE0 BRE0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-6. Chip Select Burst Control Register
(Register is repeated for reference.)

Table 23-7. Chip Select Burst Control Field Descriptions

Field Description

CW7 Chip select 7 cache wrap-capable; set if a device burst can perform PPC cache wrap. 
Note: Cache wrap means the external device supports a wrap-around mechanism at addresses 0x20, 0x40, 

0x60,... and so on.
For example, 0x8-0xC-0x10-0x14-0x18-0x1C-0x0-0x4.

SLB7 Chip select 7 short/long burst; set 0 for short burst only, 1 for long burst-capable. Short burst are limited to 8 
bytes, used for instruction fetches. Long burst-capable means the device can do a 16, 24, 32, 40, 48, or 
56-byte burst. The length of the burst depends on the amount of data which should be transfered at once.

BWE7 Chip select 7 burst write enable; set 1 to enable device bursting for a given chip select. This bit must be set 
to enable any bursting writes.

BRE7 Chip select 7 burst read enable, 1 to enable device bursting for given chip select. Must be set to enable 
bursting reads. 

CW6 - CW0 Same as CW7, but for CS6 - CS0/Boot

SLB6 - SLB0 Same as SLB7, but for CS6 - CS0/Boot

BWE6 - BWE0 Same as BWE7, but for CS6 - CS0/Boot

BRE6 - BRE0 Same as BRE7, but for CS6 - CS0/Boot

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-15

23.2.1.1.6 Chip Select Deadcycle Control Register

Offset 0x002CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DC7 DC6 DC5 DC4

W

Reset 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DC3 DC2 DC1 DC0

W

Reset 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

= Unimplemented or Reserved

Figure 23-7. Chip Select Deadcycle Control Register

Table 23-8. Chip Select Deadcycle Control Register Field Descriptions

Field Description

DC7 Deadcycles can be specified as 0 to 3. Deadcycles are added to the end of a Chip Select 7 read access and 
occur in addition to any cycles that may already exist. These cycles provide the device additional time to 
tri-state its bus after a read operation.
00 device can drive data one LPC clock cycle after CS deassertion
01 device can drive data two LPC clock cycle after CS deassertion
10 device can drive data three LPC clock cycle after CS deassertion
11 device can drive data four LPC clock cycle after CS deassertion

DC6 - DC0 Same as DC7, but for CS6 - CS0/Boot

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-16 Freescale Semiconductor

23.2.1.1.7 Chip Select Holdcycle Control Register

Offset 0x0030Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
HC7 HC6 HC5 HC4

W

Reset 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
HC3 HC2 HC1 HC0

W

Reset 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

= Unimplemented or Reserved

Figure 23-8. Chip Select Holdcycle Control Register

Table 23-9. Chip Select Holdcycle Control Register Field Descriptions

Field Description

HC7 Holdcycles can be specified as 0 to 3. Holdcycles are added to the end of a Chip Select 7 write access and 
occur in addition to any cycles that may already exist. These cycles provide the device additional time to latch 
the data from the bus after a write operation.
00 Data is valid one LPC clock cycle after CS deassertion
01 Data is valid two LPC clock cycle after CS deassertion
10 Data is valid three LPC clock cycle after CS deassertion
11 Data is valid four LPC clock cycle after CS deassertion
Note: For a write burst transaction the data is valid a half cylce less.

HC6-HC0 Same as HC7, but for CS6 - CS0/Boot

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-17

23.2.1.1.8 Address Latch Timing Register

Offset 0x0034Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0
ALT7 ALT6 ALT5 ALT4 ALT3 ALT2 ALT1 ALT0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 23-9. Address Latch Timing Control Register

Table 23-10. Address Latch Timing Register Field Descriptions

Field Description

ALT7 Chip Select 7 address latch timing modification for multiplexed mode.
0 CS is asserted together with the assertion of Address latch (ALE).
1 CS is asserted (ALEN + 1) x LPC_CLK clocks after the deassertion of ALE.

ALT6-ALT0 Same as ALT7, but for CS6 - CS0/Boot

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-18 Freescale Semiconductor

23.2.1.2 SCLPC Registers—0x0100

There are seven 32-bit registers for the LPC (SCLPC). These registers are located at an offset from IMMR 
of <lpc_addr_offset> + 0x0100. Register addresses are relative to this offset. Therefore, the actual register 
address is IMMR + <lpc_addr_offset> + register address.

The following registers are available:
Section 23.2.1.2.1, “SCLPC Packet Size Register” (0x0100)
Section 23.2.1.2.3, “SCLPC Control Register” (0x0108)
Section 23.2.1.2.4, “SCLPC Enable Register” (0x010C)
Section 23.2.1.2.5, “SCLPC Status Register” (0x0114)
Section 23.2.1.2.6, “SCLPC Bytes Done Register” (0x0118)
Section 23.2.1.2.7, “EMB Share and Wait Count Register” (0x011C)
Section 23.2.1.2.8, “EMB Pause Control Register” (0x0120)

23.2.1.2.1 SCLPC Packet Size Register

Offset 0x0100Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0
Packet Size

W Restart

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Packet Size

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-10. SCLPC Packet Size Register

Table 23-11. SCLPC Packet Size Register Field Descriptions

Field Description

Restart Writing a 1 to this bit begins a SCLPC transfer. It clears automatically and always reads back as 0.
Note: Start transfers after LPC FIFO and SCLPC are configured.

Packet Size This 31-bit field represents the number of bytes SCLPC must transact before going idle and waiting for a 
restart.
Note: The co-location of the restart bit and the packet_size field allows software to restart a transaction and 

change the packet_size in a single write. Maximum packet size is 2G-1 bytes.

Note: Packet Size need to be either a multiple of BPT setting (SCLPC Enable Register Field Descriptions) 
or of 8.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-19

23.2.1.2.2 SCLPC Start Address Register

Offset 0x0104Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Start Address

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Start Address

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-11. SCLPC Start Address Register

Table 23-12. SCLPC Start Address Register Field Descriptions

Field Description

Start Address The address of the first byte in the packet to be sent. 
Note: Start Address need to be either a multiple of BPTsetting (SCLPC Enable Register Field Descriptions) 

or of 8.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-20 Freescale Semiconductor

23.2.1.2.3 SCLPC Control Register

Offset 0x0108Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
CSX Flush R/W

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DAI BPT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 23-12. SCLPC Control Register

Table 23-13. SCLPC Control Register Field Descriptions

Field Description

CSX This field should be written with the chip select number associated with each SCLPC transaction.
Note: LPC configuration registers associated with this CS also affect SCLPC transactions. The two work 

together.

Flush If set to 1, this bit enables the assertion of the DMA request at the completion of a read packet, regardless of 
the actual state of the physical FIFO alarm. The DMA request deasserts after the FIFO empties.

R/W Read/Write bar that controls the direction of the SCLPC transaction.
1 SCLPC reads from the device; i.e., FIFO receive
0 SCLPC writes to the device; i.e., FIFO transmit

DAI Disable auto increment. Normally, SCLPC and LPC present sequential incrementing addresses to the device 
as the packet proceeds. If the device is operating as a single address FIFO, the DAI bit should be set to 1. 
When set, addresses to the device are stuck at start_address for every transaction.
For DAI operation, the BPT field must be set to the port size of the device.

BPT Bytes per transaction that indicates the number of bytes per transaction. The only valid entries in this field 
are 1, 2, 4, 8, 16, 24, 32, 40, 48 and 56.
Start_address and packet_size values must be aligned/multiples of BPT or multiples of 8. BPT should be set 
to the device port size for DAI operation.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-21

23.2.1.2.4 SCLPC Enable Register

Offset 0x010CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
RC RF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
AIE NIE ME

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 23-13. SCLPC Enable Register

Table 23-14. SCLPC Enable Register Field Descriptions

Field Description

RC Reset controller. This bit allows for a software reset of the SCLPC state machine. Writing a 1 to this bit resets 
the SCLPC state machine. Reset is maintained as long as this bit is high. Software must write this bit low to 
release the reset and start operation.
Note: Although RC does not reset this register interface, it does clear interrupt and interrupt status 

conditions.

Never reset the SCLPC Controller during a transaction (TX or RX).

RF Reset FIFO. This is the FIFO software reset bit. Writing a 1 to this bit resets the SCLPC FIFO. For normal 
operation, the FIFO must not be in reset. Resetting the FIFO clears the FIFO of data and resets its read/write 
pointers and the status bits, but it does not disturb previously programmed alarm and granularity settings.
Note: It’s recommended that software set and clear the RC and RF bits prior to programming and starting a 

packet.

AIE Abort interrupt enable. If set, and a FIFO error occurs during packet transmission, a CPU interrupt from 
SCLPC is generated. In any case, the packet is terminated and an abort status bit is set.

NIE Normal interrupt enable. If set, this bit enables a CPU interrupt to occur at the end of a normally terminated 
packet. There is also an NT status bit that sets in any case.

ME Master enable. This bit must be set to 1 to generate a restart to the SCLPC state machine. Restart is achieved 
by writing 1 to byte 0 of the packet_size register. This ME bit must also be set for a restart to occur. 
Note: If ME is low (inactive), it also clears interrupt and interrupt status.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-22 Freescale Semiconductor

23.2.1.2.5 SCLPC Status Register

Offset 0x0114Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
AT NT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 23-14. SCLPC Status Register

Table 23-15. SCLPC Status Register Field Descriptions

Field Description

AT Abort termination. This bit is set to 1 if the packet has terminated abnormally (which is only possible if a FIFO 
error occurred).
Note: This bit is ANDed with the AIE bit (Table 23-14) to generate a single CPU interrupt signal to the core. 

This bit is sticky. Write to 1 for clearing the bit and clearing the interrupt.

Note: This bit (and any interrupt) is also cleared if: 1) the RC bit is set, 2) the ME bit is clear, or 3) restart 
occurs.

NT Normal termination. This bit is set to 1 when a complete packet has been transferred successfully.
Note: This bit is ANDed with the NIE bit (Table 23-14) to generate a single CPU interrupt signal to the core. 

This bit is sticky. Write to 1 for clearing the bit and clearing the interrupt.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-23

23.2.1.2.6 SCLPC Bytes Done Register

Offset 0x0118Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R Bytes Done

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Bytes Done

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 23-15. SCLPC Bytes Done Register

Table 23-16. SCLPC Bytes Done Register Field Descriptions

Field Description

Bytes Done Bytes done is updated dynamically by the SCLPC state machine to represent the actual number of bytes 
transmitted at a given point in time. At the normal conclusion of a packet, the BYTES_DONE field should 
match the PACKET_SIZE field.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-24 Freescale Semiconductor

23.2.1.2.7 EMB Share and Wait Count Register

This register configures the EMB arbiter and belong to the LPC functionality.

Offset 0x011CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
emb_share_count

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 nfc_wait_count ata_wait_count lpc_wait_count

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 23-16. EMB Share and Wait Count Register

Table 23-17. EMB Share and Wait Count Register Field Descriptions

Field Description

emb_share_
count

This 16-bit value controls the length of the time slot assigned to ATA or NFC transactions before an SCLPC 
or CSB LPC (if the lpc_p bit is set in the emb pause control register) request starts to pause the other 
modules.

nfc_wait_count This 5-bit value controls how long the bus remains assigned to NFC after the bus goes idle.

ata_wait_count This 5-bit value controls how long the bus remains assigned to ATA after the bus goes idle.

lpc_wait_count This 5-bit value controls how long the bus remains assigned to LPC after the bus goes idle.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-25

23.2.1.2.8 EMB Pause Control Register

This register configures the EMB arbiter and belong to the LPC functionality.

Offset 0x08Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ATA_
P

LPC_
PW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 23-17. EMB Pause Control Register
(Register is repeated for reference.)

Table 23-18. EMB Pause Control Register Field Descriptions

Field Description

ATA_P ATA PIO pause disable
0 ATA PIO request can pause an ongoing SCLPC transaction.
1 ATA PIO request cannot pause an ongoing SCLPC transaction. The SCLPC transaction is allowed to finish 

the transfer before EMB deasserts the LPC bus grant.

LPC_P LPC CSB pause disable
0 LPC CSB request immediately pauses an ATA DMA and NFC transfer.
1 LPC CSB request does not immediately pause an ATA DMA and NFC transfer. The pause is initiated after 

the emb_share_count expires or no other ATA or NFC request is asserted.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-26 Freescale Semiconductor

23.2.1.3 LPC RX/TX FIFO Registers

LPC uses a single FIFO that changes direction based on the RX/TX mode. Software controls direction 
change and flushes FIFO before changing directions. FIFO memory is 1024 bytes (256 x 32).

LPC FIFO is controlled by four 32-bit registers. These registers are located at an offset from IMMR of 
<lpc_addr_offset> + 0x0140. Register addresses are relative to this offset. Therefore, the actual register 
address is IMMR + <lpc_addr_offset> + register address.

Hyperlinks to the LPC FIFO registers are provided below:
Section 23.2.1.3.1, “LPC RX/TX FIFO Data Word Register” (0x0140)
Section 23.2.1.3.2, “LPC RX/TX FIFO Status Register” (0x0144)
Section 23.2.1.3.3, “LPC RX/TX FIFO Control Register” (0x0148)
Section 23.2.1.3.4, “LPC RX/TX FIFO Alarm Register” (0x014C)

23.2.1.3.1 LPC RX/TX FIFO Data Word Register

Offset 0x0140Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
FIFO_Data_Word

W

Reset X X X X X X X X X X X X X X X X

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FIFO_Data_Word

W

Reset X X X X X X X X X X X X X X X X

X: Bit is not reset to a defined value.

Figure 23-18. LPC RX/TX FIFO Data Word Register

Table 23-19. LPC RX/TX FIFO Data Word Register Field Descriptions

Field Description

FIFO_Data_
Word

The FIFO data port. Reading from this location fetches data from the FIFO writing to this location writes data 
into the FIFO. During normal operation, the DMA controller moves data to and from this register.
Note: Only full-word access is allowed. If all byte enables are not asserted when accessing this location, a 

FIFO error flag is generated.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-27

23.2.1.3.2 LPC RX/TX FIFO Status Register

Offset 0x144Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ERR UF OF

FULL ALARM EMPTY

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 23-19. LPC RX/TX FIFO Status Register

Table 23-20. LPC RX/TX FIFO Status Register Field Descriptions

Field Description

ERR Error. The flag bit is essentially the logical OR of UF and OF bits and can be polled to detect any FIFO error. 
After clearing the offending condition, writing 1 to this bit clears the flag.

UF Underflow. The flag indicates the read pointer has surpassed the write pointer. FIFO was read beyond empty. 
Resetting FIFO clears this condition; writing 1 to this bit clears the flag.

OF Overflow. The flag indicates the write pointer has surpassed the read pointer. FIFO was written beyond full. 
Resetting FIFO clears this condition; writing 1 to this bit clears the flag.

FULL FIFO full. A full indication tracks with FIFO state.

ALARM This bit is set when the FIFO level is at or below (write)/above (read) the alarm watermark, as written 
according to the LPC RX/TX FIFO Alarm Register setting.
This bit is cleared when the FIFO level is at or above (write)/below (read) the granularity watermark, as 
configured according to the LPC RX/TX FIFO Control Register setting.
Setting this bit automatically signals the DMA engine to refill (write)/empty (read) the FIFO.

EMPTY FIFO empty. An empty indication tracks with FIFO state.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-28 Freescale Semiconductor

23.2.1.3.3 LPC RX/TX FIFO Control Register

Offset 0x0148Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
GR

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 23-20. LPC RX/TX FIFO Control Register

Table 23-21. LPC RX/TX FIFO Control Register Field Descriptions

Field Description

GR Granularity. These bits control the high (write)/low (read) watermark point at which FIFO negates the alarm 
condition (i.e., a request for data). It represents the number of free bytes times four.
000 FIFO waits to become completely full (write)/empty (read) before stopping the data request.
001 FIFO stops the data request when only one word of space (write)/one word (read) remains.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-29

23.2.1.3.4 LPC RX/TX FIFO Alarm Register

Offset 0x144Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ALARM_W

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 23-21. LPC RX/TX FIFO Alarm Register

Table 23-22. LPC RX/TX FIFO Alarm Register Field Descriptions

Field Description

ALARM_W Alarm Watermark. Write these bits to set the low (write)/high (read) level watermark, which is the point where 
FIFO asserts a request for the DMA controller data to fill (write)/empty (read). The value is in bytes. 

For example, During a SCLPC write operation (R/W bit of SCLPC Control Register) and an alarm watermark 
setting of128, an alarm condition occurs when FIFO contains 128 bytes or less. 

After asserted, an alarm does not negate until a high (write)/ low (read) level mark is reached, as specified 
by the LPC RX/TX FIFO Control Register granularity bits.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-30 Freescale Semiconductor

23.3 Functional Description
There are two primary modes of operation:

• Muxed
• Non-muxed

Within each mode, there is considerable flexibility to control the operation.

Each CS can be programmed to a different mode of operation (muxed, non-muxed, number of wait states, 
byte swapping, etc.).

In muxed mode, the same 32-bit local bus presents an address in an address tenure and data in a data tenure, 
in a muxed fashion (similar to PCI protocol).

Muxed mode provides an ALE during the address phase to capture the address. This mode requires 
external logic to latch the address during the address tenure. The level of the ALE can be programmed by 
the ALE bit.

An ACK input is provided and can be asserted to shorten (but not extend) wait states. 

The LPC on MPC5121e provides an output enable signal, OE, to achieve a complete glueless interface for 
most devices. OE is asserted one clock after the CS assertion if a read transaction occurs.

Muxed and non-muxed modes support a variety of device configurations and are configurable on a per CS 
basis. The read and write burst functionality is available in both modes. In non-muxed mode, an 
asynchronous burst (page mode burst) is also possible.

23.3.1 Non-Muxed Mode

In non-muxed mode, the 32-bit address/data bus is divided into address and/or data lines.

NOTE
The 24-bit data width is not supported. 

The total pin number also requires the addition of the control signals CS, 
R/W, ACK, OE, TS (programmable), and TSIZ (programmable) where 
available. 

Table 23-23. Non-Muxed Mode Options

Data Size
Address

Bus Width
Pins Used Memory Size Comments

8 32 40 4 GBytes

16 26 42 128 MBytes Short addressing

16 26 42 64 MBytes Byte addressing

32 10 42 4 KBytes Word addressing

32 10 42 1 KBytes Byte addressing

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-31

TSIZ bits can be enabled for every mode, but the TSIZ bits only make sense for the byte addressing mode. 
The low address bits, are not available in the short or word addressing mode. Only TSIZEs of 1, 2, or 4 are 
supported.

TSIZ[1:0] are driven as follows:
01 = Transaction is 1 byte
10 = Transaction is 2 bytes
00 = Transaction is 4 bytes

Other values are invalid and should not be required by the external device.

Table 23-25 and Table 23-26 describes the various combinations of TSIZ. In addition also the influence of 
the swap bits - WS and RS of Chip Select X Configuration Register - is shown.

Table 23-24. Internal Data and Address Bus Assignment to External Signals in Non-Muxed Mode

Signal
Name

8-Bit
Data Bus

16-Bit Data Bus 32-Bit Data Bus

Byte 
Addressing

Short 
Addressing

Byte 
Addressing

Word 
Addressing

AX[09:08] 0 address[25:24] address[26:25] address[9:8] address[11:10]

AX[07:00] address[31:24] address[23:16] address[24:17] address[7:0] address[9:2]

AD[31:24] address[23:16] address[15:8] address[16:9] data[31:24]

AD[23:16] address[15:8] address[7:0] address[8:1] data[23:16]

AD[15:8] address[7:0] data[15:8] data[15:8]

AD[7:0] data[7:0] data[7:0] data[7:0]

Table 23-25. Aligned Data Transfers for 32-Bit Data Bus Width

Swap
WS or RS set

Transfer
Size

TSIZ[1:0] Address[1:0]
Data Lanes

AD[31:24] AD[23:16] AD[15:8] AD[7:0]

NO/YES1

1 Swap setting has no influence on byte transfers.

1 byte 01 00 Data — — —

01 — Data — —

10 — — Data —

11 — — — Data

NO 2 bytes 10 00 Data1 Data2 — —

10 — — Data1 Data2

YES 00 Data2 Data1 — —

10 — — Data2 Data1

NO 4 bytes 00 00 Data1 Data2 Data3 Data4

YES Data4 Data3 Data2 Data1

Note: Data1 is most significant byte and Data2 (2 byte transfer) or Data 4 (4 byte transfer) is lowest significant byte of data word.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-32 Freescale Semiconductor

Figure 23-22 shows a non-muxed transaction. Figure 23-23 and Figure 23-24 show non-muxed 
synchronous bursts transactions. Figure 23-25 and Figure 23-26 show non-muxed asynchronous burst 
(page mode) transactions. Detailed information about timing diagrams and the influence of register 
settings can be found in the datasheet.

NOTE
In the following five diagrams, deadcycle and holdcycle are each set to 0.

Table 23-26. Aligned Data Transfers for 16-Bit Data Bus Width

Swap
WS or RS set

Transfer 
Size

TSIZ0 Address 0
Data Lanes

AD[15:8] AD[7:0]

NO/YES1 1 byte 1 0 Data —

1 — Data

NO 2 bytes 0 0 Data1 Data2

YES Data2 Data1

Note: Data1 is most significant byte and Data2 is lowest significant byte of data word.

1 Swap setting has no influence on byte transfers.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-33

Figure 23-22. Timing Diagram—Non-Muxed Mode

ADDR

DATA (rd)

CS[x]

R/W

DATA (wr)

OE

TS

ACK

Valid Address

Valid Write Data

Valid Read Data

Note:
ACK can shorten the CS pulse width.
Related to the holdcycle setting, write data can stay on the bus longer.
This diagram represents a wait state setting of 2.

TSIZ[1:0]

LPC_CLK

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-34 Freescale Semiconductor

T

Figure 23-23. Timing Diagram—Non-Muxed Synchronous Read Burst

t

Figure 23-24. Timing Diagram—Non-Muxed Synchronous Write Burst

ADDR

DATA (rd)

CS[x]

R/W

OE

TS

Burst

LPC_CLK

Valid Data

Valid Address

Note:  This diagram represents a wait state setting of 1.

ADDR

CS[x]

R/W

TS

Burst

LPC_CLK

Valid Address

NOTES:
This diagram represents a wait state setting of 1.

DATA (wr)

Valid Write Data

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-35

t

Figure 23-25. Timing Diagram—Non-Muxed Asynchronous Read Burst

ADDR[32:x+1]

DATA (rd)

CS[x]

R/W

OE

TS

Burst

LPC_CLK

Valid read Data

Valid Address (Page address)

ADDR[x:0] Valid Address (e.g. 0) Valid Address (e.g. 4)

Notes:
If the transaction is initiated by a master on the CSB, the address wraps around, if necessary, at cache level 
boundaries (e.g., 0x20; 0x40...)

If the transaction is initiated by the SCLPC module, the address continuously increases.
This diagram represents a wait state setting of 1.

The address changes at the rising edge of the LPC clock.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-36 Freescale Semiconductor

Figure 23-26. Timing Diagram—Non-Muxed Asynchronous Write Burst

ADDR[32:x+1]

CS[x]

R/W

TS

Burst

LPC_CLK

Valid Address (Page address)

ADDR[x:0] Valid Address Valid Address

DATA (wr)

Valid write Data

NOTES:

If the transaction is initiated by a master on the CSB, the address wraps around, if necessary, at cache level 
boundaries.

If the transaction is initiated by the SCLPC module, the address continuously increases with no address 
wrap-around.
This diagram represents a wait state setting of 1.

The address changes at the rising edge of the LPC clock.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-37

Figure 23-27. Timing Diagram—Non-Muxed Mode with Different Timing Settings

In Non-Muxed mode the address and data are driven simultaneously on the external AD/AX bus. A single 
dedicated R/W pin is driven to indicate read or write. An individually dedicated CS pin is driven low while 
an external access is active. 

Wait states are programmable and simply select how many LPC clocks the CS pin remain asserted. 
Separate values are available for read cycles versus write cycles. These values can be combined to create 
extremely long (up to 16 bits) cycles. Byte lane swapping is separately programmable between reads 
versus writes and can be used to perform endian conversions. The 24-bit data width is not supported.

Devices can be marked as read-only or write-only by setting a control bit in the appropriate LPC register. 
Attempted accesses in violation of this setting are prevented. Each CS pin can be individually 
enabled/disabled and the entire LPC module has a master enable bit. No software reset bit is provided or 
needed.

The non-muxed mode requires no external logic for interfacing to simple devices such as flash ROM, 
EEPROM or SRAM. It is faster than the muxed mode because data and address are provided in a single 
tenure.

ADDR

DATA (rd)

CS[x]

R/W

DATA (wr)

OE

TS

Valid Address

Valid Write Data

Valid Read Data

Note:
This diagram represents a holdcycle setting of 1.
This diagram represents a deadcycle setting of 2.
This diagram represents a wait state setting of 2.

TSIZ[1:0]

LPC_CLK

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-38 Freescale Semiconductor

23.3.2 Muxed Mode

In muxed mode, the addresses and data are muxed using dual tenure. First, the address is put on the shared 
address/data bus and ALE is asserted. The data is then driven when the chip select is asserted. Different 
modes of data sizes can be configured, as shown in Table 23-27.

NOTE
The 24-bit data width is not supported.

Table 23-27. Muxed Mode Options

Data Size Address Size Comments

8 32 —

16 31 Short addressing; AD 0 is connected to internal 
address 1. Internal address 0 is not brought out.

16 32 Byte addressing

32 30 Word addressing; AD 0 is connected to internal 
address 2. Internal address 0 and 1 is not brought out.

32 32 Byte addressing

Table 23-28. Internal Data and Address Bus Assignment to External Signals in Muxed Mode

Signal
Name

8-Bit Data Bus 16-Bit Data Bus 32-Bit Data Bus

Addr
Phase

Isolation
Data

Phase
Addr

Phase
Isolation

Data
Phase

Addr
Phase

Isolation
Data

Phase

AX[03] 1 1 TS 1 1 TS 1 1 TS

AX[02:01] TSIZ[1:0] TSIZ[1:0] TSIZ[1:0]

AX[00] ALE1

1 ALE represents the programmable value of the ale bit (csboot/csx configuration registers).

!ALE !ALE ALE !ALE !ALE ALE !ALE !ALE

AD[31:24] address 
[31:24]

address 
[31:24]

0 address 
[31:24]

address 
[31:24]

0 address 
[31:24]

address 
[31:24]

data 
[31:24]

AD[23:16] address 
[23:16]

address 
[23:16]

0 address 
[23:16]

address 
[23:16]

0 address 
[23:16]

address 
[23:16]

data 
[23:16]

AD[15:8] address 
[15:8]

address 
[15:8]

0 address 
[15:8]

address 
[15:8]

data
[15:8]

address 
[15:8]

address 
[15:8]

data
[15:8]

AD[7:0] address 
[7:0]

address 
[7:0]

data
[7:0]

address 
[7:0]

address 
[7:0]

data
[7:0]

address 
[7:0]

address 
[7:0]

data
[7:0]

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-39

An ALE signal is asserted during this address tenure. ALE level is programmable to be low or high. The 
dedicated R/W output is also driven with ALE (and throughout the cycle). One clock after the ALE 
negates, the appropriate CS pin asserts (low) and the AD bus enters the data tenure (isolation cycle). The 
CS pin and this data tenure remain active until the programmed wait states expire or the device responds 
with an ACK assertion. ACK polarity is active low, but can be programmed to be ignored. The data tenure 
can contain up to the full 32-bit width. However, the data width is programmable to support dynamic 
bus-sized transactions.

The muxed mode requires external logic to latch the address during the address tenure and to decode bank 
selects if they are encoded. This mode is slower than the non-muxed mode because data and address are 
muxed in time. The supported address space is limited by the 30 address lines. In muxed mode, LPC can 
access up to 4 GBytes of data.

23.3.2.1 Address Tenure

The address is presented on the corresponding AD bus bits, which total 32 bits (AD[31:0]). 

The TSIZ bits appear on AX[34] (TSIZ most significant bit) to AX[33] (TSIZ least significant bit). These 
bits are calculated and driven by the LPC based on the internal byte lane enables on the IP bus.

NOTE
Only TSIZes of one, two, or four are supported.

Table 23-29. Internal Data and Address Bus Assignment to External Signals in Muxed Mode 
(Short/Word Addressing)

Signal
Name

8-Bit Data Bus 16-Bit Data Bus 32-Bit Data Bus

Addr
Phase

Isolation
Data

Phase
Addr

Phase
Isolation

Data
Phase

Addr
Phase

Isolation
Data

Phase

AX[03] 1 1 TS 1 1 TS 1 1 TS

AX[02:01] TSIZ[1:0] TSIZ[1:0] TSIZ[1:0]

AX[00] ALE1

1 ALE represents the programmable value of the ale bit (csboot/csx configuration registers).

!ALE !ALE ALE !ALE !ALE ALE !ALE !ALE

AD[31] address 31 address 31 0 0 0 0 0 0 D31

AD[30] address 30 address 30 0 address 31 address 31 0 0 0 D30

AD[29:24] address 
[29:24]

address 
[29:24]

0 address 
[30:25]

address 
[30:25]

0 address 
[31:26]

address 
[31:26]

data 
[29:24]

AD[23:16] address 
[23:16]

address 
[23:16]

0 address 
[24:17]

address 
[24:17]

0 address 
[25:18]

address 
[25:18]

data 
[23:16]

AD[15:8] address 
[15:8]

address 
[15:8]

0 address 
[16:9]

address 
[16:9]

data
[15:8]

address 
[17:10]

address 
[17:10]

data 
[15:8]

AD[7:0] address 
[7:0]

address 
[7:0]

data
[7:0]

address 
[8:1]

address 
[8:1]

data
[7:0]

address 
[9:2]

address 
[9:2]

data
[7:0]

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-40 Freescale Semiconductor

TSIZ [1:0] are driven as follows:
01 = Transaction is 1 byte
10 = Transaction is 2 bytes
00 = Transaction is 4 bytes

NOTE
Other values are invalid and should not be required by the external device.

Table 23-30 and Table 23-31 describe the various combinations of TSIZ, address, and byte lanes for a 
32-bit and 16-bit wide data bus. In addition also the influence of the swap bits - WS and RS of Chip Select 
X Configuration Register - is shown.

Table 23-30. Aligned Data Transfers for 32-Bit Data Bus Width

Swap
WS or RS set

Transfer
Size

TSIZ[1:0] Address[1:0]
Data Lanes

AD[31:24] AD[23:16] AD[15:8] AD[7:0]

NO/YES1

1 Swap setting has no influence on byte transfers.

1 byte 01 00 Data — — —

01 — Data — —

10 — — Data —

11 — — — Data

NO 2 bytes 10 00 Data12

2 Data1 is most significant byte and Data2 (2 byte transfer) or Data 4 (4 byte transfer) is lowest significant byte of data word.

Data2 — —

10 — — Data1 Data2

YES 00 Data2 Data1 — —

10 — — Data2 Data1

NO 4 bytes 00 00 Data1 Data2 Data3 Data4

YES Data4 Data3 Data2 Data1

Table 23-31. Aligned Data Transfers for 16-Bit Data Bus Width

Swap
WS or RS set

Transfer 
Size

TSIZ0 Address 0
Data Lanes

AD[15:8] AD[7:0]

NO/YES1

1 Swap setting has no influence on byte transfers.

1 byte 1 0 Data —

1 — Data

NO 2 bytes 0 0 Data12

2 Data1 is most significant byte and Data2 is lowest significant byte of data word.

Data2

YES Data2 Data1

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-41

The ALE signal is active low or high, depending on the ALE bit setting, and remains asserted for several 
external LPC bus clocks, depending on the ALEN bit field setting. Any external latch should be 
transparent when active.

23.3.2.2 Data Tenure

During data tenure, the following occurs:
• When a write to the device occurs, the LPC drives the indicated AD bits.
• When a read occurs, the indicated AD bits are tri-stated by the LPC. 

NOTE
AD[0] is treated as the least significant data bit. Any unused data bits (as 
indicated by the data size field in the associated control register) are driven 
low by the LPC. Therefore, they should not be driven by the device or glue 
chip.

The ACK input signal is internally synchronized to the internal clock. At the first LPC clock edge where 
the ACK input is detected as asserted, the LPC terminates the transaction and releases the bus on the next 
LPC bus clock. Figure 23-28 shows a muxed transaction-type timing diagram. Figure 23-28,  
Figure 23-29, and Figure 23-30 show muxed burst transactions. Detailed information about timing 
diagrams and the influence of register settings can be found in the datasheet.

NOTE
In the following diagrams, deadcycle and holdcycle are each set to 0.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-42 Freescale Semiconductor

Figure 23-28. Timing Diagram – Muxed Mode

LPC_CLK

AD[31:0] (wr)

CSx

R/W

ALE

Address

Data TenureAddress Tenure

TS

Valid Write Data

AD[31:0] (rd)

Valid Read Data

Address 

OE

NOTES:
ACK can shorten the CS pulse width.
ALE can be active high or low, depending on the ale bit of the csboot/csx configuration register. 
This diagram shows an active low scenario, which means the ALE bit is set to 0.
The length of the address latch and of the isolation cycle can be configured by the ALEN bit of the CSBOOT/CSX 
configuration register. This diagram shows a setting of 0.
This diagram represents a wait state setting of 3.
Address Latch bit are set to zero. CS is asserted together with ALE.

Address

Latch
Isolation

ACK

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-43

T

Figure 23-29. Timing Diagram – Muxed Synchronous Read Burst

CLK

CSx

R/W

ALE

Burst

Address Tenure

TS

OE

NOTES:
ALE can be active high or low. This diagram shows an active low scenario.
The length of the address latch and of the isolation cycle can be configured by the ALEN bit of the CSBOOT/CSX 
configuration register. This diagram shows a setting of 0.
This diagram represents a wait state setting of 1.
Address Latch bit are set to one. CS is asserted after the isolation cycle.

AD[31:0] (rd) Address

Valid Read Data

Data Tenure

Address 
Latch

Isolation

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-44 Freescale Semiconductor

Figure 23-30. Timing Diagram—Muxed Synchronous Write Burst

23.3.2.3 Boot Configuration

After reset, the core can fetch the first instruction from the LPC. The chip select boot (CSBoot) is dedicated 
for this purpose. CSBoot and CS0 are physically the same pins. The difference is that CSBoot is affected 
by the reset configuration and is enabled after reset.

Several options are available for this purpose:
• Muxed or non-muxed mode
• Byte or short word addressing
• Data size can be 8, 16, or 32 bits

23.3.2.4 Chip Selects Configuration

All chip selects (CS0-7) have the same functionality. Only one CS can be active at any given time. If an 
address hit is located in multiple CS windows, only the CS with the highest priority becomes active. The 
CS with the lowest number has the highest priority (CS0 = highest priority, CS7 = lowest priority).

CSBoot and CS0 are identical with the exception of their control registers, contained in the XLBMEN 
register map (LocalPlus Boot/CS0-7 Access Window Registers (LPBAW/LPCSxAW) and LocalPlus 
CS0-7 Access Window Registers (LPCSxAW)); see Section 23.3.2.3, “Boot Configuration”. CSBoot and 
CS0 are physically the same pins. The difference is that CSBoot is affected by the reset configuration and 
is the only enabled chip select after reset.

CLK

AD[31:0] (wr)

CSx

R/W

ALE

Address

Burst
Data TenureAddress Tenure

TS

Valid Write Data

NOTES:
ALE can be active high or low. This diagram shows an active low scenario.

The length of the address latch and of the isolation cycle can be configured by the ALEN bit of the CSBOOT/CSX 
configuration register. This diagram shows a setting of 0.

This diagram represents a wait state setting of 1.

Address Latch bit are set to zero. CS is asserted together with ALE.

Address 
Latch

Isolation

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

Freescale Semiconductor 23-45

To change from CSBoot to CS0, the CS0 start and stop addresses must be configured and CSBoot must be 
disabled at the same time CS0 is enabled.

Deadcycles from 0 to 3 can be added to any CS read access and occur in addition to any cycles that already 
exist. The chip select deadcycle control register configures deadcycles.

Holdcycles from 0 to 3 can be added to any CS write access and occur in addition to any cycles that already 
exist. 

Burst mode operations are supported on all CSs and all modes and can be configured by the chip select 
burst control register.

The follwing features are valid for all CS’s and for both modes (non-muxed and muxed):
• Supports 8-, 16-, and 32-bit data bus width
• Supports dynamic bus sizing, which means read and write transactions greater than the defined port 

size are possible
• Transactions less than the defined port size are supported only if the device can decode the 

Tsiz[1:0] bits, which indicate the current transaction size.
• Supports code execution

— The e300 processor can execute code from the LP bus from all CS
• Supports burst access (read and write)

— Synchronous burst

Asynchronous burst mode (Page mode) is supported in non-muxed mode.

23.3.3 SCLPC Interface 

The SCLPC interface, together with the DMA engine, can be used to transfer data between an external 
device and the DRAM without the usage of the e300 processor.

SCLPC controls the data transfer between the LPC RX/TX FIFO and the external device. The external 
transfer behavior is defined by the CSBoot/CS[x] configuration, chip select burst control, chip select 
deadcycle, and chip select holdcycle registers. The supported transfer sizes are limited, by BPT bit field 
setting, to 1, 2, 4, 8, 16, 24, 32, 40, 48, or 56 bytes only. Burst transfers could be generated with transfer 
size settings greater as 4.

The SCLPC controller supports half-duplex operation (transmit or receive) only. If software configures a 
transmit packet, the packet must be complete before a receive operation can be configured and started. The 
length of one transfer packet is defined with the Packet Size bit field of the SCLPC Packet Size Register. 
A transfer packet is split down into smaller bytes-per-transfer (BPT) slice. A BPT slice cannot be 
interrupted by a direct e300 access to an external device. A BPT slice needs to be finished first before the 
e300 access goes onto the external bus.

23.3.3.1 SCLPC Programming

The device specific behavior (non-/muxed, burst, wait cycles - Table 23-3 through Table 23-10) needs to 
be programmed before the SCLPC is setup.

MPC5121e Microcontroller Reference Manual, Rev. 2



LocalPlus Bus (LPC)

23-46 Freescale Semiconductor

Following steps are to setup the SCLPC controller together with LPC RX/TX FIFO:
• Configure DMA to transfer data between LPC RX/TX FIFO and DRAM 

— The maximum Inner Minor Byte Count setting, working together with the LPC RX/TX FIFO, 
is 32 bytes

• Configure granulatity watermark to 28. This is done by setting the GR bit field (Table 23-21) to 7
• Configure alarm watermark (ALARM_W bit field (Table 23-22)). The setting is depending on the 

system load.
• Configure start address, chip select, direction (read/write), address increment and 

bytes-per-transfer (Table 23-12 and Table 23-13). In case of a read transfer from an external device 
set Flush bit. It doesn’t need to be set for a write transfer.

• Setup packet size. Don’t set Restart bit during this.
• Enable SCLPC interrupt by setting ME and NIE bits of SCLPC Enable Register
• Reset SCLPC controller and FIFO.
• Enable SCLPC controller and FIFO by clearing SCLPC controller and FIFO reset bits.

Following steps are to start SCLPC transfers:
• Set Restart bit of SCLPC Packet Size Register

— In case of read transaction the SCLPC controller starts to fill the LPC RX/TX FIFO
— In case of write transcation SCLPC controller is waiting until BPT size data is written by the 

DMA into the LPC RX/TX FIFO
• Start LPC DMA request within the DMA module

The transfer is finished when
• In case of a read transfer, the DMA signals via interrupt that the LPC TCD is finished
• In case of a write transfer, the SCLPC signals via interrupt that the transfer is finished

23.3.4 Programmer’s Model

Table 23-3 through Table 23-10 describe the registers and bit meanings for configuring CS operation in 
detail. There are eight identical CS configuration registers, one for each CS output. However, the CSBoot 
ROM configuration register has active defaults for use by BOOTROM on CS0. All other configuration 
registers are disabled at powerup and require software intervention before the corresponding CS operates. 
The chip select control register is the enable register and the chip select status register serves as a status 
register. The chip select burst control register enables burst mode and deadcycles are configured by the 
chip select deadcycle control register.

NOTE
The address range registers for each CS reside in the XLBMEN register set 
rather than in the LPC register set. See Section 23.3.2.3, “Boot 
Configuration”.

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 24-1

Chapter 24  
MBX Graphics Controller

24.1 Introduction 
This module describes the PowerVR Series 3 MBX Lite 3D graphics module designed for mobile 
applications.

The MBX module is the intellectual property of Imagination Technologies and is licensed for use in the 
MPC5121e. This document does not describe the internal registers or operation of the MBX module due 
to licensing restrictions.

Therefore, developers who wish to use the MBX module need to use an existing graphics driver for this 
block.

Freescale makes an MBX driver available for their Linux OS that implements the OpenGLes standard.

Additional drivers are expected to be available from other third party vendors.

24.1.1 Overview

The MBX module refers to the entire MBX block including the MBX-lite, VGP-lite cores, and all the 
interconnecting gaskets. The MBXLITE core refers to the MBX-lite and VGP_lite, both licensed from 
Imagination Technologies, and the various interconnecting gaskets used to interface the MBXLITE to the 
MPC5121e.

The MBX module can be accessed by E300 or DMA2 and there is a memory bus connecting to DDR.

MBXLITE core always works in little endian mode. There is a byte swrapping logic inside MBX 
module,which the costumers can turn on/off to make sure that the data comunicated between MBXLITE 
core and E300/DMA2 can be understood correctly by each other.

24.1.1.1 MBXLITE Core 

The PowerVR MBXLITE Graphics Core is a deferred rendering device using tile based display lists. MBX 
Lite operates upon 3D scene data (sent as batches of triangles) which are transformed and lit either by the 
CPU or by the Vertex Geometry Processor (VGP Lite).

24.1.2 Features

The MBX Lite core has the following 3D features: 
• Deferred texturing

MPC5121e Microcontroller Reference Manual, Rev. 2



MBX Graphics Controller

24-2 Freescale Semiconductor

• Screen tiling
• Flat and ground shading
• Perspective correct texturing
• Specular high lights
• Floating point Z buffer
• 32-bit ARGB internal rendering and layer buffering
• Full-tile blend buffer
• Z load/store mode
• Per vertex fog
• 16 bit RGB textures 
• 32 bit RGB textures 
• YUV 422 textures
• PVR-TC compressed textures
• 1-bit textures for text acceleration
• Point, bilinear, trilinear, and anisotropic filtering
• Full range of OGL/D3D blend modes
• Dot3 bump mapping
• Alpha test
• Full-scene anti-aliasing
• 2Dvia3D
• Configurable YUV 420 textures

The 2D features are:
• ROP2, 3, 4 Support (including AA Text)
• Source, mask, and pattern from system or frame buffer memory
• Alpha blending (per-pixel and global)
• Colour key
• Input Formats:

— 1, 2, 4, 8 palletised
— 4-Bit alpha

• Input and output formats: (A)RGB
— 3:3:2
— 4:4:4:4
— 5:5:5
— 1:5:5:5
— 5:6:5
— 8:8:8
— 8:8:8:8

MPC5121e Microcontroller Reference Manual, Rev. 2



MBX Graphics Controller

Freescale Semiconductor 24-3

• Stride up to 2048 pixels
• Up to four clipping rectangles
• Stretch BLTs
• 90-Degree BLT rotation

24.2 DMA operation
If you want to use the DMA engine of the chip to transfer data to MBX slave port, you first need to set up 
an approriate DMA TCD and then set the DMA Set Enable Request register to the physical channel 
number of mbx (31). Then the DMA engine starts to work.

The MBXLITE Core continues asserting the DMA channel request signal to the DMA engine when there 
are more than 16 FIFO entries (each 32-bit wide) left in MBX slave port internal FIFO. The round robin 
scheme arbitrates between CPU and DMA accesses to the MBXLITE Core.

For details on how to configure the DMA engine, see Section Chapter 11, “Direct Memory Access 
(DMA)”.

24.3 Clocking Architecture of the MBXLITE Core
The MBXLITE core has been designed to use two core clocks.  Both MBXLITE core clocks must run at 
the same frequency. The MPC5121e drives these core clocks with the MBX_3D_CLK signal.

The system bus clock, MBX_BUS_CLK, is a derivative of the coherent system bus clock. The 
MBX_BUS_CLK signal must be programmed to a multiple of 1x, 2x, 3x, or 4x times the MBX_3D_CLK 
signal.

MPC5121e Microcontroller Reference Manual, Rev. 2



MBX Graphics Controller

24-4 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 25-1

Chapter 25  
MSCAN

25.1 Introduction 
This module contains four identical and independent MSCAN Controllers.

The module is a communication controller implementing the CAN 2.0 A/B protocol as defined in the 
BOSCH specification dated September 1991. To fully understand the MSCAN specification, read the 
Bosch specification first to familiarize yourself with terms and concepts contained within this document.

The CAN protocol was primarily designed as a vehicle serial data bus, meeting the specific requirements 
of this field: real-time processing, reliable operation in the EMI environment of a vehicle, 
cost-effectiveness, and required bandwidth.

MSCAN uses an advanced buffer arrangement resulting in a predictable real-time behavior and simplifies 
the application software.

Figure 25-1. MSCAN Block Diagram

RXCAN 

TXCAN 

Receive/
Transmit
Engine

Message
Filtering

and
Buffering

Control
and

Status

CANCLK

IPS Clock

Configuration

 

Bus Clock
MUX Presc.

Tq Clk

MSCAN

Wake-UpRegisters

MSCAN interrupt 

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-2 Freescale Semiconductor

25.1.1 Features

The basic features of the MSCAN are:
• Implementation of the CAN protocol – Version 2.0A/B

— Standard and extended data frames
— 0 – 8 bytes data length
— Programmable bit rate up to 1 Mbps (Depending on actual bit timing and clock jitter of PLL)
— Support for remote frames
— Five receive buffers with FIFO storage scheme 

• Three transmit buffers with internal prioritization using a local priority concept
• Flexible maskable identifier filter supports two full-size extended identifier filters (two 32-bit) or 

four 16-bit filters or eight 8-bit filters
• Programmable wake-up functionality
• Programmable loop back mode supports self-test operation
• Programmable listen-only mode for monitoring of CAN bus
• Separate signalling and interrupt capabilities for all CAN receiver and transmitter error states 

(warning, error passive, bus-off)
• Programmable clock source. See Chapter 5, “Clocks and Low-Power Modes”.
• Internal timer for time-stamping of received and transmitted messages
• Three low power modes: sleep, power down and MSCAN enable
• Programmable bus-off recovery functionality
• Global initialization of configuration registers

25.2 External Signal Description
The MSCAN uses two external pins. In the module, the MSCAN pins are shared with other funtionality 
and can be available at four different groups of pins. The configuration of the pin-muxing is controlled by 
the Port Configuration Register.

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-3

25.2.1 CAN Receiver Input Pins

CAN1_RX, CAN2_RX, IRQ1_B, J1850_RX, and I2C2_SDA are the MSCAN receiver input pins. 
MSCAN4 can be configured to select J1850_RX or I2C2_SDA as input pin. 

25.2.2 CAN Transmitter Output Pins

CAN1_TX, CAN2_TX, IRQ0_B, PATA_ISOLATE, J1850_TX, and I2C2_SCL are MSCAN transmitter 
output pins. MSCAN3 can be configured to select IRQ0_B or PATA_ISOLATE as output pin. MSCAN4 

Table 25-1. Signal Properties

Name Port Function I/O

CAN1_RX Input MSCAN1 receiver input pin I

CAN1_TX Output MSCAN1 transmitter output pin. The 
can1_tx output pin represents the logic 
level on the CAN bus: 

0 = Dominant state
1 = Recessive state

O

CAN2_RX Input MSCAN2 receiver input pin I

CAN2_TX Output MSCAN2 transmitter output pin. The 
can2_tx output pin represents the logic 
level on the CAN bus: 

0 = Dominant state
1 = Recessive state

O

IRQ1_B Input MSCAN3 receiver input pin I

IRQ0_B Output MSCAN3 transmitter output pin. The 
irq0_b output pin represents the logic 
level on the CAN bus: 

0 = Dominant state
1 = Recessive state

O

PATA_ISOLA
TE

Output MSCAN3 transmitter output pin. The 
pata_isolate output pin represents the 
logic level on the CAN bus: 

0 = Dominant state
1 = Recessive state

O

J1850_RX Input MSCAN4 receiver input pin I

J1850_TX Output MSCAN4 transmitter output pin. The 
j1850_tx output pin represents the logic 
level on the CAN bus: 

0 = Dominant state
1 = Recessive state

O

I2C2_SDA Input MSCAN4 receiver input pin I

I2C2_SCL Output MSCAN4 transmitter output pin. The 
i2c2_scl output pin represents the logic 
level on the CAN bus: 

0 = Dominant state
1 = Recessive state

O

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-4 Freescale Semiconductor

can be configured to select J1850_TX or I2C2_SCL as output pin. These pins represents the logic level on 
the CAN bus: 

0 = Dominant state
1 = Recessive state

25.2.3 CAN System

A typical CAN system with MSCAN is shown in Figure 25-2. Each CAN station is connected physically 
to the CAN bus lines through a transceiver device. The transceiver is capable of driving the large current 
needed for the CAN bus and has current protection against defective CAN or defective stations.

Figure 25-2. MSCAN System

25.3 Memory Map and Register Definition
The MPC5121e contains four independent MSCAN Controllers with identical register sets. The register 
sets have different base addresses. However, the registers in each set have the same offsets with respect to 
their base addresses.

Table 25-2. Block Memory Map

Offset Register1 Access Section/Page

General Registers

0x00 MSCAN Control Register 0(CANCTL0) R/W 25.3.2.1/25-7

0x01 MSCAN Control Register 1 (CANCTL1) R/W 25.3.2.2/25-10

0x04 MSCAN Bus Timing Register 0 (CANBTR0) R/W 25.3.2.3/25-12

0x05 MSCAN Bus Timing Register 1 (CANBTR1) R/W 25.3.2.4/25-13

0x08 MSCAN Receiver Flag Register (CANRFLG) R/W 25.3.2.5/25-14

0x09 MSCAN Receiver Interrupt Enable Register (CANRIER) R/W 25.3.2.6/25-17

0x0C MSCAN Transmitter Flag Register (CANTFLG) R/W 25.3.2.7/25-19

0x0D MSCAN Transmitter Interrupt Enable Register (CANTIER) R/W 25.3.2.8/25-20

0x10 MSCAN Transmitter Message Abort Control (CANTARQ) R/W 25.3.2.9/25-21

CAN Bus

CAN Controller
(MSCAN)

Transceiver

CAN node 1 CAN node 2 CAN node n

CAN_LCAN_H

Power Architecture 

TXCAN RXCAN

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-5

25.3.1 Register Summary
Table 25-3 shows a summary of the registers.

0x11 MSCAN Transmitter Message Abort Control (CANTAAK) R 25.3.2.10/25-22

0x14 MSCAN Transmit Buffer Selection (CANTBSEL) R/W 25.3.2.11/25-23

0x15 MSCAN Identifier Acceptance Control Register (CANIDAC) R/W 25.3.2.12/25-24

0x19 MSCAN MISC Register (CANMISC) R/W 25.3.2.13/25-25

0x1C MSCAN Receive Error Counter Register (CANRXERR) R 25.3.2.14/25-26

0x1D MSCAN Transmitter Error Counter Register (CANTXERR) R 25.3.2.15/25-27

0x20 MSCAN Identifier Acceptance Registers (CANIDAR0) R/W 25.3.2.16/25-28

0x21 MSCAN Identifier Acceptance Registers (CANIDAR1) R/W 25.3.2.16/25-28

0x24 MSCAN Identifier Acceptance Registers (CANIDAR2) R/W 25.3.2.16/25-28

0x25 MSCAN Identifier Acceptance Registers (CANIDAR3) R/W 25.3.2.16/25-28

0x28 MSCAN Identifier Mask Registers (CANIDMR0) R/W 25.3.2.17/25-29

0x29 MSCAN Identifier Mask Registers (CANIDMR1) R/W 25.3.2.17/25-29

0x2C MSCAN Identifier Mask Registers (CANIDMR2) R/W 25.3.2.17/25-29

0x2D MSCAN Identifier Mask Registers (CANIDMR3) R/W 25.3.2.17/25-29

0x30 MSCAN Identifier Acceptance Registers (CANIDAR4) R/W 25.3.2.16/25-28

0x31 MSCAN Identifier Acceptance Registers (CANIDAR5) R/W 25.3.2.16/25-28

0x34 MSCAN Identifier Acceptance Registers (CANIDAR6) R/W 25.3.2.16/25-28

0x35 MSCAN Identifier Acceptance Registers (CANIDAR7) R/W 25.3.2.16/25-28

0x38 MSCAN Identifier Mask Registers (CANIDMR4) R/W 25.3.2.17/25-29

0x39 MSCAN Identifier Mask Registers (CANIDMR5) R/W 25.3.2.17/25-29

0x3C MSCAN Identifier Mask Registers (CANIDMR6) R/W 25.3.2.17/25-29

0x3D MSCAN Identifier Mask Registers (CANIDMR7) R/W 25.3.2.17/25-29

0x40–0x5F MSCAN Receive Message Buffer (CANRXFG) R2 25.4.3/25-44

0x60–0x7F MSCAN Transmit Message Buffer (CANTXFG) R/W3 25.4.3/25-44
1 Include short name and long name. 
2 Reserved bits and unused bits within the RX-buffer (CANRXFG) are read as x, because of RAM-based implementation.
3 Reserved bits and unused bits within the TX-buffer (CANTXFG) are read as x, because of RAM-based implementation.

Table 25-3. Register Summary

Name 7 6 5 4 3 2 1 0

0x00
CANCTL0

R
RXFRM

RXACT SYNCH
TIME WUPE SLPRQ INITRQ

W

0x01
CANCTL1

R
CANE CLKSRC LOOPB LISTEN

0 SLPAK INITAK

W

0x04
CANBTR0

R
SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0

W

Table 25-2. Block Memory Map (continued)

Offset Register1 Access Section/Page

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-6 Freescale Semiconductor

0x05
CANBTR1

R
SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10

W

0x08
CANRFLG

R
WUPIF CSCIF

RSTAT1 RSTAT0 TSTAT1 TSTAT0
OVRIF RXF

W

0x09
CANRIER

R
WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE

W

0x0C
CANTFLG

R 0 0 0 0 0
TXE2 TXE1 TXE0

W

0x0D
CANTIER

R 0 0 0 0 0
TXEIE2 TXEIE1 TXEIE0

W

0x10
CANTARQ

R 0 0 0 0 0
ABTRQ2 ABTRQ1 ABTRQ0

W

0x11
CANTAAK

R 0 0 0 0 0
ABTAK2 ABTAK1 ABTAK0

W

0x14
CANTBSEL

R 0 0 0 0 0
TX2 TX1 TX0

W

0x15
CANIDAC

R 0 0
IDAM1 IDAM0

0 IDHIT2 IDHIT1 IDHIT0

W

0x19
CANMISC

R 0 0 0 0 0 0 0
BOFFHOLD

W

0x1C
CANRXER

R

R RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0

W

0x1D
CANTXERR

R TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0

W

0x20
CANIDAR0

R
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

W

0x21
CANIDAR1

R
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

W

0x24
CANIDAR2

R
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

W

0x25
CANIDAR3

R
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

W

0x28
CANIDMR0

R
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

W

0x29
CANIDMR1

R
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

W

0x2C
CANIDMR2

R
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

W

Table 25-3. Register Summary (continued)

Name 7 6 5 4 3 2 1 0

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-7

25.3.2 Register Descriptions

This section describes in detail all the registers and register bits in the MSCAN module. Each description 
includes a standard register diagram with an associated figure number. Details of register bit and field 
function follow the register diagram, in bit order. All bits of all registers in this module are completely 
synchronous to internal clocks during a register read.

25.3.2.1 MSCAN Control 0 Register (CANCTL0)

This register provides for various control of the MSCAN module as described below.

Read: Anytime

Write: Anytime when out of initialization mode; exceptions are read-only RXACT and SYNCH, RXFRM 
(which is set by the module only), and INITRQ (which is also writable in initialization mode).

0x2D
CANIDMR3

R
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

W

0x30
CANIDAR4

R
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

W

0x31
CANIDAR5

R
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

W

0x34
CANIDAR6

R
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

W

0x35
CANIDAR7

R
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

W

0x38
CANIDMR4

R
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

W

0x39
CANIDMR5

R
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

W

0x3C
CANIDMR6

R
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

W

0x3D
CANIDMR7

R
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

W

0x40-0x5F
CANRXFG

R FOREGROUND RECEIVE BUFFER

W

0x60-7F
CANTXFG

R
FOREGROUND TRANSMIT BUFFER

W

Table 25-3. Register Summary (continued)

Name 7 6 5 4 3 2 1 0

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-8 Freescale Semiconductor

NOTE
The CANCTL0 register (except the WUPE, INITRQ, and SLPRQ bits) is 
held in the reset state when initialization mode is active (INITRQ=1 and 
INITAK=1). The CSWAI, TIME, WUPE, and SLPRQ bits are writable as 
soon as the initialization mode is complete (INITRQ=0 and INITAK=0). 

Figure 25-3. MSCAN Control 0 Register (CANCTL0)

.

MSCAN_BASE + 0x00

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
RXFRM

RXACT SYNCH
TIME WUPE SLPRQ INITRQ

W

Reset 0 0 0 0 0 0 0 1

= Unimplemented or Reserved

Table 25-4. CANCTL0 Field Descriptions

Field Description

RXFRM1 Received Frame Flag bit is read and clear only. It is set when a receiver has received a valid message 
correctly, independently of the filter configuration. After set, it remains set until cleared by software or 
reset. Clear by writing 1 to the bit. This bit is not valid in loop-back mode.
when read:
0 No valid message was received since last clearing this flag.
1 A valid message was received since last clearing of this flag.
when write:
0 no action
1 clear this bit

RXACT Receiver Active Status bit indicates MSCAN is receiving a message. The receiver front end controls 
the flag. This bit is not valid in loop-back mode.
0 MSCAN is transmitting or idle2.
1 MSCAN is receiving a message (including when arbitration is lost).

SYNCH Synchronized Status bit indicates whether MSCAN is synchronized to the CAN bus and can 
participate in the communication process. It is set and cleared by MSCAN.
0 MSCAN is not synchronized to the CAN bus.

1 MSCAN is synchronized to the CAN bus.

TIME Timer Enable bit activates an internal 16-bit wide free running timer clocked by the bit-clock. If timer 
is enabled, a 16-bit time stamp is assigned to each transmitted/received message within the active 
Tx/Rx buffer. As soon as a message is acknowledged on CAN, the time stamp is written to the highest 
bytes (0x1C, 0x1D) in the appropriate buffer (see Section 25.3.3, “Programmer’s Model of Message 
Storage). The internal timer is reset (all bits set to 0) when initialization mode is active.
0 Disable internal MSCAN timer.
1 Enable internal MSCAN timer.

WUPE3 Wake-Up Enable bit lets MSCAN restart when being locked in idle state during sleep mode and traffic 
on CAN is detected.(see Section 25.4.8.1, “MSCAN Sleep Mode)
0 Wake-Up disabled. The MSCAN ignores traffic on CAN.

1 Wake-Up enabled.The MSCAN is able to restart.

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-9

SLPRQ4 Sleep Mode Request bit requests MSCAN enter sleep mode, an internal power saving mode (see 
Section 25.4.8.1, “MSCAN Sleep Mode). The sleep mode request is serviced when the CAN bus is 
idle, i.e., the module is not receiving a message and all transmit buffers are empty. The module 
indicates entry to sleep mode by setting SLPAK = 1 (see Section 25.3.2.2, “MSCAN Control 1 
Register (CANCTL1)”). Sleep mode is active until SLPRQ is cleared by the Power Architecture or, 
depending on the setting of WUPE, the MSCAN detects activity on the CAN bus and clears SLPRQ 
itself.
0 Running.The MSCAN functions normally.

1 Sleep Mode Request. The MSCAN locks in idle state.

INITRQ5,6 Initialization Mode Request. When this bit is set by the Power Architecture, the MSCAN skips to 
initialization mode (see Section 25.4.8.2, “MSCAN Initialization Mode”). Any ongoing transmission or 
reception is aborted and synchronization to the CAN bus is lost. The module indicates entry to 
initialization mode by setting INITAK = 1 (Section 25.3.2.2, “MSCAN Control 1 Register 
(CANCTL1)”). 
The following registers enter their hard reset state and restore their default values: CANCTL07, 
CANRFLG8, CANRIER9, CANTFLG, CANTIER, CANTARQ, CANTAAK, and CANTBSEL. 
The registers CANCTL1, CANBTR0, CANBTR1, CANIDAC, CANIDAR0-7, and CANIDMR0-7 can 
only be written by the Power Architecture when the MSCAN is in initialization mode (INITRQ = 1 and 
INITAK = 1). The values of the error counters are not affected by initialization mode.
When this bit is cleared by the Power Architecture, the MSCAN restarts and then tries to synchronize 
to the CAN bus. If the MSCAN is not in bus-off state, it synchronizes after 11 consecutive recessive 
bits on the CAN bus; if the MSCAN is in bus-off state, it continues to wait for 128 occurrences of 11 
consecutive recessive bits.
Writing to other bits in CANCTL0, CANRFLG, CANRIER, CANTFLG, or CANTIER must be done only 
after initialization mode is exited, which is INITRQ = 0 and INITAK = 0.
0 Normal operation.

1 MSCAN in initialization state.

1 The MSCAN must be in normal mode for this bit to become set.
2 See the Bosch CAN 2.0A/B specification for a detailed definition of transmitter and receiver states.
3 The Power Architecture has to make sure that the WUPE register and the WUPIE wake-up interrupt enable register (see 

Section 25.3.2.6, “MSCAN Receiver Interrupt Enable Register (CANRIER)) is enabled, if the recovery mechanism from deep 
sleep mode is required.

4 The Power Architecture cannot clear SLPRQ before the MSCAN has entered sleep mode (SLPRQ = 1 and SLPAK = 1).
5 The Power Architecture cannot clear INITRQ before the MSCAN has entered initialization mode (INITRQ = 1 and INITAK = 1).
6 To protect from accidentally violating the CAN protocol, the TXCAN pin is immediately forced to a recessive state when the 

initialization mode is requested by the Power Architecture. Thus, the recommended procedure is to bring the MSCAN into sleep 
mode (SLPRQ = 1 and SLPAK = 1) before requesting initialization mode.

7 Not including WUPE, INITRQ, and SLPRQ.
8 TSTAT1 and TSTAT0 are not affected by initialization mode.
9 RSTAT1 and RSTAT0 are not affected by initialization mode.

Table 25-4. CANCTL0 Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-10 Freescale Semiconductor

25.3.2.2 MSCAN Control 1 Register (CANCTL1)

This register provides for various control and handshake status information of the MSCAN module as 
described below.

Read: Anytime

Write: The CLKSRC, LOOPB, LISTEN, BORM, and WUPM bits can be written anytime when in 
initialization mode (INITRQ = 1 and INITAK = 1).

MSCAN_BASE + 0x001 

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
CANE CLKSRC LOOPB LISTEN BORM

SLPAK INITAK

W

Reset 0 0 0 1 0 0 0 1

= Unimplemented or Reserved

Figure 25-4. MSCAN Control 1 Register (CANCTL1)
(Register repeats for reference.)

Table 25-5. CANCTL1 Field Descriptions

Field Description

CANE MSCAN Enable
0 The MSCAN module is disabled.
1 The MSCAN module is enabled.

CLKSRC MSCAN Clock Source. This bit defines the clock source for the MSCAN module (only for systems with 
a clock generation module; Section 25.4.5, “Clock System,” and Section Figure 25-39., “MSCAN 
Clocking Scheme,”).

0 The MSCAN clock source is the bus clock which may be originated from one of four sources: 
Section 5.2.5, “MSCAN Clock Generation”.

1 The MSCAN clock source is the ips clock.

LOOPB Loop Back Self Test Mode. When bit is set, MSCAN does an internal loop-back that can be used for 
self test operation. Tx bit-stream output feeds back to receiver internally. RxCAN input pin is ignored 
and TxCAN output goes to recessive state (logic 1). MSCAN behaves as it does normally when 
transmitting and treats its own transmitted message as a message received from a remote node. In 
this state, MSCAN ignores bit sent during ACK slot in CAN frame acknowledge field to ensure proper 
reception of its own message. Both Tx and Rx interrupts are generated.
0 Loop Back Self Test disabled.
1 Loop Back Self Test enabled.

LISTEN Listen Only Mode. This bit configures the MSCAN as a CAN bus monitor. When LISTEN is set, all 
valid CAN messages with matching ID are received, but no acknowledgement or error frames are sent 
out (see Section 25.4.7.5, “Listen-Only Mode”). In addition, the error counters are frozen. Listen only 
mode supports applications which require hot plugging or throughput analysis. The MSCAN is unable 
to transmit any messages when listen only mode is active.
0 Normal operation.
1 Listen Only Mode activated.

BORM Bus-Off Recovery Mode. This bits configures the bus-off state recovery mode of the MSCAN. Refer 
to Section 25.4.15, “Bus-Off Recovery,” for details. 
    1 = Bus-Off recovery upon request
    0 = Automatic bus-off recovery 

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-11

SLPAK Sleep Mode Acknowledge. This flag indicates whether the MSCAN module has entered sleep mode 
(see Section 25.4.8.1, “MSCAN Sleep Mode”). It is used as a handshake flag for the SLPRQ sleep 
mode request. Sleep mode is active when SLPRQ = 1 and SLPAK = 1. Depending on the setting of 
WUPE, the MSCAN clears the flag if it detects activity on the CAN bus while in sleep mode.
0 Running.The MSCAN operates normally.
1 Sleep Mode Active.The MSCAN has entered sleep mode.

INITAK Initialization Mode Acknowledge. This flag indicates whether the MSCAN module is in initialization 
mode (see Section 25.4.8.2, “MSCAN Initialization Mode”). It is used as a handshake flag for the 
INITRQ initialization mode request. Initialization mode is active when INITRQ = 1 and INITAK = 1. 
The registers CANCTL1, CANBTR0, CANBTR1, CANIDAC, CANIDAR0–CANIDAR7, and 
CANIDMR0–CANIDMR7 can be written only by the Power Architecture when the MSCAN is in 
initialization mode. 
0 Running. The MSCAN operates normally.
1 Initialization Mode Active. The MSCAN has entered initialization mode.

MSCAN_BASE + 0x001 

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
CANE CLKSRC LOOPB LISTEN BORM

SLPAK INITAK

W

Reset 0 0 0 1 0 0 0 1

= Unimplemented or Reserved

Figure 25-4. MSCAN Control 1 Register (CANCTL1)
(Register repeats for reference.)

Table 25-5. CANCTL1 Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-12 Freescale Semiconductor

25.3.2.3 MSCAN Bus Timing Register 0 (CANBTR0)

This register provides for various bus timing control of the MSCAN module as described below.

Read: Anytime

Write: Anytime in initialization mode (INITRQ=1 and INITAK=1)

MSCAN_BASE + 0x04 

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0

W

Reset 0 0 0 0 0 0 0 0

Figure 25-5. MSCAN Bus Timing Register 0 (CANBTR0)

Table 25-6. CANBTR0 Field Descriptions

Field Description

SJW[1:0] Synchronization Jump Width defines the maximum number of time quanta (Tq) clock cycles (refer to 
Figure 25-39 for Tq clock defination) a bit can be shortened or lengthened to achieve 
re-synchronization to data transitions on the bus.
00 1 Tq clock cycle
01 2 Tq clock cycles
10 3 Tq clock cycles
11 4 Tq clock cycles

BRP[5:0] Baud Rate Prescaler bits determine time quanta (Tq) clock used to build up individual bit timing
000000 1
000001 2
000010 3
000011 4
.................
111110 63
111111 64

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-13

25.3.2.4 MSCAN Bus Timing Register 1 (CANBTR1)

This register provides for various bus timing control of the MSCAN module as described below.

Read: Anytime

Write: Anytime in initialization mode (INITRQ=1 and INITAK=1)

Bit time is determined by:
• Oscillator frequency
• Baud rate prescaler
• Number of time quanta (Tq) clock cycles per bit

MSCAN_BASE + 0x05 

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10

W

Reset 0 0 0 0 0 0 0 0

Figure 25-6. MSCAN Bus Timing Register 1 (CANBTR1)

Table 25-7. CANBTR1 Field Descriptions

Field Description

SAMP Sampling. This bit determines the number of CAN bus samples taken per bit time. (refer to 
Section Figure 25-40., “Segments within the Bit Time)
0 One sample per bit.
1 Three samples per bit.
If SAMP = 0, the resulting bit value is equal to the value of the single bit positioned at the sample point. 
If SAMP = 1, the resulting bit value is determined by using majority rule on the three total samples. 
For higher bit rates, it is recommended that only one sample is taken per bit time (SAMP = 0).

TSEG2 Time Segment 2. Time segments within the bit-time fix the number of clock cycles per bit-time and 
location of the sample point.(Section Figure 25-40., “Segments within the Bit Time)
000 1 Tq clock cycle
001 2 Tq clock cycles
010 3 Tq clock cycles
...................
111 8 Tq clock cycles

TSEG1 Time Segment 1. Time segments within the bit-time fix the number of clock cycles per bit-time and 
location of the sample point. (Section Figure 25-40., “Segments within the Bit Time)
0000 1 Tq clock cycle
0001 2 Tq clock cycles
0010 3 Tq clock cycles
0011 4 Tq clock cycles
.................
1110 15 Tq clock cycles
1111 16 Tq clock cycles

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-14 Freescale Semiconductor

Eqn. 25-1

25.3.2.5 MSCAN Receiver Flag Register (CANRFLG)

A flag can only be cleared when the condition that caused the setting is no longer valid and can only be 
cleared by software (writing a 1 to the corresponding bit position). Every flag has an associated interrupt 
enable bit in the CANRIER register.

The CANRFLG register is held in the reset state when the initialization mode is active (INITRQ=1 and 
INITAK=1). This register is writable again as soon as the initialization mode is left (INITRQ=0 and 
INITAK=0).

Read: Anytime

Write: Anytime when out of initialization mode, except RSTAT[1:0] and TSTAT[1:0] flags which are 
read-only; write of 1 clears flag; write of 0 ignored

NOTE
The CANRFLG register is held in the reset state1 when the initialization 
mode is active (INITRQ = 1 and INITAK = 1). This register is writable 
again as soon as the initialization mode is exited (INITRQ = 0 and INITAK 
= 0).

1. The RSTAT[1:0], TSTAT[1:0] bits are not affected by initialization mode.

Bit Time = (Prescaler value)
(1 + TimeSegment1 + Timesegment2)fCANCLK

•

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-15

MSCAN_BASE + 0x08

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
WUPIF CSCIF

RSTAT1 RSTAT0 TSTAT1 TSTAT0
OVRIF RXFIF

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 25-7. MSCAN Receiver Flag Register (CANRFLG) 
(Register repeats for reference.) 

Table 25-8. CANRFLG Field Descriptions

Field Description

WUPIF Wake-Up Interrupt Flag. If the MSCAN detects CAN bus activity while in sleep mode (see 
Section 25.4.8.1, “MSCAN Sleep Mode,”) and WUPE = 1 in CANTCTL0 (see Section 25.3.2.1, 
“MSCAN Control 0 Register (CANCTL0)”), the module sets WUPIF. If not masked, a wake-up 
interrupt is pending while this flag is set.
when read:
0 No wake-up activity observed while in Sleep Mode.
1 MSCAN detected activity on the bus and requested wake-up.
when write:
0 no action 
1 clear corresponding interrupt flag

CSCIF CAN Status Change Interrupt Flag. This flag is set when the MSCAN changes its current CAN bus 
status due to the actual value of the transmit error counter (TEC) and the receive error counter (REC). 
An additional 4-bit (RSTAT[1:0], TSTAT[1:0]) status register, which is split into separate sections for 
TEC/REC, informs the system on the actual CAN bus status (see Section 25.3.2.6, “MSCAN Receiver 
Interrupt Enable Register (CANRIER)”). If not masked, an error interrupt is pending while this flag is 
set. CSCIF provides a blocking interrupt. That guarantees that the receiver/transmitter status bits 
(RSTAT/TSTAT) are only updated when no CAN status change interrupt is pending. If the TECs/RECs 
change their current value after the CSCIF is asserted, which would cause an additional state change 
in the RSTAT/TSTAT bits, these bits keep their status until the current CSCIF interrupt is cleared 
again.
when read:
0 No change in CAN bus status occurred since last interrupt
1 MSCAN changed current CAN bus status
when write:
0 no action 
1 clear corresponding interrupt flag

RSTAT[1:0] Receiver Status Bits. The values of the error counters control the actual CAN bus status of the 
MSCAN. As soon as the status change interrupt flag (CSCIF) is set, these bits indicate the 
appropriate receiver related CAN bus status of the MSCAN. The coding for the bits RSTAT1, RSTAT0 
is:
00 RxOK: 0 ≤ receive error counter ≤ 96
01 RxWRN:  96 < receive error counter ≤ 127 
10 RxERR: 127 < receive error counter
11 Bus-off1: transmit error counter > 255

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-16 Freescale Semiconductor

TSTAT[1:0] Transmitter Status Bits. The values of the error counters control the actual CAN bus status of the 
MSCAN. As soon as the status change interrupt flag (CSCIF) is set, these bits indicate the 
appropriate transmitter related CAN bus status of the MSCAN. The coding for the bits TSTAT1, 
TSTAT0 is:
00 TxOK: 0 ≤ transmit error counter ≤ 96
01 TxWRN:  96 < transmit error counter ≤ 127 
10 TxERR: 127 < transmit error counter ≤ 255 
11 Bus-Off: transmit error counter > 255

OVRIF Overrun Interrupt Flag is set when a data overrun condition occurs. If not masked, an error interrupt 
is pending while this flag is set.
when read:
0 No data overrun condition.
1 A data overrun detected.
when write:
0 no action 
1 clear corresponding interrupt flag

RXFIF Receive Buffer Full Flag is set by MSCAN when a new message is shifted into RX FIFO. Flag 
indicates whether the shifted buffer is loaded with a correctly received message (matching identifier, 
matching cyclic redundancy code (CRC) and no other errors detected). After Power Architecture 
reads message from RxFG buffer in Rx FIFO, RxF flag must be cleared to release the buffer.
A set RxF flag prohibits shifting of next FIFO entry into foreground buffer (RxFG). If not masked, RX 
interrupt is pending while this flag is set.
To ensure data integrity, do not read the Rx buffer registers while RXFIF flag is cleared.

when read:

0 No new message available within the RxFG.
1 The receiver FIFO is not empty. A new message is available in the RxFG buffer.
when write:
0 no action 
1 clear corresponding interrupt flag

1 Redundant Information for the most critical CAN bus status which is bus-off. This only occurs if the Tx error counter exceeds 
a number of 255 errors. Bus-off affects the receiver state. As soon as the transmitter leaves its bus-off state the receiver state 
skips to RxOK too. Refer also to TSTAT[1:0] coding in this register. 

MSCAN_BASE + 0x08

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
WUPIF CSCIF

RSTAT1 RSTAT0 TSTAT1 TSTAT0
OVRIF RXFIF

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 25-7. MSCAN Receiver Flag Register (CANRFLG) 
(Register repeats for reference.) 

Table 25-8. CANRFLG Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-17

25.3.2.6 MSCAN Receiver Interrupt Enable Register (CANRIER)

This register contains the interrupt enable bits for the interrupt flags described in the CANRFLG register.

Read: Anytime

Write: Anytime when out of initialization mode

NOTE
WUPIE, CSCIE, OVRIE, and RXFIE are held in the reset state when the 
initialization mode is active (INITRQ=1 and INITAK=1). This register is 
writable when not in initialization mode (INITRQ=0 and INITAK=0).

MSCAN_BASE + 0x09 

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE

W

Reset 0 0 0 0 0 0 0 0

Figure 25-8. MSCAN Receiver Interrupt Enable Register (CANRIER) 
(Register repeats for reference.)

Table 25-9. CANRIER Field Descriptions

Field Description

WUPIE1 Wake-Up Interrupt Enable
0 No interrupt request is generated from this event.
1 A wake-up event causes a Wake-Up interrupt request.

CSCIE CAN Status Change Interrupt Enable
0 No interrupt request is generated from this event.
1 A CAN Status Change event causes an error interrupt request.

RSTATE[1:0] Receiver Status Change Enable. These RSTAT enable bits control the sensitivity level in which 
receiver state changes are causing CSCIF interrupts. Independent of the chosen sensitivity level the 
RSTAT flags continue to indicate the actual receiver state and are only updated if no CSCIF interrupt 
is pending.
00 Do not generate any CSCIF interrupt caused by receiver state changes.
01 Generate CSCIF interrupt only if the receiver enters or leaves bus-off”2 state. Discard other 

receiver state changes for generating CSCIF interrupt.
10 Generate CSCIF interrupt only if the receiver enters or leaves RxErr or Bus-Off state. Discard 

other receiver state changes for generating CSCIF interrupt. 
11 Generate CSCIF interrupt on all state changes

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-18 Freescale Semiconductor

TSTATE[1:0] Transmitter Status Change Enable. These TSTAT enable bits control the sensitivity level in which 
transmitter state changes are causing CSCIF interrupts. Independent of the chosen sensitivity level, 
the TSTAT flags continue to indicate the actual transmitter state and are only updated if no CSCIF 
interrupt is pending.
00 Do not generate any CSCIF interrupt caused by transmitter state changes.
00 Do not generate any CSCIF interrupt caused by transmitter state changes.
01 Generate CSCIF interrupt only if the transmitter enters or leaves Bus-Off state. Discard other 

transmitter state changes for generating CSCIF interrupt.
10 Generate CSCIF interrupt only if the transmitter enters or leaves TxErr or Bus-Off state. Discard 

other transmitter state changes for generating CSCIF interrupt.
11 Generate CSCIF interrupt on all state changes

OVRIE Overrun Interrupt Enable
0 No interrupt request is generated from this event.
1 An overrun event causes an error interrupt request.

RXFIE Receive Buffer Full Interrupt Enable
0 No interrupt request is generated from this event.
1 A receive buffer full (successful message reception) event causes a receiver interrupt request.

1 WUPIE and WUPE (see Section 25.3.2.1, “MSCAN Control 0 Register (CANCTL0)”) must both be enabled if the recovery 
mechanism from deep sleep mode is required.

2 Bus-off state is defined by the CAN standard (see Bosch CAN 2.0A/B protocol specification: for only transmitters. Because the 
only possible state change for the transmitter from bus-off to TxOK also forces the receiver to skip its current state to RxOK, 
the coding of the RXSTAT[1:0] flags define an additional bus-off state for the receiver (see Section 25.3.2.5, “MSCAN Receiver 
Flag Register (CANRFLG)”).

MSCAN_BASE + 0x09 

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE

W

Reset 0 0 0 0 0 0 0 0

Figure 25-8. MSCAN Receiver Interrupt Enable Register (CANRIER) 
(Register repeats for reference.)

Table 25-9. CANRIER Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-19

25.3.2.7 MSCAN Transmitter Flag Register (CANTFLG)

The transmit buffer empty flags each have an associated interrupt enable bit in the CANTIER register.

Read: Anytime

Write: Anytime for TXEx flags when not in initialization mode; write of 1 clears flag, write of 0 ignored

NOTE
The CANTFLG register is held in the reset state when the initialization 
mode is active (INITRQ=1 and INITAK=1). This register is writable again 
as soon as the initialization mode is left (INITRQ=0 and INITAK=0).

MSCAN_BASE + 0x0C

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0
TXE2IF TXE1IF TXE0IF

W

Reset 0 0 0 0 0 1 1 1

= Unimplemented or Reserved

Figure 25-9. MSCAN Transmitter Flag Register (CANTFLG)

Table 25-10. CANTFLG Field Descriptions

Field Description

TXE2IF,TXE1IF,TXE0IF Transmitter Buffer Empty. Those flags indicate that the associated transmit message buffer is 
empty, and thus not scheduled for transmission. The Power Architecture must clear the flag after a 
message is set up in the transmit buffer and is due for transmission. The MSCAN sets the flag after 
the message is sent successfully. The flag is also set by the MSCAN when the transmission request 
is successfully aborted due to a pending abort request (see Section 25.3.2.9, “MSCAN Transmitter 
Message Abort Request (CANTARQ)”). If not masked, a transmit interrupt is pending while this flag 
is set.
Clearing a TXExIF flag also clears the corresponding ABTAKx (see Section 25.3.2.10, “MSCAN 
Transmitter Message Abort Acknowledge (CANTAAK)”). When a TXExIF flag is set, the 
corresponding ABTRQx bit is cleared (see Section 25.3.2.9, “MSCAN Transmitter Message Abort 
Request (CANTARQ)”).
When listen-mode is active (see Section 25.3.2.2, “MSCAN Control 1 Register (CANCTL1)”) the 
TXExIF flags cannot be cleared and no transmission is started.
Read and write accesses to the transmit buffer are blocked if the corresponding TXExIF bit is cleared 
(TXExIF = 0) and the buffer is scheduled for transmission.
when read:
0 The associated message buffer is full (loaded with a message due for transmission).
1 The associated message buffer is empty (not scheduled).
when write:
0 no action 
1 clear corresponding interrupt flag

N

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-20 Freescale Semiconductor

25.3.2.8 MSCAN Transmitter Interrupt Enable Register (CANTIER)

This register contains the interrupt enable bits for the transmit buffer empty interrupt flags.

Read: Anytime

Write: Anytime when not in initialization mode

NOTE
The CANTIER register is held in the reset state when the initialization mode 
is active (INITRQ=1 and INITAK=1). This register is writable again as soon 
as the initialization mode is left (INITRQ=0 and INITAK=0).

MSCAN_BASE + 0x0D

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0
TXEIE2 TXEIE1 TXEIE0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 25-10. MSCAN Transmitter Interrupt Enable Register (CANTIER)

Table 25-11. CANTIER Field Descriptions

Field Description

TXEIE[2:0] Transmitter Empty Interrupt Enable
0 No interrupt request is generated from this event.
1 A transmitter empty (transmit buffer available for transmission) event causes a transmitter empty 

interrupt request.

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-21

25.3.2.9 MSCAN Transmitter Message Abort Request (CANTARQ)

This register provides for abort request of queued messages as described below.

Read: Anytime

Write: Anytime when not in initialization mode

NOTE
The CANTARQ register is held in the reset state when the initialization 
mode is active (INITRQ=1 and INITAK=1). This register is writable again 
as soon as the initialization mode is left (INITRQ=0 and INITAK=0).

MSCAN_BASE + 0x10

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0
ABTRQ2 ABTRQ1 ABTRQ0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 25-11. MSCAN Transmitter Interrupt Enable Register (CANTIER)

Table 25-12. CANTIER Field Descriptions

Field Description

ABTRQ[2:0] Abort Request. The Power Architecture sets the ABTRQx bit to request that a scheduled message 
buffer (TXExIF = 0) be aborted. The MSCAN grants the request if the message has not already 
started transmission, or if the transmission is not successful (lost arbitration or error). When a 
message is aborted, the associated TXExIF (see Section 25.3.2.7, “MSCAN Transmitter Flag 
Register (CANTFLG)”) and abort acknowledge flags (ABTAK, see Section 25.3.2.10, “MSCAN 
Transmitter Message Abort Acknowledge (CANTAAK)”) are set and a transmit interrupt occurs if 
enabled. The Power Architecture cannot reset ABTRQx. ABTRQx is reset whenever the associated 
TXExIF flag is set.
0 No abort request.
1 Abort request pending.

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-22 Freescale Semiconductor

25.3.2.10 MSCAN Transmitter Message Abort Acknowledge (CANTAAK)

The CANTAAK register indicates the successful abort of a queued message if requested by the appropriate 
bits in the CANTARQ register.

Read: Anytime

Write: Unimplemented for ABTAKx flags;

NOTE
The CANTAAK register is held in the reset state when the initialization 
mode is active (INITRQ=1 and INITAK=1).

MSCAN_BASE + 0x11

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0 ABTAK2 ABTAK1 ABTAK0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 25-12. MSCAN Transmitter Message Abort Acknowledge (CANTAAK)

Table 25-13. CANTAAK Field Descriptions

Field Description

ABTAK[2:0] Abort Acknowledge flag acknowledges message was aborted due to pending Power Architecture 
abort request. After a specific message buffer is flagged empty, application software can use this flag 
to identify whether message was successfully aborted or was sent. Flag is cleared when the 
corresponding TxE flag is cleared.
0 The message was not aborted.
1 The message was aborted.

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-23

25.3.2.11 MSCAN Transmitter Buffer Selection (CANTBSEL)

This register allows the selection of the actual transmit message buffer, which is then accessible in the 
CANTXFG register space.

Read: Find the lowest ordered bit set to 1, all other bits are read as 0

Write: Anytime when not in initialization mode

NOTE
The CANTBSEL register is held in the reset state when the initialization 
mode is active (INITRQ=1 and INITAK=1). This register is writable again 
upon exiting the initialization mode (INITRQ=0 and INITAK=0).

The following gives a short programming example of usage of the CANTBSEL register:

To get the next available transmit buffer, application software must read the CANTFLG register and write 
this value back into the CANTBSEL register. In this example Tx buffers TX1 and TX2 are available. The 
value read from CANTFLG is therefore 0b0000_0110. When writing this value back to CANTBSEL, the 
Tx buffer TX1 is selected in the CANTXFG because the lowest numbered bit set to 1 is at bit position 1. 
Reading back this value out of CANTBSEL results in 0b0000_0010, because only the lowest numbered 
bit position set to 1 is presented. This mechanism eases the application software the selection of the next 
available Tx buffer.

• LDD CANTFLG; value read is 0b0000_0110
• STD CANTBSEL; value written is 0b0000_0110
• LDD CANTBSEL; value read is 0b0000_0010

If all transmit message buffers are deselected, no accesses are allowed to the CANTXFG registers.

MSCAN_BASE + 0x14

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0
TX2 TX1 TX0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 25-13. MSCAN Transmitter Buffer Selection (CANTBSEL)

Table 25-14. CANTBSEL Field Descriptions

Field Description

TX[2:0] Transmit Buffer Select. The lowest numbered bit places the respective transmit buffer in the 
CANTXFG register space (e.g., TX1 = 1 and TX0 = 1 selects transmit buffer TX0; TX1 = 1 and TX0 
= 0 selects transmit buffer TX1). Read and write accesses to the selected transmit buffer are blocked 
if the corresponding TXEx bit is cleared and the buffer is scheduled for transmission (see 
Section 25.3.2.7, “MSCAN Transmitter Flag Register (CANTFLG)”).
0 The associated message buffer is deselected.
1 The associated message Buffer is selected, if lowest numbered bit.

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-24 Freescale Semiconductor

25.3.2.12 MSCAN Identifier Acceptance Control Register (CANIDAC)

This register provides for identifier acceptance control as described below.

Read: Anytime

Write: Anytime in initialization mode (INITRQ=1 and INITAK=1), except bits IDHITx which are 
read-only

The IDHITx indicators are always related to the message in the foreground buffer (RxFG). When a 
message gets shifted into the foreground buffer of the receiver FIFO, the indicators are updated as well.

MSCAN_BASE + 0x15

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0
IDAM1 IDAM0

0 IDHIT2 IDHIT1 IDHIT0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 25-14. MSCAN Identifier Acceptance Control Register (CANIDAC)

Table 25-15. CANIDAC Field Descriptions

Field Description

IDAM[1:0] Identifier Acceptance Mode. Power Architecture sets these flags to define the identifier acceptance 
filter organization(see Section 25.4.3, “Identifier Acceptance Filter”). In filter closed mode, no 
message is accepted so the foreground buffer is never reloaded.
00 Two 32 bit Acceptance Filters
01 Four 16 bit Acceptance Filters
10 Eight 8 bit Acceptance Filters
11 Filter Closed

IDHIT[2:0] Identifier Acceptance Hit Indicator. MSCAN sets these flags to indicate an identifier acceptance hit. 
(see Section 25.4.3, “Identifier Acceptance Filter”)
000 Filter 0 Hit
001 Filter1 Hit
010 Filter 2 Hit
011 Filter 3 Hit
100 Filter 4 Hit
101 Filter 5 Hit
110 Filter 6 Hit
111 Filter 7 Hit

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-25

25.3.2.13 MSCAN MISC Register (CANMISC)

Read: Anytime

Write: Anytime; write of 1 clears flag; write of 0 ignored

MSCAN_BASE + 0x019 

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
BOFFHOLD

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 25-15. MSCAN MISC Register (CANMISC)

Table 25-16. CANMISC Field Descriptions

Field Description

BOFFHOLD Bus-off State Hold Until User Request If BORM is set in MSCAN Control Register 1 (Section 25.3.2.2, 
“MSCAN Control 1 Register (CANCTL1), this bit indicates whether the module has entered the 
bus-off state. Clearing this bit requests the recovery from bus-off. Refer to 25.4.15, “Bus-Off 
Recovery,” for details.

when read:
0 Module is not bus-off or recovery has been requested by user in bus-off state

1 Module is bus-off and holds this state until user request
when write:
0 no action 
1 clear corresponding interrupt flag

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-26 Freescale Semiconductor

25.3.2.14 MSCAN Receive Error Counter Register (CANRXERR)

This register reflects the status of the MSCAN receive error counter.

Read: Only when in sleep mode (SLPRQ=1 and SLPAK=1) or initialization mode (INITRQ=1 and

INITAK=1)

Write: Unimplemented

NOTE
Reading this register when in any other mode other than sleep or 
initialization mode, may return an incorrect value. 

MSCAN_BASE + 0x01C 

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 25-16. MSCAN Receive Error Counter Register (CANRXERR)

Table 25-17. CANRXERR Field Descriptions

Field Description

RXERR[7:0] This register reflects the status of the MSCAN receive error counter.
Read: Only when in sleep mode (SLPRQ=1 and SLPAK=1) or initialization mode (INITRQ=1 and 
INITAK=1)

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-27

25.3.2.15 MSCAN Transmit Error Counter Register (CANTXERR)

This register reflects the status of the MSCAN transmit error counter.

Read: Only when in sleep mode (SLPRQ=1 and SLPAK=1) or initialization mode (INITRQ=1 and

INITAK=1)

Write: Unimplemented

NOTE
Reading this register when in any other mode other than sleep or 
initialization mode, may return an incorrect value. 

MSCAN_BASE + 0x01D 

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 25-17. MSCAN Transmit Error Counter Register (CANTXERR)

Table 25-18. CANTXERR Field Descriptions

Field Description

TXERR[7:0] This register reflects the status of the MSCAN receive error counter.
Read: Only when in sleep mode (SLPRQ=1 and SLPAK=1) or initialization mode (INITRQ=1 and 
INITAK=1)

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-28 Freescale Semiconductor

25.3.2.16 MSCAN Identifier Acceptance Register (CANIDAR0–CANIDAR7)

On reception, each message is written into the background receive buffer. The Power Architecture is only 
signalled to read the message if it passes the criteria in the identifier acceptance and identifier mask 
registers (accepted); otherwise, the message is overwritten by the next message (dropped).

The acceptance registers of the MSCAN are applied on the IDR0–IDR3 registers (see Section 25.3.3.1, 
“Identifier Registers (IDR0–IDR3)”) of incoming messages in a bit by bit manner (see Section 25.4.3, 
“Identifier Acceptance Filter”).

For extended identifiers, all four acceptance and mask registers are applied. For standard identifiers, only 
the first two (CANIDAR0/1, CANIDMR0/1) are applied.

MSCAN_BASE + 0x20, 0x21, 0x24, 0x25

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

W

Reset 0 0 0 0 0 0 0 0

Figure 25-18. MSCAN Identifier Acceptance Registers (1st Bank)

Offset CAN base address + 0x30, 0x31, 0x34, 0x35

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

W

Reset 0 0 0 0 0 0 0 0

Figure 25-19. MSCAN Identifier Acceptance Registers (2nd Bank)

Table 25-19. CANIDAR0–CANIDAR7 Field Descriptions

Field Description

AC[7:0] Acceptance Code Bits. AC[7:0] comprises a user defined sequence of bits with which the 
corresponding bits of the related identifier register (IDRn) of the receive message buffer are 
compared. The result of this comparison is masked with the corresponding identifier mask register. 

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-29

25.3.2.17 MSCAN Identifier Mask Register (CANIDMR0–CANIDMR7)

The identifier mask register specifies which of the corresponding bits in the identifier acceptance register 
are relevant for acceptance filtering.

• To receive standard identifiers in 32-bit filter mode, the last three bits (AM[0:2]) in the following 
mask registers must be programmed as don’t care:
— CANIDMR1
— CANIDMR5

• To receive standard identifiers in 16-bit filter mode, the last three bits (AM[0:2]) in the following 
mask registers must be programmed as don’t care:
— CANIDMR1
— CANIDMR3
— CANIDMR5
— CANIDMR7

MSCAN_BASE + 0x28, 0x29, 0x2C, 0x2D

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

W

Reset 0 0 0 0 0 0 0 0

Figure 25-20. MSCAN Identifier Mask Registers (1st Bank)

Offset CAN base address + 0x38, 0x39, 0x3C, 0x3D

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

W

Reset 0 0 0 0 0 0 0 0

Figure 25-21. MSCAN Identifier Mask Registers (2nd Bank)

Table 25-20. CANIDMR0–CANIDMR7 Field Descriptions

Field Description

AM[7:0] Acceptance Mask Bits. If a particular bit in this register is cleared, this indicates the corresponding bit 
in the identifier acceptance register must be the same as its identifier bit before a match is detected. 
The message is accepted if all such bits match. If a bit is set, it indicates the state of the corresponding 
bit in the identifier acceptance register does not affect whether or not message is accepted.
0 Match corresponding acceptance code register and identifier bits.
1 Ignore corresponding acceptance code register bit.

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-30 Freescale Semiconductor

25.3.3 Programmer’s Model of Message Storage

The following section details the organization of the receive and transmit message buffers and the 
associated control registers. 

Receive buffer start with base address 0x40, Transmit buffer start with base address 0x60

To simplify the programmer interface, the receive and transmit message buffers have the same outline. 
Each message buffer allocates 16 bytes in the memory map containing a 13 byte data structure. 

An additional transmit buffer priority register (TBPR) is defined for the transmit buffers. Within the last 
two bytes of this memory map, the MSCAN stores a special 16-bit time stamp, which is sampled from an 
internal timer after successful transmission or reception of a message. This feature is only available for 
transmit and receiver buffers, if the TIME bit is set (see Section 25.3.2.1, “MSCAN Control 0 Register 
(CANCTL0)”). 

The time stamp register is written by the MSCAN. The Power Architecture can only read these registers.

Figure 25-22 shows the common 13-byte data structure of receive and transmit buffers for extended 
identifiers. The mapping of standard identifiers into the IDR registers is shown in Figure 25-23. 

Table 25-21. Message Buffer Organization

Offset 
Address

Register

0x00 Identifier Register 0

0x01 Identifier Register 1

0x04 Identifier Register 2

0x05 Identifier Register 3

0x08 Data Segment Register 0

0x09 Data Segment Register 1

0x0C Data Segment Register 2

0x0D Data Segment Register 3

0x10 Data Segment Register 4

0x11 Data Segment Register 5

0x14 Data Segment Register 6

0x15 Data Segment Register 7

0x18 Data Length Register

0x19 Transmit Buffer Priority Register1

1 Not applicable for receive buffers

0x1C Time Stamp Register (High Byte)2

2 Read-only for Power Architecture

0x1D Time Stamp Register (Low Byte)3

3 Read-only for Power Architecture

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-31

All bits of the receive and transmit buffers are x out of reset because of RAM-based implementation1. All 
reserved or unused bits of the receive and transmit buffers always read ‘x’.

1. Exception: The transmit priority registers are 0 out of reset.

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-32 Freescale Semiconductor

MSCAN_BASE + (0X40 or 0x60)

Power 
Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

Register
Name

0x00
IDR0

R
ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21

W

0x01
IDR1

R
ID20 ID19 ID18 SRR (=1) IDE (=1) ID17 ID16 ID15

W

0x04
IDR2

R
ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7

W

0x05
IDR3

R
ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR

W

0x08
DSR0

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

0x09
DSR1

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

0x0C
DSR2

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

0x0D
DSR3

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

0x10
DSR4

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

0x11
DSR5

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

0x14
DSR6

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

0x15
DSR7

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

0x18
DLR

R
DLC3 DLC2 DLC1 DLC0

W

= Unused, always read ‘x’

Figure 25-22. Receive/Transmit Message Buffer — Extended Identifier Mapping

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-33

Read: For transmit buffers, anytime when TXEx flag is set (see Section 25.3.2.7, “MSCAN Transmitter 
Flag Register (CANTFLG)”) and the corresponding transmit buffer is selected in CANTBSEL (see 
Section 25.3.2.11, “MSCAN Transmitter Buffer Selection (CANTBSEL)”). For receive buffers, only 
when RXF flag is set (see Section 25.3.2.5, “MSCAN Receiver Flag Register (CANRFLG)”).

Write: For transmit buffers, anytime when TXEx flag is set (see Section 25.3.2.7, “MSCAN Transmitter 
Flag Register (CANTFLG)”) and the corresponding transmit buffer is selected in CANTBSEL (see 
Section 25.3.2.11, “MSCAN Transmitter Buffer Selection (CANTBSEL)”). Unimplemented for receive 
buffers.

Reset: Undefined because of RAM-based implementation

25.3.3.1 Identifier Registers (IDR0–IDR3)

The identifier registers for an extended format identifier consist of a total of 32 bits; ID[28:0], SRR, IDE, 
and RTR bits. The identifier registers for a standard format identifier consist of a total of 13 bits; ID[10:0], 
RTR, and IDE bits.

25.3.3.1.1 IDR0–IDR3 for Extended Identifier Mapping

MSCAN_BASE + (0X40 or 0x60)

Power 
Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

Register
Name

IDR0
0x00

R
ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3

W

IDR1
0x01

R
ID2 ID1 ID0 RTR IDE (=0)

W

Figure 25-23. Receive/Transmit Message Buffer — Standard Identifier Mapping

MSCAN_BASE + (0X40 or 0x60) + 0x00

Power 
Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21

W

Reset: x x x x x x x x

Figure 25-24. Identifier Register 0 (IDR0) — Extended Identifier Mapping

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-34 Freescale Semiconductor

Table 25-22. IDR0 Register Field Descriptions — Extended

Field Description

ID[28:21] Extended Format Identifier. The identifiers consist of 29 bits (ID[28:0]) for the extended format. ID28 is the most 
significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an identifier 
is defined to be highest for the smallest binary number.

MSCAN_BASE + (0X40 or 0x60) + 0x01

Power 
Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
ID20 ID19 ID18 SRR (=1) IDE (=1) ID17 ID16 ID15

W

Reset: x x x x x x x x

Figure 25-25. Identifier Register 1 (IDR1) — Extended Identifier Mapping

Table 25-23. IDR1 Register Field Descriptions — Extended

Field Description

ID[20:18] Extended Format Identifier. The identifiers consist of 29 bits (ID[28:0]) for the extended format. ID28 is the most 
significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an identifier 
is defined to be highest for the smallest binary number.

SRR Substitute Remote Request. This fixed recessive bit is used only in extended format. It must be set to 1 by the 
user for transmission buffers and is stored as received on the CAN bus for receive buffers. 

IDE ID Extended. This flag indicates whether the extended or standard identifier format is applied in this buffer. In 
the case of a receive buffer, the flag is set as received and indicates to the Power Architecture how to process 
the buffer identifier registers. In the case of a transmit buffer, the flag indicates to the MSCAN what type of 
identifier to send.
0 Standard format (11 bit)
1 Extended format (29 bit)

ID[17:15] Extended Format Identifier. The identifiers consist of 29 bits (ID[28:0]) for the extended format. ID28 is the most 
significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an identifier 
is defined to be highest for the smallest binary number.

MSCAN_BASE + (0X40 or 0x60) + 0x04

Power 
Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7

W

Reset: x x x x x x x x

Figure 25-26. Identifier Register 2 (IDR2) — Extended Identifier Mapping

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-35

25.3.3.1.2 IDR0–IDR3 for Standard Identifier Mapping

Table 25-24. IDR2 Register Field Descriptions — Extended

Field Description

ID[14:7] Extended Format Identifier. The identifiers consist of 29 bits (ID[28:0]) for the extended format. ID28 is the most 
significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an identifier 
is defined to be highest for the smallest binary number.

MSCAN_BASE + (0X40 or 0x60) + 0x05

Power 
Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR

W

Reset: x x x x x x x x

Figure 25-27. Identifier Register 3 (IDR3) — Extended Identifier Mapping

Table 25-25. IDR3 Register Field Descriptions — Extended

Field Description

ID[6:0] Extended Format Identifier. The identifiers consist of 29 bits (ID[28:0]) for the extended format. ID28 is the most 
significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an identifier 
is defined to be highest for the smallest binary number.

RTR Remote Transmission Request. This flag reflects the status of the remote transmission request bit in the CAN 
frame. In the case of a receive buffer, it indicates the status of the received frame and supports the transmission 
of an answering frame in software. In the case of a transmit buffer, this flag defines the setting of the RTR bit to 
be sent.
0 Data frame
1 Remote frame

MSCAN_BASE + (0X40 or 0x60) + 0x00

Power 
Architectur

e
0 1 2 3 4 5 6 7

Convention
al

7 6 5 4 3 2 1 0

R
ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3

W

Reset: x x x x x x x x

Figure 25-28. Identifier Register 0 — Standard Mapping

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-36 Freescale Semiconductor

25.3.3.2 Data Segment Registers (DSR0-7)

The eight data segment registers, each with bits DB[7:0], contain the data to be transmitted or received. 
The number of bytes to be transmitted or received is determined by the data length code in the 
corresponding DLR register.

Table 25-26. IDR0 Register Field Descriptions — Standard

Field Description

ID[10:3] Standard Format Identifier. The identifiers consist of 11 bits (ID[10:0]) for the standard format. ID10 is the most 
significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an identifier 
is defined to be highest for the smallest binary number. See also ID bits in Table 25-27.

MSCAN_BASE + (0X40 or 0x60) + 0x01

Power 
Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
ID2 ID1 ID0 RTR IDE (=0)

W

Reset: x x x x x x x x

= Unused; always read ‘x’

Figure 25-29. Identifier Register 1 — Standard Mapping

Table 25-27. IDR1 Register Field Descriptions

Field Description

ID[2:0] Standard Format Identifier. The identifiers consist of 11 bits (ID[10:0]) for the standard format. ID10 is the most 
significant bit and is transmitted first on the CAN bus during the arbitration procedure. The priority of an identifier 
is defined to be highest for the smallest binary number. See also ID bits in Table 25-26.

RTR Remote Transmission Request. This flag reflects the status of the Remote Transmission Request bit in the 
CAN frame. In the case of a receive buffer, it indicates the status of the received frame and supports the 
transmission of an answering frame in software. In the case of a transmit buffer, this flag defines the setting of 
the RTR bit to be sent.
0 Data frame
1 Remote frame

3
IDE

ID Extended. This flag indicates whether the extended or standard identifier format is applied in this buffer. In 
the case of a receive buffer, the flag is set as received and indicates to the Power Architecture how to process 
the buffer identifier registers. In the case of a transmit buffer, the flag indicates to the MSCAN what type of 
identifier to send.
0 Standard format (11 bit)
1 Extended format (29 bit)

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-37

25.3.3.3 Data Length Register (DLR)

This register keeps the data length field of the CAN frame. 

MSCAN_BASE +(0x40 or 0x60) 
+
0x08 (DSR0)
0x09 (DSR1)
0x0C (DSR2)
0x0D (DSR3)
0x10 (DSR4)
0x11 (DSR5)
0x14 (DSR6)
0x15 (DSR7)

Power 
Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

Reset: x x x x x x x x

Figure 25-30. Data Segment Registers (DSR0–DSR7) — Extended Identifier Mapping

Table 25-28.  DSR0–DSR7 Register Field Descriptions

Field Description

7:0
DB[7:0]

Data bits 7:0

MSCAN_BASE + (0x40 or 0x60) + 0x18

Power 
Architectur

e
0 1 2 3 4 5 6 7

Convention
al

7 6 5 4 3 2 1 0

R
DLC3 DLC2 DLC1 DLC0

W

Reset: x x x x x x x x

= Unused; always read x

Figure 25-31. Data Length Register (DLR) — Extended Identifier Mapping

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-38 Freescale Semiconductor

25.3.3.4 Transmit Buffer Priority Register (TBPR)

This register defines the local priority of the associated message buffer. The local priority is used for the 
internal prioritization process of the MSCAN and is defined to be highest for the smallest binary number. 
The MSCAN implements the following internal prioritization mechanisms: 

• All transmission buffers with a cleared TXEx flag participate in the prioritization immediately 
before the SOF (start of frame) is sent.

• The transmission buffer with the lowest local priority field wins the prioritization.

In cases of more than one buffer having the same lowest priority, the message buffer with the lower index 
number wins.

Table 25-29.  DLR Register Field Descriptions

Field Description

3:0
DLC[3:0]

Data Length Code Bits. The data length code contains the number of bytes (data byte count) of the respective 
message. During the transmission of a remote frame, the data length code is transmitted as programmed while 
the number of transmitted data bytes is always 0. The data byte count ranges from 0 to 8 for a data frame. 
Table 25-30 shows the effect of setting the DLC bits.

Table 25-30. Data Length Codes

Data Length Code Data Byte 
CountDLC3 DLC2 DLC1 DLC0

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-39

Read: Anytime when TXEx flag is set (see Section 25.3.2.7, “MSCAN Transmitter Flag Register 
(CANTFLG)”) and the corresponding transmit buffer is selected in CANTBSEL (see Section 25.3.2.11, 
“MSCAN Transmitter Buffer Selection (CANTBSEL)”).

Write: Anytime when TXEx flag is set (see Section 25.3.2.7, “MSCAN Transmitter Flag Register 
(CANTFLG)”) and the corresponding transmit buffer is selected in CANTBSEL (see Section 25.3.2.11, 
“MSCAN Transmitter Buffer Selection (CANTBSEL)”).

25.3.3.5 Time Stamp Register (TSRH–TSRL)

If the TIME bit is enabled, the MSCAN writes a special time stamp to the respective registers in the active 
transmit or receive buffer as soon as a message has been acknowledged on the CAN bus (see 
Section 25.3.2.1, “MSCAN Control 0 Register (CANCTL0)”). The time stamp is written on the bit sample 
point for the recessive bit of the ACK delimiter in the CAN frame. In case of a transmission, the Power 
Architecture can only read the time stamp after the respective transmit buffer has been flagged empty. 

The timer value, which is used for stamping, is taken from a free running internal CAN bit clock. A timer 
overrun is not indicated by the MSCAN. The timer is reset (all bits set to 0) during initialization mode. The 
Power Architecture can only read the time stamp registers.

MSCAN_BASE + (0x40 or 0x60) + 0x19

Power 
Architectur

e
0 1 2 3 4 5 6 7

Convention
al

7 6 5 4 3 2 1 0

R
PRIO7 PRIO6 PRIO5 PRIO4 PRIO3 PRIO2 PRIO1 PRIO0

W

Reset: 0 0 0 0 0 0 0 0

Figure 25-32. Transmit Buffer Priority Register (TBPR)

MSCAN_BASE + (0x40 or 0x60) + 0x1C

Power 
Architectur

e
0 1 2 3 4 5 6 7

Convention
al

7 6 5 4 3 2 1 0

R TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8

W

Reset: x x x x x x x x

Figure 25-33. Time Stamp Register — High Byte (TSRH)

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-40 Freescale Semiconductor

Read: Anytime when TXEx flag is set (see Section 25.3.2.7, “MSCAN Transmitter Flag Register 
(CANTFLG)”) and the corresponding transmit buffer is selected in CANTBSEL (see Section 25.3.2.11, 
“MSCAN Transmitter Buffer Selection (CANTBSEL)”).

Write: Unimplemented

MSCAN_BASE + (0x40 or 0x60) + 0x1D

Power 
Architectur

e
0 1 2 3 4 5 6 7

Convention
al

7 6 5 4 3 2 1 0

R TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0

W

Reset: x x x x x x x x

Figure 25-34. Time Stamp Register — Low Byte (TSRL)

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-41

25.4 Functional Description

25.4.1 General

This section provides a complete functional description of the MSCAN. It describes each of the features 
and modes listed in the introduction.

25.4.2 Message Storage

Figure 25-35. User Model for Message Buffer Organization

MSCAN facilitates a sophisticated message storage system which addresses the requirements of a broad 
range of network applications.

MSCAN

Rx0
Rx1

CAN 
Receive/Transmit 

Engine

 
Memory Mapped

I/O

Power Architecture bu

MSCAN

Tx2 TXE2

PRIO

Receiver

Transmitter

R
xB

G

T
xB

G

Tx0 TXE0

PRIOT
xB

G

Tx1

PRIO

TXE1

T
xF

G

Power Architecture

Rx2
Rx3

Rx4
RXF

R
xF

G

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-42 Freescale Semiconductor

25.4.2.1 Message Transmit Background

Modern application layer software is built upon two fundamental assumptions: 
• Any CAN node is able to send out a stream of scheduled messages without releasing the bus 

between the two messages. Such nodes arbitrate for the bus immediately after sending the previous 
message and only release the bus in case of lost arbitration.

• The internal message queue within any CAN node is organized so the highest priority message is 
sent out first if more than one message is ready to be sent.

The above behavior cannot be achieved with a single transmit buffer. That buffer must be reloaded right 
after the previous message is sent. This loading process lasts a finite amount of time and has to be 
completed within the inter-frame sequence (IFS)1 to send an uninterrupted stream of messages. Even if 
this is feasible for limited CAN bus speeds, it requires the Power Architecture react with short latencies to 
the transmit interrupt. 

A double buffer scheme decouples the reloading of the transmit buffer from the actual message sending 
and reduces the reactiveness requirements on the Power Architecture. Problems can arise if the sending of 
a message is finished while the Power Architecture reloads the second buffer. No buffer would be ready 
for transmission and the bus would be released.

At least three transmit buffers are required to meet the first of the above requirements under all 
circumstances. The MSCAN has three transmit buffers.

The second requirement calls for some sort of internal prioritization which the MSCAN implements with 
the local priority concept described in Section 25.4.2.2, “Transmit Structures”.

25.4.2.2 Transmit Structures

The MSCAN has a triple transmit buffer scheme which allows multiple messages to be set up in advance 
and achieve an optimized real-time performance. The three buffers are arranged as shown in Figure 25-35.

All three buffers have a 13-byte data structure similar to the outline of the receive buffers (see 
Section 25.3.3, “Programmer’s Model of Message Storage”). An additional Section 25.3.3.4, “Transmit 
Buffer Priority Register (TBPR) contains an 8-bit local priority field (PRIO) . The remaining two bytes are 
used for time stamping of a message, if required (see Section 25.3.3.5, “Time Stamp Register 
(TSRH–TSRL)”).

To transmit a message, the Power Architecture must identify an available transmit buffer, which is 
indicated by a set transmitter buffer empty (TXEx) flag (see Section 25.3.2.7, “MSCAN Transmitter Flag 
Register (CANTFLG)”). If a transmit buffer is available, the Power Architecture must set a pointer to this 
buffer by writing to the CANTBSEL register (see Section 25.3.2.11, “MSCAN Transmitter Buffer 
Selection (CANTBSEL)”). This makes the respective buffer accessible within the CANTXFG address 
space (see Section 25.3.3, “Programmer’s Model of Message Storage”). The algorithmic feature 
associated with the CANTBSEL register simplifies the transmit buffer selection. In addition, this scheme 
makes the handler software simpler because only one address area is applicable for the transmit process, 
and the required address space is minimized.

1. Reference the Bosch CAN 2.0A/B protocol specification dated September 1991.

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-43

The Power Architecture then stores the identifier, the control bits and the data content into one of the 
transmit buffers. Finally, the buffer is flagged as ready for transmission by clearing the associated TXE 
flag.

The MSCAN then schedules the message for transmission and signals the successful transmission of the 
buffer by setting the associated TXE flag. A transmit interrupt Section 25.4.11.1, “Transmit Interrupt,” is 
generated1 when TXEx is set and can drive the application software to reload the buffer.

In case more than one buffer is scheduled for transmission when the CAN bus becomes available for 
arbitration, the MSCAN uses the local priority setting of the three buffers to determine the prioritization. 
For this purpose, every transmit buffer has an 8-bit local priority field (PRIO). The application software 
programs this field when the message is set up. The local priority reflects the priority of this particular 
message relative to the set of messages transmitted from this node. The lowest binary value of the PRIO 
field is defined to be the highest priority. The internal scheduling process takes place when the MSCAN 
arbitrates for the bus. This is also the case after the occurrence of a transmission error.

When a high priority message is scheduled by the application software, it may become necessary to abort 
a lower priority message in one of the three transmit buffers. Because messages that are already in 
transmission cannot be aborted, the user must request the abort by setting the corresponding abort request 
bit (ABTRQ) (see Section 25.3.2.9, “MSCAN Transmitter Message Abort Request (CANTARQ)”.) The 
MSCAN then grants the request, if possible, by: 

1. Setting the corresponding abort acknowledge flag (ABTAK) in the CANTAAK register.
2. Setting the associated TXE flag to release the buffer.
3. Generating a transmit interrupt. The transmit interrupt handler software can determine from the 

setting of the ABTAK flag whether the message was aborted (ABTAK = 1) or sent (ABTAK = 0).

25.4.2.3 Receive Structures

The received messages are stored in a five-stage input FIFO. The five message buffers are alternately 
mapped into a single memory area as seen in Figure 25-35. While the background receive buffer (RxBG) 
is exclusively associated with the MSCAN, the foreground receive buffer (RxFG) is addressable by the 
Power Architecture as seen in Figure 25-35. This scheme simplifies the manager software as only one 
address area is applicable for the receive process.

All receive buffers have a size of 15 bytes to store the CAN control bits, the identifier (standard or 
extended), the data contents and a time stamp, if enabled (for details Section 25.4.3, “Identifier Acceptance 
Filter”)2.

The receiver full flag (RXFIF) Section 25.3.2.5, “MSCAN Receiver Flag Register (CANRFLG)” signals 
the status of the foreground receive buffer. When the buffer contains a correctly received message with a 
matching identifier, this flag is set.

On reception, each message is checked to see if it passes the filter (Section 25.3.2.12, “MSCAN Identifier 
Acceptance Control Register (CANIDAC),”) and in parallel, is written into the active RxBG. After 
successful reception of a valid message the MSCAN shifts the content of RxBG into the receiver FIFO3, 

1. The transmit interrupt occurs only if not masked. A polling scheme can be applied on TXEx also.

2. Reference the Bosch CAN 2.0A/B protocol specification dated September 1991 for details.

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-44 Freescale Semiconductor

and generates a receive interrupt Section 25.4.11.2, “Receive Interrupt” to the Power Architecture1 by set 
RXFIF. The receive manager has to read the received message from the RxFG, reset the RXFIF flag to 
acknowledge the interrupt, and release the foreground buffer. A new message, which can follow 
immediately after the IFS field of the CAN frame, is received into the next available RxBG. If the MSCAN 
receives an invalid message in its RxBG (wrong identifier, transmission errors etc.), the actual contents of 
the buffer are over-written by the next message. The buffer is not shifted into the FIFO.

When the MSCAN module is transmitting, the MSCAN receives its own transmitted messages into the 
background receive buffer (RxBG), but does not shift it into the receiver FIFO, generate a receive 
interrupt, or acknowledge its own messages on the CAN bus. The exception to this rule is in loop back 
mode Section 25.3.2.2, “MSCAN Control 1 Register (CANCTL1),” where the MSCAN treats its own 
messages exactly like all other incoming messages. The MSCAN receives its own transmitted messages 
in the event that it loses arbitration2. If arbitration is lost, the MSCAN must be prepared to become a 
receiver.

An overrun condition occurs when all receive message buffers in the FIFO are filled with correctly 
received messages with accepted identifiers and another message is correctly received from the bus with 
an accepted identifier. The latter message is discarded and an error interrupt with overrun indication is 
generated if enabled Section 25.4.11.4, “Error Interrupt”. The MSCAN remains able to transmit messages 
while the receiver FIFO is being filled, but all incoming messages are discarded. As soon as a receive 
buffer in the FIFO is available again, new valid messages are accepted.

25.4.3 Identifier Acceptance Filter

The MSCAN identifier acceptance registers (Section 25.3.2.12, “MSCAN Identifier Acceptance Control 
Register (CANIDAC)”) define the acceptable patterns of the standard or extended identifier (ID10 - ID0 
or ID28 - ID0). Any of these bits can be marked don’t care in the MSCAN identifier mask registers 
Section 25.3.2.17, “MSCAN Identifier Mask Register (CANIDMR0–CANIDMR7)”.

A filter hit is indicated to the application software by a set receive buffer full flag (RXF=1) and three bits 
in the CANIDAC register Section 25.3.2.16, “MSCAN Identifier Acceptance Register 
(CANIDAR0–CANIDAR7)”. These identifier hit flags (IDHIT2-0) clearly identify the filter section that 
caused the acceptance. They simplify the application software’s task to identify the cause of the receiver 
interrupt. In case more than one hit occurs (two or more filters match), the lower hit has priority.

A flexible programmable generic identifier acceptance filter has been introduced to reduce the Power 
Architecture interrupt loading. The filter is programmable to operate in four different modes3: 

• Two identifier acceptance filters, each to be applied to:
— The full 29 bits of the extended identifier and to the following bits of the CAN 2.0B frame: 

– Remote transmission request (RTR)
– Identifier extension (IDE)

3. Only if the RXF flag is not set.

1. The receive interrupt occurs only if not masked. A polling scheme can be applied on RXF also.

2. Reference the Bosch CAN 2.0A/B protocol specification dated September 1991 for details.
3. For a better understanding of references made within the filter mode description, reference the Bosch specification dated 

September 1991 which details the CAN 2.0A/B protocol.

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-45

– Substitute remote request (SRR)
— The 11 bits of the standard identifier plus the RTR and IDE bits of the CAN 2.0A/B messages1. 

This mode implements two filters for a full length CAN 2.0B compliant extended identifier. 
Figure 25-39 shows how the first 32-bit filter bank (CANIDAR0–CANIDAR3, 
CANIDMR0–CANIDMR3) produces a filter 0 hit. Similarly, the second filter bank 
(CANIDAR4–CANIDAR7, CANIDMR4–CANIDMR7) produces a filter 1 hit.

• Four identifier acceptance filters, each to be applied to 
— a) the 14 most significant bits of the extended identifier plus the SRR and IDE bits of CAN 

2.0B messages or 
— b) the 11 bits of the standard identifier, the RTR and IDE bits of CAN 2.0A/B messages. 

Figure 25-40 shows how the first 32-bit filter bank (CANIDAR0–CANIDA3, 
CANIDMR0–3CANIDMR) produces filter 0 and 1 hits. Similarly, the second filter bank 
(CANIDAR4–CANIDAR7, CANIDMR4–CANIDMR7) produces filter 2 and 3 hits.

• Eight identifier acceptance filters, each to be applied to the first 8 bits of the identifier. This mode 
implements eight independent filters for the first 8 bits of a CAN 2.0A/B compliant standard 
identifier or a CAN 2.0B compliant extended identifier. Figure 25-38 shows how the first 32-bit 
filter bank (CANIDAR0–CANIDAR3, CANIDMR0–CANIDMR3) produces filter 0 to 3 hits. 
Similarly, the second filter bank (CANIDAR4–CANIDAR7, CANIDMR4–CANIDMR7) 
produces filter 4 to 7 hits.

• Closed filter. No CAN message is copied into the foreground buffer RxFG, and the RXF flag is 
never set.

Figure 25-36. 32-Bit Maskable Identifier Acceptance Filter

1.Although this mode can be used for standard identifiers, it is recommended to use the four or eight identifier acceptance 
filters for standard identifiers

ID28 ID21IDR0

ID10 ID3IDR0

ID20 ID15IDR1

ID2 IDEIDR1

ID14 ID7IDR2

ID10 ID3IDR2

ID6 RTRIDR3

ID10 ID3IDR3

AC7 AC0CANIDAR0

AM7 AM0CANIDMR0

AC7 AC0CANIDAR1

AM7 AM0CANIDMR1

AC7 AC0CANIDAR2

AM7 AM0CANIDMR2

AC7 AC0CANIDAR3

AM7 AM0CANIDMR3

ID Accepted (Filter 0 Hit)

CAN 2.0B
Extended Identifier

CAN 2.0A/B
Standard Identifier

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-46 Freescale Semiconductor

Figure 25-37. 16-Bit Maskable Identifier Acceptance Filters

ID28 ID21IDR0

ID10 ID3IDR0

ID20 ID15IDR1

ID2 IDEIDR1

ID14 ID7IDR2

ID10 ID3IDR2

ID6 RTRIDR3

ID10 ID3IDR3

AC7 AC0CANIDAR0

AM7 AM0CANIDMR0

AC7 AC0CANIDAR1

AM7 AM0CANIDMR1

ID Accepted (Filter 0 Hit)

AC7 AC0CANIDAR2

AM7 AM0CANIDMR2

AC7 AC0CANIDAR3

AM7 AM0CANIDMR3

ID Accepted (Filter 1 Hit)

CAN 2.0B
Extended Identifier

CAN 2.0A/B
Standard Identifier

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-47

Figure 25-38. 8-Bit Maskable Identifier Acceptance Filters

CAN 2.0B
Extended Identifier

CAN 2.0A/B
Standard Identifier

AC7 AC0CIDAR3

AM7 AM0CIDMR3

ID Accepted (Filter 3 Hit)

AC7 AC0CIDAR2

AM7 AM0CIDMR2

ID Accepted (Filter 2 Hit)

AC7 AC0CIDAR1

AM7 AM0CIDMR1

ID Accepted (Filter 1 Hit)

ID28 ID21IDR0

ID10 ID3IDR0

ID20 ID15IDR1

ID2 IDEIDR1

ID14 ID7IDR2

ID10 ID3IDR2

ID6 RTRIDR3

ID10 ID3IDR3

AC7 AC0CIDAR0

AM7 AM0CIDMR0

ID Accepted (Filter 0 Hit)

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-48 Freescale Semiconductor

25.4.4 Protocol Violation Protection

The MSCAN protects you from accidentally violating the CAN protocol through programming errors. The 
protection logic implements the following features:

• The receive and transmit error counters cannot be written or otherwise manipulated.
• All registers which control the configuration of the MSCAN cannot be modified while the MSCAN 

is on-line. The MSCAN has to be in Initialization Mode. The corresponding INITRQ/INITAK 
handshake bits in the CANCTL0/CANCTL1 registers Section 25.3.2.1, “MSCAN Control 0 
Register (CANCTL0)” serve as a lock to protect the following registers:
— MSCAN Control 1 Register (CANCTL1)
— MSCAN Bus Timing Registers 0 and 1 (CANBTR0, CANBTR1)
— MSCAN Identifier Acceptance Control Register (CANIDAC)
— MSCAN Identifier Acceptance Registers (CANIDAR0-7)
— MSCAN Identifier Mask Registers (CANIDMR0-7)

• The TXCAN pin is immediately forced to a recessive state when the MSCAN goes into the power 
down mode or initialization mode (see Section 25.4.8.3, “MSCAN Power Down Mode” and 
Section 25.4.8.2, “MSCAN Initialization Mode”).

25.4.5 Clock System

Figure 25-39 shows the structure of the MSCAN clock generation circuitry. With this flexible clocking 
scheme, the MSCAN can manage CAN bus rates ranging from 10 Kbps up to 1 Mbps.

Figure 25-39. MSCAN Clocking Scheme

The clock source bit (CLKSRC) in the CANCTL1 register Section 25.3.2.2, “MSCAN Control 1 Register 
(CANCTL1)” defines whether the internal CANCLK is connected to the output of the system bus clock 
or to the IPS clock.

NOTE
Both MSCAN modules can have different selected clock sources. To select 
the bus clock, the CLKSRC bit in the CANCTL1 register must be set.

IPS clock

Bus Clock

MSCAN

CANCLK

CLKSRC

CLKSRC

Prescaler
(1 .. 64)

Time quanta clock (Tq)

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-49

The clock source has to be chosen such that the tight oscillator tolerance requirements (up to 0.4%) of the 
CAN protocol are met. Additionally, for high CAN bus rates (1 Mbps), a 45% – 55% duty cycle of the 
clock is required.

A programmable prescaler generates the time quanta (Tq) clock from CANCLK. A time quantum is the 
atomic unit of time handled by the MSCAN.

Eqn. 25-2

A bit time is subdivided into three segments1 2 (reference Figure 25-40):
• SYNC_SEG: This segment has a fixed length of one time quantum. Signal edges are expected to 

happen within this section. 
• Time Segment 1: This segment includes the PROP_SEG and the PHASE_SEG1 of the CAN 

standard. 
• Time Segment 2: This segment represents the PHASE_SEG2 of the CAN standard. Setting the 

parameter TSEG2 to consist of 2 to 8 time quanta long can programmed it.

Eqn. 25-3

Figure 25-40. Segments within the Bit Time

1. For further explanation of the under-lying concepts, refer to ISO/DIS 11519-1, Section 10.3.

2. Reference the Bosch CAN 2.0A/B protocol specification dated September 1991 for bit timing.

Table 25-31. Time Segment Syntax

Syntax Description

SYNC_SEG System expects transitions to occur on the bus during this period.

fTq
fCANCLK

Prescaler value⋅( )
------------------------------------------------=

Bit Rate
fTq

number of Time QuantaÞ Þ Þ( )
-----------------------------------------------------------------------------------------=Þ

SYNC_SEG Time Segment 1 Time Segment 2

1 4 ... 16 2 ... 8 

8 ... 25 Time Quanta

= 1 Bit Time

NRZ Signal

Sample Point 
(single or triple sampling)

 (PROP_SEG + PHASE_SEG1)  (PHASE_SEG2)

Transmit Point 

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-50 Freescale Semiconductor

The synchronization jump width1 can be programmed in a range of 1 to 4 time quanta by setting the SJW 
parameter.

The above parameters are set by programming the MSCAN Bus Timing Registers (CANBTR0, 
CANBTR1) (see Section 25.3.2.1, “MSCAN Control 0 Register (CANCTL0)” and Section 25.3.2.4, 
“MSCAN Bus Timing Register 1 (CANBTR1)”).

Table 25-32 gives an overview of the CAN compliant segment settings and the related parameter values.

NOTE
Ensure the bit time settings are in compliance with the CAN standard.

25.4.6 Timer Link

The MSCAN generates an internal time stamp when a valid frame is received or transmitted and the TIME 
bit is enabled. Because the CAN specification defines a frame to be valid if no errors occur before the End 
of Frame (EOF) field is transmitted successfully, the actual value of an internal timer is written at EOF to 
the appropriate time stamp position within the transmit buffer. For receive frames, the time stamp is written 
to the receive buffer.

25.4.7 Modes of Operation

25.4.7.1 Normal Mode

The MSCAN module behaves as described within this specification in all normal modes.

Transmit Point A node in transmit mode transfers a new value to the CAN bus at this point.

Sample Point A node in receive mode samples the bus at this point. If the three samples 
per bit option is selected, this point marks the position of the third sample.

1. Reference the Bosch CAN 2.0A/B protocol specification dated September 1991 for bit timing.

Table 25-32. CAN Standard Compliant Bit Time Segment Settings

Time Segment 1 TSEG1 Time Segment 2 TSEG2
     Synchronization 

Jump Width
SJW

5 .. 10 4 .. 9 2 1 1 .. 2 0 .. 1

4 .. 11 3 .. 10 3 2 1 .. 3 0 .. 2

5 .. 12 4 .. 11 4 3 1 .. 4 0 .. 3

6 .. 13 5 .. 12 5 4 1 .. 4 0 .. 3

7 .. 14 6 .. 13 6 5 1 .. 4 0 .. 3

8 .. 15 7 .. 14 7 6 1 .. 4 0 .. 3

9 .. 16 8 .. 15 8 7 1 .. 4 0 .. 3

Table 25-31. Time Segment Syntax (continued)

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-51

25.4.7.2 Initialization Mode

The MSCAN is put into initialization mode when INITRQ=1 and INITAK=0.

25.4.7.3 Sleep mode

The MSCAN is put into sleep mode When SLPRQ = 1 and SLPAK = 1. 

25.4.7.4 Power down mode

The MSCAN is put into power down mode when Power Architecture goes into deep sleep mode.

25.4.7.5 Listen-Only Mode

In an optional bus monitoring mode (listen-only), the CAN node can receive valid data frames and valid 
remote frames, but it sends only recessive bits on the CAN bus. In addition, it cannot start a transmission. 
If the MAC sub-layer is required to send a dominant bit (ACK bit, overload flag, active error flag), the bit 
is rerouted internally so the MAC sub-layer monitors this dominant bit; although, the CAN bus may 
remain in recessive state externally.

25.4.8 Low Power Options

If the MSCAN is disabled (CANE=0), the MSCAN clocks are stopped for power savings.

If the MSCAN is enabled (CANE=1), the MSCAN has two additional modes with reduced power 
consumption, compared to normal mode: sleep and power down mode. In sleep mode, power consumption 
is reduced by stopping all clocks except those to access the registers from the Power Architecture side. In 
power down mode, all clocks are stopped and no power is consumed.

Table 25-33 summarizes the MSCAN modes. A particular combination of modes is entered by the given 
settings on the SLPRQ/SLPAK bits. 

For all modes, an MSCAN wake-up interrupt can only occur if the MSCAN is in sleep mode (SLPRQ=1 
and SLPAK=1), wake-up functionality is enabled (WUPE=1), and the wake-up interrupt is enabled 
(WUPIE=1).

Table 25-33.  MSCAN Operating Modes

MSCAN Mode

Normal
Power Down(Power 
Architecture enter 

deep sleep)
Sleep (CANE=0)

SLPRQ = 0
SLPAK = 0

SLPRQ = X
SLPAK = X

SLPRQ = 1
SLPAK = 1

SLPRQ = X1

SLPAK = X

1 X means don’t care

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-52 Freescale Semiconductor

25.4.8.1 MSCAN Sleep Mode

The Power Architecture can request the MSCAN to enter this low power mode by asserting the SLPRQ 
bit in the CANCTL0 register. The time when the MSCAN enters sleep mode depends on a 
fixed-synchronization delay and its current activity:

• If there are one or more message buffers scheduled for transmission (TXEx = 0), the MSCAN 
continues to transmit until all transmit message buffers are empty (TXEx = 1, transmitted 
successfully or aborted) and then goes into sleep mode.

• If the MSCAN is receiving, it continues to receive and goes into sleep mode as soon as the CAN 
bus next becomes idle.

• If the MSCAN is neither transmitting nor receiving, it immediately goes into sleep mode.

Figure 25-41. Sleep Request/Acknowledge Cycle

NOTE
The application software must avoid setting up a transmission (by clearing 
one or more TXEx flag[s]) and immediately request sleep mode (by setting 
SLPRQ). It depends on the exact sequence of operations whether the 
MSCAN starts transmitting or goes into sleep mode directly.

If sleep mode is active, the SLPRQ and SLPAK bits are set (Figure 25-41). The application software must 
use SLPAK as a handshake indication for the request (SLPRQ) to go into sleep mode.

When in sleep mode (SLPRQ = 1 and SLPAK = 1), the MSCAN stops its internal clocks. However, clocks 
that allow register accesses from the Power Architecture side continue to run. 

If the MSCAN is in bus-off state, it stops counting the 128 occurrences of 11 consecutive recessive bits 
due to the stopped clocks. The TXCAN pin remains in a recessive state. If RXF = 1, the message can be 
read and RXF can be cleared. Shifting a new message into the foreground buffer of the receiver FIFO 
(RxFG) does not take place while in sleep mode. 

It is possible to access the transmit buffers and to clear the associated TXE flags. No message abort takes 
place while in sleep mode. 

If the WUPE bit in CANCLT0 is not asserted, the MSCAN masks any activity it detects on CAN. The 
RXCAN pin is therefore held internally in a recessive state. This locks the MSCAN in sleep mode.The 
MSCAN is able to leave sleep mode (wake up) only when:

• CAN bus activity occurs and WUPE = 1 
or

SYNC

SYNC

Power Architecture Clock Domain CAN Clock Domain

MSCAN
in Sleep Mode

Power Architecture
Sleep Request

SLPRQ
Flag

SLPAK
Flag

SLPRQ

sync.
SLPAK

sync.
SLPRQ

SLPAK

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-53

• the Power Architecture clears the SLPRQ bit

NOTE
The Power Architecture cannot clear the SLPRQ bit before sleep mode 
(SLPRQ=1 and SLPAK=1) is active.After wake-up, the MSCAN waits for 
11 consecutive recessive bits to synchronize to the bus. As a consequence, 
if the MSCAN is woken-up by a CAN frame, this frame is not received. The 
receive message buffers (RxFG and RxBG) contain messages if they were 
received before sleep mode was entered. All pending actions are executed 
upon wake-up; copying of RxBG into RxFG, message aborts and message 
transmissions. If the MSCAN remains in bus-off state after sleep mode was 
left, it continues counting the 128*11 consecutive recessive bits.

Figure 25-42. Simplified State Transitions for Entering/Leaving Sleep Mode

25.4.8.2 MSCAN Initialization Mode

In initialization mode, any ongoing transmission or reception is immediately aborted and synchronization 
to the bus is lost potentially causing CAN protocol violations. To protect the CAN bus system from fatal 
consequences of violations, the MSCAN immediately drives the TXCAN pin into a recessive state.

NOTE
Ensure the MSCAN is not active when initialization mode is entered. The 
recommended procedure is to bring the MSCAN into sleep mode 
(SLPRQ=1 and SLPAK=1) before setting the INITRQ bit in the CANCTL0 
register. Otherwise, the abort of an ongoing message can cause an error 
condition and can have an impact on the other bus devices. 

In initialization mode, the MSCAN is stopped. However, interface registers can continue to be accessed. 
This mode resets the CANTCTL0, CANRFLG, CANRIER, CANTFLG, CANTIER, CANTARQ, 

Wait

Idle

Tx/Rx
Message
Active

CAN Activity

CAN Activity &

Sleep

SLPRQ

StartUp for Idle

(CAN Activity & WUPE) |

(CAN Activity & WUPE) |
(SLPAK & SLPRQ)

CAN Activity

CAN Activity

CAN Activity &

CAN Activity

SLPRQ

SLPRQ

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-54 Freescale Semiconductor

CANTAAK, and CANTBSEL registers to their default values. In addition, it enables the configuration of 
the CANBTR0 and CANBTR1 bit timing registers, CANIDAC, and the CANIDAR and CANIDMR 
message filters. Section 25.3.2.1, “MSCAN Control 0 Register (CANCTL0),” for a detailed description of 
the initialization mode.

Figure 25-43. Initialization Request/Acknowledge Cycle

Due to independent clock domains within the MSCAN, INITRQ must be synchronized to all domains by 
using a special handshake mechanism. This handshake causes additional synchronization delay (see 
Section Figure 25-43., “Initialization Request/Acknowledge Cycle”). 

If there is no message transfer ongoing on the CAN bus, the minimum delay is two additional bus clocks 
and three additional CAN clocks. When all parts of the MSCAN are in initialization mode, the INITAK 
flag is set. The application software must use INITAK as a handshake indication for the request (INITRQ) 
to go into initialization mode.

NOTE
The Power Architecture cannot clear the INITRQ bit before initialization 
mode (INITRQ=1 and INITAK=1) is active.

25.4.8.3 MSCAN Power Down Mode

The MSCAN is in power down mode (Table 25-33) when 
• Power Architecture is in deep sleep mode 

When entering the power down mode, the MSCAN immediately stops all ongoing transmissions and 
receptions, potentially causing CAN protocol violations. To protect the CAN bus system from fatal 
consequences of violations to the above rule, the MSCAN immediately drives the TXCAN pin into a 
recessive state.

NOTE
You are responsible for ensuring that the MSCAN is not active when Power 
Architecture deep sleep mode is entered. The recommended procedure is to 
bring the MSCAN into Sleep mode before the Power Architecture enters 
deep sleep mode. Otherwise, the abort of an ongoing message can cause an 
error condition and impact other CAN bus devices.

In power down mode, all clocks are stopped and no registers can be accessed. If the MSCAN was not in 
sleep mode before power down mode became active, the module would perform an internal recovery cycle 
after powering up. This causes some fixed delay before the module enters run mode again.

SYNC

SYNC

Power Architecture Clock Domain CAN Clock Domain

Power Architecture
Init Request

INIT
Flag

INITAK
Flag

INITRQ

sync.
INITAK

sync.
INITRQ

INITAK

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-55

25.4.8.4 Programmable Wake-Up Function

The MSCAN can be programmed to wake-up the MSCAN as soon as bus activity is detected (see control 
bit WUPE in Section 25.3.2.1, “MSCAN Control 0 Register (CANCTL0)”).

25.4.9 Reset Initialization

The reset state of each individual bit is listed in Section 25.3.2, “Register Descriptions,” which details all 
the registers and their bit-fields.

25.4.10 Interrupts

This section describes all interrupts originated by the MSCAN. It documents the enable bits and generated 
flags. Each interrupt is listed and described separately.

25.4.11 Description of Interrupt Operation

The MSCAN supports one interrupt vector mapped onto eight different interrupt sources, any of which can 
be individually masked (for details see sections Section 25.3.2.6, “MSCAN Receiver Interrupt Enable 
Register (CANRIER),” to Section 25.3.2.8, “MSCAN Transmitter Interrupt Enable Register 
(CANTIER)”).

NOTE
The dedicated interrupt vector addresses are defined in the Resets and 
Interrupts chapter.

25.4.11.1 Transmit Interrupt

At least one of the three transmit buffers is empty (not scheduled) and can be loaded to schedule a message 
for transmission. The TXEx flag of the empty message buffer is set.

25.4.11.2 Receive Interrupt

A message is successfully received and shifted into the foreground buffer (RxFG) of the receiver FIFO. 
This interrupt is generated immediately after receiving the EOF symbol. The RXF flag is set. If there are 
multiple messages in the receiver FIFO, the RXF flag is set as soon as the next message is shifted to the 
foreground buffer.

Table 25-34. Interrupt Vectors

Interrupt Source CCR Mask Local Enable

Wake-Up Interrupt (WUPIF) I bit CANRIER (WUPIE)

Error Interrupts Interrupt (CSCIF, OVRIF) I bit CANRIER (CSCIE, OVRIE)

Receive Interrupt (RXF) I bit CANRIER (RXFIE)

Transmit Interrupts (TXE[2:0]) I bit CANTIER (TXEIE[2:0])

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-56 Freescale Semiconductor

25.4.11.3 Wake-Up Interrupt

Activity on the CAN bus occurred during MSCAN internal sleep mode and WUPE Section 25.3.2.1, 
“MSCAN Control 0 Register (CANCTL0)” enabled.

25.4.11.4 Error Interrupt

An error interrupt is generated if an overrun of the receiver FIFO, error, warning, or bus-off condition 
occurrs. Section 25.3.2.5, “MSCAN Receiver Flag Register (CANRFLG) indicates one of the following 
conditions:

• Overrun – An overrun condition of the receiver FIFO as described in Section 25.4.2.3, “Receive 
Structures,” occurred.

• CAN Status Change – The actual value of the transmit and receive error counters control the CAN 
bus state of the MSCAN. As soon as the error counters skip into a critical range (Tx/Rx-warning, 
Tx/Rx-error, bus-off) the MSCAN flags an error condition. The status change, which caused the 
error condition, is indicated by the TSTAT and RSTAT flags (see Section 25.3.2.5, “MSCAN 
Receiver Flag Register (CANRFLG)” and Section 25.3.2.6, “MSCAN Receiver Interrupt Enable 
Register (CANRIER)”).

25.4.12 Interrupt Acknowledge

Interrupts are directly associated with one or more status flags in either the Section 25.3.2.5, “MSCAN 
Receiver Flag Register (CANRFLG)” or the Section 25.3.2.7, “MSCAN Transmitter Flag Register 
(CANTFLG)”. Interrupts are pending as long as one of the corresponding flags is set. The flags in the 
above registers must be reset within the interrupt manager to handshake the interrupt. The flags are reset 
by writing a 1 to the corresponding bit position. 

NOTE
It must be guaranteed that the Power Architecture only clears the bit causing 
the current interrupt. RXFIF interrupt clear has the side effect of moving the 
receive buffer from the current to the next. Clearing a TXExIF flag also 
clears the corresponding ABTAKx. When a TXExIF flag is set, the 
corresponding ABTRQx bit is cleared 

25.4.13 Recovery from Deep Sleep Mode

The MSCAN can wake up the Power Architecture from deep sleep mode via the wake-up interrupt. This 
interrupt can only occur if the MSCAN is in Sleep Mode (SLPRQ=1 and SLPAK=1), the wake-up option 
is enabled (WUPE=1), and the wake-up interrupt is enabled (WUPIE=1). 

When there is recessive to dominant change in CAN_RX pin, there is a wake-up interrupt generated 
asynchronously. Power Architecture can then be waken up from deep sleep mode by that interrupt.

After Power Architecture be waken up from deep sleep mode, it can enable the clocks of MSCAN and put 
MSCAN into normal operation mode again.

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

Freescale Semiconductor 25-57

NOTE
Only MSCAN modules 1 and 2 can wake up the MPC5121 from deep sleep. 
MSCAN modules 3 and 4 cannot wake up the MPC5121 from deep sleep 
mode.

25.4.14 MSCAN Initialization

The procedure to initially start up the MSCAN module out of reset is as follows:
1. Assert CANE
2. Write to the configuration registers in initialization mode
3. Clear INITRQ to leave initialization mode and enter normal mode

If the configuration of registers which are writable in initialization mode only needs to be changed when 
the MSCAN module is in normal mode:

1. Make sure that the MSCAN transmission queue becomes empty and bring the module into sleep 
mode by asserting SLPRQ and awaiting SLPAK

2. Enter initialization mode: Assert INITRQ and await INITAK
3. Write to the configuration registers in initialization mode
4. Clear INITRQ to leave initialization mode and continue in normal mode

25.4.15 Bus-Off Recovery

The bus-off recovery is configurable: the bus-off state can be left automatically or on request.

For reasons of backwards compatibility the MSCAN defaults to automatic recovery after reset. In this 
case, the MSCAN becomes error active again after counting 128 occurrences of 11 consecutive recessive 
bits on the CAN bus.

These two events may occur in any order.

MPC5121e Microcontroller Reference Manual, Rev. 2



MSCAN

25-58 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 26-1

Chapter 26  
NAND Flash Controller (NFC)

26.1 Introduction
Composed of various control logic units and a 4 kilobyte internal RAM buffer, the NAND flash Controller 
implements the interface to standard NAND flash memory devices. Figure 26-1 shows the block diagram 
of NFC.

Figure 26-1. NAND Flash Controller Block Diagram

C
P

U
 B

U
S

READ and 
WRITE 

CONTROL

H
O

S
T

 C
O

N
T

R
O

L

DATA 
OUTPUT 

CONTROL

RAM 
BUFFER 
(1152x32)

REGISTER 
(COMMAND 
ADDRESS/
STATUS)

RS(511,503) engine of
8 symbols of 9 bit

ADDRESS 
CONTROL

N
A

N
D

 F
LA

S
H

 C
O

N
T

R
O

L

In
te

rf
ac

e

B
O

O
T

LO
A

D
E

R CLE

ALE

CE

RE

WE

WP

RB

DIN

DOUT

LOGIC
RST_CONF_NFC_PS

RST_CONF_NFC_DBW
RST_CONF_LOC[1:0]

IPG_RESET_B

RS ECC 
CONTROL

NF_BOOT_WITH_RESET

E
M

B
 IF IDLE

GRT

REQ

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-2 Freescale Semiconductor

26.2 Overview
The NAND flash controller implements the interface to standard NAND flash memory devices. It is 
comprised of control logic and 4 KB internal RAM buffer.This 4 KB RAM buffer can be used as Boot 
RAM during cold reset (If boot from NAND flash is chosen), and is used as Buffer RAM after boot 
procedure. The controller supports NAND flash devices with page sizes of 512 B/2 KB/4 KB.

Normal operation for reading NAND flash consists of the following sequence:
1. Configure NFC
2. Request data block
3. Wait for interrupt
4. copy data from NFC to RAM

Operation for the write sequence follows a similar sequence. This sequence is as follows:
1. Assume NFC is configured.
2. Write data block into buffer
3. initiate program command
4. Wait for interrupt
5. Verify write occurred with no errors.

26.3 Features
The NAND flash controller includes the following features:

• Organization
— NAND flash interface: 8-bits/16-bits (Pin Option)

• Internal RAM buffer(4K Bytes + 512Bytes)
— Boot RAM at booting, buffer at normal operation
— Memory mapped registers and internal RAM buffer

• Support large and small NAND flash.
— Supports all NAND flash products of up to 64 K blocks (i.e, for SLC, 1/2 K page – 16 KB 

perblock, NFC supports up to 8 GBit Devices, for SLC 2 K page – 128 KB per block, NFC 
supportsup to 64 Gbit devices, and for MLC 4K page – 512KB per block, NFC supports up to 
256 Gbit devices.

• MLC NAND flash support by using 2 Reed Solomon RS(511,503) error correction codes (corrects 
4/8 error bits in 528/538 bytes (512Bytes main+16/26Bytes spare). Correction capability is 
configurable.

• DMA request 
— DMA request for a page/section read and other read operations. After DMA read occurs the 

request is de-asserted after the first read of the NFC page buffer.
• ECC mode/Bypass ECC
• Internal Boot code loader during power-up (that can be enabled/disabled)

— Data Protection

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-3

— Write Protection mode for RAM buffer: Write protection of RAM buffer (LSB 2KB of RAM 
buffer)

— Write Protection mode for NAND flash: block based write protection of NAND flash
— Write protection for RAM buffer and NAND flash during power-up

• Handshaking Feature
— INT pin: Indicates end of flash operation.

• IO pins sharing support
— Allow sharing of the IO pins with other memory controllers through special arbitration logic.

26.4 External Signal Description

26.5 Memory Map and Register Definition
The register map is shown in Table 26-2.

Table 26-1. Signal Properties

Name Function I/O Reset

NFC_DATA[15:0] NFC data bus I xxxx

IPP_DO_NFC_CE0 Flash Chip Enable 0 O 1

IPP_DO_NFC_CE1 Flash Chip Enable 1 O 1

IPP_DO_NFC_CE2 Flash Chip Enable 2 O 1

IPP_DO_NFC_CE3 Flash Chip Enable 3 O 1

IPP_DO_NFC_RE Flash Read Enable O 1

IPP_DO_NFC_WE Flash Write Enable O 1

IPP_DO_NFC_CLE Flash Command Latch Enable O 0

IPP_DO_NFC_ALE Flash Address Latch Enable O 0

IPP_DO_NFC_WP Flash Write Protect O 1

IPP_IND_NFC_RB Flash Ready/Busy I 1

Table 26-2. NFC Register Map

Offset or Address Register Access Reset Value Section/Page

Internal RAM

0x0000-0x11FF Internal RAM RW — —

General Registers

0x1E00 Reserved — — —

0x1E02 Reserved — — —

0x1E04 RAM_BUF_ADDR RW 0x0000 26.5.4.1/26-8

0x1E06 FLASH_ADDR RW 0x0000 26.5.4.2/26-10

0x1E08 FLASH_CMD RW 0x0000 26.5.4.3/26-10

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-4 Freescale Semiconductor

26.5.1 Internal RAM

Table 26-3 shows the organization of the buffer memory space in the NFC.

0x1E0A NFC_CFG RW 0x0001 26.5.4.4/26-11

0x1E0C ECC_STATUS1 R 0x0000 26.5.4.5/26-12

0x1E0E ECC_STATUS2 R 0x0000 26.5.4.6/26-13

0x1E10 SPAS RW 0x006D 26.5.4.7/26-13

0x1E12 NF_WR_PROT RW 0x0002 26.5.4.8/26-14

0x1E14 Reserved — 0x0000 —

0x1E16 Reserved — 0x0000 —

0x1E18 Flash_WP_ST R 0x0492 26.5.4.9/26-14

0x1E1A NF_CFG1 RW 0x0C2A 26.5.4.10/26-15

0x1E1C NF_CFG2 RW 0x0000 26.5.4.11/26-17

0x1E20 NFC_USBA0 RW 0x0000 26.5.4.12/26-18

0x1E22 NFC_UEBA0 RW 0x0000 26.5.4.13/26-19

0x1E24 NFC_USBA1 RW 0x0000 26.5.4.14/26-19

0x1E26 NFC_UEBA1 RW 0x0000 26.5.4.15/26-20

0x1E28 NFC_USBA2 RW 0x0000 26.5.4.16/26-20

0x1E2A NFC_UEBA2 RW 0x0000 26.5.4.17/26-21

0x1E2C NFC_USBA3 RW 0x0000 26.5.4.18/26-21

0x1E2E NFC_UEBA3 RW 0x0000 26.5.4.19/26-22

Table 26-3. Data (Buffer) Organization in Memory

Address Use Access

0000 – 01FF Main area Buffer 0 R/W

0200 – 03FF Main area Buffer 1 R/W

0400 – 05FF Main area Buffer 2 R/W

0600 – 07FF Main area Buffer 3 R/W

0800 – 09FF Main area Buffer 4 R/W

0A00 – 0BFF Main area Buffer 5 R/W

0C00 – 0DFF Main area Buffer 6 R/W

0E00 – 0FFF Main area Buffer 7 R/W

1000 – 103F Spare area Buffer 0 R/W

1040 – 107F Spare area Buffer 1 R/W

1080 – 10BF Spare area Buffer 2 R/W

10C0 – 10FF Spare area Buffer 3 R/W

Table 26-2. NFC Register Map (continued)

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-5

26.5.2 Spare Area Buffer

The main area buffer is a general data block. The spare area buffer is used for a variety of functions 
including Error Correction. Table 26-4 shows the spare area mapping inside the internal buffer. The host 
can use all of the spare area except for the ECC code area. 

NFC automatically generates ECC code for both main and spare area during data programming to NAND 
flash, but does not update ECC code to spare buffer.When programming/reading spare area, the spare area 
buffer number (SB0–SB7) must be selected using the RAM buffer address register (RAM_BUF_ADDR).

1100 – 113F Spare area Buffer 4 R/W

1140 – 117F Spare area Buffer 5 R/W

1180 – 11BF Spare area Buffer 6 R/W

11C0 – 11FF Spare area Buffer 7 R/W

Table 26-4. Spare Area Buffer

Address F E D C B A 9 8 7 6 5 4 3 2 1 0

1000h
(SB0)

LSN(2nd)1 LSN(1st)

1002h
(SB0)

WC(1st)2 LSN(3rd)

1004h
(SB0)

BI3 WC(2nd)

1006h
(SB0)

RS ECC Code for Main & Spare area data (1st) Reserved

1008h
(SB0)

ECC Code for Main area data (3rd) ECC Code for Main area data (2nd)

100Ah
(SB0)

ECC Code for Main area data (5th) ECC Code for Main area data (4th)

100Ch
(SB0)

ECC Code for Main area data (7th) ECC Code for Main area data (6th)

100Eh
(SB0)

ECC Code for Main area data (9th) ECC Code for Main area data (8th)

1010h
(SB0)

ECC Code for Main area data (11rd)4 ECC Code for Main area data (10nd)4

1012h
(SB0)

ECC Code for Main area data (13th)4 ECC Code for Main area data (12th)4

Table 26-3. Data (Buffer) Organization in Memory (continued)

Address Use Access

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-6 Freescale Semiconductor

1014h
(SB0)

ECC Code for Main area data (15th)4 ECC Code for Main area data (14th)4

1016h
(SB0)

ECC Code for Main area data (17th)4 ECC Code for Main area data (16th)4

1018h
(SB0)

Reserved ECC Code for Main area data (16th)4

101Ah–
103Eh
(SB0)

Reserved

1040h–
107Eh
(SB1)

SB1–SB7 have same assignment like SB0.

1080h–
10BEh 
(SB2)

10C0h–
10FEh 
(SB3)

1100H–
113EH
(SB4)

1140H–
117EH
(SB5)

1180H–
11BEH
(SB6)

11C0H–
11FEH
(SB7)

1 LSN: Logical Sector Number
2 WC: Wrap Count and other bytes has same wrap count information and those are used as error correction for wrap count itself.
3 BI: Bad Block Information
4 ECC: These ECC Bytes can be used only if the NAND device has enough spare area to store all ECC data. Generally, such 

mode is supported only by NAND flash with 4096 bytes main area plus 218 bytes spare area in page size.

Table 26-4. Spare Area Buffer

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-7

26.5.3 Register Summary

Table 26-5. NFC Register Summary

Name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RAM_BUF_ADDR
(0xBASE + 0x1E04)

R 0 0 0 0 0 0 0 0 0 0
ACTIVE_CS

0
RBA

W

FLASH_ADDR
(0xBASE + 0x1E06)

R
ADD

W

FLASH_CMD
(0xBASE + 0x1E08)

R
CMD

W

NFC_CFG
(0xBASE + 0x1E0A)

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BLS

W BLS

ECC_STATUS1
(0xBASE + 0x1E0C)

R NOSER4 NOSER3 NOSER2 NOSER1

W

ECC_STATUS2
(0xBASE + 0x1E0E)

R NOSER8 NOSER7 NOSER6 NOSER5

W

SPAS
(0xBASE + 0x1E10)

R 0 0 0 0 0 0 0 0 
SPAS

W

NF_WR_PROT
(0xBASE + 0x1E12)

R 0 0 0 0 0 0 0 0 0 0 0 0 0 
WPC

W

Flash_WP_ST
(0xBASE + 0x1E18)

R 0 0 0 0 US3 LS3 LTS3 US2 LS2 LTS2 US1 LS1 LTS1 US0 LS0 LTS0

W

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-8 Freescale Semiconductor

26.5.4 Register Descriptions

26.5.4.1 Buffer Number for Page Data Transfer(RAM_BUF_ADDR)

RAM_BUF_ADDR specifies which part of the RAM Buffer is transferred to/from flash memory and with 
NAND flash device is currently used. The bit assignments for the register are shown in Figure 26-2 and 
the field descriptions are shown in Table 26-6.

NF_CFG1
(0xBASE + 0x1E1A)

R 0 0 0 
IGN
_RB

FP_I
NT

PPB SYM
NF_
CE

RST
NF_BI

G
INT_
MSK

ECC
_

EN

SP_
EN

dma_
mode

ecc_m
odeW

NF_CFG2
(0xBASE + 0x1E1C

R
INT

CM
D_F
AIL

0 0 0 0 0 0 0 0 
FDO FDI

FAD
D

FCMD
W

NFC_USBA0
(0xBASE + 0x1E20)

R
USBA0

W

NFC_UEBA0
(0xBASE + 0x1E22)

R
UEBA0

W

NFC_USBA1
(0xBASE + 0x1E24)

R
USBA1

W

NFC_USBA1
(0xBASE + 0x1E26)

R
UEBA1

W

NFC_USBA2
(0xBASE + 0x1E28)

R
USBA2

W

NFC_UEBA2
(0xBASE + 0x1E2A)

R
UEBA2

W

NFC_USBA3
(0xBASE + 0x1E2C)

R
USBA3

W

NFC_UEBA3
(0xBASE + 0x1E2E)

R
UEBA3

W

Table 26-5. NFC Register Summary (continued)

Name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-9

Offset 0x1E04 8 9 10 11 12 13 14 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0
ACTIVE_CS

0 0
RBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 26-2. RAM_BUF_ADDR Register

Table 26-6. RAM_BUF_ADDR Register Field Descriptions

Field Description

ACTIVE_CS Active Chip Select.
Defines the chip-select line to be asserted during any NAND operation.
00  chip enable 0 is selected
01  chip enable 1 is selected
10  chip enable 2 is selected
11  chip enable 3 is selected

RBA Specifies what part of RAM Buffer is transferred to/from flash memory.
000 1st internal RAMbuffer is selected
001 2nd internal RAMbuffer is selected
010 3rd internal RAMbuffer is selected
011 4th internal RAMbuffer is selected
100 5st internal RAMbuffer is selected
101 6nd internal RAMbuffer is selected
110 7rd internal RAMbuffer is selected
111 8th internal RAMbuffer. is selected

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-10 Freescale Semiconductor

26.5.4.2 NAND Flash Address Register (FLASH_ADDR)

The NAND flash Address (FLASH_ADDR) register is a read-write register containing the address of the 
NAND flash device that is read, programmed or erased. The address in the FLASH_ADDR register is 
written to the flash device. The bit assignments for the register are shown in Figure 26-3 and the field 
descriptions are shown in Table 26-7.

26.5.4.3 NAND Flash Command Register (FLASH_CMD)

Offset 0x1E06 15 16 17 18 19 20 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ADD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-3. FLASH_ADDR Register

Table 26-7. FLASH_ADDR Register Field Descriptions

Field Description

ADD NAND Flash Address. NAND flash address that are read programmed or erased. This ADD is entered into 
NAND flash device.

Offset 0x1E08 21 22 23 24 25 26 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CMD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-4. FLASH_CMD Register

Table 26-8. FLASH_CMD Register Field Descriptions

Field Description

CMD NAND flash command. This CMD is the command that is entered into NAND Flash.

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-11

26.5.4.4 NAND Flash Controller Internal Buffer Lock Control(NFC_CFG)

Offset 0x1E0A 27 28 29 30 31 32 33 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BLS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

= Unimplemented or Reserved

Figure 26-5. NFC_CFG Register

Table 26-9. NFC_CFG Register Field Descriptions

Field Description

BLS Buffer Lock Set. This field specifies the buffer lock status of first 4 sections in the internal buffer. The other 4 
sections are always Unlocked.
00 Locked
01 Locked (default)
10 Unlocked
11 Locked

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-12 Freescale Semiconductor

26.5.4.5 Controller Status and the Result of Flash Operation (ECC_STATUS1)

Offset 0x1E0C 34 35 36 37 38 39 40 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R NOSER4 NOSER3 NOSER2 NOSER1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 26-6. RECC_STATUS1 Register

Table 26-10. RECC_STATUS1 Register Field Descriptions

Field Description

NOSER4 Number Of symbol Errors for fourth section of the internal RAM (528/538 bytes based on ecc_mode).This 
field shows the number of symbols with errors in 512 bytes main plus 16/26 bytes spare (totally 528/538 
bytes) as a result of the RS(511,503) ECC check upon read. 
For the entire 528/538 bytes the number of correctable bits is determined by ecc_mode.
0000 No error
0001 – 1000 >Indicates the number of symbol Errors (Correctable Error)
1111 Error count exceed the ECC capability
Others Reserved

NOSER3 Same as NOSER4, this is number of symbol error for third section.

NOSER2 Same as NOSER4, this is number of symbol error for second section.

NOSER1 Same as NOSER4, this is number of symbol error for first section.

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-13

26.5.4.6 Controller Status and the Result of Flash Operation (ECC_STATUS2)

26.5.4.7 SPare Area Size(SPAS)

Offset 0x1E0E 41 42 43 44 45 46 47 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R NOSER8 NOSER7 NOSER6 NOSER5

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 26-7. ECC_STATUS2 Register

Table 26-11. ECC_STATUS2 Regiser Field Descriptions

Field Description

NOSER8 Number Of symbol Errors for eighth section of the internal RAM (528/538 bytes based on ecc_mode).This 
field shows the number of symbols with errors in 512 bytes main plus 16/26 bytes spare (totally 528/538 
bytes) as a result of the RS(511,503) ECC check upon read. 
For the entire 528/538 bytes the number of correctable bits is determined by ecc_mode.
0000 No error
0001 – 1000 >Indicates the number of symbol Errors (Correctable Error)
1111 Error count exceed the ECC capability.
Others Reserved

NOSER7 Same as NOSER8, this is number of symbol error for seventh section.

NOSER6 Same as NOSER8, this is number of symbol error for sixth section.

NOSER5 Same as NOSER8, this is number of symbol error for fifth section.

Offset 0x1E10 48 49 50 51 52 53 54 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 
SPAS

W

Reset 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1

= Unimplemented or Reserved

Figure 26-8. SPAS Register

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-14 Freescale Semiconductor

26.5.4.8 Nand Flash Write Protection (NF_WR_PROT)

26.5.4.9 NAND Flash Write Protection Status (Flash_WP_ST)

Table 26-12. SPAS Regiser Field Descriptions

Field Description

SPAS Spare Area Size. This field specifies the size of the spare area of the NAND device. The size is in half-words.
The size refers to a full page. i.e for 2K SLC device, SPAS should be set to 32.

In boot mode, this field is overridden to correct one. but you do not see this override.

Offset 0x1E12 55 56 57 58 59 60 61 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0
WPC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

= Unimplemented or Reserved

Figure 26-9. NF_WR_PROT Register

Table 26-13. NF_WR_PROT Field Descriptions

Field Description

WPC Write Protection Command. The Command field specifies the operation which the controller performs. The 
command is performed on the protection mechanizm of the chip-enable that is configured in active_cs field.
If blocks are lock or lock-tight, command 0x10, 0x15 and 0xD0 is ignored, an command fail interrupt is 
generated to notify user.
100: Unlock NAND Flash block(s) according to NFC_USBAn and NFC_UEBAn, where n is defined as 

active_cs.
010: Lock all NAND Flash block(s)
001: Lock-tight locked block(s)

Offset 0x1E18 62 63 64 65 66 67 68 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 US3 LS3 LTS3 US2 LS2 LTS2 US1 LS1 LTS1 US0 LS0 LTS0

W

Reset 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0

= Unimplemented or Reserved

Figure 26-10. Flash_WP_ST Register

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-15

26.5.4.10 NAND Flash Operation Configuration (NF_CFG1)

Table 26-14. Flash_WP_ST Field Descriptions

Field Description

USn Unlocked Status. Specifies whether there are any unlocked blocks in the NAND Flash.
0 No unlocked block in NAND Flash
1 There are unlocked block(s) in NAND Flash
where n is the the Device controlled by CEn.

LSn Locked Status. Specifies that all NAND Flash blocks are in locked status.
0 Not all NAND Flash blocks are in locked status
1 All NAND Flash blocks are in locked status
where n is the the Device controlled by CEn.

LTSn Lock-tighten Status. Specifies that Locked block(s) is (are) lock-tightened.
0 Locked block(s) is not lock-tightened
1 Locked block(s) is lock-tightened
where n is the the Device controlled by CEn.

Table 26-15. Write Protect Modes

State Status Bits – US/LS/LTS

Lock – all blocks are locked 010

Unlock-lock – there are unlocked blocks 110

Unlock-Lockt – there are unlocked blocks: cant change to other state 101

Lockt – all block are locked: cant change to other state 001

Offset 0xE1A 69 70 71 72 73 74 75 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 
IGN_
RB

FP_I
NT

PPB SYM NF_CE RST NF_BIG
INT_
MSK

ECC_
EN

SP_
EN

DMA_
MOD

E

ECC_
MOD

EW

Reset 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0

= Unimplemented or Reserved

Figure 26-11. NF_CFG1 Register

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-16 Freescale Semiconductor

Table 26-16. NF_CFG1 Field Descriptions

Field Description

IGN_RB Ignore handshake Ready/Busy from NAND flash. command send out and generate an interrupt immediatlly, 
dont care if device is ready or not.
0 command send out and then check ready/busy, generate interrupt until NAND flash is in ready state.
1 command send out and generate interrupt, ignore the ready/busy status of NAND flash.

FP_INT Full Page interrupt. NFC generated interrupt (during progra,/read) after each section of 512B (plus 
accompanied spare bytes).or full page.
If this bit is set, the interrupt is generated only after the whole page was read/programmed.
This bit affects the interrupt only during read or program of a page.
0 NFC generates interrupt after each section of 512B plus accompanied spare bytes.
1 NFC generates interrupt only after the whole operation was completed.

PPB Pages Per Block. Indicates how many pages are in 1 Block of the NAND flash.
00 32 pages per block
01 64 pages per block
10 128 pages per block
11 256 pages per block

SYM Symmetric mode.
1 enable one internal clock (FLASH_CLK) cycle per access of RE# and WE#, (symmetric mode).
0 enable two internal clock (FLASH_CLK) cycles per access of RE# and WE#, (asymmetric mode).
reffer 26.7.2/26-48 for more information.

NF_CE NAND Flash Force CE. This bit forces the CE# signal to the NAND Flash device to 0 when enabled. This
bit allows a greater range of support new NAND Flash devices.
0 CE# signal operates normally
1 CE# signal is asserted as long as this bit is set to 1.

RST NFC Reset. This bit resets the NFC state machine.
This bit is self-cleared, and resets NF_BIG, INT_MSK and SP_EN bit at the same time.
0 Do not reset the NFC state machine
1 Reset the NFC state machine
Note: If this reset happens, the current operation has ceased. To send the next command to flash, the 

software must send the reset command (0xFF) to flash first because the external flash model did not 
know the operation stopped.

NF_BIG NAND FLASH Big Endian Mode. This bit enables big Endian mode when writing from internal RAM to the
NAND flash device or reading from NANDflash device to internal RAM.
0 Little Endian mode
1 big Endian mode

INT_MSK Mask interrupt Bit. This bit enables the interrupt by masking or not masking the interrupt bit.
0 Mask interrupt is disabled (interrupt enabled)
1 Mask interrupt is enabled (interrupt disabled)

ECC_EN ECC operation Enable. This field determines whether ECC operation is executed or bypassed.
0 ECC operation is bypassed
1 ECC operation is executed

SP_EN NAND Flash Spare Enable. This bit determines whether host reads/writes are to NAND flash spare data only 
or NAND flash main and spare data.
This fetures is for some old NAND flash with 1/2K page size. There is no ECC in this mode of operation.
0 NAND flash main and spare data is enabled
1 NAND flash spare only data is enabled

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-17

26.5.4.11 NAND Flash Operation Configuration (NF_CFG2)

DMA_MODE This bit defines the dma_req signal mode of operation during a page read. dma_req can be asserted after 
one section of the page is read (main + relevant part of the spare), or only at the end of the page read. Other 
read operations that assert dma_req are not affected by this bit,
0 dma_req is asserted after each section is read out.
1 dma_req is asserted only at the end of a page read.

ECC_MODE This bit selects the ECC capabilities. Error correction mechanizm can fix 4bit errors or 8bit errors. In 4bit ecc 
mode, the NFC uses 16Bytes of spare area for every 512Bytes section of the NAND device (7Bytes for 
user-specific application and 9Bytes for the ECC). reference to Table 26-4 for more information.
In 8bit ecc mode, the NFC uses 26Bytes of spare area for every 512Bytes section of the NAND device 
(7Bytes for user-specific application, 18Bytes for the ECC and 1 reserved Byte). reference to Table 26-4 for 
mor information.
0 8bit error correction.
1 4bit error correction.
To use 8-bit ECC mode, user must have a NAND flash that has at least 26Bytes of spare area per 512B main 
section.

Offset 0x1E1C 76 77 78 79 80 81 82 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
INT

CMD_
FAIL

0 0 0 0 0 0 0 0 
FDO FDI FADD FCMD

W

Reset 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. INT (Bit 15) reset value is ZERO, but soon after powerup it changes to ONE. When performing boot from NAND FLASH, the 
INT bit changes from ZERO to ONE after the transfer of boot code has been accomplished. For more information refer to 
Section 26.6.1, “Modes of Operation”.

= Unimplemented or Reserved

Figure 26-12. NF_CFG2 Register

Table 26-17. NF_CFG2 Field Descriptions

Field Description

INT Interrupt. This field determines the state of the interrupt output of the controller. It is set by the controller when 
basic operation (FDI, FDO, FCMD or FADDR operation) is done. It is cleared by the Host by writing 0 to this 
field. (Host can also set this bit by writing 1 to this field).
0 Basic operation or bootloading continues running
1 Basic operation or boot loading is done

CMD_FAIL Command fail interupt. This field shows that command 0x10, 0x15 or 0xD0 is failed to be sent out. the
reason of failure is try to program or erase locked blocks. check Section 26.5.4.8, “Nand Flash Write 
Protection (NF_WR_PROT),and unlock blocks.
write 0 to clear this bit.

Table 26-16. NF_CFG1 Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-18 Freescale Semiconductor

NOTE
When the basic operation is completed, the FCMD/FADD/FDI/FDO bits 
change to LOW automatically.

Only one operation among FCMD/FADD/FDI/FDO can be activated. 

26.5.4.12 Start Block Address to Unlock in Write Protection Mode (NFC_USBA0)

FDO NAND Flash Data Output. This field specifies the read data from NAND flash.
001 One page data out1

010 NAND flash ID data out
100 NAND flash status register dataout
other  Not supported except all 0.

FDI NAND Flash Data Input. This field specifies the program NAND flash.
0 No NAND flash data input operation
1 Activate NAND flash data input operation

FADD Initial an address to NAND flash.
0 No NAND flash data input operation
1 Initial an address to NAND flash

FCMD2 Initial a command to NAND flash.
0 No NAND flash data input operation
1 Initiual a command to NAND flash

1 Page size is determined by SP_EN register bit (main_spare or spare only).
2 If try to access block which is lock/lock-tight, CMD register is 0x10, 0x15 or 0xD0, write 1 to FCMD bit is ignored and a 

command fail interrupt is generated.

Offset 0x1E20 83 84 85 86 87 88 89 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
USBA0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-13. NFC_USBA0 Register

Table 26-18. NFC_USBA0 Field Descriptions

Field Description

USBA0 Unlock Start Block Address for NAND falsh controlled by CE0. Start NAND flash block address to unlock in 
Write Protection mode, which follows Unlock block command.

Table 26-17. NF_CFG2 Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-19

26.5.4.13 End Block Address to Unlock in Write Protection Mode (NFC_UEBA0)

26.5.4.14 Start Block Address to Unlock in Write Protection Mode (NFC_USBA1)

Offset 0x1E22 90 91 92 93 94 95 96 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
UEBA0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-14. NFC_UEBA0 Register

Table 26-19. NFC_UEBA0 Field Descriptions

Field Description

UEBA0 Unlock End Block Address of NAND flash controlled by CE0. End NAND flash block address to unlock in 
Write Protection mode, which follows Unlock block command.

Offset 0x1E24 97 98 99 100 101 102 103 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
USBA1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-15. NFC_USBA1 Register

Table 26-20. NFC_USBA1 Field Descriptions

Field Description

USBA1 Unlock Start Block Address for NAND Falsh controlled by CE1. Start NAND flash block address to unlock in 
Write Protection mode, which follows Unlock block command.

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-20 Freescale Semiconductor

26.5.4.15 End Block Address to Unlock in Write Protection Mode (NFC_UEBA1)

26.5.4.16 Start Block Address to Unlock in Write Protection Mode (NFC_USBA2)

Offset 0x1E26 104 105 106 107 108 109 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
UEBA1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-16. NFC_UEBA1 Register

Table 26-21. NFC_UEBA1 Field Descriptions

Field Description

UEBA1 Unlock End Block Address of NAND flash controlled by CE0. End NAND flash block address to unlock in 
Write Protection mode, which follows Unlock block command.

Offset 0x1E28 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
USBA2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-17. NFC_USBA2 Register

Table 26-22. NFC_USBA2 Field Descriptions

Field Description

USBA2 Unlock Start Block Address for NAND flash controlled by CE2. Start NAND flash block address to unlock in 
Write Protection mode, which follows Unlock block command.

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-21

26.5.4.17 End Block Address to Unlock in Write Protection Mode (NFC_UEBA2)

26.5.4.18 Start Block Address to Unlock in Write Protection Mode (NFC_USBA3)

Offset 0x1E2A 110 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
UEBA2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-18. NFC_UEBA2 Register

Table 26-23. NFC_UEBA2 Field Descriptions

Field Description

UEBA2 Unlock End Block Address of NAND flash controlled by CE3. End NAND flash block address to unlock in 
Write Protection mode, which follows Unlock block command.

Offset 0x1E2C Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
USBA3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-19. NFC_USBA3 Register

Table 26-24. NFC_USBA3 Field Descriptions

Field Description

USBA3 Unlock Start Block Address for NAND flash controlled by CE3. Start NAND flash block address to unlock in 
Write Protection mode, which follows Unlock block command.

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-22 Freescale Semiconductor

26.5.4.19 End Block Address to Unlock in Write Protection Mode (NFC_UEBA3)

26.6 Functional Description

26.6.1 Modes of Operation

The NAND FLASH Controller operating modes are described in this section. The operating mode is 
determined by four inputs: RST_CONF_NFC_PS, RST_CONF_NFC_DBW and RST_CONF_LOC[1:0], 
as shown in Table 26-26.

The page size of NAND flash device is determined by RST_CONF_NFC_PS.

The bus width of NAND flash device is determined by the RST_CONF_NFC_DBW.

RST_CONF_LOC[1:0] is used to decide if boot ROM is in NFC.

Offset 0x1E2E Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
UEBA3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-20. NFC_UEBA3 Register

Table 26-25. NFC_UEBA3 Field Descriptions

Field Description

UEBA3 Unlock End Block Address of NAND flash controlled by CE3. End NAND flash block address to unlock in 
Write Protection mode, which follows Unlock block command.

Table 26-26. NAND FLASH Controller Operating Modes

RST_CONF_
NFC_PS

RST_CONF_N
FC_DBW

RST_CONF_L
OC[1:0]

Function

1’b0 1’b0 2’b00 Do not Boot from NAND flash.
NAND flash is configured to 8-bits I/O bus width and page size is 512 Bytes

1’b0 1’b1 2’b00 Do not Boot from NAND flash.
NAND flash is configured to 16-bits I/O bus width and page size is 512 
Bytes.

1’b1 1’b0 2’b00 Do not Boot from NAND flash.
NAND flash is configured to 8-bits I/O bus width and a page size is 2KB

1’b1 1’b1 2’b00 Do not Boot from NAND flash.
NAND flash is configured to 16-bits I/O bus width and a page size is 2KB

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-23

26.6.2 Booting From a NAND Flash Device

Booting from NAND flash device proceeds as follows1: 
1. BOOTLOADER copies 1 page of 4K Bytes or 1 page of 2KB or 4 pages of 1/2KB data from the 

NAND flash to the NFC internal RAM buffer.
2. There are five address latch cycles during the bootloader. This is hard coded and cannot be 

modified.
3. There is a read confirm command after the adsress cycles (0x30)

— ECC is always calculated for each section (512B) seperately.
— For NAND flash with 2K page size, the first page of the NAND flash should be filled with 1/2k 

bytes data follow by 16 bytes of spare data 4 times as: 512 main Byte + 16 spare byte, then 512 

1’bx 1’b0 2’b10 Do not Boot from NAND flash.
NAND flash is configured to 8-bits I/O bus width and a page size is 4KB

1’bx 1’b1 2’b10 Do not Boot from NAND flash.
NAND flash is configured to 16-bits I/O bus width and a page size is 4KB

1’b0 1’b1 2’b11 Boot From x16 NAND flash.
NAND flash is configured to 16-bits I/O bus width and a page size is 4KB + 
128 bytes spare.Boot data is protected by 4-bit ECC mode.

1’b1 1’b1 2’b11 Boot From x16 NAND flash.
NAND flash is configured to 16-bits I/O bus width and a page size is 4KB + 
218 bytes spare.Boot data is protected by 8-bit ECC mode.

1’b0 1’b0 2’b11 Boot From x8 NAND flash.
NAND flash is configured to 8-bits I/O bus width and a page size is 4KB + 
128 bytes spare.Boot data is protected by 4-bit ECC mode.

1’b1 1’b0 2’b11 Boot From x8 NAND flash.
NAND flash is configured to 8-bits I/O bus width and a page size is 4KB + 
218 bytes spare.Boot data is protected by 8-bit ECC mode.

1’b0 1’b0 2’b01 Boot From x8 NAND flash.
NAND flash is configured to 8-bits I/O bus width and a page size is 512 + 16 
bytes spare.Boot data is protected by 4-bit ECC mode.

1’b0 1’b1 2’b01 Boot From x16 NAND flash.
NAND flash is configured to 8-bits I/O bus width and a page size is 512 + 16 
bytes spare.Boot data is protected by 4-bit ECC mode.

’b1 1’b0 2’b01 Boot From x8 NAND flash.
NAND flash is configured to 8-bits I/O bus width and a page size is 2K + 64 
bytes spare.Boot data is protected by 4-bit ECC mode.

1’b1 1’b1 2’b01 Boot From x16 NAND flash.
NAND flash is configured to 8-bits I/O bus width and a page size is 2K + 64 
bytes spare.Boot data is protected by 4-bit ECC mode.

1. A Boot from the NAND flash device only occurs if one of the Boot inputs is asserted (nf8boot_b or nf16boot_b is low) at System Power-On reset
(ipp_resetb rising).

Table 26-26. NAND FLASH Controller Operating Modes (continued)

RST_CONF_
NFC_PS

RST_CONF_N
FC_DBW

RST_CONF_L
OC[1:0]

Function

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-24 Freescale Semiconductor

main Byte + 16spare byte, then 512 main Byte + 16spare byte, and 512 main Byte + 16spare 
byte

— For NAND flash with 4KB+128B page size, the first page of the NAND flash should be filled 
with 1/2 byte data followed by 16 bytes of spare data if 4bit ECC mode is used. As 8 times (512 
main Byte + 16spare byte).

— For NAND flash with 4KB + 218B page size, the first page of the NAND flash should be filled 
with 1/2 byte data followed by 26 bytes of spare data if 8bit ECC mode is used. As 7times (512 
main Byte + 26spare byte) and ( 512 main Byte + 36 spare byte) at last.

4. The Host then reads (after exiting from reset state) the first code from the internal NAND flash 
controller RAMbuffer.

Figure 26-21. Boot Mode Operation

NOTE
The time it takes the bootcopy to load 2 K/4 K bytes is dependent on the 
NAND device and the frequency of flash clock. The host can read Bootcode 
in RAM buffer (2 K/4 K bytes) only after Bootcode copy completion. 

The Interrupt pin (ipi_int_nfc) goes 0 to 1 when the Bootcode-copy is 
completed, and upon the ipg_reset_b rising edge. If ipg_reset_b goes 0 to 1 
before the Bootcode-copy is done, the Interrupt pin (ipi_int_nfc) goes from 
0 to 1 as soon as Bootcode-copy is completed. 

The interrupt can be relevant for cases of secured boot (booting from ROM 
and then enabling the NFC boot).

por_reset_b
(POR)

rom_loc

Sleep BootCode-Copy IdleNFC Operation

ipg_reset_b

ipi_int_nfc

Bootcode-copy done

1)

2)

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-25

26.6.3 NAND Flash Control

The NAND flash control generates all the following control signals : 
• CE# (Flash Chip Enable)
• RE# (Read Enable for read operations)
• WE# (Flash Write Enable)
• CLE# (Flash Command Latch Enable), ALE (Flash Address Latch Enable). 

It monitors the RB (Flash Ready/Busy indication) signal to check if the NAND flash is in the middle of 
operation. 

The BOOTLOADER is part of the NAND flash control block.

26.6.4 NAND Flash Control

The NAND flash control generates all the control signals that control the NAND flash: nCE (flash Chip 
Enable), nRE (Read Enable for read operations), nWE (Flash Write Enable), CLE (Flash Command Latch 
Enable, ALE (Flash Address Latch Enable). It monitors the R/nB (Flash Ready/Busy indication) signal to 
check if the NAND flash is in the middle of operation.

The BOOTLOADER is actually a part of NAND flash Control Block.

There are several differences between 1/2k page, 2k page and 4k page size devices during program or read 
from NANDflash:

• 1/2 k page
Every page is written to 1/2k bytes in the nfc internal RAM buffer so it is important to change RAM 
buffer address register to choose to what 1/2k the page is written or read from.
After the program/read is done. RBA remains unchanged.

• 2 k page
NFC programs/reads from 4 sections of the internal RAM, so the legal values of RBA are 3’h0 or 
3’h4. After the program/read is done RBA is automatically set to the next legal value (4’h0 changes 
to 4’h4, and vice versa)

• 4 K page
NFC programs/reads from all of the internal RAM, so the legal value of RBA is always 3’h0.

Figure 26-22 and Figure 26-23 are the example of NAND flash read. Some NAND flash need 30H 
command to begin read, while some needs no 30H command. See NAND flash data sheet for more detailed 
information. 

NOTE
For boot load, NFC support only NAND flash with 512 byte page size 
without 30H command, as Figure 26-22 shows, or NAND flash with 2K/4k 
page size and support 30H command, as Figure 26-23 shows.

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-26 Freescale Semiconductor

Figure 26-24 is NAND flash program timing diagrams. The width of row address of this example NAND 
flash is no more than 8 bit, so NAND flash address can be written to NAND flash in three address write 
operation. See NAND flash data sheet for more detailed information.

Figure 26-25 is the example of page erase timing diagrams. The width of row address of this example 
NAND flash is 16 bits (a9-a24). For page erase, only row address is necessary.

Figure 26-22. Read Operation A (Without Command 30H)

Figure 26-23. Read Operation B (With Command 30H)

CLE

CE

WE

ALE

RE

I/Ox

R/B

00h Col Add
Row

Busy

Ready

Busy

Add1
Row
Add2

Dout
N

Dout
N+1

Dout
N+2

Dout
N+527

Dout
0

Dout
1

Dout
2

Dout
527

N Address

CLE

CE

WE

ALE

RE

I/Ox

R/B

00h Col Add
Row

Busy

Ready

Busy

Add1
Row
Add2

Dout
N

Dout
N+1

Dout
N+2

Dout
N+527

Dout
0

Dout
1

Dout
2

Dout
527

N Address

30h

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-27

Figure 26-24. Page Program Operation

Figure 26-25. Block Erase Operation (Erase One Block)

tWC tWC tWC

tWB tPROG

N Address

80h Col Add
Row
Add1

Row
Add2

Din
N

Din
N+1

Din
m

10h 70h I/0o

Sequential Data
Input Command

Column
Address Page (Row)

Address

1-Up-to-m Data
Serial Input

Program
Command

Read Status
Command

X8 Device : m = 528 Byte
X16 Device : m = 264 Word

I/Oo = 0 Successful Program
I/Oo = 1 Error in Program

CLE

CE

WE

ALE

RE

I/Ox

R/B

CLE

CE

WE

ALE

RE

I/Ox

R/B

tWC

tWB tBERS

Auto Block Erase
Setup Command

Erase Command Read Status
Command

I/Oo = 0 Successful Erase
I/Oo = 1 Error in Erase

70h I/O 0

Busy

DChA17–A24A9–A1660h

Page (Row) Address

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-28 Freescale Semiconductor

26.6.5 Flash Clock Diagrams

Figure 26-26. Command Latch Cycle

In Figure 26-26, WE_B is in low state for 1 cycle of flash clock. CLE is in high for 3 cycles of flash clock.

Figure 26-27. Address Latch Cycle

In Figure 26-27, WE_B signal is in low state for 1 cycle of flash clock and ALE signal is in high for 3 
cycles of flash.

FLASH_CLK

CE_B

CLE

ALE

WE_B

RB

IO

FLASH_CLK

CE_B

CLE

ALE

WE_B

RB

IO

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-29

Figure 26-28. Serial Access Cycle after Read

In Figure 26-28, RE_B signal is in low state for 1.5 cycles flash clock and single read access tasks 2 cycles 
of flash clock.

Figure 26-29. Serial Access Cycle after Write

In Figure 26-29, WE_B signal is in low state for 1 cycle of flash clock. Single write access takes 2 cycles 
of flash clock.

26.6.6 NFC Boot Load Sequence

NFC BOOT Load logic provide two different boot load sequence for NAND flash with 512-byte page size 
(see Figure 26-30) and 2K/4K page size (see Figure 26-31). NFC can only boot from CE0.

FLASH_CLK

CE_B

CLE

ALE

RE_B

IO

FLASH_CLK

CE_B

CLE

ALE

WE_B

IO

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-30 Freescale Semiconductor

Figure 26-30. Boot sequence for NAND Flash with 512-byte page size

Figure 26-31. Boot sequence for NAND Flash with 2K-byte/4K-byte page size

26.6.7 DMA Request Operation

DMA request signal triggers in several cases:
• After reading a page from the NAND flash (based on dma_mode bit configuration).
• After read ID operation.

CLE

CE0

WE

ALE

RE

I/Ox

R/B Busy

Ready

Busy

Ready

Busy

Ready

Busy

Ready

00H 00H 00H 00H 00H 00H 00H 00H 01H 00H 00H 00H 00H 00H 02H 00H 00H 00H 00H 00H 03H 00H 00H 00H

CLE

CE0

WE

ALE

RE

I/Ox

R/B Busy

Ready

00H 00H 00H 00H 00H 00H 30H

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-31

• After reading spare only area.

When asserted, the NFC asserts the dma_req signal, after CPU interrface detected that address 0 of a RAM 
buffer is read out, dma_req is cleared automaticlly.

NOTE
CPU interface detects bit 5:0 of address bus only, does not care upper bits. 
Software should properly set up start address of dma controller to 
corresponding RAM Buffer Address.

26.6.8 RS ECC

ECC engine inside NFC can correct four or eight erronous symbols based on ecc_mode configuration bit.

For ecc_mode=0, NFC detects and correct up to eight symbols per 537B of data. You must have a device 
with enough spare area to use this mode (minimum required spare area size is 26Bytes per section)

For ecc_mode=1, NFC detects and correct up to four symbols per 528B of data.

The RS(511,503/495) ECC engine together with the RS ECC CONTROL blocks are responsible for 
detection and correction of up to four/eight symbols of 9 bits each in 528/537 byte section(main+16/25B 
spare).

When the NFC accesses the NAND flash device for Program operation, it generates ECC code of 
9/18bytes (these bytes overide the corresponding spare area data that is written in the internal RAM). 
When the NFC accesses the NAND flash device for a Read operation, it performs a RS detection 
algorithm, and indicates how many symbol errors were detected and corrected. 

The ECC code is updated by the NFC automatically. After a Read operation, the host can determine 
whether there were errors or not by reading the status registers ( ECC_Status_ResultX ). The indication in 
the status register shows how many errors were found per 528/537 bytes.

Upon program the RS ECC bytes are written directly to the NAND flash device (and are not written back 
to the internal RAM). This means that if a user wants to read the ECC that was generated, he must read it 
from the NAND flash device spare area.

ECC is always calculated for 1/2k and not 2k/4k page even if you work with a 2K/4K page memory. In the 
case of 2K/4K page memory, ECC is calculated 4/8 times.

That means that the 2k/4k page in the NAND flash should be filled with 1/2k bytes data followed by spare 
data 4/8 times:

512 main Byte + spare bytes + 512 main Byte + spare bytes + 512 main Byte + spare bytes + ...

The ECC operation can be bypassed using ECC_EN bit in CONFIG1 register.

The way to fill the accessed NAND flash device is to perform a program sequence and a read sequence.

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-32 Freescale Semiconductor

Program sequence:
1. Write a page of data to the internal RAM.
2. Set RBA to point to the section in which the data is in.
3. Configure the command and address sequence for program operation.
4. Program 1 page of data by writing 1 to FDI bit in config2 register (RS ECC code overide the 

corresponding spare area bytes)

Read sequence: 
1. Set RBA to point to the section in which you want the data to be written in the internal RAM.
2. Configure the command and address sequence for read operation.
3. Read 1 page by writing 1 to FDO field in config2 register (RS algorithm automatically fix up to 

eight error bits if there are any)

26.6.9 Address Control

This module is responsible for address control and generation. It defines the RAM buffer Address 
Generation (RAM buffer Address for Data In/ Data Out). 

It generates and takes into account the Lock State Sequence (For more details see Section 26.7.2.1, “Write 
Protection) and therefore contains the flash Memory Lock Address Comparator, and RAM buffer Lock 
Address Comparator which are used to determine if this area is protected or not. It also generates the RAM 
buffer Address for Boot Load. 

26.6.10 RAM Buffer (SRAM)

The internal RAM Buffer is a 4608 Byte (4.5KB) single Port RAM buffer which is a synchronous high 
performance design. This memory has 1152 words of 32-bits each, from which 1024 words are used for 
the main buffer and the remaining 128 Words are allotted to a spare area, which is used for ECC (Error 
Correction) and other applications. 

The NFC logically divides the RAM into eight sections of 512Bytes main data and 64Bytes of spare area. 
When reading (or programming) the NAND device, the NFC writes the main data from the NAND device 
into the main section, and the spare data from the NAND device into the spare section. If the NAND device 
spare-area is less than 6 4Bytes per 512 Bytes of main data, the NFC’s spare-section in the RAM is not 
used fully. For example, if you use a NAND device that has 2 KB main data and 64B of spare area, this 
device has 16Bytes of spare for every 512Bytes of main. This spare area in the RAM is located as follows: 
first 16Bytes in spare section 1, next 16Bytes in spare section 2, and so on.

If you are using a NAND device in which the spare area size is not divided fully with the number of main 
sections, then this remainder is located at the last spare section. If you use a NAND device with 4KB page 
and 218Bytes of spare, it means you have 27.25 Bytes of spare for each 512Bytes of main. Then the NFC 
rounds this number down to the nearest even number (26), and that would be the number of bytes per 
section. The reamining bytes are added the the last spare section, meaning that last spare section is 36 
Bytes.

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-33

This memory is used as a Bootram memory during boot from the NAND flash device, and as a buffer at 
normal operation.

26.6.11 Read and Write Control

The Read and Write Control Block contains a connection to the Internal bus (which is connected to the 
Internal RAM buffer and the registers). 

It is also responsible for RAM buffer Control and Register Control, RAM buffer Lock Control and Address 
and Data latches.

26.6.12 Endian

This is a Big Endian system.

The endianess between the Internal RAM & external NAND flash devices is controlled by FLASH_BIG 
bit in CONFIG1 register. For NAND flash with 8 bit or 16 bit data width, this bit causes different data 
sequence in data IO. Table 26-27 shows the detailed information about the map of 32 bit IPS data and 8/16 
bit of NAND flash device.

In read status operation, the location of status byte in CPU read data is shown in 

Table 26-27. ICPU data and NAND Flash data sequence

FLASH_BIG CPU R/Wdata[31:0]
8-0bit NAND Flash Data 

Sequence
16-0bit NAND Flash Data 

Sequence

1
big-endian

AABBCCDD 0: AA
1: BB
2: CC
3: DD

0: AABB
1: CCDD

0
little-endian

AABBCCDD 0:DD
1:CC
2:BB
3:AA

0: CCDD
1: AABB

Table 26-28. Status byte location

FLASH_BIG
NAND Flash Data 

Width
Status Byte Location in Internal RAM Memory Map

1
big-endian

8 [0:7] Base addr + RBA1 * 512 

1 RBA is in RAM Buffer Address register, see 26.5.4.1.

16 [8:15] Base addr + RBA1 * 512 + 1

0
little-endian

8 [24:31] Base addr + RBA1 * 512 + 3

16 [24:31] Base addr + RBA1 * 512 + 3

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-34 Freescale Semiconductor

26.6.13 I/O Pins Sharing

The NAND flash controller has logic that allows it to share I/O pins with pins of another memory 
controller. 

The arbitration between the NFC & the other memory has hard priority favouring the other memory. Since 
NFC’s accesses are long, when the other memory requests the bus, the NFC always halts its operation as 
soon as possible and the other memory is granted. The only operations that does not halt in the middle are 
short ones, such as command, address phase, or spare-area access.

This priority based arbitration mechanism must be taken into account when sharing the I/O bus with 
another memory. (High frequency use of the other memory, might cause NFC’s accesses to be long).

26.7 Initialization Information
This section describes how to operate the NFC using its registers and its interrupts, and is divided into the 
following subjects: 

• Normal operation – To operate a NAND flash device using the NFC, use the instructions in the 
section Normal Operation (26.7.1/26-34).

• ECC operation – ECC operation is used when an error is detected.
• Write protection operation (to the internal memory and the flash device) – Write protection is used 

when the programmer wishes to protect part of the NAND flash device memory from being written 
except in certain cases. There are two levels of protection: software (for frequently-changed 
memory locations), and hardware (for memory locations whose contents are rarely changed).

26.7.1 Normal Operation

Normal operation is composed of fundamental building block operations (in 26.7.1.1/26-35), in addition 
to specific operations, as shown in the flow charts below (in Sections 26.7.1.2.1/26-40 to 
26.7.1.2.6/26-47). 

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-35

26.7.1.1 Fundamental Building Block Operations

26.7.1.1.1 Preset Operation

Figure 26-32. Flow Chat of Preset Operation

Start

Set NFC Configuration Register (1E0Ah)
if Needed

Set NAND Flash Write Protection Command
Register (1E12h), Unlock Start Block Address
Register (1E20h), Unlock End Block Address

Register (1E22h), if needed.

Set NAND Flash Configuration1 Register (1E1Ah)
(Set ECC_EN & SP_EN)

Pre-Setting is Completed

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-36 Freescale Semiconductor

26.7.1.1.2 NAND Flash Command Input Operation

Figure 26-33. Flow Chart of NAND Flash Command Input Operation

Start

Write NAND Flash Command to NAND Flash
Command Register (1E08h)

Set NAND Flash Operation Configuration2
Register (1E1Ch)

(Set INT to 0 & FCMD to 1 & other bits to 0)

Wait

INT = High?
No

Yes

NAND Flash Command 
Input is Completed

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-37

26.7.1.1.3 NAND Flash Address Input Operation

Figure 26-34. Flow Chart of NAND Flash Address Input Operation

Is Address Cycle
Completed?

Start

Write NAND Flash Address to NAND Flash
Address Register (1E06h)

NAND Flash Address 
Input is Completed

Set NAND Flash Operation Configuration2
Register(1E1Ch)

(Set INT to 0 & FADD to 1 & other bits to 0)

INT = High?

Yes

Wait

No

Yes

No

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-38 Freescale Semiconductor

26.7.1.1.4 NAND Flash Data Input (Program) Operation

Figure 26-35. Flow Chart of NAND Flash Data Input Operation

Start

NAND Flash Data Input 
is Completed

Write the NAND Flash Data to RAM Buffer

INT = High?

Yes

Wait

No

Set NAND Flash Operation Configuration2
Register(1E1Ch)

(Set INT to 0 & FDI to 1 & other bits to 0)

Set RAM Buffer Address Register(1E04h) where data is 
loaded from host. Only for 1/2k page/2k page

for 4k page device RAM Buffer Address register should 
always be 0..

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-39

26.7.1.1.5 NAND Flash Data Output Operation (Read)

Figure 26-36. Flow Chart of NAND Flash Data Output Operation

26.7.1.2 Normal Operation

Normal operations are composed of basic operations.

Start

Set NAND Flash Operation Configuration1
Register (1E1Ah)

(Set ECC_EN and SP_EN)

NAND Flash Data Output 
is Completed

INT = High?

Yes

Wait

No

Set NAND Flash Operation Configuration2
Register (1E1Ch)

(Set INT to 0 and FDO and other bits to 0)

Read the NAND Flash Data from RAM Buffer

Set RAM Buffer Address Register(1E04h) where data is 
loaded from host. Only for 1/2k/2k page. For 4K page 

device, RAM Buffer address register should always be 0

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-40 Freescale Semiconductor

26.7.1.2.1 Read NAND Flash ID Read Operation

Figure 26-37. Flow Chart of Read NAND Flash ID Operation

End

Start

Preset Operation

Read ID Data from Assigned RAM Buffer
(refer to NAND Flash ID Data assignment

on next page)

Set RAM Buffer Address Register (E104h)
(Set RBA to load NAND Flash ID)

NAND Flash Command Input Operation
(Command: 90h)

NAND Flash Address Input Operation

NAND Flash Data Output Operation

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-41

The assignment of NAND flash ID data stored in RAM buffer (In case of X8 org. NAND flash).

The assignment of NAND flash ID data stored in RAM buffer (In case of X16 org. NAND flash).

RAM Buffer of RBA address

1st half-word
2nd half-word

|
3rd half-word

1st byte of 
ID

2nd byte of 
ID

3rd byte of 
ID

4th byte of 
ID

5th byte of 
ID

6th byte of 
ID

LSB MSB

Figure 26-38. X8 Assignment of NAND Flash ID Data

RAM Buffer of RBA address

1st half-word
2nd half-word

|
3rd half-word

1st byte of 
ID

XXh
2nd byte of 

ID
XXh

3rd byte of 
ID

XXh

LSB MSB

RAM Buffer of RBA address

4th half-word
5th half-word

|
6th half-word

4th byte of 
ID

XXh
5th byte of 

ID
XXh

6th byte of 
ID

XXh

LSB MSB

Figure 26-39. X16 Assignment of NAND Flash ID Data

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-42 Freescale Semiconductor

26.7.1.2.2 NAND Flash Status Read Operation

Figure 26-40. Flow Chart of Read NAND Flash Status Operation

Table  shows the assignment of NAND flash status data stored in RAM buffer in little endian mode (In 
case of X8/X16 org. See Section 26.5.4.10, “NAND Flash Operation Configuration (NF_CFG1) for 
information about endian mode)

Table  shows the assignment of NAND flash status data stored in RAM buffer in big endian mode (In case 
of X8 org. See Section 26.5.4.10, “NAND Flash Operation Configuration (NF_CFG1) for information 
about endian mode)

Table 26-29. Status byte in little endian mode

RAM Buffer of RBA address

1st word

XXh XXh XXh
Status 
Byte

LSB MSB

Start

Preset Operation

Set RAM Buffer Address Register (1E04h)
(Set RBA to load NAND Flash Status Data)

NAND Flash Command Input Operation
(Command: 70h)

NAND Flash Data Output Operation

Read ID Data from Assigned RAM Buffer
(Refer to NAND Flash Status Data assignment)

End

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-43

Table  shows the assignment of NAND flash status data stored in RAM buffer in big endian mode (In case 
of X16 org. See Section 26.5.4.10, “NAND Flash Operation Configuration (NF_CFG1) for information 
about endian mode)

Table 26-30. Status byte in big endian mode (x8 org)

RAM Buffer of RBA address

1st word

Status Byte XXh XXh XXh

LSB MSB

Table 26-31. Status byte in big endian mode (x8 org)

RAM Buffer of RBA address

1st word

XXh
Status 
Byte

XXh XXh

LSB MSB

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-44 Freescale Semiconductor

26.7.1.2.3 Read NAND Flash Data Operation

Figure 26-41. Flow Chart of Read NAND Flash Data Operation

Start

Preset Operation

NAND Flash Command Input operation
(Command: NAND Flash Read Confirm Command

which is required with NAND Flash devices that are 1Gb or larger)

NAND Flash Command Input Operation
(Command: NAND Flash Read Command)

NAND Flash Data Output Operation

End

NAND Flash Address Input Operation
(Address: NAND Flash address to be Read)

Check ECC Status Register (1E0Ch and 1E0Eh)
and Do Next Step According to the Result

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-45

26.7.1.2.4 Program NAND Flash Data Operation

Figure 26-42. Flow Chart of Program NAND Flash Data Operation

Start

Preset operation.

NAND Flash Data input operation.

End

NAND Flash Command Input operation.
(Command: Data Loading Command)

NAND Flash Command Input operation.
(Command: Confirm Command)

NAND Flash Address Input operation.
(Address: NAND Flash address to be Programmed)

NAND Flash Status Read Operation

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-46 Freescale Semiconductor

26.7.1.2.5 Erase NAND Flash Data Operation

Figure 26-43. Flow Chart of Erase NAND Flash Operation

Start

Preset operation.

NAND Flash Status Read Operation

NAND Flash Command Input operation.
(Command: Erase Command)

NAND Flash Address input operation.

NAND Flash Command Input operation.
(Command: Confirm Command)

End

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-47

26.7.1.2.6 HOT Reset (Controller and NAND Flash Reset)

Hot reset makes controller and NAND flash stop current operation and internal registers go to default state.

Figure 26-44. Flow Chart of Hot Reset Operation

26.7.1.3 ECC Operation

26.7.1.3.1 ECC Normal Operation

When the NFC accesses the NAND flash device for Program operation, it generates ECC code (9/18 bytes 
for each 528/538 bytes). 

When the NFC accesses the NAND flash device for a Read operation, it reads the ECC code, detects the 
number of errors and their position and corrects up to four/eight symbols (9 bits each symbol) if applicable. 
Table 26-32 shows the ECC code assignment of the NAND flash spare area. This ECC code is updated by 
NFC automatically. 

After the Read operation, the host can know whether there are errors or not by reading the status registers 
(see the ECC_STATUS1/ ECC_STATUS2 register). 

Since the generated ECC code is not updated to the internal buffer RAM, but is updated to the NAND flash 
spare area immediately upon program operation, the host can read generated ECC code only from NAND 
flash spare area.

Start

Preset operation.

NAND Flash Command Input operation.
(Command: ffh)

End

Reset NFC’s state machined by asserting RST in 
NF_CFG1 register 1E1Ah 

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-48 Freescale Semiconductor

26.7.1.4 ECC Bypass operation

In ECC bypass operation, the spare area is copied from NFC internal RAM Buffer to the NAND flash 
device during program operation. During read operation, the ECC detect-fix mechanism does not work and 
the ECC status register is not updated.

y 

26.7.1.4.1 ECC Operation Guidance

ECC generation and correction by NFC: Program with ECC operation/read with ECC operation.

ECC generation by NFC and correction by Host: Program with ECC operation/read without ECC 
operation.

26.7.2 Symmetric Mode – One Flash Clock Cycle Per Input or Output Data 
Cycle

In the default state of the NFC two flash clock cycles are used for one access of RE#/WE#.

To not work with high frequency of flash clock, the SYM bit in config1 register should be set and it 
changes the WE# and RE# period during read or program to be 1 flash clock instead of 2. 

SYM bit also changes the duty cycle of RE# to be ~50% during read operation. 

When using SYMMETRIC mode, the data is latched into NFC on falling edge of RE#. When not using 
SYMMETRIC mode, the data is latched on rising edge of RE#.

Table 26-32. ECC Code/Result Readability

Operation

Read operation Program operation

ECC Code from spare area 
buffer

ECC status register ECC Code from 
spare area buffer

ECC status 
register

ECC content in 
NAND flash 

device

ECC 
operation

ECC code copied from 
NANDflash device spare 

area

Valid Invalid (old data 1)

1 Old data: ECC code is not updated to spare buffer, so ECC code placement of spare buffer remains old data.

— ECC code 
genrated by the 

NFC

ECC bypass
User data copied from 

NANDflash device spare 
area

Not valid Invalid (old data) — Data from spare 
area of NFC’s 
internal RAM

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-49

Figure 26-45. One Flash Clock Cycle Per Data Input (SYM bit = 1)

Figure 26-46. One Flash Clock Cycle Per Data Output (SYM bit = 1)

Figure 26-47. Two Flash Clock Cycles Per Data Output (SYM bit = 0)

FLASH_CLK

CE_B

WE_B

IO

FLASH_CLK

CE_B

RE_B

IO

FLASH_CLK

CE_B

RE_B

IO

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-50 Freescale Semiconductor

Figure 26-48. Two Flash Clock Cycles Per Data Input(SYM bit = 0)

26.7.2.1 Write Protection

The NFC offers a software write protection feature, and a hardware write protection feature. Both are 
described in this section. 

26.7.2.1.1 WRITE Protection for RAMbuffer (LSB 2KB)

The NFC offers a software write protection feature for the first 2KB (+ accompanied spare area data) of 
the RAM buffer, which protects RAM buffer data. This write protection is carried out by setting the BLS 
bit of the NFC_CONFIGURATION register. 

The default state is locked state, and the first 2KB go to this state after a cold or warm reset.

Write protection availability for main/spare memory regions in the RAM buffer are described on 
Table 26-33. A state diagram of RAM buffer write protection is shown in Figure 26-49

Table 26-33. Write Protection for Main/Spare RAM Buffer

Main area Spare area

First section of RAMbuffer 1st section of RAMbuffer Write Protection 
Available

Second section of RAMbuffer 2nd section of RAMbuffer

Third section of RAMbuffer 3rd section of RAMbuffer

Fourth section of RAMbuffer 4th section of RAMbuffer

Fifth section of RAMbuffer 5th section of RAMbuffer  Write Protection 
not available

Sixth section of RAMbuffer 6th section of RAMbuffer

Seventh section of RAMbuffer 7th section of RAMbuffer

Eighth section of RAMbuffer 8th section of RAMbuffer

FLASH_CLK

CE_B

WE_B

IO

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-51

Figure 26-49. State Diagram of RAMbuffer Write Protection

26.7.2.1.2 Write Protection Modes

NFC offers hardware and software Write Protection options for the NAND flash device. The software 
Write Protection feature is used by executing the Lock block command or lock-tight block command, and 
the hardware Write Protection feature is used by executing a cold or warm reset. The WP signal is asserted 
only upon POR.

26.7.2.1.3 Write Protection Commands

There are two write protection states, locked and lock-tight.
• Locked state means that memory block in question is write protected (it cannot be written to), but 

the UNLOCK command can unlock it. Useful for frequently changed memory blocks. 
• Lock-Tight state is a higher level of protection, and means that the memory block in question is 

write protected, but the UNLOCK command cannot unlock it. Useful for memory blocks whose 
contents are rarely changed. 

The followings summarizes the locking functionality.
• All blocks power-up in a locked state accept block zero. The unlock command can unlock these 

blocks.
• The Lock-tight block command locks blocks and prevents it (them) from being unlocked.

— Lock-Tight state can be reverted to locked state only when Cold/Warm reset is executed.
• Writing to the unlock start/end address registers (Unlock_Start_Blk_Add and 

Unlock_End_Blk_Add) while the NFC is in the Lock-Tight state does not affect the unlock 
address. 

26.7.2.1.4 Write Protection Status

The current Write Protection status of the NFC can be read in NAND flash write protection status register 
(NAND_Flash_WR_Pr_St). There are three bits: US,LS, and LTS, which are not cleared by hot reset. 
These Write Protection status bits are updated only when a command is issued to the NAND device.

Device in Cold or 
Warm Reset

Unlocked

Locked

Initial state

NFC_CFG
register[1:0] = 00/01/11

NFC_CFG
register[1:0] = 10

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-52 Freescale Semiconductor

Figure 26-50 shows a state diagram for the write protection of the NFC. 

Figure 26-50. State Diagram of NAND Flash Write Protection

26.7.2.1.5 Lock Sequence

The following describes the lock sequence:
1. Command Sequence: Lock block Command (02h)
2. All blocks default to locked after initial Cold reset or Warm reset
3. Locking some of the blocks is not available; all memory blocks are locked upon reset accept block 

zero.
4. Unlocked memory blocks can be locked by using the Lock block command. The status of a locked 

memory block can be changed to unlocked or lock-tight using the appropriate software commands.

ipg_reset_b pin: Rising edge
(This occurs at Cold reset or Warm reset)

Unlocked

Locked

Lock-Tight

Cold or
Warm reset

ipg_reset_b pin: High
&

Start block address +
End block address +

Unlock block Command

ipg_reset_b pin: High
&

Start block address +
End block address +

Unlock block Command

ipg_reset_b pin: High
and

Lock-tight block
Command

ipg_reset_b pin: High
&

Lock-tight block
Command

ipg_reset_b pin: High
&

Lock block Command

Initial state

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-53

26.7.2.1.6 Unlock Sequence

The following describes the unlock sequence:
1. Command Sequence: Start block address + End block address + Unlock block Command(04h)
2. Unlocked blocks can be programmed or erased
3. The status of an unlocked block can be changed to locked or lock-tight using the appropriate 

software commands
4. Only one successive area can be released to unlocked state from locked state; Unlocking multi 

areas is not available

0.0.0.0.1 Lock-tight Sequence

The following describes the lock-tight sequence:
1. Only locked blocks can be locked-tight by the lock-tight block command.
2. Command Sequence: Lock-tight block Command (01h)
3. Unlocking multi area is not available
4. Lock-tight blocks revert to the locked state at Cold/Warm reset.

26.7.3 Memory Configuration Examples

The following figures show memory connection for various bit values: An 8-bit configuration example is 
shown in Figure 26-51, a 16-bit configuration example is shown in Figure 26-52.

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-54 Freescale Semiconductor

Figure 26-51. 256 Mbit (32M x 8 Bit) NAND Flash Connection Diagram

CE
CLE

I/O 7
I/O 6
I/O 5
I/O 4
I/O 3
I/O 2
I/O 1
I/O 0

32M x 8
NAND Flash

ALE
RE
WE
WP

R/B

VccQ
Vcc

Vss
GND

Vcc

GND

ipp_nfc_ce_out
ipp_nfc_cle_out
ipp_nfc_ale_out
ipp_nfc_re_out

ipp_nfc_we_out
ipp_nfc_wp_out

ipp_nfc_rb_in

N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.

NFCE
NFCLE
NFALE
NFRE
NFWE
NFWP

NFRB

ipp_nfc_read_data_in[15]
ipp_nfc_read_data_in[14]
ipp_nfc_read_data_in[13]
ipp_nfc_read_data_in[12]
ipp_nfc_read_data_in[11]
ipp_nfc_read_data_in[10]
ipp_nfc_read_data_in[9]
ipp_nfc_read_data_in[8]

ipp_nfc_read_data_out[15]
ipp_nfc_read_data_out[14]
ipp_nfc_read_data_out[13]
ipp_nfc_read_data_out[12]
ipp_nfc_read_data_out[11]
ipp_nfc_read_data_out[10]
ipp_nfc_read_data_out[9]
ipp_nfc_read_data_out[8]

8 bits of the ADRESS BUS

NFIO7
NFIO6
NFIO5
NFIO4
NFIO3
NFIO2
NFIO1
NFIO0

ipp_nfc_read_data_in[7]
ipp_nfc_read_data_in[6]
ipp_nfc_read_data_in[5]
ipp_nfc_read_data_in[4]
ipp_nfc_read_data_in[3]
ipp_nfc_read_data_in[2]
ipp_nfc_read_data_in[1]
ipp_nfc_read_data_in[0]

ipp_nfc_read_data_out[7]
ipp_nfc_read_data_out[6]
ipp_nfc_read_data_out[5]
ipp_nfc_read_data_out[4]
ipp_nfc_read_data_out[3]
ipp_nfc_read_data_out[2]
ipp_nfc_read_data_out[1]
ipp_nfc_read_data_out[0]

A25_NFIO15
A24_NFIO14
A23_NFIO13
A22_NFIO12
A21_NFIO11
A15_NFIO10
A14_NFIO9
A13NFIO8

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

Freescale Semiconductor 26-55

Figure 26-52. 256Mbit (16M x 16Bit) NAND Flash Connection Diagram

CE
CLE

I/O 7
I/O 6
I/O 5
I/O 4
I/O 3
I/O 2
I/O 1
I/O 0

16M x 16
NAND Flash

ALE
RE
WE
WP

R/B

VccQ
Vcc

Vss
GND

Vcc

GND

ipp_nfc_ce_out
ipp_nfc_cle_out
ipp_nfc_ale_out
ipp_nfc_re_out

ipp_nfc_we_out
ipp_nfc_wp_out

ipp_nfc_rb_in

NFCE
NFCLE
NFALE
NFRE
NFWE
NFWP

NFRB

ipp_nfc_read_data_in[15]
ipp_nfc_read_data_in[14]
ipp_nfc_read_data_in[13]
ipp_nfc_read_data_in[12]
ipp_nfc_read_data_in[11]
ipp_nfc_read_data_in[10]
ipp_nfc_read_data_in[9]
ipp_nfc_read_data_in[8]

ipp_nfc_read_data_out[15]
ipp_nfc_read_data_out[14]
ipp_nfc_read_data_out[13]
ipp_nfc_read_data_out[12]
ipp_nfc_read_data_out[11]
ipp_nfc_read_data_out[10]
ipp_nfc_read_data_out[9]
ipp_nfc_read_data_out[8]

8 bits of the ADRESS BUS

NFIO7
NFIO6
NFIO5
NFIO4
NFIO3
NFIO2
NFIO1
NFIO0

ipp_nfc_read_data_in[7]
ipp_nfc_read_data_in[6]
ipp_nfc_read_data_in[5]
ipp_nfc_read_data_in[4]
ipp_nfc_read_data_in[3]
ipp_nfc_read_data_in[2]
ipp_nfc_read_data_in[1]
ipp_nfc_read_data_in[0]

ipp_nfc_read_data_out[7]
ipp_nfc_read_data_out[6]
ipp_nfc_read_data_out[5]
ipp_nfc_read_data_out[4]
ipp_nfc_read_data_out[3]
ipp_nfc_read_data_out[2]
ipp_nfc_read_data_out[1]
ipp_nfc_read_data_out[0]

A25_NFIO15
A24_NFIO14
A23_NFIO13
A22_NFIO12
A21_NFIO11
A15_NFIO10

A14_NFIO9
A13NFIO8

I/O 15
I/O 14
I/O 13
I/O 12
I/O 11
I/O 10
I/O 9
I/O 8

MPC5121e Microcontroller Reference Manual, Rev. 2



NAND Flash Controller (NFC)

26-56 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 27-1

Chapter 27  
Parallel Advanced Technology Attachment (PATA)

27.1 Introduction
Figure 27-1 shows a block diagram of the Parallel Advanced Technology Attachment (PATA) interface. 
This interface is primarily used to connect to IDE hard disc drives and ATAPI optical disc drives.

Figure 27-1. PATA Block Diagram

The PATA block communicates with the host processor and the host DMA unit via the register access bus. 
All internal PATA block registers are visible from register access bus.

Before making any access to the ATA bus, the host must program the PATA interface timing parameters 
on the ATA bus. The timing parameters control the timing on the ATA bus. Although some are implied, 
most timing parameters are programmable as a number of clock cycles (1 to 255). 

PATA_IOR
PATA_IOW
ATA_CE2
ATA_CE1
ATA_DA2
ATA_DA1
ATA_DA0

PATA_DRQ
PATA_DACK
PATA_INTRQ
PATA_IOCHRDY
PATA_DATA[15:0]

Bus
Interface

PATA_ISOLATE

Timing
Parameters

Control
Register

Interrupt
Interface

FIFO
Control

FIFO
128 Bytes

ATA
Protocol
Engine

Register Access Bus

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

27-2 Freescale Semiconductor

After programming the timing parameters, two protocols can be activated at the same time on the ATA bus.
• The CPU core to the ATA bus can provide a parallel IO (PIO) mode access at any time. During PIO 

mode access, incoming register access bus cycle translates to an ATA bus cycle by the ATA 
protocol engine. The register access bus cycle stalls until completion of the ATA bus cycle on read 
or until putting the write data on the ATA bus on write. The PIO mode is a slow protocol (mainly 
intended to program the ATA disc drive), but also possible to transfer data to/from the disc drive. 
During PIO mode, internal FIFO is not active.

• The next protocol is the DMA mode access. DMA mode is started by the ATA interface after 
receiving a DMA request from the drive only if the ATA interface has been programmed to accept 
the DMA request. In DMA mode, multiword DMA or ultra DMA protocol is used on the ATA bus. 
After started, the data transfer is organized between the ATA bus and the FIFO. The data transfer 
pauses to prevent FIFO overflow/FIFO underflow, and it resumes when space exists again in the 
FIFO or when the FIFO has been refilled. During DMA transfer, no direct transfer between the 
ATA bus and IP bus occurs. Instead, the transfer happens between the ATA bus and the FIFO, and 
the FIFO informs the host DMA unit when it needs to be refilled or emptied. 

When a PIO access occurs during a running DMA transfer, the DMA transfer is paused, the PIO access 
done, and then the DMA transfer resumes again. 

27.1.1 Features

The ATA interface includes these features:
• Programmable timing on the ATA bus 
• Compliant with ATA-6 specification
• Can be used with off-chip bus transceiver
• 128 byte FIFO part of interface
• FIFO receive alarm and FIFO transmit alarm to DMA unit

27.1.2 Modes of Operation

The interface offers two operation modes that can be active at the same time: PIO mode and DMA mode.
• PIO Mode:

— An access to the ATA bus in PIO mode happens when the CPU core reads or writes an ATA 
PIO register. During a PIO transfer, the incoming register access bus cycle translates to an ATA 
PIO bus cycle by the ATA protocol engine. Because no data buffering occurs, the register bus 
cycle stalls until the ATA bus read data is available on read or the register bus data can be put 
on the ATA bus during write.

— PIO accesses can happen to the bus at any time, even during a running ATA DMA transfer. In 
this case, the DMA transfer pauses, the PIO cycle completes, and the DMA transfer resumes.

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

Freescale Semiconductor 27-3

• DMA Mode:
— In DMA mode, data transfers between the ATA bus and the FIFO. Two different DMA 

protocols, ultra DMA mode and multiword DMA mode, are supported on the ATA bus. 
Selection occurs via a control register bit.

— Writing a control bit enables DMA mode transfer and when the drive connects to the ATA bus, 
it pulls PATA_DRQ line high.

— During an ATA bus DMA transfer, data transfers between the ATA bus and the FIFO. The 
transfer pauses to avoid FIFO overflow and FIFO underflow.

— It is the task of the host DMA unit to read data or write data to the FIFO to maintain the transfer. 
For this purpose, the DMA write and read requests are sent to the host DMA unit. The DMA 
read request informs the host DMA unit of at least one packet of data waiting in the FIFO to be 
read by the host DMA. When this request is asserted, the host DMA should transfer one packet 
of data from the FIFO to the main memory. Typical packet size is 32 bytes (8 longwords), but 
other packet sizes can be managed too. The DMA write request informs the host DMA unit of 
space for at least one packet to be written by the host DMA. When this request is asserted, the 
host DMA should transfer one packet of data from main memory to the FIFO. Typical packet 
size is 32 bytes (8 longwords), but other packet sizes can be managed too.

27.2 External Signal Description

27.2.1 Overview

Table 27-2 provides detailed signal descriptions, but for a more detailed description of the ATA bus signal, 
refer to the ATA-6 specification.

Table 27-2. Detailed Signal Descriptions

Name Description

PATA_IOR PIO Mode – Read Strobe
MDMA Mode – Read Strobe
UDMA In Burst – HDMARDY
UDMA Out Burst – Host Strobe

PATA_IOW PIO Mode – Write Strobe
MDMA – Write Strobe
UDMA Burst – STOP Signal – asserted when the host wants to terminate a UDMA transfer

PATA_CE1 These signals are the address group of the ATA bus. ATA_CS0 and ATA_CS1 are the chip selects signals 
from the host that select the command block registers. ATA_DA2, ATA_DA1, and ATA_DA0 are the three 
address lines the host asserts to access a register or data port in the device.PATA_CE0

ATA_DA2

ATA_DA1

ATA_DA0

PATA_DRQ PATA DMA Request – This line is asserted to a logic 1 by an external device to request a multiword DMA 
(MDMA) or Ultra DMA (UDMA) transfer.
0 No DMA request 
1 External PATA device is requesting the PATA bus

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

27-4 Freescale Semiconductor

27.2.2 Meeting Timing on the ATA Bus

Meeting timing requirements of the ATA bus requires special consideration because ATA devices usually 
connect to the PATA bus of the MPC5121e over a cable which introduces various types of delay and skew. 
In addition to this, there may be an isolation buffer between the external ATA device and the MPC5121e 
PATA bus. Because these delays depend on factors external to the MPC5121e, you must program the 
timing of the PATA bus so the timing specifications of the external ATA device are met. In general, ten 
basic timing diagrams must be considered. 

They are: 
• PIO read mode timing
• PIO write mode timing 
• Mulitword DMA read timing
• Multiword DMA write timing
• Ultradma start timing
• UltraDMA in host terminated transfer
• UltraDMA in device terminated transfer
• UltraDMA out transfer start timing
• UltraDMA out host terminated transfer
• UltraDMA out device terminated transfer. 

To ensure timing specifications are met for the host and the target peripheral device, equations exist to 
determine the required PATA register values to properly adjust timing signals that take into account various 
timing skews and propagation delays between PATA Bus signals.

PATA_DACK PATA Bus Host DMA Acknowledge. This signal is asserted to a logic 0 by the PATA HOST to grant the PATA 
Bus to an external device in response to a PATA DMA request.
0 Host is granting PATA bus to an external PATA device
1 Host has not granted PATA bus to an external PATA device.

PATA_INTRQ PATA Bus Interrupt Request 
0 Interrupt Asserted by external PATA Device
1 No interrupt Asserted by external PATA device

PATA_IOCHRDY PATA bus IOCHRDY line. This pin has a different function for each following transfer mode:
PIO Mode – IORD—active low wait during PIO cycles
UDMA Mode (UDMA Out) – DDMARDY—active low device ready during ultra DMA out transfers
UDMA Mode (UDMA In) – DSTROBE—device strobe during ultra DMA in transfers

PATA_DATA[15:0] This is the ATA data bus.

PATA_ISOLATE The PATA_ISOLATE pin controls an isolation buffer between the MPC5121e and the external PATA device.
0 Buffer drives data from the external PATA device to the MPC5121e.
1 Buffer drives data from the MPC5121e to the external PATA device.

Table 27-2. Detailed Signal Descriptions

Name Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

Freescale Semiconductor 27-5

27.2.2.1 Timing Parameters

Table 27-3 shows various timing parameters affected by internal and external factors to the MPC5121e. 
One parameter, T, is the PATA bus clock period. This is the same as the LPC_CLK frequency when 
LPC_DIV of SCFR register in clock block is set to 3’b001. See section 6.4.1.4. Some parameters (ti_ds, 
tco, tskew2, etc.) are a function of the MPC5121e and the microcontroller top-level design controls them. 
Characteristics of the transceiver or isolation buffer between the MPC5121e and the external ATA device 
control other parameters. Also, characteristics of the ATA cable connecting the MPC5121e and the 
external ATA device controls other parameters.

Most of the timing parameters controlling the various PATA bus signals are programmed in increments of 
the ATA bus clock period. A standard ATA bus clock frequency is 66 MHz, which has a period of 15 ns.

27.2.2.2 PIO Mode Timing

Figure 27-2 shows a timing diagram for the PIO read mode.

Table 27-3. Timing Parameters

Name Meaning Controlled by

T PATA Bus clock period (Same as LocalPlus Bus Clock) Clock generator

ti_ds Internal set-up time PATA_DATA to PATA_IOCHRDY negative edge (UDMA-in only) Top level design

ti_dh Internal hold time PATA_IOCHRDY negative edge to PATA_DATA invalid (UDMA-in only) Top level design

tco Propagation delay between positive edge of ata bus clock to ATA_CE1, ATA_CE2, ATA_DA2, 
ATA_DA1, ATA_DA0, PATA_IOR, PATA_IOW, PATA_DACK, PATA_DATA, PATA_ISOLATE

Top level design

tsu Set-up time from PATA_DATA valid to positive edge of ATA Bus Clock Top level design

tsui Set-up time from PATA_IOCHRDY to negative edge of ATA Bus clock Top level design

thi Hold time from PATA_IOCHRDY to negative edge of ATA Bus clock Top level design

tskew1 Max difference in propagation delay between positive edge of ATA Bus Clock to ATA_CE1, 
ATA_CE0, ATA_DA2, ATA_DA1, ATA_DA0, PATA_IOR, PATA_IOW, PATA_DACK, PATA_DATA 
(write), PATA_ISOLATE

Top level design

tskew2 Max difference in buffer propagation delay for ATA_CE1 ATA_CE2, ATA_DA2, ATA_DA1, 
ATA_DA0, PATA_DIOR, PATA_DIOW, PATA_DMACK, PATA_DATA (write), PATA_ISOLATE

Transceiver

tskew3 Max difference in buffer propagation delay for PATA_IOCHRDY, PATA_DATA (read) Transceiver

tbuf Max buffer propagation delay Transceiver

tcable1 Cable propagation delay for PATA_DATA Cable

tcable2 Cable propagation delay for control signals PATA_IOR, PATA_IOW, PATA_IOCHRDY, 
PATA_DACK

Cable

tskew4 Max difference in cable propagation delay between PATA_IOCHRDY and PATA_DATA (read) Cable

tskew5 Max difference in cable propagation delay between (PATA_IOR, PATA_IOW, PATA_DACK) and 
ATA_CE1, ATA_CE2, ATA_DA2, ATA_DA1, ATA_DA0, PATA_DATA(write)

Cable

tskew6 Max difference in cable propagation delay without accounting for ground bounce Cable

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

27-6 Freescale Semiconductor

Figure 27-2. PIO Read Mode Timing

To fulfill read mode timing, observe the different timing parameters in Table 27-4.

Figure 27-3 shows timing waveforms are somewhat different in PIO write mode.

Table 27-4. Timing Parameters PIO Read

ATA
Parameter

Figure 27-2
Parameter

Value How to meet 

t1 t1 t1(min) = time_1 * T - (tskew1 + tskew2 + tskew5) Calculate and programming 
time_1, see 27.3.2.1/27-17

t2 t2r t2(min) = time_2r * T - (tskew1 + tskew2 + tskew5) Calculate and programming 
time_2r, see 27.3.2.2/27-18

t9 t9 t9(min) = time_9 * T - (tskew1 + tskew2 + tskew6) Calculate and programming 
time_9, see 27.3.2.3/27-19

t5 t5 t5(min) = tco + tsu + tbuf + tbuf + tcable1 + tcable2 If not met, increase time_2r

t6 t6 0 —

tA tA tA(min) = (1.5 + time_ax) * T - 
(tco + tsui + tcable2 + tcable2 + 2*tbuf)

Calculate and programming 
time_ax, see 27.3.2.2/27-18

trd trd1 trd1(max) = (-trd) + (tskew3 + tskew4)
trd1(min) = (time_pio_rdx - 0.5)*T - (tsu + thi)

(time_pio_rdx - 0.5) * T > tsu + thi + tskew3 + tskew4

Calculate and programming 
time_pio_rdx, see 
27.3.2.2/27-18

t0 — t0(min) = (time_1 + time_2 + time_9) * T time_1, time_2r, time_9

ADDR

ATA_IOR

ATA Read Data (15:0)

IOCHRDY

IOCHRDY

t1 t2r t9

t5

tA

t6

trd1

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

Freescale Semiconductor 27-7

Figure 27-3. PIO Write Mode Timing

Table 27-5 shows several parameters need to be observed to fulfill this timing.
 

Table 27-5. Timing Parameters PIO Write

ATA
Parameter

Figure 27-3
Parameter

Value How to meet 

t1 t1 t1(min) = time_1 * T - (tskew1 + tskew2 + tskew5) time_1, see27.3.2.1/27-17 

t2 t2r t2(min) = time_2w * T - (tskew1 + tskew2 + tskew5) Calculate and programming 
time_2w, see 27.3.2.1/27-17

t9 t9 t9(min) = time_9 * T - (tskew1 + tskew2 + tskew6) time_9, see 27.3.2.3/27-19

t3 — t3(min) = (time_2w - time_on)* T - (tskew1 + tskew2 +tskew5) If not met, increase time_2w

t4 t4 t4(min) = time_4 * T - tskew1 Calculate and programming 
time_4, see 27.3.2.2/27-18

tA tA tA = (1.5 + time_ax) * T - (tco + tsui + tcable2 + tcable2 + 2*tbuf) Calculate and programming 
time_ax, see 27.3.2.2/27-18

t0 — t0(min) = (time_1 + time_2 + time_9) * T time_1, time_2r, time_9

— — Avoid bus contention when switching buffer on 
by making ton long enough

—

— — Avoid bus contention when switching buffer off 
by making toff long enough

—

ADDR

DIOR

Write Data (15:0)

IORDY

IORDY

t1 t2r t9

DIOW

buffer_en

ton
tA tB t4 toff t1

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

27-8 Freescale Semiconductor

27.2.2.3 Timing in Multiword DMA Mode

Figure 27-4 and Figure 27-5 give timing in multiword DMA mode.

Figure 27-4. MDMA Read Timing

Figure 27-5. MDMA Write Timing

To meet this timing, a number of timing parameters must be controlled as shown in Table 27-6.

DMARQ

ADDR

DMACK

DIOR

Read Data (15:0)

tk1

tm td tk

tgr tfr

tkjn

DMARQ

ADDR

DMACK

DIOW

Write Data (15:0)

tk1

tm tdtk tkjn toff

buffer_en

ton td1

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

Freescale Semiconductor 27-9

 

27.2.2.4 UDMA In Timing Diagrams

UDMA mode timing is more complicated than PIO mode or MDMA mode. In this section, timing 
diagrams for UDMA in transfer are given:

• Figure 27-6 gives timing for UDMA in transfer start
• Figure 27-7 gives timing for host terminating UDMA in transfer
• Figure 27-8 gives timing for device terminating UDMA in transfer.

Table 27-6. Timing Parameters MDMA Read and Write

ATA
Parameter

Figure 27-4
Figure 27-5
Parameter

Value How to meet 

tm, ti tm tm(min) = ti(min) = time_m * T - (tskew1 + tskew2 + tskew5) Calculate and 
programming 
time_m, see 
27.3.2.3/27-19

td td, td1 td1(min) = td(min) = time_d * T - (tskew1 + tskew2 + tskew6) Calculate and 
programming 
time_d, see 
27.3.2.3/27-19

tk tk tk(min) = time_k * T - (tskew1 + tskew2 + tskew6) Calculate and 
programming 
time_k, see 
27.3.2.4/27-19

t0 — t0(min) = (time_d + time_k) * T time_d, time_k

tg(read) tgr tgr(min-read) = tco + tsu + tbuf + tbuf + tcable1 + tcable2
tgr(min-drive) = td - te(drive)

time_d, see 
27.3.2.3/27-19

tf(read) tfr tfr(min-drive) =0 —

tg(write) — tg(min-write) = time_d * T -(tskew1 + tskew2 + tskew5) time_d

tf(write) — tf(min-write) = time_k * T - (tskew1 + tskew2 + tskew6) time_k

tL — tL(max) = (time_d + time_k-2)*T - (tsu + tco + 2*tbuf + 2*tcable2) time_d, time_k

tn, tj tkjn tn= tj= tkjn = (max(time_k,. time_jn) * T - (tskew1 + tskew2 + tskew6) Calculate and 
programming 
time_jn, see 
27.3.2.3/27-19

— ton
toff

ton = time_on * T - tskew1
toff = time_off * T - tskew1

—

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

27-10 Freescale Semiconductor

Figure 27-6. UDMA In Transfer Start Timing Diagram

tc1tc1

tenv

tds tdh

tack

ADDR

DMARQ

DMACK

DIOR

DIOW

Data Read

IORDY

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

Freescale Semiconductor 27-11

Figure 27-7. UDMA In Host Terminates Transfer

Figure 27-8. UDMA In Device Terminates Transfer

Table 27-7 explains timing parameters.

ADDR

DMARQ

DMACK

DIOR

DIOW

IORDY

Data Read

Data Write

buffer_en

tack

trp

tc1 tc1 tx1 tmli

tds tdh

tmli

tzah

tzah ton tdzfs tcvh toff

tack

tmli

tc1 tc1 tss1 tli5

tmli

tzah
tzah ton tdzfs tcvh toff

tds tdh

ADDR

DMARQ

DMACK

DIOR

DIOW

IORDY

Data Read

Data Write

buffer_en

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

27-12 Freescale Semiconductor

Table 27-7. Timing Parameters UDMA in Burst

ATA
Parameter

Figure 27-6
Figure 27-7
Figure 27-8
Parameter

Value How to Meet 

tack tack tack(min) = (time_ack * T) - (tskew1 + tskew2) Calculate and 
programming 
time_ack, see 
27.3.2.4/27-19

tenv tenv tenv(min) = (time_env * T) - (tskew1 + tskew2)
tenv(max) = (time_env * T) + (tskew1 + tskew2)

Calculate and 
programming time_env, 
see 27.3.2.4/27-19

tds tds1 tds - (tskew3) - ti_ds > 0 tskew3, ti_ds, ti_dh 
should be low enough

tdh tdh1 tdh - (tskew3) -ti_dh > 0

tcyc tc1 (tcyc - tskew) > T Bus clock period T big 
enough

trp trp trp(min) = time_rp * T - (tskew1 + tskew2 + tskew6) calculate and 
programming time_rp, 
see 27.3.2.4/27-19

tx11

1 A special timing requirement in the ATA host requires the internal DIOW to go only high three clocks after the last active edge 
on the DSTROBE signal. The equation given on this line captures this constraint.

(time_rp * T) - (tco + tsu + 3T + 2 *tbuf + 2*tcable2) > trfs (drive) Calculate and 
programming time_rp, 
see 27.3.2.4/27-19

tmli tmli1 tmli1(min) = (time_mlix + 0.4) * T Calculate and 
programming 
time_mlix, see 
27.3.2.5/27-20

tzah tzah tzah(min) = (time_zah + 0.4) * T Calculate and 
programming 
time_zah, see 
27.3.2.5/27-20

tdzfs tdzfs tdzfs = (time_dzfs * T) - (tskew1 + tskew2) Calculate and 
programming 
time_dzfs, see 
27.3.2.5/27-20

tcvh tcvh tcvh = (time_cvh *T) - (tskew1 + tskew2) Calculate and 
programming 
time_cvh, see 
27.3.2.6/27-20

— ton
toff2

2 Make ton and toff big enough to avoid bus contention.

ton = time_on * T - tskew1
toff = time_off * T - tskew1

—

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

Freescale Semiconductor 27-13

27.2.2.5 UDMA Out Timing Diagrams

UDMA mode timing is more complicated than PIO mode or MDMA mode. In this section, timing 
diagrams for UDMA out transfer are given: 

• Figure 27-9 gives timing for UDMA out transfer start
• Figure 27-10 gives timing for host terminating UDMA out transfer
• Figure 27-11 gives timing for device terminating UDMA out transfer.

Figure 27-9. UDMA Out Transfer Start Timing Diagram

ADDR

DMARQ

DMACK

DIOW

DIOR

buffer_en

Data Write

IORDY

tack

tenv

tcyc tcyc

ton tdzfs tdvs tdvh tdvs

tli1

trfs1

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

27-14 Freescale Semiconductor

Figure 27-10. UDMA Out Host Terminates Transfer

r

Figure 27-11. UDMA Out Device Terminates Transfer

Table 27-8 explains timing parameters.

ADDR

DMARQ

DMACK

DIOW

DIOR

Data Write

IORDY

buffer_en

tack

tss

tcyc
tli2

tcyc1 tdzfs_mli tcvh toff

tli3

ADDR

DMARQ

DMACK

DIOW

DIOR

Data Write

IORDY

buffer_en

tack

tcyc tdzfs_mli tcvh toff

tli2

trfs1

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

Freescale Semiconductor 27-15

 

Table 27-8. Timing Parameters UDMA Out Burst

ATA 
Parameter

Figure 27-9
Figure 27-10
Figure 27-11
Parameter

Value How to meet 

tack tack tack(min) = (time_ack * T) - (tskew1 + tskew2) Calculate and 
Programming 
Time_ack, See 
27.3.2.4/27-19

tenv tenv tenv(min) = (time_env * T) - (tskew1 + tskew2)
tenv(max) = (time_env * T) + (tskew1 + tskew2)

Calculate and 
Programming 
Time_env, See 
27.3.2.4/27-19

tdvs tdvs tdvs = (time_dvs * T) - (tskew1 + tskew2) Calculate and 
Programming 
Time_dvs, See 
27.3.2.6/27-20

tdvh tdvh tdvs = (time_dvh * T) - (tskew1 + tskew2) Calculate and 
Programming 
Time_dvh, See 
27.3.2.5/27-20

tcyc tcyc tcyc = time_cyc * T - (tskew1 + tskew2) Calculate and 
Programming 
Time_cyc, See 
27.3.2.6/27-20

t2cyc t2cyc = time_cyc * 2 * T Calculate and 
Programming 
Time_cyc, See 
27.3.2.6/27-20

trfs1 trfs trfs = 1.6 * T + tsui + tco + tbuf + tbuf —

- tdzfs tdzfs = time_dzfs * T - (tskew1) Calculate and 
Programming 
Time_dzfs, See 
27.3.2.5/27-20

tss tss tss = time_ss * T - (tskew1 + tskew2) Calculate and 
Programming Time_ss, 
See 27.3.2.6/27-20

tmli tdzfs_mli tdzfs_mli =max(time_dzfs, time_mli) * T - (tskew1 + tskew2) —

tli tli1 tli1 > 0 —

tli tli2 tli2 > 0 —

tli tli3 tli3 > 0 —

tcvh tcvh tcvh = (time_cvh *T) - (tskew1 + tskew2) Calculate and 
Programming 
Time_cvh, See 
27.3.2.6/27-20

— ton
toff

ton = time_on * T - tskew1
toff = time_off * T - tskew1

—

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

27-16 Freescale Semiconductor

27.3 Memory Map and Register Definition

27.3.1 Memory Map

Table 27-9 is the memory map for the ATA module.
Table 27-9. Module Memory Map

Address Register Access Section/Page

(ata_base + 0x00) Time register1: PIO and transceiver timing parameter. R/W 27.3.2.1/27-17

(ata_base + 0x04) Time register2: PIO timing parameter. R/W 27.3.2.2/27-18

(ata_base + 0x08) Time register3:PIO and MDMA timing parameter. R/W 27.3.2.3/27-19

(ata_base+ 0x0C) Time register4: MDMA and UDMA timing parameter. R/W 27.3.2.4/27-19

(ata_base+ 0x10) Time register5: UDMA timing parameter. R/W 27.3.2.5/27-20

(ata_base+ 0x14) Time register6: UDMA timing parameter. R/W 27.3.2.6/27-20

(ata_base + 0x18) FIFO_DATA_32: 32-bit data port to/from FIFO R/W 27.3.2.7/27-21

(ata_base + 0x1C) FIFO_DATA_16: 16-bit data port to/from FIFO R/W 27.3.2.8/27-21

(ata_base + 0x20) FIFO_FILL: FIFO filling in halfwords R 27.3.2.9/27-22

(ata_base + 0x24) ATA_CONTROL: ATA interface control register R/W 27.3.2.10/27-23

(ata_base + 0x28) INTERRUPT_PENDING: Interrupt pending register R 27.3.2.11/27-25

(ata_base + 0x2C) INTERRUPT_ENABLE: Interrupt enable register R/W 27.3.2.12/27-25

(ata_base + 0x30) INTERRUPT_CLEAR: Interrupt clear register W 27.3.2.13/27-26

(ata_base + 0x34) FIFO_ALARM: FIFO alarm threshold R/W 27.3.2.14/27-27

(ata_base + 0xA0) DRIVE_DATA: drive data register R/W 27.3.2.15/27-28

(ata_base + 0xA4) DRIVE_FEATURES: drive features register R/W 27.3.2.15/27-28

(ata_base + 0xA8) DRIVE_SECTOR_COUNT: drive sector count register R/W 27.3.2.15/27-28

(ata_base + 0xAC) DRIVE_SECTOR_NUM: drive sector number register R/W 27.3.2.15/27-28

(ata_base + 0xB0) DRIVE_CYL_LOW: drive cylinder low register R/W 27.3.2.15/27-28

(ata_base + 0xB4) DRIVE_CYL_HIGH: drive cylinder high register R/W 27.3.2.15/27-28

(ata_base + 0xB8) DRIVE_DEV_HEAD: drive device head register R/W 27.3.2.15/27-28

(ata_base + 0xBC) DRIVE_COMMAND: drive command register W 27.3.2.15/27-28

(ata_base + 0xBC) DRIVE_STATUS: drive status register R 27.3.2.15/27-28

(ata_base + 0xD8) DRIVE_ALT_STATUS: drive alternate status register R 27.3.2.15/27-28

(ata_base + 0xD8) DRIVE_CONTROL: drive control register W 27.3.2.15/27-28

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

Freescale Semiconductor 27-17

27.3.2 Register Descriptions

The following sections show details of the PATA registers. The PATA clock must be turned on in the 
system clock control register 1 before writing into any PATA register.

27.3.2.1 Timing Register 1

Figure 27-12 contains part of the timing parameters on the ATA bus. See Table 27-10 for a description of 
the bits fields. Every timing parameter is 8-bit wide and can assume valid values between 1 and 255. Reset 
values are always 1. Calculate the value of every field according to bus clock period and the timing 
determined in ATA specification, then program it via IP bus. It is the same for all timing registers.

ata_base + 0x00 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TIME_OFF TIME_ON TIME_1 TIME_2W

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Figure 27-12. Timing Register 1

Table 27-10. Timing Register 1 Field Descriptions

Field Description

TIME_2W PIO timing parameter. Controls t2 during write cycles. The t2w is the minimum command active time. The 
time PATA_DIOW is 0 here.

TIME_1 PIO timing parameter. Controls t1. The t1 is the cycle time from address valid to PATA_DIOR/PATA_DIOW 
setup.

TIME_ON Transceiver timing parameter. Controls tOn.

TIME_OFF Transceiver timing parameter. Controls tOff.

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

27-18 Freescale Semiconductor

27.3.2.2 Timing Register 2

Figure 27-12 contains part of the timing parameters on the ATA bus. See Table 27-11 for a description of 
the bits fields. Every timing parameter is 8-bit wide and can assume valid values between 1 and 255. Reset 
values are always 1.

ata_base + 0x04 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TIME_2R TIME_AX TIME_PIO_RDX TIME_4

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Figure 27-13. Timing Register 2

Table 27-11. Timing Register 2 Field Descriptions

Field Description

TIME_4 PIO timing parameter. Controls t4. The t4 is write data hold time.

TIME_PIO_RDX PIO timing parameter. Controls trd. The trd is the minimum time from read data valid to PATA_IOCHRDY 
active.

TIME_AX PIO timing parameter. Controls tA. The tA is PATA_IOCHRDY setup time.

TIME_2R PIO timing parameter. Controls t2 during read cycles. The t2r is the minimum command active time. Here is 
the time PATA_DIOR equals to 0.

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

Freescale Semiconductor 27-19

27.3.2.3 Timing Register 3

Figure 27-14 contains part of timing parameters on the ATA bus. See Table 27-12 for a description of the 
bits fields. Every timing parameter is 8-bit wide and can assume valid values between 1 and 255. Reset 
values are always 1.

27.3.2.4 Timing Register 4

Figure 27-15 contains part of timing parameters on the ATA bus. See Table 27-13 for a description of the 
bits fields. Every timing parameter is 8-bit wide and can assume valid values between 1 and 255. Reset 
values are always 1.

ata_base + 0x08 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TIME_9 TIME_M TIME_JN TIME_D

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Figure 27-14. Timing Register 3

Table 27-12. Timing Register 3 Field Descriptions

Field Description

TIME_D MDMA timing parameter. Controls td.

TIME_JN MDMA timing parameter. Controls tn and tj.

TIME_M MDMA timing parameter. Controls tm.

TIME_9 PIO timing parameter. Controls t9.

ata_base + 0x08 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TIME_K TIME_ACK TIME_ENV TIME_RPX

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Figure 27-15. Timing Register 4

Table 27-13. Timing Register 4 Field Descriptions

Field Description

TIME_RPX UDMA timing parameter. Controls trp.

TIME_ENV UDMA timing parameter. Controls tn and tenv.

TIME_ACK UDMA timing parameter. Controls tack.

TIME_K MDMA timing parameter. Controls tk.

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

27-20 Freescale Semiconductor

27.3.2.5 Timing Register 5

Figure 27-16 contains part of timing parameters on the ATA bus. See Table 27-14 for a description of the 
bits fields. Every timing parameter is 8-bit wide and can assume valid values between 1 and 255. Reset 
values are always 1.

27.3.2.6 Timing Register 6

Figure 27-17 contains part of timing parameters on the ATA bus. See Table 27-15 for description of the 
bits fields. Every timing parameter is 8-bit wide and can assume valid values between 1 and 255. Reset 
values are always 1.

ata_base + 0x10 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TIME_ZOH TIME_MLIX TIME_DVH TIME_DZFS

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Figure 27-16. Timing Register 5

Table 27-14. Timing Register 5 Field Descriptions

Field Description

TIME_DZFS UDMA timing parameter. Controls tdzfs.

TIME_DVH UDMA timing parameter. Controls tdvh.

TIME_MLIX UDMA timing parameter. Controls tmli.

TIME_ZAH UDMA timing parameter. Controls tzah.

ata_base + 0x14 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TIME_DVS TIME_CVH TIME_SS TIME_CYC

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Figure 27-17. Timing Register 6

Table 27-15. Timing Register 6 Field Descriptions

Field Description

TIME_CYC UDMA timing parameter. Controls tcyc and t2cyc.

TIME_SS UDMA timing parameter. Controls tss.

TIME_CVH UDMA timing parameter. Controls tcvh.

TIME_DVS UDMA timing parameter. Controls tdvs.

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

Freescale Semiconductor 27-21

27.3.2.7 FIFO Data 32 Register

The FIFO_DATA_32 register shown in Figure 27-18 is used by the 32-wide data port to write to/read from 
the FIFO. See Table 27-16 for a description of the bit fields.

27.3.2.8 FIFO Data 16 Register

The FIFO_DATA_16 register shown in Figure 27-19 is used by the 16-wide data port to write to/read from 
the FIFO. See Table 27-17 for a description of the bit fields.

ata_base + 0x18 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FIFO_DATA_32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 27-18. FIFO Data 32 Register

Table 27-16. FIFO Data 32 Field Descriptions

Field Description

FIFO_DATA_32 The FIFO_REGISTER_32 is used to read or write data to the internal FIFO. Access it as a 32-bit register. 
Any write to the register puts the 4 bytes written into the FIFO. Any read access fetches 4 bytes from the 
FIFO.

ata_base + 0x1c Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FIFO_DATA_16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 27-19. FIFO Data 6 Register

Table 27-17. FIFO Data 16 Field Descriptions

Field Description

FIFO_DATA_16 The FIFO_DATA_16 register reads or writes data to the internal FIFO. Access it as a 16-bit register. Any write 
to the register puts the 2 bytes written into the FIFO. Any read access fetches read 2 bytes from the FIFO.

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

27-22 Freescale Semiconductor

27.3.2.9 FIFO Fill Register

The FIFO fill register shown in Figure 27-20 is a read-only register. See Table 27-18 for a description of 
the bit fields.

ata_base + 0x20 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FIFO_FILL[7:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 27-20. FIFO_FILL Register

Table 27-18. FIFO FILL Field Descriptions

Field Description

FIFO_FILL[7:0] FIFO_FILL is a read-only register. Any read to it returns the current number of 16-bit half-words present in 
the FIFO.

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

Freescale Semiconductor 27-23

27.3.2.10 ATA_CONTROL Register

Figure 27-21 shows the ATA control register. See Table 27-19 for a description of the bit fields.

Offset 0x24Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

FIFO
_RS
T_B

ATA_
RST
_B

FIFO
_TX_
EN

FIFO
_RC
V_E

N

DMA
_PE
NDIN

G

DMA
_ULT
RA_
SEL
ECT
ED

DMA
_WR
ITE

IOR
DY_
EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 27-21. ATA Control Register
(Register repeats for reference.)

Table 27-19. ATA Control Field Descriptions

Field Description

FIFO_RST_B FIFO reset. This field controls if the internal FIFO is in reset or enabled.
1 FIFO normal operation
0 FIFO reset

ATA_RST_B ATA reset. This field provides a way that software can reset the internal ata protocol engine.
1 ATA_RESET_B=1, internal protocol engine normal operation.
0 ATA_RESET_B=0, internal protocol engine reset
Note: ATA_RST_B must be set before accessing a PATA drive register. Otherwise, an errror exception occurs.

FIFO_TX_EN FIFO transmit enable. This field controls if the FIFO makes transmit data requests to the DMA. If enabled, the 
FIFO requests the DMA to refill it when FIFO filling drops below the alarm level.
1 FIFO refill by DMA enabled
0 FIFO refill by DMA disabled

FIFO_RCV_EN FIFO receive enable. This field controls if the FIFO makes receive data requests to the DMA. If enabled, the 
FIFO requests the DMA to empty it when FIFO filling becomes greater or equal to the alarm level.
1 FIFO empty by DMA enabled
0 FIFO empty by DMA disabled

DMA_PENDING DMA pending. This field controls if the ATA interface responds to a DMA request originating in the drive. If this 
bit is asserted, the ATA interface starts a multiword DMA or ultra DMA burst when the drive asserts 
ATA_DMAARQ.
1 ATA interface starts multiwork DMA or ultra DMA burst when drive asserts dmarq
0 ATA interface does not start DMA burst

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

27-24 Freescale Semiconductor

DMA_ULTRA_
SELECTED

DMA ultra selected. This bit indicates if a DMA burst started and whether the UDMA or MDMA protocol is 
used.
1 ultra DMA protocol is used
0 multiword DMA protocol is used

DMA_WRITE DMA write. This bit indicates the data direction on any DMA burst started.
1 DMA out burst, ATA interface writes to drive
0 DMA in burst, ATA interface reads from drive

IORDY_EN IO ready enable. This bit indicates if the ATA_IORDY handshake is used during PIO mode
1 ATA_IORDY handshake is used
0 ATA_IORDY is disregarded.

Offset 0x24Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

FIFO
_RS
T_B

ATA_
RST
_B

FIFO
_TX_
EN

FIFO
_RC
V_E

N

DMA
_PE
NDIN

G

DMA
_ULT
RA_
SEL
ECT
ED

DMA
_WR
ITE

IOR
DY_
EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 27-21. ATA Control Register
(Register repeats for reference.)

Table 27-19. ATA Control Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

Freescale Semiconductor 27-25

27.3.2.11 Interrupt Pending Register

Figure 27-22 shows the interrupt pending register. See Table 27-20 for a description of the bit fields.

27.3.2.12 Interrupt Enable Register

Figure 27-23 shows the interrupt enable register. See Table 27-20 for a description of the bit fields.

Offset 0x28Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
FIFO_UND
ERFLOW

FIFO_OV
ERFLOW

CONTRO
LLER_ID

LE

ATA_IRTR
Q2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

= Unimplemented or Reserved

Figure 27-22. Interrupt Pending Register

Offset 0x2CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R FIFO_UN
DERFLO

W

FIFO_OV
ERFLOW

CONTRO
LLER_ID

LE

ATA_IRTR
Q2W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 27-23. Interrupt Enable Register

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

27-26 Freescale Semiconductor

27.3.2.13 Interrupt Clear Register

Figure 27-24 shows the interrupt clear register. See Table 27-20 for a description of the bit fields.

These three registers control interrupts coming from the ATA and going to the CPU: interrupt pending, 
interrupt enable, and interrupt clear.

The interrupt-pending register and the interrupt-enable register controls the interrupt interface from the 
ATA module.

• Bits 27, 28, 29 and 30 of the interrupt registers control this interrupt. The interrupt is asserted if one 
of the four bits is set in the interrupt pending register while the same bit is set in the 
interrupt_enable register. This interrupt goes to the CPU.

These registers have mostly the same bits. If a bit is set in the interrupt pending register, its interrupt is 
pending and it produces an interrupt if the same bit is set in the interrupt enable register. Some bits in the 
interrupt pending register are sticky bits. Writing a 1 to the corresponding bit in the interrupt clear bit, 
resets them.

Offset 0x30Access: User write only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W FIFO_U
NDERFL

OW

FIFO_OV
ERFLOW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 27-24. Interrupt Clear Register

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

Freescale Semiconductor 27-27

27.3.2.14 FIFO Alarm Register

The FIFO_alarm register in Figure 27-25 is the threshold to generate an alarm to the DMA interface. See 
Table 27-21 for a description of the bit fields.

Table 27-20. Interrupt Register Field Descriptions

Field Description

FIFO_UNDER
FLOW

FIFO underflow. This bit reports FIFO underflow. Sticky bit. It is set in the interrupt pending register when there 
is a FIFO underflow condition. It is cleared by writing a 1 to this bit in the interrupt clear register. When the bit 
is set in the interrupt pending register and the same bit is set in the interrupt enable register, an interrupt signals 
to the CPU.

FIFO_OVERF
LOW

FIFO overflow. This bit reports FIFO overflow. Sticky bit. It is set in the interrupt pending register when there is 
a FIFO overflow condition. It is cleared by writing a 1 to this bit in the interrupt clear register. When the bit is set 
in the interrupt pending register and the same bit is set in the interrupt enable register, an interrupt signals to 
the CPU.

CONTROLLE
R_IDLE

Controller idle. This bit reports controller idle. It is set when the ATA protocol engine is idle, there is no activity 
on the ATA bus. It is cleared when there is activity on the ATA bus. When the bit is set in the interrupt pending 
register and the same bit is set in the interrupt enable register, an interrupt signals to the CPU. The interrupt 
clear register has no influence on this bit.

ATA_INTRQ2 ATA interrupt request. This bit reflects the value of the ATA_INTRQ interrupt input. It is set in the interrupt 
pending register when the drive interrupt is pending and cleared otherwise. When the bit is set in the interrupt 
pending register and the same bit is set in the interrupt enable register, an interrupt signals that the CPU the 
drive is requesting attention. The interrupt clear register has no influence on this bit.

ata_base + 0x34 Access: User read/write

Power

Architecture

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
FIFO_ALARM[7:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 27-25. FIFO Alarm Register

Table 27-21. FIFO Alarm Field Descriptions

Field Description

FIFO_ALARM[7:0] This register contains the threshold to generate DMA write and DMA read requests to the DMA interface.
If (FIFO_TX_EN == 1 && FIFO_FILL < FIFO_ALARM): DMA write request is made to DMA to refill FOFO
If (FIFO_RCV_EN == 1 && FIFO_FILL >= FIFO_ALARM): DMA read request is made to DMA to empty 
FIFO.
Note: The threshold value is expressed in 16-bit half-words.

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

27-28 Freescale Semiconductor

27.3.2.15 Registers Present in the Drive Connected to the ATA Bus

Some registers are addressable, but are not present in the PATA module. Table 27-22 gives a list of these 
registers. If a read or write access is made to one of these registers, the read or write maps to a PIO read 
or write cycle on the ATA bus. The corresponding register in the device attached to the ATA bus is 
accessed. No description of operation of these registers is given here. Consult the ATA specification for all 
details here.

27.4 Functional Description
The ATA interface provides two ways to communicate with the ATA peripherals connected to the ATA bus:

• PIO mode read/write operation to the ATA bus 
• DMA transfers with the ATA bus

The following subsections describe and detail the operation of the peripheral.

27.4.1 Reset

Besides hardware reset, software can write bit 6 ATA_RST_B of register ATA control to reset PATA block. 
When ATA_RST_B is cleared to 0, the ATA protocol engine is reset. When this bit is set to 1, the reset is 
released.

27.4.2 Programming ATA Bus Timing and IORDY_EN

The timing the ATA interface operates with on the ATA bus is programmable. The programming uses the 
timing registers at ata_base+0x0 to ata_base+0x17. Section 27.2.2, “Meeting Timing on the ATA Bus” 
details how these registers affect the timing parameters on the ATA bus. Reprogramming of these registers 
is allowed at any time when the ATA bus is idle. Before reprogramming, make sure:

• DMA_PENDING in ATA control register is cleared

Table 27-22. Registers Present in the Drive Connected to the ATA Bus

Address Name Description Access

(ata_base + 0xA0) DRIVE_DATA Drive data register 32-bit RW

(ata_base + 0xA4) DRIVE_FEATURES Drive features register 32-bit RW

(ata_base + 0xA8) DRIVE_SECTOR_COUNT Drive sector count register 32-bit RW

(ata_base + 0xAC) DRIVE_SECTOR_NUM Drive sector number register 32-bit RW

(ata_base + 0xB0) DRIVE_CYL_LOW Drive cylinder low register 32-bit RW

(ata_base + 0xB4) DRIVE_CYL_HIGH Drive cylinder high register 32-bit RW

(ata_base + 0xB8) DRIVE_DEV_HEAD Drive device head register 32-bit RW

(ata_base + 0xBC) DRIVE_COMMAND Drive command register 32-bit W

(ata_base + 0xBC) DRIVE_STATUS Drive status register 32-bit R

(ata_base + 0xD8) DRIVE_ALT_STATUS Drive alternate status register 32-bit R

(ata_base + 0xD8) DRIVE_CONTROL Drive control register 32-bit W

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

Freescale Semiconductor 27-29

• CONTROLLER_IDLE in interrupt pending register is set

Accomplish these two conditions by writing DMA_PENDING to 0, waiting until CONTROLLER_IDLE 
is set, and reprogramming the timing parameters. If DMA_PENDING was 1 before the reprogramming 
started, it should be set again after new timing is in effect to allow the drive to finish the current DMA 
transfer.

Reprogram the bus timing during an ongoing DMA transfer when necessary because the operating system 
wants to change the bus clock period. 

It is necessary to wait for CONTROLLER_IDLE because a PIO read or write to the ATA bus terminates 
after the bus cycle when the CPU has been terminated. If the wait for CONTROLLER_IDLE is not done, 
the new timing values may affect a bus cycle that continues to run and cause error.

The IORDY_EN bit in register ATA control influences whether the ATA interface listens to the IORDY 
signal coming from the drive. To reprogram it, apply the same rules as applied to the timing registers:

• Only allowed when DMA_PENDING is cleared
• While CONTROLLER_IDLE is set

27.4.3 Access to ATA Bus in PIO Mode

Access to the ATA bus in PIO mode is possible after:
• ATA_RST_B in ATA control register is set
• Timing parameters have been programmed

To access the drive in PIO mode, read or write to the correct drive register. The bus cycle is translated to 
an ATA cycle, and the drive is accessed. When drive registers are accessed while the ATA bus is in reset, 
the read or write is discarded, not done.

27.4.4 Using DMA Mode to Receive Data from the ATA Bus

Apart from PIO mode, the ATA interface also supports MDMA and UDMA mode to transfer data. Use 
DMA mode to receive data from the drive (DMA in transfer). In DMA receive mode, the protocol engine 
transfers data from the drive to the FIFO using multiword DMA or ultra DMA protocol. The transfer 
pauses when:

• The FIFO is full
• The drive deasserts its dma request signal PATA_DMARQ.
• DMA_PENDING in the ATA contol register clear.

When the cause of the transfer pausing is removed, the transfer restarts. The drive signals to the host at the 
end of transfer by asserting the PATA_INTRQ signal. Alternatively, the host can read the device status 
register. In this register, the drive also indicates if transfer ends.

The host system DMA manages the transfer of data from the FIFO into the memory. When the FIFO filling 
is above the alarm threshold, DMA should read one packet of data from the FIFO and store this in main 
memory. In doing so, DMA prevents the FIFO from getting full and keeps the transfer from drive to FIFO 
running. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

27-30 Freescale Semiconductor

This list describes the steps to set up a DMA data transfer from device to host:
1. Make sure the ATA bus is not in reset and all timing registers are programmed.
2. Make sure the FIFO is empty by reading it until empty or by resetting it.
3. Every time a DMA read request is asserted, the DMA should read <packetsize> long ints(4 bytes) 

from the FIFO and store them to main memory. (packetsize means the number of doublewords 
transferred per DMA request, typical value is 8)

4. Write 2 * <packetsize> to FIFO alarm register. In this way, FIFO requests attention to DMA when 
at least one packet is ready for transfer.

5. To make the ATA ready for a DMA transfer from device to host:
— Make sure the FIFO is out of reset by setting FIFO_RST_B to 1 in the ata control register.
— Program FIFO_RCV_EN=1 in ATA control register. This enables DMA to empty the FIFO.
— Program DMA_PENDING =1, DMA_WRITE=0, ULTRA_MODE_SELECTED=0/1 in 

ATA_CONTROL register. ULTRA_MODE_SELECTED should be 1 if you want to transfer 
data using UDMA mode. It should be 0 if you want to transfer data using MDMA mode.

6. Now, the host side of the DMA is ready. Send commands to the drive in PIO mode that cause it to 
request DMA transfer on the ATA bus. The nature of these commands is beyond the scope of this 
document. Please consult the ATA specification to know how to communicate with the drive.

7. When the drive requests DMA transfer by pulling PATA_DRQ high, the ATA interface 
acknowledges with PATA_DACK, and the transfer starts. Data transfers automatically to the FIFO 
and to the host memory from there. 

8. During the transfer, the host can monitor for transfer status by reading some device ATA registers. 
These reads cause the running DMA to pause, complete the read, and the DMA resumes. The host 
can also wait until the drive asserts PATA_INTRQ. This also indicates end of transfer.

9. On end of transfer, the host or host DMA should wait until the host sees CONTROLLER_IDLE is 
set, and next read the remaining halfwords from the FIFO, and transfer these to memory.

NOTE
On end of transfer, there may be less than <packetsize> remaining bytes. 
They cannot be transmited automatically by the DMA.

27.4.5 Using DMA Mode to Transmit Data to the ATA Bus

In DMA mode, the host can transmit data to the drive (DMA out transfer). In DMA transfer mode, the 
protocol engine transfers data from the FIFO to the drive using multword DMA or ultra DMA protocol. 
The transfer pauses when one of following occurs:

• The FIFO is empty
• The drive deasserts its dma request signal PATA_DMARQ.
• The bit DMA_PENDING in the ATA contol register is cleared.

When the cause of the transfer pausing is removed, the transfer restarts. The drive signals to the host the 
end of the transfer by asserting the PATA_INTRQ signal. Alternatively, the host can read the device status 
register. In this register, the drive also indicates if transfer ends.

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

Freescale Semiconductor 27-31

The host DMA system manages the transfer of data from the memory to the FIFO. When the FIFO filling 
is below the alarm threshold, the DMA should read one packet of data from the main memory and store 
this in the FIFO. In doing so, the DMA prevents the FIFO from getting empty and keeps the transfer from 
FIFO to drive running. 

This list describes the steps to set up a DMA data transfer from device to host:
1. Make sure the ATA bus is not in reset and all timing registers are programmed.
2. Make sure the FIFO is empty by reading it until empty, or by resetting it.
3. Every time a DMA read request is asserted the DMA should read <packetsize> long ints(4 bytes) 

from the main memory and write them to the FIFO. (packetsize means the number of doublewords 
transferred per DMA request, typical value is 8). Program the DMA so it does not transfer more 
than <sectorsize> longwords in total.

4. Write FIFO_SIZE - 2 * <packetsize> to FIFO_ALARM register. In this way, FIFO requests 
attention to DMA when room exists for at least one extra packet. FIFO_SIZE should be given in 
halfwords. It is 64 in MPC5151E.

5. To make the ATA ready for a DMA transfer from host to device:
— Make sure the FIFO is out of reset by setting bit FIFO_rst_b to 1 in the ata control register.
— Program FIFO_TX_EN=1 in ata_control register. This enables DMA to fill the FIFO.
— Program DMA_PENDING =1, DMA_WRITE=1, ULTRA_MODE_SELECTED=0/1 in 

ata_control register. The ULTRA_MODE_SELECTED should be 1 if you want to transfer data 
using UDMA mode. It should be 0 if you want to transfer data using MDMA mode.

6. Now, the host side of the DMA is ready. Send commands to the drive in PIO mode that cause it to 
request DMA transfer on the ATA bus. The nature of these commands is beyond the scope of this 
document. Please consult the ATA specification to know how to communicate with the drive.

7. When the drive now requests DMA transfer by pulling PATA_DMARQ high, the ATA interface 
acknowledges with PATA_DACK and the transfer starts. Data is transferred automatically from the 
FIFO and from host memory to FIFO.

8. During the transfer, the host can monitor for status of transfer by reading some device ATA 
registers. These reads cause the running DMA to pause, the read to complete, and then DMA 
resumes. The host can also wait until the drive asserts PATA_INTRQ. This also indicates end of 
transfer.

MPC5121e Microcontroller Reference Manual, Rev. 2



Parallel Advanced Technology Attachment (PATA)

27-32 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 28-1

Chapter 28  
PCI Controller (PCI)

28.1 Introduction 
The PCI controller connects the processor and memory system to the I/O components via the PCI system 
bus. This interface acts as initiator (master) and target (slave) device. The PCI controller uses a 32-bit 
multiplexed, address/data bus. The interface provides address and data parity with error checking and 
reporting. The interface provides for three physical address spaces – 32-bit address memory, 32-bit address 
I/O, and PCI configuration space. It supports up to three external masters.

Figure 28-1 is a block diagram of the PCI.

28.1.1 Features

The PCI includes the following features:
• PCI specification revision 2.3 compliant
• 32-bit PCI interface support on primary PCI port
• On-chip arbitration supports three external PCI bus masters (in addition to the PCI itself)
• Arbiter supports two-level priority request/grant signal pairs
• Supports accesses to all PCI address spaces
• Supports PCI-to-local and local-to-PCI streaming
• Memory prefetching of PCI read accesses and support for delayed read transactions
• Supports posting of processor to PCI and PCI to memory writes
• Supports selectable snooping for inbound transactions
• PCI host bridge capabilities
• Address translation units for address mapping between the PCI bus and the internal bus.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-2 Freescale Semiconductor

Figure 28-1. PCI Block Diagram

PCI Controller

Control and StatusClock/Reset
Control

PCI Logic

Local I/F (IOS)

PCI Configuration Registers

PCI_DEVSEL

PCI_FRAME

PCI_GNT[0]

PCI_IDSEL

PCI_INTA

PCI_IRDY

PCI_PAR

PCI_PERR

PCI_REQ[0]

PCI_REQ[2:1]

PCI_RST

PCI_SERR

PCI_STOP

PCI_TRDY

PCI_GNT[2:1]

PCI_AD[31:0]

PCI_CBE[3:0]

M66EN

 Registers

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-3

28.2 External Signal Description
Table 28-1 shows the properties of the external PCI signals.

Table 28-1. External Signal Properties

Name Function I/O Reset State

PCI_AD[31:0] PCI Address/Data I/O Not driven

PCI_CBE[3:0] PCI Bus Command/Byte Enable I/O Not driven

PCI_DEVSEL PCI Device Select I/O Not driven

PCI_FRAME PCI Cycle Frame I/O Not driven

PCI_GNT[2:0] PCI Arbiter Grants Configuration
dependent

Configuration
dependent

PCI_IDSEL PCI Initialization Device Select I —

PCI_INTA PCI Interrupt A O Not driven

PCI_IRDY PCI Initiator Ready I/O Not driven

PCI_PAR PCI Parity I/O Not driven

PCI_PERR PCI Parity Error I/O Not driven

PCI_REQ[2:0] PCI Arbiter Requests Configuration
dependent

Configuration
dependent

PCI_RST PCI Reset O 0

PCI_SERR PCI System Error I/O Not driven

PCI_STOP PCI Stop I/O Not driven

PCI_TRDY PCI Target Ready I/O Not driven

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-4 Freescale Semiconductor

28.2.1 Detailed Signal Descriptions 

Table 28-2 contains detailed descriptions of the external PCI interface signals.

Table 28-2. PCI Interface Signals—Detailed Signal Descriptions (Sheet 1 of 5)

Signal I/O Description

PCI_AD[31:0] I/O PCI Address/Data Bus. During an address phase, these signals contain a physical address. During 
a data phase, these signals contain the data bytes. 

O As outputs for the bi-directional PCI address/data bus, these signals operate as described below.

State
Meaning

Asserted/Negated—Represents the physical address during the address phase of a PCI 
transaction. During the data phase(s) of a PCI transaction, the PCI address/data 
bus contain the data being written.
The PCI_AD[7:0] signals define the LSB and PCI_AD[31:24] define the MSB.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

I As inputs for the bi-directional PCI address/data bus, these signals operate as described below. 

State
Meaning

Asserted/Negated—Represents the address to be decoded as a check for device select 
during the address phase of a PCI transaction or the data being received during 
the data phase(s) of a PCI transaction.
The PCI_AD[7:0] signals define the LSB and PCI_AD[31:24]define the MSB.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

PCI_CBE[3:0] I/O PCI Command/Byte Enable.

O As outputs for the bi-directional command/byte enable, these signals operate as described below.

State
Meaning

Asserted/Negated—During the address phase, PCI_CBE[3:0] define the bus command. 
Byte enables determine which byte lanes carry meaningful data for PCI bus data 
phases. The PCI_CBE[0] signal applies to the LSB. 

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

I As inputs for the bi-directional command/byte enable, these signals operate as described below. 

State
Meaning

Asserted/Negated—During the address phase, PCI_CBE[3:0] indicate the command 
that another master is sending. During the PCI bus data phase, PCI_CBE[3:0] 
indicate which byte lanes are valid. 

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

PCI_DEVSEL I/O PCI Device Select.

O As an output, this signal operates as described below.

State
Meaning

Asserted—Indicates that this PCI controller has decoded the address and is the target 
of the current access.

Negated—Indicates that this PCI controller has decoded the address and is not the 
target of the current access.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

I As an input, this signal operates as described below.

State
Meaning

Asserted—Indicates that some PCI agent (other than this PCI controller) has decoded 
its address as the target of the current access.

Negated—Indicates that no PCI agent has been selected.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-5

PCI_FRAME I/O PCI Cycle Frame. This signal is used by the current PCI master to indicate the beginning and 
duration of an access. 

O As an output, this signal operates as described below.

State
Meaning

Asserted—Indicates that this PCI controller, acting as a PCI master, is initiating a bus 
transaction. While PCI_FRAME is asserted, data transfers may continue.

Negated—If PCI_IRDY is asserted, indicates that the PCI transaction is in the final data 
phase; if PCI_IRDY is negated, indicates that the PCI bus is idle.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

I As an input, this signal operates as described below.

State
Meaning

Asserted—Indicates that another PCI master is initiating a bus transaction.
Negated—Indicates that the transaction is in the final data phase or that the bus is idle.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

PCI_GNT[0] I/O PCI Arbiter Grants. Output signal on this PCI controller when the arbiter is enabled. Input signal 
when the arbiter is disabled. PCI_GNT[0] is a point-to-point signal. Every master has its own bus 
grant signal.

O As an output, this signal operates as described below.

State
Meaning

Asserted—Indicates that this PCI controller granted control of the PCI bus to agent 0. 
Negated—Indicates that this PCI controller did not grant control of the PCI bus to agent 

0.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

I As an input, this signal operates as described below.

State
Meaning

Asserted—Indicates that this PCI controller has been granted control of the PCI bus by 
an external arbiter.

Negated—Indicates that this PCI controller has not been granted control of the PCI bus 
by an external arbiter.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

PCI_GNT[2:1] O PCI Arbiter Grants. Output signals on this PCI controller when the arbiter is enabled. PCI_GNT[n] is 
a point-to-point signal. Every master has its own bus grant signal.

State
Meaning

Asserted—Indicates that this PCI controller granted control of the PCI bus to agent n. 
Negated—Indicates that this PCI controller did not grant control of the PCI bus to agent 

n.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

PCI_IDSEL I PCI Initialization Device Select. Used as a chip select during a PCI configuration cycle in agent 
mode. This signal should be tied low in host mode.

State
Meaning

Asserted—Indicates this PCI controller is being selected as a target of a configuration 
read or write transactions.

Negated—Indicates this PCI controller is not being selected as a target of configuration 
read or write transactions.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

Table 28-2. PCI Interface Signals—Detailed Signal Descriptions (Sheet 2 of 5)

Signal I/O Description

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-6 Freescale Semiconductor

PCI_INTA O PCI Interrupt A. This signal operates as described below.

State
Meaning

Asserted—Indicates that the PCI controller signals an interrupt to the PCI host.
Negated—Indicates that the PCI controller is not currently signalling an interrupt.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

PCI_IRDY I/O PCI Initiator Ready. This signal is driven by the PCI when it is the initiator of a PCI transfer. 

O As an output, this signal operates as described below.

State
Meaning

Asserted—Indicates that this PCI controller, acting as a PCI master, can complete the 
current data phase of a PCI transaction. During a write, this PCI controller asserts 
PCI_IRDY to indicate that valid data is present on PCI_AD[31:0]. During a read, 
this PCI controller asserts PCI_IRDY to indicate it is prepared to accept data.

Negated—Indicates that the PCI target needs to wait before this PCI controller, acting 
as a PCI master, can complete the current data phase. During a write, this PCI 
controller negates PCI_IRDY to insert a wait cycle when it cannot provide valid 
data to the target. During a read, this PCI controller negates PCI_IRDY to insert a 
wait cycle when it cannot accept data from the target.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

I As an input, this signal operates as described below.

State
Meaning

Asserted—Indicates another PCI master can complete the current data phase of a 
transaction. 

Negated—If PCI_FRAME is asserted, indicates a wait cycle from another master. If 
PCI_FRAME is negated, indicates the PCI bus is idle.

PCI_PAR I/O PCI Parity.

O As output, this signal operates as described below.

State
Meaning

Asserted—Indicates odd parity across PCI_AD[31:0] and PCI_CBE[3:0] during address 
and data phases. 

Negated—Indicates even parity across PCI_AD[31:0] and PCI_AD[31:0] during address 
and data phases.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

I As inputs for the bi-directional PCI parity, these signals operate as described below. 

State
Meaning

Asserted—Indicates odd parity driven by another PCI master or the PCI target during 
address and data phases.

Negated—Indicates even parity driven by another PCI master or the PCI target during 
address and data phases.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

Table 28-2. PCI Interface Signals—Detailed Signal Descriptions (Sheet 3 of 5)

Signal I/O Description

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-7

PCI_PERR I/O PCI Parity Error

O As an output, this signal operates as described below.

State
Meaning

Asserted—Indicates that this PCI controller, acting as a PCI agent, detected a data 
parity error. (driven by the PCI initiator on reads; driven by the PCI target on writes.)

Negated—Indicates no error.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

I As an input, this signal operates as described below.

State
Meaning

Asserted—Indicates that another PCI agent detected a data parity error while this PCI 
controller was sourcing data (this PCI controller was acting as the PCI initiator 
during a write, or was acting as the PCI target during a read).

Negated—Indicates no error.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

PCI_REQ[0] I/O PCI Bus Request. Input signal on this PCI controller when the arbiter is enabled. Output signal when 
the arbiter is disabled. PCI_REQ[0] is a point-to-point signal. Every master has its own bus request 
signal.

O As an output, this signal operates as described below.

State
Meaning

Asserted—Indicates that the PCI is requesting control of the PCI bus to perform a 
transaction. 

Negated—Indicates that the PCI does not require use of the PCI bus. 

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

I As an input, this signal operates as described below.

State
Meaning

Asserted—Indicates that agent 0 is requesting control of the PCI bus to perform a 
transaction. 

Negated—Indicates that agent 0 does not require use of the PCI bus. 

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

PCI_REQ[2:1] I PCI Bus Request. Input signals on this PCI controller when the arbiter is enabled. PCI_REQ[n] is a 
point-to-point signal. Every master has its own bus request signal. Following is the state meaning for 
the PCI_REQ[n] input.

State
Meaning

Asserted—Indicates that agent n is requesting control of the PCI bus to perform a 
transaction. 

Negated—Indicates that agent n does not require use of the PCI bus. 

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

PCI_RST O PCI Reset. This signal is used only in Host Mode. It should be left unconnected in Agent Mode.

State
Meaning

Asserted—Devices on the PCI bus are in reset.
Negated—Devices on the PCI bus operate normally. 

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

Table 28-2. PCI Interface Signals—Detailed Signal Descriptions (Sheet 4 of 5)

Signal I/O Description

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-8 Freescale Semiconductor

PCI_SERR I/O PCI System Error

O As an output, this signal operates as described below.

State
Meaning

Asserted—Indicates that an address parity error, a target-abort (when this PCI controller 
is acting as the initiator), or some other system error (where the result is a 
catastrophic error) was detected.

Negated—Indicates no error.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

I As inputs for the bi-directional PCI system error, these signals operate as described below. 

State
Meaning

Asserted—Indicates that a device (other than this PCI controller) has detected a 
catastrophic error.

Negated—Indicates no error.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

PCI_STOP I/O PCI Stop.

O As an output, this signal operates as described below.

State
Meaning

Asserted—Indicates that this PCI controller, acting as a PCI target, is requesting that the 
initiator stop the current transaction.

Negated—Indicates that the current transaction can continue.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

I As inputs for the bi-directional stop, these signals operate as described below. 

State
Meaning

Asserted—Indicates that a target is requesting that this PCI, as the initiator, stop the 
current transaction.

Negated—Indicates that the current transaction can continue.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

 PCI_TRDY I/O PCI Target Ready. 

O As an output, this signal operates as described below.

State
Meaning

Asserted—Indicates that this PCI controller, acting as a PCI target, can complete the 
current data phase of a PCI transaction. During a read, this PCI controller asserts 
PCI_TRDY to indicate that valid data is present on PCI_AD[31:0]. During a write, 
this PCI controller asserts PCI_TRDY to indicate that it is prepared to accept data.

Negated—Indicates that the PCI initiator needs to wait before this PCI controller, acting 
as a PCI target, can complete the current data phase. During a read, this PCI 
controller negates PCI_TRDY to insert a wait cycle when it cannot provide valid 
data to the initiator. During a write, this PCI controller negates PCI_TRDY to insert 
a wait cycle when it cannot accept data from the initiator.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

I As an input, this signal operates as described below.

State
Meaning

Asserted—Another PCI target is able to complete the current data phase of a 
transaction.

Negated—Indicates a wait cycle from another target.

Timing Assertion/Negation—As specified by PCI Local Bus Specification Rev 2.3

Table 28-2. PCI Interface Signals—Detailed Signal Descriptions (Sheet 5 of 5)

Signal I/O Description

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-9

28.3 Memory Map and Register Definition
The PCI has three types of registers: control and status registers, PCI configuration registers, and software 
configuration registers. Table 28-3 contains control and status registers memory-mapped on the local bus. 
They can be accessed by PCI masters via the PCI to the local bus via the PCI inbound memory mapped 
registers (PIMMR) inbound window. Table 28-4 contains the PCI configuration registers mapped in the 
PCI configuration space. These registers are accessed by PCI masters using configuration accesses. Some 
fields are common to registers in both spaces to ensure consistency. These fields are discussed in the 
register definitions.

The third type of register is used for generating PCI configuration accesses from the local bus. These 
registers, listed in Table 28-5, are memory-mapped on the local bus and accessed via the PIMMR window. 

Table 28-3. PCI CSR Memory Map

Offset Register Access Section/Page

General Registers

0x00 PCI Error Status Register (PCI_ESR) R/W1 to clear 28.3.1.1.1/28-11

0x04 PCI Error Capture Disable Register (PCI_ECDR) R/W 28.3.1.1.2/28-12

0x08 PCI Error Enable Register (PCI_EER) R/W 28.3.1.1.3/28-13

0x0C PCI Error Attributes Capture Register (PCI_EATCR) R/W 28.3.1.1.4/28-14

0x10 PCI Error Address Capture Register (PCI_EACR) R/W 28.3.1.1.5/28-16

0x14 PCI Error Extended Address Capture Register (PCI_EEACR) R/W 28.3.1.1.6/28-16

0x18 PCI Error Data Capture Register (PCI_EDCR) R/W 28.3.1.1.7/28-17

0x20 PCI General Control Register (PCI_GCR) R/W 28.3.1.1.8/28-18

0x24 PCI Error Control Register (PCI_ECR) R/W 28.3.1.1.9/28-19

0x38 PCI Inbound Translation Address Register 2 (PITAR2) R/W 28.3.1.1.11/28-21

0x40 PCI Inbound Base Address Register 2 (PIBAR2) R/W 28.3.1.1.12/28-22

0x44 PCI Inbound Extended Base Address Register 2 (PIEBAR2) R/W 28.3.1.1.12/28-22

0x48 PCI Inbound Window Attributes Register 2 (PIWAR2) R/W 28.3.1.1.14/28-24

0x50 PCI Inbound Translation Address Register 1 (PITAR1) R/W 28.3.1.1.11/28-21

0x58 PCI Inbound Base Address Register 1 (PIBAR1) R/W 28.3.1.1.12/28-22

0x5C PCI Inbound Extended Base Address Register 1 (PIEBAR1) R/W 28.3.1.1.12/28-22

0x60 PCI Inbound Window Attributes Register 1 (PIWAR1) R/W 28.3.1.1.14/28-24

0x68 PCI Inbound Translation Address Register 0 (PITAR0) R/W 28.3.1.1.11/28-21

0x70 PCI Inbound Base Address Register 0 (PIBAR0) R/W 28.3.1.1.12/28-22

0x78 PCI Inbound Window Attributes Register 0 (PIWAR0) R/W 28.3.1.1.14/28-24

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-10 Freescale Semiconductor

Table 28-4. PCI Configuration Map

Offset or Address Register Access Section/Page

General Registers

0x00 Vendor ID R 28.3.1.2.1/28-26

0x02 Device ID R 28.3.1.2.2/28-27

0x04 PCI Command R/W 28.3.1.2.3/28-28

0x06 PCI Status Read/bit-reset 28.3.1.2.4/28-29

0x08 Revision ID R 28.3.1.2.5/28-30

0x09 Standard Programming Interface R 28.3.1.2.6/28-30

0x0A Subclass Code R 28.3.1.2.7/28-31

0x0B Base Class Code R 28.3.1.2.8/28-31

0x0C Cache Line Size R/W 28.3.1.2.9/28-32

0x0D Latency Timer R/W 28.3.1.2.10/28-32

0x0E Header Type R 28.3.1.2.11/28-33

0x0F BIST Control R 28.3.1.2.12/28-33

0x10 PIMMR Base Address Register R/W 28.3.1.2.13/28-34

0x14 GPL Base Address Register 0 R/W 28.3.1.2.14/28-35

0x18 GPL Base Address Register 1 R/W 28.3.1.2.15/28-36

0x1C GPL Extended Base Address Register 1 R/W 28.3.1.2.15/28-36

0x20 GPL Base Address Register 2 R/W 28.3.1.2.15/28-36

0x24 GPL Extended Base Address Register 2 R/W 28.3.1.2.15/28-36

0x2C Sub System Vendor ID R/W 28.3.1.2.16/28-37

0x2E Sub System Device ID R/W 28.3.1.2.17/28-37

0x34 Capabilities Pointer R 28.3.1.2.18/28-38

0x3C Interrupt Line R/W 28.3.1.2.19/28-38

0x3D Interrupt Pin R 28.3.1.2.20/28-38

0x3E MIN GNT R 28.3.1.2.21/28-39

0x3F MAX LAT R 28.3.1.2.22/28-39

0x44 PCI Function R/W 28.3.1.2.23/28-40

0x46 PCI Arbiter Control Register R/W 28.3.1.2.24/28-41

Table 28-5. PCI Software Configuration Registers Memory Map

Offset or Address Register Access Section/Page

General Registers

0x0 CONFIG_ADDRESS W 28.3.1.3.1/28-42

0x4 CONFIG_DATA R/W 28.3.1.3.1/28-42

0x8 PCI Interrupt Acknowledge Register (PCI_INT_ACK) R 28.3.1.3.2/28-44

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-11

28.3.1 Register Descriptions

28.3.1.1 Control and Status Registers

This section describes the control and status registers.

28.3.1.1.1 PCI Error Status Register (PCI_ESR)

The PCI error status register (PCI_ESR) contains status bits for various types of error conditions captured 
by the PCI. Each status bit is set when the corresponding error condition is captured. PCI_ESR is a 
write-1-to-clear type register. A bit is cleared when the register is written, and the data in the corresponding 
bit location is a 1. Figure 28-2 shows the PCI_ESR fields.

Offset 0x00 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
MERR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
APAR

PCIS

ERR

MP

ERR

TP

ERR

NO

RSP
TABT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-2. PCI Error Status Register (PCI_ESR)

Table 28-6. PCI_ESR Field Descriptions

Field Description

MERR Multiple Errors. This bit is set if any other bit of this register is 1 and the same error type occurs again.

APAR Address Parity Error. This bit is set when there is an address parity error on a PCI access initiated by a device 
other than this PCI.

PCISERR PCI System Error.This bit is set when the PCI_SERR input signal is asserted. See Table 28-2 for more 
information on PCI_SERR.

MPERR Master Parity Error. This bit is set when the PCI_PERR input signal is asserted on a write access initiated by 
this PCI or when a data parity error is detected by this PCI on a read access that it initiated. 

TPERR Target Parity Error. This bit is set when this PCI is the target of a transaction and the PCI_PERR input signal 
is asserted on a read access or a data parity error is detected by this PCI on a write access.

NORSP No Response. This bit is set when there is no response to a transaction initiated by this PCI on the PCI bus 
(no PCI_DEVSEL assertion).

TABT Target Abort. This bit is set when a PCI target abort occurs on a transaction initiated by this PCI.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-12 Freescale Semiconductor

28.3.1.1.2 PCI Error Capture Disable Register (PCI_ECDR)

The PCI error capture disable register (PCI_ECDR) controls the capture of the transaction that caused an 
error. Each bit corresponds to the error condition reported in the PCI error status register (PCI_ESR). Only 
the first error is captured. Disabling the capture of some error types may allow greater visibility of the 
significant errors.

1 = Do not capture the transaction that caused this error.
0 = Capture the transaction that caused this error.

Figure 28-3 shows the PCI_ECDR fields.

Offset 0x04 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
APAR

PCIS
ERR

MP
ERR

TP
ERR

NO
RSP

TABT
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-3. PCI Error Capture Disable Register (PCI_ECDR)

Table 28-7. PCI_ECDR Field Descriptions

Field Description

APAR Address Parity Error. Disable capture for address parity errors

PCISERR PCI System Error. Disable capture for received PCI_SERR errors

MPERR Master Parity Error. Disable capture for master PCI_PERR errors

TPERR Target Parity Error. Disable capture for target PCI_PERR errors

NORSP No Response. Disable capture for master-abort errors

TABT Target Abort. Disable capture for target abort errors

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-13

28.3.1.1.3 PCI Error Enable Register (PCI_EER)

The PCI error enable register (PCI_EER) enables the assertion of an interrupt for the error conditions 
reported in the PCI error status register (PCI_ESR).

1 = The interrupt is enabled
0 = The interrupt is disabled

Figure 28-4 shows the PCI_EER fields.

Offset 0x08 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
APAR

PCIS

ERR

MP

ERR

TP

ERR

NO

RSP
TABT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-4. PCI Error Enable Register (PCI_ERR)

Table 28-8. PCI_ERR Field Descriptions

Field Description

APAR ADdress Parity Error. Generate an interrupt when the corresponding bit of the PCI_ESR is 1.

PCISERR PCI System Error. Generate an interrupt when the corresponding bit of the PCI_ESR is 1.

MPERR Master Parity Error. Generate an interrupt when the corresponding bit of the PCI_ESR is 1.

TPERR Target Parity Error. Generate an interrupt when the corresponding bit of the PCI_ESR is 1.

NORSP No Response. Generate an interrupt when the corresponding bit of the PCI_ESR is 1.

TABT Target Abort. Generate an interrupt when the corresponding bit of the PCI_ESR is 1.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-14 Freescale Semiconductor

28.3.1.1.4 PCI Error Attributes Capture Register (PCI_EATCR)

The PCI error attributes capture register (PCI_EATCR) stores information associated with the first PCI 
error captured. Figure 28-5 shows the PCI_EATCR fields.

Offset 0x0C Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ERRTYPE BN TS ES

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CMD BE PB VI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-5. PCI Error Attributes Capture Register (PCI_EATCR)
(Register is repeated for reference.)

Table 28-9. PCI_EATCR Field Descriptions

Field Description

ERRTYPE First Error Type. This field is encoded to indicate the type of the first PCI error captured.
000 Address parity error
001 Write data parity error
010 Read data parity error
011 Master abort
100 Target abort
101 System error indication received
110 Parity error indication received on a read
111 Parity error indication received on a write

BN Beat Number. This field provides the data beat number the error occurred on for data parity errors. The value 
of this field is undefined for other error types. The beat values are described as follows:
0000 1st beat
0001 2nd beat
0010 3rd beat
0011 4th beat
0100 5th beat
0101 6th beat
0110 7th beat
0111 8th beat
1000 9th beat or beyond (transaction larger than one cache line)
Others Reserved

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-15

TS Transaction Size. This field contains the size of the transaction in units of doublewords (8 bytes). If the 
transaction crossed a cache line (32-byte) boundary, this field indicates the number of actual doublewords in 
the cache line the error occurred on. This field is valid only if the PCI was the master of the transaction. The 
size values are described as follows:
00 4 doublewords
01 1 doubleword
10 2 doublewords
11 3 doublewords

ES Error Source. This field indicates the source of the PCI transaction. The source values are described as 
follows:
0000 External master
0101 DMA
Others Reserved

CMD PCI Command. This field contains the PCI command PCI_CBE[3:0] of the transaction.

BE PCI Byte Enables. This field contains the PCI byte enables PCI_CBE[3:0] for the data word.

PB Parity Bit. This bit contains the PCI parity bit for the captured data word.

VI Error Information Valid. This bit indicates that the error information captured in this register, PCI_EACR, 
PCI_EEACR, and PCI_EDCR is valid.
0 No valid error information
1 Error information is valid

Offset 0x0C Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ERRTYPE BN TS ES

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CMD BE PB VI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-5. PCI Error Attributes Capture Register (PCI_EATCR)
(Register is repeated for reference.)

Table 28-9. PCI_EATCR Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-16 Freescale Semiconductor

28.3.1.1.5 PCI Error Address Capture Register (PCI_EACR)

The PCI error address capture register (PCI_EACR) stores the low portion of the address associated with 
the first PCI error captured. Figure 28-6 shows the PCI_EACR fields.

28.3.1.1.6 PCI Error Extended Address Capture Register (PCI_EEACR)

The PCI error extended address capture register (PCI_EEACR) stores the high portion of the address 
associated with the first PCI error captured. Figure 28-7 shows the PCI_EEACR fields.

Offset 0x10 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PCI_EA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PCI_EA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-6. PCI Error Address Capture Register (PCI_EACR)

Table 28-10. PCI_EACR Field Descriptions

Field Description

PCI_EA PCI Error Address. This field contains the low portion of the address associated with the first detected error.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-17

28.3.1.1.7 PCI Error Data Capture Register (PCI_EDLCR)

The PCI error data capture register (PCI_EDCR) stores the data associated with the first PCI error 
captured. Figure 28-8 shows the PCI_EDCR fields.

Offset 0x14 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PCI_EEA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PCI_EEA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-7. PCI Error Extended Address Capture Register (PCI_EEACR)

Table 28-11. PCI_EEACR Field Descriptions

Field Description

PCI_EEA PCI Error Extended Address. This field contains the high portion of the address associated with the first 
detected error.

Offset 0x18 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PCI_EDCR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PCI_EDCR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-8. PCI Error Data Low Capture Register (PCI_EDCR)

Table 28-12. PCI_EDCR Field Descriptions

Field Description

PCI_EDCR PCI Error Data. This field contains the data associated with the first detected error.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-18 Freescale Semiconductor

28.3.1.1.8 PCI General Control Register (PCI_GCR)

The PCI general control register (PCI_GCR) controls the behavior of the internal arbiter, the state of the 
bus signals, and contains a bit for controlling the PCI reset signal when in host mode. Figure 28-9 shows 
the PCI_GCR fields.

Offset 0x20 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BBR PPL SPRST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-9. PCI General Control Register (PCI_GCR)

Table 28-13. PCI_GCR Field Descriptions

Field Description

BBR Block Bus Requests. When this bit is set, all bus requests from external devices to the PCI’s internal arbiter 
are blocked and the bus is continuously granted to the PCI. This bit could be used to prepare for entering a 
low-power mode by preventing transactions on the PCI bus. 
0 External bus requests are treated normally.
1 Block external bus requests
Note: Before setting the BBR bit, parking should be changed to park to internal PCI master ( set 

PCI_ACR[PM] = 1).

PPL PCI Pins Low. Setting this bit forces all the output and bidirectional pins of the PCI bus to be driven low. This 
bit could be used to put the bus signals in a safe electrical state when the devices on the bus are powered 
down. This bit should never be set during normal operation of the PCI bus.
0 PCI pins function normally
1 PCI pins in the low state

SPRST Soft PCI Reset. This bit provides software control of the PCI_RESET_OUT output signal. It is only valid in 
host mode.
0  PCI_RESET_OUT is driven low.
1  PCI_RESET_OUT is driven high.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-19

28.3.1.1.9 PCI Error Control Register (PCI_ECR)

The PCI error control register (PCI_ECR) determines whether an interrupt or machine check is generated 
for the error conditions reported in the PCI error status register (PCI_ESR). If the corresponding bit in the 
PCI error enable register (PCI_EER) is clear, the bit in the PCI error control register (PCI_ECR) has no 
effect.

1 = A machine check is generated.
0 = An interrupt is generated.

Figure 28-10 shows the PCI_ECR fields.

Offset 0x24 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
APAR

PCIS
ERR

MP
ERR

TP
ERR

NO
RSP

TABT
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-10. PCI Error Control Register 0 (PCI_ECR)

Table 28-14. PCI_ECR Field Descriptions

Field Description

APAR 0 An interrupt is generated if the corresponding bit of the PCI_ESR is 1.
1 A machine check is generated if the corresponding bit of the PCI_ESR is 1.

PCISERR 0 An interrupt is generated if the corresponding bit of the PCI_ESR is 1.
1 A machine check is generated if the corresponding bit of the PCI_ESR is 1.

MPERR 0 An interrupt is generated if the corresponding bit of the PCI_ESR is 1.
1 A machine check is generated if the corresponding bit of the PCI_ESR is 1.

TPERR 0 An interrupt is generated if the corresponding bit of the PCI_ESR is 1.
1 A machine check is generated if the corresponding bit of the PCI_ESR is 1.

NORSP 0 An interrupt is generated if the corresponding bit of the PCI_ESR is 1.
1 A machine check is generated if the corresponding bit of the PCI_ESR is 1.

TABT 0 An interrupt is generated if the corresponding bit of the PCI_ESR is 1.
1 A machine check is generated if the corresponding bit of the PCI_ESR is 1.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-20 Freescale Semiconductor

28.3.1.1.10 PCI General Status Register (PCI_GSR)

The PCI general status register (PCI_GSR) provides status information.

Offset 0x28 Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R IDLE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

= Unimplemented or Reserved

Figure 28-11. PCI General Status Register (PCI_GSR)

Table 28-15. PCI_GSR Field Descriptions

Field Description

IDLE PCI controller is idle. This bit could be used to determine when the PCI bus is totally idle before setting 
PCI_GCR[PPL]. 
0 The PCI controller is active.
1 The PCI controller is idle.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-21

28.3.1.1.11 PCI Inbound Translation Address Registers (PITARn)

The PCI inbound translation address registers (PITARn) define the starting point of the inbound translation 
windows in the local memory space.

Offset 0x38,0x50, 0X68 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
TA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-12. PCI Inbound Translation Address Registers (PITARn)

Table 28-16. PITARn Field Descriptions

Field Description

TA Translation Address. This field contains the starting address of the inbound translated address. This 20-bit 
field corresponds to address bits 12-31 on the CSB bus.Window 0 does not support 64-bit address. 
Therefore, only the bits in the TA field define the address bit 12-31.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-22 Freescale Semiconductor

28.3.1.1.12 PCI Inbound Base Address Registers (PIBARn)

The PCI inbound base address registers (PIBARn) define the starting point of the inbound windows in the 
PCI memory space. A write to a PIBARn register also causes a change in the base address bits not masked 
by PIWARn in the corresponding general purpose local acces (GPL) base address register in the PCI 
configuration space. This write operation does not change the bits masked by the IWS field. For read 
operation, these masked bits always return zeros. Figure 28-13 shows the PIBARn fields.

Offset 0x40, 0x58, 0x70 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-13. PCI Inbound Base Address Registers (PIBARn)

Table 28-17. PIBARn Field Descriptions

Field Description

BA Base Address. This field contains the starting address in the PCI memory space of the inbound window. This 
field corresponds to bits 43–12 of a 64-bit address. In PIBAR0, the upper 12 bits are reserved because only 
a 32-bit address is supported.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-23

28.3.1.1.13 PCI Inbound Extended Base Address Registers (PIEBARn)

The PCI inbound extended base address registers (PIEBARn) define the high portion of the starting point 
of the inbound windows in the PCI memory space. Figure 28-14 shows the PIEBARn fields.

Offset 0x44, 0x5C Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-14. PCI Inbound Extended Base Address Registers (PIEBARn)

Table 28-18. PIEBARn Field Descriptions

Field Description

EBA Extended Base Address. This field contains the high portion of the starting address in the PCI memory space 
of the inbound base address. This 20-bit field corresponds to bits 63–44 of a 64-bit address.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-24 Freescale Semiconductor

28.3.1.1.14 PCI Inbound Window Attribute Registers (PIWARn)

The PCI inbound window attribute registers (PIWARn) define the size of the inbound translation window. 
It also defines some properties of the window. Figure 28-16shows the PIWARn fields.

Offset 0x48, 0x60, 0x78 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EN SBS PF RTT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
WTT IWS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-15. PCI Inbound Window Attribute Registers (PIWARn)
(Register is repeated for reference.)

Table 28-19. PIWARn Field Descriptions

Field Description

EN Enable. This bit enables the address translation window.
0 Address translation is disabled for this window.
1 Address translation is enabled for this window. PCI addresses that match the definition of the window are 

recognized by the PCI and translated to the local memory space.

SBS Special Byte Swap. This bit indicates that each 32-bit word of transactions that are translated through this 
window should be byte-swapped.
0 No special byte swap. PCI access is little endian.
1 Special byte swap. PCI access is big endian.

PF Prefetchable. This bit defines whether the transactions translated through this window are prefetchable on 
the local bus. Streaming the transactions requires the memory space to be prefetchable.
0 Not prefetchable
1 Prefetchable

RTT Read Transaction Type. This field determines the type of transaction performed on the local bus when the 
PCI transaction is a read.The RTT values are described as follows:
0100 Read without snoop on system bus
0101 Read with snoop on system bus
Others Reserved

WTT Write Transaction Type. This field determines the type of transaction performed on the local bus when the 
PCI transaction is a write. The WTT values are described as follows:
0100 Write without snoop of local processor
0101 Write with snoop of local processor
Others Reserved

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-25

IWS Inbound Window Size. This field determines the size of the inbound translation window. Inbound translation 
window size N is the encoded 2^(N+1) bytes window size. The smallest window is 4 Kbytes (N = 11).
000000–001010 Reserved
001011 4-Kbyte window size
001100 8-Kbyte window size
...
011110 2-Gbyte window size
011111–111111 Reserved

Offset 0x48, 0x60, 0x78 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EN SBS PF RTT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
WTT IWS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-15. PCI Inbound Window Attribute Registers (PIWARn)
(Register is repeated for reference.)

Table 28-19. PIWARn Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-26 Freescale Semiconductor

28.3.1.2 PCI Configuration Space Registers

This section describes the registers contained in the PCI configuration space. These registers are shown 
with descending bit numbering to correspond to the PCI standard.

28.3.1.2.1 Vendor ID Configuration Register

Figure 28-17 shows the vendor ID fields. This is a read only register.
 

Offset 0x00 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R VID

W

Reset 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 1

= Unimplemented or Reserved

Figure 28-16. Vendor ID Configuration Register (VID)

Table 28-20. VID Field Descriptions

Field Description

VID Vendor ID. This field identifies the manufacturer of the device: 0x1957

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-27

28.3.1.2.2 Device ID Configuration Register

Figure 28-17 shows the device ID fields. This is a read only register.
 

Offset 0x02 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DID

W

Reset Device Dependent

= Unimplemented or Reserved

Figure 28-17. Device ID Configuration Register (DID)

Table 28-21. DID Field Descriptions

Field Description

DID Device ID. This field identifies the device. 0x580C

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-28 Freescale Semiconductor

28.3.1.2.3 PCI Command Configuration Register

Figure 28-18 shows the PCI command fields.

Offset 0x04 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
INTD

0 SERR

EN

0 PE

RRR

0 0 BMST
MEM

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 0

= Unimplemented or Reserved

Figure 28-18. PCI Command Configuration Register

Table 28-22. PCI Command Configuration Register Field Descriptions

Field Description

INTD Interrupt Disable. Setting this bit masks the PCI_INTA output.
0 PCI_INTA provides the device interrupt status.
1 PCI_INTA is always negated

SERREN SERR Enable. This bit is an enable bit for the SERR driver. Address parity errors are reported only if this bit 
and bit 6 are 1.
0 PCI_SERR is never asserted.
1 PCI_SERR may be asserted to indicate error conditions.

PERRR Parity Error Response. This bit controls the PCI’s response to a parity error.
0 Parity errors are ignored and normal operation continues.
1 Standard parity error treatment.

MWI (Bit 4) Memory-Write-and-Invalidate. Hard-wired to 0.

SC (Bit 3) Special Cycles. Hard-wired to 0.

BMST Bus Master. This bit controls the PCI’s ability to be a master on the PCI bus. At reset, this bit is set in host 
mode.
0 The PCI does not generate PCI accesses.
1 The PCI behaves as a bus master.

MEM Memory Space. This bit controls the response to memory space accesses.
0 The PCI does not respond to Memory Space accesses.
1 The PCI as a target responds to Memory Space accesses.

I/O (Bit 0) I/O space. Hard-wired to 0.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-29

28.3.1.2.4 PCI Status Configuration Register

This register is used to record status information for PCI bus-related events. Some of the bits are 
hard-wired to indicate the capabilities of the PCI. Other bits can be cleared by writing 1 to the bit location. 
Figure 28-19 shows the PCI status fields.

Offset 0x06 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DP
ERR

SS
ERR

RMA RTA STA
0 0

DPD
1 1 0 INTS

W

Reset 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-19. PCI Status Configuration Register

Table 28-23. PCI Status Configuration Register Field Descriptions

Field Description

DPERR Detected Parity Error. This bit is set when the PCI detects a parity error on the PCI bus, even if parity error 
handling is disabled (as controlled by bit 6 in the PCI Command register).

SSERR Signalled System Error. This bit is set when PCI_SERR is asserted.

RMA Received Master Abort. This bit is set when the PCI, acting as the PCI master on the PCI bus, terminates a 
transaction (except for a special-cycle) using master-abort.

RTA Received Target Abort. This bit is set when a transaction initiated by this PCI on the PCI bus is terminated by 
a target-abort.

STA Signalled Target Abort. This bit is set when the PCI, acting as the PCI target on the PCI bus, issues a 
target-abort to a PCI master.

DEVSEL_T
(Bits 10–9)

DEVSEL Timing. Hard-wired to 00.

DPD Master Data Parity Error. This bit is set when a data parity error is detected on the PCI bus, if the PCI is the 
master that initiated the transaction and bit 6 in the PCI command register is set.

FB–BC (Bit 7) Fast Back-to-Back Capable. Hard-wired to 1.

66M (Bit 5) 66 MHz Capable. Hard-wired to 1.

CL (Bit 4) Capabilities List. Hard-wired to 0.

INTS Interrupt Status. This bit contains the status of the unmasked device interrupt. The value of this bit is not 
affected by the INTD bit of the PCI Command Configuration Register.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-30 Freescale Semiconductor

28.3.1.2.5 Revision ID Configuration Register

Figure 28-20 shows the revision ID fields.

28.3.1.2.6 Standard Programming Interface Configuration Register

Figure 28-21 shows the standard programming interface fields. This is the lower byte of the Class Code.

Offset 0x08 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R RID

W

Reset Revision Dependent

= Unimplemented or Reserved

Figure 28-20. Revision ID Configuration Register

Table 28-24. Revision ID Configuration Register Field Descriptions

Field Description

RID Revision ID. This field specifies a revision code of the PCI. This field is hard-wired to 0x00.

Offset 0x09 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R PI

W

Reset

= Unimplemented or Reserved

Figure 28-21. Standard Programming Interface Configuration Register

Table 28-25. Standard Programming Interface Configuration Register Field Descriptions

Field Description

PI Programming Interface. This field is hard-wired to 0x00.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-31

28.3.1.2.7 Subclass Code Configuration Register

Figure 28-22 shows the subclass code fields. This is the middle byte of the class code.

28.3.1.2.8 Base Class Code Configuration Register

Figure 28-23 shows the base class code fields. This is the upper byte of the Class Code.

Offset 0x0A Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R SC

W

Reset 0 0 1 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-22. Subclass Code Configuration Register

Table 28-26. Subclass Code Configuration Register Field Descriptions

Field Description

SC Sub-Class Code. This field is hard-wired to 0x20, indicating a Power Architecture processor.

Offset 0x0B Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R BCC

W

Reset 0 0 0 0 1 0 1 1

= Unimplemented or Reserved

Figure 28-23. Subclass Code Configuration Register

Table 28-27. Subclass Code Configuration Register Field Descriptions

Field Description

BCC Base Class Code.This field is hard-wired to 0x0B, indicating a processor.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-32 Freescale Semiconductor

28.3.1.2.9 Cache Line Size Configuration Register 

Figure 28-24 shows the cache line size fields.

28.3.1.2.10 Latency Timer Configuration Register

Figure 28-25 shows the latency timer fields.

Offset 0x0C Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R CLS

W

Reset

= Unimplemented or Reserved

Figure 28-24. Cache Line Size Configuration Register

Table 28-28. Cache Line Size Configuration Register

Field Description

CLS Cache Line Size. This field represents the cache-line size of the system in terms of 32-bit words. 
Although the register is writable, only the value 0x08 is legal.

Offset 0x0D Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
LT

0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-25. Latency Timer Configuration Register

Table 28-29. Latency Timer Configuration Register

Field Description

LT Latency Timer. This field specifies, with a granularity of eight PCI clocks, the length of time that the 
PCI, when mastering a transaction, may hold the bus as the result of a bus grant. Refer to the PCI 2.3 
specification for the rules by which the PCI completes transactions when the timer has expired.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-33

28.3.1.2.11 Header Type Configuration Register 

Figure 28-26 shows the read-only header type register hard-wired to 0x00.

28.3.1.2.12 BIST Control Configuration Register 

Figure 28-27 shows the read-only BIST control register that is hard-wired to 0x00.
 

Offset 0x0E Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-26. Header Type Configuration Register

Offset 0x0F Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-27. BIST Control Configuration Register

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-34 Freescale Semiconductor

28.3.1.2.13 PIMMR Base Address Configuration Register

Figure 28-28 shows the PIMMR base address register fields.

Offset 0x10 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BA

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-28. PIMMR Base Address Configuration Register

Table 28-30. PIMMR Base Address Configuration Register Field Descriptions

Field Description

BA Base Address. This field defines the base address for the internal (on-chip) memory-mapped register space. 
The size of this space is 1MB.

PRE (Bit 3) Prefetchable. Hard-wired to 0.

T (Bits 2–1) Type. Hard-wired to 00.

MSI (Bit 0) Memory Space Indicator. Hard-wired to 0

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-35

28.3.1.2.14 GPL Base Address Register 0

The GPL base address register 0 is provided to allow access to local memory space. This register is closely 
tied to PIBAR0 and PIWAR0 in the CSR memory space. A write to GPL base address register 0 also causes 
a change in the base address bits not masked according to the IWS field of PIWAR0 in PIBAR0. This write 
operation does not change the bits masked by the IWS field. For read operation, these masked bits always 
return zeros. Figure 28-29 shows the GPL base address register 0 fields.

Offset 0x14, 0x16 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BA

0 0 0 0 0 0 0 0 PRE 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-29. GPL Base Address Register 0

Table 28-31. GPL Base Address Register 0

Field Description

BA Base Address. This field defines the base address for the inbound window. Bits 11:4 are hard-wired to 0 
because the minimum window size is 4KB.

PRE (Bit 3) Prefetchable. This bit is read-only and contains the value of the PF bit in PIWAR0.

T (Bits 2–1) Type. Hard-wired to 00.

MSI (Bit 0) Memory space indicator. Hard-wired to 0

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-36 Freescale Semiconductor

28.3.1.2.15 GPL Base Address Registers 1,2

The general purpose local access base address registers are provided to allow access to local memory 
space. These registers are closely tied to PIBARn and PIWARn in the CSR memory space. A write to a 
GPL base address register also causes a change in the base address bits not masked according to the IWS 
field of PIWARn in the corresponding PIBARn. This write operation does not change the bits masked by 
the IWS field. For read operation, these masked bits always return zeros. Figure 28-30 shows the GPL base 
address register 1,2 fields.

Offset 0x18, 0x20 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BA

W

Reset 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BA

0 0 0 0 0 0 0 0 PRE 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-30. GPL Base Address Register 0

Table 28-32. GPL Base Address Register 0

Field Description

BA Base Address. This field defines the two portion of the base address for the inbound window. Bits 11–4 are 
hard-wired to 0 because the minimum window size is 4KB.

PRE (Bit 3) Prefetchable. This bit is read-only and contains the value of the PF bit in PIWARn.

T (Bits 2–1) Type. Hard-wired to 10.

MSI (Bit 0) Memory Space Indicator. Hard-wired to 0

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-37

28.3.1.2.16 Sub-System Vendor ID Configuration Register 

Figure 28-31 shows the sub-system vendor ID fields.

28.3.1.2.17 Sub-System Device ID Configuration Register

Figure 28-32 shows the sub-system device configuration register ID fields.

Offset 0x2C Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SVID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-31. Sub-System Vendor ID Configuration Register

Table 28-33. Sub-System Vendor ID Configuration Register Field Descriptions

Field Description

SVID Sub-System Vendor ID. This field identifies the manufacturer of the board or sub-system that contains this 
device.

Offset 0x2C Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SDID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-32. Sub-System Device ID Configuration Register

Table 28-34. Sub-System Device ID Configuration Register Field Descriptions

Field Description

SDID Sub-System Device ID. This field identifies the board or sub-system that contains this device.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-38 Freescale Semiconductor

28.3.1.2.18 Capabilities Pointer Configuration Register

The capabilities pointer register specifies the byte offset in the PCI configuration space that contains the 
first item in the capabilities list. Figure 28-33 shows the capabilities pointer configuration register fields.

28.3.1.2.19 Interrupt Line Configuration Register

Figure 28-34 shows the interrupt line configuration register fields.

28.3.1.2.20 Interrupt Pin Configuration Register

The interrupt pin configuration register tells which interrupt pin is used (0x01 means INTA). Figure 28-35 
shows the interrupt pin configuration register fields.

Offset 0x034 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset

= Unimplemented or Reserved

Figure 28-33. Capabilities Pointer Configuration Register

Offset 0x03C Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
IL

W

Reset 0 0 0 0 0 0 0 0

Figure 28-34. Interrupt Line Configuration Register

Table 28-35. Interrupt Line Configuration Register Field Descriptions

Field Description

IL Interrupt Line. This is used to communicate interrupt line routing information. The value has no effect 
on the operation of the PCI.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-39

28.3.1.2.21 MIN GNT Configuration Register

Figure 28-36 shows the MIN GNT configuration register fields.

28.3.1.2.22 MAX LAT Configuration Register

Figure 28-37 shows the MAX LAT configuration register fields.

Offset 0x03D Access: User read only 

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 1

W

Reset 0 0 0 0 0 0 0 1

= Unimplemented or Reserved

Figure 28-35. Interrupt Pin

Offset 0x03E Access: User read only 

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-36. MIN GNT Configuration Register

Offset 0x03F Access: User read only 

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-37. MAX LAT Configuration Register

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-40 Freescale Semiconductor

28.3.1.2.23 PCI Function Configuration Register

Figure 28-38 shows the PCI function configuration register fields.

Offset 0x44 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CFG_
LOCK

64B
TLTD MLTD

HA

W

Reset 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 cfg

1. In Agent Mode, contains the value of the pci_aci configuration bit.

= Unimplemented or Reserved

Figure 28-38. PCI Function Configuration Register

Table 28-36. PCI Function Configuration Register Field Descriptions

Field Description

CFG_LOCK Configuration Lock. This bit controls access to the configuration spaces of the device from the PCI port. In 
host mode, the PCI Configuration space is always inaccessible and this bit locks the internal 
memory-mapped configuration space.
Normally, this bit is cleared in agent mode after the configuration of the PCI is complete to allow an external 
host to configure the rest of the device and access the PCI configuration space. In host mode, this bit would 
often remain set to prevent other devices from accessing the memory mapped on chip configuration registers 
accessed through IMMR space. 
0 Access to the configuration spaces is permitted.
1 Any inbound PCI access to the PCI configuration space or IMMR space is retried. 

TLTD Target Latency Timeout Disable. This bit determines whether the PCI, while acting as a PCI target, times out 
when the first data phase of a transaction has not completed in 16 PCI cycles.
0 Target latency timeout enabled.
1 Target latency timeout disabled.

MLTD Master Latency Timer Disable. This bit determines whether the PCI, while acting as a PCI master, terminates 
a transaction upon the expiration of the master latency timer.
0 Master latency timer enabled.
1 Master latency timer disabled.

HA Host/Agent. This bit indicates whether the PCI is in host mode or agent mode. It provides the value of the 
pci_host—PCI host configuration bit as sampled at the end of the reset sequence. 
0 Host Mode
1 Reserved

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-41

28.3.1.2.24 PCI Arbiter Control Configuration Register

Figure 28-39 shows the PCI arbiter control configuration register fields.

28.3.1.3 Software Configuration Registers

This section describes the software configuration registers that allow a local bus master to access the PCI 
configuration space, and generate special cycle or interrupt acknowledge transactions on the PCI bus. A 
special case provides access to the PCI’s internal PCI configuration registers.

Offset 0x46 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AD
PM

PBM
D

PRI0 PRI1 PRI2 MPRI
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-39. PCI Arbiter Control Register

Table 28-37. PCI Arbiter Control Register Field Descriptions

Field Description

AD Arbiter disable. This bit indicates whether the PCI functions as the arbiter for the PCI bus. It provides the value 
of the pci_arb_en — PCI arbiter enable configuration bit as sampled at the end of the reset sequence.
0 Arbiter enabled
1 Arbiter disabled

PM Parking Mode. This bit controls which device receives a bus grant when there are no outstanding bus 
requests and the bus is idle.
0 The bus is parked with the last device to use the bus.
1 The bus is parked with the PCI.

PBMD PCI Broken Master Disable. This bit determines whether the PCI ignores the bus requests of an initiator that 
requests the bus for an excessive period without using it.
0 An initiator that requests the bus and receives the grant must begin using the bus within 16 PCI clock 

periods after the bus becomes idle or its request is subsequently ignored.
1 No requests are ignored.

PRI[0:2] Priority Level for Master N. When the PCI functions as the arbiter for the PCI bus, each PRIn bit determines 
the arbitration priority level for the PCI master connected to the REQn/GNTn pair. 
0 Low priority
1 High priority

MPRI My Priority. When the PCI functions as the arbiter for the PCI bus, this bit determines the arbitration priority 
level for the PCI when it acts as a PCI master.
0 Low priority
1 High priority

Offset 0x48 Access: User read/write

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-42 Freescale Semiconductor

28.3.1.3.1 CONFIG_ADDRESS

The CONFIG_ADDRESS holds the address for an access to the PCI configuration space from the local 
bus. This register must be programmed before accessing CONFIG_DATA to perform the transaction. Only 
32-bit accesses are permitted.

If EN equals 1, BN equals 0, and DN equals 0, the access is to the internal PCI configuration registers, so 
no transaction is generated on the PCI bus.

If EN equals 1, BN equals 0, DN equals 31, FN equals 7, and RN equals 0, writing to CONFIG_DATA 
generates a special cycle transaction and reading from CONFIG_DATA generates an interrupt 
acknowledge transaction.

Figure 28-37 shows the bit settings of the CONFIG_ADDRESS register.

Table 28-38 shows the CONFIG_ADDRESS register fields.

Offset 0x00 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EN BN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DN FN RN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-40. CONFIG_ADDRESS
(Register is repeated for reference.)

Table 28-38. CONFIG_ADDRESS Field Descriptions

Field Description

EN Enable Configuration Transaction. This bit determines the type of transaction to be generated.
0 No configuration transaction is generated by accessing the CONFIG_DATA register. Such an access is 

passed through to the PCI bus as an I/O transaction. Because this is generally not desirable, do not access 
CONFIG_DATA when the EN bit is 0.

1 A configuration transaction is generated by accessing the CONFIG_DATA register.

BN Bus Number. This field specifies the bus segment to which a configuration transaction is directed. If this field 
is 0, a Type 0 configuration transaction is generated. Otherwise, a Type 1 configuration transaction is 
generated.

DN Device Number. This field specifies the device to which a configuration transaction is directed. For a Type 0 
configuration transaction, this field is decoded to individual IDSEL signals for the address phase according 
to Table 28-39. For a Type 1 configuration transaction, this field is used directly for the address phase.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-43

FN Function Number. This field specifies the function to which the configuration transaction is directed on a 
multi-function device. It is used directly in the address phase of the configuration transaction.

RN Register Number. This field specifies the register being accessed in the PCI configuration space.

Table 28-39. DN Decoding

Value AD Signal that is Driving High Value AD Signal that is Driving High

01010 31 10101 21

01011 11 10110 22

01100 12 10111 23

01101 13 11000 24

01110 14 11001 25

01111 15 11010 26

10000 16 11011 27

10001 17 11100 28

10010 18 11101 29

10011 19 11110 30

10100 20 11111 Special Cycle/Interrupt Acknowledge

Others Reserved

Offset 0x00 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EN BN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DN FN RN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-40. CONFIG_ADDRESS
(Register is repeated for reference.)

Table 28-38. CONFIG_ADDRESS Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-44 Freescale Semiconductor

28.3.1.3.2 CONFIG_DATA

Access to CONFIG_DATA usually generates a PCI configuration transaction if the EN bit of 
CONFIG_ADDRESS is set. There are some exceptions contained in the description of 
CONFIG_ADDRESS.

This register may be accessed with a byte, 16-bit, or 32-bit access, depending on the width of the register 
targeted by the configuration transaction.

Figure 28-41 shows the CONFIG_DATA register fields.

28.3.1.3.3 PCI Interrupt Acknowledge Register (PCI_INT_ACK)

Reading this register generates an interrupt acknowledge transaction on the PCI bus. The read value is 
undefined.

The offset address of this register is 0x08.

28.3.1.4 PCI Bus Arbitration

The PCI bus arbitration approach is access-based. Bus masters must arbitrate for each access performed 
on the bus. PCI uses a central arbitration scheme where each master has its own unique request (REQn) 
output and grant (GNTn) input signal. A simple request-grant handshake is used to gain access to the bus. 
Arbitration for the bus occurs during the previous access so that no PCI bus cycles are consumed waiting 
for arbitration (except when the bus is idle).

Offset 0x04 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
CFG_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CFG_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-41. CONFIG_DATA

Table 28-40. CONFIG_DATA Field Descriptions

Field Description

CFG_DATA Configuration Data. This field contains the data to transferred on a PCI configuration transaction.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-45

Three external masters are supported (besides the PCI itself), by using the REQ signals and generating the 
GNT signals.

During reset, the PCI samples the reset configuration bit (and programs the PCI_ARB_DIS bit 
accordingly) to determine if the arbiter is enabled or disabled. The arbiter can also be enabled or disabled 
by directly programming the PCI_ARB_DIS bit in the arbiter configuration register (see 
Section 28.3.1.2.24, “PCI Arbiter Control Configuration Register,” for more information). 

If the arbiter is disabled, the PCI uses REQ0 to issue requests to an external arbiter, and uses GNT0 to 
receive grants from the external arbiter.

28.3.1.4.1 Bus Parking

When no devices are requesting the bus, the bus is granted, or parked, for a specified device to prevent the 
AD, PCI_C/BE, and PCI_PAR signals from floating. The PCI can be configured to park on itself or park 
on the last master to use the bus (see Section 28.3.1.2.24, “PCI Arbiter Control Configuration Register” 
for more information).

28.3.1.4.2 Arbitration Algorithm

The arbitration algorithm implemented is round-robin with two priority levels. Each of the external PCI 
bus masters, plus the PCI, are assigned a high or a low priority level, as programmed in the arbiter 
configuration register (see Section 28.3.1.2.24, “PCI Arbiter Control Configuration Register,” for more 
information). Within each priority group (high or low), the bus grant is given to the next requesting device 
in numerical order, with the PCI itself positioned before device 0. GNTn is asserted for device n as soon 
as the previously granted device begins a transaction. Conceptually, the lowest priority device at any given 
time is the master currently using the bus, and the highest priority device is the next one to follow the 
current master. This is considered to be a fair algorithm because a given device cannot prevent other 
devices from having access to the bus—a given device automatically becomes the lowest priority device 
as soon as it begins to use the bus. If a master is not requesting the bus, the transaction slot is given to the 
next requesting device within the priority group.

The grant given to a particular device may be taken away and given to another, higher priority device when 
the higher priority device asserts its request. If the bus is idle when a new device is to receive a grant, no 
device receives a grant for one clock. In the next clock, the new winner of the arbitration receives a grant. 
This operation allows for a turnaround clock when a device is using address stepping or when the bus is 
parked.

The low priority group collectively receives one bus transaction request slot in the high priority group. 
Therefore, if there are N high-priority devices, each high-priority device is guaranteed to get at least one 
of (N+1) bus transactions, and the M low priority devices are guaranteed to each get at least one of (N+1) 
x M bus transactions, with one of the low-priority devices receiving the grant in one of (N+1) bus 
transactions. If all devices are programmed to the same priority level or if there is only one device at the 
low priority, the algorithm provides each device an equal number of bus grants in a round-robin sequence.

Figure 28-42 shows an arbitration example with three masters in the high priority group and two in the low 
priority group. With one position in the high priority group as a placeholder for the low priority group, 
each high priority initiator is guaranteed at least one out of three transaction slots and each low priority 
initiator is guaranteed at least one out of six slots. Assuming all devices are requesting the bus, the grant 

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-46 Freescale Semiconductor

sequence (with device 1 being the current master) is as follows: 0, 2, the PCI, 0, 2, 1, 0, 2, the PCI, and so 
on. If, for example, device 2 is not requesting the bus, the grant sequence becomes 0, the PCI, 0, 1, 0, the 
PCI, and so on. If device 2 now requests the bus at a point in the sequence when device 0 is conducting a 
transaction and the PCI is the next grant, the PCI’s grant is removed, and the higher-priority device 2 is 
awarded the next grant.

e

Figure 28-42. PCI Arbitration Example

28.3.1.4.3 Broken Master Lock-Out

The PCI bus arbiter on the PCI has a feature that allows it to lock out any broken or ill-behaved masters. 
The broken master feature is controlled by programming the PCI arbiter control register. When the broken 
master feature is enabled, a granted device that does not assert PCI_FRAME within 16 PCI clock cycles 
after the bus is idle has its grant removed and subsequent requests are ignored until its REQ is negated for 
at least one clock cycle. This prevents ill-behaved masters from monopolizing the bus. When the broken 
master feature is disabled, a device that requests the bus and receives a grant never loses its grant until it 
begins a transaction or negates its REQ signal. Disabling the broken master feature is not recommended.

High priority group

0
(1/3)

2
(1/3)

PCI
bridge
(1/6)

Low priority group

1
(1/6)

Low
(1/3)

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-47

28.3.1.4.4 Master Latency Timer

The PCI implements the master latency timer register (see Section 28.3.1.2.10, “Latency Timer 
Configuration Register,” for more information) to prevent itself from monopolizing the bus. When the 
master latency timer expires, the PCI checks the state of its GNT signals. If the GNT signal is not asserted, 
the PCI completes one more data phase and relinquishes the bus. The master latency timer can be disabled 
if needed (see Section 28.3.1.2.23, “PCI Function Configuration Register,” for more information).

28.4 PCI Interface Functional Description
The following sections discuss the operation of the PCI bus.

28.4.1 Bus Commands

PCI bus commands indicate the type of transaction occurring on the bus. These commands are encoded on 
PCI_C/BE[3–0] during the address phase of the transaction. PCI bus commands are described in 
Table 28-41.

Table 28-41. PCI Command Definitions

PCI_C/
BE[3–0]

Command Type
Supported as: 

Definition
Initiator Target

0b0000 Interrupt acknowledge YES NO A read implicitly addressed to the system interrupt controller. The 
size of the vector to be returned is indicated on the byte enables 
after the address phase.

0b0001 Special cycle YES NO Provides a simple message broadcast mechanism. See 
Section 28.4.1.2.5, “Special Cycle Command,” for more 
information.

0b0010 I/O read YES NO Accesses agents mapped in I/O address space.

0b0011 I/O write YES NO Accesses agents mapped in I/O address space. 

0b010x — — — Reserved. No response occurs.

0b0110 Memory read YES YES Accesses agents mapped in memory address space. A read from 
prefetchable space, when seen as a target, fetches a cache line 
of data (32 bytes) from the starting address, even though all 32 
bytes may not actually be sent to the initiator.

0b0111 Memory write YES YES Accesses agents mapped in memory address space.

0b100x — — — Reserved. No response occurs.

0b1010 Configuration read YES YES Accesses the configuration space of each agent. An agent is 
selected when its IDSEL signal is asserted. See 
Section 28.4.1.2.4, “Host Mode Configuration Access,” for more 
information on configuration accesses. As a target, a 
configuration read is only accepted if the PCI is configured to be 
in agent mode.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-48 Freescale Semiconductor

28.4.1.1 PCI Protocol Fundamentals

The bus transfer mechanism on the PCI bus is called a burst. A burst is comprised of an address phase and 
one or more data phases. 

All signals are sampled on the rising edge of the PCI clock. Each signal has a setup and hold window with 
respect to the rising clock edge, in which transitions are not allowed. Outside this aperture, signal values 
or transitions have no significance.

28.4.1.1.1 Basic Transfer Control

PCI data transfers are controlled by the following three fundamental signals:
• PCI_FRAME is driven by an initiator to indicate the beginning and end of a transaction.
• PCI_IRDY (initiator ready) is driven by an initiator, allowing it to force wait cycles.
• PCI_TRDY (target ready) is driven by a target, allowing it to force wait cycles.

The bus is idle when PCI_FRAME and PCI_IRDY are negated. The first clock cycle in which 
PCI_FRAME is asserted indicates the beginning of the address phase. The address and the bus command 
code are transferred in that cycle. The next cycle ends the address phase and begins the data phase. 

During the data phase, data is transferred in each cycle that PCI_IRDY and PCI_TRDY are asserted. After 
the PCI, as an initiator, has asserted PCI_IRDY, it does not change PCI_IRDY or PCI_FRAME until the 
current data phase completes, regardless of the state of PCI_TRDY. After the PCI, as a target, has asserted 
PCI_TRDY or PCI_STOP, it does not change PCI_DEVSEL, PCI_TRDY, or PCI_STOP until the current 
data phase completes.

When the PCI (as a master) intends to complete only one more data transfer, PCI_FRAME is negated and 
PCI_IRDY is asserted (or kept asserted) indicating the initiator is ready. After the target indicates it is 
ready (PCI_TRDY asserted) the bus returns to the idle state.

0b1011 Configuration write YES YES Accesses the configuration space of each agent. An agent is 
selected when its IDSEL signal is asserted. See 
Section 28.4.1.2.4, “Host Mode Configuration Access,” for more 
information. As a target, a configuration write is only accepted if 
the PCI is configured to be in agent mode.

0b1100 Memory read multiple YES YES Causes a prefetch of the next cache line.

0b1101 Dual address cycle NO YES Transfers an 8-byte address to devices.

0b1110 Memory read line YES YES Indicates that the initiator intends to transfer an entire cache line 
of data.

0b1111 Memory write and 
invalidate

NO YES Indicates that the initiator transfers an entire cache line of data, 
and if PCI has any cacheable memory, this line needs to be 
invalidated. 

Table 28-41. PCI Command Definitions (continued)

PCI_C/
BE[3–0]

Command Type
Supported as: 

Definition
Initiator Target

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-49

28.4.1.1.2 Addressing

The PCI specification defines three physical address spaces—memory, I/O, and configuration. The 
memory and I/O address spaces are standard for all systems. The configuration address space has been 
defined specifically to support PCI hardware configuration. Each PCI device decodes the address for each 
PCI transaction with each agent responsible for its own address decode.

The information contained in the two lower address bits (AD1 and AD0) depends on the address space. In 
the I/O address space, all 32 address/data lines provide the full byte address. AD[1–0] are used for the 
generation of PCI_DEVSEL and indicate the least significant valid byte involved in the transfer. After a 
target has claimed an I/O access, it first determines if it can complete the entire access as indicated by the 
byte enable signals. If all the selected bytes are not in the address range, the entire access should not be 
completed; the target should not transfer any data and should terminate the transaction with a target-abort. 
See Section 28.4.1.1.6, “Bus Transactions,” for more information.

In the configuration address space, accesses are decoded to a 4-byte address using AD[7–2]. An agent 
determines if it is the target of the access when a configuration command is decoded, IDSEL is asserted, 
and AD[1–0] are 0b00; otherwise, the agent ignores the current transaction. The PCI determines a 
configuration access is for a device on the PCI bus by decoding a configuration command. When in agent 
mode, the PCI responds to host-generated PCI configuration cycles when its IDSEL is asserted during a 
configuration cycle. 

For memory accesses, the address is decoded using AD[31–2]; thereafter, the address is incremented 
internally by four bytes until the end of the burst transfer. Another initiator in a memory access should 
drive 0b00 on AD[1–0] during the address phase to indicate a linear incrementing burst order. The PCI 
checks AD[1–0] during a memory command access and provides the linear incrementing burst order. On 
reads, if AD[1–0] is 0b10, which represents a cache line wrap, the PCI linearly increments the burst order 
starting at the critical 64-bit address, wraps at the end of the cache line, and disconnects after reading one 
cache line. If AD[1–0] is 0bx1 (a reserved encoding) and the PCI_C/BE[3–0] signals indicate a memory 
transaction, it executes a target disconnect after the first data phase is completed. AD[1–0] are included in 
parity calculations.

28.4.1.1.3 Device Selection

As a target, the PCI drives PCI_DEVSEL one clock following the address phase as indicated in the 
configuration space status register; see Section 28.3.1.2.4, “PCI Status Configuration Register,” for more 
information. The PCI as a target qualifies the address/data lines with PCI_FRAME before asserting 
PCI_DEVSEL. The PCI_DEVSEL signal is asserted at or before the clock edge at which the PCI enables 
its PCI_TRDY, PCI_STOP, or data (for a read). The PCI_DEVSEL signal is not negated until 
PCI_FRAME is negated, with PCI_IRDY asserted and either PCI_STOP or PCI_TRDY asserted. The 
exception to this is a target-abort; see Section 28.4.1.1.8, “Transaction Termination,” for more 
information.

As an initiator, if the PCI does not see the assertion of PCI_DEVSEL within four clocks of PCI_FRAME, 
it terminates the transaction with a master-abort as described in Section 28.4.1.1.8, “Transaction 
Termination,” for more information.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-50 Freescale Semiconductor

28.4.1.1.4 Byte Enable Signals

The byte enable signals (BE[3–0]) indicate which byte lanes carry valid data. The byte enable signals may 
enable different bytes for each of the data phases. The byte enable signals are valid on the edge of the clock 
that starts each data phase and remain valid for the entire data phase.

If the PCI, as a target, sees no byte enable signals asserted, it completes the current data phase with no 
permanent change. This implies that on a read transaction, the PCI expects the data not to be changed, and 
on a write transaction, the data is not stored.

28.4.1.1.5 Bus Driving and Turnaround

The turnaround-cycle is one clock cycle and is required to avoid contention. This cycle occurs at different 
times for different signals. PCI_IRDY, PCI_TRDY, and PCI_DEVSEL use the address phase as their 
turnaround-cycle. PCI_FRAME, PCI_C/BE[3–0], and AD[31–0] use the idle cycle between transactions 
as their turnaround-cycle. (An idle cycle in PCI is when both PCI_FRAME and PCI_IRDY are negated.)

Byte lanes not involved in the current data transfer are driven to a stable condition even though the data is 
not valid.

28.4.1.1.6 Bus Transactions

The timing diagrams in this section show the relationship of significant signals involved in bus 
transactions. 

The following conventions are important.
• When a signal is drawn as a solid line, it is actively being driven by the current initiator or target. 
• When a signal is drawn as a dashed line, no agent is actively driving it. 
• Three-stated signals with slashes between the two rails have indeterminate values. 
• The terms edge and clock edge refer to the rising edge of the clock. 
• The terms asserted and negated refer to the globally visible state of the signal on the clock edge, 

and not to signal transitions. 
• The symbol  represents a turnaround-cycle.

28.4.1.1.7 Read and Write Transactions

Read and write transactions begin with an address phase followed by a data phase. The address phase 
occurs when PCI_FRAME is asserted for the first time, the AD[31–0] signals contain a byte address, and 
the PCI_C/BE[3–0] signals contain a bus command. The data phase consists of the actual data transfer and 
possible wait cycles; the byte enable signals remain actively driven from the first clock of the data phase 
through the end of the data transfer.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-51

A read transaction starts when PCI_FRAME is asserted for the first time and the PCI_C/BE[3–0] signals 
indicate a read command. Figure 28-43 shows an example of a single beat read transaction.

Figure 28-43. Single Beat Read Example

Figure 28-44 shows an example of a burst read transaction.

Figure 28-44. Burst Read Example

During the turnaround-cycle following the address phase, the PCI_C/BE[3–0] signals indicate which byte 
lanes are involved in the data phase. The turnaround-cycle must be enforced by the target with the 
PCI_TRDY signal if using fast PCI_DEVSEL assertion. The earliest the target can provide valid data is 
one cycle after the turnaround-cycle. The target must drive the AD[31–0] signals when PCI_DEVSEL is 
asserted except during the turnaround-cycle.

The data phase completes when data is transferred, which occurs when PCI_IRDY and PCI_TRDY are 
asserted on the same clock edge. When either is negated a wait cycle is inserted and no data is transferred. 
To indicate the last data phase, PCI_IRDY must be asserted when PCI_FRAME is negated.

ADDR

CMD BYTE ENABLES

PCI_CLK

PCI_AD[31:0]

PCI_CBE[3:0]

PCI_FRAME

PCI_IRDY

PCI_DEVSEL

PCI_TRDY

DATA

ADDR

CMD

PCI_CLK

PCI_AD[31:0]

PCI_CBE[3:0]

PCI_FRAME

PCI_IRDY

PCI_DEVSEL

PCI_TRDY

DATA2DATA1

BYTE ENABLES 2BYTE ENABLES 1

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-52 Freescale Semiconductor

A write transaction starts when PCI_FRAME is asserted for the first time and the PCI_C/BE[3–0] signals 
indicate a write command. Figure 28-45 shows an example of a single beat write transaction.

Figure 28-45. Single Beat Write Example

Figure 28-46 shows an example of a burst write transaction.

Figure 28-46. Burst Write Example

A write transaction is similar to a read transaction except no turnaround cycle is needed following the 
address phase because the initiator provides address and data. Data phases are the same for read and write 
transactions.

28.4.1.1.8 Transaction Termination

The termination of a PCI transaction is orderly and systematic, regardless of the cause of the termination. 
All transactions end when PCI_FRAME and PCI_IRDY are both negated, indicating the idle cycle.

The PCI as an initiator terminates a transaction when PCI_FRAME is negated and PCI_IRDY is asserted. 
This indicates the final data phase is in progress. The final data transfer occurs when PCI_TRDY and 
PCI_IRDY are asserted. A master-abort is an abnormal case of a master initiated termination. If the PCI 

ADDR

CMD

PCI_CLK

PCI_AD[31:0]

PCI_CBE[3:0]

PCI_FRAME

PCI_IRDY

PCI_DEVSEL

PCI_TRDY

DATA

BYTE ENABLES

ADDR

CMD

PCI_CLK

PCI_AD[31:0]

PCI_CBE[3:0]

PCI_FRAME

PCI_IRDY

PCI_DEVSEL

PCI_TRDY

DATA4DATA1 DATA2 DATA3

BEs 1 BEs 2 BEs 3 BEs 4

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-53

detects that PCI_DEVSEL has remained negated for more than four clocks after the assertion of 
PCI_FRAME, it negates PCI_FRAME and then, on the next clock, negates PCI_IRDY. On aborted reads, 
the PCI returns 0xFFFF_FFFF. The data is lost on aborted writes.

When the PCI as a target needs to suspend a transaction, it asserts PCI_STOP. After asserted, PCI_STOP 
remains asserted until PCI_FRAME is negated. Depending on the circumstances, data may or may not be 
transferred during the request for termination. If PCI_TRDY and PCI_IRDY are asserted during the 
assertion of PCI_STOP, data is transferred. This type of target-initiated termination is called a disconnect 
B, shown in Figure 28-47. If PCI_TRDY is asserted when PCI_STOP is asserted but PCI_IRDY is not, 
PCI_TRDY must remain asserted until PCI_IRDY is asserted and the data is transferred. This is called a 
disconnect A target-initiated termination, also shown in Figure 28-47. However, if PCI_TRDY is negated 
when PCI_STOP is asserted, no more data is transferred. Therefore, the initiator does not have to wait for 
a final data transfer (see the retry diagram in Figure 28-47).

Figure 28-47. Target-Initiated Terminations

When an initiator is terminated by PCI_STOP, it must negate its REQX signal for a minimum of two PCI 
clocks (of which one clock is needed for the bus to return to the idle state). If the initiator intends to 
complete the transaction, it should reassert its REQX immediately following the two clocks or potential 
starvation may occur. If the initiator does not intend to complete the transaction, it can assert REQX when 
it needs to use the PCI bus again.

PCI_CLK

PCI_FRAME

PCI_IRDY

PCI_DEVSEL

PCI_TRDY

PCI_STOP

Disconnect A Disconnect B Retry

PCI_CLK

PCI_FRAME

PCI_IRDY

PCI_DEVSEL

PCI_TRDY

PCI_STOP

Latency disconnect

PCI_CLK

PCI_FRAME

PCI_IRDY

PCI_DEVSEL

PCI_TRDY

PCI_STOP

Target abort

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-54 Freescale Semiconductor

The PCI terminates a transaction if:
• Eight PCI clock cycles have elapsed between data phases. This is a latency disconnect (see 

Figure 28-47).
• AD[1–0] is 0bx1 (a reserved burst ordering encoding) during the address phase and one data phase 

has completed.
• The PCI command is a configuration command and one data phase has completed.
• A streaming transaction crosses a 4K page boundary.
• A streaming transaction runs out of I/O sequencer buffer entries.
• A cache line wrap transaction has completed a cache line transfer.

Another target-initiated termination is the retry termination. Retry refers to termination requested because 
the target is currently in a state where it is unable to process the transaction. This can occur because no 
buffer entries are available in the I/O sequencer, or the sixteen clock latency timer has expired without 
transfer of the first data. The target latency timer of the PCI can be optionally disabled see 
Section 28.3.1.2.23, “PCI Function Configuration Register.”

When the PCI is in host mode, it does not respond to any PCI configuration transactions. Because a target 
can determine whether or not data is transferred (when both PCI_IRDY and PCI_TRDY are asserted), if 
it wants to do only one more data transfer and then stop, it may assert PCI_TRDY and PCI_STOP at the 
same time.

Target-abort refers to the abnormal termination used when a fatal error has occurred or when a target can 
never respond. Target-abort is indicated when PCI_STOP is asserted and PCI_DEVSEL is negated. This 
indicates that the target requires the transaction to be terminated and does not want the transaction tried 
again. Any transferred data may have been corrupted. 

The PCI terminates a transaction with target-abort if it is the intended target of a read transaction from 
system memory and the data from memory is corrupt. If the PCI is the intended target of a transaction and 
an address parity error occurs, or a data parity error occurs on a write transaction to system memory, it 
continues the transaction on the PCI bus but aborts internally. The PCI does not target-abort in this case.

If the PCI is mastering a transaction and the transaction terminates with a target-abort, undefined data is 
returned on a read and write data is lost. Figure 28-47 shows an example of a target-abort.

An initiator may retry any target disconnect accesses, except target-abort, at a later time starting with the 
address of the next non-transferred data. Retry is actually a special case of disconnect where no data 
transfer occurs at all and the initiator must start the entire transaction over again.

28.4.1.2 Other Bus Operations

The following sections provide information on additional PCI bus operations.

28.4.1.2.1 Fast Back-to-Back Transactions

In the two types of fast back-to-back transactions, the first type places the burden of avoiding contention 
on the initiator while the second places the burden on all potential targets. The PCI as a target supports 

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-55

both types of fast back-to-back transactions, but does not support them as an initiator. The PCI as a target 
has the fast back-to-back enable bit hardwired to one (enabled).

For the first type (governed by the initiator), the initiator may only run a fast back-to-back transaction to 
the same target. For the second type, when the PCI detects a fast-back-to-back operation and did not drive 
PCI_DEVSEL in the previous cycle, it delays the assertion of PCI_DEVSEL and PCI_TRDY for one 
cycle to allow the other target to get off the bus.

28.4.1.2.2 Dual Address Cycles

The PCI supports dual address cycle (DAC) commands (64-bit addressing on PCI bus) as a target 
(outbound DAC is not supported). DACs are different from single address cycles (SACs) in that the 
address phase takes two PCI beats instead of one PCI beat to transfer (64-bit vs. 32-bit addressing). Only 
PCI memory commands can use DAC cycles; I/O, configuration, interrupt acknowledge, and special cycle 
command cannot use DAC cycles. The PCI supports single-beat and burst DAC transactions.

28.4.1.2.3 Data Streaming

The PCI provides data streaming for PCI transactions to and from prefetchable memory. In other words, 
when the PCI is a target for a PCI initiated transaction, it supplies or accepts multiple cache lines of data 
without disconnecting. For PCI transactions to non-prefetchable space, the PCI disconnects after the first 
data phase so that no streaming can occur.

For PCI memory reads, streaming is achieved by performing speculative reads from memory in 
prefetchable space. A block of memory may be marked as prefetchable by setting the PCI configuration 
registers bit for the inbound address translation (see Section 28.3.1.1.14, “PCI Inbound Window Attribute 
Registers (PIWARn),” for more information) when:

• Reads do not alter the contents of memory (reads have no side effects)
• Reads return all bytes regardless of the byte enable signals
• Writes can be merged without causing errors

For a memory read command or a memory read line command, the PCI reads one cache line from memory. 
If the PCI read or read line transaction crosses a cache line boundary, the PCI starts the read of a new cache 
line. For a memory read multiple command, the PCI reads two cache lines from memory. When the PCI 
transaction finishes the read for the first cache line, the PCI performs a speculative read of a third cache 
line. The PCI continues this prefetching until the end of the transaction.

For PCI writes to memory, streaming is achieved by buffering the transaction in the space available within 
the I/O sequencer. This allows PCI memory writes to execute with no wait states.

A disconnect occurs if the PCI runs out of buffer space on writes, or the PCI cannot supply consecutive 
data beats for reads within eight PCI bus clocks of each other. A disconnect also occurs if the transaction 
crosses a 4K page boundary. 

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-56 Freescale Semiconductor

28.4.1.2.4 Host Mode Configuration Access

The PCI provides two types of configuration accesses to support hierarchical bridges. To access 
configuration space, a value is written to the CONFIG_ADDR register specifying which PCI bus, which 
device, and which configuration register to be accessed.

When the PCI sees an access that falls inside the four bytes beginning at the CONFIG_DATA address, it 
checks the enable bit, the device number, and the bus number in the CONFIG_ADDR register. If the enable 
bit is set and the device number is not equal to all ones, a configuration cycle translation is performed. 
When the device number field is equal to all ones, it has a special meaning (see Section 28.4.1.2.5, 
“Special Cycle Command,” for more information).

There are two types of translations supported: 
• Type 0 translations—For when the device is on the PCI bus connected to the PCI.
• Type 1 translations—For when the device is on another bus somewhere behind the PCI.

For Type 0 translations, the PCI decodes the device number field to assert the appropriate IDSEL line and 
perform a configuration cycle on the PCI bus with AD[1-0] as 0b00. All 21 IDSEL bits are decoded, 
starting with bit AD[11]. If the device number field contains 0b01011, AD[11] on the PCI bus is set. The 
IDSEL lines are bit-wise associated with increasing values for the device number such that AD[12] 
corresponds to 0b01100, and so on up to bit 30 as shown in Table 28-40. AD[31] is selected with 0b01010. 
A device number of 0b11111 indicates a special cycle. Device number 0b00000 is used for configuring the 
PCI itself. Bits 10 through 8 are copied to the PCI bus as an encoded value for components that contain 
multiple functions. Bits 7 through 2 are also copied onto the PCI bus. The PCI implements address 
stepping on configuration cycles so the target’s IDSEL, which is connected directly to one of the AD lines, 
reaches a stable value. This means that a valid address and command are driven on the AD and PCI_C/BE 
lines one cycle before the assertion of PCI_FRAME.

For Type 1 translations, the PCI copies the contents of the CONFIG_ADDR register directly onto the PCI 
address/data lines during the address phase of a configuration cycle, with the exception that AD[1-0] 
contains 0b01 (not 0b00 as in Type 0 translations).

When the PCI is configured as a host device, a local master sometimes needs to perform configuration 
reads from unpopulated PCI slots (as part of the system configuration). To avoid getting a machine check 
interrupt, the following steps should be taken: 

1. Mask the NORSP bit in the error mask register. See Section 28.3.1.1.1, “PCI Error Status Register 
(PCI_ESR),” for more information.

2. Perform the PCI configuration reads. 
3. Clear the NORSP bit in the error status register. 
4. Unmask (write '1') the NORSP bit in the error mask register. See Section 28.3.1.1.3, “PCI Error 

Enable Register (PCI_EER),” for more information.

28.4.1.2.5 Special Cycle Command

A special cycle command contains no explicit destination address, but is broadcast to all PCI agents. Each 
receiving agent must determine whether the message is applicable to itself. No assertion of PCI_DEVSEL 
in response to a special cycle command is necessary.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-57

A special cycle command is like any other bus command because it has an address phase and a data phase. 
The address phase starts like all other commands with the assertion of PCI_FRAME and completes when 
PCI_FRAME and PCI_IRDY are negated. Special cycles terminate with a master-abort. In the special 
cycle case, the received-master-abort bit in the configuration status register is not set.

The address phase contains no valid information other than the command field. Even though there is no 
explicit address, the address/data lines are driven to a stable state and parity is generated. During the data 
phase, the address/data lines contain the message type and an optional data field. The message is encoded 
on the sixteen least-significant bits (AD[15-0]). The data field is encoded on AD[31-16]. When running a 
special cycle, the message and data are valid on the first clock PCI_IRDY is asserted.

When the CONFIG_ADDRESS register gets written with a value so the bus number matches the bridge’s 
bus, the device number is all ones, the function number is all ones and the register number is zero. The 
next time the CONFIG_DATA register is accessed the PCI does a special cycle or an interrupt 
acknowledge command. When the CONFIG_DATA register is written, the PCI generates a special cycle 
encoding on the command/byte enable lines during the address phase, and drives the data from the 
CONFIG_DATA register onto the address/data lines during the first data phase.

If the bus number field of the CONFIG_ADDRESS does not match one of the PCI’s bus numbers, the PCI 
passes the write to CONFIG_DATA on through to the PCI bus as a type 1 configuration cycle.

28.4.1.2.6 Interrupt Acknowledge

When the CONFIG_ADDRESS register gets written with a value so the bus number is 0x00, the device 
number is all ones, the function number is all ones and the register number is zero. The next time the 
CONFIG_DATA register is accessed, the PCI does a special cycle command or an interrupt acknowledge 
command. When the CONFIG_DATA register is read, the PCI generates an interrupt acknowledge 
command encoding on the command/byte enable lines during the address phase. During the address phase, 
AD[31-0] does not contain a valid address, but are driven with stable data and valid parity (PCI_PAR). 
During the data phase, the byte enable signals determine which bytes are involved in the transaction. The 
interrupt vector must be returned when PCI_TRDY is asserted.

An interrupt acknowledge transaction can also be issued on the PCI bus by reading from the 
PCI_INT_ACK register.

28.4.1.2.7 Error Functions

This section discusses PCI bus errors.

28.4.1.2.8 Parity 

During valid 32-bit address and data transfers, parity covers all 32 address/data lines and the four 
command/byte enable lines regardless of whether or not all lines carry meaningful information. Byte lanes 
not actually transferring data are driven with stable (albeit meaningless) data and included in the parity 
calculation. During configuration, special cycle, or interrupt acknowledge commands, some address lines 
are not defined, but remain driven to stable values and included in the parity calculation.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-58 Freescale Semiconductor

Even parity is calculated for all PCI operations. The value of PCI_PAR is generated so the number of ones 
on PCI_AD[31-0], PCI_CBE[3-0], and PCI_PAR equals an even number. The PCI_PAR signal is driven 
when the address/data lines are driven and follow the corresponding address or data by one clock.

The PCI checks the parity after all valid address phases (the assertion of PCI_FRAME) and for valid data 
transfers (PCI_IRDY and PCI_TRDY asserted) involving the PCI. When an address or data parity error is 
detected, the detected-parity-error bit in the configuration space status register is set (see 
Section 28.3.1.2.4, “PCI Status Configuration Register,” for more information).

28.4.1.2.9 Error Reporting

Except for setting the detected-parity-error bit, all parity error reporting and response is controlled by the 
parity-error-response bit (see Section 28.3.1.2.3, “PCI Command Configuration Register,” for more 
information). If the parity-error-response bit is cleared, the PCI completes all transactions regardless of 
parity errors (address or data). If the bit is set, the PCI asserts PCI_PERR two clocks after the actual data 
transfer in which a data parity error is detected and keeps PCI_PERR asserted for one clock. The PCI 
asserts PCI_PERR when acting as an initiator during a read transaction or as a target involved in a write 
to system memory. Figure 28-48 shows the possible assertion points for PCI_PERR if the PCI detects a 
data parity error.

As an initiator, the PCI attempts to complete the transaction on the PCI bus if a data parity error is detected 
and sets the data-parity-reported bit in the configuration space status register. If a data parity error occurs 
on a read transaction, the PCI aborts the transaction internally. As a target, the PCI completes the 
transaction on the PCI bus even if a data parity error occurs. If parity error occurs during a write to system 
memory, the transaction completes on the PCI bus but is aborted internally, ensuring that potentially 
corrupt data does not go to memory.

Figure 28-48. PCI Parity Operation

ADDR

PCI_CLK

PCI_AD[31:0]

PCI_CBE[3:0]

PCI_FRAME

PCI_IRDY

PCI_DEVSEL

PCI_TRDY

PCI_PAR

PCI_PERR

PCI_SERR

DATA ADDR DATA

CMD BEs CMD BEs

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-59

When the PCI asserts PCI_SERR, it sets the signaled-system-error bit in the configuration space status 
register. Additionally, if the error is an address parity error, the parity-error-detected bit is set; reporting an 
address parity error on PCI_SERR is conditioned on the parity-error-response bit being enabled in the 
command register. PCI_SERR is asserted when the PCI detects an address parity error while acting as a 
target. The system error is passed to the PCI’s interrupt processing logic to assert MCP. Figure 28-48 
shows where the PCI could detect an address parity error and assert PCI_SERR or where the PCI, acting 
as an initiator, checks for the assertion of PCI_SERR signaled by the target detecting an address parity 
error.

As a target that asserts PCI_SERR on an address parity, the PCI completes the transaction on the PCI bus, 
aborting internally if the transaction is a write to system memory. If PCI_PERR is asserted during a PCI 
write to PCI, the PCI attempts to continue the transfer, allowing the target to abort/disconnect if desired. 
If the PCI detects a parity error on a read from PCI, the PCI aborts the transaction internally and continues 
the transfer on the PCI bus, allowing the target to abort/disconnect if desired.

In all cases of parity errors on the PCI bus, regardless of the parity-error-response bit, information about 
the transaction is logged in the PCI error control capture register, the PCI error address capture register, 
and the PCI error data capture register. MCP is also asserted to the core as an option.

28.4.1.3 PCI Inbound Address Translation

For inbound transactions (transactions generated by an external master on the PCI bus where the PCI 
responds as a slave device), the PCI only responds to PCI addresses within the windows mapped by the 
PCI inbound base address registers (PIBARs). If there is an address hit in one of the PIBARs, the PCI 
address is translated from PCI space to local memory space through the associated PCI inbound translation 
address registers (PITARs). This allows an external master to access local memory. Each PIBAR register 
is associated with a PITAR and PIWAR located in the PCI’s PCI CSR space. Figure 28-49 shows an 
example translation window for inbound memory accesses.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-60 Freescale Semiconductor

Figure 28-49. Inbound PCI Memory Address Translation

There are three full sets of inbound translation registers, in addition to the PIMMR base address register, 
allowing four simultaneous translation windows (one to a fixed destination and three programmable). Only 
two of the programmable windows can be mapped anywhere in the 64-bit PCI address space. Window 0 
can only be mapped within the lowest 4-Gbyte space. Software can move the programmable translation 
base addresses during run-time to access different portions of local memory. PCI inbound translation 
windows may not overlap.

The translation windows are disabled after reset. PCI does not acknowledge externally mastered 
transactions on the PCI bus by asserting PCI_DEVSEL until the inbound translation windows are enabled.

Local Bus ViewPCI Memory View

0 0

4G4G

Peripheral memory
window

Local memory

PCI memory

System memory

Peripheral
memory

PCI memory

Inbound address
translation

PCI inbound
translation
address

PCI inbound
window size

PCI inbound
base

address

PCI inbound
window size

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-61

28.5 I/O Sequencer for PCI Subsystem (PCI)

28.6 Introduction 
The PCI_IOS switches transactions among its ports, using a buffer pool to minimize blocking. 
Figure 28-49 is a block diagram of the I/O sequencer (PCI_IOS).

Figure 28-50. PCI_IOS Block Diagram

28.6.1 Features

The PCI_IOS has the following features:
• Contains eight cache-line (8x32 B) buffers to allow streaming of PCI transactions
• Performs address translation on outbound PCI transactions

I/O Sequencer (IOS)

P
C

I_
D

M
A

Local (CSB)Buffer
Pool

Configuration Regs. I/F

Configuration Regs/
Power Management

PCI Controller

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-62 Freescale Semiconductor

28.7 PCI_IOS Memory Map and Register Definition
Table 28-3 shows the PCI memory map.

Table 28-42. Block Memory Map

Offset
or Address

Register Access Section/Page

General Registers

0x00 PCI Outbound Translation Address Register 0 (POTAR0) R/W 28.7.1.1/28-63

0x08 PCI Outbound Base Address Register 0 (POBAR0) R/W 28.7.1.2/28-64

0x10 PCI Outbound Comparison Mask Register 0 (POCMR0) R/W 28.7.1.3/28-65

0x18 PCI Outbound Translation Address Register 1 (POTAR1) R/W 28.7.1.1/28-63

0x20 PCI Outbound Base Address Register 1 (POBAR1) R/W 28.7.1.2/28-64

0x28 PCI Outbound Comparison Mask Register 1 (POCMR1) R/W 28.7.1.3/28-65

0x30 PCI Outbound Translation Address Register 2 (POTAR2) R/W 28.7.1.1/28-63

0x38 PCI Outbound Base Address Register 2 (POBAR2) R/W 28.7.1.2/28-64

0x40 PCI Outbound Comparison Mask Register 2 (POCMR2) R/W 28.7.1.3/28-65

0x48 PCI Outbound Translation Address Register 3 (POTAR3) R/W 28.7.1.1/28-63

0x50 PCI Outbound Base Address Register 3 (POBAR3) R/W 28.7.1.2/28-64

0x58 PCI Outbound Comparison Mask Register 3 (POCMR3) R/W 28.7.1.3/28-65

0x60 PCI Outbound Translation Address Register 4 (POTAR4) R/W 28.7.1.1/28-63

0x68 PCI Outbound Base Address Register 4 (POBAR4) R/W 28.7.1.2/28-64

0x70 PCI Outbound Comparison Mask Register 4 (POCMR4) R/W 28.7.1.3/28-65

0x78 PCI Outbound Translation Address Register 5 (POTAR5) R/W 28.7.1.1/28-63

0x80 PCI Outbound Base Address Register 5 (POBAR5) R/W 28.7.1.2/28-64

0x88 PCI Outbound Comparison Mask Register 5 (POCMR5) R/W 28.7.1.3/28-65

0xF0 Power Management Control Register (PMCR) R/W 28.7.1.4/28-67

0xF8 Discard Timer Control Register (DTCR) R/W 28.7.1.5/28-68

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-63

28.7.1 Register Descriptions

28.7.1.1 PCI Outbound Translation Address Registers (POTARn)_

The PCI outbound translation address register defines the location of the outbound translation window in 
the PCI (translated) address space.

Offset 0x00, 0x18, 0x30, 0x48, 0x60, 0x78 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
TA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-51. PCI Outbound Translation Address Registers (POTARn)

Table 28-43. POTARn Field Descriptions

Field Description

TA Translation Address.This field contains the starting address of the outbound translated address. This field 
corresponds to the most-significant 20 bits of a 32-bit address.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-64 Freescale Semiconductor

28.7.1.2 PCI Outbound Base Address Registers (POBARn)

The PCI outbound base address register defines the location of the outbound translation window in the 
local (source) memory space.

Offset 0x08, 0x20, 0x38, 0x50, 0x68, 0x80 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-52. Outbound Base Address Registers (POBARn)

Table 28-44. POBARn Field Descriptions

Field Description

BA Base Address.This field contains the starting address in the local memory space before outbound translation. 
This field corresponds to the most-significant 20 bits of a 32-bit address.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-65

28.7.1.3 PCI Outbound Comparison Mask Registers (POCMRn)

The PCI outbound comparison mask register defines the size and destination of the outbound translation 
window. It also defines some properties of the window in the PCI address space.

Offsett 0x10, 0x28, 0x40, 0x58, 0x70, 0x88 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EN IO PRE SBS CM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-53. PCI Outbound Comparison Mask Registers (POCMRn)

Table 28-45. POCMRn Field Descriptions

Field Description

EN Enable. This bit enables the address translation window.
0 Address translation is disabled for this window
1 Address translation is enabled for this window. Local addresses that match the definition of the window are 

recognized by the IOS and translated to the PCI memory space

IO I/O Space. This bit determines whether the window is mapped to PCI memory space or PCI I/O space.
0 Memory space
1 I/O space

PRES Prefetchable. This bit defines whether the transactions translated through this window are prefetchable on 
the PCI bus. Streaming the transactions requires the address space to be prefetchable.
0 Not prefetchable
1 Prefetchable

SBS Special Byte Swap. This bit indicates that the data of transactions passing through this window should be 
subject to a special byte swap: each 32-bit half of the data word is 4-byte swapped.
0 Normal byte swap
1 Special byte swap

CM Comparison Mask.This field determines the bits compared in the address, which effectively determines the 
size of the address translation window. See Figure 28-46.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-66 Freescale Semiconductor

Table 28-46. CM Values

Value Meaning

0000_0000_0000_0000_0000 4 GB

1000_0000_0000_0000_0000 2 GB

1100_0000_0000_0000_0000 1 GB

1110_0000_0000_0000_0000 512 MB

1111_0000_0000_0000_0000 256 MB

1111_1000_0000_0000_0000 128 MB

1111_1100_0000_0000_0000 64 MB

1111_1110_0000_0000_0000 32 MB

1111_1111_0000_0000_0000 16 MB

1111_1111_1000_0000_0000 8 MB

1111_1111_1100_0000_0000 4 MB

1111_1111_1110_0000_0000 2 MB

1111_1111_1111_0000_0000 1 MB

1111_1111_1111_1000_0000 512 Kbytes

1111_1111_1111_1100_0000 256 Kbytes

1111_1111_1111_1110_0000 128 Kbytes

1111_1111_1111_1111_0000 64 Kbytes

1111_1111_1111_1111_1000 32 Kbytes

1111_1111_1111_1111_1100 16 Kbytes

1111_1111_1111_1111_1110 8 Kbytes

1111_1111_1111_1111_1111 4 Kbytes

Others Reserved

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-67

28.7.1.4 Power Management Control Register (PMCR)

This register provides control of system-level low-power modes.

Offsett 0xF0 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R IDLE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

= Unimplemented or Reserved

Figure 28-54. Power Management Control Register (PMCR)

Table 28-47. PMCR Field Descriptions

Field Description

IDLE This read-only bit indicates logic controlled by the IOS power management function is idle. This bit could be 
used as an indication that it is OK to disable the clocks to this complex.
0 Logic is active
1 Logic is idle. There are no outstanding transactions in the IOS, the DMA, or the PCI port.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-68 Freescale Semiconductor

28.7.1.5 Discard Timer Control Register (DTCR)

This register configures the discard timer used to put a time limit on PCI delayed read transactions from 
non-prefetchable memory.

28.8 Functional Description
The I/O Sequencer (IOS) is a 3-port switch with buffering. Each port has master and slave interfaces. 
When a port masters a transaction, the transaction attributes are stored in a buffer, and the IOS generates 
a transaction to the slave interface of the destination port. The data is also buffered between the ports. The 
IOS contains eight cache line (32-byte) transaction buffers, some of which are reserved for specific types 
of transactions.

The address and data phases of the transactions are independent. The data phases of the transactions are 
not required to be in-order.

Offsett 0xF8 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EN PTV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PTV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-55. Discard Timer Control Register (DTCR)

Table 28-48. DTCR Field Descriptions

Field Description

EN Enable. This bit enables the discard timer.
0 Disabled
1 Enabled

PTV Preload Timer Value. This field contains the preload value for the discard timer. PCI delayed reads from 
non-prefetchable address space are discarded after (224 - PTV) internal clock cycles if the master has not 
repeated the transaction. 0xFFFFFF is not valid for PTV.

Example: To discard a delayed completion if the PCI master has not repeated the transaction in 215 PCI 
clocks, assuming the internal frequency is twice the PCI frequency, the preload timer value should equal 
224 - 216 (0xFF0000).

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-69

28.8.1 Transaction Forwarding

Although the ports use a similar interface, the PCI_IOS is not actually symmetrical. The transaction 
forwarding from each source is explained in the following sections.

28.8.1.1 Transactions from the Local Port

Transactions from the local port are forwarded as follows:
• If the address matches the PCI controller software configuration memory space of the PCI 

controller, the transaction is forwarded to PCI port. These address values are configuration options 
of the PCI_IOS.

• If the address matches the DMA register memory space, the transaction is forwarded to the DMA 
port.

• If the address hits any of the outbound translation windows, the transaction is forwarded to PCI 
port, with the address translated. 

28.8.1.2 Transactions from the PCI Port

Transactions from the PCI port are forwarded as follows:
• If the address matches the DMA register memory space, the transaction is forwarded to the DMA 

port.
• All other transactions are forwarded to the local port.

28.8.1.3 Transactions from the DMA Port

Transactions from the DMA port are forwarded as follows:
• If the address hits any of the outbound translation windows, the transaction is forwarded to PCI 

port, with the address translated.
• All other transactions are forwarded to the local port.

28.8.2 PCI Outbound Address Translation

Outbound address translation is provided to allow the outbound transactions to access any address over the 
PCI memory or I/O space. Translation window base addresses are defined in the PCI outbound base 
address registers. Transactions to these address ranges are issued on the PCI bus with a translated address. 
The translation addresses are defined in the associated PCI outbound translation address registers 
(POTARs). Figure 28-56 shows an example translation window for outbound memory accesses.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-70 Freescale Semiconductor

Figure 28-56. Outbound PCI Memory Address Translation

The six sets of outbound translation registers allow six simultaneous translation windows to the PCI port. 
Software can move and adjust the memory window translations and sizes during run-time. This allows 
software to access host memory or to address alternate memory space on the fly, but the PCI outbound 
translation windows may not overlap.

28.8.3 Transaction Ordering

The following rules are applied to maintain proper ordering of transactions:
• The transactions arriving from each port are dispatched to the destination port in the order of 

arrival. The dispatch order of transactions arriving on different ports is not necessarily maintained.
• Round-robin arbitration is used when transactions on different ports are occurring at the same time.

A read transaction that originates at the local port and reads from a PCI port pulls out of the IOS any posted 
writes that originated on the PCI port and were posted before the read data arrives from the PCI.

Local Bus CSB ViewPCI Memory View

0 0

4G4G

Local memory

PCI memory

System memory

PCI memory

Outbound address
translation

PCI outbound
translation

address

Outbound memory
window

System memory
windowOutbound

memory
window size

PCI outbound
base
address

Outbound
memory
window size

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-71

28.9 DMA for PCI Subsystem (PCI)
Figure 28-57 is a block diagram of the PCI.

Figure 28-57. PCI_DMA Block Diagram

The PCI supports communication between two processors on different buses, e.g. a local processor and a 
processor on a PCI bus. This communication unit operates with generic messages and door bell 
registers.
The DMA controller that transfers blocks of data independent of the local core or PCI hosts. The DMA 
module has four high-speed DMA channels. The channels share 144 bytes of DMA-dedicated buffer space 
to facilitate the gathering and sending of data.

28.9.1 Features

The PCI includes the following features:
• Provides message and doorbell registers for inter-processor communication
• DMA Controller

— Four DMA channels
— Concurrent execution across multiple channels with programmable bandwidth control
— Unaligned transfer capability
— Data chaining and direct mode
— Interrupt on completed segment, chain, and error

DMADMADMA

MU

Regs

DMA/Messaging Unit

DMA

IOS

DREQ3

DREQ1

DREQ0

DREQ2

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-72 Freescale Semiconductor

28.9.2 Modes of Operation

The DMA controller can operate in two modes—chaining and direct. The detail description is in 
Section 28.12.2.1, “DMA Operation”.

28.10 External Signal Description
This section describes the DMA signals.

28.10.1 Detailed Signal Descriptions

Table 28-49 contains the detailed descriptions of the DMA interface signals.

28.11 Memory Map and Register Definition
Table 28-50 shows the PCI memory map.

Table 28-49. DMA Interface Signals—Detailed Signal Descriptions

Signal I/O Description

DREQo-3 I DMA Request. The DMA request signal indicates the start or continuation of a DMA transfer. The
falling edge of DREQn causes DMAMRn[CS] to be set, thereby activating the DMA channel.

State
Meaning

Asserted—Assertion of DREQn starts or resumes a DMA transfer if 
DMAMRn[EMSEN] is 1.
Negated—Negation of DREQn has no effect.

Timing Assertion—Can be asserted asynchronously
Negation—Must remain asserted for at least one clock period.

Table 28-50. Block Memory Map

Offset
or Address

Register Access Section/Page

General Registers

0x030 Outbound Message Interrupt Status Register (OMISR) Special 28.11.1.1.1/28-74

0x034 Outbound Message Interrupt Mask Register (OMIMR) R/W 28.11.1.1.2/28-75

0x050 Inbound Message Register 0 (IMR0) R/W 28.11.1.2.1/28-76

0x054 Inbound Message Register 1 (IMR1) R/W 28.11.1.2.1/28-76

0x058 Outbound Message Register 0 (OMR0) R/W 28.11.1.2.2/28-76

0x05C Outbound Message Register 1 (OMR1) R/W 28.11.1.2.2/28-76

0x060 Outbound Doorbell Register (ODR) R/W 28.11.1.3.1/28-77

0x068 Inbound Doorbell Register (IDR) R/W 28.11.1.3.2/28-78

0x080 Inbound Message Interrupt Status Register (IMISR) R/W 28.11.1.4.1/28-79

0x084 Inbound Message Interrupt Mask Register (IMIMR) R/W 28.11.1.4.2/28-80

0x100 DMA 0 Mode Register (DMAMR0) R/W 28.11.1.5.1/28-81

0x104 DMA 0 Status Register (DMASR0) R/W 28.11.1.6/28-84

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-73

0x108 DMA 0 Current Descriptor Address Register (DMACDAR0) R/W 28.11.1.6.1/28-85

0x110 DMA 0 Source Address Register (DMASAR0) R/W 28.11.1.6.2/28-86

0x118 DMA 0 Destination Address Register (DMADAR0) R/W 28.11.1.6.3/28-86

0x120 DMA 0 Byte Count Register (DMABCR0) R/W 28.11.1.6.4/28-87

0x124 DMA 0 Next Descriptor Address Register (DMANDAR0) R/W 28.11.1.6.5/28-88

0x180 DMA 1 Mode Register (DMAMR1) R/W 28.11.1.5.1/28-81

0x184 DMA 1 Status Register (DMASR1) R/W 28.11.1.6/28-84

0x188 DMA 1 Current Descriptor Address Register (DMACDAR1) R/W 28.11.1.6.1/28-85

0x190 DMA 1 Source Address Register (DMASAR1) R/W 28.11.1.6.2/28-86

0x198 DMA 1 Destination Address Register (DMADAR1) R/W 28.11.1.6.3/28-86

0x1A0 DMA 1 Byte Count Register (DMABCR1) R/W 28.11.1.6.4/28-87

0x1A4 DMA 1 Next Descriptor Address Register (DMANDAR1) R/W 28.11.1.6.5/28-88

0x200 DMA 2 Mode Register (DMAMR2) R/W 28.11.1.5.1/28-81

0x204 DMA 2 Status Register (DMASR2) R/W 28.11.1.6/28-84

0x208 DMA 2 Current Descriptor Address Register (DMACDAR2) R/W 28.11.1.6.1/28-85

0x210 DMA 2 Source Address Register (DMASAR2) R/W 28.11.1.6.2/28-86

0x218 DMA 2 Destination Address Register (DAR2) R/W 28.11.1.6.3/28-86

0x220 DMA 2 Byte Count Register (DMABCR2) R/W 28.11.1.6.4/28-87

0x224 DMA 2 Next Descriptor Address Register (DMANDAR2) R/W 28.11.1.6.5/28-88

0x280 DMA 3 Mode Register (DMAMR3) R/W 28.11.1.5.1/28-81

0x284 DMA 3 Status Register (DMASR3) R/W 28.11.1.6/28-84

0x288 DMA 3 Current Descriptor Address Register (DMACDAR3) R/W 28.11.1.6.1/28-85

0x290 DMA 3 Source Address Register (DMASAR3) R/W 28.11.1.6.2/28-86

0x298 DMA 3 Destination Address Register (DMADAR3) R/W 28.11.1.6.3/28-86

0x2A0 DMA 3 Byte Count Register (DMABCR3) R/W 28.11.1.6.4/28-87

0x2A4 DMA 3 Next Descriptor Address Register (DMANDAR3) R/W 28.11.1.6.5/28-88

0x2A8 DMA General Status Register (DMAGSR) R 28.11.1.6.6/28-89

Table 28-50. Block Memory Map (continued)

Offset
or Address

Register Access Section/Page

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-74 Freescale Semiconductor

28.11.1 Register Descriptions

28.11.1.1 Outbound Message Interrupt Registers

28.11.1.1.1 Outbound Message Interrupt Status Register (OMISR)

OMISR contains the interrupt status of the door bell and outbound message registers. A PCI device 
acknowledges the outbound message interrupt by writing a 1 to the appropriate status bit, OMISR[OM1I] 
or OMISR[OMI0]. This clears the interrupt and the corresponding status bit. The local processor provokes 
an outbound message interrupt by writing to either of the two outbound message registers, OMR0 or 
OMR1. MISR should be accessed only from the PCI bus.

Offsett 0x30 Access: Special

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ODI
OM1I OM0I

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-58. Outbound Message Interrupt Status Register (OMISR)

Table 28-51. OMISR Field Descriptions

Field Description

ODI Outbound Doorbell Interrupt. When set, indicates that there is an outbound doorbell interrupt.
0 No outbound doorbell interrupt
1 There is an outbound doorbell interrupt

OM1I Outbound Message 1 Interrupt. When set, indicates there is an outbound message 1 interrupt. Write 1 to this 
position to clear this bit.
0 No Outbound Message 1 interrupt
1 There is an Outbound Message 1 interrupt

OMOI Outbound Message 0 Interrupt. When set, indicates there is an outbound message 0 interrupt. Write 1 to this 
position to clear this bit.
0 No Outbound Message 0 interrupt
1 There is an Outbound Message 0 interrupt

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-75

28.11.1.1.2 Outbound Message Interrupt Mask Register (OMIMR)

OMIMR contains the interrupt mask of the door bell and message register events generated by the local 
processor. OMIMR should be accessed only from the PCI bus.

Offsett 0x34 Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ODIM OM1IM OM0IM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-59. Outbound Message Interrupt Mask Register (OMIMR)

Table 28-52. OMIMR Field Descriptions

Field Description

ODIM Outbound Doorbell Interrupt Mask. 
0 Outbound doorbell interrupt is allowed
1 Outbound doorbell interrupt is masked

OM1IM Outbound Message 1 Interrupt Mask. 
0 Outbound Message 1 interrupt is allowed
1 Outbound Message 1 interrupt is masked

OM0IM Outbound Message 0 Interrupt Mask. 
0 Outbound Message 0 interrupt is allowed
1 Outbound Message 0 interrupt is masked

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-76 Freescale Semiconductor

28.11.1.2 Message Registers

28.11.1.2.1 Inbound Message Registers (IMR0, IMR1)

The inbound message registers are accessible from the PCI bus and the local bus in host mode.

28.11.1.2.2 Outbound Message Registers (OMR0, OMR1)

The outbound message registers are accessible from the PCI bus and the local bus in host mode.

Offsett 0x50, 0x54 Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
IMSGx

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IMSGx

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 28-53. Inbound Message Registers (IMR0, IMR1)

Table 28-54. IMR0 and IMR1 Field Descriptions

Field Description

IMSGx Inbound Message x. Contains generic data to be passed between the local processor and external hosts.

Offsett 0x58, 0x5C Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
OMSGx

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
OMSGx

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-60. Outbound Message Registers (OMR0, OMR1)

Table 28-55. OMR0 and ORM1 Field Descriptions

Field Description

OMSGx Outbound Message x. Contains generic data to be passed between the local processor and external hosts.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-77

28.11.1.3 Doorbell Registers

28.11.1.3.1 Outbound Doorbell Register (ODR)

ODR is accessible from the PCI bus and the local bus in host mode.

Offsett 0x60 Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ODR
28

ODR
27

ODR
26

ODR
25

ODR
24

ODR
23

ODR
22

ODR
21

ODR
20

ODR
19

ODR
18

ODR
17

ODR
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ODR
15

ODR
14

ODR
13

ODR
12

ODR
11

ODR
10

ODR
9

ODR
8

ODR
7

ODR
6

ODR
5

ODR
4

ODR
3

ODR
2

ODR
1

ODR
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-61. Outbound Doorbell Register (ODR)

Table 28-56. ODR Field Descriptions

Field Description

ODRx Outbound Doorbell x. Write 1 from the local bus to set. Write 1 from the PCI bus to clear.
Writing a bit in this register from the local bus causes an interrupt (INTA) to be generated.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-78 Freescale Semiconductor

28.11.1.3.2 Inbound Doorbell Register (IDR)

IDR is accessible from the PCI bus and the local bus in host and mode.

Offsett 0x68 Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
IMC

IDR
30

IDR
29

IDR
28

IDR
27

IDR
26

IDR
25

IDR
24

IDR
23

IDR
22

IDR
21

IDR
20

IDR
19

IDR
18

IDR
17

IDR
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R IDR
15

IDR
14

IDR
13

IDR
12

IDR
11

IDR
10

IDR
9

IDR
8

IDR
7

IDR
6

IDR
5

IDR
4

IDR
3

IDR
2

IDR
1

IDR
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-62. Inbound Doorbell Register (IDR)

Table 28-57. IDR Field Descriptions

Field Description

IMC Inbound Machine Check. Write 1 from the PCI bus to set. Write 1 from the local bus to clear.
Writing a bit in this register from the PCI bus causes a machine check interrupt to be generated to the local 
processor.

IDRx Inbound Doorbell x. Write 1 from the PCI bus to set. Write 1 from the local bus to clear.
Writing a bit in this register from the PCI bus causes an interrupt to be generated to the local processor.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-79

28.11.1.4 Inbound Message Interrupt Registers

28.11.1.4.1 Inbound Message Interrupt Status Register (IMISR)

This register contains the interrupt status of the door bell and message register events. Writing a 1 to the 
corresponding set bit clears the bit. The events are generated by the PCI masters. IMISR should be 
accessed only from the local bus. Accesses while in host mode or from the PCI bus have undefined results.

Offsett 0x80 Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MCI IDI
IM1I IM0I

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-63. Inbound Message Interrupt Status Register (IMISR)

Table 28-58. IMISR Field Descriptions

Field Description

MCI Machine Check Interrupt. 
0 No Machine Check interrupt
1 There is a Machine Check interrupt

IDI Inbound Doorbell Interrupt. 
0 No Inbound Doorbell interrupt
1 There is an Inbound Doorbell interrupt

IM1I Inbound Message 1 Interrupt. 
0 No Inbound Message 1 interrupt
1 There is an Inbound Message 1 interrupt

IM0I Inbound Message 0 Interrupt. 
0 No Inbound Message 0 interrupt
1 There is an Inbound Message 0 interrupt

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-80 Freescale Semiconductor

28.11.1.4.2 Inbound Message Interrupt Mask Register (IMIMR)

This register contains the interrupt mask of the door bell and message register events generated by the PCI 
master. IMIMR should be accessed only from the local bus and only in agent mode. Accesses while in host 
mode or from the PCI bus have undefined results.

Offsett 0x84 Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MCIM IDIM IM1IM IM0IM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-64. Inbound Message Interrupt Mask Register (IMIMR)

Table 28-59. IMIMR Field Descriptions

Field Description

MCIM Machine Check Interrupt Mask. 
0 Machine Check interrupt from the inbound doorbell register is allowed
1 Machine Check interrupt is masked

IDIM Inbound Doorbell Interrupt Mask. 
0 Inbound Doorbell interrupt is allowed
1 Inbound Doorbell interrupt is masked

IM1IM Inbound Message 1 Interrupt Mask. 
0 Inbound Message 1 interrupt is allowed
1 Inbound Message 1 interrupt is masked

IM0IM Inbound Message 0 Interrupt Mask. 
0 Inbound Message 0 interrupt is allowed
1 Inbound Message 0 interrupt is masked

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-81

28.11.1.5 DMA Registers

Each DMA channel has a set of seven 32-bit registers (mode, status, current descriptor address, next 
descriptor address, source address, destination address, and byte count) to support transactions. This 
section describes the format of the DMA support registers.

28.11.1.5.1 DMA Mode Register (DMAMRx)

The mode register allows software to start the DMA transfer and to control various DMA transfer 
characteristics.

Offsett 0x100, 0x180, 0x200, 0x280 Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DRCNT BWC

DMS
EN

IRQS
EMS
EN

DAHTS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SAHTS DAHE SAHE PRC EOTIE TEM CTM CC CS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-65. DMA Mode Register (DMAMRx)
(Register is repeated for reference.)

Table 28-60. DMAMRx Field Descriptions (Sheet 1 of 3)

Field Description

DRCNT DMA Request CouNt. This field specifies the number of cache lines transferred per DMA request assertion 
if EMSEN is 1. This field is not used if EMSEN is 0.
0101 1 cache line
0110 2 cache lines
0111 4 cache lines
1000 8 cache lines
1001 6 cache lines
1010 32 cache lines
OthersReserved

BWC Bandwidth Control. This field only applies when multiple channels are executing transfers concurrently. The 
field determines how many cache lines a given channel is allowed to transfer after it is granted access to the 
IOS interface and before it releases the interface to the next channel. This allows prioritization of the DMA 
channels.
000 1 cache line
001 2 cache lines
010 4 cache lines
011 8 cache lines
100 16 cache lines
OthersReserved

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-82 Freescale Semiconductor

DMSEN Direct Mode Snoop Enable. This bit controls snooping of direct mode DMA transactions.
0 Snooping is disabled
1 Snooping is enabled

IRQS Interrupt Steer. This bit determines the destination of the DMA interrupts.
0 All DMA interrupts are routed to the local processor
1 All DMA interrupts are routed to the PCI bus through INTA

EMSEN External master start enable. This bit is cleared when the DMA transfer has completed, so it must be set again 
for each transfer.
0 The channel is started by software setting the CS bit.
1 The channel is started by hardware asserting the DREQ pin.

DAHTS Destination Address Hold Transfer Size. This field indicates the transfer size used for each transaction when 
DAHE is 1. The byte count register must be in multiples of the size, and the destination address register must 
be aligned based on the size.
00  1 byte
01  2 bytes
10  4 bytes
11  8 bytes

SAHTS Source Address Hold Transfer Size. This field indicates the transfer size used for each transaction when 
SAHE is 1. The byte count register must be in multiples of the size, and the source address register must be 
aligned based on the size.
00  1 byte
01  2 bytes
10  4 bytes
11  8 bytes

DAHE Destination Address Hold Enable. This bit allows the DMA controller to hold the destination address constant 
for every transfer. The size used for transfer is indicated by DAHTS. Hardware supports only aligned transfers 
for this feature.
0 Don’t hold the destination address constant
1 Hold the destination address constant

Offsett 0x100, 0x180, 0x200, 0x280 Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DRCNT BWC

DMS
EN

IRQS
EMS
EN

DAHTS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SAHTS DAHE SAHE PRC EOTIE TEM CTM CC CS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-65. DMA Mode Register (DMAMRx)
(Register is repeated for reference.)

Table 28-60. DMAMRx Field Descriptions (Sheet 2 of 3)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-83

SAHE Source Address Hold Enable. This bit allows the DMA controller to hold the source address constant for every 
transfer. The size used for transfer is indicated by SAHTS. Hardware supports only aligned transfers for this 
feature.
0 Don’t hold the source address constant
1 Hold the source address constant

PRC PCI Read Command.This field indicates the type of PCI read command to use.
00  PCI read
01  PCI Read Line
10  PCI Read Multiple
11  Reserved

EOTIE End-of-Transfer Interrupt Enable. This bit determines whether an interrupt is generated at the completion of 
a DMA transfer. End-of-transfer is defined as the end of a direct mode transfer or in chaining mode as the 
end of the transfer of the last segment of a chain.
0 No EOT interrupt is generated
1 EOT interrupt is generated

TEM Transfer Error Mask. This bit determines the DMA response in the event of a transfer error.
0 The DMA halts when a transfer error occurs (TE bit is set)
1 The DMA completes the transfer regardless of whether a transfer error occurs (the TE bit is not set)

CTM Channel Transfer Mode
0 Chaining Mode
1 Direct Mode

CC Channel Continue. This bit applies only to chaining mode and is cleared by hardware after every descriptor 
read.
0 The DMA transfer does not restart the transferring process
1 The DMA transfer restarts the transferring process starting at the current descriptor address

CS Channel Start. A 0-to-1 transition occurring on this bit when the channel is not busy (SR[CB] bit is 0) starts 
the DMA process. If the channel is busy and a 0 to 1 transition occurs, the DMA channel restarts from a 
previous halt condition. A 1-to-0 transition when the channel is busy (CB bit is 1) halts the DMA process. 
Nothing happens if the channel is not busy and a 1 to 0 transition occurs.

Offsett 0x100, 0x180, 0x200, 0x280 Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DRCNT BWC

DMS
EN

IRQS
EMS
EN

DAHTS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SAHTS DAHE SAHE PRC EOTIE TEM CTM CC CS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-65. DMA Mode Register (DMAMRx)
(Register is repeated for reference.)

Table 28-60. DMAMRx Field Descriptions (Sheet 3 of 3)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-84 Freescale Semiconductor

28.11.1.6 DMA Status Register (DMASRn)

The status register reports various DMA conditions during and after the DMA transfer. Writing a 1 to a 
specific set bit clears the bit.

Offsett 0x104, 0x184, 0x204, 0x284 Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TE

CB
EOSI

EO
CDIW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-66. DMA Status Register (DMASRn)

Table 28-61. DMASRn Field Descriptions

Field Description

TE Transfer Error. This bit is set when there is an error condition during the DMA transfer.

CB Channel Busy. This bit indicates whether the channel is busy. It is cleared as a result of an error or completion 
of the DMA transfer.
0 No DMA transfer is currently in progress
1 A DMA transfer is currently in progress

EOSI End-of-Segment Interrupt. After transferring a segment of data, if the EOSIE bit in the current descriptor 
address register is set, this bit is set and an interrupt is generated.

EOCDI End-of-Chain/Direct Interrupt. When the last DMA transfer is finished, either in chaining or direct mode, if 
DMAMR[EOTIE] is set, this bit is set and an interrupt is generated.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-85

28.11.1.6.1 DMA Current Descriptor Address Register (DMACDARn)

The current descriptor address register contains the address of the current segment descriptor being 
transferred. In chaining mode, software must initialize this register to point to the first descriptor in the 
chain. After processing the first descriptor, the DMA controller moves the contents of the next descriptor 
address register into DMACDAR, loads the following descriptor into DMANDAR, and executes the 
current transfer.

Offsett 0x108, 0x188, 0x208, 0x288 Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
CDA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CDA SNEN EOSIE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-67. DMA Current Descriptor Address Register (DMACDARn)

Table 28-62. DMACDARn Field Descriptions

Field Description

CDA Current Descriptor Address. This field contains the current descriptor address of the segment descriptor in 
memory. It must be aligned on an 8-word boundary

SNEN Snoop Enable.
0 Snooping is disabled on DMA transactions
1 Snooping is enabled on DMA transactions

EOSIE End-of-Segment Interrupt Enable.
0 No end-of-segment interrupt is generated
1 An interrupt is generated when the current DMA transfer for the current descriptor is finished

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-86 Freescale Semiconductor

28.11.1.6.2 DMA Source Address Register (DMASARn)

The source address register indicates the address the DMA controller reads data from. The software must 
ensure this is a valid memory address.

28.11.1.6.3 DMA Destination Address Register (DMADARn)

The destination address register indicates the address the DMA controller writes data to. The software 
must ensure this is a valid memory address.

Offsett 0x110, 0x190, 0x210, 0x290 Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
SA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-68. DMA Source Address Register (DMASARn)

Table 28-63. DMASARn Field Descriptions

Field Description

SA Source Address of DMA Transfer. The content of this field is updated after each DMA read operation.

Offsett 0x118, 0x198, 0x218, 0x298 Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28-69. DMA Destination Address Register (DMADARn)

Table 28-64. DMADARn Field Descriptions

Field Description

DA Destination Address of DMA Transfer. The content of this field is updated after each DMA write operation.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-87

28.11.1.6.4 DMA Byte Count Register (DMABCRn)

This register contains the number of bytes per transfer (maximum transfer size is 64 Mbytes).

Offsett 0x120, 0x1A0, 0x220, 0x2A0 Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-70. DMA Byte Count Register (DMABCRn)

Table 28-65. DMABCRn Field Descriptions

Field Description

BC Byte Count. This field contains the number of bytes to transfer. The value in this register is decremented after 
each DMA read operation.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-88 Freescale Semiconductor

28.11.1.6.5 DMA Next Descriptor Address Register (DMANDARn)

The next descriptor address register (NDAR) contains the address for the next segment descriptor in the 
chain. In chaining mode, this register is loaded from the next descriptor field of the descriptor the current 
descriptor address register points to.

Offsett 0x124, 0x1A4, 0x224, 0x2A4 Access: User read/write

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
NDA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
NDA NSNEN NEOSIE EOTD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-71. DMA Next Descriptor Address Register (DMANDARnx)

Table 28-66. DMANDARn Field Descriptions

Field Description

NDA Next Descriptor Address. This field contains the next descriptor address of the segment descriptor in memory. 
It must be aligned on an 8-word boundary.

NSNEN Next Snoop Enable
0 Snooping is disabled on DMA transactions
1 Snooping is enabled on DMA transactions

NEOSIE Next End-of-Segment Interrupt Enable
0 No end-of-segment interrupt is generated
1 An interrupt is generated when the DMA transfer for the next descriptor is finished

EOTD End-of-Transfer Descriptor
0 This descriptor contains a link to another descriptor
1 This descriptor is the last to be executed

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-89

28.11.1.6.6 DMA General Status Register (DMAGSR)

This read-only register provides faster access to the status bits by combining the status bits of all of the 
DMA channels into one register. Each byte of this register provides the value of bits 24:31 of a channel’s 
DMA status register. These bits are cleared by writing to the individual DMA status registers.

28.12 Functional Description

28.12.1 Message Unit

An embedded processor is often part of a larger system containing many processors and distributed 
memory. These processors tend to work on tasks independent of the host processor(s) and other peripheral 
processors in the system. Because of the independent nature of the tasks, it is necessary to provide a 
communication mechanism between the peripheral processors and the rest of the system. One such method 
is the use of messages. This block provides a messaging unit to further facilitate communications between 
host and peripheral. The message unit uses generic messages and doorbell registers.

28.12.1.1 Message Passing

This block contains two inbound message registers and two outbound message registers. The registers are 
each 32 bits. The inbound registers, Inbound Message Register 0 (IMR0) and Inbound Message Register 
1 (IMR1), allow a remote host or PCI master to write a 32-bit value that causes an interrupt to the local 
processor. This implements the PowerPC architecture because the register indirectly drives an interrupt 
line to the local processor. The outbound registers, Outbound Message Register 0 (OMR0) and Outbound 
Message Register 1 (OMR1), allow the local processor to write an outbound message that causes the 
outbound interrupt signal INTA to assert.

The interrupt to the local processor is cleared by setting the appropriate bit in the Inbound Message 
Interrupt Status Register (IMISR). The interrupt to PCI (INTA) is cleared by setting the appropriate bit in 
the Outbound Message Interrupt Status Register (OMISR).

Offsett 0x2A8 Access: User read only

Power PC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R Channel 0 Status Channel 1 Status

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power PC 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Channel 2 Status Channel 3 Status

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 28-72. DMA General Status Register (DMAGSR)

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-90 Freescale Semiconductor

28.12.1.2 Doorbells

This block contains the Inbound Doorbell Register (IDR) and the Outbound Doorbell Register (ODR). The 
inbound doorbell allows a remote processor to set a bit in the register from the PCI bus. This causes the 
PCI bridge to generate an interrupt to the local processor. The local processor can write to the outbound 
register. This causes the outbound interrupt signal, INTA, to assert and interrupt the remote processor on 
the PCI bus.

28.12.2 DMA Controller

The DMA controller transfers blocks of data independent of the local core or PCI hosts. Data movement 
occurs on the PCI and/or local bus. The DMA module has four high-speed DMA channels. The channels 
share 144 bytes of DMA-dedicated buffer space to facilitate the gathering and sending of data. The local 
core and PCI masters can initiate a DMA transfer.

Features of the DMA controller include:
• Four channels
• Concurrent execution across multiple channels with programmable bandwidth control
• All channels are accessible by local core and remote PCI masters.
• Unaligned transfer capability
• Data chaining and direct mode
• Interrupt on completed segment, chain, and error

Figure 28-73 shows a diagram of the DMA controller in a representative system.

Figure 28-73. DMA Controller Block Diagram

28.12.2.1 DMA Operation

The DMA controller operates in two modes—chaining and direct. In direct mode, the software is 
responsible for initializing the source, destination and byte count registers. In chaining mode, the software 
must first build a chain of descriptor segments in external memory, residing on the local or PCI bus, and 
then initialize the descriptor, DMA Current Descriptor Address Register (DMACDARn), to point to the 

DMA2 DMA3DMA1DMA0

Interface logic

I/O sequencer

Local bus

PCI bus

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-91

first descriptor segment in the chain. In both modes, setting the start bit in the DMA mode register begins 
the DMA transfer. 

The DMA controller supports unaligned transfers for the source and destination addresses. It gathers data 
beginning at the source address and aligns the data accordingly before sending it to the destination address. 
The DMA controller assumes the source and destination addresses are valid PCI or local memory 
addresses.

All local memory read operations are cache line reads (32 bytes); the DMA controller selects the 
appropriate/valid data bytes within the cache line when loading its internal queue. Writing to local memory 
depends on the alignment of the destination address and the size of the transfer. The DMA controller writes 
a full cache line when possible. Misaligned destination addresses result in sub-transfers of less than a cache 
line on the initial and final beats of the transfer; intermediate beats transfer full cache lines. Configuring a 
DMA channel for a transfer size of less than 8 bytes in address hold mode, DAHE or SAHE is set in the 
DMA Mode Register (DMAMRx), precludes cache line writes.

PCI memory read operations depend on the PRC (PCI read command) field in the mode register, the 
alignment of the source address and the size of the transfer. The DMA controller attempts to read a full 
cache line whenever possible. Writing to PCI memory depends on the alignment of the destination address 
and the size of the transfer.

28.12.2.1.1 DMA Direct Mode

In direct mode, the DMA controller does not read a chain of descriptors from memory. but uses the current 
parameters in the DMA registers to start a DMA transfer. The DMA transfer finishes after all the bytes 
specified in the byte count register have been transferred or an error condition has occurred.

Below are the initialization steps of a DMA transfer in direct mode.
• Poll the CB (channel busy) bit in the DMA Status Register (DMASRn) to make sure the DMA 

channel is idle.
• Initialize the DMA Source Address Register (DMASARn), the DMA Destination Address 

Register (DMADARn), and the DMA Byte Count Register (DMABCRn).
• Initialize the CTM (channel transfer mode) bit in the DMA Mode Register (DMAMRx) to indicate 

direct mode. Other control parameters in the mode register can also be initialized here if necessary.
• Clear and then set the CS (channel start) bit in the DMA Mode Register (DMAMRx) to start the 

DMA transfer.

28.12.2.1.2 DMA Chaining Mode

In chaining mode, the DMA controller loads descriptors from memory prior to a DMA transfer. The DMA 
controller begins the transfer according to the descriptor information loaded for each segment. After the 
current segment is finished, the DMA controller reads the next descriptor from memory and begins another 
DMA transfer. The process is finished if the current descriptor is the last one in the chain or an error 
condition has occurred. 

Below are the initialization steps of a DMA transfer in chaining mode.

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-92 Freescale Semiconductor

• Build a chain of descriptor segments in memory. Refer to Section 28.12.2.2, “DMA Segment 
Descriptors” for more information.

• Poll the CB (channel busy) bit in the DMA Status Register (DMASRn) to make sure the DMA 
channel is idle.

• Initialize the DMA Current Descriptor Address Register (DMACDARn) to point to the first 
descriptor in the chain.

• Initialize the CTM (channel transfer mode) bit in the DMA Mode Register (DMAMRx) to indicate 
chaining mode. Other control parameters in the mode register can also be initialized here if 
necessary.

• Clear and then set the CS (channel start) bit in the DMA Mode Register (DMAMRx) to start the 
DMA transfer.

28.12.2.1.3 External Control 

The DMA transfer of any channel, in direct or chaining mode, can be controlled by the DMA request input 
signals. External control is enabled by setting DMAMRn[EMSEN].

When using external control, the software should not set DMAMRn[CS]. A falling edge on DREQn sets 
DMAMRn[CS] to start the transfer. The corresponding DACKn output signals are asserted. The number 
of cache lines specified by DMAMRn[DRCNT] is transferred, and then DMAMRn[CS] is negated to halt 
the transfer until the next DREQn assertion. The corresponding DACKn output signals is negated. DREQn 
may be negated after DACKn is asserted or when the first transaction of the DMA transfer appears on the 
external interface, and it may be asserted again one clock cycle later. DDONEn is asserted when the DMA 
transfer has completed (all bytes specified in the byte count register or the descriptors have been 
transferred).

28.12.2.1.4 DMA Coherency

The four DMA channels uses up to four cache lines (128 bytes) of buffer space in the I/O sequencer 
module in addition to 16 bytes of local buffer space. Because no address snooping occurs in these internal 
queues, data posted in these queues is not visible to the rest of the system while a DMA transfer is in 
progress. It is the responsibility of application software to ensure the coherency of the region transferred 
during the DMA process.

Snooping of the core data cache is selectable during DMA transactions. A snoop bit is provided in the 
DMA Current Descriptor Address Register (DMACDARn) and the DMA Next Descriptor Address 
Register (DMANDARn), which allows software to control when the cache is snooped.

28.12.2.1.5 Halt and Error Conditions

DMA transfers are halted by clearing the CS (channel start) bit in the DMA Mode Register (DMAMRx) 
or when encountering an error condition. In both cases, the application software can do one of the 
following:

• Continue the DMA transfer
• Reconfigure the DMA for a new transfer
• Leave the channel in the halted state

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-93

When a DMA channel is halted, its programming model is completely accessible. If the DMA is halted 
due to an error condition, the TE (transfer error) bit in the DMA Status Register (DMASRn) must be 
cleared before the transfer can be resumed or a new transfer initiated. The TE bit is not cleared 
automatically by hardware.

NOTE
After any bus error occurrs in the system (either local bus or PCIbus, not 
necessarily due to DMA operation), reset the system to avoid DMA 
malfunction.

28.12.2.2 DMA Segment Descriptors

DMA segment descriptors contain the source and destination addresses of the data segment, the segment 
byte count, and a link to the next descriptor. Segment descriptors are built on cache-line (32-byte) 
boundaries in local or PCI memory and are linked together into chains using the next-descriptor-address 
field.

Application software initializes the current descriptor address register, DMA Current Descriptor Address Register 

(DMACDARn), to point to the first descriptor in the chain. For each descriptor in the chain, the DMA 
controller starts a new DMA transfer with the control parameters specified by the descriptor. The DMA 
controller traverses the descriptor chain until reaching the last descriptor (with its EOTD bit set).

Table 28-67. DMA Segment Descriptor Fields

Descriptor Field Description

Source address Contains the source address of the DMA transfer. After the DMA controller reads the descriptor from 
memory, this field is loaded into the DMA Source Address Register (DMASARn).

Destination address Contains the destination address of the DMA transfer. After the DMA controller reads the descriptor 
from memory, this field is loaded into the DMA Destination Address Register (DMADARn).

Next descriptor address Points to the next descriptor in memory. After the DMA controller reads the descriptor from memory, 
this field is loaded into the DMA Next Descriptor Address Register (DMANDARn).

Byte count Contains the number of bytes to transfer. After the DMA controller reads the descriptor from memory, 
this field is loaded into the DMA Byte Count Register (DMABCRn).

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-94 Freescale Semiconductor

Figure 28-74. DMA Chain of Segment Descriptors

28.12.2.2.1 Descriptor in Big Endian Mode

In big endian mode, the descriptor in local memory should be programmed so data appears in ascending 
significant-byte order. If segment descriptors are written to memory located in the local bus, they should 
be treated like they are translated from big endian to little endian mode.

Example 28-1. Big Endian mode descriptor’s data structure.
The descriptor structure must be aligned on an 8-word boundary.

struct {
double a; /* 0x1122334455667788 double word */
double b; /* 0x55667788aabbccdd double word */
double c; /* 0x8765432101234567 double word */
double d; /* 0x0123456789abcdef double word */

} Descriptor;
Results: Source Address = 0x44332211 <MSB..LSB>

Destination Address = 0x88776655 <MSB..LSB>
Next Descriptor Address = 0x21436587 <MSB..LSB>
Byte Count = 0x67452301 <MSB..LSB>

Source address

Local memory or PCI memory

Reserved
Destination address

Reserved
Next descriptor

Reserved
Byte count
Reserved

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C

Offset

031

Source address
Reserved

Destination address
Reserved

Next descriptor
Reserved
Byte count
Reserved

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C

Offset

031

Source address
Reserved

Destination address
Reserved

Next descriptor
Reserved
Byte count
Reserved

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C

Offset

031

Descriptor 0

Descriptor 1

Descriptor N
(last)

EOTD=1

Current descriptor address register
031

Next descriptor address register
031

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

Freescale Semiconductor 28-95

28.12.2.2.2 Descriptor in Little Endian Mode

In little endian mode, the descriptor in PCI memory should be programmed so data appears in descending 
significant byte order. If segment descriptors are written to memory located in the PCI bus, they are 
obeying the rules for little endian mode.

Example 28-2. Little Endian mode descriptor’s data structure.
The descriptor structure must be aligned on an 8-word boundary.

struct {
double a; /* 0x8877665544332211 double word */
double b; /* 0x1122334488776655 double word */
double c; /* 0x7654321012345678 double word */
double d; /* 0x0123456776543210 double word */

} Descriptor;
Results: Source Address = 0x44332211 <MSB..LSB>

Destination Address = 0x88776655 <MSB..LSB>
Next Descriptor Address = 0x12345678 <MSB..LSB>

Byte Count = 0x76543210 <MSB..LSB>

MPC5121e Microcontroller Reference Manual, Rev. 2



PCI Controller (PCI)

28-96 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 29-1

Chapter 29  
Power Management Control Module (PMC)

29.1 Introduction
This document provides a description of the power management control (PMC) module. PMC is 
responsible for entering and exiting the low-power mode.

29.1.1 Features

The PMC module includes the following features:
• Causes the e300 CPU core to enter low-power mode (Nap or Sleep) after the coherent system bus 

(CSB) is idle and DRAM controller is idle
• Causes the DRAM controller to enter and exit low-power (self-refresh) mode
• Optional interrupt when exiting low-power mode (Nap or Sleep)
• Exit low-power mode when the CPU is ready
• Enter and exit Deep Sleep mode (system OSC, system PLL, and e300 core PLL are put in 

low-power standby mode)
• Support e300 core PLL on-the-fly change and system clock divide ratio (SYS_DIV) copy enable 

mode

29.2 Memory Map and Register Definition
Table 29-1. PMC Memory Map

Address Offset Use Access

0x0 PMC Configuration Register (PMCCR) R/W

0x4 PMC Event Register (PMCER) R/W

0x8 PMC Mask Register (PMCMR) R/W

0xC PMC CORE_PLL Shadow Register (PMCSR) R/W

MPC5121e Microcontroller Reference Manual, Rev. 2



Power Management Control Module (PMC)

29-2 Freescale Semiconductor

29.2.0.1 PMC Configuration Register (PMCCR)

Offset 0x0

Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 PRE
_DIV

CCM DSM DDROFF
CORE
OFFW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 29-1. PMC Configuration Register (PMCCR)

Table 29-2. PMCCR Field Descriptions

PRE
DIV

CCM DSM
DDR 
OFF

CORE
OFF

Description

0 0 0 0 0 When PowerArchitecture core hits breakpoint, enter break mode
When PowerArchitecture core initiates nap1 mode or sleep2 mode entry: undefined, 
reserved

0 0 0 0 1 When PowerArchitecture core hits breakpoint: undefined, reserved
When PowerArchitecture core initiates nap mode entry: enter nap mode; do not put 
DRAM in self-refresh mode during nap mode.
When PowerArchitecture core initiates sleep mode entry: enter sleep mode; do not put 
DRAM in self-refresh mode during sleep mode
PMCCR is cleared after return to full power mode

0 0 0 1 1 When PowerArchitecture core hits breakpoint: undefined, reserved
When PowerArchitecture core initiates nap mode entry: enter nap mode; ; put DRAM in 
self-refresh mode during nap mode
When PowerArchitecture core initiates sleep mode entry: enter sleep mode; put DRAM 
in self-refresh mode during sleep mode
PMCCR is cleared after return to full power mode

0 0 1 0 0 When PowerArchitecture core hits breakpoint: undefined, reserved
When PowerArchitecture core initiates nap mode entry: undefined, reserved
When PowerArchitecture core initiates sleep mode entry: enter deep sleep mode; 
PMCCR is cleared after return to full power mode

MPC5121e Microcontroller Reference Manual, Rev. 2



Power Management Control Module (PMC)

Freescale Semiconductor 29-3

29.2.0.2 PMC Event Register (PMCER)

0 1 0 0 0 When PowerArchitecture core hits breakpoint: undefined, reserved
When PowerArchitecture core initiates nap mode entry: undefined, reserved
When PowerArchitecture core initiates sleep mode entry: enter core PLL change mode
PMCCR is cleared after return to full power mode

1 0 0 0 0 When PowerArchitecture core hits breakpoint: undefined, reserved
When PowerArchitecture core initiates nap mode entry: undefined, reserved
When PowerArchitecture core initiates sleep mode entry: enter Pre divider copy mode
PMCCR is cleared after return to full power mode

Any other combination Undefined, reserved

1 PowerArchitecture core initiates nap mode entry by setting the e300 NAP bit in the HID register while the POW bit in MSR 
register is set.

2 PowerArchitecture core initiates sleep mode entry by setting the e300 SLEEP bit in the HID register while the POW bit in MSR 
register is set.

Offset 0x4

Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PMCI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 29-2. PMC Event Register (PMCER)

Table 29-2. PMCCR Field Descriptions

PRE
DIV

CCM DSM
DDR 
OFF

CORE
OFF

Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Power Management Control Module (PMC)

29-4 Freescale Semiconductor

29.2.0.3 PMC Mask Register (PMCMR)

Table 29-3. PMCER Field Descriptions

Field Description

PMCI PMC interrupt 
Read
1 PMC interrupt event condition occurred. This bit is asserted by PMC when the module is in nap or sleep 

mode and another CSB master (for example PCI) initiates CSB transactions without sending interrupt to 
the core in advance.

0 PMC interrupt event did not occur.
Sticky bit. Set on listed condition, cleared by writing 1 to this bit. Writing 0 has no effect.

Offset 0x8

Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PMCIE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 29-3. PMC Mask Register (PMCMR)

Table 29-4. PMCMR Field Descriptions

Field Description

PMCIE PMC interrupt Enable
1 Enable interrupt to CPU
0 Disable interrupt to CPU

MPC5121e Microcontroller Reference Manual, Rev. 2



Power Management Control Module (PMC)

Freescale Semiconductor 29-5

29.2.0.4 PMC Shadow Register (PMCSR)

29.2.1 Functional description

Based on the four power modes of the embedded low-power e300 Power Architecture CPU core, the 
module provides five power modes: full-power, doze, nap, sleep, and deep sleep mode. Special sleep 
modes are provided to allow core PLL reprogramming and pre-divider ratio adjustment. They are called 
core PLL change mode and pre-divider copy mode. A reference to what is running and what is disabled in 
the various sleep modes is given in Table 29-6. A reference on how sleep modes are entered and exited is 
provided in Table 29-7.

Offset 0x0C

Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0
PMCSR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 29-4. PMC Shadow Register (PMCSR)

Table 29-5. PMCSR Field Descriptions

Field Description

PMCSR Shadow Register. Holds the new CORE_PLL configuration to be used in the core PLL on-the-fly change 
mode.

Table 29-6. MPC5121e Power Modes

Mode e300 state
periphery 

clocks
e300 bus 
snooping

e300 time 
base 

registers

PLL, osc 
state

DRAM state
Wake-up time

Full Power Running Running Active Active Active Active < 0.1uS

Doze Suspended Running Active Active Active Active < 0.1uS

MPC5121e Microcontroller Reference Manual, Rev. 2



Power Management Control Module (PMC)

29-6 Freescale Semiconductor

Nap Suspended Running Suspended Active Active Depends15 < 0.1 uS2 

Sleep Suspended Running Suspended Suspended Active Depends15 < 0.1 uS2

Core Pll Change Suspended Running Suspended Suspended Active Active 40.000 IPS clk cycles

PRE_DIV Copy Suspended Running Suspended Suspended Active Active3 16.600 IPS clk cycles

Deep Sleep Suspended Suspende
d

Suspended Suspended Power-down4 Self-refresh5 53.300 OSC clk cycles+
40.000 IPS clk cycle +
DRAM wakeup time

1 DRAM state during nap and sleep mode depends on setting of DDROFF bit in the PMC configuration register, described in 
29.2.0.1. When putting DRAM interface in self-refresh mode during nap or sleep, no periphery-generated DRAM access is 
possible any more, and DRAM transfer initiated by peripherals with master capability (VIU, DIU, SATA, USB, DMA, PCI, FEC, 
and AXE) is unable to take place. If DRAM is left active, the transfer can continue while the core is in sleep mode.

2 To be increased with DRAM wakeup time if DRAM has been configured to self-refresh during nap or sleep mode.
3 DRAM remains active. However, in case DDR1 or DDR2 memory is used, software must generate DRAM PLL reset.
4 Other analog blocks, like USB PHY, SATA PHY, USB oscillator are not affected by deep sleep mode. If desired, they need to 

be put in a power-down state by software prior to entering deep sleep mode.
5 DRAM only goes to refresh state when core enters deep sleep mode if DRAM controller has been configured correctly. Please 

refer to chapter on DRAM controller.

Table 29-7. MPC5121e Power Modes – Sleep and Wake-Up Triggers

Power mode
Events leading to entering this sleep 

mode
Events leading to return to full power

Doze Set e300 DOZE bit (HID0[8]1 = 1)while
- POW bit in MSR2 register is set

Interrupt to the e300 PowerArchitecture core
Decrementer interrupt
Any reset
Machine check exception

Nap with
DRAM running

Set e300 NAP bit (HID0[9]1 = 1) while
- POW bit in MSR2 register is set
- PMCCR3 = 00001 

Interrupt to the e300 PowerArchitecture core
Decrementer interrupt
Any reset
Machine check exception

Nap with DRAM in 
self-refresh

Set e300 NAP bit (HID0[9]1 = 1) while
- POW bit in MSR2 register is set
- PMCCR3 = 00011

Interrupt to the e300 PowerArchitecture core
Decrementer interrupt
Any reset
Machine check exception

sleep with DRAM running Set e300 SLEEP bit (HID0[10]1 = 1) while
- POW bit in MSR2 register is set
- PMCCR3 = 00001

Interrupt to the e300 PowerArchitecture core
Any reset
Machine check exception

sleep with DRAM in 
self-refresh

Set e300 SLEEP bit (HID0[10]1 = 1) while
- POW bit in MSR2 register is set
- PMCCR3 = 00011

Interrupt to the e300 PowerArchitecture core
Any reset
Machine check exception

deep sleep Set e300 SLEEP bit (HID0[10]1 = 1) while
- POW bit in MSR2 register is set
- PMCCR3 = 00100

Asynchronous interrupt from GPIO, RTC, CAN
Power-on reset

Table 29-6. MPC5121e Power Modes (continued)

Mode e300 state
periphery 

clocks
e300 bus 
snooping

e300 time 
base 

registers

PLL, osc 
state

DRAM state
Wake-up time

 
 

MPC5121e Microcontroller Reference Manual, Rev. 2



Power Management Control Module (PMC)

Freescale Semiconductor 29-7

NOTE
When the PowerArchitecture core is in debug mode, the PMCCR register 
should be programmed to 00000. If the register is programmed to any other 
value, unpredictable operation can result when the PowerArchitecture core 
hits a breakpoint.

29.2.1.1 Full-Power Mode

This is the default power state of the e300 CPU core. In this power mode, the core is fully powered and 
the internal functional units are operating at the full-processor clock speed. If the dynamic power 
management mode is enabled, functional units that are idle automatically enter a low-power state without 
affecting performance, software execution, or external hardware.

29.2.1.2 Doze Mode

In doze mode, all functional units of the core are disabled except for the time base/decrementer registers 
and the bus snooping logic.

This mode is entered by programming the doze bit (HID0[8] = 1) when MSR[POW] bit is set. The e300 
core enters doze mode several processor clocks after these 2 bits are set.

An asynchronous interrupt, system management interrupt, decrementer interrupt, hard or soft reset, or 
machine check input (mcp) brings the core into the full-power state. The core in doze mode maintains the 
phase-locked loop (e300 PLL) in a full-power state and locked to the core external clock input 
(CSB_CLK), so a transition to the full-power state takes only a few processor clock cycles.

The doze mode is an e300 core only low-power mode, the system stays in full-powered mode while the 
core enters this mode. The core enters and exits doze mode without being controlled by the PMC.

29.2.1.3 Nap Mode

The nap mode further reduces e300 power consumption by disabling bus snooping, leaving only the time 
base register and the core PLL in a powered state. While the core enters nap mode, the system stays in 
full-powered mode.

Core PLL change mode Set e300 SLEEP bit (HID0[10]1 = 1) while
- POW bit in MSR2 register is set
- PMCCR3 = 01000

Interrupt to e300 PowerArchitecture core
Reset
Machine check exception

PRE_DIV copy mode Set e300 SLEEP bit (HID0[10]1 = 1) while
- POW bit in MSR2 register is set
- PMCCR3 = 10000

Interrupt to e300 PowerArchitecture core
Reset
Machine check exception

1 HID0 is a register inside the e300 PowerArchitecture core
2 MSR is a register inside the e300 PowerArchitecture core
3 PMCCR register is described in section 29.2.0.1/29-2.

Table 29-7. MPC5121e Power Modes – Sleep and Wake-Up Triggers (continued)

Power mode
Events leading to entering this sleep 

mode
Events leading to return to full power

MPC5121e Microcontroller Reference Manual, Rev. 2



Power Management Control Module (PMC)

29-8 Freescale Semiconductor

In this mode, bus snooping is disabled. The core waits until the snoop bus is idle before entering nap mode. 

When the DDROFF bit is set in the PMCCR register, described in 29.2.0.1/29-2 is set, the DRAM is put 
into self-refresh mode during nap mode. Setting the DDROFF bit requires the DRAM controller to be 
configured for putting the DRAM in self-refresh mode upon receipt of the request.

When putting the DRAM in self-refresh mode during nap mode, alternate masters (VIU, DIU, FEC, USB, 
DMA, AXE, SATA) cannot access DRAM any more. If the DRAM does not enter self-refresh mode, 
alternate masters can continue reading and writing from DRAM while the core is in a sleep mode.

To enter nap mode, the POW bit in the e300 MSR register must be set, then the COREFOFF bit in the 
PMCCR register, described in 29.2.0.1/29-2 must be set, before setting the nap bit (HID0[9] = 1) in an 
e300 system register.

The core returns to the full-power state upon receipt of an asynchronous interrupt, system management 
interrupt, decrementer interrupt, hard or soft reset, or machine check input (mcp) signal. A return to 
full-power state from the nap mode takes only a few processor clock cycles if the DRAM is not put in 
self-refresh mode. If the DRAM is put in self-refresh mode, the time is dominated by the DRAM wakeup 
time. When the core is in nap mode, another CSB master (for example PCI) may initiate CSB transactions 
directly without sending an interrupt to the core in advance. A PMC interrupt can be used to wakeup the 
core if enabled.

29.2.1.4 Sleep Mode

Sleep mode is an e300 core-only sleep mode. In this mode, the e300 enters sleep mode while the system 
stays in full-powered mode. The e300 sleep mode reduces the core power consumption to a minimum by 
disabling all core internal functional units.

In this mode, bus snooping is disabled. The core waits unit the snoop bus is idle before entering sleep 
mode. 

When the DDROFF bit in the PMCCR register, described in 29.2.0.1/29-2 is set, the DRAM is put into 
self-refresh mode during sleep mode. Setting the DDROFF bit requires the DRAM controller to be 
configured for putting the DRAM in self-refresh mode upon receipt of the request.

When putting the DRAM in self-refresh mode during sleep mode, alternate masters (VIU, DIU, FEC, 
USB, DMA, AXE, SATA) cannot access DRAM any more. If the DRAM does not enter self-refresh mode, 
alternate masters can continue reading and writing from DRAM, while the core is in a sleep mode.

To enter sleep mode, the POW bit in the e300 MSR register must be set, then the COREFOFF bit in the 
PMCCR register, described in 29.2.0.1/29-2 must be set, before setting the sleep bit (HID0[10] = 1) in an 
e300 system register.

In this mode, the system PLL, core external input clock (CSB_CLK), and e300 PLL are all maitained. The 
core returns to the full-power state upon receipt of an asynchronous interrupt, system management 
interrupt, hard or soft reset, or machine check input (mcp) signal. A return to full-power state from the 
sleep mode takes only a few processor clock cycles if the DRAM is not put in self-refresh mode. If the 
DRAM is put in self-refresh mode, the time is dominated by the DRAM wakeup time. When the core is in 

 

 

MPC5121e Microcontroller Reference Manual, Rev. 2



Power Management Control Module (PMC)

Freescale Semiconductor 29-9

sleep mode, another CSB master (for example PCI) may initiate CSB transfers directly without sending an 
interrupt to the core in advance. A PMC interrupt can be used to wakeup the core if enabled.

29.2.1.5 Deep Sleep Mode

The system provides a low-power consumption mode where the e300 core enters sleep mode. The system 
oscillator, system PLL, and e300 PLL are all powered down and disabled. While the module enters this 
mode, all internal functional units, except the real-time clock (RTC), are disabled. As the clocks are static, 
the current draw of the device is reduced to leakage level. The internal state of the device is maintained in 
deep sleep as long as power is maintained. The real-time clock (RTC) is not disabled in deep sleep mode. 
If the RTC is used, that portion of the chip continues consuming power in deep sleep mode.

In this mode, bus snooping is disabled. The core waits unit the snoop bus is idle before entering deep sleep 
mode. 

The DRAM is put into self-refresh mode during deep sleep mode. It is required that the DRAM controller 
is configured for putting the DRAM in self-refresh mode upon receipt of the request.

To enter deep sleep mode, the POW bit in the e300 MSR register must be set, then the DSM bit in the 
PMCCR register, described in 29.2.0.1/29-2 must be set, before setting the sleep bit (HID0[10] = 1) in an 
e300 system register

Any hard reset, or an asynchronous interrupt from GPIO, RTC or one of the CAN modules (which occurs 
when a data transition occurs on the serial input) can be used to bring the module back to the full-power 
state from deep sleep mode. No clock is required to trigger the wake up process in the case of the GPIO 
interrupt or the CAN module interrupt. However, the RTC clock must be present and running to wake up 
the core from deep sleep. On reception of a wakeup signal from GPIO, RTC, or MSCAN, PMC enables 
the system oscillator and system PLL in turn and waits for the oscillator to stable and system PLL and e300 
PLL to lock one-by-one. After the system clocks are back to full-power mode, the interrupt from GPIO, 
RTC, MSCAN, or any other peripheral may bring the e300 core back to the full-power state. The wakeup 
time is listed in Table 29-6.

During deep sleep mode, state of all peripherals is frozen. All state and data is retained in internal registers, 
but the peripherals stop reacting on triggers from outside (e.g. a UART does not see incoming data any 
more). Reinitialization may be needed after leaving deep sleep mode.

• Reinitialization is not needed if the peripheral does not need to resynchronize to an external 
interface, or if the resynchronization can be done without reinitialization

• Reinitialization is needed if the peripheral requires it to sync again with an external interface.

Reset is not needed after deep sleep mode.

NOTE
To use the RTC to wakeup module from the deep sleep mode, the ATC 
timeout and periodic interrupt (or alarm/stopwatch interrupt) must be used 
together. Program the RTC target time (TTR) register and enable one of the 
interrupt before entering the e300 to sleep mode.

MPC5121e Microcontroller Reference Manual, Rev. 2



Power Management Control Module (PMC)

29-10 Freescale Semiconductor

NOTE
While a pulse is applied on a GPIO pin to wakeup the module from deep 
sleep mode, the pulse should be wider than 2 ms.

29.2.2 Core PLL Change Mode

This mode can change the core PLL setting on-the-fly. To change core PLL setting, write the new setting 
to the shadow register (PMCSR) in PMC module, and then set the CCM bit in register PMCCR described 
in section 29.2.0.1/29-2. Because the core PLL needs relock, the core must enter sleep mode. 

To enter core PLL change mode, the POW bit in the e300 MSR register must be set, then the CCM bit in 
the PMCCR register, described in 29.2.0.1/29-2 must be set, before setting the sleep bit (HID0[10] = 1) in 
an e300 system register

In this mode, bus snooping is disabled. The core waits unit the snoop bus is idle before entering Core PLL 
change mode.

After the core enters sleep mode, PMC provides the updated core PLL configuration to the core.

During the core PLL change process, PMC blocks all interrupts to the core to make sure it’s not waked up 
while the PLL is not locked. The wakeup time is listed in Table 29-6. After the wake time, the PMC 
releases the interrupts and the PMC interrupt or any other interrupt can be used to wakeup the core from 
sleep mode.

29.2.3 PRE_DIV Copy Enable Mode

This mode can change the system clock divide ratio (SYS_DIV), also refered to as pre-divider ratio 
(PRE_DIV). To change the system clock divide ratio, write the new SYS_DIV value to the shadow register 
(SCFR2) in the CLOCK module, and then set the PRE_DIV bit in register PMCCR described in section 
29.2.0.1/29-2. Because the core PLL needs relock, the core must enter sleep mode. To enter sleep mode, 
the POW bit in the e300 MSR register must be set, then set the sleep bit (HID0[10] = 1). 

NOTE
If DDR1 or DDR2 DRAM is used, the DRAM PLL needs to relock because 
DRAM clock changes frequency. This needs to be done in software.

NOTE
Changing pre-divider factor changes all on-chip frequencies. This may 
upset certain peripherals, and require re-initialization. The device drivers of 
these peripherals must take care of this.

In this mode, bus snooping is disabled. The core waits unit the snoop bus is idle before entering Core PLL 
change mode.

After the core enters sleep mode, PMC waits several processor clocks for the core PLL to be switched off, 
and then asserts a copy_shadow signal to enable the CLOCK module to copy the new SYS_DIV value and 
update system clock frequency.

MPC5121e Microcontroller Reference Manual, Rev. 2



Power Management Control Module (PMC)

Freescale Semiconductor 29-11

During the PRE_DIV copy enable process (i.e. from the point when the core asserts the qreq signal to when 
the core PLL is locked to the new system clock input), PMC blocks all interrupts to the core to make sure 
it’s not waked up while the PLL is not locked. The wakeup time is listed in Table 29-6. After the wakeup 
time, the PMC releases the interrupts and the PMC interrupt or any other interrupt can be used to wakeup 
the core from sleep mode. Then, the system clock divide ratio change is done.

29.2.4 Low-Power Configurations

The following table summarizes the valid PMC and e300 settings that can be used to put the module into 
low-power mode, core PLL on-the-fly change mode, or pre-divider ratio copy enable mode.

Table 29-8. Valid PMC/e300 Low-Power Configurations

 Mode to 
Enter

e300 Mode 
to Enter

PRE_DIV
PMCCR[4]

CCM
PMCCR[3]

DSM
PMCCR[2]

DDROFF
PMCCR[1]

COREOFF
PMCCR[0]

e300
MSR[POW]

e300
HID0[8:10]

Doze Doze x x x x x 1 100

Nap Nap 0 0 0 0 1 1 010

Nap Nap 0 0 0 1 1 1 010

Sleep Sleep 0 0 0 0 1 1 001

Sleep Sleep 0 0 0 1 1 1 001

Deep Sleep Sleep 0 0 1 0 0 1 001

Core PLL 
Change

Sleep 0 1 0 0 0 1 001

PRE_DIV 
Copy

Sleep 1 0 0 0 8 1 001

MPC5121e Microcontroller Reference Manual, Rev. 2



Power Management Control Module (PMC)

29-12 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 30-1

Chapter 30  
Programmable Serial Controller (PSC)

30.1 Introduction
Each PSC can be clocked by an internal or external clock source. Figure 30-1 shows a simplified PSC 
block diagram. In addition, each PSC module interfaces directly to the CPU and consists of the following:

• Serial communication channel
• Programmable transmit (Tx) receive (Rx) clock generation
• Internal channel control logic
• Interrupt control logic

The PSC also provides a MCLK for the external codec, eliminating the need for an external crystal for the 
external device. For more information about the codec mode, see Section 30.5.2, “PSC in Codec Mode”.

Figure 30-1. Block Diagram

Serial

Interrupt
Control Logic

Control Lines

Internal Channel
Control Logic

Programmable 
Tx/Rx Clock 

Communications
Channel

Generation 
Internal Clock

Source 
External Clock
Source 

PSC

Interrupt Controller

Interface to
the FIFOC RxD

TxD

Note:  During Codec Mode the number of available TxD and RxD lines is depend on the 
configuration of the Rx-Tx Channels fields of register MR2.

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-2 Freescale Semiconductor

30.2 Memory Map
The register address is calculated as base address for the regarding PSC plus the offset value. Table 30-1 
shows the list with all implemented registers and the associated offset value.

PSC module operation is controlled by writing control bytes into the appropriate registers.

Table 30-1. PSC Memory Map

Offset Register Name Register Width Access

00 Mode Register 1 (MR1) 8 R/W

00 Mode Register 2 (MR2) 8 R/W

04 Status Register (SR) 16 R

04 Clock Select Register (CSR) 16 W

08 Command Register (CR) 8 W

0C Rx Buffer Register (RB) 32 R

0C Tx Buffer Register (TB) 32 W

10 Input Port Change Register (IPCR) 8 R

10 Auxiliary Control Register (ACR) 8 W

14 Interrupt Status Register (ISR) 16 R

14 Interrupt Mask Register (IMR) 16 W

18 Counter Timer Upper Register (CTUR) 8 W

1C Counter Timer Lower Register (CTLR) 8 W

20 Codec Clock Register (CCR) 32 R/W

24 AC97 Slots Register (AC97Slots) 32 W

28 AC97 Command Register (AC97CMD) 32 R/W

2C AC97 Status Data Register (AC97Data) 32 R

30 Reserved

34 Input Port Register (IP) 8 R

38 Output Port 1 Bit Set (OP1) 8 W

3C Output Port 0 Bit Set (OP0) 8 W

40 Serial Interface Control Register (SICR) 32 R/W

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-3

30.2.1 Register Descriptions

The terms assertion and negation are used to avoid confusion between active-low and active-high signals.

Asserted indicates a signal is active, independent of the voltage level. Negated indicates a signal is 
inactive.

30.2.1.1 Mode Register 1 (MR1)

The mode registers control configuration. MR1 can be read or written when the mode register pointer 
points to it, at reset or after a reset mode register pointer command using CR[MISC]. After MR1 is read 
or written, the pointer points to MR2.
Offset 0x00 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0
R

RxRTS Time Out En PM PT B/C
W

Reset 0 0 0 0 0 0 0 0
= Unimplemented or Reserved

Figure 30-2. Mode Register 1 for UART Mode (MR1)

Offset 0x00 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0
R
W

Reset 0 0 1 1 0 0 1 1
= Unimplemented or Reserved

Figure 30-3. Mode Register 1 for Other Modes (MR1)
(Registers are repeated for reference.)

Table 30-2. MR1 Field Descriptions
Field Description

RxRTS UART. Receiver request-to-send. Allows RTS output to control the CTS input of the transmitting 
device to prevent receiver overrun. If the receiver and transmitter are incorrectly programmed for RTS 
control, RTS control is disabled for both. Transmitter RTS control is configured in MR2[TxRTS]. Not 
used in codec mode.
0 Receiver has no effect on RTS.
1 When a valid start bit is received, RTS is negated if the PSC FIFO is full.

Other Modes. Reserved.
Time Out En UART. Enable the time out counter. If the time out counter is disabled, the TIME OUT status in the 

SR is also cleared.
0 Time out counter is disabled
1 Time out counter is enabled

Other Modes. Reserved.
PM UART. Parity mode. Selects the parity or multi-drop mode for the channel. The parity bit is added to 

the transmitted character, and the receiver performs a parity check on incoming data. The value of 
PM affects PT, as shown Table 30-3. PM is not used in codec mode.

Other Modes. Reserved.

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-4 Freescale Semiconductor

.

PT UART. Parity Type. PM and PT together select parity type (PM = 0x) or determine whether a data or 
address character is transmitted (PM = 11). PT is not used in codec mode. See Table 30-3.

Other Modes. Reserved.
B/C UART. Bits per Character. Selects the number of data bits per character to be sent. The values shown 

do not include start, parity, or stop bits. B/C is not used in codec mode.
00 5 bits
01 6 bits
10 7 bits
11 8 bits

Other Modes. Reserved.

Table 30-3. Parity Mode/Parity Type Definitions

PM Parity Mode Parity Type (PT=0) Parity Type (PT=1)

00 With parity Even parity Odd parity

01 Force parity Low parity High parity
10 No parity n/a

11 Multidrop mode Data character Address character

Offset 0x00 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0
R

RxRTS Time Out En PM PT B/C
W

Reset 0 0 0 0 0 0 0 0
= Unimplemented or Reserved

Figure 30-2. Mode Register 1 for UART Mode (MR1)

Offset 0x00 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0
R
W

Reset 0 0 1 1 0 0 1 1
= Unimplemented or Reserved

Figure 30-3. Mode Register 1 for Other Modes (MR1)
(Registers are repeated for reference.)

Table 30-2. MR1 Field Descriptions (continued)
Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-5

30.2.1.2 Mode Register 2 (MR2)

MR2 can be read or written when the Mode register pointer points to it, which occurs after any access to 
MR1. An MR2 access does not update the mode register address.

Offset 0x00 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
CM TxRTS TxCTS SB

W
Reset 0 0 0 0 0 0 0 0

Figure 30-4. Mode Register 2 for UART Mode (MR2)
Offset 0x00

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
CM RX-Tx Channels

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-5. Mode Register 2 for Other Modes (MR2)
(Registers are repeated for reference.)

Table 30-4. MR2 Field Descriptions

Field Description

CM Channel mode. Selects a channel mode. CM is used in UART and codec modes. 
00 Normal
01 Automatic echo
10 Local loop-back
11 Remote loop-back

TxRTS UART. Transmitter ready-to-send. Controls negation of RTS to automatically terminate a message 
transmission. Attempting to program a receiver and transmitter in the same channel for RTS control 
is not permitted and disables RTS control for both. TxRTS is not used in codec mode. 
0 The transmitter has no effect on RTS.
1 Setting this bit automatically clears RTS line one bit-time after any characters in the transmitter 

shift registers are completely sent, including the programmed number of stop bits.
Other Modes. Reserved.

TxCTS UART. Transmitter clear-to-send. If TxCTS and TxRTS are enabled, TxCTS controls the operation of 
the transmitter. TxCTS is not used in Codec mode.
0 CTS has no effect on the transmitter.
1 Enables clear-to-send operation. The transmitter checks the state of CTS each time it is ready to 

send a character.

If CTS is asserted then character is sent

If it is negated, the channel TxD remains in a high state and transmission is delayed until CTS is 
asserted. 

Changes in CTS as a character is being sent do not affect its transmission.

Other Modes. Reserved.

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-6 Freescale Semiconductor

SB UART. Stop-Bit (length control). Selects the stop bit length appended to the transmitted character. 
Stop-bit lengths of 9/16th to 2 bits are programmable for 6- and 8-bit characters. Lengths of 1 1/16th 
to 2 bits are programmable for 5-bit characters. In all cases, the receiver checks only for a high 
condition at the center of the first stop-bit position, that is, one bit-time after the last data bit or after 
the parity bit, if parity is enabled. Therefore, the receiver doesn’t support a stop bit length less than 
one. Not used in codec mode, see Table 30-5.

Other Modes. Reserved.

RX - TX Channels Codec. Define the number of used Rx and Tx channels. Up to three Rx and Tx channels are 
supported, but the PSC interface only supports three data lines (Rx + Tx). Therefore, the maximum 
number of Rx channels is also depend on the programmed number of Tx channels.

0000 = 1 Rx, 1 Tx
0001 = 1 Rx, 2Tx
0010 = 0 Rx, 3Tx
0100 = 2 Rx, 1 Tx
1000 = 3 Rx, 0Tx
other = not supported

For more information about the pin muxing see Table 30-25
Other Modes. Reserved.

Table 30-5. Stop-Bit Lengths

SB 5 Bits 6–8 Bits SB 5 Bits 6–8 Bits SB 5–8 Bits SB 5–8 Bits

0000 1.063 0.563 0100 1.313 0.813 1000 1.563 1100 1.813

0001 1.125 0.625 0101 1.375 0.875 1001 1.625 1101 1.875

0010 1.188 0.688 0110 1.438 0.938 1010 1.688 1110 1.938

0011 1.250 0.750 0111 1.500 1.000 1011 1.750 1111 2.000

Offset 0x00 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
CM TxRTS TxCTS SB

W

Reset 0 0 0 0 0 0 0 0

Figure 30-4. Mode Register 2 for UART Mode (MR2)
Offset 0x00

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
CM RX-Tx Channels

W

Reset 0 0 0 0 0 0 0 0
= Unimplemented or Reserved

Figure 30-5. Mode Register 2 for Other Modes (MR2)
(Registers are repeated for reference.)

Table 30-4. MR2 Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-7

30.2.1.3 Status Register (SR)

The read-only SR register shows status of the transmitter, the receiver, and the FIFO.
 

Offset 0x04 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R RB/

EOF
FE PE

ORE
RR

TXE
MP

CDE
ERR
OR

TIME 
OUT

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= UNIMPLEMENTED OR RESERVED
Figure 30-6. Status Register for UART Mode (SR)

Offset 0x04 Access: User read only

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R

ORE
RR

URE
RR

ERR
OR

CMD
_SEN

D

DATA
_OVR

DATA
_VALI

D

UNE
X_RX

_
SLOT

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
Figure 30-7. Status Register for Other Mode (SR)

(Registers are repeated for reference.)

Table 30-6. SR Field Descriptions (Sheet 1 of 3)
Field Description

RB/EOF UART. Received Break. Detects breaks originating in middle of received character. Such a break must persist 
until the end of next detected character time. 
0 No break received.
1 An all-0 character of the programmed length was received without a stop bit.Only a single FIFO position is 

occupied when a break is received. Further entries to FIFO are inhibited until RxD returns to high state for 
at least one-half bit-time, which equals two successive PSC clock edges.

Other Modes. Reserved.
FE UART. Framing Error. Not used (always 0) in codec mode.

0 No framing error occurred.
1 No stop bit detected when corresponding FIFO data character received. Stop bit-check occurs in middle 

of first stop bit position.

Other Modes. Reserved.
PE UART. Parity Error. PE is not used (always 0) in codec mode.

0 No parity error occurred.
1 If MR1[PM]equals 0x (with parity or force parity), corresponding FIFO character was received with 

incorrect parity. If MR1[PM] equals 11 (multidrop), PE stores received A/D bit.

Other Modes. Reserved.
ORERR Overrun Error. Indicates whether an overrun occurs. For purposes of overrun, FIFO full means all FIFO space 

is occupied; the Rx FIFO threshold is irrelevant to overrun.
0 No overrun occurred.
1 One or more characters in Rx data stream were lost. ORERR sets on receipt of a new character when 

FIFO is full and a character is already in the shift register waiting for an empty FIFO position. When this 
occurs, the character in the Rx shift register and its break detect, framing error status, and parity error, if 
any, are lost.

This bit is cleared by a reset error status command in the CR and not by a reset Tx command in the CR.

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-8 Freescale Semiconductor

TXEMP/URERR UART. Transmitter Empty.
0 Tx buffer not completely empty. Either a character is being shifted out, or Tx is disabled. Tx is 

enabled/disabled by programming CR [TC].
1 Tx has underrun (both the Tx holding register and Tx shift registers are empty). This bit sets after 

transmission of the last stop bit of a character, if there are no characters in the Tx holding register awaiting 
transmission.

Other Modes. Underrun Error.
0 No error.
1 Underrun error occurred, which means the number of Tx FIFO bytes is 0, the Tx shift register is empty, and 

a FrameSync occurs. In other words, the time has come to transmit a new sample, but no sample is 
available in the Tx shift register. Unlike UART mode, TxEMP high indicates an error condition similar to the 
overrun condition (ORERR = 1). It is now cleared the same way as ORERR by a RESET ERROR STATUS 
command in the CR and not by a reset Tx command in the CR.

CDE/DEOF UART. DCD Status.
0 The DCD input is negated while receiving data.
1 No error
Other Modes. Reserved

ERROR Error Status Detect.
0 No errors connected
1 The PSC controller detect an error state. This error is a combination of the error bits: RB, FE, PE, URERR, 

ORERR from this register and RX and RX FIFO bit from the TFSTAT and RFSTAT register.

Other Modes. Reserved.
TIME OUT UART. Time Out.

0 No Time out event occurred
1 Time out event occurred.

Other Modes. Reserved

Offset 0x04 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R RB/

EOF
FE PE

ORE
RR

TXE
MP

CDE
ERR
OR

TIME 
OUT

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= UNIMPLEMENTED OR RESERVED
Figure 30-6. Status Register for UART Mode (SR)

Offset 0x04 Access: User read only

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R

ORE
RR

URE
RR

ERR
OR

CMD
_SEN

D

DATA
_OVR

DATA
_VALI

D

UNE
X_RX

_
SLOT

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
Figure 30-7. Status Register for Other Mode (SR)

(Registers are repeated for reference.)

Table 30-6. SR Field Descriptions (Sheet 2 of 3)
Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-9

CMD_SEND AC97 Mode. Command Send Ready.

0 The data in the AC97CMD register was sent out by the AC97 transmitter
1 The data in the AC97CMD register was not sent out. A write access to the AC97CMD register sets this bit 

to one. After the AC97 transmitter sends out the CMD data, this bit is cleared.
Other Modes. Reserved

DATA_OVR AC97 Mode. Receive Status Data Overwrite.

0 No received status data overwrite.
1 The received frame contains a new valid data status word in slot 2, but the previous received status data 

word was not read out before the new one was written to the AC97data register. Therefore, the old status 
data word was lost. A read access to the AC97 data register clears this bit.

Other Modes. Reserved.
DATA_VALID AC97 Mode. Received Status Data.

0 The received frame doesn’t contains valid status data.
1 The received frame contains a valid data status word in slot 2. The received data are located in the AC97 

data register. A read access to the AC97data register clears this bit.
Other Modes. Reserved.

UNEX_RX_
SLOT

AC97 Mode. Unexpected Receive Slots Detect.

0 The received frame contains the slots defined in the AC97 slots register or a frame without AC97 data 
(frame is empty or contains only slot 1 or slot 2 data). The case that the receive frame contains all expected 
data slots plus additional data slots is also excepted. The Rx data of the frame that matches thiss rule is 
written to the RX FIFO.

1 The AC97 receiver detects a frame which is not matching the rules above. The Rx data of the frame which 
triggers this bit is ignored.

Other Modes. Reserved.

Offset 0x04 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R RB/

EOF
FE PE

ORE
RR

TXE
MP

CDE
ERR
OR

TIME 
OUT

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= UNIMPLEMENTED OR RESERVED
Figure 30-6. Status Register for UART Mode (SR)

Offset 0x04 Access: User read only

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R

ORE
RR

URE
RR

ERR
OR

CMD
_SEN

D

DATA
_OVR

DATA
_VALI

D

UNE
X_RX

_
SLOT

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
Figure 30-7. Status Register for Other Mode (SR)

(Registers are repeated for reference.)

Table 30-6. SR Field Descriptions (Sheet 3 of 3)
Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-10 Freescale Semiconductor

30.2.1.4 Clock Select Register (CSR)

The device supports internal and external clocks as source for the UART clock generation. For the UART 
clock generation, a prescaler by 32 or 10 is available. After reset, the prescaler by 10 for the UART mode 
is selected.

Offset 0x04 Access: User write only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W RCS TCS

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-8. Clock Select Register for UART Mode (CSR)

Offset 0x04 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-9. Clock Select Register for Other Modes (CSR)

Table 30-7. CSR Field Descriptions

Field Description

RCS UART. Receiver Clock Select Register
0000–1101 Choose the prescaler by 32 for the UART receive clock generation
1110 Choose the external clock source
1111 Choose the prescaler by 10 for the UART receive clock generation

Other Modes. Reserved

TCS UART. Transmitter Clock Select Register
0000–1101 Choose the prescaler by 32 for the UART transmit clock generation
1110 Choose the external clock source
1111 Choose the prescaler by 10 for the UART transmit clock generation
Other Modes. Reserved

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-11

30.2.1.5 Command Register (CR)

The command registers (CR) provide the commands to the PSC in all modes. Only multiple commands 
that do not conflict can be specified in a single write to a CR. For example, reset Tx and enable Tx cannot 
be specified in one command.

Offset 0x08 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
MISC TC RC

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-10. Command Register for all Modes (CR)
(Register is repeated for reference.)

Table 30-8. CR Field Descriptions (Sheet 1 of 3)

Field Value Command Description

MISC 000 No command —

001 Reset mode
register
pointer

Causes MR register address to point to MR1.

010 Reset
receiver

Immediately disables receiver and re-initializes receiver FIFO pointer. No other 
registers are altered. Because it places the receiver in a known state, use this 
command instead of RECEIVER DISABLE when reconfigure the receiver.

011 Reset
transmitter

In UART mode, this bit immediately disables Tx and clears SR[TxEMP]. No other 
registers are altered. Because it places Tx in a known state, use this command instead 
of transmitter disable when reconfigure transmitter.
In codec mode, the Tx prefetch register is cleared and URERR is not cleared by this 
soft reset. It is cleared the same way as the Rx overflow bit, by a RESET ERROR 
STATUS command.

100 Reset error
status

In UART mode, clears ISR[RB,FE,PE,ORERR]. 
In codec mode, command clears ISR[ORERR, URERR, DEOF, CMD_SEND, 
DATA_OVR, DATA_VALID, and UNEX_RX_SLOT]]

101 Reset break
change
interrupt

Clears the delta break bit, ISR[DB]. Command has no effect in codec mode.

110 Start break Forces TxD low

 • If Tx is empty, break may be delayed up to one bit-time.
 • If Tx is active, break starts when character transmission completes.
Break is delayed until any character in Tx shift register is sent. Any character in Tx 
holding register is sent after the break. Tx must be enabled for command to be 
accepted. This command ignores the CTS state and has no effect in codec mode.

111 Stop break Causes TxD to go high (mark) within two bit-times. Any characters in the Tx buffer are 
sent.

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-12 Freescale Semiconductor

TC 00 No action
taken

Causes Tx to stay in current mode. 
 • If Tx is enabled, it remains enabled.
 • If Tx is disabled, it remains disabled.

01 Transmitter
enable

Enables operation of Tx channels. SR[TxEMP] sets. If Tx is already enabled, this 
command has no effect.
In UART Mode:

TxEMP bits in SR become asserted.
In Codec Mode: 

Tx FIFO can be loaded while Tx is disabled, unlike in UART mode. Therefore this 
command does not affect URERR behavior. It does not automatically set URERR. 
If no data is written to Tx FIFO, URERR sets at the first FrameSync after Tx is 
enabled.

In AC97 Mode:
URERR sets if Tx FIFO is empty, Tx is enabled, Rx detects a codec ready condition, 
and a FrameSync occurs before samples are written to the Tx FIFO.

Note: In codec/AC97 mode, it’s not possible to use the transmitter without the receiver. 
To transmit data only, the receiver must be enabled.

10 Transmitter
disable

Terminates Tx operation and clears SR[TxEMP].
 • If a character is being sent when Tx is disabled, transmission completes before Tx 

becomes inactive.
 • If Tx is already disabled, the command has no effect.

In UART Mode:
SR[TxEMP] are negated.

In Codec Mode
SR[TxEMP] is negated.

Tx does not clear unless PSC is in remote loop-back or auto-echo mode. In codec 
mode, unlike UART mode, the Tx FIFO may be loaded while Tx is disabled.

11 — Reserved, do not use

Offset 0x08 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
MISC TC RC

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-10. Command Register for all Modes (CR)
(Register is repeated for reference.)

Table 30-8. CR Field Descriptions (Sheet 2 of 3)

Field Value Command Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-13

RC 00 No action
taken

Causes receiver to stay in current mode. 
 • If receiver is enabled, it remains enabled.
 • If receiver is disabled, it remains disabled.

01 Receiver
enable

Enables receiver
 • If PSC module is not in multidrop mode (MR1[PM] ≠ 11), RECEIVER ENABLE 

command enables channel's receiver and forces it into a search-for-start-bit state. 
In multidrop mode the Rx continuously monitors the received data regardless of 
whether it is enabled or not.

 • If receiver is already enabled, this command has no effect.

10 Receiver 
disable

Immediately disables receiver. In UART mode any character being received is lost. The 
command does not affect receiver status bits or other control registers.
 • If the PSC module is programmed for local loop-back or multidrop mode, the 

receiver operates even though this command is selected. 
 • If the receiver is already disabled, the command has no effect. 
In codec mode, if the receiver is disabled while a character is being received, reception 
completes before the receiver becomes inactive.

11 — Reserved, do not use.

Note: The RC field selects a single command.

Offset 0x08 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
MISC TC RC

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-10. Command Register for all Modes (CR)
(Register is repeated for reference.)

Table 30-8. CR Field Descriptions (Sheet 3 of 3)

Field Value Command Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-14 Freescale Semiconductor

30.2.1.6 Rx Buffer Register (RB)

Read access from this read only register reads the data directly from the Rx shift register. This access 
bypasses the data in the RX FIFO. Use the data register in the RX FIFO to read the Rx data. 

Offset 0x0C Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RB[0:15]

W Used by Tx Buffer

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RB[16:31]

W Used by Tx Buffer

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-11. Rx Buffer Register for UARTR/Codec8/16/32 Modes (RB)

Offset 0x0C Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RB[0:15]

W Used by Tx Buffer

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RB[16:19] SOF

W Used by Tx Buffer

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-12. Rx Buffer Register for AC97 Mode (RB)

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-15

Offset 0x0C Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RB[0:15]

W Used by Tx Buffer

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RB[16:23]

W Used by Tx Buffer

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-13. Rx Buffer Register for Codec24 Mode (RB)

Table 30-9. RB Field Descriptions

Field Description

RB AC97 (0:19). Received data. AC97 data must be read one complete sample at a time, where all samples 
except time slot #0 are 20 bits. Time slot #0 data is in bits 0:15. Bit 20 is 1 in the first sample of a new frame. 
Bit 20 contains the start of frame indicator:
0 RB[0:19] is not the first sample in the frame.
1 RB[0:15] is the first sample in a new frame. The number 0 slot is called the TAG slot.
The bits [21:31] are reserved at this mode.
UART/Codec8 (0:31). Received data. For these modes, data can be read one, two, or four bytes at a time. 
For one byte at a time, all bytes must be read from bits 0:7. For two bytes at a time, data must be read from 
bits 0:15. Lower-bit data was received before upper-bit data.
Codec16 (0:31). Received data. For these modes, data can be read two or four bytes at a time. For two bytes 
at a time, data must be read from bits 0:15. Lower-bit data was received before upper-bit data.
Codec24 (0:23). Received data. For these modes, data must be read four bytes at a time. The lower 24 bits 
contain the received data word.
Codec32 (0:31). Received data. For these modes, data must be read four bytes at a time.

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-16 Freescale Semiconductor

30.2.1.7 Tx Buffer Register (TB)

Writing to this register places data directly into the Tx shift register. This access bypasses the data in the 
Tx FIFO. Use the data register in the Tx FIFO to provide the Tx data.

Offset 0x0C Access: User read only

Power

Architecture

msb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R Used by Rx Buffer

W TB[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R Used by Rx Buffer

W TB[16:31]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-14. Tx Buffer Register for UART/Codec8/16/32 Modes (TB)

Offset 0x0C Access: User read only

Power

Architecture

msb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R Used by Rx Buffer

W TB[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R Used by Rx Buffer

W TB[16:19]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-15. Tx Buffer Register for AC97 Mode (TB)

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-17

Offset 0x0C Access: User read only

Power

Architecture

msb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R Used by Rx Buffer

W TB[0:15]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R Used by Rx Buffer

W TB[16:23]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-16. Tx Buffer Register for Codec24 Mode (TB)

Table 30-10. TB Field Descriptions

Field Description

TB AC97 (0:19). Transmit data. AC97 data must be written one complete sample at a time, where all samples 
except time slot #0 are 20 bits. Time slot #0 data is in bits 0:15.
0 RB[0:19] is not the first sample in the frame.
1 RB[0:15] is the first sample in a new frame. The number 0 slot is called the TAG slot.
The bits [21:31] are reserved at this mode.
AC97 (0:19). Transmit data. AC97 data for the expected time slots (3 to 12). The lower 20 bits contain the 
valid data word.
UART/Codec8 (0:31). Transmit data. For these modes, data can be written one, two, or four bytes at a time. 
For one byte at a time, all bytes must be written to bits 0:7. For two bytes at a time, data must be written to 
bits 0:15. Lower-bit data is stored before upper-bit data.
Codec16 (0:31). Transmit data. For these modes, data can be written two or four bytes at a time. For 2 bytes 
at a time, data must be written to bits 0:15. Lower-bit data is stored before upper-bit data.
Codec24 (0:23). Transmit data. For these modes, data must be written four bytes at a time. The lower 24 bits 
contain the valid data word.
Codec32 (0:31). Transmit data. For these modes, data must be written four bytes at a time.

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-18 Freescale Semiconductor

30.2.1.8 Input Port Change Register (IPCR)

The read-only IPCR register shows the current state and change-of-state for the modem control input port.

Offset 0x010 Access: User read only

Power

Architecture

msb 0 1 2 3 4 5 6 7 lsb

Conventional 7 6 5 4 3 2 1 0

R D_DCD D_CTS DCD CTS

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-17. Input Port Change Register for UART Modes (IPCR)

Offset 0x010 Access: User read only

Power

Architecture

msb 0 1 2 3 4 5 6 7 lsb

Conventional 7 6 5 4 3 2 1 0

R SYNC D_DCD D_CTS DCD CTS

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-18. Input Port Change Register for Codec Mode (IPCR)

Table 30-11. IPCR Field Descriptions

Field Description

SYNC Codec. Sync detected.
0 Has not detected sync.
1 Detected sync condition (FrameSync signal = 1 in Codec Modes or Sync = 1 in AC97 mode)
Other Modes. Reserved.

A read access to this register clears the SYNC bit

D_DCD Delta DCD.
0 No change-of-state has occurred since the last time the CPU read the IPCR. A read of the IPCR 

also clears the IPCR D_DCD bit.
1 A change of state (1/16 or 1bit duration determined by the CSR, CTUR and CTLR) has occurred 

at DCD input. When this bit is set, the ACR can be programmed to generate an interrupt to the 
processor.

D_CTS Delta CTS.
0 No change-of-state has occurred since the last time the CPU read the IPCR. A read of the IPCR 

also clears the IPCR D_CTS bit.
1 A change of state, lasting a certain time, has occurred at CTS input. When this bit is set, the ACR 

can be programmed to generate an interrupt to the processor.

After the enable of the PSC, the CPU must read this bit to make sure this bit is cleared at the beginning 
of the transmission.

DCD Current state of DCD port. This input is double latched.
0 The current state of the DCD input port is low.
1 The current state of the DCD input port is high.

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-19

30.2.1.9 Auxiliary Control Register (ACR)

The write-only ACR register controls Tx/Rx handshaking.

CTS Current state of CTS port. This input is double latched.
0 The current state of the CTS input port is low.
1 The current state of the CTS input port is high.

Offset 0x010 Access: User write only

Power

Architecture

msb 0 1 2 3 4 5 6 7 lsb

Conventional 7 6 5 4 3 2 1 0

R

W IEC1 IEC0

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-19. Auxiliary Control Register for all Modes (ACR)

Table 30-12. ACR Field Descriptions

Field Description

IEC1 Interrupt Enable Control for D_DCD.
0 D_DCD has no effect on the IPC in the ISR.
1 When the D_DCD becomes high, IPC bit in the ISR sets (causing an interrupt if mask is set).

Offset 0x010 Access: User read only

Power

Architecture

msb 0 1 2 3 4 5 6 7 lsb

Conventional 7 6 5 4 3 2 1 0

R D_DCD D_CTS DCD CTS

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-17. Input Port Change Register for UART Modes (IPCR)

Offset 0x010 Access: User read only

Power

Architecture

msb 0 1 2 3 4 5 6 7 lsb

Conventional 7 6 5 4 3 2 1 0

R SYNC D_DCD D_CTS DCD CTS

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-18. Input Port Change Register for Codec Mode (IPCR)

Table 30-11. IPCR Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-20 Freescale Semiconductor

IEC0 Interrupt Enable Control for D_CTS.
0 D_CTS has no effect on the IPC in the ISR.
1 When the D_CTS becomes high, IPC bit in the ISR sets (causing an interrupt if mask is set).
After enabling the PSC, the D_CTS bit can be set. Therefore, it’s important to clear the D_CTS bit 
before enabling this interrupt.

Offset 0x010 Access: User write only

Power

Architecture

msb 0 1 2 3 4 5 6 7 lsb

Conventional 7 6 5 4 3 2 1 0

R

W IEC1 IEC0

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-19. Auxiliary Control Register for all Modes (ACR)

Table 30-12. ACR Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-21

30.2.1.10 Interrupt Status Register (ISR)

The read-only ISR register provides status for all potential interrupt sources. Register contents are masked 
by the IMR.

• If an ISR flag sets and the corresponding IMR bit is also set, the internal interrupt output is asserted. 
• If the corresponding IMR bit is cleared, the ISR bit state has no effect on the interrupt output.

Offset 0x14 Access: User read only

Power

Architecture

msb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lsb

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IPC ORERR TxEMP DB Error

Time 
Out

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-20. Interrupt Status Register for UART Mode

Offset 0x14 Access: User read only

Power

Architecture

msb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lsb

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IPC ORERR URERR Error

CMD_
SEND

DATA_
OVR

DATA_
VALID

UNEX_
RX_

SLOT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-21. Interrupt Status Register for Other Modes
(Register is repeated for reference.)

Table 30-13. ISR Field Descriptions (Sheet 1 of 3)

Field Description

IPC Input port change interrupt.
0 No IPC event has occurred.
1 An IPC event has occurred.

ORERR Overrun Error
This bit is identical to the ORERR bit in the SR register. To clear this interrupt use the reset error status 
command in the CR register.

TxEMP/
URERR

UART. TxEMP
This bit is identical to the URERR bit in the SR register.

Other Modes. Underrun Error

This bit is identical to the URERR bit in the SR register. To clear this interrupt use the reset error status 
command in the CR register.

DB UART. Delta Break

Receiver detected an Delta Break state.

Other Modes. Reserved

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-22 Freescale Semiconductor

Reserved Other Modes. Reserved.

Error Error

This bit is identical to the error bit in the SR register. To clear this interrupt, use the reset error status command 
in the CR register.

Time Out UART. Time Out

This bit is identical to the TimeOut bit in the SR register.
Other Modes. Reserved

CMD_SEND AC97 Mode. Command Send ready

This bit is identical to the CMD_SEND bit in the SR register. To clear this interrupt use the reset error status 
command in the CR register.

other Modes. Reserved.

DATA_OVR AC97 Mode. Receive Data Overwrite

This bit is identical to the DATA_OVR bit in the SR register. To clear this interrupt, use the reset error status 
command in the CR register.

Other Modes. Reserved.

DATA_VALID AC97 Mode. Received Status Data

This bit is identical to the DATA_VALID bit in the SR register. To clear this interrupt, use the reset error status 
command in the CR register.

Other Modes. Reserved.

Offset 0x14 Access: User read only

Power

Architecture

msb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lsb

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IPC ORERR TxEMP DB Error

Time 
Out

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-20. Interrupt Status Register for UART Mode

Offset 0x14 Access: User read only

Power

Architecture

msb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lsb

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IPC ORERR URERR Error

CMD_
SEND

DATA_
OVR

DATA_
VALID

UNEX_
RX_

SLOT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-21. Interrupt Status Register for Other Modes
(Register is repeated for reference.)

Table 30-13. ISR Field Descriptions (Sheet 2 of 3)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-23

UNEX_RX_
SLOT

AC97 Mode. Unexpected RX Slots detect

This bit is identical to the UNEX_RX_SLOT bit in the SR register. To clear this interrupt, use the reset error 
status command in the CR register.

Other Modes. Reserved.

Offset 0x14 Access: User read only

Power

Architecture

msb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lsb

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IPC ORERR TxEMP DB Error

Time 
Out

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-20. Interrupt Status Register for UART Mode

Offset 0x14 Access: User read only

Power

Architecture

msb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lsb

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IPC ORERR URERR Error

CMD_
SEND

DATA_
OVR

DATA_
VALID

UNEX_
RX_

SLOT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-21. Interrupt Status Register for Other Modes
(Register is repeated for reference.)

Table 30-13. ISR Field Descriptions (Sheet 3 of 3)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-24 Freescale Semiconductor

30.2.1.11 Interrupt Mask Register (IMR)

The write-only IMR register selects corresponding bits in the ISR that cause an interrupt.
• If one ISR bit is set and the corresponding IMR bit is also set, the internal interrupt output is 

asserted.
• If the corresponding bit in IMR is 0, the state of the ISR bit has no effect on the interrupt output. 

The IMR does not mask reading the ISR.

Offset 0x14 Access: User write only

Power

Architecture

msb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lsb

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W
IPC ORERR TxEMP DB Error

Time 
Out

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-22. Interrupt Mask Register for UART Mode (IMR)

Offset 0x14 Access: User write only

Power

Architecture

msb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lsb

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W
IPC ORERR URERR Error

CMD_
SEND

DATA_
OVR

DATA_
VALID

UNEX_
RX_

SLOT

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-23. Interrupt Mask Register for Other Modes (IMR)
(Registers are repeated for reference.)

Table 30-14. IMR Field Descriptions (Sheet 1 of 3)

Field Description

IPC Input port change interrupt.
0 IPC has no effect on the interrupt.
1 Enable the interrupt for IPC in the ISR register.

ORERR Overrun Error
0 ORERR has no effect on the interrupt.
1 Enable the interrupt for ORERR

TxEMP/
URERR

UART. TxEMP
0 TxEMP has no effect on the interrupt.
1 Enable the interrupt for TxEMP

Other Modes. Underrun Error.
0 URERR has no effect on the interrupt.
1 Enable the interrupt for URERR.

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-25

DB UART. Delta Break
0 DB has no effect on the interrupt.
1 Enable the interrupt for DB
Other Modes. Reserved

Reserved Other Modes. Reserved.

Error Error
0 Error bit in the ISR register has no effect on the interrupt.
1 Enable the interrupt for Error.

Time Out UART. Time Out
0 Time Out has no effect on the interrupt.
1 Enable the interrupt for Time Out
Other Modes. Reserved

CMD_SEND AC97 Mode. Command Send ready
0 CMD_SEND bit in the ISR register has no effect on the interrupt.
1 Enable the interrupt for CMD_SEND
Other Modes. Reserved.

DATA_OVR AC97 Mode. Receive Data Overwrite
0 DATA_OVR bit in the ISR register has no effect on the interrupt.
1 Enable the interrupt for DATA_OVR

Other Modes. Reserved.

Offset 0x14 Access: User write only

Power

Architecture

msb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lsb

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W
IPC ORERR TxEMP DB Error

Time 
Out

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-22. Interrupt Mask Register for UART Mode (IMR)

Offset 0x14 Access: User write only

Power

Architecture

msb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lsb

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W
IPC ORERR URERR Error

CMD_
SEND

DATA_
OVR

DATA_
VALID

UNEX_
RX_

SLOT

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-23. Interrupt Mask Register for Other Modes (IMR)
(Registers are repeated for reference.)

Table 30-14. IMR Field Descriptions (Sheet 2 of 3)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-26 Freescale Semiconductor

DATA_VALID AC97 Mode. Received Status Data
0 DATA_VALID bit in the ISR register has no effect on the interrupt.
1 Enable the interrupt for DATA_VALID
Other Modes. Reserved.

UNEX_RX_
SLOT

AC97 Mode. Unexpected RX Slots detect
0 UNEX_RX_SLOT bit in the ISR register has no effect on the interrupt.
1 Enable the interrupt for UNEX_RX_SLOT

Other Modes. Reserved.

Offset 0x14 Access: User write only

Power

Architecture

msb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lsb

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W
IPC ORERR TxEMP DB Error

Time 
Out

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-22. Interrupt Mask Register for UART Mode (IMR)

Offset 0x14 Access: User write only

Power

Architecture

msb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lsb

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W
IPC ORERR URERR Error

CMD_
SEND

DATA_
OVR

DATA_
VALID

UNEX_
RX_

SLOT

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-23. Interrupt Mask Register for Other Modes (IMR)
(Registers are repeated for reference.)

Table 30-14. IMR Field Descriptions (Sheet 3 of 3)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-27

30.2.1.12 Counter Timer Upper Register (CTUR)

This write-only register holds the upper bytes of the preload value used by the timer to provide a given 
baudrate. Reading from this register shows the current value of the baudrate generation counter. For a 
detailed description, see Section 30.2.1.13, “Counter Timer Lower Register (CTLR)”.

Offset 0x18
Access: User write only

Power

Architecture

msb 0 1 2 3 4 5 6 7 lsb

Conventional 7 6 5 4 3 2 1 0

R

W CTUR[0:7]

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-24. Counter Timer Upper Register for all Modes

Table 30-15. CTUR Field Descriptions

Field Description

CTUR Code. Frame Sync width, define the number of bit clocks during the FrameSync signal is active.

FrameSync Width equals CTUR[0:7]+1
UART/ SPI. Baudrate prescaler value. 

See next section, Section 30.2.1.13, “Counter Timer Lower Register (CTLR)”.

Other. Reserved.

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-28 Freescale Semiconductor

30.2.1.13 Counter Timer Lower Register (CTLR)

This write-only register holds the lower bytes of the preload value used by the timer to provide a given 
baudrate. Reading from this register shows the current value of the baudrate generation counter.

Offset 0x1C
Access: User write only

Power

Architecture

msb 0 1 2 3 4 5 6 7 lsb

Conventional 7 6 5 4 3 2 1 0

R

W CTLR[0:7]

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-25. Counter Timer Upper Register for all Modes (CTLR)

Table 30-16. CTLR Field Descriptions

Field Description

CTLR UART. Baudrate prescale value. The baudrate is calculated as:

The minimum CT value is 1; 0 denotes counter stop.

The prescaler was defined in the CSR register.
SPI. Delay After Transfer (DTL)

Other. Reserved.

Baudrate =
CT[0:15] x prescaler
 IPS_CLK frequency where:

CT[0:7] = CTUR[0:7]

CT[8:15] = CTLR[0:7]

DTL = IPS_CLK frequency
 CT[0:15] + 2

+ 
3

MCLK frequency
where:

CT[0:7] = CTUR[0:7]

CT[8:15] = CTLR[0:7]

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-29

30.2.1.14 Codec Clock Register (CCR)

This register defines the divider for the FrameSync and BCLK generation for codec mode. This register 
value only has effect if the GenClk bit in the PSC control register SICR was set to one or the UART mode 
was selected.

Offset 0x20 Access: User read/write

Power

Architecture

msb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
FrameSyncDiv[0:7] BCLKDiv[8:15]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
BCLKDiv[0:7]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-26. Codec Clock Register for Codec Mode (CCR)

Offset 0x20 Access: User read/write

Power

Architecture

msb 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BCLKDiv[8:15]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Power

Architecture

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Conventional 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
BCLKDiv[0:7]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-27. Codec Clock Register for UART Modes (CCR)

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-30 Freescale Semiconductor

Table 30-17. CCR Field Descriptions

Field Description

FrameSyncDiv Codec. Frame Sync Divider

FrameSync is generated internally by dividing the bit clock. The FrameSyncDiv defines the number of bit 
clock cycles between two active frame edges:

FrameSync Length = FrameSyncDiv[0:7] + 1

For more information, see Section 30.5.2.3, “Transmitting and Receiving in Soft Modem Codec Mode”

Codec/SPI. Delay before SCK (DSCKL)

When the PSC is in SPI mode (SICR[SPI] = 1), the FrameSyncDiv divider is used to determine the length of 
time the PSC delays after SS goes low/active before the first SCK transition of the serial transfer. This is a 
feature that exists in a QSPI. The following equation determines the actual delay before SCK:

Other Modes. Reserved

The value 0x00 stops this counter and disables the clock generator.

BCLKDiv Codec. Bit Clock Divider
Bit clock is generated internally by dividing the MCLK frequency as follows:

Codec SPI. Baudrate

SCK is generated internally by dividing the MCLK frequency as follows:

The minimum BCLKDiv for SPI mode is 3.

UART Modes. Time Out count value 
BCLKDiv[0:15] defines the number of UART clock events before the Time_Out event occurred if enabled.

other Modes. Reserved

DSCKL delay =
MCLK Frequency

FrameSyncDiv[0:7] + 1)

BCLK frequency =
MCLK Frequency
BCLKDiv[0:15] + 1

SCK frequency =
MCLK Frequency
BCLKDiv[0:15] + 1

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-31

30.2.1.15 AC97 Slots Register (AC97Slots)

This write only register defines which slots are expected in a receive AC97 frame and which slots are sent 
in a AC97 transmit frame. If the received frame doesn’t match the expected slots, the 
SR[UNEXP_RX_SLOTS] bit is set. This register has only affects if the AC97 mode is selected in the 
SICR register and if the EnAC97 bit is active.

Offset 0x24 Access: User write only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W Tx_SLOTS[3:12]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W RX_SLOTS[3:12]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-28. AC97 Slots Register (AC97Slots)

Table 30-18. AC97Slots Field Descriptions

Field Description

TX_Slots AC97 Mode. Expected Transmit Slots

The bits in this register specify which data slots [3:12] are sent in an AC97 transmit frame. Each bit represents 
one data slot. The AC97 transmitter uses this information to generate the slot0 and reads out the according 
number of data words from the TXFIFO. If the TXFIFO is empty, an empty AC97 frame is sent until new data 
is available.
Other Modes. Reserved.

RX_Slots AC97 Mode. Expected Receive Slots

The bits in this register specifies which data slots [3:12] in the receive AC97 frame must contain valid data. 
The AC97 codec selects the valid data slots by setting the according data valid bit in slot0[12:3]. Each bit 
represents one data slot. If the received valid slots do not match the expected slots, the unexpected slot 
received state occurs. See register SR. The received data is written to the RXFIFO only if the received slots 
matched the expected slots. 

Other Modes. Reserved.

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-32 Freescale Semiconductor

30.2.1.16 AC97 Command Register (AC97CMD)

This register contains the AC97 address for transmit slot1 and the AC97 command data for transmit slot 2. 
A write access to any byte of this register sets the SR[CMD_SEND] bit to one. The AC97 transmitter 
generates a frame with valid slot1 and slot2 and pastes the values of this register to the next transmitted 
slot1 and slot2. After the data was sent, the SR[CMD_SEND] bit is cleared by the transmitter.

Offset 0x28 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R A97 
CMD

AC97 Control Register Index AC97 Command Data[15:8]
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
AC97 Command Data[7:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-29. AC97 Command Register

Table 30-19. AC97CMD Field Descriptions

Field Description

AC97 CMD AC97 Mode. AC97 Command

This bit indicates if the access to the control register is a read or write access. It is pasted to the slot1 bit 19.
0 Write access
1 Read access
other Modes. Reserved.

AC97 Control
Register Index

AC97 Mode. AC97 Address Register

This register contains target control register address. It is pasted to the slot1 bit 18 to 12.

Other Modes. Reserved.

AC97 Command 
Data

AC97 Mode. AC97 Command Data Register
This register defines the command data value for a write command. It is pasted to the slot2 bit 19 to 4.

Other Modes. Reserved.

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-33

30.2.1.17 AC97 Status Data Register (AC97Data)

This read-only register contains the received response of an AC97 read command. If this register contains 
new data, the SR[DATA_VALID] is set to one by the receiver. A read access to this register clears the 
SR[DATA_VALID] bit.

Offset 0x2C Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AC97 Register Index Echo AC97 Control Register Read Data[15:8]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AC97 Control Register Read Data[7:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-30. AC97 Status Register (AC97Data)

Table 30-20. AC97Data Field Descriptions

Field Description

AC97 Register 
Index Echo

AC97 Mode. AC97 Register Index Echo

This register contains the received register index echo from the Rx slot 0.

Other Modes. Reserved.

AC97 Control 
Register 

ReadData

AC97 Mode. AC97 Control Register Read Data
This register contains the received control data from Rx slot 2.

Other Modes. Reserved.

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-34 Freescale Semiconductor

30.2.1.18 Input Port Register (IP)

This read-only IP register shows the current state of the input ports.

Offset 0x034 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 lsb

Conventional 7 6 5 4 3 2 1 0

R DCD CTS

W

Reset 1 1 1 1 1 1 0 0

= Unimplemented or Reserved

Figure 30-31. Input Port Register for UART Modes (IP)

Offset 0x034 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 lsb

Conventional 7 6 5 4 3 2 1 0

R TGL DCD CTS

W

Reset 1 0 1 1 1 1 0 0

= Unimplemented or Reserved

Figure 30-32. Input Port Register for Codec Mode (IP)

Offset 0x34 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 lsb

Conventional 7 6 5 4 3 2 1 0

R LPWR TGL DCD CTS

W

Reset 1 1 1 1 1 1 0 0

= Unimplemented or Reserved

Figure 30-33. Input Port Register for AC97 Mode (IP)

Table 30-21. IP Field Descriptions

Field Description

LPWR AC97. Low-power mode in AC97 mode
0 Codec is in low power mode.
1 Normal operation.

Other Modes. Reserved

TGL AC97/Codec. Test usage. Toggle by FrameSync.
Other Modes. Reserved.

DCD Current state of the DCD input.
0 DCD input is low.
1 DCD input is high.

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-35

CTS Current state of the CTS input

0 Input port CTS is low.

1 Input port CTS is high.

Offset 0x034 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 lsb

Conventional 7 6 5 4 3 2 1 0

R DCD CTS

W

Reset 1 1 1 1 1 1 0 0

= Unimplemented or Reserved

Figure 30-31. Input Port Register for UART Modes (IP)

Offset 0x034 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 lsb

Conventional 7 6 5 4 3 2 1 0

R TGL DCD CTS

W

Reset 1 0 1 1 1 1 0 0

= Unimplemented or Reserved

Figure 30-32. Input Port Register for Codec Mode (IP)

Offset 0x34 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 lsb

Conventional 7 6 5 4 3 2 1 0

R LPWR TGL DCD CTS

W

Reset 1 1 1 1 1 1 0 0

= Unimplemented or Reserved

Figure 30-33. Input Port Register for AC97 Mode (IP)

Table 30-21. IP Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-36 Freescale Semiconductor

30.2.1.19 Output Port 1 Bit Set (OP1)

This is a write-only register. Output ports are asserted by writing to this register.

30.2.1.20 Output Port 0 Bit Set (OP0)

This is a write-only register. Output ports are negated by writing to this register.

Offset 0x38 Access: User write only

Power

Architecture

msb 0 1 2 3 4 5 6 7 lsb

Conventional 7 6 5 4 3 2 1 0

R

W RESET RTS

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-34. Output Port 1 Bit Set Register for all Modes (OP1)

Table 30-22. OP1 Field Descriptions

Field Description

RESET AC97. Assert RESET output.
0 No operation
1 Asserts output port RESET, (low active signal RESET becomes 0).
Other Modes. Reserved.

RTS AC97. Reserved

Other Modes. Assert RTS output.
0 No operation
1 Asserts output port RTS, (low active signal RTS becomes 0).

Offset 0x3C Access: User write-only

Power

Architecture

msb 0 1 2 3 4 5 6 7 lsb

Conventional 7 6 5 4 3 2 1 0

R

W RESET RTS

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-35. Output Port 0 Bit Set Register for all Modes

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-37

30.2.1.21 Serial Interface Control Register (SICR)

This register sets the main operation mode.

Table 30-23. OP0 Field Descriptions

Field Description

RESET AC97. Assert RESET output.
0 No operation
1 Negates output port RESET, (low active signal RESET becomes 1).

Other Modes. Reserved.

RTS AC97. Reserved

Other Modes. Assert RTS output.

0 No operation
1 Negates output port RTS, (low active signal RTS becomes 1).

Offset 0x40 Access: User read/write

Power

Architecture

msb 0 1 2 3 4 5 6 7

Conventional 7 6 5 4 3 2 1 0

R
ACRB AWR DTS1 SHDIR SIM[3:0]

W

Reset 0 0 0 0 0 0 0 0

Power

Architecture

8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8

R
GenClk I2S ClkPol SyncPol ESAI EnAC97

W

Reset 0 0 0 1 0 0 0 1

Power

Architecture

16 17 18 19 20 21 22 23 lsb

Conventional 23 22 21 20 19 18 17 16

R
SPI MSTR CPOL CPHA UseEOF En_OutBuf

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 30-36. Serial Interface Control Register for all Modes (SICR)

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-38 Freescale Semiconductor

Table 30-24. SICR Field Descriptions

Field Description

ACRB AC97. AC97 Cold Reset to the transceiver in PSC. This bit was prepared for backward compatibility 
with the MCF5407 USART. It is recommended to use OP1 and OP0 registers to set and to reset AC97 
reset line.
0 The transceiver recovers from low power mode in AC97.
1 The transceiver stays in the current state.

Other Modes. Reserved.

AWR AC97. AC97 Warm Reset (to the PSC and off-chip AC97 Codec)
0 AC97 warm reset is negated. Output functions normally as the AC97 Sync.
1 Force 1 on Sync output to recover the AC97 interface from AC97 power down mode.
Other Modes. Reserved.

DTS1 Codec. Delay of time slot #1.
0 First bit of first time slot of a new frame starts at the rising edge of FrameSync.
1 First bit of first time slot of a new frame starts one bit clock cycle after the rising edge of 

FrameSync.

Other Modes. Reserved.

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-39

SHDIR Codec. Shift Direction.
0 msb first
1 lsb first

Other Modes. Reserved.

SIM[3:0] PSC operation mode.

CAUTION: When the operating mode change occurs, all Rx/Tx and error statuses are reset. Rx and 
Tx are disabled.

0000 = UART mode, DCD input ignored
1000 = UART mode, DCD input is effective
0001 = Codec mode, 8-bit data
1001 = Codec mode, 12-bit data
0010 = Codec mode, 16-bit data
1010 = Codec mode, 20-bit data
x011 = AC97 mode
0100 = Reserved 
1100 = Reserved 
x101 = Reserved 
x110 = Reserved 
0111 = Codec mode, 24-bit data
1111 = Codec mode, 32-bit data

GenClk Codec. Generate Bit Clock and FrameSync. Not used to enable the SPI master mode. This bit must 
also be set to the MSTR to enable the SPI master mode
0 Use bit clock and FrameSync provided by external device
1 Use bit clock and FrameSync generated internally from MCLK

Other Modes. Reserved

I2S Codec. I2S mode
0 No I2S mode supported
1 PSC works in I2S mode
Other Modes. Reserved.

ClkPol Codec. Bit Clock Polarity
0 Data in is sampled on the falling edge of the BCLK and data out is shifted on the rising edge 
1 Data in is sampled on the rising edge of the BCLK and data out is shifted on the falling edge

Other Modes. Reserved.

SyncPol Codec. FrameSync Polarity, must be cleared during SPI mode
0 FrameSync is low true 
1 FrameSync is high true

Codec I2S. FrameSync Polarity
0 Frame starts if LRCK is low
1 Frame starts if LRCK is high
Other Modes. Reserved.

ESAI Codec. Enhanced Serial Audio Interface
0 PSC doesn’t support the ESAI mode.
1 PSC supports the ESAI mode. This mode allows the PSC to send and receive more the one data 

word per frame, if the frame length is greater than the word length. The PSC send only complete 
data words.

Other Modes. Reserved.

Table 30-24. SICR Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-40 Freescale Semiconductor

EnAC97 Codec. Normal AC97 mode. Takes affect only when the AC97 mode is selected

(SIM = 0x3)
0 If AC97 mode was selected, Legacy AC97 mode used
1 If AC97 mode was selected, AC97 mode transmits and receives the data.

Other Modes. Reserved.

SPI Codec. SPI mode
0 PSC does not behave like an SPI 
1 PSC behaves like an SPI

Other Modes. Reserved.

MSTR Codec. SPI Master mode. Takes affect only when bit SICR[SPI mode] equals 1. Also, the GenClk bit 
must be set to enable the clock generation behavior of the SPI master mode
0 PSC behaves as an SPI slave 
1 PSC behaves as an SPI master

Other Modes. Reserved.

CPOL Codec. SPI Clock Polarity. takes effect only when bit SICR[SPI mode] equal 1
This bit selects an inverted or non-inverted SPI clock. To transmit data between SPI modules, the SPI 
modules must have identical CPOL values
0 Active-low clocks selected; SCK idles high
1 Active-high clocks selected; SCK idles low

Other Modes. Reserved.

CPHA Codec. SPI Clock Phase

This bit is used to shift the SCK serial clock. To transmit data between SPI modules, the SPI modules 
must have identical CPHA values
0 Data transfer starts which assertion of SS
1 Data transfer starts with the first edge of SCK
Other modes. Reserved.

UseEOF Codec. Use End-of-Frame flag takes effect only when SPI mode is selected
0 One, two, or four bytes are transferred while slave select (SS) is held low, as determined by 

SICR[SIM]
1 Multiple bytes are transferred while maintaining SS low, up to and including the next byte read from 

the Tx FIFO that has its EOF flag set
Other modes. Reserved.

En_OutBuf Enable Output Buffer
0 The output logic is only enabled if the receiver or transmitter is enabled. After enabling the 

transmitter or receiver, the internal generated signals are visible on the output of the device.
1 The output logic is enabled by setting is bit enabled. After setting this bit, the internal generated 

signals are visible on the output of the device.

Table 30-24. SICR Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-41

30.3 PSC Functions Overview
The PSC module provides different groups of interfaces to connect to different serial devices. 
Figure 30-37. shows the groups of interfaces.

Figure 30-37. PSC Functions Overview

1. PSC Codec Mode: In this section, the name codec mode is used as a collective term for the normal 
soft modem, the SPI, I2S, and ESAI mode. This interface is provided by one internal block of the 
PSC. The interface consists of serial Tx and Rx lines, a bit clock line and a FrameSync signal. For 
these modes, the clock configuration is similar and uses the same configuration registers. The 
transmitter converts the parallel data from the CPU to a serial bit-stream, and the receiver converts 
the serial data from the Rx line to parallel data. The PSCs support codec mode with 8, 12,16, 20, 
24, and 32 bit data width, with active high or active low FrameSync signal and programmable bit 
clock polarity. All codec modes can work as an codec master (PSC drive the bit clock and 
FrameSync signals) or as a codec slave (PSC receives the bit clock and frame sync signal). For 
more information about the codec mode, see Section 30.5.2, “PSC in Codec Mode”.

2. AC97 Mode: When programmed as AC97, the PSC works as an AC97 controller. This means the 
PSC receives the BCLK from the external AC97 codec and provides the FrameSync signal to the 
external codec. If the PSC detects a codec not ready status, the PSC stops sending and receiving 
data. In AC97 mode, only the used data slots must be in the FIFO. The PSC generates the slot0, 
slot1, and slot2 values depending on data to send. In AC97 modes, the PSC reads only 32 bits from 
the FIFO. For more information about the AC97 mode, see Section 30.5.3, “PSC in AC97 Mode”.

3. PSC UART Mode: When programmed as a UART, the PSC serial communication channel 
provides a full-duplex asynchronous receiver and transmitter deriving the operating frequency 
from an internal clock. The transmitter converts parallel data from the CPU to a serial bit-stream, 
inserting appropriate start, stop, and parity bits. It outputs the resulting stream on the channel 
transmitter serial data output (TxD). The receiver converts serial data from the channel receiver 
serial data input (RxD) to parallel format, checks for start, stop, and parity bits, or line break 
conditions, and transfers the assembled character onto the bus during read operations. The receiver 
may be poll-driven or interrupt-driven. For more information about the UART mode, see 
Section 30.5.1, “PSC in UART Mode”.

PSC

Codec

Soft
Modem SPI I2S AC97 UARTESAI

MPC5121e Microcontroller Reference Manual, Rev. 2



30-42
Freescale S

em
iconductor

P
ro

g
ram

m
ab

le S
erial C

o
n

tro
ller (P

S
C

)

NOTE
For Codec TCM/ESAI and I2S, the BCLK and SCLK pins are outputs when the port is configured as a 
master and inputs when the port is configured as a slave.

 For Codec TCM/ESAI and I2S, the SYNC and LRCK pins are outputs when the port is configured as 
a master and inputs when the port is configured as a slave.

Table 30-25. PSC Pin Assignment Versus Operating Mode

UART AC97
SPI

Codec TCM/ESAI I2S

0 Tx, 
3 Rx

1 Tx, 
2 Rx

1 Tx, 
1 Rx

2 Tx, 
1 Rx

3 Tx, 
0 Rx

0 Tx, 
3 Rx

1 Tx, 
2 Rx

1 Tx, 
1 Rx

2 Tx, 
1 Rx

3 Tx, 
0 Rx

Master Slave

PSCX_0 RTS BCLK SCLK BCLK SCLK

PSCX_1 CTS SYNC SS FRAMESYNC LRCK 

PSCX_2
TxD SDATA_

OUT
MOSI MISO RxD3 TxD RxD3 TxD

PSCX_3
RxD SDATA_

IN
MISO MOSI RxD TxD3 RxD TxD3

PSCX_4 DCD RESET MCLK RxD2 MCLK TxD2 RxD2 MCLK TxD2

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-43

30.4 Features
General features:

• Each channel is programmable to normal (full-duplex), automatic echo, local loop-back, or remote 
loop-back mode

• Automatic wake-up mode for multidrop applications
• Six maskable interrupt conditions

PSC UART mode:
• Each is clocked by an internal clock source (IPS_CLK), eliminating the need for an external crystal
• Full-duplex asynchronous receiver/transmitter channel
• Programmable data format:

— Five to eight data bits plus parity
— Odd, even, no parity, or force parity
— One, one-and-a-half, or two STOP bits

• Parity, framing, and overrun error detection
• False-start bit detection
• Line-break detection and generation
• Detection of breaks originating in the middle of a character
• Start/end break interrupt/status

PSC codec mode:
• Programmable to interface to an 8, 12, 16, 20, 24, or 32-bit Codec for soft modem support up to 3 

Tx or Rx lines 
• Supports master mode, driving clock, and FrameSync signals
• Supports slave mode, receiving clock, and the FrameSync from the external codec
• Supports multichannel mode, with 3 data lines in codec mode
• Supports full duplex SPI interface
• Supports I2S interface
• No parity error, framing error, or line break detection in codec mode
• Ability to generate a master clock (MCLK) for an external codec device, independent from the 

mode (master or slave)
• Programmable width of the FrameSync signal
• FrameSync and bit clock frequencies are independently programmable
• Frame sync and bit clock polarity are programmable

AC97 mode:
• Supports AC97 mode, only the data slots must be available, the control slot data are generated by 

the PSC
• Supports AC97 wake-up and power-down modes

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-44 Freescale Semiconductor

30.5 Modes of Operation
This section describes the different PSC operation modes, including the pin muxing, the module 
configuration, signal definition, and some programming examples. All PSCs are independent and can be 
used at the same time in different modes.

30.5.1 PSC in UART Mode

Select the UART mode by writing the corresponding value to the PSC Control (SICR) register. The PSC 
UART mode is the default mode after reset. The important registers to configure the PSC for UART mode 
are:

• SICR register — select the UART mode
• CSR register — select the clock source
• CTUR, CTLR register — select the baudrate
• MR1 register — select the UART mode (parity mode, bits per character)
• MR2 register — select RTS and CTS control, Stop Bit Length
• CR register — enable or disable receiver and transmitter

30.5.1.1 Block Diagram and Signal Definition for UART Mode

The Figure 30-38 shows the simplified block diagram of the PSC for UART mode.

Figure 30-38. PSC UART Block Diagram

An internal interrupt request signal is provided to notify the interrupt controller of an interrupt condition. 
The output is the logical NOR of unmasked IMR bits. The interrupt level of a PSC module is programmed 
in the interrupt controller.

The PSC can automatically transfer data using the DMA, rather than interrupting the core.

Receiver

Transmitter

RxD

TxD

DCD

RTS

CTS

IPS_CLK

PSC

External
Interface
Signals

Port
Control
Logic

Clock
Generation Unit

CSR
CT

Interface to
the FIFOC

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-45

Table 30-26 briefly describes the PSC module signals.

NOTE
The terms assertion and negation are used to avoid confusion between 
active-low and active-high signals. 
• Asserted indicates a signal is active, independent of the voltage level
• Negated indicates a signal is inactive.

Figure 30-39. Signal Configuration for a PSC/RS-232 Interface

30.5.1.2 UART Clock Generation

IPS_CLK clock serves as the basic timing reference for the clock source generator logic, which consists 
of a clock generator and a programmable 16-bit divider dedicated to the PSC and a fix prescaler. The 
IPS_CLK clock passes through the prescaler (divide by 32 or 10) and then through the 16-bit divider of 
the concatenated CTUR and CTLR registers. See Figure 30-40.

Eqn. 30-1

Table 30-26. PSC Signal Description for UART Mode

Signal Description

TxD Transmitter Serial Data Output. TxD is held high (mark condition) when Tx is disabled, idle, or operating in the local 
loop-back mode. Data is shifted out on TxD on the falling edge of the clock source, with the least significant bit (lsb) 
sent first. 

RxD Receiver Serial Data Input. Data received on RxD is sampled on the rising edge of the clock source, with the lsb 
received first.

CTS Clear-to-Send. This input can generate an interrupt on a change of state. 

RTS Request-to-Send. This output can be programmed to be negated or asserted automatically by Rx or Tx. When 
connected to a transmitter CTS, RTS can control serial data flow.

DCD Data carrier detect Input. In the enhanced UART mode, this signal must be asserted during the data transmission.

RTS

DO2

DI1

CTS

TxD

RxD

DI2

DO1

RS-232

PSC Transceiver

Baudrate = 
IPS_CLK

prescaler x CT[0:15]

Where:

CT[0:7] = CTUR[0:7]

CT[8:15] = CTLR[0:7]

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-46 Freescale Semiconductor

For example, to generate a 9600 baudrate with 66 MHz IPS_CLK bus frequency and a predivider value of 
32, the register values can be calculated as follows:

Eqn. 30-2

Therefore, CTUR equals 0x00 and CTLR equals 0xD7.

Figure 30-40. Clocking Source Diagram

30.5.1.3 Transmitting in UART Mode

After a hardware reset, all PSCs are in UART mode. The PSC command register (CR) enables the 
transmitter. The transmitter converts parallel data from the CPU to a serial bit-stream on TxD. It 
automatically sends a start bit followed by:

• The programmed number of data bits
• An optional parity bit
• The programmed number of stop bits

The lsb is sent first. Data is shifted from the Tx output on the falling edge of the clock source. 

After the stop bits are sent, if no new character is in the Tx holding register, the TxD output remains high 
(mark condition) and the Tx empty bit, SR[TxEMP], is set. Transmission resumes and TxEMP is cleared 
when the CPU loads a new character into the PSC Tx buffer (TB). 

• If the transmitter receives a disable command, it continues until any character in the Tx shift 
register is completely sent.

• If the transmitter is reset through a software command, operation stops immediately. 
• If the clear-to-send operation is enabled, CTS must be asserted for the character to be transmitted.
• If CTS is negated in the middle of a transmission, the character in the shift register is not sent and 

TxD remains in mark state until CTS is reasserted.
• If the transmitter is forced to send a continuous low condition by issuing a send break command, 

the transmitter ignores the state of CTS.

Divider = 
66 MHz

32 x 9600
= 215(decimal) = 0x00d7

PSC
TxD

RxD

Tx

Rx

Rx Buffer

Tx Buffer

16-Bit
Divider

CT

Prescaler
32 or 10

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-47

• If the transmitter is programmed to automatically negate RTS when a message transmission 
completes, RTS must be asserted manually before a message is sent. In applications in which the 
transmitter is disabled after transmission is complete and RTS is appropriately programmed, RTS 
is negated one bit-time after the character in the shift register is completely transmitted. The 
transmitter must be manually re-enabled by reasserting RTS before the next message is sent.

Figure 30-41 shows the transmitter functional timing information.

Figure 30-41. Timing Diagram—Transmitter

C11 C2 C3 Break C4 C6TxD

TxRDY

W2 W W W W W W W

CTS

RTS Manually Asserted 
by Bit-Set Command

Manually 
Asserted

Start
Break

C5
Not

Transmitted

C6C4 Stop
Break

C3C2C11

C1 in Transmission

NOTES:
1. Cn = transmit characters
2. W = write
3. MR2[TxCTS] = 1
4. MR2[TxRTS] = 1

Transmit
Enabled

Internal
Module
Select

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-48 Freescale Semiconductor

30.5.1.4 Receiving in UART Mode

After a hardware reset, all PSCs are in UART mode. The receiver is enabled through its CR, as described 
in Section 30.2.1.5, “Command Register (CR)”. Figure 30-42 shows the receiver functional timing.

Figure 30-42. Timing Diagram – Receiver

When the receiver detects a high-to-low (mark-to-space) transition of the start bit on RxD, the state of 
RxD is sampled. Starting one-half clock after the transition (asynchronous operation) or at the next rising 
edge of the bit-time clock (synchronous operation).

• If RxD is sampled high, start bit is invalid; a valid start bit search begins again.
• If RxD remains low, a valid start bit is assumed and receiver continues sampling input at 1-bit time 

intervals at the theoretical center of the bit. This continues until the proper number of data bits and 
parity, if any, is assembled and one stop bit is detected.

RxD input data is sampled on the rising edge of the programmed clock source. The lsb is received first. 
Data is then transferred to a receiver holding register and RxRDY bit is set. If the character is less than 
eightbits, the most significant unused bits in the receiver holding register are cleared. 

If the MR1[RxRTS] bit was set to one, control the RTS line by writing to the output port register. For all 
user generated commands to the UART receiver, like enable Rx, disable Rx, set break or read data from 
the RX FIFO, set the associated RTS signal by writing the OP0 or OP1 register. However, the UART 
receiver automatically deasserts the RTS signal if the RX FIFO is full.

C1 C2 C4 C6 C7 C8C3 C5

(C2)
Data

(C3)
Data

(C4)
Data

RxD

Receiver
Enabled

RxRDY

RTS

Internal
Module
Select

FFULL

(C1)
Data

Automatically Asserted 
when Ready to Receive

Manually Asserted First Time 
Automatically Negated if FIFO full Occurs

OP0[RTS] = 1 Automatically Deasserted
when FIFO full

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-49

After the stop bit is detected, the receiver immediately looks for the next start bit.
• If a non-zero character is received without a stop bit (framing error) and RxD remains low for 

one-half of bit period after stop bit is sampled, the receiver operates as if a new start bit were 
detected. Parity error (PE), framing error (FE), overrun error (ORERR), and received break (RB) 
conditions set respective error and break flags in SR at the received character boundary and are 
valid only if RxRDY is set.

• If a break condition is detected (RxD is low for the entire character including the stop bit), a 
character of all zeros is loaded into the receiver shift register and SR[RB] is set. RxD must return 
to a high condition for at least one-half bit-time before a search for the next start bit begins.

The receiver detects the beginning of a break in the middle of a character, if the break persists through the 
next character time.

• If the break begins in the middle of a character, the receiver places the damaged character in the 
Rx FIFO stack and sets the corresponding SR error bit.

• If the break lasts until the next character time, the receiver places an all zero character into the Rx 
FIFO and sets SR[RB].

30.5.1.5 TimeOut Counter Behavior

The TimeOut counter is available during UART mode only. If this behavior is enabled then an internal 
counter can generate an interrupt if the time after the last received data word is bigger than the programmed 
limit. The first received data word after enabling this behavior starts the counter. A receive data word 
before the counter reach the limit clears the counter value and starts the counter again. The value in the 
register defines the time base on number of clock events for the programmed UART clock source (32 or 
10 clock events per bit depend on the selected prescaler).

30.5.1.6 Configuration Sequence for UART Mode

Table 30-27 shows the configuration sequences. This list includes the UART mode related registers only, 
not the other configure values like interrupt and FIFO configurations. PSC module registers can be 
accessed by word or byte operations.

Table 30-27. General Configuration Sequence for UART Mode

Register Value Setting

CR 0x0A Disable the Tx and Rx part for configuration if the PSC was enabled by the work 
before.

CSR 0xdd00 Select the clock source

SICR 0x00000000
or

0x08000000

Select the UART mode

MR1 0xXX Select error mode, parity mode, and the parity type

MR2 0xXX Select channel mode, port control, and stop-bit length

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-50 Freescale Semiconductor

30.5.1.7 UART Multidrop Mode

Setting MR1[PM] programs the PSC to operate in a walk-up mode for multidrop or multiprocessor 
applications. In this mode, a master can transmit an address character followed by a block of data 
characters targeted for one of up to 256 slave stations.

Although slave stations have their channel receivers disabled, they continuously monitor the masters data 
stream. When the master sends an address character, the slave receiver channel notifies its respective CPU 
by setting SRand generating an interrupt (if programmed to do so). Each slave station CPU then compares 
the received address to its station address and enables its receiver if it wishes to receive the subsequent 
data characters or block of data from the master station. Slave stations not addressed continue monitoring 
the data stream. Data fields in the data stream are separated by an address character. After a slave receives 
a block of data, its CPU disables the receiver and repeats the process.

Figure 30-43 shows functional timing information for multidrop mode.

CTUR 0x00 Set the calculated baudrate depend on the IP bus clock

CTLR 0xD7

IMR 0xXXXX Select the desired interrupt

CR 0x05 Enable Tx and Rx

Table 30-27. General Configuration Sequence for UART Mode

Register Value Setting

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-51

Figure 30-43. Timing Diagram – Multidrop Mode

ADD1TxD

Transmitter
Enabled

TxRDY

C0 ADD21 1

Internal
Module
Select

A/D A/D A/D

ADD1RxD

Receiver
Enabled

RxRDY

C0 ADD21 1

Internal
Module
Select

A/D A/D A/D

0

A/D

0

A/D

(C0)
Status Data

(ADD 2)
Status DataADD 1

Peripheral Station

Master Station

MR1n [PM] = 11

MR1n[PM] = 11
MR1n[PT] = 1

ADD 1
MR1n [PT] = 0

C0
MR1n[PT] = 2

ADD 2

MR1n [PM] = 11

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-52 Freescale Semiconductor

A character sent from the master station consists of:
• A start bit
• A programmed number of data bits
• An address/data (A/D) bit flag

— A/D=1 indicates an address character
— A/D=0 indicates a data character

• A programmed number of stop bits

A/D polarity is selected through MR1[PT]. MR1 should be programmed before enabling the transmitter 
and loading the corresponding data bits into the Tx buffer.

In multidrop mode, the receiver continuously monitors the received data stream, regardless of whether it 
is enabled or disabled.

• If the receiver is disabled, it sets the RxRDY bit and loads the character into the receive register, 
provided the received A/D bit is 1 (address tag). If the received A/D bit is 0 (data tag), the 
character is discarded.

• If the receiver is enabled, all received characters are transferred to the CPU through the receiver 
holding register stack during read operations.

In either case, data bits are loaded into the data portion of the stack while the A/D bit is loaded into the 
status portion of the stack normally used for a parity error (SR[PE]).

Framing error, overrun error, and break detection operate normally. The A/D bit takes the place of the 
parity bit. Parity is neither calculated nor checked. Messages in this mode may continues to contain error 
detection and correction information. One way to provide error detection if 8-bit characters are not 
required is to use software to calculate parity and append it to the 5-, 6-, or 7-bit character.

30.5.2 PSC in Codec Mode

After reset, all PSCs are in UART mode. The PSCs can be switched to one of the codec modes by writing 
the appropriate value to the SICR register. The other values should be initialized at the same time. During 
codec mode, the PSC can connect to codec interfaces with 8, 12,16, 20, 24, or 32 bit data. For all these 
modes, the PSC can be programmed to behave as a normal soft modem interface, SPI, ESAI, or I2S 
interface. The PSC codec supports these modes acting as the master mode (PSC drive the BCLK and 
FrameSync signal) or slave mode (PSC receive the BCLK and FrameSync signals) functionality. 
Independently from the mode (master or slave), the PSC can provide a MCLK (master clock) for an 
external codec device. This behavior eliminates the need for an external crystal for the external codec 
device. The number of used Tx and Rx lines can be programmed via the MR2 register. Figure 30-44 shows 
a simplified block diagram for the PSC codec mode. The important register to configure the PSC for codec 
mode are:

• SICR register—select the codec mode
• For master mode:

— select and enable MCLK divider
— CCR—select BCLK and FrameSync frequency

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-53

— CTUR—select FrameSync width
• CR register—enable or disable receiver and transmitter
• MR2 register—configure the number of Tx and Rx channels

30.5.2.1 Block Diagram and Signal Definition for Codec Mode

Figure 30-44. PSC Codec Block Diagram

Table 30-28. PSC Signal Description for Codec Mode

Signal Description

TxD Transmitter Serial Data Output. Depend on the programming of the MR2 register, up to three Tx channels are 
supported. Data is shifted out on TxD on the falling or rising edge of the clock source. Transfers can be 
specified as lsb or msb first. TxD is held low when Tx is disabled or idle.
 • Data shifted out on the rising edge of CLK if SICR[ClkPol] equals 0 
 • Data shifted out on the falling edge of CLK if SICR[ClkPol] equals 1 
 • Data send msb first if SICR[SHDIR] equals 0
 • Data send lsb first if SICR[SHDIR] equals 1

RxD Receiver Serial Data Input. Depend on the programming of the MR2 register, up to three Rx channels are 
supported. Data received on RxD is sampled on the falling or rising edge of the clock signal. Transfers can 
be specified as either lsb or msb first.
 • Data sampled on the rising edge of CLK if SICR[ClkPol] equals 1
 • Data sampled on the falling edge of CLK if SICR[ClkPol] equals 0
 • Data sampled msb first if SICR[SHDIR] equals 0
 • Data sampled lsb first if SICR[SHDIR] equals 1

Frame Frame Sync. In codec mode Frame can be driven from an external codec or can be generated by the internal 
clock logic. Frame can be programmed as active High or active Low.
 • The frame sync input from the external Codec if SICR[GenClk] equals 0
 • The frame sync output to the external Codec if SICR[GenClk] equals 1
 • Frame sync is active low if SICR[SyncPol] equals 0
 • Frame sync is active high if SICR[SyncPol] equals 1

Receiver

Transmitter

RxD

TxD

BCLK

FrameSync

External

Interface

Signals

PSC_MCLK_OUT

MCLKPSC

Clock
Generation

Unit
BCLKDiv[0:15]+1

Interface to
the FIFOC

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-54 Freescale Semiconductor

30.5.2.2 Codec Clock and FrameSync Generation

The BCLK and the FrameSync can be inputs that come from an external codec device or they can be 
internally generated by the PSC and provided as outputs to the external device, under control of bit 
SICR[GenClk]. When the bit SICR[GenClk] is set to zero then the BCLK and the FrameSync are inputs. 
In this case the FrameSync width can be anything from one BCLK period up to the total FrameSync 
length/period minus one BCLK. If the GenClk bit is set to one, the PSC generates the BCLK and the 
FrameSync signal. Figure 30-45 shows how the PSC generates the clocks.

Figure 30-45. Clock Generation Diagram for Codec Mode

The source for the internal clock generation is the PSC_MCLK_OUT provided by the clock module. The 
PSC provides the MCLK to the external codec divided independently whether the PSC configured as a 
master (provide BCLK and FrameSync) or as a slave (receive the clock signals).

Each PSC consists of a CCR register to generate a BCLK and a FrameSync signal. If the PSC is configured 
as a master and the MCLK is available, the PSC generates both clock signals independent if the transmitter 
or receiver is enabled or not. If the PSC configured as SPI master mode the BCLK is only generated if 
transmitter and receiver are enabled and Tx data are available in the Tx FIFO. The equations below shows 
the calculation:

Eqn. 30-3

BCLK Bit Clock. In codec mode CLK is:
 • The clock input from the external Codec if SICR[GenClk] equals 0
 • The clock output to the external Codec if SICR[GenClk] equals 1

MCLK Clock output for an external codec

Table 30-28. PSC Signal Description for Codec Mode (continued)

Signal Description

BCLK Divider Frame Divider

PSC
MCLK

BCLK

FrameSync

CCR[8:23] CCR[0:7]
CTUR[0:7]

PSC_MCLK_OUT

BCLK =
BCLKDiv[0:15] +1

MCLK

FrameSync Length = Frame SyncDiv[0:7] + 1

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-55

When the FrameSync is an output, the CTUR register can program the pulse width. This register defines 
the number of BCLK cycle during the FrameSync signal is active. The default reset value for this register 
is 0x00. Therefore, the default FrameSync width is one BCLK. See the calculation below:

Eqn. 30-4

30.5.2.3 Transmitting and Receiving in Soft Modem Codec Mode

The PSC supports the full duplex soft modem mode, data is received and transmitted at the same time. To 
start the full duplex transmission, the Tx and the Rx must be enabled by writing the according value to the 
CR register. It’s also possible to only use the receiver. For this case, only the Rx enable bit in the CR 
register must be set to one. However, it’s not possible to use the transmitter without the receiver. To 
transmit data only, the receiver must be enabled. The received data and the according status and interrupt 
bits can be ignored.

If the receiver is enabled, the PSC samples data from the receive line after detecting the start of frame 
condition. The receiver converts the serial data from the Rx line to parallel data words and writes the data 
to the RxFIFO. The data word length depends on the programmed word length. If no data exists on the Rx 
line, the receiver writes zeros to the RxFIFO until the data word width was reached. The receiver waits 
until the next start of frame condition is detected. The transmitter converts the parallel data from the 
TxFIFO to a serial data stream on the Tx line. If the TxFIFO is empty during the transmit state, the Tx line 
is zero. If the last bit of the data word is sent, the transmitter waits until the next start of frame condition 
is detected. 

When SICR[GenClk] equals 1, the PSC is in master mode and generates the BCLK and the FrameSync 
signal from the internal clock system, like described in Section 30.5.2.2, “Codec Clock and FrameSync 
Generation”. 

Figure 30-46 shows a codec interface diagram example for soft modem master mode. The different 
parameters to define the interface are as follows:

• Frame Sync Polarity SICR[SyncPol]. The leading edge is defined as a rising edge if bit 
SICR[SyncPol] equals 1 or a falling edge if SICR[SyncPol] equals 0

• BCLK Polarity SICR[ClkcPol]. When bit SICR[ClkPol] equals 0, data is shifted out on the rising 
edge of bit clock and sampled on the falling edge of BCLK. Otherwise, data is shifted out on the 
falling edge and sampled on rising edge of bit clock.

• FrameSync width CTUR. Define the number of BCLK while the FrameSync is active.
• FrameSync length CCR[FrameSyncDiv]. Defines the number of BCLK until the next frame starts.
• Data length SICR[SIM] defines the data width of the receive and transmit data, 8, 12,16, 20, 24, or 

32 bit per word are possible. In codec 20 and 24 mode, each data sample uses an entire 32-bit 
longword in the Tx FIFO. The least significant (right-hand) byte is not used. Data should be written 
to the Tx FIFO four bytes at a time.

• Delay of time slot 1 SICR[DTS1]. The PSC starts to send a sample at the leading edge of 
FrameSync SICR[DTS1] if it equals 0 or 1 bit-clock cycle after the leading edge of FrameSync 
SICR[DTS1] if it equals 1.

Frame sync width = CTUR[0:7] + 1

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-56 Freescale Semiconductor

• Data shift direction SICR[SHDIR]. Data shifted out LSB first if SICR[SHDIR] equals 1. 
Otherwise, data shifts out MSB first if SICR[SHDIR] equals 0.

In the codec soft modem mode, the PSC sends only one data word per frame. 

Figure 30-46. Soft Modem Codec Interface Diagram

Table 30-29 shows an example how to configure the PSC1 as:
• PSC in slave mode
• 16-bit soft modem mode
• Data is sampled on the falling edge of BCLK
• FrameSync is low active
• MSB first, transfer starts with leading edge of FrameSync

Table 30-29. 16-Bit Soft Modem Slave Mode

Register Value Setting

CR 0x0A Disable the Tx and Rx part for configuration if the PSC was enabled earlier.

SICR 0x02100000 Select the 16 bit Codec mode, msb first, DTS1 = 0, slave mode

CR 0x05 Enable Tx and Rx

Frame Length

 Delay of Time Slot 1

Start of Frame

Frame Sync Polarity BCLK polarity

Frame Sync

BCLK

DATA 

Data Length

Rx/Tx

Start of Next Frame

Frame Sync Width

Data Bit Shift Direction

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-57

Table 30-30 shows an example of how to configure the PSC2 as:
• PSC in Master mode
• 32-bit soft modem mode
• Data is sampled on the rising edge of BCLK
• FrameSync is low active
• The lsb first, transfer starts one cycle after the leading edge of FrameSync
• Set MCLK frequency to 33 MHz
• Set BCLK frequency to 250 kHz
• FrameSync every 35 BCLK
• Set FrameSync width to 3 BCLK

30.5.2.4 Transmitting and Receiving in ESAI Mode (Enhanced Serial Audio 
Interface)

The ESAI transmission is similar to the soft modem mode. Therefore, the configuration is similar to the 
description in Section 30.5.2.3, “Transmitting and Receiving in Soft Modem Codec Mode”. The 
difference is that the ESAI protocol allows to transmit and receive more than one data word per frame. To 
enable the ESAI mode, the SICR[ESAI] bit must be set. The PSC calculates how many data words the 
transmitter sends and how much data the receiver expects. Figure 30-47 shows the ESAI transmission 
diagram.

Figure 30-47. ESAI Data Transmission

Table 30-30. 32-Bit Soft Modem Master Mode

Register Value Setting

CR 0x0A Disable the Tx and Rx part for configuration if the PSC was enabled 
earlier.

SICR 0x3FA00000 Select the 32bit Codec mode, lsb first, DTS1 = 1, master mode

CCR 0x22830000 select the BCLK and FrameSync frequency

CTUR 0x02 select the FrameSync width

CR 0x05 Enable Tx and Rx

Frame Length

Start of Frame

FrameSync

CLK

DATA

First Data Word Last Data Word Empty Data

Until the Next
Frame Starts

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-58 Freescale Semiconductor

Table 30-31 shows an example how to configure the PSC1 as ESAI master. For the slave mode, the bit 
SICR [GenClk] must be cleared and the configuration of the CCR register can be ignored. In this 
configuration example, the PSC sends three data words with 16-bit data in the 52 BCLK frame length. The 
last four bits in the frame are empty (zero).

• Use PSC1 as ESAI master
• 16-bit data, LSB first
• BCLK frequency 4 MHz
• FrameSync length 52 bit
• Data shifted out on the rising edge of BCLK
• Data transfer starts on FrameSync is active 
• FrameSync is active high

30.5.2.5 Transmitting and Receiving in I2S Master Mode

The I2S transmission is similar to the soft modem mode. Therefore, the configuration is as described in 
Section 30.5.2.3, “Transmitting and Receiving in Soft Modem Codec Mode”. The difference is that during 
the I2S word transmission the FrameSync signal (LRCK) is stable for the complete data word and is the 
opposite for the next one. To enable the I2S mode, the SICR[I2S] bit must be set. The SICR[SyncPol] bit 
defines if the frame starts with a low LRCK signal or with a high LRCK signal. If the transmitter detects 
the start condition, it starts to send the data from the TxFIFO. If the receiver detects a start condition, it 
starts to write the data from the Rx line to the RxFIFO. The FIFO doesn’t provide the ability to mark the 
data in the FIFO. Therefore, only the order in the FIFO define if the data was received/transmitted during 
high or low phase of the LRCK. Figure 30-48 shows the I2S transmission diagram.

If an underrun of overflow condition in the FIFO was detected then the receive and the transmit data can’t 
be put to the correct slot of the data transmission. To get in sync with the serial signals, the receiver and 
the transmitter must be disabled and re-eanabled again to start the transmission. At the same time the FIFO 
must be cleared.

Table 30-31. 16-Bit ESAI Master Mode for PSC1

Register Value Setting

CR 0x0A Disable the Tx and Rx part for configuration if the PSC was enabled earlier.

SICR 0x12D20000 Select the 16bit Codec ESAI master mode, LSB first, DTS1=0

CCR 0x33030000 Set the FrameSync length (52 bit) and SCKL frequency

CR 0x05 Enable Tx and Rx

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-59

Figure 30-48. I2S-Data Transmission

Table 30-32 shows an example of how to configure the PSC1 as I2S master. For the slave mode the bit 
SICR[GenClk] must be cleared and the configuration of the CCR register can be ignored.

• Use PSC1 as I2S master
• 32-bit data, MSB first
• SCLK frequency 1 MHz
• FrameSync width 40 bit
• Data shifted out on the falling edge of SCLK
• Data transfer starts one CLK cycle after the FrameSync is active 
• Frame starts with LRCK low

30.5.2.6 Transmitting and Receiving in SPI Mode

The PSC supports a full duplex SPI mode. This mode is chosen by setting SICR[SPI] equal to 1, only if 
this bit was set the MSTR, CPOL, CPHA, and UseEOF bits in the SICR register take effect. In SPI mode, 
the SICR[SIM] bits must also be set to select the data width. To configure the PSC to act like an SPI 
master, set SICR[MSTR] equal to 1 or set SICR[MSTR] equal to 0 to configure the PSC as an SPI slave. 
When the SICR[MSTR] bit is set, SICR[GenClk] must also be set to 1 because the PSC is driving the SPI 
clock line. When SICR[MSTR] equals 0, SICR[GenClk] must be set to 0 because the external SPI is 
driving the SCK clock line. The CPOL and CPHA bits in the SICR register operate exactly the same way 
as they do in an SPI, and their values must be the same as the CPOL and CPHA bits in the SPI device 
communicating with the PSC. The SICR[UseEOF] bit has an effect only when SICR[MSTR] equals 1 for 
master mode. If the UseEOF bit is cleared, only one data word (8, 12, 16, 20, 24, or 32 bit width depending 

Table 30-32. 32-bit I2S Master Mode for PSC1

Register Value Setting

CR 0x0A Disable the Tx and Rx part for configuration if the PSC was enabled earlier.

SICR 0x2FE00000 Select the 32bit Codec I2S master mode, msb first, DTS1 =1

CCR 0x270F0000 set the FrameSync width (40 bit) and SCKL frequency

CR 0x05 Enable Tx and Rx

Frame Length

DTS1

Start of Frame

LRCK (Frame)

SCLK (CLK)

SDATA

Data Width
Empty Data Bits until the 
New Data Starts (Zero)

Start of Frame

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-60 Freescale Semiconductor

on the SICR[SIM] field) sent before slave select (SS) goes high/inactive. When SICR[UseEOF] equals 1, 
the number of bytes transferred prior to SS going high is controlled by the DMA task that fills the Tx FIFO. 
As the PSC reads bytes out of the Tx FIFO, it holds SS low/active until it transmits a byte whose EOF flag 
is set. In this mode, there is virtually no limit to how many bytes can be sent in one SPI transfer.

The SICR[SHDIR] bit controls the shift direction in SPI mode, as it does in the non-SPI codec modes. The 
DTS1, ClkPol and SyncPol bits in the SICR register have no effect in SPI mode. 

In SPI master mode, the BCLK (SCK) frequency is generated by dividing the MCLK frequency; see 
Section 30.5.2.2, “Codec Clock and FrameSync Generation”. In addition to the BCLK generation, the 
DSCLK delay and the DTL delay must be defined. The DSCLK defines the delay between the SS going 
active and the first BCLK (SCK) clock pulse transition. The DSCLK delay is created by dividing the 
MCLK frequency. The delay between consecutive transfers is created by dividing the IPS_CLK clock 
frequency. For more information about the delay generation, see the description of the CTUR, CTLR and 
CCR registers.

Eqn. 30-5

In SPI master mode the PSC controls the serial data transfers. If the Tx FIFO becomes empty (underrun) 
or the Rx FIFO becomes full (overflow) in the middle of a multi-byte transfer, the PSC keeps the slave 
select signal low/active and stops the SCK serial clock instead of setting the Tx underrun or Rx overflow 
status bits. When the Tx FIFO is not empty any more or the Rx FIFO becomes not full, the transfer 
proceeds.

In SPI slave mode, the MCLK must be running/enabled even though it is not used to generate the serial 
clock SCK, which is provided by the external master SPI device. The frequency of MCLK is not critical, 
as long as it is faster than the SCK frequency.

       DSCKL delay =
MCLK

CCR[0:7] +1

DTL =
IPS_CLK frequency

 CT[0:15] +2 
+ 

3

MCLK frequency

where:

CT[0:7] = CTUR[0:7]

CT[8:15] = CTLR[0:7]

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-61

Figure 30-49. SPI Parameter

Table 30-33 shows an example of how to configure the PSC3 as SPI master.
• 32-bit data
• Clock is active high, CPOL = 0
• The first SCK edge is issued one half cycle into the data transfer; CPHA = 0
• The msb first
• SCLK frequency 1 MHz
• DSCLK delay = 0.5 μs
• DTL delay = 2.0 μs

Table 30-33. 32-bit SPI Master Mode for PSC3

Register Value Setting

CR 0x0A Disable the Tx and Rx part for configuration if the PSC was enabled earlier.

SICR 0x0F00C000 Select the 32bit Codec SPI master mode, msb first, CPOL = 0,CPHA = 0

CCR 0x070F Set the SCK and DSCKL delay

CTUR 0x00 Set the DTL delay 2 us

CTLR 0x84

CR 0x05 Enable Tx and Rx

SCK

SS

MOSI

MISO

DTLDSCKl

Next
Frame

Tx FIFO 

Tx
Enable

Empty

The PSC starts to generate the SCK if the transmitter is enabled 
and the Tx FIFO is not empty!

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-62 Freescale Semiconductor

Table 30-34 shows an example of how to configure the PSC2 as SPI slave.
• Use PSC2 as SPI slave
• 8-bit data
• Clock is active low, CPOL = 0;
• The first SCK edge is issued at the beginning of the data transfer; CPHA = 1
• The msb first

30.5.3 PSC in AC97 Mode

After reset, all PSCs are in UART mode. AC97 mode is chosen by setting the SICR[SIM] equal to 0x03. 
The other SICR field should be initialized at the same time. The important registers to configure the PSC 
for AC97 mode are:

• SICR register—select the codec mode
• CR register—enable or disable receiver and transmitter
• OP0, OP1 register—generate the reset pulse for the external device

Table 30-34. 8-bit SPI Slave Mode for PSC2

Register Value Setting

CR 0x0A Disable the Tx and Rx part for configuration if the PSC was enabled earlier.

SICR 0x01009000 Select the 8bit Codec SPI slave mode, msb first, CPOL = 0; CPHA = 1

CR 0x05 Enable Tx and Rx

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-63

30.5.3.1 Block Diagram and Signal Definition for AC97 Mode

Figure 30-50. PSC AC97 Block Diagram

Figure 30-50 shows the simplified PSC Block Diagram for AC97 mode. The BCLK is an input from the 
external codec. The PSC divides BCLK by 256 to generate a Frame pulse (Sync) that is high for 16 BCLK 
cycles. The PSC can only work as an AC97 controller. This means the PSC receives the BCLK from the 
external AC97 codec and provides the associated frame signal. In AC97 mode, the clock and frame 
relations are fixed. Therefore, the CCR register and the SICR[GenClk] bit are not used. Table 30-35 shows 
the pin definition for the AC97 mode, and Figure 30-51 shows an AC97 interface. A general-purpose I/O 
(GPIO) is used as a reset to the external AC97 device.

Table 30-35. PSC Signal Description for AC97 Mode

Signal Description

Sdata_out Transmitter Serial Data Output. Data is shifted out on TxD on the rising edge of the clock signal. Transfers must 
be specified as msb first.

Sdata_in Receiver Serial Data Input. Data received on RxD is sampled on the falling edge of the clock signal. Transfers 
must be specified as msb first.

Sync In AC97 mode, Sync is the frame sync, or start-of-frame (SOF), output to the external AC97 Controller. In this 
mode, the AC97 BCLK, which is input on CLK, is divided by 256 to generate the Sync.

BCLK BCLK. In AC97 mode, CLK must be driven from the external AC97 Controller.

Reset Reset signal to the external AC97 device

Receiver

Transmitter

Clock 
Generation

Unit

Sdata_in

Sdata_out

BCLK

Sync

External
Interface
Signals

PSC

ResetReset
Logic

Interface to
the FIFOC

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-64 Freescale Semiconductor

Figure 30-51. PSC – AC97 Interface

Figure 30-52 shows the timing diagram for the AC97 interface. For more AC97 Controller interface 
information, see the Audio Codec’97 Component Specification.

Figure 30-52. Timing Diagram – AC97 Interface

30.5.3.2 Generate a Reset Condition for the External AC97 Codec Device

As described in the AC97 specification, there are three different reset conditions of the AC97 interface.
• Cold AC97 Reset
• Warm AC97 Reset
• Register AC97 Reset

30.5.3.2.1 Cold AC97 Reset

The following sequence generates a reset pulse, on the AC97 Reset line for the external AC97 device. At 
the same time, the Sync line is forced to low to make sure the external codec doesn’t enter the test mode.

• Write 0x02 to the OP1 register; Reset line goes low
• Write 0x02 to the OP0 register; Reset line goes high

30.5.3.2.2 Warm AC97 Reset

To generate a Warm Reset of the AC97 interface, the bit SICR[AWR] must be set for least at 1 µs. This 
asserts the Sync line to high and indicate a Warm AC97 Reset condition to the external AC97 device.

Sync

BCLK

SDATA_OUT

RESET RESET

BIT_CLK

SDATA_IN

FRAME SYNC

SDATA_OUT

AC97 Codec

SDATA_IN

AC97 Controller

CLK

Frame

TxD

RxD

bit1 bit2 bit13 bit16

Slot 1 Slot 2 Slot 12 Slot 0

Slot 0

20 bits 20 bitsbit14 bit15

Frame

Slot 1 Slot 2 Slot 12 Slot 0

Frame Sync Frame Sync

20 bits

bit1 bit2 bit13 bit16 20 bits 20 bitsbit14 bit15 20 bits

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-65

30.5.3.2.3 Register AC97 Reset

To generate a Register Reset, a write access to the reset register of the external device must be performed. 

30.5.3.3 External AC97 Codec Test Mode

To bring some external codec devices to test mode, a reset pulse during the high phase of the Sync signal 
is required. To generate this condition the software must do as follows:

1. set bit SICR[AWR] to force the Sync signal high
2. generate a reset pulse like described in Section 30.5.3.2.1, “Cold AC97 Reset”

30.5.3.4 AC97 Low-Power Mode

The external AC97 device monitors the first three time slots of each Tx frame to detect the power-down 
condition for the AC97 digital interface. To put the external device into the Low Power mode, the required 
bit of the power-down control register of the external device must be set. To do this, the required command 
data word and the address of the power-down register must be written to the AC97CMD register. After the 
write access to the AC97CMD register the controller sends out the power-down command by:

1. set the first three bits of slot 0, indicating Tx frame and slots 1 and 2 are valid.
2. transmit the address of the power-down control register in Slot 1
3. transmit the command data in Slot 2

Low-Power mode can be left through a Warm or Cold Reset.

30.5.3.5 Transmitting and Receiving in AC97 Mode

The data transmission complies with the standard AC97 one. See Section 30.5.3.1, “Block Diagram and 
Signal Definition for AC97 Mode”. The AC97 controller is able to generate the data for time slot0,1 and 
2 on the transmit side and analyzes received time slot0,1 and 2. The used audio data slots (3 to 12) must 
be in the FIFOs.

The RX_SLOTS field in the AC97Slots register specify the expected Rx data slots. If the received slots 
don’t match this specification, the receiver ignores all data slots from the current frame and sets the 
SR[UNEX_RX_SLOT] bit. Only the expected and valid tagged data slots are in the RxFIFO. This 
functionality guarantees that the software can assign the data in the RxFIFO to an AC97 slot. Only the 
order in the RxFIFO marks the AC97 slot number.

The Tx_SLOTS field in the AC97Slots register defines which data slots are sent. All data for these slots 
must be in TxFIFO. The transmitter generates the related slot0 tag data. If the TxFIFO is empty, the 
transmitter tags the frame as empty. The transmitter sends data if the receiver detects the codec ready state 
for the current frame. The Tx FIFO contains the specified data words (defined in the AC97Slots register), 
and the slot request for the specified slots was active (slot request bit was zero in the previous frame). If 
the AC97 codec set a slot request to one, the transmitter sends a complete empty frame because the 
transmitter cannot send part of the required slots without changing the order of the data in the FIFO.

If the software needs to send a command to the AC97 codec, the control register index and the control 
register write data values must be written to the AC97CMD register. A write access to any word of this 

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-66 Freescale Semiconductor

register triggers the transmitter to send out the register value, at the same time the SR[CMD_SEND] bit 
was set. The transmitter generates a slot0 tag that marks slot1 and slot2 as valid slot. If the transmitter was 
able to send out the command data, the SR[CMD_SEND] bit is cleared.

If the receiver detects a valid data in time slot2, the SR[DATA_VALID] bit is set by the receiver. The 
software can read the received data from the AC97Data register, synchronous the read access to this 
register clears the SR[DATA_VALID] bit. If the receive detect an additional command data before the 
previous data was read out, the SR[DATA_OVR] bit was also set to one. The previous received command 
data word is lost. A read access to the AC97Data register clears the SR[DATA_VALID] and 
SR[DATA_OVR] register. Table 30-36 shows an example how to configure the AC97 controller. In this 
example, the AC97 controller sends only time slot 3 and slot4 data and expects data for time slot9, 10, 11, 
and 12 on the receive side. For this purpose, the software must write two data words to the TxFIFO for one 
complete AC97 frame and read four data words from the RxFIFO per frame.

30.5.4 Local Loop-Back Mode

Figure 30-53 shows how TxD and RxD are internally connected in local loop-back mode. This mode is for 
testing the operation of a local PSC module channel by sending data to the transmitter and checking data 
assembled by the receiver to ensure proper operation. To enable this mode, see register MR2 description.

Figure 30-53. Local Loop-Back

Features of this local loop-back mode are:
• Transmitter and CPU-to-receiver communications continue normally.
• RxD input data is ignored.
• TxD data is held marking.
• The receiver is clocked by the transmitter clock. 
• Transmitter must be enabled, but the receiver does need not to be enabled.

Table 30-36. General Configuration Example AC97 Mode

Register Value Setting

CR 0x0A Disable the Tx and Rx part for configuration if the PSC was enabled earlier.

SICR 0x03010000 Select the enhanced AC97 mode

AC97Slots 0x0300000F Define the expected receive and transmit slots

IMR 0xXXXX Select the desired interrupt

CR 0x05 Enable Tx and Rx

CPU

Disabled

Disabled RxD Input

TxD InputTx

Rx

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

Freescale Semiconductor 30-67

30.5.5 Remote Loop-Back Mode

In remote loop-back mode, shown in Figure 30-54, the channel automatically transmits received data 
bit-by-bit on the TxD output. The local CPU-to-transmitter link is disabled. This mode is useful in testing 
receiver and transmitter operation of a remote channel. For this mode, the transmitter uses the receiver 
clock.

Because the receiver is not active, received data cannot be read by the CPU and error status conditions are 
inactive. Received parity is not checked and is not recalculated for transmission. Stop bits are sent as they 
are received. A received break is echoed as received until the next valid start bit is detected. To enable this 
mode, see register MR2 description.

Figure 30-54. Remote Loop-Back

CPU

Disabled

Disabled RxD Input

TxD InputTx

Rx

Disabled

Disabled

MPC5121e Microcontroller Reference Manual, Rev. 2



Programmable Serial Controller (PSC)

30-68 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 31-1

Chapter 31  
PSC Centralized FIFO Controller (FIFOC)

31.1 Introduction
The MPC5121e has a centralized FIFO controller that contains data to be transmitted and received data for 
all 12 PSC modules. For each PSC module, one TX and one RX FIFO space is available. The size of each 
memory slice is programmable. If the unused FIFO slices are set to zero, another FIFO slice can use this 
area. To maintain data consistency, multiple slices can not share the same space. The available memory 
space for all slices together is 32 x1024 (4KB).

Figure 31-1. FIFOC Overview

Internal Memory, 4KB

PSC0

PSC1

.

.

.

IP-Bus

PSC0 TX FIFO Slice

PSC0 RX FIFO Slice

PSC1 TX FIFO Slice

PSC1 RX FIFO Slice

.

.

.

FIFOC

DMA2
Engine

Core

Memory
Interface

Logic

Interface Control Logic

Configuration Register

Serial
Interface

AXE
Engine

PSC 11

PSC11 TX FIFO Slice
PSC11 RX FIFO Slice

MPC5121e Microcontroller Reference Manual, Rev. 2



PSC Centralized FIFO Controller (FIFOC)

31-2 Freescale Semiconductor

31.1.1 Features

Features of the FIFO controller are:
• Independent programmable memory size for transmitter and receiver for each PSC
• All PSCs share the FIFO memory; each PSC FIFO can use as much memory as available 

depending on the configuration
• Dynamic clock gating function to save power during normal operation 
• Independent programmable request signals to the core, DMA2, and AXE engine
• Debug mode to overwrite internal address pointer and write access to ISR register to generate 

interrupts independent from the interrupt status

31.1.2 Modes of Operation

Behind the normal FIFO controller operation, the FIFOC provides a debug mode that allows the software 
to manipulate the internal generated pointer register.

The memory map in Table 31-1 shows the complete memory space for all 12 PSCs and the FIFO 
controller. Access to the PSC memory area passes directly to the 12 PSC modules. The control register 
area for the TX FIFO (0xn80 - 0xnBC) and the RX FIFO (0xnC0 - 0xnFC) for all 12 PSCs contains the 
same registers to configure the FIFO area. In this chapter, the character n stands for the supported PSC 
number 0 to11. The register area below 0xF00 contains some special register needed to configure the FIFO 
function independent from the configuration of the individual FIFO areas.

MPC5121e Microcontroller Reference Manual, Rev. 2



PSC Centralized FIFO Controller (FIFOC)

Freescale Semiconductor 31-3

Table 31-1. FIFO Memory Map

Offset
Register Name

Register 
Width

Access
11..8 7..0

0x0n
(PSC 

number)

0x00..0x54 Register space for PSC number n — —

0x80 Command register for PSCn TX slice — PSCn_TX_CMD 32 R/W

0x84 Alarm level for PSCn TX slice —PSCn_TX_ALARM 32 R/W

0x88 Status register for PSCn TX slice —PSCn_TX_SR 32 R

0x8C Interrupt status register for PSCn TX slice —PSCn_TX_ISR 32 R

0x90 Interrupt mask register for PSCn TX slice —PSCn_TX_IMR 32 R/W

0x94 FIFO count for PSCn TX slice —PSCn_TX_COUNT 32 R

0x98 FIFO pointer for PSCn TX slice —PSCn_TX_POINTER 32 R

0x9C FIFO size register for PSCn TX slice — PSCn_TX_SIZE 32 R/W

0xBC FIFO data register for PSCn TX slice — PSCn_TX_DATA 32 R/W

0xC0 Command register for PSCn RX slice — PSCn_RX_CMD 32 R/W

0xC4 Alarm level for PSCn RX slice —PSCn_RX_ALARM 32 R/W

0xC8 Status register for PSCn RX slice — PSCn_RX_STAT 32 R

0xCC Interrupt status register for PSCn RX slice — PSCn_RX_INTSTAT 32 R

0xD0 Interrupt mask register for PSCn RX slice — PSCn_RX_INTMASK 32 R/W

0xD4 FIFO count for PSCn RX slice — PSCn_RX_COUNT 32 R

0xD8 FIFO pointer for PSCn RX slice — PSCn_RX_POINTER 32 R

0xDC FIFO size register for PSCn RX slice — PSCn_RX_SIZE 32 R/W

0xFC FIFO data register for PSCn RX slice — PSCn_RX_DATA 32 R/W

0xF00 FIFO command 32 R/W

0xF04 FIFO interrupt status 32 R

0xF08 FIFO DMA request 32 R

0xF0C FIFO AXE request 32 R

0xF10 FIFO debug 32 R/W

MPC5121e Microcontroller Reference Manual, Rev. 2



PSC Centralized FIFO Controller (FIFOC)

31-4 Freescale Semiconductor

31.1.3 Register Descriptions

31.1.3.1 Command Register (CMD)

Offset 0xn80 – Tx

Offset 0xnC0 – Rx

Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0

AXE

_EN
DMA
_EN

SLIC
E_
EN

W

EOF

RE-
SET

SLIC
E

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 31-2. Command Register (CMD)

Table 31-2. CMD Field Descriptions

Field Description

EOF End of Frame
0 Unused
1 Defines the next data word written to the data register as the last word of this frame

RESET SLICE Reset the FIFO slice.
0 Unused
1 Clears the underrun, overrun, and memory access error bits. Clears all data in the FIFO slice and reset 

the internal pointer.

AXE_EN Enable the request to the AXE engine
0 Request to the AXE engine is disabled.
1 Request to the AXE engine is enabled. The FIFO controller generates a request for this slice to AXE 

engine if this slice is enabled and the current data pointer reaches the alarm level.

DMA_EN Enable the request to the DMA engine
0 Request to the DMA engine is disabled.
1 Request to the DMA engine is enabled. The FIFO controller generates a request for this slice to DMA 

engine if this slice is enabled and the current data pointer reaches the alarm level.

SLICE_EN Enable this Slice of the FIFO
0 FIFO slice is disabled. All interrupt and request lines are cleared. Access to the internal register is possible, 

but the PSC can’t read or write data to the FIFO.
1 FIFO slice is enabled. The FIFO controller provides the data for the transmitter and stores the data from 

the receiver. If the size of the FIFO slice is zero, it’s not possible to enable the FIFO.

MPC5121e Microcontroller Reference Manual, Rev. 2



PSC Centralized FIFO Controller (FIFOC)

Freescale Semiconductor 31-5

31.1.3.2 Alarm Level (ALARM)

Offset 0xn84/0xnC4 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ALARM LEVEL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 31-3. Alarm Level Register (ALARM)

Table 31-3. ALARM Field Descriptions

Field Description

ALARM LEVEL The alarm level defines the number of data bytes in the FIFO when the alarm status appears. Also, the 
interrupt lines to the core or the request lines to the DMA or AXE engine are asserted if these lines are 
enabled. For the TX FIFO area, the alarm status appears if the number of data in the TX FIFO is below this 
alarm level. For the RX FIFO area, the alarm status appears if the number of data in the RX FIFO is above 
this alarm level. The alarm level and the request lines deassert if the number of data cross this level again.

MPC5121e Microcontroller Reference Manual, Rev. 2



PSC Centralized FIFO Controller (FIFOC)

31-6 Freescale Semiconductor

31.1.3.3 Status Register (SR)

The Status register shows the internal status of the FIFO slice. If an event occurs, the corresponding bit in 
the SR and in the ISR register is set. If the event disappears, the bit in the SR is also cleared but the bit in 
the ISR register is active until it is cleared by SW.

Offset 0xn88/0xnC8 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DEBUG
MODE

SIZE
ZERO

MEM

ER-
ROR

DATA 
REA
DY

ORERR URERR ALARM FULL EMPTY

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 31-4. Status Register (SR)

Table 31-4. SR Field Descriptions

Field Description

MEM ERROR Memory Access Error
0 No Error occurred
1 The access to the data register generates an access error

DATA READY Data Ready
0 FIFO empty
1 FIFO contains one or more data words

ORERR Overrun Error
0 No overrun error
1 Overrun error occurred, write access to a full FIFO

URERR Underrun Error
0 No underrun error
1 Underrun error occurred, read access from an empty FIFO

ALARM FIFO Alarm
0 The number of data in the FIFO doesn’t reach the alarm level
1 The number of data in the FIFO reached the alarm level

FULL FIFO Full
0 The FIFO is not full
1 The FIFO is full

EMPTY FIFO Empty
0 The FIFO contains data
1 The FIFO is empty

MPC5121e Microcontroller Reference Manual, Rev. 2



PSC Centralized FIFO Controller (FIFOC)

Freescale Semiconductor 31-7

SIZE ZERO Size Zero
0 The programmed number of available memory words for this slice inside the Size register is not zero
1 The programmed number of available memory words for this slice inside the Size register is zero

DEBUG MODE Debug Mode
0 The Debug mode is disabled
1 The Debug mode is enabled

Offset 0xn88/0xnC8 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DEBUG

MODE

SIZE

ZERO

MEM

ER-
ROR

DATA 
REA
DY

ORERR URERR ALARM FULL EMPTY

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 31-4. Status Register (SR)

Table 31-4. SR Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



PSC Centralized FIFO Controller (FIFOC)

31-8 Freescale Semiconductor

31.1.3.4 Interrupt Status Register (ISR)

Writing one to the interrupt bit clears the interrupt bit.

Offset 0xn8C/0xnCC Access: User read/1C

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MEM 
ER-
ROR

DATA 
READ

Y
ORERR URERR ALARM FULL EMPTYW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 31-5. Interrupt Status Register (ISR)

Table 31-5. ISR Field Descriptions

Field Description

MEM ERROR Memory Access Error. This bit is identical to the MEM error bit in the SR register. If the corresponding bit in 
the IMR register also set, an interrupt is generated. Writing one to this bit clears the interrupt.

DATA READY Data Ready. This is identical to the DATA READY bit in the SR register. If the corresponding bit in the IMR 
register is also set, an interrupt is generated. Writing one to this bit clears the interrupt. 

ORERR Overrun Error. This bit is identical to the ORERR bit in the SR register. If the corresponding bit in the IMR 
register also set, an interrupt is generated. Writing one to this bit clears the interrupt.

URERR Underrun Error. This bit is identical to the ORERR bit in the SR register. If the corresponding bit in the IMR 
register is also set, an interrupt is generated. Writing one to this bit clears the interrupt.

ALARM FIFO Alarm. This bit is identical to the ALARM bit in the SR register. If the corresponding bit in the IMR register 
is also set, an interrupt is generated. Writing one to this bit clears the interrupt.

FULL FIFO Full. This bit is identical to the FULL bit in the SR register. If the corresponding bit in the IMR register is 
also set, an interrupt is generated. Writing one to this bit clears the interrupt.

EMPTY FIFO Empty. This bit is identical to the EMPTY bit in the SR register. If the corresponding bit in the IMR register 
is also set, an interrupt is generated. Writing one to this bit clears the interrupt.

MPC5121e Microcontroller Reference Manual, Rev. 2



PSC Centralized FIFO Controller (FIFOC)

Freescale Semiconductor 31-9

31.1.3.5 Interrupt Mask Register (IMR)

Offset 0xn90/0xnD0 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MEM 
ER-
ROR

DATA 
READ

Y
ORERR URERR ALARM FULL EMPTYW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 31-6. Interrupt Mask Register (IMR)

Table 31-6. IMR Field Descriptions

Field Description

MEM ERROR Memory Access Error
0 The memory access error status has no effect on the interrupt line.
1 Enable the interrupt for memory access error.

DATA READY Data Ready
0 The DATA READY status has no effect on the interrupt line.
1 Enable the interrupt for DATA READY status.

ORERR Overrun Error
0 The overrun error status has no effect on the interrupt line.
1 Enable the interrupt for overrun error.

URERR Underrun Error
0 The underrun error status has no effect on the interrupt line.
1 Enable the interrupt for underrun error.

ALARM FIFO Alarm
0 The FIFO alarm status has no effect on the interrupt line.
1 Enable the interrupt for FIFO alarm.

FULL FIFO Full
0 The FIFO full status has no effect on the interrupt line.
1 Enable the interrupt for FIFO full.

EMPTY FIFO Empty
0 The FIFO empty status has no effect on the interrupt line.
1 Enable the interrupt for FIFO empty.

MPC5121e Microcontroller Reference Manual, Rev. 2



PSC Centralized FIFO Controller (FIFOC)

31-10 Freescale Semiconductor

31.1.3.6 Count Register (Count)

Offset 0xn94/0xnD4 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R COUNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 31-7. Count Register (Count)

Table 31-7. Count Field Descriptions

Field Description

COUNT Count. This read only register shows the number of bytes in the FIFO.

MPC5121e Microcontroller Reference Manual, Rev. 2



PSC Centralized FIFO Controller (FIFOC)

Freescale Semiconductor 31-11

31.1.3.7 Pointer Register (PTR)

Offset 0xn98/0xnD8 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R WRITE POINTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R READ POINTER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 31-8. Pointer Register (PTR)

Table 31-8. PTR Field Descriptions

Field Description

WRITE 
POINTER

Write Pointer. This read only register shows the current write position in the FIFO memory without the offset 
for the slice number. This register is writeable during debug mode.

READ POINTER Read Pointer. This read only register shows the current read position in the FIFO memory without the offset 
for the slice number. This register is writeable during debug mode.

MPC5121e Microcontroller Reference Manual, Rev. 2



PSC Centralized FIFO Controller (FIFOC)

31-12 Freescale Semiconductor

31.1.3.8 FIFO Size Register (Size)

Offset 0xn9C/0xnDC Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
FIFO START ADDRESS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FIFO SIZE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 31-9. FIFO Size Register (Size)

Table 31-9. Size Field Descriptions

Field Description

FIFO START 
ADDRESS

Defines the start address for this FIFO slice. The software must take care not to allow overlap in the memory 
areas to appear.

FIFO SIZE Defines the size (number of words) of this FIFO slice.

MPC5121e Microcontroller Reference Manual, Rev. 2



PSC Centralized FIFO Controller (FIFOC)

Freescale Semiconductor 31-13

31.1.3.9 Data Register (Data)

Offset 0xnBC/0xnFC Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-10. Data Register (DATA)

Table 31-10. DATA Field Descriptions

Field Description

DATA Data Register. Write access to this register writes the data to the FIFO. Read access from this register reads 
the data from the FIFO.
Note: See Section 30.2.1.6, “Rx Buffer Register (RB)”.

MPC5121e Microcontroller Reference Manual, Rev. 2



PSC Centralized FIFO Controller (FIFOC)

31-14 Freescale Semiconductor

31.1.3.10 FIFOC Command Register (FIFOC_CMD)

Offset 0xF00 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CLOCK
_GATE

_EN
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 31-11. FIFOC Command Register (FIFOC_CMD)

Table 31-11. FIFOC_CMD Field Descriptions

Field Description

CLOCK_GATE_E
N

Dynamic Clock Gating Enabled
0 Dynamic clock gating is disabled
1 Dynamic clock gating is enabled, the FIFO gates off the internal clock if no access is available. This 

behavior increases the number of IP bus wait cycles by one.

MPC5121e Microcontroller Reference Manual, Rev. 2



PSC Centralized FIFO Controller (FIFOC)

Freescale Semiconductor 31-15

31.1.3.11 FIFOC Interrupt Register (FIFOC_INT)

Offset 0xF04 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R FIFOC RX INTERRUPT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FIFOC TX INTERRUPT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 31-12. FIFOC Interrupt Register (FIFOC_INT)

Table 31-12. FIFOC_INT Field Descriptions

Field Description

FIFOC
RX INTERRUPT

FIFOC RX Interrupt. There is one bit per PSC FIFO showing all PSCs with currently pending interrupts.
FIFOC RX Interrupt[27:16] = {PSC11...PSC0}

FIFOC
TX INTERRUPT

FIFOC TX Interrupt. There is one bit per PSC FIFO showing all PSCs with currently pending interrupts.
FIFOC TX Interrupt[11:0] = {PSC11...PSC0}

MPC5121e Microcontroller Reference Manual, Rev. 2



PSC Centralized FIFO Controller (FIFOC)

31-16 Freescale Semiconductor

31.1.3.12 FIFOC DMA Request Register (FIFOC_DMA)

Offset 0xF08 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R FIFOC RX DMA REQUEST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FIFOC TX DMA REQUEST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 31-13. FIFOC DMA Request Register (FIFOC_DMA)

Table 31-13. FIFOC_DMA Field Descriptions

Field Description

FIFOC
RX DMA Request

FIFOC RX DMA Request. There is one bit per PSC FIFO showing all PSCs with currently pending requests.
FIFOC RX DMA Request[27:16] = {PSC11...PSC0}

FIFOC
TX DMA Request

FIFOC TX DMA Request. There is one bit per PSC FIFO showing all PSCs with currently pending requests.
FIFOC TX DMA Request[11:0] = {PSC11...PSC0}

MPC5121e Microcontroller Reference Manual, Rev. 2



PSC Centralized FIFO Controller (FIFOC)

Freescale Semiconductor 31-17

31.1.3.13 FIFOC AXE Request Register (FIFOC_AXE)

Offset 0xF0C Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R FIFOC RX AXE REQUEST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FIFOC TX AXE REQUEST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 31-14. FIFOC AXE Request Register (FIFOC_AXE)

Table 31-14. FIFOC_AXE Field Descriptions

Field Description

FIFOC
RX AXE 

REQUEST

FIFOC RX AXE Request. There is one bit per PSC FIFO showing all PSCs with currently pending requests.
FIFOC RX AXE Request[27:16] = {PSC11..PSC0}

FIFOC
TX AXE 

REQUEST

FIFOC RX AXE Request. There is one bit per PSC FIFO showing all PSCs with currently pending requests.
FIFOC RX AXE Request[11:0] = {PSC11..PSC0}

MPC5121e Microcontroller Reference Manual, Rev. 2



PSC Centralized FIFO Controller (FIFOC)

31-18 Freescale Semiconductor

31.1.3.14 FIFOC Debug Register (FIFOC_DEBUG)

31.2 Functional Description
During the functional mode, the FIFOC controller provides the data for all PSC transmitters and stores the 
data from all PSC receiver. If the FIFO gets a request from the PSC, the required data from the TX FIFO 
memory is written to the PSC transmit register or the received data is read from the RX register and is 
stored in the RX FIFO area. If the number of data inside the FIFO register reaches the programmed alarm 
level, the enabled request lines are asserted to inform the system that the RX data is available or new TX 
data is required.

Offset 0xF10 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R LOC
K

DEB
UGW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 31-15. FIFOC Debug Register (FIFOC_DEBUG)

Table 31-15. FIFOC_DEBUG Field Descriptions

Field Description

DEBUG Debug Mode
0 Normal Operation Mode
1 Debug mode. The Interrupt status register and the pointer register are writeable. The debug bit is only 

writeable with a 32-bit access to this register during bit[31:16] containing 0x8442.

LOCK State Machine Lock
0 Normal operation mode
1 Lock the internal machine control state machine. All PSC requests are ignored. Only access from the IP 

Bus interface is possible.The lock bit is only writeable with a 32-bit access to this register during bit[31:16] 
containing 0x8442.

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 32-1

Chapter 32  
Real Time Clock (RTC)

32.1 Introduction 
The real time clock module (RTC) provides a time of day function as well as a calendar function. It also 
provides a method to bring the MPC5121e from a power-down condition to a fully operational condition. 
The RTC provides a time base as long as VBAT_RTC power is applied. Parts of RTC module is powered 
independently of the rest of the MPC5121e device. The RTC has its own internal 32.768 kHz oscillator 
which is totally independent of the other MPC5121e clock domains. As long as VBAT_RTC is powered, 
the RTC can be used to cause the MPC5121e to exit any of the power-down modes which include DOZE, 
NAP, SLEEP, DEEP SLEEP, and HIBERNATION MODE. The wakeup function can be initiated from the 
internal timer inside the RTC module or from any of six external wakeup pins. An external pin, 
HIB_MODE, is associated with the RTC and can be used to control the power supplies for the MPC5121e. 
The RTC controls the HIB_MODE pin in response to any RTC wakeup event, such as a transition on one 
of the six external wakeup sources or a timeout event in the RTC module.

A block diagram of the RTC is shown in Figure 32-1. 

Figure 32-1. RTC Block Diagram

SRTC_3_3V

External Pins
RTC

Target Time
Register

Register

Register

Actual Time Counter

Keep Alive

(3.3V Battery Supply VBAT_RTC)

Periodic Interrupt

WakeUp Interrupt

Interrupt
Control

CAN2_RX

XTALI_RTC
XTALO_RTC

HIB_MODE

Target Time
Shadow Register

Actual Time Counter
Showdow Register

Keep Alive
Shadow Register

Time, Data, Alarm,
Stopwatch Register

VDD_CORE Supply

Alarm Interrupt

CAN1_RX
GPI28
GPI29
GPI30
GPI31

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-2 Freescale Semiconductor

32.1.1 Features

The RTC module provides the following features:
• Secure real time clock (SRTC_3_3V)

— Secure (not programmable) low-power timebase (actual time count register) that runs 
continuously as long as VBAT_RTC is powered and the crystal is connected to RTC OSC.

— HIB_MODE (HIBERNATE) pin used to enable/disable external power regulator
— Programmable timeout and six external wakeup sources, for exiting HIB_MODE. 

• Programmable wakeup source edge detect
• Programmable wakeup source inhibitor after the first wakeup source has 

been detected.
— Wakeup source bits and four additional bits in RTC keep alive register can be used as an 8-bit 

breadcrumb register when the MPC5121e is powered off.
— Loss of power bit, TAMP

• Normal RTC functions under software control
— minute countdown timer—provides 256-minute capability, slightly over 4 hours
— programmable alarm—operates on time of day only, not related to calendar
— periodic interrupts for:

– 1 second
– 1 minute
– 1 day—operates only at midnight rollover

— calendar features:
– weekday
– date
– year

• Crystal support (32.768 kHz only)

The RTC is divided into two major sections. One section contains the target time shadow register, actual 
time counter shadow register, keep alive shadow register and the time, date, alarm, and stopwatch registers. 
This section is powered by the VDD_CORE power supply. These registers retain their contents when 
powered by the VDD_CORE core power supply. If the VDD_CORE power supply is turned off, these 
registers lose their contents.

To provide for the restoration of the date and time after all power is lost, except VBAT_RTC, the system 
software needs to record a value of the actual time count register that corresponds with the contents of the 
RTC current time register and current date register. These values must be stored in non-volatile memory. 
Then, after power is restored, software must be used to deduce the current date and time based on the 
current count of the actual time count register.

The time, date and stopwatch registers are updated by the 1-second clock that is derived from the RTC 
32.768 kHz oscillator. When the MPC5121e enters the deep sleep mode, the contents of these registers are 
maintained and updated as long as the VDD_CORE supply is powered. That is, these registers are updated 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-3

by the 1-second clock derived from the RTC 32.768 kHz oscillator; however, when in the deep sleep mode, 
the real time clock cannot generate a wakeup interrupt based on an alarm time to cause the MPC5121e to 
exit the deep sleep mode. The deep sleep mode can only be exited in response to an external RTC wakeup 
pin or when the actual time count register is greater than or equal to the target time register.

The second section of the RTC contains the target time register, actual time counter register, and the keep 
alive register. This section of the RTC is powered by the VBAT_RTC supply. As long as power is applied 
to the VBAT_RTC pin, the actual time counter register continues to increment at a 1 Hz rate.

When the CPU reads the value of the actual time count register, target time register or the keep alive 
register, the value in the respective shadow register is actually fetched. The contents of the actual time 
count register, target time register or the keep alive register are transferred to their respective shadow 
registers on each cycle of the 1-second clock which increments the actual time count register.

For predictable operation, consecutive writes to the actual time count shadow register, the target time 
shadow register or the keep alive shadow register must be separated by at least three clock periods of the 
32.768 kHz RTC clock.

32.2 External Signal Descriptions

Table 32-1. External Pins Signal Properties

Name Function I/O Reset

XTALI_RTC 32kHz crystal input I —

XTALO_RTC 32kHz crystal output O —

HIB_MODE Power regulator disable (See Table 32-14 and Table 32-16) O 1

GPI31 General purpose input I —

GPI30 General purpose input I —

GPI29 General purpose input I —

GPI28 General purpose input I —

CAN1_RX CAN Receive input I —

CAN2_RX CAN Receive input I —

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-4 Freescale Semiconductor

32.3 Memory Map and Register Definition

32.3.1 Memory Map

The MPC5121e RTC uses twelve 32-bit registers. Hyperlinks to the RTC registers are provided in 
Table 32-2.

NOTE
All registers beside RTC target time, RTC actual time counter, and RTC 
keep alive registers lose content when VDD_CORE power is no longer 
supplied. The three not influenced registers are powered by VBAT_RTC.

Table 32-2. RTC Memory Map

Offset or 
Address

Register Access Section/Page

General Registers

0x00 RTC time set register – TSR R/W 32.3.2.1/32-5

0x04 RTC date set register – DSR R/W 32.3.2.2/32-9

0x08 RTC new year and stopwatch register – NY_STP R/W 32.3.2.3/32-13

0x0C RTC alarm and interrupt enable register – ALM_IE R/W 32.3.2.4/32-14

0x10 RTC current time register – CTR R 32.3.2.5/32-16

0x14 RTC current date register – CDR R 32.3.2.6/32-17

0x18 RTC alarm and stopwatch interrupt register – ALM_STP_INT R 32.3.2.7/32-18

 0x1C RTC periodic interrupt and bus error register – PI_BE R 32.3.2.8/32-19

0x20 RTC target time register – TTR R/W 32.3.2.9/32-20

 0x24 RTC actual time counter – ATC R 32.3.2.10/32-21

0x28 RTC keep alive register – KAR R/W 32.3.2.11/32-22

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-5

32.3.2 Register Descriptions

32.3.2.1 RTC Time Set Register

This register is used to program the RTC current time register (Section 32.3.2.5, “RTC Current Time 
Register”). This register does not reflect the running time value. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-6 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-7

Offset 0x00Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SET_
TIME

PAUS
E_TI
ME

SLCH
OUR

C24HOUR_SET
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MINUTE_SET SECOND_SET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 32-2. RTC Time Set Register
(The register is repeated for reference.)

Table 32-3. RTC Time Set Register Field Descriptions

Field Description

SET_TIME A software sequence using the pause time bit in conjunction with the set_time bit must be followed to load 
new values into the RTC current time register (Section 32.3.2.5, “RTC Current Time Register”). The 
SET_TIME bit cannot be set to 1 unless the PAUSE_TIME bit is also set to 1.
The proper software sequence is:
 • Step 1. Write register with C24hour_set, minute_set, and second_set fields set to the desired values and 

with pause_time = 1 and set_time = 0
 • Step 2. Write register with C24hour_set, minute_set, and second_set fields set to the desired values and 

with pause_time = 1 and set_time = 1
 • Step 3. Write register with C24hour_set, minute_set, and second_set fields set to the desired values and 

with pause_time = 1 and set_time = 0
 • Step 4. Write register with C24hour_set, minute_set, and second_set fields set to the desired values and 

with pause_time = 0 and set_time = 0
 • At completion of step 4, RTC current time register is updated with the new time.

The Chour_set, minute_set, and the second set fields should remain consistent throughout the four steps 
(i.e., at the desired new time values). 

The hour, minute and second fields of the RTC current time register are all set at the completion of step 4 of 
the above sequence.

It is important to use LOAD and STORE operations to access this register. Do not use read-modify-write 
instructions such as AND or OR to modify this register.

PAUSE_TIME Used with set_time above to perform time update. Must be zero for normal operation.

Figure 32-3. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-8 Freescale Semiconductor

SLCHOUR This bit determines the hour output format. 
0 24-hour format
1 12-hour format with AM/PM
This bit does not affect time set procedure, it only affects how the hour status field is presented. The new 
hour format is updated immediately in the current time register.

C24HOUR_SET Hour in 24-hour format written in RTC current time register after successful state machine transition by 
set_time and pause_time bits.
This field is always written with 24-Hour format, it is not affected by SlctHour bit above.

MINUTE_SET Minute written in RTC current time register after successful state machine transition by set_time and 
pause_time bits.

SECOND_SET Second written in RTC current time register after successful state machine transition by set_time and 
pause_time bits.

Offset 0x00Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SET_
TIME

PAUS
E_TI
ME

SLCH
OUR

C24HOUR_SET
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
MINUTE_SET SECOND_SET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 32-2. RTC Time Set Register
(The register is repeated for reference.)

Table 32-3. RTC Time Set Register Field Descriptions (continued)

Field Description

Figure 32-3. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-9

32.3.2.2 RTC Date Set Register

This register is used to program the RTC current date register (Section 32.3.2.6, “RTC Current Date 
Register”). The RTC date set register does not reflect the running date value. Notice that the value in 
year_set field of the RTC new year and stopwatch register (Section 32.3.2.3, “RTC New Year and 
Stopwatch Register”) is also loaded into the current date register after the proper software sequence using 
the set_date and pause_date bits.

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-10 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-11

Offset 0x04Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SET_
DATE

PAUS
E_DA

TE
MONTH_SET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
WEEKDAY_SET DATE_SET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 32-4. RTC Date Set Register
(The register is repeated for reference.)

Table 32-4. RTC Date Set Register Field Descriptions

Field Description

SET_DATE A software sequence using the pause_date bit in conjunction with the set_date bit must be followed to load 
new values into the RTC current time register (Section 32.3.2.5, “RTC Current Time Register”). The 
SET_DATE bit cannot be set to 1 unless the PAUSE_DATE bit is also set to 1.
The proper software sequence is:
 • Step 1. Write register with month_set, weekday_set, date_set and year_set fields set to the desired values 

and with pause_date = 1 and set_date = 0
 • Step 2. Write register with month_set, weekday_set, date_set and year_set fields set to the desired values 

and with pause_date = 1 and set_date = 1
 • Step 3. Write register with Month_set, weekday_set, date_set and year_set fields set to the desired values 

and with pause_date = 1 and set_date = 0
 • Step 4. Write register with Month_set, weekday_set, date_set and year_set fields set to the desired values 

and with pause_date = 0 and set_date = 0
 • At completion of Step 4, RTC Current date register is updated with the new time.

The month_set, weekday_set, and the date_set fields should remain consistent throughout the four steps 
(i.e., at the desired new time values). 

The year_set field is located in the RTC new year and stopwatch register. The month, weekday, date and year 
fields are all set at the completion of step 4 of the above sequence.

It is important to use LOAD and STORE operations to access this register. Do not use read-modify-write 
instructions such as AND or OR to modify this register.

PAUSE_DATE Used with set_time above to perform time update. Must be zero for normal operation.

Month_set New month written in RTC current date register after successful state machine transition by set_date and 
pause_date bits. Only the lower 4 bits of this field are used.

Figure 32-5. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-12 Freescale Semiconductor

WEEKDAY_SET New weekday written in RTC current date register after state machine transition by set_date and pause_date 
bits. 1 = Monday; 7 = Sunday. Only the lower 3 bits of this field are used. If zero is written (not recommended), 
the weekday is set to zero until the end of the day. The weekday is then incremented to 1.

DATE_SET New date (1-31) is written in RTC current date register after state machine transition by set_date and 
pause_date bits. Only the lower 5 bits of this field are used.

A date of 1 indicates the first day of the month, 2 indicates the second day of the month, 31 indicates the last 
day of the month of January.

If zero is written (not recommend), the day is set to zero until the end of the day. The date is then incremented 
to 1.

Year_set in the following register is also part of the date set function.

Offset 0x04Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SET_
DATE

PAUS
E_DA

TE
MONTH_SET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
WEEKDAY_SET DATE_SET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 32-4. RTC Date Set Register
(The register is repeated for reference.)

Table 32-4. RTC Date Set Register Field Descriptions (continued)

Field Description

Figure 32-5. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-13

32.3.2.3 RTC New Year and Stopwatch Register

Offset 0x08Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R write

_SW
SW_set

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Year_set

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 32-6. RTC New Year and Stopwatch Register

Table 32-5. RTC New Year and Stopwatch Register Field Descriptions

Field Description

write_SW Typical stopwatch operation is to write an initial value into the 8-bit wide sw_set field and assert the write_sw 
bit. The write_sw bit is immediately auto cleared, but it triggers the stopwatch minute countdown to begin.

SW_set Number of minutes to be written into stopwatch. Max is 255, a little over 4 hours.

Year_set New year value to be written to the RTC current date register after successful state machine transition by 
set_date and pause_date bits.

This is part of date set function in the previous register.

Figure 32-7. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-14 Freescale Semiconductor

32.3.2.4 RTC Alarm and Interrupt Enable Register

Offset 0x0CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R Alm_

enable
Alm_24H_set

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Alm_Min_set MPE

IntEn
_day

IntEn
_min

IntEn
_secW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

= Unimplemented or Reserved

Figure 32-8. RTC Alarm and Interrupt Enable Register

Table 32-6. RTC Alarm and Interrupt Enable Register Field Descriptions

Field Description

Alm_enable Alarm enable bit for once-a-day alarm
1 Alarm status/interrupt operation is enabled
0 Alarm setting is not compared to time of day

Alm_24H_set Hour setting (in 24 hour format) to be compared to time of day for the purpose of generating alarm 
status/interrupt. Can be written at any time.

Alm_Min_set Minute setting to be compared to time of day for the purpose of generating alarm status/interrupt. Can be 
written at any time.

MPE Master periodic enable – Must be written low after reset to allow periodic interrupts.
0 Allow periodic interrupts
1 Do not allow periodic interrupts

IntEn_day Enable bit of periodic interrupts at midnight rollover.

IntEn_min Enable bit of periodic interrupts at minute rollover.

IntEn_sec Enable bit of periodic interrupts at second rollover.

Figure 32-9. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-15

NOTE
The Alarm function generates an interrupt based on a comparison to the 
hour and minute fields of the RTC current time register, shown in 
Figure 32-10. Thus, if the alarm function is enabled and left enabled, an 
alarm is generated each day at a particular time. It is important not to 
confuse the alarm interrupt with the midnight rollover interrupt. Either one 
can cause an interrupt once each 24 hours.

When in deep sleep, the alarm function cannot be used to exit the deep sleep 
mode.

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-16 Freescale Semiconductor

32.3.2.5 RTC Current Time Register

Offset 0x10Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R Hour

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Minute Second

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 32-10. RTC Current Time Register

Table 32-7. RTC Current Time Register Field Descriptions

Field Description

Hour Hour format can be either 24-hour or 12-hour with AM/PM. 
If 24-hour format is selected (SlctHour low in Hour[0]), the whole 5-bit hour field designates current time in 
24-hour format.
If 12-hour format is selected (SlctHour high in Hour[0]), the MSB of hour field indicates:

Hour[0]=0: AM
Hour[0]=1: PM and
Hour[1:4] designates current time in 12-hour format.

Minute Shows minutes in current time.

Second Shows seconds in current time.

Figure 32-11. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-17

32.3.2.6 RTC Current Date Register

Offset 0x14Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R Month Weekday Date

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Year

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 32-12. RTC Current Date Register

Table 32-8. RTC Current Date Register Field Descriptions

Field Description

Month Shows current month. (1 = January; 12 = December)

Weekday Indicates day of week. (Monday = 1, Sunday = 7)

Date Shows current date. Calendar feature is implemented, therefore, day rollover at the end of month including 
February (and Leap Years) is automatic.

Year Shows current year. Max is 4052.

Figure 32-13. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-18 Freescale Semiconductor

32.3.2.7 RTC Alarm and Stopwatch Interrupt Register

Offset 0x18Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R int_ 
alm

int_ 
SW

W W1C W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Alm_
status

SW_min

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 32-14. RTC Alarm and Stopwatch Interrupt Register

Table 32-9. RTC Alarm and Stopwatch Interrupt Register Field Descriptions

Field Description

Int_alm Status bit indicating that enabled once-a-day alarm has occurred (active high). Alarm interrupt has been 
activated. This bit and the Interrupt are cleared by writing 1 to this bit position.

A stopwatch interrupt, if also active, must be cleared before the interrupt signal to the CPU is negated.

Int_SW Status bit indicating that stopwatch expiration has occurred (active high). Stopwatch interrupt has been 
activated. This bit and the Interrupt are cleared by writing 1 to this bit position.

An alarm interrupt, if also active, must be cleared before the interrupt signal to the CPU is negated.

Alm_status Status bit indicating that once-a-day alarm has occurred. Same as int_alm bit above except that clearing this 
bit does not clear the interrupt.

SW_min Minutes remaining in stopwatch.

Figure 32-15. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-19

32.3.2.8 RTC Periodic Interrupt and Bus Error Register

Offset 0x1CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R Bus_ 
error_

1

int_da
y

W W1C W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R int_ 
min

int_ 
sec

W W1C W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 32-16. RTC Periodic Interrupt and Bus Error Register

Table 32-10. RTC Periodic Interrupt and Bus Error Register Field Descriptions

Field Description

Bus_error_1 Internal status register—If high, indicates software has attempted a write access to a read-only register in 
this module. No actual register contents are corrupted and no interrupt is generated if this happens. 
Cleared by writing 1 to this bit position.

Int_day Periodic interrupt at midnight. High indicates interrupt has occurred.
Cleared by writing 1 to this bit position.

Int_min Periodic interrupt at each minute rollover. High indicates interrupt has occurred.
Cleared by writing 1 to this bit position.

Int_sec Periodic interrupt at each second rollover. High indicates interrupt has occurred.
Cleared by writing 1 to this bit position.

Figure 32-17. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-20 Freescale Semiconductor

32.3.2.9 RTC Target Time Register

This register is used to program a time to hibernate, in seconds, based on value in the RTC current time 
register. When the RTC ATC register is greater than or equal to the RTC time target register, the 
HIB_MODE signal asserts to a logic 1.

NOTE
Because of the uncertainty of the time that the actual time counter 
increments, it is recommended that the target time register be written with a 
value that is two counts greater than the current value of the ATC register.

Offset 0x20Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
TTR[0:15]

W

Reset1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TTR[16:31]

W

Reset1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. This register is reset only when VBAT_RTC is connected. After that, it is up to software to make sure it is updated correctly. 

Figure 32-18. RTC Target Time Register

Table 32-11. RTC Target Time Register Field Descriptions

Field Description

TTR The number, in seconds, to generate the HIB_MODE signal.
When TTR = 0x00000000, entering Hibernation or Deep Sleep mode is not possible.
If it is desired to use one of the wakeup sources to wakeup (Section 32.3.2.11, “RTC Keep Alive Register”), 
then write TTR to 0xFFFFFFFF. This allows to assert the HIB_MODE signal and to enter Deep Sleep mode, 
when non of the external wake up sources (GPI[31:28] or CAN[1:2]_RX) prevent this.

Figure 32-19. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-21

32.3.2.10 RTC Actual Time Counter

This register is used to read the elapsed time, in seconds, since VBAT_RTC was last connected.

NOTE
This register is set to 0xFFFF FFFE when VBAT_RTC is applied. If 
VBAT_RTC is removed and later connected, the register is again set to 
0xFFFF FFFE.

The contents of this register cannot be modified by software. After 
VBAT_RTC is connected, this register increments at a 1 Hz rate starting 
from 0xFFFF FFFE.

Offset 0x24Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ATC[0:15]

W

Reset1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ATC[16:31]

W

Reset1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1. This register is reset only when VBAT_RTC is connected. Software cannot modify this register.

= Unimplemented or Reserved

Figure 32-20. RTC Actual Time Counter Register

Table 32-12. RTC Actual Time Counter Register Field Descriptions

Field Description

ATC The number, in seconds, since VBAT_RTC was last connected.

Figure 32-21. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-22 Freescale Semiconductor

32.3.2.11 RTC Keep Alive Register

This register contains a unique 9-bit breadcrumb register (BC_[0-8]), which can also can function as a 5-bit 
wakeup source register (GPI[30:28] and CAN[1:2]_RX) and a 4-bit breadcrumb register (BC_[5-8]). Each 
bit that can function as both a wakeup source and as a breadcrumb bit. This register also contains a 
dedicated wakeup source register (GPI31).

Breadcrumb bits are generally used to hold status words or information that is user defined. As long as 
VBAT_RTC is powered, this register retains its contents. One purpose for the breadcrumb bits might be to 
hold user defined information about what process should be executed upon exiting the HIBERNATE 
mode.

NOTE
When writing to the RTC keep alive register, do not modify any of the 
WU_SRC_[1:5]_EN bits in the same instruction that modifies any of the 
WU_SRC_[1:5]_LVL bits. Use one instruction to modify the 
WU_SRC_[1:5]_LVL bits and a second instruction to modify the 
WU_SRC_[1:5]_EN bits.

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-23

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-24 Freescale Semiconductor

Offset 0x28Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BC_7 WU_SRC_[1:5]_EN BC_8 WU_SRC_[1:5]_LVL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R WU_
SRC_

0 WU_SRC_[1:5] BC_5 BC_6
DIS_
HIB_
MODE

WU_
SRC_
MODE

TAMP
TTR_
CMP

W W1C W1C W1C

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1

= Unimplemented or Reserved

Figure 32-22. RTC Keep Alive Register
(The register is repeated for reference.)

Table 32-13. RTC Keep Alive Register Field Descriptions (Sheet 1 of 6)

Field Description

BC_[8:5] Breadcrumb bits. This bits are cleared when VBAT_RTC is applied.

Figure 32-23. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-25

WU_SRC_1_EN This bit determines the modes of the WU_SRC_1 bit.
1 - WU_SRC_1 functions as a wakeup source (GPI30).
0 - WU_SRC_1 functions as a breadcrumb bit (BC_0).

WU_SRC_2_EN This bit determines the modes of the WU_SRC_2 bit.
1 - WU_SRC_2 functions as a wakeup source (GPI29).
0 - WU_SRC_2 functions as a breadcrumb bit (BC_1).

WU_SRC_3_EN This bit determines the modes of the WU_SRC_3 bit.
1 - WU_SRC_3 functions as a wakeup source (GPI28).
0 - WU_SRC_3 functions as a breadcrumb bit (BC_2).

WU_SRC_4_EN This bit determines the modes of the WU_SRC_4 bit.
1 - WU_SRC_4 functions as a wakeup source (CAN2_RX).
0 - WU_SRC_4 functions as a breadcrumb bit (BC_3).

WU_SRC_5_EN This bit determines the modes of the WU_SRC_5 bit.
1 - WU_SRC_5 functions as a wakeup source (CAN1_RX).
0 - WU_SRC_5 functions as a breadcrumb bit (BC_4).

WU_SRC_1_
LVL

Program the level of the wakeup source, GPI30, as active high or active low.
0 - GPI30 is active low.
1 - GPI30 is active high.
Note: This must be configured before WU_SRC_1_EN is asserted to 1.

Offset 0x28Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BC_7 WU_SRC_[1:5]_EN BC_8 WU_SRC_[1:5]_LVL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R WU_
SRC_

0 WU_SRC_[1:5] BC_5 BC_6
DIS_
HIB_
MODE

WU_
SRC_
MODE

TAMP
TTR_
CMP

W W1C W1C W1C

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1

= Unimplemented or Reserved

Figure 32-22. RTC Keep Alive Register
(The register is repeated for reference.)

Table 32-13. RTC Keep Alive Register Field Descriptions (Sheet 2 of 6)

Field Description

Figure 32-23. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-26 Freescale Semiconductor

WU_SRC_2_
LVL

Program the level of the wakeup source, GPI29, as active high or active low.
0 - GPI29 is active low.
1 - GPI29 is active high.
Note: This must be configured before WU_SRC_2_EN is asserted to 1.

WU_SRC_3_
LVL

Program the level of the wakeup source, GPI28, as active high or active low.
0 - GPI28 is active low.
1 - GPI28 is active high.
Note: This must be configured before WU_SRC_1_EN is asserted to 1.

WU_SRC_4_
LVL

Program the level of the wakeup source, CAN2_RX, as active high or active low.
0 - CAN2_RX is active low.
1 - CAN2_RX is active high.
Note: This must be configured before WU_SRC_1_EN is asserted to 1.

WU_SRC_5_
LVL

Program the level of the wakeup source, CAN1_RX, as active high or active low.
0 - CAN1_RX is active low.
1 - CAN1_RX is active high.
Note: This must be configured before WU_SRC_1_EN is asserted to 1.

WU_SRC_0 Bit functions as a wakeup source sticky bit.
When GPI31 is asserted low then this bit is set to 1.
Software can clear it by writing a 1 to this location when GPI31 is negated high.

Offset 0x28Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BC_7 WU_SRC_[1:5]_EN BC_8 WU_SRC_[1:5]_LVL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R WU_
SRC_

0 WU_SRC_[1:5] BC_5 BC_6
DIS_
HIB_
MODE

WU_
SRC_
MODE

TAMP
TTR_
CMP

W W1C W1C W1C

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1

= Unimplemented or Reserved

Figure 32-22. RTC Keep Alive Register
(The register is repeated for reference.)

Table 32-13. RTC Keep Alive Register Field Descriptions (Sheet 3 of 6)

Field Description

Figure 32-23. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-27

WU_SRC_1 WU_SRC_1_EN=0:
Breadcrumb bit (BC_0) function

WU_SRC_1_EN=1:
Bit functions as a wakeup source sticky bit.
When GPI30 is asserted, according to WU_SRC_1_LVL bit, then this bit is set to 1.
Software can clear it by writing a 1 to this location when GPI30 is its inactive wake up state.

Note: This bit CANNOT be written at the same time WU_SRC_1_EN is written.

WU_SRC_2 WU_SRC_2_EN=0:
Breadcrumb bit (BC_1) function

WU_SRC_2_EN=1:
Bit functions as a wakeup source sticky bit.
When GPI29 is asserted, according to WU_SRC_2_LVL bit, then this bit is set to 1.
Software can clear it by writing a 1 to this location when GPI29 is its inactive wake up state.

Note: This bit CANNOT be written at the same time WU_SRC_2_EN is written.

WU_SRC_3 WU_SRC_3_EN=0:
Breadcrumb bit (BC_2) function

WU_SRC_3_EN=1:
Bit functions as a wakeup source sticky bit.
When GPI28 is asserted, according to WU_SRC_3_LVL bit, then this bit is set to 1.
Software can clear it by writing a 1 to this location when GPI28 is its inactive wake up state.

Note: This bit CANNOT be written at the same time WU_SRC_3_EN is written.

Offset 0x28Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BC_7 WU_SRC_[1:5]_EN BC_8 WU_SRC_[1:5]_LVL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R WU_
SRC_

0 WU_SRC_[1:5] BC_5 BC_6
DIS_
HIB_
MODE

WU_
SRC_
MODE

TAMP
TTR_
CMP

W W1C W1C W1C

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1

= Unimplemented or Reserved

Figure 32-22. RTC Keep Alive Register
(The register is repeated for reference.)

Table 32-13. RTC Keep Alive Register Field Descriptions (Sheet 4 of 6)

Field Description

Figure 32-23. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-28 Freescale Semiconductor

WU_SRC_4 WU_SRC_4_EN=0:
Breadcrumb bit (BC_3) function

WU_SRC_4_EN=1:
Bit functions as a wakeup source sticky bit.
When CAN2_RX is asserted, according to WU_SRC_4_LVL bit, then this bit is set to 1.
Software can clear it by writing a 1 to this location when CAN2_RX is its inactive wake up state.

Note: This bit CANNOT be written at the same time WU_SRC_4_EN is written.

WU_SRC_5 WU_SRC_5_EN=0:
Breadcrumb bit (BC_4) function

WU_SRC_5_EN=1:
Bit functions as a wakeup source sticky bit.
When CAN1_RX is asserted, according to WU_SRC_4_LVL bit, then this bit is set to 1.
Software can clear it by writing a 1 to this location when CAN1_RX is its inactive wake up state.

Note: This bit CANNOT be written at the same time WU_SRC_4_EN is written.

DIS_HIB_
MODE

This bit determines whether to disable the HIB_MODE output pin.
0 - enable the HIB_MODE output pin.
1 - disable the HIB_MODE output pin.The HIB_MODE output pin is always negated high regardless the wake 
up sources (TTR, GPI[31:28], CAN[1:2]_RX).

Offset 0x28Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BC_7 WU_SRC_[1:5]_EN BC_8 WU_SRC_[1:5]_LVL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R WU_
SRC_

0 WU_SRC_[1:5] BC_5 BC_6
DIS_
HIB_
MODE

WU_
SRC_
MODE

TAMP
TTR_
CMP

W W1C W1C W1C

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1

= Unimplemented or Reserved

Figure 32-22. RTC Keep Alive Register
(The register is repeated for reference.)

Table 32-13. RTC Keep Alive Register Field Descriptions (Sheet 5 of 6)

Field Description

Figure 32-23. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-29

NOTE
• This register has no influence on the Deep Sleep mode, but does have 

influence on the Hibernation mode.
• GPI31 wake up source cannot be masked nor configured to different 

polarity level. To enter Hibernation mode, this pin needs to be in a logic 
one state.

WU_SRC_
MODE

Wake Up Source Mode bit
0 - allow all proceeding wake up signals to be registered.
1 - inhibit all proceeding wake up signals after the first WU_SRC status bit is registered.
Note: In cases two or more wake up signals occur within a 32 kHz window, both signals are registered in their 

corresponding WU_SRC bits even when WU_SRC_MODE is asserted to 1.

TAMP This bit is set when VBAT_RTC is applied or oscillator stops running. Software can clear this bit by writing an 
one to this bit. 
Software can use this bit recognize loss of VBAT_RTC power or stop of RTC OSC.

TTR_CMP This bit is the value of the TTR compared to the ATC.
TTR_CMP = TTR < ATC

Offset 0x28Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
BC_7 WU_SRC_[1:5]_EN BC_8 WU_SRC_[1:5]_LVL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R WU_
SRC_

0 WU_SRC_[1:5] BC_5 BC_6
DIS_
HIB_
MODE

WU_
SRC_
MODE

TAMP
TTR_
CMP

W W1C W1C W1C

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1

= Unimplemented or Reserved

Figure 32-22. RTC Keep Alive Register
(The register is repeated for reference.)

Table 32-13. RTC Keep Alive Register Field Descriptions (Sheet 6 of 6)

Field Description

Figure 32-23. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-30 Freescale Semiconductor

32.4 Functional Description

32.4.1 Behavior at Power On

When power is first applied to the RTC, the target time register is initialized to 0x0000 0000 and the actual 
time count register is initialized to 0xFFFF FFFE. When the target time register is set to 0x0000 0000, the 
HIB_MODE pin cannot be asserted. The Keep alive register is initialized to 0x0000 0087. This effectively 
masks off any external wakeup sources. To activate any of the external wakeup sources associated with 
the RTC module after power is first applied to VBAT_RTC, software must appropriately program the RTC 
keep alive register.

After power is applied to the MPC5121e, system software must initialize all of the various registers of the 
RTC module to properly reflect the current date and time. 

32.4.2 Behavior of Wakeup Sources

The RTC employs two basic ways to bring the MPC5121e from a powerdown condition to a fully 
operational condition. One method is for the value in the actual time count register to increment to a value 
greater than or equal to the value in the target time register. The second method is to assert one of the 
external RTC wakeup pins.

From the release of reset, the time target register is set to 0x0000 0000. Thus, the actual time count register 
is always greater than or equal to the time target register. Under this condition, the HIB_MODE asserts to 
a logic 1 and can be used to turn on external power regulators powering the device. Recall that the actual 
time count register is set to 0xFFFF FFFE at the release of reset and cannot be modified by software. When 
being clocked at a 1 Hz rate, this register requires 136 years before the actual time count rollover. When 
programming a time in the future to wakeup, the system software reads the actual time count register, adds 
an appropriate offset and then writes the resultant value to the time target register.

When the value in the actual time count register is less than the value in the target time register, the logic 
level on the HIB_MODE pin is determined by the WU_SRC_[0:5] bits in the RTC keep alive register. The 
truth table for controlling the HIB_MODE pin is shown in Table 32-14 and Table 32-16.

Five of the external RTC wakeup pins are controlled by its own enable bit and edge detect bit. If an external 
RTC wakeup pin is not enabled, then its corresponding WU_SRC_[0:5] bit is held at a logic 0. If an 
external RTC wakeup pin is enabled, then its corresponding WU_SRC_[0:5] bit is set or cleared according 
to the truth table presented in Table 32-16.

Table 32-14. Truth Table for the Functionality of the HIB_MODE

Condition WU_SRC_[0:5] HIB_MODE

If ATC > TTR X 1

If ATC = TTR X 1

If ATC < TTR 0 0

If ATC < TTR 1 1

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-31

In cases two or more SET_WU_SRC signals occur simultaneously in a 32 kHz window, both signals are 
registered in their corresponding WU_SRC bits even when WU_SRC_MODE is asserted to 1.

32.4.3 Behavior During Power Off (Hibernation Mode)

The behavior of the RTC is illustrated in Figure 32-24 which shows power being applied to the device, 
removing power by asserting the HIB_MODE pin and then returning to a power-on condition. Power is 
applied to VBAT_RTC. This causes the internal RTC_POR signal to the RTC to be released. RTC_POR, 
shown in Figure 32-24, puts the RTC in its active state when the internal RTC_POR signal is at a logic 0. 
The actual time count register (ATC) is reset to 0xFFFF FFFE and the time target register (TTR) is reset 
to 0x0000 0000 at the assertion of the internal reset signal. At this time, the HIB_MODE signal is asserted 
to a logic 1 indicating that the MPC5121e is not in the hibernate mode. Because the time target register is 
initialized to 0x0000 0000, the actual time count register is always greater than or equal the time target 
register as long as the TTR remains at its initialized value of 0x0000 0000. In this case, the HIB_MODE 
pin remains asserted to a logic 1. Thus, from the assertion of the internal reset signal which is caused by 
the application of power to VBAT_RTC, the RTC is in an active state and the HIB_MODE pin is asserted 
to a logic 1 and it remains asserted until the CPU writes a non-zero value to the time target register.

In an actual application, the HIB_MODE pin is used to turn external power regulators on and off the supply 
power to the MPC5121e. 

The assertion of the HIB_MODE pin does not affect the operation of the CPU. For instance, if the 
HIB_MODE pin is not connected to anything, i.e., an external power regulator, then neither the assertion 
of the HIB_MODE pin nor the mechanisms that cause the assertion of the HIB_MODE pin have any effect 
on the operation of MPC5121e.

Table 32-15. Truth Table for the Functionality of the RTC Wakeup Sources

WU_SRC_[1:5]_EN WU_SRC_[1:5]_LVL
GPI[30:28], 

CAN[1:2]_RX
WU_SRC_[1:5]

0 X X Breadcrumb function

1 0 1 -> 0 1

1 0 0 -> 1 Can be cleared by SW

1 1 0 -> 1 1

1 1 1 -> 0 Can be cleared by SW

Table 32-16. Truth Table for the Functionality of GPI31 Wakeup Sources

GPI31 WU_SRC_0

1 -> 0 1

0 -> 1 Can be cleared by SW

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-32 Freescale Semiconductor

Figure 32-24. Timing Diagram of the RTC in Deep Sleep Mode

Point A Power is applied to the VBAT_RTC pin. The application of power on VBAT_RTC caused the 
internal reset signal to assert to a logic 0 at point A. When the internal reset signal is asserted, the 
actual time count register is initialized to 0xFFFF FFFE and the target time register is initialized 
to 0x0000 0000. Until these registers are modified with user software, the target time register is 
always less than or equal to the actual time count register. Under this condition, the HIB_MODE 
pin asserts to a logic 1. If the HIB_MODE pin is connected to an external power regulator, the 
regulator is turned on, thus supplying power to the MPC5121e.

Point B The internal RTC_POR signal asserts to a logic 0, which negates the internal reset and enables 
the RTC. When the internal RTC_POR signal is released, the actual time count register is 
initialized to 0xFFFF FFFE and the target time register is initialized to 0x0000 0000. Until these 
registers are modified with user software. The target time register is less than or equal to the actual 
time count register. Under this condition, the HIB_MODE pin asserts to a logic 1. If the 
HIB_MODE pin is connected to an external power regulator, the regulator is turned on, thus 
supplying power to the MPC5121e.

Point C The CPU writes 0x0000 0005 to the time target register and enables HIB_MODE function by 
setting DIS_HIB_MODE bit to zero.

Point D The time target register value is greater than the actual time count register. In the diagrams, 
however, the TTR value is 0x5, whereas the ACT value is 0xFFFFFFFF. The is means the ACT 
is greater than the TTR. This transfer occurs on the next falling edge of the internal 1 Hz clock 
signal which increments the ATC value. Because the time target register value is greater than the 
actual time count register value, the HIB_MODE pin is driven to a logic 0. If the HIB_MODE 
pin is connected to an external power regulator, the regulator is turned off, thus turning off power 

VBAT_RTC

HIB_MODE

RTC_POR

FFFFFFFEATC

1 Hz Clock

FFFFFFFF 00000000 00000001 00000002 00000003 00000004

00000000TTR 00000005

VDD_CORE

AB C D E F G

00000005

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-33

to the MPC5121e. VDD_CORE is turned off in response to the HIB_MODE pin being driven to 
a logic 0.

Point E The actual time count register increments to 0x0000 0005 and now matches the contents of the 
target time register.

Point F The HIB_MODE pin is driven to a logic 1 on the next negative edge of the 1 Hz
Point G VDD_CORE is turned on in response to the HIB_MODE pin being driven to a logic 1.

NOTE
This scenario assumes the wake up input sources are in an inactive state or 
disabled by the corresponding WU_SRC_EN bit.

32.4.4 RTC Response to Target Time Register/Actual Time Count Register 
and External Wakeup Sources

The timing diagram in Figure 32-25 shows the functionality of the target time register (TTR) and the 
functionality of detecting the positive edge of wakeup source, GPI30. The TTR is originally reset to 
0x00000000. When TTR is updated to 0x00000005, then ATC < TTR and HIB_MODE is asserted low at 
the negative edge of the 1 Hz clock.

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-34 Freescale Semiconductor

Figure 32-25. Timing Diagram of the Target Time Register (TTR) and the Positive Edge of GPI30

The following is an explanation of Figure 32-25 timing diagram illustrating the functionality of the target 
time register (TTR) and the functionality of detecting the positive edge of wakeup source, GPI30.
Point A Power is applied to the VBAT_RTC pin. The application of power on VBAT_RTC caused the 

internal RTC_POR pin to assert to a logic 0 at Point B.
Point B The internal RTC_POR signal asserts to a logic 0 which enables the real time clock. When the 

internal RTC_POR signal is released, the actual time count register is initialized to 0xFFFF FFFE 
and the target time register is initialized to 0x0000 0000. Until these registers are modified with 

VBAT_RTC

HIB_MODE

RTC_POR

FFFFFFFEATC

1 Hz Clock

FFFFFFFF 00000000 00000001 00000002 00000003 00000004 00000005

00000000TTR 00000005

GPI30

Clear WU_SRC_1

TTR_CMP

VDD_CORE

VDD_CORE is off, RTC_1_2V is off

TTR_CMP

A B C D E F G H I J K L

WU_SRC_1
(SRTC_3_3V)

WU_SRC_1
(RTC_1_2V)

WU_SRC_1_EN
(SRTC_3_3v)

(RTC_1_2V)

(SRTC_3_3V)

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-35

user software. the target time register is less than or equal to the actual time count register. Under 
this condition, the HIB_MODE pin asserts to a logic 1. If the HIB_MODE pin is connected to an 
external power regulator, the regulator is turned on, thus supplying power to the MPC5121e.

Point C The CPU writes 0x0000 0005 to the time target shadow register. Next, the CPU writes to the RTC 
keep alive register and enables external wakeup source 1. Then, it enables HIB_MODE function 
by setting DIS_HIB_MODE bit to zero.

Point D  Now, the time target register is greater than the actual time count register. This transfer occurs 
on the next falling edge of the internal 1 Hz clock signal which increments the ATC value. 
Because the time target register value is greater than the actual time count register value, the 
HIB_MODE pin is driven to a logic 0. If the HIB_MODE pin is connected to an external power 
regulator, the regulator is turned off, thus turning off power to the MPC5121e.

Point E VDD_CORE is turned off in response to the HIB_MODE pin being driven to a logic 0.
Point F The GPI30 is asserted which causes the WU_SRC_1 bit in the RTC Keep Alive Register to assert. 

This bit remains asserted, regardless of the logic level on the GPI30, until software clears the bit 
by writing a 1 to the WU_SRC_1 bit position. The assertion of the GPI30 causes the HIB_MODE 
pin to assert to a logic 1, thus turning on the external power regulators to the MPC5121e.

Point G The external voltage regulators turn on and apply power to the MPC5121e.
Point H The CPU writes a 1 to the WU_SRC_1 bit in the RTC keep alive register to negate this bit.
Point I An internal clear signal clears the WU_SRC_1 bit in the RTC keep alive register. At this time, the 

WU_SRC_1_EN bit is set, thus enabling GPI30 events to wakeup the device. Also, the actual 
time count register is less than the target time register. Under these conditions, the HIB_MODE 
pin asserts to a logic 0, thus turning off the external power regulators to the device.

CAUTION
It is important to keep track of the values in the target time register and the 
actual time count register when enabling and disabling the external wakeup 
sources to keep from inadvertently asserting the HIB_MODE pin to a logic 
0 and thus turning off the power to the MPC5121e.

Point J The external voltage regulators turn off and power is removed from the MPC5121e.
Point K The actual time count register has incremented to 0x0000 0005 and is equal to the target time 

register. On the next negative edge of the 1 kHz clock after the ATC value is equal to the TTR 
value, the HIB_MODE pin asserts to a logic 1 causing the external power regulators to turn on.

Point L The external voltage regulators turn on and apply power to the MPC5121e.

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-36 Freescale Semiconductor

32.4.5 RTC Response to External Wakeup Sources

The following is an explanation of Figure 32-26 timing diagram illustrating the functionality of detecting 
GPI[30:28] with WU_SRC_MODE disabled.

Figure 32-26. Timing Diagram Showing the Functionality of Detecting GPI[30:28] with WU_SRC_MODE 
Disabled

VBAT_RTC

HIB_MODE

RTC_POR

FFFFFFFEATC

1 Hz Clock

FFFFFFFF 00000000 00000001 00000002 00000003 00000004 00000005

00000000TTR 00000005

GPI30

WU_SRC_1_EN

WU_SRC_1

GPI29

WU_SRC_2

WU_SRC_2_EN

WU_SRC_MODE

WU_SRC_3_EN

WU_SRC_3 

GPI28

A CB

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

Freescale Semiconductor 32-37

Point A The HIB_MODE signal is asserted in response to the release of the internal reset signal. The 
WU_SRC_1_EN, WU_SRC_2_EN and WU_SRC_3_EN bits are set in the RTC keep alive 
register to enable the respective external wakeup sources.

Point B The target time register is written to 0x0000 0005 and is greater than the ATC register. This causes 
the HIB_MODE pin to assert to a logic 0.

Point C The GPI30 pin asserts to a logic 1 and causes the HIB_MODE pin to assert to a logic 1. This 
causes the external power regulators to turn on and apply power to the MPC5121e.

32.4.5.1 Behavior of the RTC keep alive register WU_SRC_x bits when the 
WU_SRC_MODE is disabled

As shown in Figure 32-26, the WU_SRC_MODE is disabled. The HIB_MODE pin is asserted to a logic 
0 as soon as software writes the target time register to 0x0000 0005. The external RTC wakeup source pin, 
GPI30 pin asserts. As soon as this pin asserts, the corresponding bit in the RTC keep alive register is set. 
Likewise, when GPI29 and GPI28 are set, their corresponding bits, WU_SRC_2 and WU_SRC_3 are also 
set. If the system software accesses the RTC Keep Alive Register and more than one of the wakeup bits is 
set, it is not possible to see which one occurred first. On the other hand, any time that one of the six external 
RTC wakeup pins assert to an active state, that occurrence is recorded in the RTC keep alive register. 
Recall that the WU_SRC_x bits are sticky bits and does not return to a logic 0 until a logic 1 is written to 
their respective bit position in the RTC keep alive register.

32.4.5.2 Behavior of the RTC keep alive register WU_SRC_x bits when the 
WU_SRC_MODE is enabled

As shown in Figure 32-27, the WU_SRC_MODE is enabled. The HIB_MODE pin is asserted to a logic 0 
as soon as software writes the target time register to 0x0000 0005. The external RTC wakeup source pin, 
GPI30 pin asserts. As soon as this pin asserts, the corresponding bit in the RTC Keep Alive Register is set; 
however, when GPI29 and GPI28 are set after GPI30 is set and remains set, the WU_SRC_2 and 
WU_SRC_3 are not set. In this case, once an external RTC wakeup source is asserted and the 
corresponding bit in the RTC Keep Alive Register is set, no more bits is set in the RTC keep alive register 
by asserting additional external RTC wakeup pins until the first external interrupt source is negated and its 
corresponding flag in the RTC Keep Alive Register is also negated by writing a logic 1 to its bit position. 
This methodology allows the system software to determine which external wakeup source caused the 
device to exit the hibernate mode. After the bit in the RTC Keep Alive Register is cleared that caused the 
device to exit the hibernate mode, then next external wakeup source to assert is recognized and then all 
further wakeup sources is inhibited until the current wakeup source is negated and its associated status bit 
is cleared. Recall that the WU_SRC_x bits are sticky bits and does not return to a logic 0 until a logic 1 is 
written to their respective bit position in the RTC Keep Alive Register.

MPC5121e Microcontroller Reference Manual, Rev. 2



Real Time Clock (RTC)

32-38 Freescale Semiconductor

Figure 32-27. Timing Diagram Illustrating the Functionality of Detecting GPI[30:28] with WU_SRC_MODE 
Enabled

VBAT_RTC

HIB_MODE

RTC_POR

FFFFFFFEATC

1 Hz Clock

FFFFFFFF 00000000 00000001 00000002 00000003 00000004 00000005

00000000TTR 00000005

GPI30

WU_SRC_1_EN

WU_SRC_1

GPI29

WU_SRC_2 

WU_SRC_2_EN

WU_SRC_MODE

WU_SRC_3_EN

WU_SRC_3

GPI28

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 33-1

Chapter 33  
SATA Controller (SATA)

33.1 Introduction 
The SATA I is a high-speed serialized ATA data link interface compliant with SATA Revision 1.0a by 
SerialATA workgroup. It includes DMA controller, command layer, transport layer, link layer, PhyCtrl 
layer, PCS(Physical Coding Sublayer) and physical layer. The SATA controller supports one SATA device 
only.

33.1.1 Features
• Compliant with SATA 1.0a spec

— Supports:
– Register FIS
– Set Device Bits FIS
– PIO Setup FIS
– DMA Activate FIS
– BIST Activate FIS
– DATA FIS

— First-party DMA access (DMA setup FIS) is not supported.
• Embeded dedicated DMA for data transfer
• Support device retimed loopback and device transmit only modes.
• Single-channel SATA-I PHY
• Power efficient normal operation mode of SATA PHY
• Partial and Slumber power management modes of SATA PHY
• Receiver of SATA PHY capable of tracking spread spectrum clocking

33.1.2 Modes of Operation

This SATA supports three operation modes: function mode, BIST mode and power management mode. 

In function mode, the SATA host transmits and receives data to or from the attached mass storage device. 
Refer to Section 33.4, “Functional Description,” for detailed functionality description.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-2 Freescale Semiconductor

In BIST mode, the transmitter and receiver of host are tested by internal far-end loopback mode or 
near-end loopback mode. The power mode of SATA block includes:

1. Normal: full-duplex serial data transmitted at 1.5GHz. 
2. Slumber: power management state with slower wakeup time.
3. Partial: power management state with faster wakeup time.

33.2 External Signal Description
Table 33-2. External Signal Properties

Name Description I/O Reset

SATA_XTALI Clock input to PLL in SATA PHY I —

SATA_XTALO Clock output of PLL in SATA PHY O —

SATA_RESREF External resistor reference input. I —

SATA_TXP Transmitter positive differential pair output. O Idle State

SATA_TXN Transmitter minus differential pair output. O Idle State

SATA_RXP Receiver positive differential pair input. I Off

SATA_RXN Receiver minus differential pair input. I Off

SATA_ANAVIZ Analog test output, mux of several analog test points within the PHY.
Selected with anaDebugIn[28:25]:
0: Tri-state anaViz output
1: Bandgap voltage (vbg)
2: 50uA resRef resistor current (i50u_rpoly)
3: 8uA bandgap current (i8u_vtemp)
4. Regulated PLL voltage (vreg_pll)
5: Analog 1.2V supply (VDDA_1P2)
6: Voltage regulator supply (VDDA_REG)
7: Analog 3.3V supply (VDDA_3P3)
An extra bit anaDebugIn[13] is used to increase the visibility on the 
SATA_ANAVIZ.

O Bandgap 
Voltage

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-3

33.3 Memory Map and Register Definition
Table below shows memory map for SATA host registers.

NOTE
All registers use little-endian ordering. Software running on the local 
processor in big-endian mode must byte-swap the data.

After reset, only additional registers can be accessed. All registers can be 
accessed when bit sata_ctl_en in PMCtrl register is set to 1.

In this documentation, a doublewords means 4 bytes.

Table 33-3. Block Memory Map

Offset or 
Address

Register Access Section/Page

ATA Taskfile and Control Registers

0x0000_0000 DATA. Data port register R/W 33.3.1.1/33-10

0x0000_0004 Error_Features. Features/Error register R/W 33.3.1.1/33-10

0x0000_0008 Sector_Count. Sector count register R/W 33.3.1.1/33-10

0x0000_000c Sector_Number. Sector number register R/W 33.3.1.1/33-10

0x0000_0010 Cylinder_Low. Cylinder low register R/W 33.3.1.1/33-10

0x0000_0014 Cylinder_High. Cylinder high register R/W 33.3.1.1/33-10

0x0000_0018 Device_Head. Device/Head register R/W 33.3.1.1/33-10

0x0000_001c Status_Command. Status/Command register R/W 33.3.1.1/33-10

0x0000_0048 Altstat_Devctrl. Alternate status /device control R/W 33.3.1.1/33-10

SATA Status and Control Registers

0x0000_0100 SStatus. SATA status register R 33.3.1.2.1/33-11

0x0000_0104 SError. SATA error register R/W 33.3.1.2.2/33-13

0x0000_0108 SControl. SATA control register R/W 33.3.1.2.3/33-16

Special Registers

0x0000_0140 Trans_cfg. Transport layer config register R/W 33.3.1.3.1/33-17

0x0000_0144 Trans_status0. Transport layer status register 0 R 33.3.1.3.2/33-18

0x0000_0148 Link_cfg0. Link layer config register 0 R/W 33.3.1.3.3/33-20

0x0000_014c Link_cfg1. Link layer config register 1 R/W 33.3.1.3.4/33-24

0x0000_0150 Link_cfg2. Link layer config register 2 R/W 33.3.1.3.5/33-25

0x0000_0154 Link_status0. Link layer status register 0 R 33.3.1.3.6/33-26

0x0000_0158 Link_status1. Link layer status register 1 R 33.3.1.3.7/33-27

0x0000_0174 Phy_cfg. Phy layer config register R/W 33.3.1.3.8/33-28

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-4 Freescale Semiconductor

0x0000_0178 Trans_status1. Transport layer status register 1 R 33.3.1.3.9/33-29

0x0000_017c Tx_bist_dat0. Bist data 0 register R/W 33.3.1.3.10/33-30

0x0000_0180 Bist_dat0_sel. Bist data 0 select register R/W 33.3.1.3.11/33-30

0x0000_0184 Tx_bist_dat1. Bist data 1 register R/W 33.3.1.3.12/33-31

0x0000_0188 Bist_dat1_sel. Bist data 1 select register R/W 33.3.1.3.13/33-31

0x0000_018c Tx_bist_mode. Bist mode register R/W 33.3.1.3.14/33-32

0x0000_0190 Bist_written. Bist written register R/W 33.3.1.3.15/33-33

0x0000_0194 Bist_status. Bist status register R 33.3.1.3.16/33-33

0x0000_0198 Tx_send_dmat. Send DMAT register R/W 33.3.1.3.17/33-34

0x0000_019c Atapi_en. ATAPI enable register R/W 33.3.1.3.18/33-34

Additional Registers

0x0000_01c0 rxCdrCtrl. Receiver CDR control register R/W 33.3/33-3

0x0000_01c4 rxCdrStat. Receiver CDR status register R 33.3/33-3

0x0000_01c8 rxCtrl. Receiver register R/W 33.3/33-3

0x0000_01cc txCtrl. Transmitter register R/W 33.3/33-3

0x0000_01d0 vregLvlCtrl. Voltage regulator level register R/W 33.3/33-3

0x0000_01d4 PMCtrl. Powermanagement control register R/W 33.3.1.4.1/33-35

0x0000_01d8 PMStat. Powermanagement status register R 33.3.1.4.2/33-36

0x0000_01e0 DmaEndian. DMA endian control register R/W 33.3.1.5.1/33-37

DMA Registers

0x0000_1080 Dma_stat_ctrl. DMA Status/Control register R/W 33.3.1.5.2/33-38

0x0000_1084 Dma_remain_ahb. DMA remaining AHB register R 33.3/33-3

0x0000_1088 Dma_max_cnt. DMA maximum count register R/W 33.3.1.5.3/33-39

0x0000_108c Dma_start. DMA start address register R/W 33.3.1.5.4/33-39

0x0000_1090 Dma_current. DMA current address register R 33.3/33-3

0x0000_1094 Dma_remain_tc. DMA remaining count register R 33.3/33-3

Table 33-3. Block Memory Map (continued)

Offset or 
Address

Register Access Section/Page

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-5

Table 33-4 shows SATA the register summary table.

Table 33-4. SATA Register Summary (Sheet 1 of 6)

Register Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0X0000_0000
DATA 

R

W

R
DATA

W

0X0000_0004
ERROR_

FEATURES

R

W

R ABRT

W FEATURES

0X0000_0008
SECTOR_CO

UNT

R

W

R
SEC_CNT

W

0X0000_000C
SECTOR_
NUMBER

R

W

R
SEC_NUM

W

0X0000_0010
CYLINDER_L

OW

R

W

R
CYL_LOW

W

0X0000_0014
CYLINDER_HI

GH

R

W

R
CYL_HIGH

W

0X0000_0018
DEVICE_HEA

D

R

W

R
DEV

W

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-6 Freescale Semiconductor

0X0000_001C
STATUS_

COMMAND

R

W

R BSY DRDY DRQ ERR

W COMMAND

0X0000_0048
ALTSTAT_DE

VCTRL

R

W

R BSY DRDY DRQ ERR

W SRST NIEN 0

0X0000_0300
SSTATUS

R

W

R IPM SPD DET

W

0X0000_0104
SERROR

R
F T S H C D B W I N

W

R
E P C T M I

W

0X0000_0108
SCONTROL

R

W

R
IPM SPD DET

W

0X0000_0140
TRANS_CFG

R
TRANS_CFG

W

R
TRANS_CFG

W

0X0000_0144
TRANS_STAT

US0

R TRANS_STATUS0

W

R TRANS_STATUS0

W

0X0000_0148
LINK_CFG0

R
LINK_CFG0

W

R
LINK_CFG0

W

Table 33-4. SATA Register Summary (Sheet 2 of 6)

Register Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-7

0X0000_014C
LINK_CFG1

R
LINK_CFG1

W

R
LINK_CFG1

W

0X0000_0150
LINK_CFG2

R
LINK_CFG2

W

R
LINK_CFG2

W

0X0000_0154
LINK_STATUS

0

R LINK_STATUS0

W

R LINK_STATUS0

W

0X0000_0158
LINK_STATUS

1

R LINK_STATUS1

W

R LINK_STATUS1

W

0X0000_0174
PHY_CFG1

R
PHY_CFG

W

R
PHY_CFG

W

0X0000_0178
TRANS_STAT

US1

R TRANS_STATUS1

W

R TRANS_STATUS1

W

0X0000_017C
TX_BIST_DAT

0

R
TX_BIST_DAT0

W

R
TX_BIST_DAT0

W

0X0000_0180
BIST_DAT0_S

EL

R

W

R
S

W

Table 33-4. SATA Register Summary (Sheet 3 of 6)

Register Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-8 Freescale Semiconductor

0X0000_0184
TX_BIST_DAT

1

R
TX_BIST_DAT1

W

R
TX_BIST_DAT1

W

0X0000_0188
BIST_DAT1_S

EL

R

W

R
S

W

0X0000_018C
TX_BIST_MO

DE

R

W

R
TX_BIST_MODE

W

0X0000_0190
BIST_WRITTE

N

R

W

R
BW

W

0X0000_0194
BIST_STATUS

R

W

R
BS

W

0X0000_0198
TX_SEND_

DMAT

R

W

R
SD

W

0X0000_019C
ATAPI_EN

R

W

R
AE

W

0X0000_01C0
RXCDRCTRL

R
RXCDRCTRL

W

R
RXCDRCTRL

W

Table 33-4. SATA Register Summary (Sheet 4 of 6)

Register Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-9

0X0000_01C4
RXCDRSTAT

R RXCDRSTAT

W

R RXCDRSTAT

W

0X0000_01C8
RXCTRL

R

W

R
RXGAINCTRL RXSQTHCTRL

W

0X0000_01CC
TXCTRL

R

W

R
TXPREEMCTRL TXAMPCTRL

W

0X0000_01D0
VREGLVLCTR

L

R

W

R
VREGLVLCTRL

W

0X0000_01D4
PMCTRL

R

W

R
LBEN
ASEL

LBENA_FSL
SATA
_CTL_

EN

SATA
_PCS
_EN

SIGN
ALDE
TSELW

0X0000_01D8
PMSTAT

R

W

R

RXLO
CKON

CE
DET

TXLO
CKON

CE
DET

W

0X0000_01E0
DMAENDIAN

R

W

R DMA
_

END
IAN

W

Table 33-4. SATA Register Summary (Sheet 5 of 6)

Register Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-10 Freescale Semiconductor

33.3.1 Register Descriptions

33.3.1.1 ATA Taskfile and Control Registers

The ATA taskfile registers (address offset 0x0000_0000 to 0x0000_001c) send commands to the device or 
post status from the device. The control registers (address offset 0x0000_0048) are for device control and 
to post alternate status. No description of these registers is given here. Please consult the ATA/ATAPI 
specification for the detailed information.

0X0000_1080
DMA_STAT_C

TRL

R
RDPNTRA RDPNTRB WRPNTRA WRPNTRB BUFSTAT STALL

INT

W

R STALL
INTEN

DISK
READ

DMA
ENW

0X0000_1084
DMA_REMAI

N_
AHB

R DMA_REMAIN_AHB

W

R DMA_REMAIN_AHB

W

0X0000_1088
DMA_MAX_C

NT

R
DMA_MAX_CNT

W

R
DMA_MAX_CNT

W

0X0000_108C
DMA_START

R
DMA_START

W

R
DMA_START

W

0X0000_1090
DMA_MAX_C

NT

R DMA_CURRENT

W

R DMA_CURRENT

W

0X0000_1094
DMA_REMAI

N_TC

R DMA_REMAIN_TC

W

R DMA_REMAIN_TC

W

Table 33-4. SATA Register Summary (Sheet 6 of 6)

Register Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-11

33.3.1.2 SATA Status and Control Registers

SATA host adapters include an additional block of registers mapped separately and independently from the 
ATA taskfile registers for reporting additional error and status information and to allow control of 
capabilities unique to SATA. These registers are SATA status and control registers. Sixteen contiguous 
registers allocated with the first three are defined and the remaining 13 are reserved for future definition. 
The three defined registers are SStatus, SError, and SControl registers.

Consult section 10.1 in SATA specification (Revision 1.0a) for more details.

33.3.1.2.1 SStatus Register

This 32-bit read-only register conveys the current state of the interface and host adapter. Writes to the 
register have no effect.

.

Offset 0x0000_0100 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R IPM SPD DET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 33-1. SStatus Register

Table 33-5. SStatus Field Descriptions

Field Description

11-8
IPM

IPM value indicates the current interface power management state.
0000 Device not present or communication not established. 
0001 Interface in active state.
0010 Interface in PARTIAL power management state.
0110 Interface in SLUMBER power management state.
All other values reserved

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-12 Freescale Semiconductor

7-4
SPD

0000 No negotiated speed (device not present or communication not established). 
0001 Generation 1 communication rate negotiated SPD value indicates the negotiated interface 

communication speed established.
All other values reserved.

3-0
DET

The DET value indicates the interface device detection and Phy state. 
0000) No device detected and Phy communication not established. 
0001) Device presence detected but Phy communication not established. 
0011) Device presence detected and Phy communication established.
0100) Phy in offline mode as a result of the interface being disabled or running in a BIST loopback mode.
All other values reserved 

Table 33-5. SStatus Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-13

33.3.1.2.2 SError Register

This 32-bit register conveys supplemental interface error information to complement the error information 
available in the taskfile error register. The register represents all the detected errors accumulated since the 
last time the SError register was cleared. Set bits in the error register are explicitly cleared by a write 
operation to the SError register or a reset operation. The value written to clear set error bits shall have ones 
encoded in the bit positions corresponding to the bits to be cleared. Host software should clear the interface 
SError register at appropriate checkpoints to best isolate error conditions and the commands they impact.

Offset 0x0000_0104 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
F T S H C D B W I N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
E P C T M I

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 33-2. SError Register
(Register is repeated for reference.)

Table 33-6. SError Field Descriptions (Sheet 1 of 3)

Field Description

F Unrecognized FIS type. When set to one, this bit indicates that since the bit was last cleared one or more 
FISs were received by the transport layer with good CRC, but had a type field that was not recognized.

T Transport State Transition Error. When set to one, this bit indicates an error has occurred in the transition 
from one state to another within the transport layer since the last time this bit was cleared.

S Link Sequence Error. When set to one, this bit indicates that one or more link state machine error conditions 
was encountered since the last time this bit was cleared. The link layer state machine defines the conditions 
under which the link layer detects an erroneous transition.

H Handshake Error. When set to one, this bit indicates that one or more R_ERR handshake response was 
received in response to frame transmission. Such errors may be the result of a CRC error detected by the 
recipient, a disparity or 10b/8b decoding error, or other error condition leading to a negative handshake on a 
transmitted frame.

C CRC Error. When set to one, this bit indicates that one or more CRC errors occurred with the Link Layer since 
the bit was last cleared.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-14 Freescale Semiconductor

D Disparity Error. When set to one, this bit indicates an incorrect disparity was detected one or more times since 
the last time the bit was cleared.

B 10b to 8b Decode Error. When set to a one, this bit indicates one or more 10b to 8b decoding errors occurred 
since the bit was last cleared.

W Comm Wake. When set to one this bit indicates a comm wake signal was detected by the Phy since the last 
time this bit was cleared.

I Phy Internal Error. When set to one, this bit indicates the Phy detected an internal error since the last time 
this bit was cleared.

N PhyRdy Change. When set to one, this bit indicates the PhyRdy signal changed state since the last time this 
bit was cleared.

E Internal Error. The host bus adapter experienced an internal error that caused the operation to fail and may 
have put the host bus adapter into an error state. Host software should reset the interface before re-trying 
the operation. If the condition persists, the host bus adapter may suffer from a design issue rendering it 
incompatible with the attached device.

P Protocol Error. A violation of the SATA protocol was detected. This can arise from invalid or poorly formed 
FISs being received, from invalid state transitions or from other causes. Host software should reset the 
interface and retry the corresponding operation. If such an error persists, the attached device may have a 
design issue rendering it incompatible with the host bus adapter.

C Non-Recovered Persistent Communication or Data Integrity Error. A communication error that was not 
recovered occurred that is expected to be persistent. Because the error condition is expected to be 
persistent, the operation does not need to be retried by host software. Persistent communications errors may 
arise from faulty interconnect with the device, from a device that has been removed or has failed, or a number 
of other causes.

Offset 0x0000_0104 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
F T S H C D B W I N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
E P C T M I

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 33-2. SError Register
(Register is repeated for reference.)

Table 33-6. SError Field Descriptions (Sheet 2 of 3)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-15

T Non-Recovered Transient Data Integrity Error. A data integrity error occurred that was not recovered by the 
interface. Because the error condition is not expected to be persistent, the operation should be retried by host 
software.

M Recovered Communications Error. Communications between the device and host was temporarily lost, but 
was re-established. This can arise from a device temporarily being removed, from a temporary loss of Phy 
synchronization, or from other causes and may be derived from the PhyNRdy signal between the Phy and 
link layers. No action is required by the host software because the operation ultimately succeeded. However, 
host software may elect to track such recovered errors to gauge overall communications integrity and 
potentially step down the negotiated communication speed.

I Recovered Data Integrity Error. A data integrity error occurred that was recovered by the interface through a 
retry operation or other recovery action. This can arise from a noise burst in the transmission, a voltage 
supply variation, or from other causes. No action is required by host software because the operation 
ultimately succeeded. However, host software may elect to track such recovered errors to gauge overall 
communications integrity and potentially step down the negotiated communication speed.

Offset 0x0000_0104 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
F T S H C D B W I N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
E P C T M I

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 33-2. SError Register
(Register is repeated for reference.)

Table 33-6. SError Field Descriptions (Sheet 3 of 3)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-16 Freescale Semiconductor

33.3.1.2.3 SControl Register

Offset 0x0000_0108 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
IPM SPD DET

W

Reset 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 33-3. SControl Register

Table 33-7. SControl Field Descriptions

Field Description

11-8
IPM

The IPM field represents the enabled interface power management states that can be invoked via the 
SATA interface power management capabilities.
0000 No interface power management state restrictions.
0001 Transitions to the PARTIAL power management state disabled.
0010 Transitions to the SLUMBER power management state disabled.
0011 Transitions to both the PARTIAL and SLUMBER power management states disabled.
All other values reserved.

7-4
SPD

The SPD field represents the highest allowed communication speed the interface is allowed to negotiate 
when interface communication speed is established.
0000 No speed negotiation restrictions.
0001 Limit speed negotiation to a rate not greater than Generation 1 communication rate.
All other values reserved.

3-0
DET

The DET field controls the host adapter device detection and interface initialization. 
0000 No device detection or initialization action requested.
0001 Perform interface communication initialization sequence to establish communication. This is 

functionally equivalent to a hard reset and results in the interface being reset and communications 
reinitialized. Upon a write to the SControl register that sets the LSB of the DET field to one, the host 
interface shall transition to the HP1: HR_Reset state and shall remain in that state until the LSB of 
the DET field is cleared to zero by a subsequent write to the SControl register.

0100 Disable the SATA interface and put Phy in offline mode. 
All other values reserved

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-17

33.3.1.3 Special Registers

There are some miscellaneous registers that are not part of the standard and are present as a result of the 
SATA implementation. 

33.3.1.3.1 Trans_cfg Register

Offset 0x0000_0140 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TX_WATERMARK RX_WATERMARK BE

W

Reset 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

= Unimplemented or Reserved

Figure 33-4. Trans_cfg Register

Table 33-8. Trans_cfg Field Descriptions

Field Description

TX_WATERMARK This defines the watermark of the eight deep Tx FIFO. Because there are internal clock boundaries to be 
considered, it is recommended that a value of eight not to be used. The initial recommended value is four.

RX_WATERMARK This sets the number of locations in the 48 deep RX FIFO that can be used before the SATA controller 
transmits holds to the transmitting device. It takes some time for the holds to get to the other end and that 
in the interim there must be enough room in the FIFO to absorb all data that could arrive.The maximum 
value of this depends on the value of the CFG_RXREFMODE bit in Phy_cfg register.
CFG_RXREFMODE = 0, Maximum value = 12
CFG_RXREFMODE = 1, Maximum value = 10

BE Configuration bit to enable entry to BIST mode when BIST Activate FIS is receive.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-18 Freescale Semiconductor

33.3.1.3.2 Trans_status0 Register

Offset 0x0000_0144 Access: User read only

Power

Architecture
0 1 2 3 4 5 6 7

conventional 31 30 29 28 27 26 25 24

R SRST_
CLEARED

SRST_SET
TRANSMIT_

CRF

W

Reset — — — — — — — —

Power

Architecture
8 9 10 11 12 13 14 15

conventional 23 22 21 20 19 18 17 16

R
SEND_FIS_SM GET_FIS_SM

RX_FIFO_
EMPTY

W

Reset — — — — — — — —

Power

Architecture
16 17 18 19 20 21 22 23

conventional 15 14 13 12 11 10 9 8

R TRANS_
READY

R_STATUS

W

Reset — — — — — — — —

Power

Architecture
24 25 26 27 28 29 30 31

conventional 7 6 5 4 3 2 1 0

R
R_STATUS

LAST_FIS_
EQ_PSUW

LAST_FIS_
EQ_PSUR

TRANS_STATE

W

Reset — — — — — — — —

= Unimplemented or Reserved

Figure 33-5. Trans_status0 Register

Table 33-9. Trans_status0 Field Descriptions

Field Description

SRST_CLEARED SRST bit in the device control register in the ATA taskfile register has been cleared.

SRST_SET SRST bit in the device control register in the ATA taskfile register has been set.

TRANSMIT_CRF A Control Frame is to be transmitted.

SEND_FIS_SM Send FIS state machine.

GET_FIS_SM Get FIS state machine.

RX_FIFO_EMPTY The receive FIFO is empty.

TRANS_READY Transport Layer is ready.

R_STATUS Copy of the the ATA taskfile status register.

LAST_FIS_EQ_PSUW Last FIS was PIO SU write.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-19

LAST_FIS_EQ_PSUR Last FIS was PIO SU read.

TRANS_STATE Transport Layer main state machine.
5'd0: Not_Ready5'd17: HTDA5 
5'd1: HTI15'd18: HTPS1 
5'd2: HTI25'd19: HTPS1A
5'd3: HTCM1 5'd20: HTPS2 
5'd4: HTCM2 5'd21: HTPS3 
5'd5: HTCR1 5'd22: HTPS4 
5'd6: HTCR2 5'd23: HTPS4A 
5'd7: HTXBIST1 5'd24: HTPS5
5'd8: HTXBIST2 5'd25: HTPS6 
5'd9: HTR1 5'd26: HTRBIST1 
5'd10: HTR2 5'd27: HTRBIST2
5'd11: HTDB0 5'd28: Clear_All
5'd12: HTDB1 5'd29: HTDR1
5'd13: HTDA1 5'd30: HTDR2
5'd14: HTDA2 
5'd15: HTDA3 
5'd16: HTDA4 
Consult section 8.6 in SATA specification (Revision 1.0a) for more details about transport layer state 
machine.

Table 33-9. Trans_status0 Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-20 Freescale Semiconductor

33.3.1.3.3 Link_cfg0 Register

Offset 0x0000_0148 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

conventionl 31 30 29 28 27 26 25 24

R
CFG_EN_
PARTIAL

CFG_LINK_
WAKEUP

CFG_LINK_
GO_

SLUMBER

CFG_LINK_
GO_

PARTIAL

CFG_PRIM_
OVR_EN

CFG_PHY_READY_TIMERW

Reset 0 0 0 0 0 0 0 0

Power

Architecture
8 9 10 11 12 13 14 15

conventionl 23 22 21 20 19 18 17 16

R
CFG_PHY_READY_TIMER

W

Reset 0 0 0 0 0 0 0 0

Power

Architecture
16 17 18 19 20 21 22 23

conventionl 15 14 13 12 11 10 9 8

R
CFG_ALIGN_RATE

W

Reset 1 1 1 1 1 1 1 1

Power

Architecture
24 25 26 27 28 29 30 31

conventionl 7 6 5 4 3 2 1 0

R CFG_EN_
PHY_TO

CFG_SEND
_4_ALIGNS

CFG_EN_
SLUMBER

CFG_RX_
SCRAMBLE

CFG_TX_
SCRAMBLE

CFG_TXPRI
M_JUNK

CFG_TX_
CONT

CFG_TX_
BADCRC

Reset 0 0 0 1 1 0 1 0

= Unimplemented or Reserved

Figure 33-6. Link_cfg0 Register
(Register is repeated for reference.)

Table 33-10. Link_cfg0 Field Descriptions (Sheet 1 of 4)

Field Description

CFG_EN_PARTIAL If this bit is asserted, partial power management mode is enabled. When it is de-asserted a PMNACK 
primitive is sent in response to the reception of the PMREQ_P primitive. Internal power management 
is always enabled.

CFG_LINK_WAKEUP When set, this bit causes the SATA controller to wake up from partial/slumber power management 
mode. It should be kept asserted until PHY_READY is re-asserted in the Phy layer.

CFG_LINK_GO_
SLUMBER

When set, this bit causes the SATA controller to request the device to enter slumber power management 
mode. PMREQ_S primitives is sent to the device.

CFG_LINK_GO_
PARTIAL

When set, this bit causes the SATA controller to request the device to enter partial power management 
mode. PMREQ_P primitives is sent to the device.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-21

CFG_PRIM_OVR_EN Primitive Override Enable. When set, this bit enables the replacement of a single primitive, as specified 
by CFG_PRIM/CFG_CD, when the link layer state machine is in the CFG_PRIM_OVR_STATE state. 
This bit has to be toggled from a 0 to a 1 to enable this feature.

CFG_PHY_READY_
TIMER

These 10-bits specify the timeout value of the PHY_READY Timer. If CFG_EN_PHY_TO is set, the link 
layer counts down on every rising edge of scanTxClk, as long as PHY_READY is not ready. When the 
counter reaches zero, the PHY is reset to try to re-establish communications with the device. The timer 
is initially loaded with a value equal to the concatenation of {PHY_READY_TIMER, 9 h000}.

CFG_ALIGN_RATE The SATA specification requires the SATA controller sends a pair of ALIGN primitives at least every 254 
doublewords of data. This is achieved by setting CFG_ALIGN_RATE to 11111111. However, for test 
purposes, it is possible to send ALIGNs at a higher rate. This can be achieved by setting 
CFG_ALIGN_RATE to a lower value (CFG_ALIGN_RATE-1). Doublewords are sent by the SATA 
controller between each set of ALIGN primitive pairs. 
Note: If CFG_SEND_4_ALIGNS is set,do not set the CFG_ALIGN_RATE to be four or less. If 

CFG_SEND_4_ALIGNS is not set, do not set the CFG_ALIGN_RATE to be two or less.

Offset 0x0000_0148 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

conventionl 31 30 29 28 27 26 25 24

R
CFG_EN_
PARTIAL

CFG_LINK_
WAKEUP

CFG_LINK_
GO_

SLUMBER

CFG_LINK_
GO_

PARTIAL

CFG_PRIM_
OVR_EN

CFG_PHY_READY_TIMERW

Reset 0 0 0 0 0 0 0 0

Power

Architecture
8 9 10 11 12 13 14 15

conventionl 23 22 21 20 19 18 17 16

R
CFG_PHY_READY_TIMER

W

Reset 0 0 0 0 0 0 0 0

Power

Architecture
16 17 18 19 20 21 22 23

conventionl 15 14 13 12 11 10 9 8

R
CFG_ALIGN_RATE

W

Reset 1 1 1 1 1 1 1 1

Power

Architecture
24 25 26 27 28 29 30 31

conventionl 7 6 5 4 3 2 1 0

R CFG_EN_
PHY_TO

CFG_SEND
_4_ALIGNS

CFG_EN_
SLUMBER

CFG_RX_
SCRAMBLE

CFG_TX_
SCRAMBLE

CFG_TXPRI
M_JUNK

CFG_TX_
CONT

CFG_TX_
BADCRC

Reset 0 0 0 1 1 0 1 0

= Unimplemented or Reserved

Figure 33-6. Link_cfg0 Register
(Register is repeated for reference.)

Table 33-10. Link_cfg0 Field Descriptions (Sheet 2 of 4)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-22 Freescale Semiconductor

CFG_EN_PHY_TO If PHY is not ready for a length of time, as specified by CFG_PHY_READY_TIMER, this bit, when 
asserted, enables to re-issue a reset of the PHY.

CFG_SEND_4_
ALIGNS

When asserted, four ALIGN primitives are transmitted at the specified rate, instead of the normal two 
ALIGNS.

CFG_EN_SLUMBER If this bit is asserted, slumber power management mode is enabled. When it is de-asserted a PMNACK 
primitive is sent in response to the reception of the PMREQ_S primitive. Internal power management 
is always enabled.

CFG_RX_SCRAMBLE If this bit is asserted, de-scrambling of the receive data is enabled as per the SATA specification.

CFG_TX_SCRAMBLE If this bit is asserted, scrambling of the transmit data is enabled as per the SATA specification.

CFG_TXPRIM_JUNK If this bit is de-asserted, scrambled junk data is sent after a CONT primitive, as per the SATA 
specification. If this bit is asserted, the single character 32 hDEADBEEF is sent continuously instead. 
This is to aid debug.

Offset 0x0000_0148 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

conventionl 31 30 29 28 27 26 25 24

R
CFG_EN_
PARTIAL

CFG_LINK_
WAKEUP

CFG_LINK_
GO_

SLUMBER

CFG_LINK_
GO_

PARTIAL

CFG_PRIM_
OVR_EN

CFG_PHY_READY_TIMERW

Reset 0 0 0 0 0 0 0 0

Power

Architecture
8 9 10 11 12 13 14 15

conventionl 23 22 21 20 19 18 17 16

R
CFG_PHY_READY_TIMER

W

Reset 0 0 0 0 0 0 0 0

Power

Architecture
16 17 18 19 20 21 22 23

conventionl 15 14 13 12 11 10 9 8

R
CFG_ALIGN_RATE

W

Reset 1 1 1 1 1 1 1 1

Power

Architecture
24 25 26 27 28 29 30 31

conventionl 7 6 5 4 3 2 1 0

R CFG_EN_
PHY_TO

CFG_SEND
_4_ALIGNS

CFG_EN_
SLUMBER

CFG_RX_
SCRAMBLE

CFG_TX_
SCRAMBLE

CFG_TXPRI
M_JUNK

CFG_TX_
CONT

CFG_TX_
BADCRC

Reset 0 0 0 1 1 0 1 0

= Unimplemented or Reserved

Figure 33-6. Link_cfg0 Register
(Register is repeated for reference.)

Table 33-10. Link_cfg0 Field Descriptions (Sheet 3 of 4)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-23

CFG_TX_CONT If this bit is asserted, the transmission of CONT primitives is enabled. If de-asserted, long sequences 
of repeated primitives can be sent by the link layer.

CFG_TX_BADCRC A bad CRC (inverted value of the correct CRC) value is transmitted for one FIS only by the link SATA 
controller rising edge is detected on this signal. This bit has to be toggled from a 0 to a 1 to enable this 
feature.

Offset 0x0000_0148 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7

conventionl 31 30 29 28 27 26 25 24

R
CFG_EN_
PARTIAL

CFG_LINK_
WAKEUP

CFG_LINK_
GO_

SLUMBER

CFG_LINK_
GO_

PARTIAL

CFG_PRIM_
OVR_EN

CFG_PHY_READY_TIMERW

Reset 0 0 0 0 0 0 0 0

Power

Architecture
8 9 10 11 12 13 14 15

conventionl 23 22 21 20 19 18 17 16

R
CFG_PHY_READY_TIMER

W

Reset 0 0 0 0 0 0 0 0

Power

Architecture
16 17 18 19 20 21 22 23

conventionl 15 14 13 12 11 10 9 8

R
CFG_ALIGN_RATE

W

Reset 1 1 1 1 1 1 1 1

Power

Architecture
24 25 26 27 28 29 30 31

conventionl 7 6 5 4 3 2 1 0

R CFG_EN_
PHY_TO

CFG_SEND
_4_ALIGNS

CFG_EN_
SLUMBER

CFG_RX_
SCRAMBLE

CFG_TX_
SCRAMBLE

CFG_TXPRI
M_JUNK

CFG_TX_
CONT

CFG_TX_
BADCRC

Reset 0 0 0 1 1 0 1 0

= Unimplemented or Reserved

Figure 33-6. Link_cfg0 Register
(Register is repeated for reference.)

Table 33-10. Link_cfg0 Field Descriptions (Sheet 4 of 4)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-24 Freescale Semiconductor

33.3.1.3.4 Link_cfg1 Register

Offset 0x0000_014c Access: User read/write

Power

Architecture
0 1 2 3 4 5 6 7

conventional 31 30 29 28 27 26 25 24

R

W

Reset 0 0 0 0 0 0 0 0

Power

Architecture
8 9 10 11 12 13 14 15

conventional 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0

Power

Architecture
16 17 18 19 20 21 22 23

conventional 15 14 13 12 11 10 9 8

R

W

Reset 0 0 0 0 0 0 0 0

Power

Architecture
24 25 26 27 28 29 30 31

conventional 7 6 5 4 3 2 1 0

R CFG_RX_
BADCRC

CFG_CD CFG_PRIM_OVR_STATE
W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 33-7. Link_cfg1 Register

Table 33-11. Link_cfg1 Field Descriptions

Field Description

CFG_RX_BADCRC When a rising edge is detected on this bit, it causes a bad CRC to be detected for the current frame. This 
bit has to be toggled from a 0 to a 1 to enable this feature.

CFG_CD This bit specifies whether the data used during the primitive override should be a data character or a 
primitive. If CFG_CD equals 1, CFG_PRIM_OVR_STATE equals L_SendEOF, and CFG_PRIM equals 
WTRM, a WTRM primitive is inserted into the datastream instead of an EOF (when a rising edge is seen 
on CFG_PRIM_OVR_EN). If CFG_CD equals 0, a normal data character (as specified by CFG_PRIM) is 
inserted into the datastream instead of the EOF.

CFG_PRIM_
OVR_STATE

These six bits are used in the primitive override debug functionality. When the SATA controller detects a 
positive edge on CFG_PRIM_OVR_EN, it overrides the next primitive that would be inserted during the 
CFG_PRIM_OVR_STATE, with the data specified by the CFG_PRIM and CFG_CD configuration bits.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-25

33.3.1.3.5 Link_cfg2 Register

Offset 0x0000_0150 Access: User read/write

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CFG_PRIM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-8. Link_cfg2 Register

Table 33-12. Link_cfg2 Field Descriptions

Field Description

CFG_PRIM This 32-bit bus specifies the data to be used in the overriding primitive debug logic, described in the 
definition of LINK_CFG1 above.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-26 Freescale Semiconductor

33.3.1.3.6 Link_status0 Register

Offset 0x0000_0154 Access: User read only

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R LAT_LINK_STATE

W

Reset — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

= Unimplemented or Reserved

Figure 33-9. Link_status0 Register

Table 33-13. Link_status0 Field Descriptions

Field Description

LAT_LINK_STATE These six bits specify the current value of the Link Layer State Machine at the time the Status0 register 
is read. 
0 : L_Reset ; 22:L_WakeUp1 ; 
1 : L_Idle; 23:L_WakeUp2 ;
2 : HL_SendChkRdy ;24:L_RcvChkRdy ; 
3 : DL_SendChkRdy ; 25:L_RcvData ;
4 : L_TPMPartial ;26:L_BadEnd ;
5 : L_TPMSlumber ; 27:L_RcvEOF ;
6 : L_RcvWaitFIFO ; 28:L_SendHoldA ;
7 : L_PMOff ; 29:L_Hold ;
8 : L_PMDeny ; 30:L_GoodCRC ;
9 : L_NoCommErr ;31:L_GoodEnd ; 
10:L_NoComm ;32:L_PMOff_2 ;
11:L_SendAlign ;33:L_PMOff_3 ;
12:L_SendSOF ; 34:L_PMOff_4 ; 
13:L_SendData ;35:WAIT_PMACK_SENT_1 ; 
14:WAIT_FOR_SYNC;36:WAIT_PMACK_SENT_2 ; 
15:L_SendCRC ; 37:WAIT_PMACK_SENT_3 ; 
16:L_SendHold ; 38:WAIT_PMACK_SENT_4 ; 
17:L_RcvHold ; 39:WAIT_PMACK_SENT_5 ; 
18:L_SendEOF ;40:WAIT_PMACK_SENT_6 ;
19:L_Wait ; 41:BIST0 ; 
20:L_ChkPhyRdy ; 42:BIST1 ;
21:L_NoCommPower ;
Consult section 7.6 in SATA specification (Revision 1.0a) for more details about link layer state machine.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-27

33.3.1.3.7 Link_status1 Register

Offset 0x0000_0158 Access: User read only

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R KCHAR_ERR_COUNT INT_ERR_COUNT CODE_ERR_COUNT DISP_ERR_COUNT

W

Reset — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

= Unimplemented or Reserved

Figure 33-10. Link_status1 Register

Table 33-14. Link_status1 Field Descriptions

Field Description

KCHAR_ERR_
COUNT

The number of doublewords that have been received from the PHY, where one or more control character 
errors have been detected. A value of 11111111 indicates an error count of 255 or more as this counter 
does not wrap around to zero. The count value is updated with its current value each time the 
LINK_STATUS1 register is read.

INT_ERR_COUNT The number of doublewords that have been received from the PHY, where one or more internal errors 
have been detected. A value of 11111111 indicates an error count of 255 or more as this counter does 
not wrap around to zero. The count value is updated with its current value each time the LINK_STATUS1 
register is read.

CODE_ERR_
COUNT

The number of doublewords that have been received from the PHY, where one or more code errors have 
been detected. A value of 11111111 indicates an error count of 255 or more as this counter does not wrap 
around to zero. The count value is updated with its current value each time the LINK_STATUS1 register 
is read.

DISP_ERR_
COUNT

The number of doublewords that have been received from the PHY, where one or more disparity errors 
have been detected. A value of 11111111 indicates an error count of 255 or more as this counter does 
not wrap around to zero. The count value is updated with its current value each time the LINK_STATUS1 
register is read.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-28 Freescale Semiconductor

33.3.1.3.8 Phy_cfg Register

Offset 0x0000_0174 Access: User read/write

Power

Architecture
0 1 2 3 4 5 6 7

conventional 31 30 29 28 27 26 25 24

R

W

Reset 0 0 0 0 0 0 0 0

Power

Architecture
8 9 10 11 12 13 14 15

conventional 23 22 21 20 19 18 17 16

R
CFG_TX_PRE_EM_CTRL:

W

Reset 0 0 0 0 0 0 0 0

Power

Architecture
16 17 18 19 20 21 22 23

conventional 15 14 13 12 11 10 9 8

R CFG_TX_
PRE_EM_

CTRL
CFG_TX_AMP_CTRL

CFG_
ENDEC

CFG_RX_
SSC_MODE

CFG_TX_
SSC_MODEW

Reset 0 0 1 1 1 1 1 0

Power

Architecture
24 25 26 27 28 29 30 31

conventional 7 6 5 4 3 2 1 0

R
CFG_TX_SSC_MODE

CFG_FRC_
PHYRDY

CFG_RXREF
MODE

ENLWALIGN CFG_LBEN CFG_BIST
W

Reset 0 0 0 0 1 0 0 0

= Unimplemented or Reserved

Figure 33-11. Phy_cfg Register

Table 33-15. Phy_cfg Field Descriptions

Field Description

CFG_TX_PRE_EM_CTRL Drives TxPreEmCtrl of Phy when prot2PhyTstEnL equals 0. 

CFG_TX_AMP_CTRL Drives TxAmpCtrl of Phy when prot2PhyTstEnL equals 0. 

CFG_ENDEC Drives enDec of PCS when prot2PhyTstEnL equals 0. 

CFG_RX_SSC_MODE Drives RxSSCMode of Phy when prot2PhyTstEnL equals 0. 

CFG_TX_SSC_MODE Drives TxSSCMode of PCS when prot2PhyTstEnL equals 0. 

CFG_FRC_PHYRDY Drives frcPhyRdy of PCS when prot2PhyTstEnL equals 0. 

CFG_RXREFMODE Drives rxRefMode of PCS when prot2PhyTstEnL equals 0. 

ENLWALIGN Enable Longword Alignment.The Phy control layer decides whether to align the control byte of a 
SATA primitive to the lowest byte position of the doublewords.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-29

33.3.1.3.9 Trans_status1 Register

CFG_LBEN Drives lbEn of PCS when prot2PhyTstEnL equals 0. 

CFG_BIST Drives bist of PCS when prot2PhyTstEnL equals 0. 

Offset 0x0000_0178 Access: User read only

Power

Architecture
0 1 2 3 4 5 6 7

conventional 31 30 29 28 27 26 25 24

R

W

Reset — — — — — — — —

Power

Architecture
8 9 10 11 12 13 14 15

conventional 23 22 21 20 19 18 17 16

R RX_FIFO_
OVERFLOW

TX_FIFO_
EMPTY

W

Reset — — — — — — — —

Power

Architecture
16 17 18 19 20 21 22 23

conventional 15 14 13 12 11 10 9 8

R CUR_TRANS_VALUE

W

Reset — — — — — — — —

Power

Architecture
24 25 26 27 28 29 30 31

conventional 7 6 5 4 3 2 1 0

R CUR_TRANS_VALUE

W

Reset — — — — — — — —

= Unimplemented or Reserved

Figure 33-12. Trans_status1 Register

Table 33-16. Trans_status1 Field Descriptions

Field Description

RX_FIFO_
OVERFLOW

This bit is set to one by hardware if receive FIFO is overflowed.

Table 33-15. Phy_cfg Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-30 Freescale Semiconductor

33.3.1.3.10 Tx_bist_dat0 Register

33.3.1.3.11 Bist_dat0_sel Register

TX_FIFO_EMPTY This bit is set to one if transmit FIFO is empty.

CUR_TRANS_
VALUE

Current value of transfer count.

Offset 0x0000_017c Access: User read/write

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TX_BIST_DAT0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-13. Tx_bist_dat0 Register

Table 33-17. Tx_bist_dat0 Field Descriptions

Field Description

TX_BIST_DAT0 BIST DATA 0 used in BIST mode.

Offset 0x0000_0180 Access: User read/write

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
S

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 33-14. Bist_dat0_sel Register

Table 33-18. Bist_dat0_sel Field Descriptions

Field Description

S 0 Indicates the value in TX_BIST_DAT0 register is a data.
1 Indicates the value in TX_BIST_DAT0 register is a primitive.

Table 33-16. Trans_status1 Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-31

33.3.1.3.12 Tx_bist_dat1 Register

33.3.1.3.13 Bist_dat1_sel Register

Offset 0x0000_0184 Access: User read/write

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TX_BIST_DAT1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-15. Tx_bist_dat1 Register

Table 33-19. Tx_bist_dat1 Field Descriptions

Field Description

TX_BIST_DAT1 BIST DATA 1 used in BIST mode.

Offset 0x0000_0188 Access: User read/write

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
S

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 33-16. Bist_dat1_sel Register

Table 33-20. Bist_dat1_sel Field Descriptions

Field Description

S 0 Indicates the value in TX_BIST_DAT1 register is a data.
1 Indicates the value in TX_BIST_DAT1 register is a primitive.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-32 Freescale Semiconductor

33.3.1.3.14 Tx_bist_mode Register

The value of this register (only eight valid bits) are put in the host-to-device BIST activate FIS as pattern 
definition field. 

See Section 8.5.7 in SATA specification (Revision 1.0a) for more details. 

Offset 0x0000_018c Access: User read/write

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
T A S L F P R V

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 33-17. Tx_bist_mode Register

Table 33-21. Tx_bist_mode Field Descriptions

Field Description

T Device transmit only mode.

A ALIGN Bypass (Do not transmit ALIGN Primitives) (valid only in combination with T bit)

S Bypass scrambling (valid only in combination with T bit) (optional behavior)

L Device Retimed Loopback. Transmitter must insert additional ALIGNS.

F Device Analog Loopback. (optional)

P Primitive bit. Valid only in combination with T bit. Optional behavior.

R Reserved, 0.

V Vendor unique Test Mode. Causes all other bits to be ignored.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-33

33.3.1.3.15 Bist_written Register

33.3.1.3.16 Bist_status Register

Offset 0x0000_0190 Access: User read/write

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R B
WW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 33-18. Bist_written Register

Table 33-22. Bist_written Field Descriptions

Field Description

BW Writes 1 to this bit triggering a host initiated BIST. 

Offset 0x0000_0194 Access: User read only

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R B
E

B
A

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 33-19. Bist_status Register

Table 33-23. Bist_status Field Descriptions

Field Description

BE 0 No Bist error.
1 Bist error

BA 0 Bist is inactive
1 Bist is active.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-34 Freescale Semiconductor

33.3.1.3.17 Tx_send_dmat Register

33.3.1.3.18 Atapi_en Register

Offset 0x0000_0198 Access: User read/write

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R S
DW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 33-20. Tx_send_dmat Register

Table 33-24. Tx_send_dmat Field Descriptions

Field Description

SD SATA controller sends a DMAT primitive when this bit is set to one.

Offset 0x0000_019c Access: User read/write

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R A
EW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 33-21. Atapi_en Register

Table 33-25. Atapi_en Field Descriptions

Field Description

AE 0 Disable ATAPI mode
1 Enable ATAPI mode.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-35

33.3.1.4 Additional Registers

33.3.1.4.1 PMCtrl Register

Offset 0x0000_01d4 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
LBEN
ASEL

LBENA_FSL
SATA_
CTL_E

N

SATA_
PCS_E

N

PHY_
ENAB

LE
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 33-22. PMCtrl Register

Table 33-26. PMCtrl Field Descriptions

Field Description

LBENASEL 0 Select default valule from controller to control loopback mode in SATA PHY.
1 Select LBENA_FSL in this register to control loopback mode in SATA PHY.

LBENA_FSL Provides additional working mode for Freescale SATA PHY.
000 Normal function mode
001 Far-end retimed parallel loopback (PCS Rx->Tx)
010 Internal serial loopback (PHY Tx->Rx)
011 Disable digital reset during debug&invalid loopback
100 Internal serial loopback (receiver -> transmitter)
101 goParallel, ORs into intGoParOrSlumA
110 goSlumber,  ORs into intGoParOrSlum
111 Invalid

SATA_CTL_EN This bit is sata controller enable. It can be set to ‘1’ if sata pcs has been enabled(Referring to Section 
Initialization Information for details).
0 Disable sata controller.
1 Enable sata controller.

SATA_PCS_EN This bit is sata pcs enable. It can be set to ‘1’ if sata phy PLL has been locked.(Referring to Section 
Initialization Information for details).

0 Disable SATA PCS.
1 Enable SATA PCS.

PHY_ENABLE 0 Shut down SATA PHY and related oscillator.
1 Enable SATA PHY and related oscillator.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-36 Freescale Semiconductor

33.3.1.4.2 PMStat Register

Offset 0x0000_01d8 Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RXLO
CKO
NCE
DET

TXLO
CKO
NCE
DET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 33-23. PMStat Register

Table 33-27. PMStat Field Descriptions

Field Description

RXLOCKONCEDE
T

Receiver PLL lock once detect.

TXLOCKONCEDET Transmitter PLL lock once detect.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-37

33.3.1.5 DMA Registers

33.3.1.5.1 DmaEndian Register

Offset 0x0000_01e0 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DMA
_END
IAN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 33-24. DmaEndian Register

Table 33-28. Register DmaEndian Field Descriptions

Field Description

DMA_ENDIAN 0  DMA interface is big-endian.
1  DMA interface is little-endian

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-38 Freescale Semiconductor

33.3.1.5.2 Dma_stat_ctrl Register

Offset 0x0000_1080 Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
RDPNTRA RDPNTRB WRPNTRA WRPNTRB BUFSTAT

STAL
LINT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R STAL
LINT
EN

DISK
REA

D

DMA
ENW

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

= Unimplemented or Reserved

Figure 33-25. Dma_stat_ctrl Register

Table 33-29. Dma_stat_ctrl Field Descriptions

Field Description

RDPNTRA Read pointer for FIFO A

RDPNTRB Read pointer for FIFO B

WRPNTRA Write pointer for FIFO A

WRPNTRB Write pointer for FIFO B

BUFSTAT DMA Buffer status:
00 DMA is disabled.
01 DMA is stalled.
10 DMA is on progress.
11 Reserved.

DISKREAD Indicates disk read or disk write operation.
0 This is a disk write operation. DMA controller reads data from system memory.
1 This is a disk read operation. DMA controller writes data to system memory.

DMAEN DMA enable.
0 DMA is disabled.
1 DMA is enabled.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-39

33.3.1.5.3 Dma_max_cnt Register

33.3.1.5.4 Dma_start Register

33.4 Functional Description

33.4.1 Clock

There are two clock sources for SATA block. One is clock generation block. The other is PLL in SATA 
PHY. Please refer to SATA related sections in block guide of clock generation module.

A PLL is embeded in SATA PHY. This PLL provides clocks not only for SATA PHY itself, but also for 
SATA controller. While before clocks from SATA PHY are stable, SATA controller should stay in reset to 
avoid wrong logic. User should wait for some time after enabling SATA PHY, then set SATA_PCS_EN 
and SATA_CTL_EN of PMCTRL register to start any operations.

Offset 0x0000_1088 Access: User read/write

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DMA_MAX_CNT

W

Reset U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U

= Unimplemented or Reserved

Figure 33-26. Dma_max_cnt Register

Table 33-30. Register Dma_max_cnt Field Descriptions

Field Description

DMA_MAX_CNT Maximum size (doublewords) for DMA transferring. No reset value of this register.

Offset 0x0000_108c Access: User read/write

Power

Architecture
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DMA_START

W

Reset U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U

Figure 33-27. Dma_start Register

Table 33-31. Dma_start Field Descriptions

Field Description

DMA_START Start address (system memory address) for DMA transferring. No reset value of this register.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-40 Freescale Semiconductor

33.4.2 Interrupt

There are two interrupt signals from SATA block. One is SATA_CMD_INTRQ from Command Layer. The 
other is SATA_DMA_INTRQ from DMA controller. A dedicated Interrupt output named 
SATA_CMD_INTRQ from the command layer to the host. This interrupt is asserted if the IPF (interrupt 
pending flag) is set in the command layer and the interrupt enable bit is low, NIEN (bit[1]), of the device 
control register (address offset 0x0000_0048). The default value of NIEN is 1’b1; interrupts are disabled. 
The command layer clears the interrupt pending flag any time the status register is read with DEV cleared 
to zero, the SRST bit in the device control register is set to one, the command register is written with DEV 
cleared to zero, or a COMRESET is requested by the host to be sent to the device.

A dedicated interrupt output (SATA_DMA_INTRQ) from the DMA controller to the host system. This 
interrupt is asserted if the StallInt (Stall State Interrupt) is set in the DMA controller and the interrupt 
enable bit is high bit 2 of the DMA_STAT_CTRL register. The StallInt generated within the DMA 
controller indicates registers are available for updating due to transfer completion. The host system can 
clear the interrupt by writing new register values to begin a new transfer or disabling the DMA controller.

33.4.3 ATAPI Support

Host software must write a 1 to the AE in ATAPI_EN register when it has determined that the device is an 
ATAPI device (via the signature returned from the device).

If AE is asserted and the host reads any taskfile register except device control or status while the DEV bit 
set, the command layer returns all zeros on register access bus as per the ATA/ATAPI specification.

The host can issue a device reset command at any time, regardless of the status of the BSY bit. When the 
command register is written to with a value of 8’h08, SATA controller transmit a device reset command to 
the device. When the command has been successfully transmitted, the device reset pending signal is 
cleared automatically. 

33.4.3.1 ATAPI Transfers

Refer to Appendix D in SATA specification (Revision 1.0a) for the detailed process of ATAPI transfers.

33.4.4 PIO Transfers

Programmed I/O (PIO) transfers are implemented using the data register (address offset 0x0000_0000) in 
the ATA taskfile and control register. 

Refer to Appendix D in SATA specification (Revision 1.0a) for the detailed process of ATAPI transfers.

33.4.4.1 PIO Read

A PIO data read consists of the following sequence of events:
1. Host software writes to the taskfile command register with a PIO read command (READ 

SECTOR).
2. The SATA controller sends a Register Update FIS (Host-to-Device) to the device.
3. The device sends a PIO Setup FIS back to the host.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-41

4. The device sends data to the host.
5. When the data is in the buffer of SATA controller from device, the DRQ (Data Request) bits is set 

in the taskfile status register and host system read data from taskfile data register.
6. Keep reading taskfile data register until no more data is required. DRQ is then de-asserted.

33.4.4.2 PIO Write

A PIO data write consists of the following sequence of events:
1. Host software writes to the taskfile command register with a PIO write command (WRITE 

SECTOR).
2. The SATA controller sets the DRQ status bit and the host software writes the first data into the 

taskfile data register. 
3. SATA controller transfer data to device.
4. Host software keeps writing data until no more data is required. DRQ is then de-asserted.

33.4.5 DMA Transfers

DMA transfers are implemented using the registers in command layer outlined previously. Refer to 
Appendix D in SATA specification (Revision 1.0a) for the detailed process of ATAPI transfers.

33.4.5.1 DMA Read

A DMA data read from the device consists of the following sequence of events:
1. Host software writes to DMA_STAT_CTRL register to setup and enable a READ_DMA.
2. Host software writes to DMA_MAX_CNT register the number of doublewords transfers 

requested.
3. Host software writes to DMA_START register the initial start address of the host system memory.
4. The host software writes the READ_DMA command to the taskfile command register.
5. DMA transfer begins and data is transfered to system memory via data transfer interface.
6. When the DMA_REMAIN_AHB register reaches zero, the READ_DMA transfer has completed 

and the StallInt is set in the DMA_STAT_CTRL register. A hardware interrupt 
SATA_DMA_INTRQ is asserted if the StallIntEn bit has been set in the DMA_STAT_CTRL 
register. StallInt is cleared the next time the host writes to the start address register or if the DMA 
engine is disabled in the DMA_STAT_CTRL register.

33.4.5.2 DMA Write

A DMA data write to the device consists of the following sequence of events:
1. Host software writes the WRITE_DMA command to the taskfile command register.
2. Host software writes to DMA_STAT_CTRL register to setup and enable a WRITE_DMA.
3. Host software writes to DMA_MAX_CNT register the number of doublewords transfers 

requested.
4. Host software writes to DMA_START register the initial start address of the system memory.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-42 Freescale Semiconductor

5. This sequence initiates the DMA Controller requesting data from system memory to its internal 
buffer, then data is transfered to device.

6. When the DMA_REMAIN_TC register reaches zero, the DMA controller asserts the 
DMA_TX_TC signal. When the WRITE_DMA transfer has completed, the STALLINTEN bit is 
set in the DMA_STAT_CTRL register. STALLINT is cleared the next time the host writes to the 
start address register or if the DMA engine is disabled in the DMA_STAT_CTRL register.

The order of command issuing and DMA controller programming can be altered or reversed from the 
above examples. However, the DMA_START register must always be the last register to be programmed 
in the DMA controller because this starts the transfer.

33.4.6 Power Management

A power management logic is designed for managing change of power mode requests. These requests can 
come from the SATA controller or the device. The host software can change the power mode by asserting 
CFG_LINK_GO_PARTIAL or CFG_LINK_GO_SLUMBER bits in the Link_cfg0 register. Asserting the 
SATA controller transmits PMREQ_P (CFG_LINK_GO_PARTIAL = 1) or PMREQ_S 
(CFG_LINK_GO_SLUMBER = 1) primitives to the device and waits for PMACK primitives from it in 
response. After PMACK is received, the SATA controller enters the partial or slumber power down state.

NOTE
CFG_LINK_GO_PARTIAL or CFG_LINK_GO_SLUMBER must remain 
assert for the duration of the power down mode.

A write of 1 to the CFG_LINK_WAKEUP bit in the Link_cfg0 register or reception of a COMWAKE from 
the device initiates a resume to active power mode. CFG_LINK_WAKEUP should be set back to 0 after 
Phyrdy is asserted again.

If the controller layer receives a PMREQ_P/PMREQ_S primitive from a device and is enabled to perform 
power management modes (CFG_EN_PARTIAL/SLUMBER = 1 in Link_cfg0 register), it responds by 
sending at least four PMACK primitives, and enters the requested power down mode (depending on 
received primitive). A write of 1 to the CFG_LINK_WAKEUP bit or reception of a COMWAKE from the 
device initiates a resume to active power mode. CFG_LINK_WAKEUP should be set back to 0 after 
Phyrdy is asserted again.

If the SATA controller receives an XRDY primitive from the device while it is in the partial or slumber 
state, it returns to idle and signals a link sequence error to the command layer, LINK_SEQ_ERROR 
equals 1.

33.4.7 DMA Controller

The function of the SATA DMA controller is to provide a high-speed interface between the 
command/transport layers and system memory.

33.4.7.0.1 DMA Transfers

Refer to Section 33.4.5, “DMA Transfers

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-43

33.4.7.1 DMA Interrupt Generation

Refer to Section 33.4.2, “Interrupt

33.4.7.2 Register Block

Register groups implemented in command layer are:. 
• ATA taskfile and control registers
• SATA status and control registers
• Special registers
• Additional registers

See Section 33.3, “Memory Map and Register Definition,” for the details.

33.4.7.3 PIO Transfers

Refer to Section 33.4.4, “PIO Transfers.

33.4.7.4 Interrupt Generation

assumed to be associated with the lowest byte position of the transmit doubleword) is also passed onto the 
Phy with the appropriate byte.

33.4.8 Physical Coding Sublayer (PCS)

The function of the SATA PCS layer is to interface between the link/PhyCtrl layer on the protocol side and 
the high speed SerDes (Serializer/Deserializer). It inlcudes OOB (Out Of Band) processor, 
transmit/receive path control, 8B/10B encoder/decoder, and test function.

33.4.9 Serial ATA Physical Layer Macro (SATA PHY)

33.4.9.1 Introduction 

Figure 33-28 shows the top level block diagram of the SATA-I PHY.

The transmitter path starts with a 10-bit symbol sent to the input of the SATA-I PHY at 150MHz. The 
symbol is serialized and then passed through the data latch at 1.5GHz to reshape the data. This serial data 
stream is then passed through the pre-driver to the differential driver where the serial bits are converted to 
a differential signal and sent across the SATA link to the device at a 1.5GHz rate.

The receiver path starts with the differential receiver converting the differential signal received from the 
device over SATA link to a single-end 1.5GHz serial data stream. This serial data stream is then passed 
through the CDR block which reconstructs the transmitter clock to reliably sample the data stream. The 
sampled signals are then sent to the deserializer which creates 10-bit symbols which are sent to the 
controller at 150MHz. The deserializer aligns these symbols to the comma align sequence contained in the 
K28.5 control character of the ALIGN primitive.

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-44 Freescale Semiconductor

The transmitter and receiver clock is derived from a common 1.5GHz seven phase PLL. These seven 
phases provide seven possible points to sample the received data within the 1.5GHz clock period. The PLL 
synthesizes the 1.5GHz clock from a 25MHz reference frequency.

Two loopback paths are provided in the PHY to help debug the SATA-I system. The near-end loopback 
from the serializer to the CDR is used to debug the interface between the controller and the PHY. The 
far-end loopback path from the receiver to the transmit driver is used to debug the device interface with 
this host PHY.

Figure 33-28. SATA-I Host PHY Block Diagram

33.5 Initialization Information
The sequence for sata intialization is shown below.

1. Enable sata phy and reference clock for sata phy PLL.(Set bit phy_enable in PMCtrl register).
2. Wait until sata phy PLL is locked.(Check bit rxLockOnceDet and txLockOnceDet in PMStat 

register).
3. Enable sata pcs.(Set bit sata_pcs_en in PMCtrl register).
4. Enable sata controller.(Set bit sata_ctl_en in PMCtrl register).

Serializer 10-bit
Input

Transmitter

Data
Latch

Pre-
Drive

Diff
Driver

Adjust
Pre-emphasis

50 Ohm
Diff
Driver

Receiver

Receiver
Sata
Input

50 Ohm
Diff
Input

Clock/data
Recovery 10-bit

Output

7 Phase, 1.5 ghz

Phase Locked 
Loop

7 Phase
To Cdr

Deserializer

Sata
Output

Near-end
Loopback

Far-end
Loopback

Show

Vreg

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-45

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-46 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-47

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-48 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-49

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-50 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

Freescale Semiconductor 33-51

MPC5121e Microcontroller Reference Manual, Rev. 2



SATA Controller (SATA)

33-52 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 34-1

Chapter 34  
Secure Digital Host Controller (SDHC)

34.1 Introduction
The Secure Digital Host Controller module (SDHC) controls the Multimedia Card (MMC), Secure 
Digital (SD) memory card, and I/O cards by sending commands to cards and performing data accesses 
to/from the cards.

The MMC is a universal low-cost data storage and communication media that covers a wide area of 
applications such as electronic toys, organizers, PDAs, and smart phones. The MMC communication 
protocol is based on an advanced 7-pin serial bus that operates in a low-voltage range.

The SD is an evolution of MMC technology with two additional pins in the form factor. SD is specifically 
designed to meet the security, capacity, performance, and environment requirement inherent in newly 
emerging audio and video consumer electronic devices. The physical form factor, pin assignment, and data 
transfer protocol are forward compatible with the MMC with some additions. The memory card invokes 
a copyright protection mechanism that complies with the SDMI security standard. The I/O card provides 
high-speed data I/O with low power consumption for mobile electronic devices.

The MMC/SD Host module integrates both MMC support along with SD memory and I/O functions.

Figure 34-1 is the system interconnection with this module.

Figure 34-1. System Interconnection with the Secure Digital Host Controller

Secure Digital Host Controller

DMA
Interface IP Bus

Transceiver

IP Gasket

IP Bus

I/O Memory

Card

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-2 Freescale Semiconductor

34.1.1 Features

The features of the Secure Digital Host Controller module include:
• Fully compatible with the MMC System Specification Version 3.2, supports up to version 4.0
• Compatible with high speed MMC card of with using a 1-bit or 4-bit serial interface. An 8-bit 

interface is not supported
• Compatible with the SDIO Standard and SD Physical layer specification with 1 or 4 channel(s)
• Built-in programmable frequency counter for SDHC bus
• Maskable hardware interrupt for SDIO interrupt, internal status & FIFO status
• Dual data FIFO buffer built-in
• Plug and play (PnP) support
• Single/multi block access to the card including erase operation
• Multi-SD function support including multiple I/O and combined I/O and memory
• Up to 7 I/O functions plus one memory supported on single SD I/O card (Combo card)
• Support for interrupt via IRQ
• Support SDIO Interrupt detection during 1 or 4-bit access
• Block based data transfer between MMC card and SDHC (stream mode or SPI not supported)
• Block length of data transfer between Host and Card can be configured from 1 – 2048 bytes.

34.2 External Signal Description

Table 34-1. Signal Properties

Name Port Function I/O Reset Pull up

MMC_SD_CLK  O Clock for MMC/SD/SDIO card 0

CMD I/O CMD line connect to card 1 Pull up

DAT3 I/O Card Detect in Power up
Data line in 4-bit mode
Not used in 1-bit mode

0 Pull down DAT3 if need 
card detection through 
this bit, otherwise pull up

DAT2 I/O Data line or Read wait in 4-bit mode
Read wait in 1-bit mode 

1 Pull up

DAT1 I/O Data line or interrupt in 4-bit mode
Interrupt in 1-bit mode

1 Pull up

DAT0 I/O Data line both in 1-bit and 4-bit mode 1 Pull up

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-3

34.2.1 Detailed Signal Descriptions 

34.2.1.1 Overview

The SDHC has six external pins. MMC_SD_CLK is an internally generated clock used by the MMC/SD 
Card. The CMD I/O sends commands and receive responses from the card. Four data lines, DAT3~DAT0, 
perform data transfers between the host controller and the card.

Table 34-2 shows the signal properties of these external pins.

Table 34-2 is a detailed description of the SDHC bus signals.

34.3 Memory Map and Register Definition
SDHC contains 14 32-bit registers. This section provides the detailed descriptions for all SDHC registers. 
All registers must be accessed as 32-bit values. Byte/Half Word access is not allowed.

34.3.1 Memory Map

Table 34-3 shows the SDHC memory map. The SDHC memory map space is 4K. Only address offsets 
from 0x00 to 0x44 are implemented. The address space above offset of 0x44 is reserved. Write accesses 
to the reserved region are ignored. Read accesses to reserved locations return the value of 0x0000. Do not 
access the reserved region to ensure compatibility with possible future revisions of this module.

Table 34-2. Detailed Signal Descriptions

Signal Descriptions

MMC_SD_CLK This signal is the MMC/SD/SDIO card clock signal. The direction is from host to card. The frequency is 
referenced to the system clock.

CMD This is a bidirectional signal. It is for card initialization and data transfer commands.

DAT3 This is a bidirectional signal for data transmission in 4-bit mode. This signal is not used in 1-bit mode. This 
signal is also used for card detect in both 4-bit and 1-bit modes.

DAT2 This is a bidirectional signal for data transmission or read wait in 4-bit mode and is for read/wait when SDHC 
works in 1-bit mode

DAT1 This is a bidirectional signal for data transmission or interrupt signal in 4-bit mode and is for interrupt signal 
when SDHC works in 1-bit mode.

DAT0 This is a bidirectional signal for data transmission both in 1-bit and 4-bit mode.

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-4 Freescale Semiconductor

34.3.2 Register Descriptions

Many SDHC registers have reserved bits. Reserved bits in all registers are read as 0 and writes to these 
bits are ignored. However, software should write zeroes to these bits to ensure compatibility with possible 
future revisions of this module.

Table 34-3. SDHC Memory Map

Address Register Access

Base Address SDHC Clock Control register R/W

Base Address+04 SDHC Status register R/W

Base Address+08 SDHC Card Clock Rate register R/W

Base Address+0C SDHC Command Data Control register R/W

Base Address+10 SDHC Response Time-out register R/W

Base Address+14 SDHC Read Time-out register R/W

Base Address+18 SDHC Block Length register R/W

Base Address+1C SDHC Number of Block register R/W

Base Address+20 SDHC Revision Number register Read-only

Base Address+24 SDHC Interrupt Control register R/W

Base Address+28 SDHC Command Number register R/W

Base Address+2C SDHC Command Argument register R/W

Base Address+34 SDHC Command Response FIFO Access register Read-only

Base Address+38 SDHC Data Buffer Access register R/W

Note: The addresses (Base Address+ 0x30, Base Address+ 0x3C over Base Address+ 0x44) are 
reserved.

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-5

34.3.2.1 SDHC Clock Control Register (STR_STP_CLK)

The SDHC Clock Control Register allows software to reset the whole module and to enable or disable the 
MMC_SD_CLK to card.

See Figure 34-2 for illustration of valid bits in the SDHC Clock Control Register and Table 34-4 for 
description of the bit fields.

Offset 0x00Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R SLFC
LR

W SDHC 
RESE

T

START
_CLK

STOP
_CLK

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 34-2. STR_STP_CLK Register
(Register repeats for reference.)

Table 34-4. STR_STP_CLK Field Descriptions (Sheet 1 of 2)

Field Description

SDHC RESET SDHC Reset. Writes to the SDHC reset bit triggers the reset logic inside the SDHC. Reads from this bit 
always return 0. To reduce power consumption, the clock to the reset logic in SDHC is off in normal operation. 
When there is one access to this register, the clock is enabled for one cycle. To complete the entire reset 
period, it needs at least 8 clock pulses to finish the reset cycle. To reset the SDHC module, it is recommended 
to write this register with value 0x0008, followed by 0x0009, and then 0x0001 eight times. Refer to 
Section 34.5.3.2, “Reset” for detailed information on software reset.
0 No effect

1 Reset the SDHC module

START_CLK Start Clock. Writing a 1 to this bit starts the MMC_SD_CLK clock. 
Setting a value of 11 on Bits [1:0] of this register is not allowed. 
Note: The SDHC bus clock does not start immediately after writing to this bit. Poll the 

CARD_BUS_CLK_RUN bit of the SDHC Status Register to ensure the SDHC clock is running.
0 Has no effect

1 To start MMC/SD clock 

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-6 Freescale Semiconductor

Table 34-6 summarizes the ipg_clk and SDHC_CLK status under different operation mode and clock 
gating setting.

34.3.2.2 SDHC Status Register (STATUS)

The read-only SDHC Status Register provides the programmer with information about the status of SDHC 
operations, application FIFO status, error conditions, and interrupt status. 

There are eight interrupt status bits.

STOP_CLK Stop Clock. Stops the MMC_SD_CLK clock when software writes a value of 1 to this bit. Software should not 
stop the MMC_SD_CLK during a transmission period.
Writing a value of 11 to bits [1:0] of this register is not allowed.
Note: A transmission period is the time from when a card data or access related command is submitted to 

the end of the access operation.
Note: The SDHC bus clock does not stop immediately after writing to this bit. Polling needs to be done on 

the status CARD_BUS_CLK_RUN bit of the SDHC status register to ensure the SDHC clock is not 
running

0 Has no effect
1 To stop the MMC/SD clock

Offset 0x00Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R SLFC
LR

W SDHC 
RESE

T

START
_CLK

STOP
_CLK

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 34-2. STR_STP_CLK Register
(Register repeats for reference.)

Table 34-4. STR_STP_CLK Field Descriptions (Sheet 2 of 2)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-7

When the corresponding interrupt enable is enabled in SDHC interrupt control register for any of these 
interrupts, SDHC generates an interrupt request to the CPU. User needs to clear the appropriate status bit 
to clear the corresponding interrupt. The interrupt status bits are cleared by using a write 1 to clear 
operation except for the data buffer ready status bits which can only be cleared by the read or write 
operation on the data buffer.

See Figure 34-3 for illustration of valid bits in the SDHC Status Register and Table 34-6 for description of 
the bit fields.

Table 34-5. Interrupt Status Bits

Bit  Interrupt

31 Card insertion status bit

30 Card removal status bit

14 SDIO card interrupt status bit

13 End command and response status bit

12 Write operation done status bit

11 Read operation done status bit

7 Data buffer read ready status bit

6 Data buffer write ready status bit.

Offset 0x04Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CARD
_

INSER
TION

CARD
_

REMO
VAL

YBUF
_EMP

TY

XBUF
_EMP

TY

YBUF
_FULL

XBUF
_FULL

BUF_
UND_
RUN

BUF_
OVFL

W w1c w1c

Reset 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R SDIO_
INT_

ACTIVE

END_
CMD_
RESP

WRITE
_OP_
DONE

READ
_OP_
DONE

WR_CRC_ER
R_CODE

CARD
_BUS
_CLK_
RUN

BUF_
READ
_RDY

BUF_
WR_
RDY

RESP
_CRC
_ERR

READ
_CRC
_ERR

WRITE
_CRC
_ERR

TIME_
OUT_
RESP

TIME_
OUT_
READ

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 34-3. STATUS Register

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-8 Freescale Semiconductor

Table 34-6. STATUS Field Descriptions

Field Description

CARD_
INSERTION

Card Insertion. When this bit is set, the SDHC detects a value transition on the DAT[3:0] from b0111 to 
b1111. This can detect whether a card is inserted to the card socket based on DAT3 pull-up resistor of the 
card DAT3. When this bit is set, the SDHC generates an interrupt request if the card detection interrupt is 
enabled. This bit is read only and can be cleared by writing 1 to this bit.
0 No card insertion detected
1 Card insertion detected based on logic level changed on DAT3

CARD_
REMOVAL

Card Removal. When this bit is set, the SDHC detects a logic transition on the DAT[3:0] from b1111 to b0111. 
This can detect whether a card is removed from the card socket based on the DAT3 pull-up resistor of the 
card DAT3. When this bit is set, SDHC generates an interrupt request if the card removal interrupt is enabled. 
This bit is read only and can be cleared by writing a 1 to it. User needs to clear this bit to clear the interrupt 
request from SDHC when card detection interrupt is enabled.
0 No card insertion detected
1 Card removal detected based on logic level changed on DAT3

YBUF_EMPTY Y Data Buffer Empty. When this is set, it indicates the Y data buffer is empty during a write transfer. This bit 
is automatically cleared when the first byte of data is moved into the FIFO. Refer to Section 34.4.1, “Data 
Buffers” for more information about the data buffers.
0 Y buffer is not empty
1 Y buffer is empty

XBUF_EMPTY X Data Buffer Empty. When this is set, it indicates the X data buffer is empty during a write transfer. This bit 
is automatically cleared when the first byte of data is moved into the FIFO. Refer to Section 34.4.1, “Data 
Buffers” for more information about the data buffers.
0 X buffer is not empty
1 X buffer is empty

YBUF_FULL Y Data Buffer Full. When this is set, it indicates the Y data buffer is full during a read transfer. This bit is 
automatically cleared when the last byte of data is read out from the FIFO. Refer to Section 34.4.1, “Data 
Buffers” for more information about the data buffers.
0 Y buffer is not full
1 Y buffer is full

XBUF_FULL X Data Buffer Full. When set, this bit indicates the X data buffer is full during a read transfer. This bit is 
automatically cleared when the last byte of data is read out from the FIFO. Refer to Section 34.4.1, “Data 
Buffers” for more information about the data buffers.
0 X buffer is not full
1 X buffer is full

BUF_UND_RUN Buffer Underrun. When set, this bit indicates both X and Y data buffers are empty during a write transfer. In 
this case, the card clock MMC_SD_CLK is stopped automatically by hardware to wait for the DMA or CPU 
to put data into the buffers. An interrupt is triggered if the corresponding interrupt control bit is enabled.
0 No buffer underrun
1 Buffer underrun during a write operation

BUF_OVFL Buffer Overflow. When set, this bit indicates both data buffers are full during a read operation. In this case, 
the card clock MMC_SD_CLK is stopped automatically by hardware to wait for the DMA or CPU to remove 
data out of one of the buffers. An interrupt is triggered if the corresponding interrupt control bit is enabled. 
Excess data is ignored by the SDHC.
0 No buffer overflow
1 Buffer overflow during a read operation

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-9

SDIO_INT_
ACTIVE

SDIO Interrupt Active. This indicates whether an interrupt from the SDIO card has been detected. When this 
bit is set, the SDHC generates an interrupt request if the SDIO interrupt is enabled. User should clear the 
status bit to clear the interrupt request. However, a separate acknowledge command to the card may be 
required to clear the source of the SDIO interrupt. Writing a 1 to this bit clears it.
0 No interrupt detected
1 Interrupt detected using SDIO card bus

END_CMD_
RESP

End Command Response. This indicates a command was successfully transmitted to the card and the 
corresponding response is stored in the Response FIFO. This occurs after each command operation. When 
this bit is set, SDHC generates an interrupt request if END_CMD_RESP interrupt is enabled. User needs to 
clear this bit to clear the interrupt request. Writing a 1 to this bit clears it.
0 Command not successful, incomplete. or not applicable (no response)
1 Command transmitted successfully (response received)
Note: When this bit is set, check the response stored in the response FIFO completed without fail. Also, 

check the RESP_CRC_ERR (Status[5]) and TIME_OUT_RESP(STATUS[1]) bits to determine if an 
error occurred.

WRITE_OP_
DONE

Write Operation Done. This indicates a write operation has completed. The flash card might need extra idle 
time for write accesses, which requires the SDHC module to wait until the card writes the buffered data to 
the inner flash memory. WRITE_OP_DONE flag indicates the end of the write operation. When this bit is set, 
the pre-defined data bytes are written to the card. User needs to send a STOP command to the card if the 
write command is a MMC/SD card write multi-block command. When this bit is set, SDHC generates an 
interrupt request if the WRITE_OP_DONE interrupt enable is enabled. User needs to clear this bit to clear 
the interrupt. This is accomplished by writing 1 to this bit.
0 Write operation in progress or incomplete
1 Write operation complete
Note: When this bit is set, user also needs to check if the write operation completed without a cyclic 

redundancy check (CRC) error. Also, user needs to check the WR_CRC_ERR_CODE[1:0] 
(Status[10:9]) and WRITE_CRC_ERR (STATUS[2]) bits to determine if an error has occurred.

READ_OP_
DONE

Read Operation Done. The READ_OP_DONE status bit is activated at the end of a read operation. When 
this bit is set, pre-defined data bytes have been read from the card or a READ TIMEOUT has occurred. 
Software needs to send a STOP command to card if the read command is a MMC or SD card read multi-block 
command. This bit can be cleared by writing 1 to it. When this bit is set, SDHC generates an interrupt request 
if the READ_OP_DONE interrupt is enabled. User needs to clear this bit to clear the interrupt request. 
0 Read operation in progress or incomplete
1 Read operation complete
Note: When this bit is set, user also needs to check if the read operation complete without error. Also, user 

needs to check the READ_CRC_ERR (Status[3])and TIME_OUT_READ(STATUS[0]) bits to 
determine if an error has occurred.

WR_CRC_
ERROR_CODE

Write CRC Error Code. This indicates CRC results from the card at the end of write operations. After 
receiving a block of data, the card checks the CRC bit and sends the CRC status. These two bits reflect the 
CRC status of the recent written data. If card feedbacks a negative CRC status, data is not written to the card. 
These two bits can be cleared by writing a value of b11 to them.
00 No transmission error, CRC status is 010 (positive)
01 Transmission error, CRC status is 110 (negative)
10 No CRC response
11 Reserved
Note: The bits only have valid value when the WRITE_CRC_ERR status bit (STATUS[2]) is set.

Table 34-6. STATUS Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-10 Freescale Semiconductor

CARD_BUS_
CLK_RUN

Card Bus Clock Run. This indicates whether the MMC_SD_CLK clock to the card is running. The clock rate 
setting and system configuration can be modified when the clock is turned off by setting the STOP_CLK bit 
in STR_STP_CLK Register. This bit can only be cleared by writing 1 to STOP_CLK bit in STR_STP_CLK 
clock control register to stop MMC_SD_CLK.
0 MMC/SD clock is stopped
1 MMC/SD clock is running
Polling needs to be done on this bit to assure the SDHC clock is running or stopped.

BUF_READ_
RDY

Buffer Read Ready. This status is set if a buffer (either X buffer or Y buffer) is full during read operations. An 
interrupt is triggered for non-DMA transfers if BUF_READ_EN is set, or a DMA request is asserted for DMA 
transfers.
0 Not ready to read buffer
1 Ready to read buffer

BUF_WR_
RDY

Buffer Write Ready. This status is set if a buffer (either X buffer or Y buffer) is available during write 
operations. An interrupt is triggered for non-DMA transfers if the BUF_WRITE_EN bit is set or a DMA request 
is asserted for DMA transfers. This bit is only set when SDHC is perform write operation to the card.
0 Not ready to write buffer
1 Ready to write buffer

RESP_CRC_
ERR

Response CRC Error. This indicates a transmission error occurred on the SD_CMD line during a response 
transfer. Writing 1 to this bit clears this bit.
0 No error
1 Response CRC error occurred

READ_CRC_
ERR

Read CRC Error. This indicates a transmission error occurred on the DAT line during a card read. User 
should retry the transmission. Writing a 1 to this bit clears the bit.
0 No error
1 CRC read error occurred

WRITE_CRC_
ERR

Write CRC Error. This indicates a transmission error occurred on the DAT line during a card write operation. 
User should check the WR_CRC_ERR_CODE field for more information about the CRC error. Writing a 1 to 
this bit clears this bit. 
0 No error
1 CRC write error occurred

TIME_OUT_
RESP

Time Out Response. This indicates command response was not received in time specified in the RES_TO 
Register. This can be caused by: 
 • An unsupported command received at the card(s). 
 • Another MMC/SD_OP_COND command submitted after all cards had already sent their voltage ranges 

and the power-up routine is finished. 
 • An identification command issued when all cards are already in standby state. 
 • No card is on the bus. 
Writing a 1 to this bit clears this condition.
0 No error
1 Time out response error occurred

TIME_OUT_
READ

Time Out Read. Indicates expected data from the card was not received in time specified in the READ_TO 
Register. The TIME_OUT_READ is cleared by an internal status change or by removing the source of the 
error. Writing a 1 to this bit clears this bit. 
0 No error
1 Time out read data error occurred

Table 34-6. STATUS Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-11

34.3.2.3 SDHC Clock Rate Register (CLK_RATE)

Refer to Section 34.4.7, “System Clock Controller,” for the clock scheme.

The high frequency input clock, SDHC_CLK, derives the low frequency clock (CLK_20M) the card uses. 
The divide circuitry consists of a 4-bit divider followed by a 12-bit prescaler. The SDHC_CLK is first 
divided by the 4-bit divider to derive the signal, CLK_DIV. The 12-bit prescaler divides the CLK_DIV to 
derive CLK_20M, which the card can use.

CLK_20M is used internally by the SDHC. 

See Figure 34-4 for illustration of valid bits in the SDHC Clock Rate Register and Table 34-7 for 
description of the bit fields.

Offset 0x08Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CLK_PRESCALER CLK_DIVIDER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

= Unimplemented or Reserved

Figure 34-4. CLK_RATE Register
(Register repeats for reference.)

Table 34-7. CLK_RATE Field Descriptions

Field Description

CLK_
PRESCALER

Clock Prescaler. Specifies divider value to generate CLK_20M from CLK_DIV.
0x000 CLK_20M is CLK_DIV
0x001 CLK_20M is CLK_DIV/2
0x002 CLK_20M is CLK_DIV/4
0x004 CLK_20M is CLK_DIV/8
0x008 CLK_20M is CLK_DIV/16
0x010 CLK_20M is CLK_DIV/32
0x020 CLK_20M is CLK_DIV/64
0x040 CLK_20M is CLK_DIV/128
0x080 CLK_20M is CLK_DIV/256
0x100 CLK_20M is CLK_DIV/512
0x200 CLK_20M is CLK_DIV/1024
0x400 CLK_20M is CLK_DIV/2048
0x800 CLK_20M is CLK_DIV/4096

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-12 Freescale Semiconductor

NOTE
Maximum frequency of MMC_SD_CLK is SDHC_CLK/1 when 
CLK_DIVIDER and CLK_PRESCALAR are set to 0x0.

34.3.2.4 SDHC Command and Data Control Register (CMD_DAT_CONT)

SDHC Command and Data Control Register allows user to specify the format of data and response and 
control the Read/Wait cycle. After configuring this register, enabling the MMC_SD_CLK causes the 
command and argument configured in the CMD Number register and the CMD Argument register to be 
sent out to the card.

CLK_DIVIDER Clock Divider. Specifies the divider value to generate CLK_DIV from input clock SDHC_CLK.
0x0 CLK_DIV is SDHC_CLK
0x1 CLK_DIV is SDHC_CLK/2
0x2 CLK_DIV is SDHC_CLK/3
0x3 CLK_DIV is SDHC_CLK /4
0x4 CLK_DIV is SDHC_CLK /5
0x5 CLK_DIV is SDHC_CLK /6
0x6 CLK_DIV is SDHC_CLK /7
0x7 CLK_DIV is SDHC_CLK /8
0x8 CLK_DIV is SDHC_CLK /9
0x9 CLK_DIV is SDHC_CLK /10
0xa CLK_DIV is SDHC_CLK /11
0xb CLK_DIV is SDHC_CLK /12
0xc CLK_DIV is SDHC_CLK /13
0xd CLK_DIV is SDHC_CLK /14
0xe CLK_DIV is SDHC_CLK /15
0xf CLK_DIV is SDHC_CLK /16
OthersReserved

Offset 0x08Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CLK_PRESCALER CLK_DIVIDER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

= Unimplemented or Reserved

Figure 34-4. CLK_RATE Register
(Register repeats for reference.)

Table 34-7. CLK_RATE Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-13

See Figure 34-5 for illustration of valid bits in the SDHC Command and Data Control Register and 
Table 34-8 for description of the bit fields.

Offset 0x0CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CMD_

RESUME

CMD_
RESP_
LONG_

OFF

STOP_
READ
WAIT

START
_READ
WAIT

BUS_WIDTH INIT
WRITE
_READ

DATA_
ENABLE

FORMAT_OF_
RESPONSEW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 34-5. CMD_DAT_CONT Register
(Register repeats for reference.)

Table 34-8. CMD_DAT_CONT Field Descriptions

Field Description

CMD_RESUME Command Resume. Restores Command and Data Control Register after READ/WAIT cycle for SDIO card.
0 Issues command to card
1 Does not issue command to card

CMD_RESP_
LONG_OFF

Command Response Long Off. Allows STATUS[13] END_CMD_RESP bit to be self-cleared when 
condition to generate this bit disappears. This is used in the Read/Wait cycle. For SD/MMC operation, keep 
this bit at 0.
0 Bit not cleared when read
1 Allows bit clearance

STOP_READWAIT Stop Read/Wait. Ends the Read/Wait cycle for SDIO. When this bit is set, SDHC does not drive DAT2 
output low so the SDIO card would end the Read/Wait cycle. For operation of SD/MMC, keep this bit at 0.
0 No effect
1 Ends Read/Wait cycle

START_READWAIT Start Read/Wait. Starts the Read/Wait cycle for SDIO. When this bit is set, SDHC makes the DAT2 output 
low and forces the SDIO card to enter READWAIT cycle. For SD/MMC operation, keep this bit at 0.
0 No Effect
1 Starts Read/Wait cycle

BUS_WIDTH Bus Width. Specifies the width of the data bus. These two bits must be set according to current card bit 
mode.
00 1-bit
01 Reserved
10 4-bit
11 Reserved

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-14 Freescale Semiconductor

34.3.2.5 SDHC Response Time Out Register (RES_TO)

The MMC/SD Response Time Out Register defines an interval within which a response must be returned 
or a timeout error occurs. After SDHC sends out a command, if the card does not respond within the 
specified interval, the RESPONSE TIMEOUT status bit (STATUS[1]) and the END_CMD_RESP status 
bit (STATUS[13]) are set.

See Figure 34-6 for illustration of valid bits in the MMC/SD Response Time Out Register and Table 34-9 
for description of the bit fields.

INIT Initialize. Specifies whether the additional 80-clock (MMC_SD_CLK) cycle prefix (to initialize the card) 
occurs before every command. INIT enables/disables the additional 80-clock initialization time.
0 Disable 80 initialization clocks
1 Enable 80 initialization clocks

WRITE_READ Write/Read. Specifies whether the data transfer of current command is a write or read operation
0 Read
1 Write

DATA_ENABLE Data Enable. Specifies whether the current command includes a data transfer.
0 No data transfer included
1 Date transfer include

FORMAT_OF_
RESPONSE

Format of Response. Sets the expected response format for current command. Refer to the SD I/O 
Specification 1.0 for detail information of the response format.
000 No response for Current command
001 Format R1/R5/R6 (48-bit Response with CRC7)
010 Format R2 (136-bit, CSD/CID read response)
011 Format R3/R4(48-bit Response without CRC check)
OthersReserved

Offset 0x0CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CMD_

RESUME

CMD_
RESP_
LONG_

OFF

STOP_
READ
WAIT

START
_READ
WAIT

BUS_WIDTH INIT
WRITE
_READ

DATA_
ENABLE

FORMAT_OF_
RESPONSEW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 34-5. CMD_DAT_CONT Register
(Register repeats for reference.)

Table 34-8. CMD_DAT_CONT Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-15

34.3.2.6 SDHC Read Time Out Register (READ_TO)

The MMC/SD Read Time Out Register defines an interval that read data must be returned within or a 
timeout error occurs. After SDHC sends out data read command, if no data is returned within the specified 
interval, the READ TIMEOUT status bit (STATUS[0]) and the READ_OP_DONE status bit 
(STATUS[11]) are set.

See Figure 34-7 for illustration of valid bits in the SDHC Read Time Out Register and Table 34-10 for 
description of the bit fields.

Offset 0x10Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
RESPONSE TIME OUT

W

Reset 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 34-6. SDHC RES_TO Register

Table 34-9. RES_TO Field Descriptions

Field Description

RESPONSE
TIME OUT

Response Timeout. This value determines the interval which detects response timeout. The clock starts 
counting when the last bit of the command is sent. The clock counts unit is MMC_SD_CLK to card.
0x01 1 clock count
0x02 2 clock counts
...
...
0xFF 255 clock counts

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-16 Freescale Semiconductor

34.3.2.7 SDHC Block Length Register (BLK_LEN)

SDHC Block Length Register defines the number of bytes in a block. Because stream mode of MMC is 
not supported, block length must be set for every transfer. Block length supported by the SDHC ranges 
from 1 to 2048 bytes, but you need to check the block size supported by the card before configuring this 
register. For SDIO, block length must be less than the maximum block size defined in the card’s CCCR. 
For SD/MMC, block length must be less than the maximum block size defined in the card’s CSD register.

NOTE
Software should write to this register only when no SD bus transaction is 
executing.

See Figure 34-8 for illustration of valid bits in the SDHC Block Length Register and Table 34-11 for 
description of the bit fields.

Offset 0x14Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DATA_READ_TIME_OUT

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

= Unimplemented or Reserved

Figure 34-7. READ_TO Register

Table 34-10. READ_TO Field Descriptions

Field Description

DATA_READ_
TIME_OUT

Data Read Timeout. This value determines the interval read data timeouts are detected. Check the timeout 
limit of the card and clock frequency to configure this register. For safety, 0xFFFF is recommended. 

The time-out clock starts counting when the last bit of the command is sent. The count unit is 
MMC_SD_CLK/256. The maximum delay SDHC can tolerate for a data time out relates to the card clock. If 
the clock is 25 MHz and register is 0xFFFF, the maximum delay SDHC waits is about 670ms. If the card does 
not give data in 670ms, SDHC issues a data read time out error and terminates current data read operation. 
This meets the SD physical layer specification, with typical time out limit of 100ms~200ms. However, for some 
SDIO cards, the time out limit may be up to 1s. In such cases, lower the MMC_SD_CLK frequency to 
accommodate the delay to 1s, which user needs to configure the MMC_SD_CLK to about 16 MHz and set 
this register to be 0xFFFF.

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-17

34.3.2.8 SDHC Number of Blocks Register (NOB)

The SDHC Number of Blocks Register defines the number of blocks in the block transfer mode. This 
register and the Block Length Register determines the number of bytes to be transferred during one 
command. The number decrements every time a block transfer completes and stops when the count 
reaches zero. When all data transfers are completed, the STATUS[11] READ_OP_DONE is set if it is a 
read (from card) transfer, or the STATUS[12] WRITE_OP_DONE is set if it is a write (to card) transfer.

Offset 0x18Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
BLOCK LENGTH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 34-8. BLK_LEN Register

Table 34-11. BLK_LEN Field Descriptions

Field Description

BLOCK LENGTH Block Length. Specifies the number of bytes in a block during data transfer (block size). For MMC and SD 
cards, the value set must remain the same as the Balkan set in the CARD. For SDIO, IO access is performed 
through the CMD53 IO_RW_EXTEND command. Command has two modes:
 • Byte mode. For byte mode, its operation is similar to a single block transfer command for SD where the 

block length is the byte count in the command argument.
 • Block mode. For block mode, its operation is similar to a multi-block transfer command for the SD where 

the block length is the block size defined in the command argument. 
For multi-block data transfers, a block length equal to an integer multiple of the data buffer size is preferred. 
Otherwise, buffer utilization is poor. If the data size that needs to be transferred is not an integer multiple of 
the buffer size, there are two options to transfer the data:
 • Option 1: Split the transaction. The remainder of block size data is transferred by using a single block 

command for the last transfer.
 • Option 2: Add filler data in the last block to fill the block size to be as large as the buffer size.
The data buffer size is 64 bytes in 4-bit mode and 16 bytes in 1-bit mode. Refer to Section 34.4.1, “Data 
Buffers,” for more information about data buffer.
0x000 0 byte
0x001 1 byte
...
...
0x7FF 2047 bytes
0x800 2048 bytes
0x801~0XFFF Reserved

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-18 Freescale Semiconductor

Software should write to this register only when no MMC/SD transaction is executing.

Max data size to be transferred in bytes equals block length multiplied by number of blocks.

See Figure 34-9 for illustration of valid bits in the SDHC Number of Blocks Register and Table 34-12 for 
description of the bit fields.

34.3.2.9 SDHC Revision Number Register (REV_NO)

The SDHC Revision Number Register is a read-only register displaying the revision number of the 
module.

See Figure 34-10 for illustration of valid bits in the SDHC Revision Number Register and Table 34-13 for 
description of the bit fields.

Offset 0x1CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
NOB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 34-9. NOB Register

Table 34-12. NOB Field Descriptions

Field Description

NOB Specifies the number of blocks in a block transfer. One block should be set if the data transfer command is a 
single block transfer command or IO_RW_EXTEND (CMD53) in byte mode. For multi-block transfer 
command to SD/MMC card and IO_RW_EXTEND (CMD53) in block mode to SDIO card, this register should 
be set the block count software expects. Number of blocks can range from 0 to 65535.

For SD Memory card or a memory parts of a SDIO combo card, send CMD12 to stop the multi-block transfer. 
For a SDIO CMD53 in block mode and user needs to abort the transfer earlier, use CMD52 IO-Abort to abort 
the transfer.
0x0000 0 Block
0x0001 1 Block
...
...

0xFFFF 65535 Blocks
Note: The maximum transfer blocks is 64 K. If user uses infinite transfer command to transfer data, such as 

multi-block transfer command for memory card or infinite block transfer CMD53 for SDIO card, this 
register needs to be set to the real number of blocks that you expect to transfer. Also, you need to abort 
the transfer using CMD12 or CMD52 IO-Abort.

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-19

34.3.2.10 SDHC Interrupt Control Register (INT_CNTR)

When certain events occur in the module, the SDHC has the ability to set an interrupt as well as set 
corresponding status register bits. The SDHC Interrupt Control Register allows control over whether these 
interrupts should be recognized. Interrupts are ORed to provide a single interrupt IPI_IRQ to the system. 
Software must read the status to determine the source of the event.

See Figure 34-11 for illustration of valid bits in the SDHC Interrupt Control Register and Table 34-14 for 
description of the bit fields.

Offset 0x20Access: User read

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Revision Number[15:0]

W

Reset 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 34-10. REV_NO Register

Table 34-13. REV_NO Field Descriptions

Field Description

REVISION 
NUMBER

Revision Number. Specifies revision number of the MMC/SD module. This is fixed at 0x0000_0400.

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-20 Freescale Semiconductor

Offset 0x24Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CARD_
INSER-
TION_

EN

CARD_
RE-

MOVAL
_EN

SDIO_
IRQ_
EN

DAT0_
EN

BUF_
READ
_EN

BUF_
WRITE
_EN

END_
CMD_
RES

WRITE
_OP_
DONE

READ
_OP_
DONE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 34-11. INT_CNTR Register
(Register repeats for reference.)

Table 34-14. INT_CNTR Field Descriptions (Sheet 1 of 2)

Field Description

CARD_
INSERTION_EN

Card Insertion Enable. Setting this bit enables the card insertion interrupt. Because card detection is through 
the value of DAT3 data line, if this card is in 4-bit mode, any data transfers in the DAT3 line causes false card 
insertion interrupts to be generated. Card insertion interrupt should be disabled after the first time card 
insertion is detected. To avoid false status bit generation during data transfer, card insertion status is masked 
by this bit. It should only be enabled after the card is removed from the socket. 

The default of this bit is to disable the card insertion interrupt. When this interrupt is detected, write a 1 to the 
STATUS[31] bit to clear the card insertion status interrupt.
0 Card insertion interrupt disabled
1 Card insertion interrupt enabled

CARD_
REMOVAL_EN

Card Removal Enable. Setting this bit enables the card removal interrupt. Because card detection is through 
the value of the DAT3 data line, if this card is in 4-bit mode, the data transfer through the DAT3 line causes 
false card removal interrupt to be generated. The card removal interrupt should only be enabled when no 
active data transfers exist on the DAT3 line. To avoid the false status bit generation during data transfer, the 
card insertion status is masked by this bit. 

The default of this bit is to disable the card removal interrupt. When this interrupt is detected, write a 1 to the 
STATUS[30] bit to clear the card removal status interrupt.
0 Card removal interrupt disabled
1 Card removal interrupt enabled
Note: SDHC uses IPS_CLK to detect the SDIO card interrupt wakeup event when this bit is set.

SDIO_IRQ_EN SDIO Interrupt Enable. Masks the interrupt from the SD I/O card to the SDHC module interrupt.
0 SD I/O interrupt disabled
1 SD I/O interrupt enabled
Note: SDHC uses IPS_CLK to detect the SDIO card interrupt wakeup event when this bit is set.

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-21

DAT0_EN Data Enable. Identifies how the SD I/O interrupt is detected. An interrupt is determined by DAT 1 low, but this 
bit is an optional setting for the SDIO bit. 

When SDHC preforms data transfer and the SD bus mode is 1-bit mode, set this bit to 0.
0 SD I/O’s Interrupt detection based on DAT[3:0] = b110x
1 SD I/O’s Interrupt detection based on DAT[3:0] = b1101

BUF_READ_EN Bus Read Enable. This bit controls the buffer read ready interrupt. If the bit is 1, the interrupt is enabled. When 
the buffer becomes full during a read operation, an interrupt is generated. Move the data out of the FIFO and 
clear the BUF_READ_RDY bit to clear the interrupt.
0 Buffer status interrupt disabled
1 Buffer status interrupt enabled

BUF_WRITE_EN Bus Write Enable. This bit controls the buffer write ready interrupt. If the bit is 1, interrupt is enabled. When 
the buffer becomes empty during a write operation, an interrupt is generated. Write data to the FIFO and clear 
the BUF_WRITE_RDY bit to clear the interrupt.
0 Buffer status interrupt disabled
1 Buffer status interrupt enabled

END_CMD_RES End Command Response. This bit controls the interrupt generation on the status at the end of the command 
response. When this bit is 1, SDHC generates an interrupt at the end of the command response status. 
0 End Command-response interrupt disabled
1 End Command-response interrupt enabled

WRITE_OP_
DONE

Write Operation Done. This bit controls the interrupt generation for the status of write operation. When the 
interrupt enabled, SDHC generates an interrupt when the configured bytes of data are transferred to the card.
0 Write_OP_DONE interrupt disabled
1 Write_OP_DONE interrupt enabled

READ_OP_
DONE

Read Operation Done. This bit controls the interrupt generation for the status of read operation completion. 
When the interrupt is enabled, SDHC generates an interrupt when the pre-defined bytes of data are 
transferred from the card.
0 READ_OP_DONE interrupt disabled
1 READ_OP_DONE interrupt enabled

Offset 0x24Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CARD_
INSER-
TION_

EN

CARD_
RE-

MOVAL
_EN

SDIO_
IRQ_
EN

DAT0_
EN

BUF_
READ
_EN

BUF_
WRITE
_EN

END_
CMD_
RES

WRITE
_OP_
DONE

READ
_OP_
DONE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 34-11. INT_CNTR Register
(Register repeats for reference.)

Table 34-14. INT_CNTR Field Descriptions (Sheet 2 of 2)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-22 Freescale Semiconductor

When an interrupt is generated, there may be some error bits in the STATUS register set and the pending 
interrupt status (source of the interrupt must be cleared). Check the error status bit to make sure there is no 
error in the SDHC operation. For example, when the READ_OP_DONE (STATUS[11]) status is set or the 
READ_OP_DONE interrupt is detected, check the STATUS[3] and STATUS[0] bits to make sure the read 
operation completed without a CRC error or a time out error. Another example is a write operation, if both 
the WRITE_OP_DONE(STATUS[12]) and WRITE_CRC_ERR (STATUS[2]) bits are set. This means the 
write operation ended with CRC error. See Table 34-15 for a summary of the relationship between the 
interrupt, interrupt control register, and status registers in the SDHC.

34.3.2.11 SDHC Command Number Register (CMD)

The command to the SD card is always 48 bits long. It contains 1 start bit, 1 direction bit, 6 command 
number bits, 32 argument bits, 7 CRC bits, and 1 end bit. For more details on the format of the command, 

Table 34-15. Interrupt Mechanisms

Source STATUS Bit Name 
(Status Bit Number)

Does status directly generate 
interrupt?

INT_Control Register 
Bit Name (INT_CNTR 

bit Number)

Interrupt/Status Clear 
Method

TIME_OUT_READ (0) No, alert using the 
READ_OP_DONE bit in the SDHC 
Status Register.

READ_OP_DONE (0) Clear status by writing 1 

TIME_OUT_RESP (1) No, alert using the 
END_CMD_RESP bit in the SDHC 
Status Register.

END_CMD_RES (2) Clear status by writing 1 

WRITE_CRC_ERR (2) No, alert using the 
WRITE_OP_DONE bit in the SDHC 
Status Register.

WRITE_OP_DONE (1) Clear status by writing 1 

READ_CRC_ERR (3) No, alert via the READ_OP_DONE 
bit in the SDHC Status Register.

READ_OP_DONE (0) Clear status by writing 1 

RESP_CRC_ERR (5) No, alert using the 
END_CMD_RESP bit in the SDHC 
Status Register.

END_CMD_RES (2) Clear status by writing 1 

BUF_WR_RDY (6) Yes BUF_WRITE_EN (3) Clear status by writing data to 
FIFO buffer

BUF_READ_RDY (7) Yes BUF_READ_EN (4) Clear status by reading data 
from FIFO buffer

READ_OP_DONE(11) Yes READ_OP_DONE (0) Clear status by writing 1 

WRITE_OP_DONE(12) Yes WRITE_OP_DONE (1) Clear status by writing 1 

END_CMD_RESP(13) Yes END_CMD_RESP (2) Clear status by writing 1 

SDIO_INT_ACTIVE(14) Yes SDIO_IRQ_EN (13) Clear status by writing 1 

CARD_REMOVAL(30) Yes CARD_REMOVAL_EN 
(14)

Clear status by writing 1 

CARD_INSERTION(31) Yes CARD_INSERTION_E
N (15)

Clear status by writing 1 

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-23

refer to the SD physical layer spec. Refer to related card spec for detailed information about each 
command.

SDHC automatically generates the command start bit, direction bit, CRC7 bits, and end bit in hardware. 
Configure only the SDHC command number register and SDHC command argument register to issue a 
command to the card.

See Figure 34-12 for illustration of valid bits in the SDHC Command Number Register and Table 34-16 
for description of the bit fields.

34.3.2.12 SDHC CMD Argument Register (ARG)

This register contains the MMC/SD/SDIO command argument.

See Figure 34-13 for illustration of valid bits in the SDHC Command Argument Register and Table 34-17 
for description of the bit fields.

Offset 0x28Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
COMMAND NUMBER

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 34-12. CMD Register

Table 34-16. CMD Field Descriptions

Field Description

COMMAND 
NUMBER

Command Number. The SDHC module communicates with the MMC/SD/SDIO card(s) by sending 
commands and arguments. The command to send is set in the MMC/SD Command Number Register (CMD), 
and the argument is defined in SDHC CMD Argument Register (ARG).
0x00 CMD0
0x01 CMD1
...
...
0x3F CMD63
Note: Check the detail information from the related card spec.

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-24 Freescale Semiconductor

34.3.2.13 SDHC Response FIFO Access Register (RES_FIFO)

There is an 8 x 16 bit FIFO in the SDHC used to store the response from the card. The FIFO data can be 
read using this register. The most significant 16 bits of the response are accessed first, and the least 
significant 16 bits are accessed last.

See Figure 34-14 for illustration of valid bits in the SDHC Response FIFO Access Register and 
Table 34-18 for description of the bit fields.

Offset 0x2CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ARG[0:15]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ARG[16:31]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-13. ARG Register

Table 34-17. ARG Field Descriptions

Field Description

ARG Command Argument. Specifies the argument for the current command.
Note:  Check the detail command argument information from the related card spec.

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-25

34.3.2.14 SDHC Data Buffer Access Register (DBA)

The SDHC uses two 64-byte data buffers in an alternating manner to transfer data by the DMA and the SD 
card simultaneously to maximize throughput between the two clock domains (the IP peripheral clock, 
SDHC_CLK, and the host clock, CLK_20M). These buffers are temporary storage for data transferred 
between the host system and the card and vice versa. Read or write data to the buffers through this buffer 
access register. Refer to Section 34.4.1, “Data Buffers,” for more information about the data buffers.

In the read operation, SDHC stores data received from the card into the buffer. Move the data out of the 
buffer when the buffer is full.

In the write operation, SDHC fetches data from the buffer and transfers it to the card. Access the data buffer 
through the SDHC data buffer access register. Move data into the buffer when the buffer is empty.

See Figure 34-15 for illustration of valid bits in the SDHC data buffer access register and Table 34-19 for 
description of the bit fields.

Offset 0x34Access: User read

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RESPONSE_CONTENT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 34-14. RES_FIFO Register

Table 34-18. RES_FIFO Field Descriptions

Field Description

RESPONSE_
CONTENT

RESPONSE CONTENT FIFO access register. There is a FIFO in the SDHC that stores the command 
response received from the card. Every time the Host sends a command to a card, the current contents 
stored in the FIFO are cleared and a new response argument is stored into the response FIFO. 

According to the SD card spec, command response size can be 48 bit or 136 bit (R2 response). Refer to the 
SD Memory Card Specification for more detailed information about the command response format. The 
response FIFO is 8x16 bits (128 bits). For a 48-bit response, only 48 bits of the FIFO have valid contents and 
user must perform three reads to this response FIFO access register to retrieve the entire 48-bit response 
content. For a 136-bit R2, response (response for CID[127:0] or CSD[127:0] register), only the contents of 
the 128-bit CID and CSD register are stored in the response FIFO. This first byte of the R2 response is not 
stored in the response FIFO. Retrieve the CIS/CSD register from the response FIFO through eight accesses 
to the FIFO access register. The CRC bit in the response is not stored in the response FIFO. This response 
FIFO is read only.

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-26 Freescale Semiconductor

34.4 Functional Description
The Secure Digital Host Controller module (SDHC) controls the MMC, SD memory card, and I/O cards 
by sending commands to cards and performing data accesses to/from the cards.

The following sections provide a brief functional description of the major system blocks, including the 
DMA interface, memory controller, logic/command controller, and system clock controller.

34.4.1 Data Buffers

The SDHC uses two data buffers in an alternating manner to transfer data through the DMA and the SD 
card simultaneously to maximize throughput between the two clock domains (the IP peripheral clock, 
IPG_PERCLCK, and the host clock, CLK_20M). See Figure 34-16 for illustration of the buffering 
scheme. These buffers are used as temporary storage for data transferred between the host system and the 
card.

Offset 0x38Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
FIFO CONTENT[0:15]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FIFO CONTENT[16:31]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-15. BUFFER_ACCESS Register

Table 34-19. BUFFER_ACCESS Field Descriptions

Field Description

FIFO CONTENT FIFO Content. These bits hold 32-bit data upon a read or write transfer. The size of the FIFO is 4x32 bits (16 
bytes in total) for SD 1-bit mode and 16x32 bits (64 bytes in total) for SD 4-bit mode. For reception, SDHC 
controller generates a DMA request when FIFO is full. Upon receiving this request, DMA starts transferring 
data from the SDHC FIFO to system memory by reading the data buffer access register for a number of 
pre-defined bytes. For transmit, SDHC controller generates a DMA request when FIFO is empty. Upon 
receiving this request, DMA starts moving data from the system memory to the SDHC FIFO by writing to the 
data buffer access register for a number of pre-defined bytes.

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-27

Figure 34-16. SDHC Buffer Scheme

For a host read operation, the SDHC automatically transfers data into the next available buffer. If one of 
the the data buffers is full, the SDHC generates a DMA request. Conversely, for a host write operation, if 
one of the data buffers is empty, the SDHC generates DMA requests. If some data is available, the SDHC 
reads the data out of the buffer and writes it to the card through the SD bus interface.

34.4.1.1 Data Buffer Access

The DMA/CPU accesses the SDHC data buffer as a FIFO through the 32-bit data buffer access (DBA) 
register. Internally, the SDHC maintains a pointer into the data buffer. Accesses to the DBA register 
automatically increase the pointer value. The pointer value is not directly accessible by the software. In 
cases when the block length of the data transfer is not a multiple of 32-bit, the last access to the DBA 
contains valid data only on 8, 16, or 24 bits. Because SDHC data buffer only allows 32-bit accesses, 
put/fetch the data bytes on the correct byte position of the DBA. For an 8-bit data access to the FIFO, 
put/fetch data into DBA bits 7 through 0. For 16-bit data access, put/fetch data in DBA bits 15 through 0. 
For a 24-bit data, put/fetch data into DBA bits 23 through 0.

When data is written to the card, a 32-bit data word in the data buffer is shifted out from the LSB byte to 
the MSB byte. When data is read from the card, the data is shifted to the data buffer from LSB byte to MSB 
byte. See Figure 34-17 for the data swap between system IP bus and SDHC data buffer. 

Figure 34-17. Data Swap Between System IP Bus and SDHC Data Buffer

IP Bus
I/F

SD Bus
I/F

Buffer Control

SDHC Registers

X 
Buffer

Y
Buffer

dma_req

sdhc_irq

31-24System IP Bus

SDHC Data Buffer 7-0 15-8 23-16 31-24

7-015-823-16

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-28 Freescale Semiconductor

34.4.1.2 Write Operation Sequence

There are two ways to move data into the SDHC data buffer when you want to write data to the card. One 
is by using DMA through the SDHC DMA request signal, and the other is by using the CPU through the 
BUF_WR_RDY (STATUS[6]) bit (interrupt or polling).

The SDHC automatically asserts a DMA request when the data buffer is empty and it is ready to receive 
new data. At the same time, SDHC sets the BUF_WR_RDY (STATUS[6]) bit. The buffer write ready 
interrupt is generated if enabled by software.

The data buffer accumulates the data written until it fills. The SDHC does not start writing to the card until 
a data buffer size is full. Then, the SDHC starts a transmission when the SD bus is ready for a new transfer. 
When the other data buffer is empty and more data can be transferred, SDHC asserts a new DMA request 
and sets the BUF_WR_RDY bit. See Section 34.4.2.1, “DMA Request”.

34.4.1.3 Read Operation Sequence

There are two ways to fetch data from the buffer when data is read from the card. One is by using DMA 
through the SDHC DMA request signal, and the other is by using CPU through the BUF_READ_RDY 
(STATUS[7]) bit (interrupt or polling). 

The SDHC asserts a DMA request when the data buffer is full and it is ready for DMA/CPU to fetch data 
out of the data buffer. At the same time, SDHC sets the BUF_READ_RDY (STATUS[7]) bit. The buffer 
read ready interrupt is generated if enabled by software.

SDHC only starts receiving data when either of the two data buffers is empty. The buffer accumulates data 
read from the card until it fills. SDHC asserts a DMA request when either one of the data buffers is full. 
For multiple block data transfers, while the DMA/CPU moves data by reading the DBA register, SDHC 
receives data into the other buffer if empty and the SD bus is ready. If the DMA/CPU does not keep up 
with reading data out of the buffers, SDHC stops the SD_CLK at the block gap to avoid an overflow 
situation.

34.4.1.4 Data Buffer Size

You must know the buffer sizes during data transfers. In SDHC, both data buffers are 64 bytes in size. 
However, each data buffer is divided into four 16 byte containers that correspond to the four data lines of 
SD bus. Therefore, the data buffer size is 64 bytes in 4-bit SD mode and 16 bytes in 1-bit SD mode.

During multi-block data transfer, block length should be an integer multiple of the buffer size. The buffer 
is ready to be read by CPU/DMA when either of the buffers is full (STATUS[27] or STATUS[26] is set, 
and STATUS[7] is set). The buffer would be ready to write by CPU/DMA (STATUS[29] or STATUS[28] 
is set, and STATUS[6] is set) when the full buffer of data are fetched out of the buffer. The buffer ready 
status bit and DMA request are set accordingly.

For single block data transfers when the block length is smaller than the buffer size or when the block 
length is not an integer multiple times that of the buffer size, the data size may need to be written to the 
buffer or to be fetched out of the buffer in smaller records. In this case, the buffer would be full (SDHC set 
STATUS[27] or STATUS[26]) when these data are written to the buffer. The buffer would be empty 
(SDHC set STATUS[29] or STATUS[28]) when these buffer of data are fetched out of the buffer. The 

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-29

buffer ready status bit and DMA request would be set accordingly. From the software point of view, buffer 
size becomes variable and equal to the real data size that needs to be transferred. This eases the software 
programming of SDHC. Do not need to fill dummy data to make the buffer full.

34.4.1.5 Dividing Large Data Transfer

This SDIO command CMD53 definition limits the maximum size of data transfers according to this 
formula.

Max Transfer Size = Block Size x Block Count Eqn. 34-1

The block size can be a multiple of the size of the data buffer. However, it is recommended that the block 
size be equal to the data buffer size. This allows the SDHC to stop the SD_CLK during block gaps should 
an overflow or underrun condition occur. Stopping the SD_CLK while the data lines are active may cause 
data corruption on some cards. If an application or card driver needs to transfer larger sets of data, the host 
driver should divide the data set into multiple blocks.

The length of a multiple block transfer needs to be in block size units. If the total data length cannot be 
divided evenly to a multiple of the block size, there are two ways to transfer the data depending on function 
and card design. Option one is for the card driver to split the transaction into a block transfer to send most 
of the data and a byte transfer to send the remaining data. Option two is to add filler data in the last block 
to complete the block size. For option two, the card must manage to remove the filler data.

See Figure 34-18 for an example showing dividing a large data set. The 544-byte WLAN frame is divided 
into eight 64-byte blocks plus the block. Eight 64-byte blocks are sent in block transfer mode and the 
remaining 32 bytes are sent in byte transfer mode.

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-30 Freescale Semiconductor

Figure 34-18. Example for Dividing Large Data Transfer

34.4.2 DMA Interface

The DMA interface block controls all data routing between the external data bus (DMA access), internal 
SDHC module data bus, and internal system FIFO access through a dedicated state machine that monitors 
the status of FIFO content (empty or full), FIFO address, and byte/block counters for the SDHC module 
and the application. See Figure 34-19 for illustration of the DMA interface block.

FCSICVFrame BodyIV
802.11 

MAC Header

Data 
64 bytes

Data
64 bytes

Data
64 bytes

Data
32 bytes

SDIO Data 
block #1

SDIO Data
block #2

SDIO Data
block #8

SDIOData
32 bytes

SDIO Data 
block #1

SDIO Data
block #2

SDIO Data
block #8

SDIOData
32 bytes

544 Bytes WLAN Frame

WLAN Frame is divided equally into 64-byte blocks plus the remainder 32 bytes.

Eight 64-byte blocks are sent in block transfer mode and the remainder remove carriage return/line feed.

The 32 bytes are sent in byte transfer mode.

CMD53 CMD53

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-31

Figure 34-19. DMA Interface Block

In addition, this block also manages the burst request to the external DMA controller, internal register 
write-error detection, read wait handling of SDIO, and all IP related output responses.

34.4.2.1 DMA Request

If a transfer is in progress, SDHC generates DMA requests according to the FIFO status. During read 
operations, SDHC generates DMA requests if one of the data FIFOs is full. During write operations, 
SDHC generates DMA requests if one of the data FIFOs is empty. 

To avoid buffer under-run conditions during a write operation, MMC_SD_CLK stops automatically when 
both buffers are empty. After the DMA or CPU completes writing data into one of the buffers, 
MMC_SD_CLK resumes automatically to continue the data transfer. 

Similarly, to avoid buffer over-flow during read operations, MMC_SD_CLK stops automatically when 
both buffers are full. After the DMA or CPU moves the data out of the buffer, MMC_SD_CLK resumes 
automatically to continue the data transfer.

34.4.3 Memory Controller

This controller provides the SDIO-IRQ and read/wait service handling, card detection, command response 
handling, all SDHC interrupt managing, and it contains the register table. See Figure 34-20 for illustration 
of the block diagram for the memory controller.

Reg File

RAM

32x4

Byte Counter/

Block CounterFIFO

Empty/Full

Control

Host/DMA R/W

Access Handler

FSM

Data Path

Multiplexer

ram_addr

ram_rw

ram_data

EFB, FFB for Appl.
EFB, FFB for Host
mmc_dreq
data_in
data_out

R/W from Appl.
R/W from Host
Handshake to Host
Host Status

FIFO StatusEFB/FFB Control

DMA_INF

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-32 Freescale Semiconductor

Figure 34-20. Memory Controller Block Diagram

A summary of events that take place when a SDIO card generates an interrupt is detailed in this section. 
When a SDIO card generates an interrupt request, it sets its interrupt pending bit in the CSR register and 
asserts the interrupt line, which is shared with DAT1 line in 4-bit mode. The SDHC detects and steers the 
card’s interrupt to the selected IRQ line of the interrupt controller. 

34.4.4 SDIO Card Interrupt

34.4.4.1 Interrupts in 1-Bit Mode

In this case, the DAT1 pin is dedicated to providing the interrupt function. Pulling the DAT1 low asserts 
an interrupt until the host clears the interrupt.

34.4.4.2 Interrupt in 4-Bit Mode

Because the interrupt and data line 1 share pin DAT1 in 4-bit mode, an interrupt is only sent by the card 
and recognized by the host during a specific time. This is known as the interrupt period. The SDHC 
samples only the level on DAT1 during the interrupt period. At all other times, the host interrupt controller 
ignores the level on DAT1. The definition of the interrupt period is different for operations with single 
block and multiple block data transfers.

In the case of normal single data block transmissions, the interrupt period becomes active two clock cycles 
after the completion of a data packet. This interrupt period lasts until after the card receives the end bit of 
the next command with a data block transfer associated with it. 

SDIO-IRQ
Interrupter

&
Card Detection

Circuitry

Register
Handler

SDIO-ReadWait
Logic

Configuration
Interrupt
Handler

Command
Response

Circuitry

Data

DATA from
Post-Processor

Operation
Pause

Operation
Resume

Memory Controller

Application
Bus

IPG_CLK

sdhc_irq

CMD from 
Post-Processor

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-33

For multiple block data transfers in 4-bit mode there is only a limited period of time the interrupt period 
can be active due to the limited period of data line availability between multiple blocks of data. This 
requires a more strict definition of the interrupt period. For this case, the interrupt period is limited to two 
MMC_SD_CLK clock cycles. This begins two clocks after the end bit of the previous data block. During 
this 2-clock cycle interrupt period, if an interrupt is pending, the DAT1 line is held low for one clock cycle 
with the last clock cycle pulling DAT1 high. On completion of the interrupt period, the card releases the 
DAT1 line into the high impedance state.

When in 4-bit mode, the SDHC differentiates a data start bit and the interrupt period by checking all four 
data lines are low for the start of new data. In the case of an interrupt, only the DAT1 should have gone 
low. After the last data block is sent, the interrupt period starts as normal after the end of this data block, 
but it ends after the next command with a data block commences, instead of lasting two cycles.

Refer to SDIO Card Specification for further information about SDIO card interrupt.

34.4.4.3 Card Interrupt Handling

When the SDIO bit in the interrupt control register is set to 0, the host controller clears the interrupt request 
to the system interrupt controller. The SDIO Interrupt detection is stopped when this bit is cleared and 
restarted when this bit is set to 1. The host driver should clear the SDIO interrupt enable bit before 
servicing the SDIO interrupt and should set this bit again after all interrupt requests from the card are 
cleared to prevent inadvertent interrupts.

The SDIO Status bit is cleared by resetting the SDIO interrupt. Writing to this bit has effect in 1-bit mode, 
as the host controller detects the SDIO interrupt with or without SD clock (to support wakeup). In 4-bit 
mode, the interrupt signal is sampled during the interrupt period; therefore, some sample delays exist 
between the interrupt signal from the SDIO card and the interrupt to the host system interrupt controller. 
When the SDIO status has been set and the host driver needs to start this interrupt service, the SDIO bit in 
the interrupt control register is set to 0 to clear the SDIO interrupt status latched in the SDHC and to stop 
driving the interrupt signal to the system interrupt controller. The host driver must issue a CMD52 to clear 
the interrupts at the card. After completion of the card interrupt service, the SDIO interrupt enable bit is 
set to 1 and SDHC starts sampling the interrupt signal again. See Figure 34-21 (a) for illustration of the 
SDIO card interrupt scheme and Figure 34-21 (b) for the sequences of software and hardware events 
taking place during card interrupt handling procedure

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-34 Freescale Semiconductor

Figure 34-21. A) Card Interrupt Scheme; B) Card Interrupt Detection and Handling Procedure

34.4.5 Card Insertion and Removal Detection

SDHC uses the DAT3 pin to detect card insertion or removal. To use this feature of the SDHC, chip level 
integration needs to pull-down this pad as a default state. When no card exists on the MMC/SD bus, DAT3 
defaults to a low voltage level. When any card is inserted to or removed from the socket, SDHC detects 
the logic value changes on the DAT3 pin and generates an interrupt. 

Because the mechanism is based on the value of the DAT3 line, only single-card systems can benefit from 
card detection. To avoid conflicts of card insertion/removal detection and the data value changes on DAT3 
due to data transfer, disable the card insertion interrupt when a card is detected in the socket and enableed 
when the card is removed from the socket. The card removal interrupt can only be enabled when no bus 
activity occurs on DAT3.

To avoid false status bit generation during data transfer, the card insertion/removal is masked by 
corresponding interrupt enable bit in INT_CNTR register.

Above all, there are three interrupt sources: card removal interrupt, card insertion interrupt, and SDIO card 
interrupt. All interrupt sources are ORed between the peripheral and the interrupt controller.

Start

Enable card IRQ in Host

Detect and steer card IRQ

Read IRQ Status Register

Disable Card IRQ in Host

Response Error?

Clear Card IRQ in Card

Enable card IRQ in Host

End

Interrogate and service Card IRQ

Yes

No

Command/
Response
HandlingSDIO IRQ Enable

SDIO IRQ Status

SDHC Registers

IRQ Detecting & Steering

SDIO Card
IRQ Routing

Function 0 Function 1

Clear IRQ1Clear IRQ0

IRQ0 IRQ1

SD Host

SDIO Card

IP Bus IRQ to CPU

B)A)

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-35

NOTE
Send a command (CMD42 for SDMem or CMD52 for SDIO) to the card to 
disable the card internal pull-up resistor after card detection and 
identification. Because the SD protocol requires the DAT line must be 
pulled up for data transfer, disable the host side of the DAT3 pull-down 
feature and configure it as pull-up. If the card internal pull-up resistor is 
disabled during this, the card removal interrupt can not be detected through 
DAT3.

34.4.6 Power Management

When there is no operation between SDHC and the card through SD bus, disable the ipg_clk and 
SDHC_CLK in chip level clock control module to save power. When you need to use SDHC to 
communicate with the card, enable the clock.

34.4.7 System Clock Controller

There is one clock divider and one clock prescaler in SDHC to divide the high frequency input clock 
SDHC_CLK to a lower frequency clock, which most of the SDHC logic can use. See Figure 34-22 for 
details about clocks used in SDHC. The input clock first goes through a 4-bit divider and then a 12-bit 
prescaler to generate a clock named CLK_20M. This clock is used internally by SDHC and generates the 
MMC_SD_CLK. The MMC_SD_CLK to the card has the same clock frequency as CLK_20M. 
CLK_20M is derived from the CLK_DIV by using the 12-bit prescaler. The CLK_DIV is derived from the 
input clock SDHC_CLK by using the 4-bit divider. SDHC clock rate register controls the divide rate for 
both the divider and the prescaler. Refer to Section 34.3.2.3, “SDHC Clock Rate Register (CLK_RATE),” 
for the clock rate register information.

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-36 Freescale Semiconductor

 

Figure 34-22. Clock Used in SDHC

To get the maximum power-saving during the operation, the SDHC bus clock pauses and resumes 
according to the SDHC status. For example, when FIFO is full during the card read operation, the bus clock 
is stopped if no further data is written to FIFO by card. It is resumed when user (DMA) clears FIFO empty 
status; similarly, there are other conditions where SDHC stops the clock to save power.

The controller controls the rate of the host main clock and checks whether it is on or off. The clock is turned 
off by setting the bit[0] of the STR_STP_CLK register and is turned on by setting the bit[1] of the 
STR_STP_CLK. To change the clock rate, the application has to write a new value in the CLK_RATE 
register.

34.5 Initialization Information
The host controls all communication between system and cards. Also, the host sends commands of two 
types: broadcast and addressed (point-to-point) commands.

Broadcast commands are intended for all cards, such as: Go_Idle_State, Send_Op_Cond, All_send_CID, 
and Set_relative_Addr. In broadcast mode, all cards are in the open-drain mode to avoid bus contention. 
If the socket supports only one card, the broadcast command is similar as the point-to-point command.

After the broadcast command Set_relative_Addr is issued, all cards enter standby mode. Addressed type 
commands are used from this point on. In this mode, the CMD/DAT I/O returns to push-pull mode to have 
the driving capability for maximum frequency operation.

As mentioned in the above section, MMC and SD are similar products. Other than the 4x bandwidth, they 
are programmed similarly. The following example shows how to initialize and perform content access and 
content protection on the cards.

SDHC_CLK

 Clock prescaler 

DMA

Handler

FIFO

DAT

Interrupt

CMD
Interrupter

Memory

Controller

Register
Table

CLK_DIV

Gating

MMC_SD_CLK

CLK_20M

CLOCK DIVIDER

DAT/CMD Transceiver

IPG_CLK
IPG_CLK_S

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-37

To improve the readability, use a program-like function for the example.

34.5.1 MMC_SD_CLK Control

STR_STP_CLK register controls the MMC_SD_CLK clock to the card. The clock should be supplied to 
the card for:

• Submitting command to card and receiving response
• Transferring data between SDHC and the card
• Detecting an interrupt from a SD card in 4-bit

The steps below show how to start the MMC_SD_CLK to card:
1. Write 0x2 to STR_STP_CLK register.
2. Poll STATUS[8], wait until clock starts.

The steps below show how to stop MMC_SD_CLK to card (it is not recommended to stop clock by 
software):

1. Write 0x1 to STR_STP_CLK register.
2. Poll STATUS[8], wait until clock is stopped.

NOTE
Do not change the ipg_clk_gating_disable and SDHC_CLK_gating_disable 
bits when start and stop mmcclk.

34.5.2 Command Submit – Response Receive Basic Operation

Below is the program flow to submit a command to the card(s). Targeted command is <command_no>. 
Corresponding argument is <arg_no>. The command configuration required is <cmd_dat_cont>. The 
interrupt control used in the user program is <int_Control_value>.

The steps below show how to submit a command to the card:
1. Start MMC_SD_CLK if it is stopped.
2. Enable END_CMD_RESP interrupt by writing 0 to INT_CNTR[2].
3. Set command number to CMD register.
4. Set the command argument to ARG register.
5. Set the appropriate value to Command Data control register (CMD_DAT_CONT).
6. Wait for the command response end interrupt and check for the response CRC/time-out status.
7. Read the response FIFO to check the response. Read three or eight times from the response FIFO 

access register, depending upon whether the response is 48-bit or 136-bit. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-38 Freescale Semiconductor

This following is a function defining command submission. This function is used in the examples in the 
following sub-section:

send_cmd_wait_resp(command_no, arg, cmd_dat_cont, int_cntr_value)
{
write_reg(COMMAND, <command_no>); // 1. configure the CMD
write_reg(ARG, <arg_no>); // 2. configure the command argument
write_reg(CMD_DAT_CONT, <cmd_dat_cont>); // 3. configure the command data 
control register, writing to this register triggers SDHC send command to the 
card.
while(irq_status); // 4. Wait interrupt (End Command Response)
Write_reg(INT_CNTR, <int_cntr_value>); // 5.  irq request from SDHC
read_reg(STATUS); // 6. Check whether the interrupt is an End_CMD_RES or a 
response time out or a CRC error.
read_reg(RES_FIFO); // 7. read the response FIFO to determine if the command has 
a response
}

34.5.3 Card Identification Mode

When a card is inserted to the socket or the card was reset by the host, the host needs to validate the 
operation voltage range, identify the cards, and request the cards to publish the relative card address (RCA) 
or to set the RCA for the MMC cards. All data communication in the card identification mode uses the 
command line (CMD) only.

34.5.3.1 Card Detect

See Figure 34-23 for a flow diagram showing the card detection using the host controller.
• Write 1 to INT_CNTR[16] to enable card detection interrupt
• Write 0 to INT_CNTR[17] to disable card detection interrupt

Figure 34-23. Flow Diagram for Card Detection

Enable Card Detection IRQ

Wait SDHC Interrupt 

Check Status[15]

Yes, Card Present

No card Present

Write INT_Mask to Disable 

Card Detection IRQ

Voltage Validation

(1)

(2)

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-39

34.5.3.2 Reset

There are three types of reset:
• Hardware reset (Card and Host) driven by POR (power on reset).
• Software reset (Host Only) proceeds by the write operation on register STR_STP_CLK. Follow 

the recommended sequence as specified in Section 34.3.2.3, “SDHC Clock Rate Register 
(CLK_RATE).” The reset can reset all the SDHC registers, but does not reset the card. The card 
reset is through CMD0. After you apply software reset to SDHC, it should also use CMD0 to reset 
the card in case the card is in an unknown state. Write 0x2 to register STR_STP_CLK and poll 
status[8] to wait clock is on. It is highly recommended to start clock here and leave the clock 
unchanged afterwards. It depends on the specific requirement whether clock automatical gating 
feature should be enabled (bits 15 and 14 of STR_STP_CLK register).

• Card is reset (Card Only). The command, Go_Idle_State, CMD0 is the software reset command for 
the MMC and SD memory card. This sets each card into idle state regardless of the current card 
state. When used as a SD I/O Card, CMD52 writes IO reset in CCCR. The cards are initialized with 
a default relative card address (RCA=0x0000) and with a default driver stage register setting 
(lowest speed, highest driving current capability).

After the card is reset, the host needs to validate the voltage range of the card. See Figure 34-24 for the 
software flow to reset both SDHC and the card.

Figure 34-24. Flow Chart for Reset of SDHC and SD I/O Card

software_reset()

{

write_reg(STR_STP_CLK, 0x8);

write_reg(STR_STP_CLK, 0x9);// 1. reset the SDHC host;

write_reg(STR_STP_CLK, 0x1);

Write 0x08 to STR_STP_CLK

Write 0x9 to STR_STP_CLK

Write 0x1 to STR_STP_CLK 8 Times

Send CMD0/CMD52 to Card to Reset Card

Voltage Validation

Write 0x3F to CLK_RATE Register

 Set bit 1 of STR_STP_CLK and wait clock on

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-40 Freescale Semiconductor

write_reg(STR_STP_CLK, 0x1);

write_reg(STR_STP_CLK, 0x1);

write_reg(STR_STP_CLK, 0x1);

write_reg(STR_STP_CLK, 0x1);

write_reg(STR_STP_CLK, 0x1);

write_reg(STR_STP_CLK, 0x1);

write_reg(STR_STP_CLK, 0x1);// 2. write 0x1 to STR_STP_CLK 8 times;

write_reg(STR_STP_CLK, 0x2); // 3. write 0x2 to STR_STP_CLK to start clock;

while (!STATUS[8]); // 4. wait clock on

write_reg(CLK_RATE, 0x3F);  // 5. Set the lowest clock for initialization

write_reg(READ_TO, 0x2DB4); // 6. set READ timeout register

send_cmd_wait_resp(CMD_GO_IDLE_STATE, 0x0,0x80, 0x40); //7. reset the card with CMD0

}

34.5.3.3 Voltage Validation

All cards are able to establish communication with the host using any operation voltage in the allowed 
voltage range specified in the standard. However, the supported minimum and maximum voltages are 
defined in the operation conditions register (OCR) and may not cover the whole range. Cards that store the 
CID and CSD data in the preload memory can only communicate this information under data transfer Vdd 
conditions. If the host and card have non-compatible voltage ranges, the card cannot complete the 
identification cycle nor send CSD data.

Therefore, a special command Send_Op_Cont (CMD1 for MMC), a SD_Send_Op_Cont (CMD41 for SD 
Memory), and a IO_Send_Op_Cont (CMD5 for SD I/O) provide a mechanism to identify and reject cards 
which do not match the voltage range desired by the host. The host accomplishes this by sending the 
required voltage window as the operand of this command. Cards which cannot perform data transfer in the 
specified range must disable themselves from further bus operations and go into the inactive state. By 
omitting voltage range in the command, the host can query each card and determine the common voltage 
range before sending out-of-range cards into inactive state. This query should be used if the host can select 
a common voltage range or if a notification to the application of non-usable cards in the stack is desired.

The following steps show how to perform voltage validation when a card is inserted:
voltage_validation(voltage_range_arguement)
{
send_cmd_wait_resp(IO_SEND_OP_COND, 0x0, 0x04, 0x40); // CMD5, send SDIO operation 
voltage, command argument is zero
if(End Command Response true & No. of IO functions> 0)// it is SDIO and have IO function
{IORDY = 0;
while(!(IORDY in I/O ORC response)) {// set voltage range for each IO
send_cmd_wait_resp(IO_SEND_OP_COND, voltage_range_arguement, 0x04, 0x40);}
if(Memory Present flag true)
Card = combo; // that is, SDIO + SD Memory, need to set operation voltage to memory 
portion as well
send_cmd_wait_resp(APP_CMD, 0x0, 0x01, 0x40);// CMD55, Application Command follows
send_cmd_wait_resp(SD_APP_OP_COND, voltage_range_arguement, 0x01, 0x40);//ACMD41
else
Card = sdio;

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-41

// if No response to CMD5 IO_SEND_OP_COND or No. of IO Function is zero in response
else// the card should be SD or MMC
{send_cmd_wait_resp(APP_CMD, 0x0, 0x01, 0x40);// CMD55, Application Command follows
if(End Command Response true and no response timeout)
{send_cmd_wait_resp(SD_APP_OP_COND, voltage_range_arguement, 0x01, 0x40); // ACMD41, SD 
card found
Card = sd;
}
else // the card have no response to APP_CMD, it is not SD card
{send_cmd_wait_resp(SEND_OP_COND, voltage_range_arguement, 0x01, 0x40); //CMD1, MMC card 
found
if(End Command Response true and no response timeout)
{Card = mmc;}
else{ Card = No card or failed contact;}

}
}

34.5.3.4 Card Registry

Card registry on MMC and SD cards is different.

For SD Card, the identification process starts at clock rate Fod, initialization clock frequency defined by 
the card spec, (below 400 kHz for most of the card) as defined by the card spec. After the bus is activated, 
the host requests the card to send their valid operation conditions. The response to ACMD41 is the 
operation condition register of the card. The same command is sent to all of the new cards in the system. 
Incompatible cards are put into inactive state. The host then issues the command, All_Send_CID (CMD2), 
to each card to get its unique card identification (CID) number. Cards currently unidentified (in ready state) 
send their CID number as the response. After the CID is sent by the card, the card goes into the 
identification state. 

The host then issues Send_Relative_Addr (CMD3), requesting the card to publish a new relative card 
address (RCA) shorter than CID. This addresses the card for future data transfer operations. After the RCA 
is received, the card state changes to the stand-by state. At this point, if the host wants the card to have an 
alternative RCA number, it may ask the card to publish a new number by sending another 
Send_Relative_Addr command to the card. The last published RCA is the actual RCA of the card.

The host repeats the identification process with CMD2 and CMD3 for each card in the system. 

For MMC operation, the host starts the card identification process in open-drain mode with the 
identification clock rate Fod. Open drain driver stages on the CMD line allow parallel card operation 
during card identification. After the bus is activated, the host requests the cards to send their valid 
operation conditions (CMD1). The response to CMD1 is a wired operation on the condition restrictions of 
all cards in the system. Incompatible cards are sent into inactive state. The host then issues the broadcast 
command All_Send_CID (CMD2), asking all cards for their unique card identification (CID) number. All 
unidentified cards (those in ready state) simultaneously start sending their CID numbers serially, while 
bit-wise monitoring their outgoing bitstream. Those cards, whose outgoing CID bits do not match the 
corresponding bits on the command line in any of the bit periods, stop sending their CID immediately and 
must wait for the next identification cycle. Because CID is unique for each card, only one card can 
successfully send its full CID to the host. This card then goes into identification state. Thereafter, the host 
issues Set_Relative_Addr (CMD3) to assign to this card a relative card address (RCA). After the RCA is 

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-42 Freescale Semiconductor

received, the card state changes to stand-by state, and the card does not react to further identification 
cycles. Its output switches from open-drain to push-pull. The host repeats the process, CMD2 and CMD3, 
until the host receives time-out condition to recognize completion of the identification process.

card_registry()
{
while (ResponseTO from STATUS){
if(card==combo or sdio)
{
send_cmd_wait_resp(SET_RELATIVE_ADDR, 0x00, 0x01, 0x40);   //card publish the RCA in 
response
rca = SDIO_RCA = address from response FIFO;
}
else if(card==sd)
{
send_cmd_wait_resp(ALL_SEND_CID, 0x00, 0x02, 0x40); 
send_cmd_wait_resp(SET_RELATIVE_ADDR, 0x00, 0x01, 0x40); //card publish the RCA in 
response
rca = SD_RCA = address from response FIFO;
}
else if(card==mmc)
{
send_cmd_wait_resp(ALL_SEND_CID, 0x00, 0x00, 0x02, 0x40); 
rca = MMC_RCA = 0x1;
send_cmd_wait_resp(SET_RELATIVE_ADDR, MMC_RCA_arguement, 0x01, 0x40); 
}
else
exit due to card not identified;
}
send_cmd_wait_resp(SELECT_CARD, RCA_arguement, 0x41, 0x40); 
}

34.5.4 Card Access

34.5.4.1 Block Access — Block Write & Block Read

34.5.4.1.1 Block Write

During block write, (CMD24 - 27) one or more blocks of data are transferred from the host to the card with 
a CRC appended to the end of each block by the host. A card supporting block write can always accept a 
block of data defined by WRITE_BL_LEN. If the CRC fails, the card indicates the failure on the DAT line 
(see below); the transferred data is discarded and not written, and all further transmitted blocks (in multiple 
block write mode) are ignored.

If the host uses partial blocks with accumulated length not block aligned and block misalignment is not 
allowed (CSD parameter WRITE_BLK_MISALIGN is not set), the card shall detect the block 
misalignment error and abort programming before the beginning of the first misaligned block. The card 
sets the ADDRESS_ERROR error bit in the status register, and while ignoring all further data transfer, 
waits in the receive-data-state for a stop command. The write operation is also aborted if the host tries to 
write over a write protected area. In this case, however, the card sets the WP_VIOLATION bit.

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-43

Programming of the CID and CSD registers does not require a previous block length setting. The 
transferred data is also CRC protected. If a part of the CSD or CID register is stored in ROM, this 
unchangeable part must match the corresponding part of the receive buffer. If this match fails, the card 
reports an error and does not change any register contents. Some cards may require unpredictable times to 
write a block of data. After receiving a block of data and completing the CRC check, the card begins 
writing and holds the DAT line low if its write buffer is full and unable to accept new data from a new 
WRITE_BLOCK command. The host may poll the status of the card with a SEND_STATUS command 
(CMD13) at any time, and the card responds with its status. The status bit READY_FOR_DATA indicates 
the card can accept new data or the write process remains in progress. The host may deselect the card by 
issuing CMD7 (to select a different card) which displaces the card into the disconnect state and releases 
the DAT line without interrupting the write operation. When re-selecting the card, it reactivates the busy 
indication by pulling DAT to low if programming remains in progress and the write buffer is unavailable.

The software flow to write to card with DMA enable is:
1. Start MMC_SD_CLK if it is stopped.
2. Check the card status, wait until card is ready for data.
3. For SD/MMC, set the card block length, using SET_BLOCKLEN (CMD16). 
4. Set the SDHC block length register to be same as block length set to the card in Step 3. For SDIO, 

if the CMD53 is in byte mode, the SDHC block length register should be set according to bytes 
count in CMD53; if the CMD53 is in block mode, the SDHC block length register should be set 
according to the block size in CCCR registers. 

5. Set SDHC number block register (NOB), nob is 1 for single block write or CMD53 in byte mode 
for SDIO

6. Disable the buffer ready interrupt, configure the DMA setting and enable the SDHC DMA channel:
— Write 1 to bit[3] of INT_MASK register in SDHC.
— Set DMA destination to be SDHC_Buffer Access register.
— Set DMA destination port size to be 32-bit.
— Set DMA Burst length to be 16 bytes in 1-bit mode or 64 bytes in 4-bit mode.
— Set DMA transfer count to be number of bytes which is a multiple of the 

Block_length(nob*blk_len = total number of bytes).
7. Check the card status and wait until the card is ready for data.
8. Set SDHC CMD register to any of the following:

— CMD24(WRITE_BLOCK), or
— CMD25(WRITE_MULTIPLE_BLOCK), or
— CMD53 in byte mode or block mode

9. Set SDHC CMD Argument register.
10. Set SDHC Command Data Control register.
11. Wait for end command response and check if there any CRC error or timeout error.
12. Wait for DMA done.
13. Check for Write_OP_DONE and check status bit to see if write CRC error occurred.

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-44 Freescale Semiconductor

14. Send STOP_TRANSMISSION command to card if the write command is 
WRITE_MULTIPLE_BLOCK (CMD25).

If the write operation is without DMA, the system needs to write data to the buffer through buffer write 
ready interrupt or by polling the buffer write ready status bit (STATUS[6]: BUF_WR_RDY). For high 
performance, data transfer using DMA is preferred.

34.5.4.1.2 Block Read

For block reads, the basic unit of data transfer is a block whose maximum size is defined in the CSD 
(READ_BL_LEN). If READ_BL_PARTIAL is set, smaller blocks whose starting and ending address are 
entirely contained within one physical block (as defined by READ_BL_LEN) may also be transmitted. A 
CRC is appended to the end of each block, ensuring data transfer integrity. CMD17 
(READ_SINGLE_BLOCK) initiates a block read. After completing the transfer, the card returns to the 
transfer state. CMD18 (READ_MULTIPLE_BLOCK) starts a transfer of several consecutive blocks. 
Blocks are continuously transferred until a stop command is issued. If the host uses partial blocks with 
accumulated length not block aligned and block misalignment is not allowed, the card detects a block 
misalignment at the beginning of the first mis-aligned block, sets the ADDRESS_ERROR error bit in the 
status register, aborts transmission, and waits in the data state for a STOP command.

The software flow to write to card with DMA enable is:
1. Start MMC_SD_CLK if it is stopped.
2. Check the card status and wait until the card is ready for data.
3. For SD/MMC, set the card block length, using SET_BLOCKLEN (CMD16).
4. Set the SDHC block length register to be same as block length set to the card in Step 3.

For SDIO, if the CMD53 is in byte mode, the SDHC block length register should be set according 
to bytes count in CMD53; if the CMD53 is in block mode, the SDHC block length register should 
be set according to the block size in CCCR registers.

5. Set SDHC number block register (NOB) to 1 for single block write or CMD53 in byte mode for 
SDIO.

6. Disable the buffer ready interrupt, configure the DMA setting, and enable the SDHC dma channel:
— Write 0 to bit[4] of INT_CNTR register in SDHC to disable the buffer read ready interrupt.
— Set DMA source to be SDHC_Buffer Access register.
— Set DMA source port size to be 32-bit. 
— Set DMA Burst length to be 16 bytes in 1-bit mode or 64 bytes in 4-bit mode.
— Set DMA transfer count to be number of bytes which is a number of blocks multiple of the 

Block_length(nob*blk_len).
7. Check the card status and wait until the card is ready for data.
8. Set SDHC CMD register to be CMD17(READ_SINGLE_BLOCK) or CMD18 

(READ_MULTIPLE_BLOCK) or CMD53 in byte mode or block mode. 
9. Set SDHC CMD Argument register.
10. Set SDHC Command Data Control register

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

Freescale Semiconductor 34-45

11. Wait for END_CMD_RESP interrupt and check response FIFO, check CRC error and timeout 
error.

12. Wait for DMA done.
13. Check for READ_OP_DONE and check status bit to see if read CRC error occurred.
14. Send STOP_TRANSMISSION command to card if the read command is 

READ_MULTIPLE_BLOCK (CMD18).

If the read transfer operation does not use DMA, the system needs to fetch data out of the data buffer 
through utilizing the buffer read ready interrupt or by polling the buffer read ready status bit (STATUS[7]: 
BUF_READ_RDY). For high performance, data transfer using DMA is preferred.

34.5.5 Switch Card Mode

Switch function command (CMD6) switches or expands memory card functions. Two function groups are 
defined:

• Card access mode - 12.5MB/sec interface speed (default) or 25MB/sec interface speed. 
(highspeed).

• Card command system - Standard command set (default) or eCommerce command set or Vendor 
Specific Command set.

This is a new feature, introduced in SD Specifications Part 1 PHYSICAL LAYER Specification Version 
1.10, so cards compatible with earlier version does not support this feature. Before issuing CMD6 to 
switch-card mode, the host driver checks SD_SPEC field in SCR register to confirm the command is 
supported. Card only accepts CMD6 in transfer state. After selected, all functions only return to the default 
function after a power cycle, CMD6 (Mode 1 operation with Function 0 in each function group) or CMD0. 
Executing a power cycle or issuing CMD0 causes the card to reset to the idle state and all the functions to 
switch back to the default function. On responding to CMD6, the card sends R1 response on the CMD line 
and 512 bits of status on the DAT lines. Therefore, for the host controller, this is like CMD17 for a single 
block read with block size of 64 bytes. The time-out value of this command is also 100ms. If CRC error 
occurs on the status data, the host driver should issue a power cycle. CMD6 function switching period is 
within eight clocks after the end bit of status data. When CMD6 changes the bus behavior, the host can use 
the new functions then.

The software flow to enable high speed mode with DMA enabled is (assume SD_SPEC field is verified):
1. Start MMC_SD_CLK if it is stopped.
2. Check the card status and wait until the card is ready for data.
3. Set the card block length to 64 bytes, using SET_BLOCKLEN (CMD16).
4. Set SDHC number block register (NOB) to 1.
5. Disable the buffer ready interrupt, configure the DMA setting, and enable the SDHC DMA 

channel:
— Write 0 to bit[4] of INT_CNTR register in SDHC to disable the buffer read ready interrupt.
—  Set DMA source to be SDHC_Buffer Access register.
— Set DMA source port size to be 32-bit.

MPC5121e Microcontroller Reference Manual, Rev. 2



Secure Digital Host Controller (SDHC)

34-46 Freescale Semiconductor

— Set DMA burst length to be 16 bytes in 1-bit mode or 64 bytes in 4-bit mode.
— Set DMA transfer count to be 64 bytes.

6. Check the card status and wait until the card is ready for data.
7. Set SDHC CMD register to be CMD6(SWITCH).
8. Set SDHC CMD Argument register to 0xFFFFF1.
9. Set SDHC Command Data Control register.
10.  Wait for END_CMD_RESP interrupt and check response FIFO, check CRC error and timeout 

error.
11.  Wait for DMA done.
12.  Check for READ_OP_DONE and check status bit to see if read CRC error occurred.
13.  Check if bit 401 of received 512 bits is 1 to confirm high speed mode is supported.
14.  Repeat steps 6~12 except in step 8, set CMD Argument as 0x80FFFFF1
15.  Check if bits 379~376 are 4’b0001 of received 512 bits to confirm high speed mode is enabled.

 Change clock to about 50 MHz for high speed mode. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 35-1

Chapter 35  
Software Watchdog Timer (WDT)

35.1 Introduction
The Software Watchdog Timer (WDT) provides a method to recover from conditions caused by improper 
software operation. For example, software may become lost due to a programming error or an electrical 
problem. Also, the software may become trapped in a loop with no controlled exit. 

The WDT is a down-counter that is periodically reset to a maximum count by writing a special service 
sequence to the software watchdog service register (SWSRR). If the WDT decrements to 0x0000, a 
software reset or a machine check processor exception (MCP) is generated. The WDT is enabled or 
disabled at the release of reset, depending upon the state of the software watchdog enable bit (SWEN) of 
the reset configuration word high register, whose value is determined by the state of an external 
configuration pin. The SWEN bit of the reset configuration word high register is generally set as 1, so the 
WDT is default enabled at the release of reset. The WDT can be disabled by setting the SWEN bit to 0. 
The SWEN bit is in the watchdog control register (SWCRR).

35.1.1 Features

Key features of the WDT include the following:
• 16-bit prescaler and 16-bit down-counter
• Selectable range for timeout period
• Timeout delay of approximately 128 seconds maximum with a 33 MHz system XTAL clock1

35.1.2 Modes of Operation

The WDT unit can operate in the following modes:
• WDT enable/disable mode: 

If the WDT is not needed, the user can disable it with software after a system reset. When it is 
disabled, the watchdog counter and prescaler counter are held in a stopped state.

• WDT output reset/interrupt mode:
Without periodic software servicing, the WDT times out and issues a reset or a nonmaskable MCP 
interrupt

• WDT prescaled/non-prescaled clock mode:
The WDT counter clock can be prescaled by programming the SWCRR[SWPR] bit that controls 
the divide-by-65,536 of the WDT prescaler counter.

1. The system XTAL clock can be different from 33 MHz.

MPC5121e Microcontroller Reference Manual, Rev. 2



Software Watchdog Timer (WDT)

35-2 Freescale Semiconductor

35.2 Memory Map/Register Definition

The WDT programmable register map occupies 16 bytes of memory-mapped space. Reading undefined 
portions of the memory map returns all zeros; writing has no effect.

It is recommended that user software not access undefined or reserved locations in the programmable 
register map for the WDT or any other module. Some locations in the programmable register map may be 
designated as undefined or reserved, but in fact, may contain non-user mode registers used for testing or 
for modifying the operation of the module.

All WDT registers are 16- or 32-bits wide, located on 16-bit address boundaries, and should be accessed 
as 16-bit or 32-bit quantities. That is, 16-bit wide registers should be addressed using half-word accesses, 
and 32-bit wide registers should be addressed using word accesses. All addresses used in this chapter are 
offsets from the WDT base address, as defined in Section 2.2, “Memory Map and Register Definition”.

35.2.1 Memory Map

A memory map of the WDT is shown in Table 35-1.

35.2.2 Register Descriptions

35.2.2.1 Software Watchdog Control Register (SWCRR)

The software watchdog control register (SWCRR), shown in Figure 35-1, controls the software watchdog 
period and configures WDT operation. The SWCRR can be read at any time but can be only written once 
after system reset.

Table 35-1. WDT Register Address Map

Offset Register Access Section/ Page

0x0 – 0x3 Reserved — —

0x4 Software watchdog control register (SWCRR) R/W 35.2.2.1/35-2

0x8 Software watchdog count register (SWCNR) R 35.2.2.2/35-4

0xC – 0xD Reserved — —

0xE Software watchdog service register (SWSRR) R/W 35.2.2.3/35-5

MPC5121e Microcontroller Reference Manual, Rev. 2



Software Watchdog Timer (WDT)

Freescale Semiconductor 35-3

Offset 0x4Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
SWTC

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0
SWEN SWRI SWPR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 S1 1 1

1. Special—SWCRR[SWEN] reset value directly depends on RCWH[SWEN] (reset configuration word high).

Figure 35-1. Software Watchdog Control Register (SWCRR)

Table 35-2. SWCRR Field Descriptions

Field Description

SWTC Software watchdog time count. The SWTC field contains the modulus that is reloaded into the watchdog 
counter by the special service sequence. When a new value is loaded into SWCRR[SWTC], WDT is not 
updated until the special service sequence is written to the SWSRR register. If SWCRR[SWEN] is loaded 
with 0, the modulus counter does not count. The new value is also used at the next and all subsequent 
reloads. Reading the SWCRR register returns the value in the SWCRR. Reset initializes the SWCRR[SWTC] 
field to 0xFFFF.
Note: The prescaler counter is reset each time the contents of the SWTC field is loaded into the watchdog 

counter due to executing a special service sequence or by executing a system reset.

SWEN Software watchdog enable. The SWCRR[SWEN] bit enables the WDT. This bit can be cleared by software 
after a system reset to disable the WDT. When the timer is disabled, the watchdog counter and prescaler 
counter are held in a stopped state.
0 WDT disabled
1 WDT enabled

SWRI Software watchdog reset/interrupt select. This bit determines whether a WDT time out causes a hardware 
reset or machine check interrupt to the core.
0  WDT causes an MCP interrupt to the core
1  WDT causes a hardware reset 

SWPR Software watchdog counter prescale bit. Controls the divide-by-65,536 WDT counter prescaler.
0  The WDT counter is not prescaled
1  The WDT counter clock is prescaled

MPC5121e Microcontroller Reference Manual, Rev. 2



Software Watchdog Timer (WDT)

35-4 Freescale Semiconductor

35.2.2.2 Software Watchdog Count Register (SWCNR)

The software watchdog count register (SWCNR), shown in Figure 35-2, provides visibility to the 
watchdog counter value. SWCNR is a read-only register. Writing to the SWCNR register has no effect and 
terminates without transfer error exception.

Offset 0x08Access: User read only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R SWCN

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

= Unimplemented or Reserved

Figure 35-2. Software Watchdog Count Register (SWCNR)

Table 35-3. SWCNR Field Descriptions

Field Description

SWCN Software watchdog count. The read-only SWCNR[SWCN] field reflects the current value in the watchdog 
counter. Writing to the SWCNR register has no effect, and write cycles are terminated normally. Reset 
initializes the SWCNR[SWCN] field to 0xFFFF.
Note: Reading the 16 LS bits of 32-bit SWCNR register with two 8-bit reads is not guaranteed to return a 

coherent value. Always use a half-word or word access to read this register.

MPC5121e Microcontroller Reference Manual, Rev. 2



Software Watchdog Timer (WDT)

Freescale Semiconductor 35-5

35.2.2.3 Software Watchdog Service Register (SWSRR)

The software watchdog service register (SWSRR) is shown in Figure 35-3. After the WDT is enabled, it 
must be periodically reset. This is accomplished in applications software by writing the special service 
sequence of 0x556C followed by 0xAA39 to the SWSRR register before the watchdog counter decrements 
to 0x0000. If the SWSRR register is not serviced before the timeout, the watchdog timer generates a 
system reset or MCP interrupt.

Both writes must occur before the timeout in the order listed; however, any number of instructions can be 
executed between the two writes. Writing any value other than 0x556C or 0xAA39 to the SWSRR register 
resets the servicing sequence. Both values must be written to keep the watchdog timer from decrementing 
to 0x0000. Reset initializes the SWSRR[WS] field to 0x0000. SWSRR can be written at any time, but 
returns all zeros when read.

35.3 Functional Description

35.3.1 Software Watchdog Timer Unit

In the case where the software becomes trapped in loops with no controlled exit, the MPC5121e platform 
provides the WDT option to prevent system lock. Watchdog timer operations are configured in the 
software watchdog control register (SWCRR).

The WDT is defaultly enabled after reset (if reset configuration RCWHR[SWEN] is active) to cause a 
hardware reset or non-maskable MCP interrupt if the WDT decrements to 0x0000. If the WDT is not 
needed, the user must clear the SWCRR[SWEN] bit to disable it. If used, the WDT requires a special 
service sequence to be executed periodically. Without this periodic servicing, it times out and issues a reset 
or a nonmaskable MCP interrupt, as programmed in SWCRR[SWRI]. After software writes to the SWRI 
bit, the state of SWEN cannot be changed.

Offset 0xEAccess: User write only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W WS

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-3. Software Watchdog Service Register (SWSRR)

Table 35-4. SWSRR Field Descriptions

Field Description

WS Software watchdog service. The user must write 0x556C followed by 0xAA39 to this register to prevent WDT 
timeout. SWSRR[WS] can be written at any time, but returns all zeros when read.

MPC5121e Microcontroller Reference Manual, Rev. 2



Software Watchdog Timer (WDT)

35-6 Freescale Semiconductor

The WDT service sequence consists of the following two steps: 
1. Write 0x556C to the SWSRR
2. Write 0xAA39 to SWSRR

This special service sequence reloads the WDT, and the timing process begins again. If a value other than 
0x556C or 0xAA39 is written to the SWSRR, the entire sequence must start over. Although the writes must 
occur in the correct order before a timeout, any number of instructions can be executed between the writes. 
This allows interrupts and exceptions to occur between the two writes when necessary. Figure 35-4 shows 
a state diagram for the WDT. 

Figure 35-4. Software Watchdog Timer Service State Diagram

Although most software disciplines permit or even encourage the watchdog concept, some systems require 
a selection of timeout periods. For this reason, the WDT must provide a selectable range for the timeout 
period. Figure 35-5 shows how to manage this need. 

Figure 35-5. Software Watchdog Timer Functional Block Diagram

0x556C/Don’t reload
Reset

0xAA39/Reload

State 0
Waiting for 0x556C

State 1
Waiting for 0xAA39

Not 0xAA39/Don’t reloadNot 0x556C/
Don’t reload

TimeoutSWCNR

Reload

SWCRR[SWEN]

System XTAL
Clock

SWCRR[SWPR]

65,536
Divider

Clock
Disable

SWSRR[WS]

SWCRR[SWTC]

Service

SWCRR[SWRI]

16-Bit Decrementer
Event
Logic

Reset 
or MCP

MPC5121e Microcontroller Reference Manual, Rev. 2



Software Watchdog Timer (WDT)

Freescale Semiconductor 35-7

In Figure 35-5, the range is determined by the value of the SWCRR[SWTC] field. The value in SWTC is 
loaded into a 16-bit decrementer clocked by the system XTAL clock. An additional divide-by-65,536 
prescaler value is used when needed.

The decrementer begins counting when loaded with a value from SWTC. After the timer reaches 0x000, 
a software watchdog expiration request is issued to the reset or MCP control logic. Upon reset, the SWTC 
field is set to the maximum value and is again loaded into the software watchdog count register (SWCRR), 
starting the process over. When a new value is loaded into SWTC, the WDT is not updated until the 
servicing sequence is written to the SWSRR. If SWCRR[SWEN] is loaded with 0, the modulus counter 
does not count.

35.3.2 Modes of Operation

The WDT unit can operate in the following modes:
• WDT enable/disable mode

If the WDT is not needed, the user can disable it. The SWCRR[SWEN] bit enables the watchdog 
timer. It should be cleared by software after a system reset to disable the WDT. When it is disabled, 
the watchdog counter and prescaler counter are held in a stopped state.
— WDT enable mode (SWCRR[SWEN] = 1)

This is the default value after soft reset.
— WDT disable mode (SWCRR[SWEN] = 0)

If the WDT is not needed, the user must clear SWCRR[SWEN] to disable it.
• WDT reset/interrupt output mode

Without periodic software servicing, the WDT times out and issues a reset or a nonmaskable MCP 
interrupt.
According to SWCRR[SWRI] programming, WDT causes a hardware reset or MCP interrupt to 
the core.
— Reset mode (SWCRR[SWRI] = 1)

WDT causes a hardware reset.
— Interrupt mode (SWCRR[SWRI] = 0)

WDT causes an MCP interrupt to the core.
• WDT prescaled/non-prescaled clock mode

The WDT counter clock can be prescaled by programming the SWCRR[SWPR] bit that controls 
the divide-by-65,536 of the WDT counter.
— Prescale mode (CRR[SWPR] = 1)

The WDT clock is prescaled.
— Non-prescale mode (CRR[SWPR] = 0)

The WDT clock is not prescaled.

MPC5121e Microcontroller Reference Manual, Rev. 2



Software Watchdog Timer (WDT)

35-8 Freescale Semiconductor

35.3.2.1 WDT Enable/Disable Mode 

From the release of RESET, the WDT is defaultly enabled(if reset configuration RCWHR[SWEN] is 
active). If the WDT is not needed, the user can disable it by clearing the SWCRR[SWEN] bit. The 
SWCRR[SWEN] bit is cleared by the software after a system reset to disable the WDT. When it is 
disabled, the watchdog counter and prescaler counter are held in a stopped state. The SWCRR register is 
a write-once register; therefore, only software can disable the WDT. After it is disabled, it can only be 
re-enabled by resetting the system.

If the WDT is not needed, the user must clear the SWCRR[SWEN] bit to disable it.

35.3.2.2 WDT Reset/Interrupt Output Mode

Without periodic software servicing, the WDT times out and issues a reset or a nonmaskable MCP 
interrupt.

If the SWRI bit of the SWCRR is clear when the WDT times out, an MCP interrupt to the CPU core is 
created. If the SWRI bit is set when the WDT times out, a hardware reset is created.

35.3.2.3 WDT Prescaled/Non-Prescaled Clock Mode

The WDT counter clock can be prescaled by 1 or 65,536, depending up the setting of the prescale bit of 
the SWCRR.

Prescale mode (SWCRR[SWPR] = 1 — The WDT counter clock uses a prescaler of 65,536.
Non-prescale mode (SWCRR[SWPR] = 0) — The WDT counter clock uses a prescaler of 1.

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 36-1

Chapter 36  
Sony/Philips Digital Interface (SPDIF)

36.1 Introduction 
The Sony/Philips Digital Interface (SPDIF) audio module is a stereo transceiver that allows the 
MPC5121E to receive and transmit digital audio over it. The MPC5121E provides a single SPDIF receiver 
with one input, and one SPDIF transmitter with one output. The SPDIF transceiver allows the handling of 
both SPDIF channel status (CS) and User (U) data and bows a frequency measurement block that exists to 
allow precise measurement of an incoming sampling frequency.

Figure 36-1 displays a block diagram of the SPDIF transceiver (both receiver and transmitter) data paths 
and interface. 

Figure 36-1. SPDIF Transceiver Data Interface Block Diagram

SPDIF
RECEIVER

BLOCK

SPDIF
TRANSMITTER

BLOCK

SPDIFIN

SPDIFOUT

SPDIFOUT2

SPDIF
RCV
FIFO

SPDIF
XMT
FIFO

RCV ”CS” REGISTER_h

RCV ”CS” REGISTER_l

RCV ”U” REGISTER

RCV ”Q” REGISTER

XMT ”CS” REGISTER_h

XMT ”CS” REGISTER_l

XMT ”U” REGISTER

XMT ”Q” REGISTER

IP Bus

SPDIF OFF

SPDIFOUT1
SELECT

STCLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-2 Freescale Semiconductor

36.1.1 Features
• SPDIF Receiver

— Single channel receiver
— Input sample rate measurement
— 32kHz, 44.1kHz, 48kHz, 64kHz, 88.2kHz, and 96kHz support
— CS and U bit Recovery

• SPDIF Transmitter
— Single SPDIF Transmitter
— One SPDIF output
— CD Subcode Support
— C and U bit Support

• SPDIF Receiver to SPDIF Transmitter Bypass Mode

36.2 External Signal Description

36.2.1 Pin Signal Descriptions 

Table 36-1 displays the properties of SPDIF external pins signals.

36.2.2 Detailed Signal Descriptions

contains the detailed descriptions of SPDIF external pins signals.

Table 36-1. Signal Properties

Name Function I/O Reset

SPDIFOUT SPDIF Output, sends audio and non-audio data O 0

SPDIFIN SPDIF Input, receives audio and non-audio data I —

STCLK SPDIF transmit clock input I —

Table 36-2. Detailed Signal Descriptions

Signal Description

SPDIFOUT SPDIFOUT sends audio and non-audio data in the IEC958 formats in a biphase mark format. The output signal 
is unbalanced, but may support consumer digital transmission formats. Data sent from the SPDIFOUT pin may 
be generated from either the SPDIF transmitter or redirected from any of the SPDIF input pins (SPDIFIN) as 
selected by the Txsel field of the EBU_ConfigReg register. The field description of EBU_ConfigReg is shown 
in Table 36-4.

SPDIFIN SPDIFIN is used for receiving audio and non-audio data in the IEC958 formats in a biphase mark format.

STCLK SPDIF transmit clock input pin. After frequency divided by the factor TxClk_DF field in Tx_Div_Reg register, it 
is put into use as the EBU_OutClock to transmit SPDIF output. The field description of Tx_Div_Reg is shown 
in Table 36-22.

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

Freescale Semiconductor 36-3

36.3 Memory Map and Register Definition
Table 36-3 displays the SPDIF memory-mapped 32-bit registers, described in Section 36.3.1, “Register 
Descriptions”. The bit 0 is MSB, bit 31 is LSB.

Table 36-3. SPDIF Memory Map

Address
SPDIF_BAS+

Access Name Description Section/Page

0x00 R/W EBU_ConfigReg (SCR) IEC958 configuration register 36.3.1.1/36-4

0x04 R/W CDTEXT_Control (SRCD) CDText configuration register 36.3.1.2/36-6

0x08 R/W PhaseConfig (SRPC) FreqMeas configuration register 36.3.1.3/36-7

0x0C R/W InterruptEn (SIE) Interrupt enable register 36.3.1.4.1/36-
8

0x18 R-Stat
W-Clear

InterruptStat/Clear (SIS/SIC) Interrupt status/clear register 36.3.1.4.2/36-
10

0x10 R EbuRcvLeft (SRXL) EBU receive data - left channel 36.3.1.5.1/36-
13

0x14 R EbuRcvRight (SRXR) EBU receive data - right channel 36.3.1.5.2/36-
14

0x1C R EBU_RxCChannel_h (SRCSH) EBU receive C channel,
bits [47:24]

36.3.1.5.3/36-
15

0x20 R EBU_RxCChannel_l (SRCSL) EBU receive C channel,
bits [23:0]

36.3.1.5.4/36-
16

0x24 R EBU_RxUChannel (SRU) EBU receive U channel 36.3.1.5.5/36-
17

0x28 R EBU_RxQChannel (SRQ) EBU receive Q channel 36.3.1.5.6/36-
18

0x2C R FreqMeas(SRFM) FreqMeasurement 36.3.1.6/36-18

0x30 W EbuTxLeft (STXL) EBU transmit Left channel 36.3.1.7.1/36-
20

0x34 W EbuTxRight (STXR) EBU transmit Right channel 36.3.1.7.2/36-
21

0x38 R/W EBU_TxCChannelCons_h 
(STCSH)

EBU transmit Cons. C channel, 
bits [47:24]

36.3.1.7.3/36-
22

0x3C R/W EBU_TxCChannelCons_l 
(STCSL)

EBU transmit Cons. C channel, 
bits [23:0]

36.3.1.7.4/36-
23

0x48 R/W EBU_TxUChannel (STU) EBU transmit U channel 36.3.1.7.5/36-
24

0x50 R/W Tx_Div_Reg (STC) Transmit clock control register 36.3.1.8/36-25

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-4 Freescale Semiconductor

36.3.1 Register Descriptions

36.3.1.1 SPDIF Configuration Register

The SPDIF transceiver has a 32-bit control register EBU_ConfigReg as follows.

Offset 0x00Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RcvFIF
O

_Ctrl

RcvFIF
O_Off
/On

RcvFIF
O

_Rst

RcvFIFOFull
_Set

Rcv
Auto
Sync

Tx
Auto
Sync

TxFIFOEmpt
y_Set

TxFIFO_Ctrl
PDIR
_Rcv

PDIR
_TxW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ValCtr TxSel USrc_Sel

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-2. EBU_Config Register (SCR)
(Note that the register is repeated for reference.)

Table 36-4. SCR Field Descriptions

Field Description

RcvFIFO_Ctrl 0: Normal operation
1: Always read zero from rcv data register

RcvFIFO_Off/On 0: SPDIF Rcv FIFO is on
1: SPDIF Rcv FIFO is off. Does not accept data from interface

RcvFIFO_Rst 0: Normal operation
1: Reset register to 1 sample remaining

RcvFIFOFull_Sel 00: Full interrupt if at least 1 sample in FIFO
01: Full interrupt if at least 4 samples in FIFO
10: Full interrupt if at least 8 samples in FIFO
11: Full interrupt if at least 12 samples in FIFO

RcvAutoSync 0: Rcv FIFO auto sync off
1: Rcv FIFO auto sync on

TxAutoSync 0: Tx FIFO auto sync off
1: Tx FIFO auto sync on

TxFIFOEmpty_S
el

00 or 11: Empty interrupt if tx FIFO empty
01: Empty interrupt if less than or equal 4 sample in FIFO
10: Empty interrupt if less than or equal 8 sample in FIFO

TxFIFO_Ctrl 00: Send out digital zero on SPDIF Tx
01: Normal operation
10: Reset to 1 sample remaining
11: Reserved

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

Freescale Semiconductor 36-5

PDIR_Rcv 0: Not to send DMA Request when PDIR1 FIFO full (Full condition is set by RcvFIFOFull_Sel)
1: Send DMA Request when PDIR1 FIFO full

PDIR_Tx 0: Not to send DMA Transmit Request when Transmit FIFO empty (Empty condition is set by 
TxFIFOEmpty_Sel)

1: Send DMA Transmit Request when Transmit FIFO empty

ValCtrl 0: Outgoing Validity always set
1: Outgoing Validity always clear

TxSel 000: Off and output 0
001: Feed-through SPDIFIN
101: Normal operation
Others: Reserved

USrc_Sel
(U channel 

source select)

00: No embeded U channel
01: U channel from SPDIF receive block (CD mode)
10: Reserved
11: U channel from on chip transmitter

Offset 0x00Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RcvFIF
O

_Ctrl

RcvFIF
O_Off
/On

RcvFIF
O

_Rst

RcvFIFOFull
_Set

Rcv
Auto
Sync

Tx
Auto
Sync

TxFIFOEmpt
y_Set

TxFIFO_Ctrl
PDIR
_Rcv

PDIR
_TxW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ValCtr TxSel USrc_Sel

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-2. EBU_Config Register (SCR)
(Note that the register is repeated for reference.)

Table 36-4. SCR Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-6 Freescale Semiconductor

36.3.1.2 CDText Control Register

The CDText_Control register is associated with User channel reception control as follows.

Offset 0x04Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0

PrSetCountW PrSet
En

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 U
Sync
Mode

U
Chan
TxTim

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-3. CDText_Control Register (SRCD)

Table 36-5. SRCD Field Descriptions

Field Description

PrSetEn1

1 On read back, zero is returned.

0: No action on free-running sync position counter

1: Preset free-running sync position counter

PrSetCount Presetting frame counter value for sync position. It could be set the value between 0-97.

USyncMode 0: Non-CD data

1: CD user channel subcode

UChanTxTim 0: Reserved, since no cd-text output interface
1: Timing to reg. UChannelTx from SPDIF output interface

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

Freescale Semiconductor 36-7

36.3.1.3 PhaseConfig Register (SRPC)

The PhaseConfig Register includes the information of coef selection and clock source selection for 
frequency measurement as follows.

Offset 0x08Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 LOCK
CoefSel ClkSrc_Sel

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-4. PhaseConfig Register (SRPC)

Table 36-6. SRPC Field Descriptions

Field Description

LOCK LOCK bit to show the internal DPLL is locked, read only

CoefSel The coeffect value is used to adjust the result of frequency measure. Make the result value more fitter to a 
32-bit register.
CoefSel Coeffect value:

3’b000: 24
3’b001: 16
3’b010: 12
3’b011: 8
3’b100: 6
3’b101: 4
Others: 3

ClkSrc_Sel Clock source selection:
000: if (DPLL Locked) SPDIF_RcvClk else STClk
011: STClk

Others: Reserved

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-8 Freescale Semiconductor

36.3.1.4 Interrupt Registers

The interrupt registers include InterruptEn, InterruptStat and InterruptClear. The InterruptEn register 
provides control over the enabling of interrupts. The InterruptStat register is a read only register providing 
status on interrupt operation. The InterruptClear register is a write only register and is used to clear 
interrupts. 

36.3.1.4.1 InterruptEn Register (SIE)

Offset 0x0CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0
TxUn
Ov

Tx
Resyn

CNew
ValNo
Good

Sym
Err

BitErr
UTx
Em

UTx
Under

UTx_
Next
First

URx
Ful

URx
Ov

QRx
FulW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R QRx
Ov

UQ
Sync

UQ
Err

Pdir
UnOv

Pdir
Resyn

Lock
Loss

TxEm
Pdir
Ful

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-5. InterruptEn Register (SIE)
(Note that the register is repeated for reference.)

Table 36-7. SIE Field Descriptions

Field Description

TxUnOv SPDIF transmit FIFO under/overrun

TxResyn SPDIF transmit FIFO resync

CNew SPDIF receive change in value of control channel

ValNoGood SPDIF validity flag no good

SymErr SPDIF receiver found illegal symbol

BitErr SPDIF receiver found parity bit error

UTxEm UChannel transmit register empty, this bit can’t be cleared with reg. IntClear. To clear it, write to U Tx reg.

UTxUnder UChannel transmit register underrun

UTx_NextFirst UChannel transmit register next byte is first, this bit can’t be cleared with reg. IntClear. To clear it, write to U 
Tx reg.

URxFul UChannel receive register full, this bit can’t be cleared with reg. IntClear. To clear it, read from U Rcv reg.

URxOv UChannel receive register overrun

QRxFul QChannel receive register full, this bit can’t be cleared with reg. IntClear. To clear it, read from Q Rcv reg.

QRxOV QChannel receive register overrun

UQSync U/Q Channel sync found

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

Freescale Semiconductor 36-9

UQErr U/Q Channel framing error

PdirUnOv Processor data input underrun/overrun

PdirResyn Processor data input resync

LockLoss SPDIF receiver loss of lock

TxEm SPDIF transmit FIFO empty, this bit can’t be cleared with reg. IntClear. To clear it, write to Tx FIFO.

PdirFul Processor data input full, this bit can’t be cleared with reg. IntClear. To clear it, read from PDIR FIFO.

Offset 0x0CAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0
TxUn
Ov

Tx
Resyn

CNew
ValNo
Good

Sym
Err

BitErr
UTx
Em

UTx
Under

UTx_
Next
First

URx
Ful

URx
Ov

QRx
FulW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R QRx
Ov

UQ
Sync

UQ
Err

Pdir
UnOv

Pdir
Resyn

Lock
Loss

TxEm
Pdir
Ful

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-5. InterruptEn Register (SIE)
(Note that the register is repeated for reference.)

Table 36-7. SIE Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-10 Freescale Semiconductor

36.3.1.4.2 InterruptStat Register (SIS)

Offset 0x18Access: User read

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
0 0 0 0

TxUn
Ov

Tx
Resyn

CNew
ValNo
Good

Sym
Err

BitErr
UTx
Em

UTx
Under

UTx_
Next
First

URx
Ful

URx
Ov

QRx
Ful

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R QRx
Ov

UQ
Sync

UQ
Err

Pdir
UnOv

Pdir
Resyn

Lock
Loss

TxEm
Pdir
Ful

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-6. InterruptStat Register (SIS)

Table 36-8. SIS Field Descriptions

Field Description

TxUnOv SPDIF transmit FIFO under/overrun

TxResyn SPDIF transmit FIFO resync

CNew SPDIF receive change in value of control channel

ValNoGood SPDIF validity flag no good

SymErr SPDIF receiver found illegal symbol

BitErr SPDIF receiver found parity bit error

UTxEm UChannel transmit register empty, this bit can’t be cleared with reg. IntClear. To clear it, write to U Tx reg.

UTxUnder UChannel transmit register underrun

UTx_NextFirst UChannel transmit register next byte is first, this bit can’t be cleared with reg. IntClear. To clear it, write to U 
Tx reg.

URxFul UChannel receive register full, this bit can’t be cleared with reg. IntClear. To clear it, read from U Rcv reg.

URxOv UChannel receive register overrun

QRxFul QChannel receive register full, this bit can’t be cleared with reg. IntClear. To clear it, read from Q Rcv reg.

QRxOV QChannel receive register overrun

UQSync U/Q Channel sync found

UQErr U/Q Channel framing error

PdirUnOv Processor data input underrun/overrun

PdirResyn Processor data input resync

LockLoss SPDIF receiver loss of lock

TxEm SPDIF transmit FIFO empty, this bit can’t be cleared with reg. IntClear. To clear it, write to Tx FIFO.

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

Freescale Semiconductor 36-11

PdirFul Processor data input full, this bit can’t be cleared with reg. IntClear. To clear it, read from PDIR FIFO.

Offset 0x18Access: User read

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
0 0 0 0

TxUn
Ov

Tx
Resyn

CNew
ValNo
Good

Sym
Err

BitErr
UTx
Em

UTx
Under

UTx_
Next
First

URx
Ful

URx
Ov

QRx
Ful

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R QRx
Ov

UQ
Sync

UQ
Err

Pdir
UnOv

Pdir
Resyn

Lock
Loss

TxEm
Pdir
Ful

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-6. InterruptStat Register (SIS)

Table 36-8. SIS Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-12 Freescale Semiconductor

36.3.1.4.3 InterruptClear Register (SIC)

Offset 0x18Access: User write only

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0

W TxUn
Ov

Tx
Resyn

CNew
ValNo
Good

Sym
Err

BitErr
UTx

Under
URx
Ov

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W QRx
Ov

UQ
Sync

UQ
Err

Pdir
UnOv

Pdir
Resyn

Lock
Loss

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-7. InterruptClear Register (SIC)

Table 36-9. SIC Field Descriptions

Field Description

TxUnOv SPDIF transmit FIFO under/overrun

TxResyn SPDIF transmit FIFO resync

CNew SPDIF receive change in value of control channel

ValNoGood SPDIF validity flag no good

SymErr SPDIF receiver found illegal symbol

BitErr SPDIF receiver found parity bit error

UTxUnder UChannel transmit register underrun

URxOv UChannel receive register overrun

QRxOV QChannel receive register overrun

UQSync U/Q Channel sync found

UQErr U/Q Channel framing error

PdirUnOv Processor data input underrun/overrun

PdirResyn Processor data input resync

LockLoss SPDIF receiver loss of lock

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

Freescale Semiconductor 36-13

36.3.1.5 SPDIF Reception Registers

SPDIF reception registers include audio data reception registers: EbuRcvLeft and EbuRcvRight, channel 
status reception registers: EBU_RxCChannel_h and EBU_RxCChannel_l, user bits reception registers: 
EBU_RxUChannel and EBU_RxQChannel.

36.3.1.5.1 EbuRcvLeft Register (SRXL)

Offset 0x10Access: User read

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RcvDataLeft

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RcvDataLeft 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-8. EBuRcvLeft Register (SRXL)

Table 36-10. SRXL Field Descriptions

Field Description

RcvDataLeft Processor receive SPDIF data left

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-14 Freescale Semiconductor

36.3.1.5.2 EbuRcvRight Register (SRXR)

Offset 0x14Access: User read

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RcvDataRight

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RcvDataRight 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-9. EbuRcvRight Register (SRXR)

Table 36-11. SRXR Field Descriptions

Field Description

RcvDataLeft Processor receive SPDIF data right

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

Freescale Semiconductor 36-15

36.3.1.5.3 EBU_RxCChannel_h Register (SRCSH)

Offset 0x1CAccess: User read

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RxCChannel_h

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RxCChannel_h 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-10. EBU_RxCChannel_h Register (SRCSH)

Table 36-12. SRCSH Field Descriptions

Field Description

RxCChannel_h SPDIF receive C channel register, contains first 24 bits of C channel without interpretion

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-16 Freescale Semiconductor

36.3.1.5.4 EBU_RxCChannel_I Register (SRCSL)

Offset 0x20Access: User read

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RxCChannel_I

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RxCChannel_I 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-11. EBU_RxCChannel_I Register (SRCSL)

Table 36-13. SRCSL Field Descriptions

Field Description

RxCChannel_I SPDIF receive C channel register, contains next 24 bits of C channel without interpretion

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

Freescale Semiconductor 36-17

36.3.1.5.5 EBU_RxUChannel Register (SRU)

Offset 0x24Access: User read

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RxUChannel

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RxUChannel 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-12. EBU_RxUChannel Register (SRU)

Table 36-14. SRU Field Descriptions

Field Description

RxUChannel SPDIF receive U channel register, contains next 3 U channel bytes

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-18 Freescale Semiconductor

36.3.1.5.6 EBU_RxQChannel (SRQ)

36.3.1.6 FreqMeas Register (SRFM)

This register is used to save the result of frequency measurement of the input source. It is read only.

Offset 0x28Access: User read

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R RxQChannel

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RxQChannel 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-13. EBU_RxQChannel Register (SRQ)

Table 36-15. SRQ Field Descriptions

Field Description

RxQChannel SPDIF receive Q channel register, contains next 3 Q channel bytes

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

Freescale Semiconductor 36-19

Offset 0x2CAccess: User read

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R FreqMeas

W

Reset 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FreqMeas 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-14. FreqMeas Register (SRFM)

Table 36-16. SRFM Field Descriptions

Field Description

FreqMeas A ratio of measured clock freqency to reference clock(IPG_CLK) frequency: (FreqMeas_CLK/IPG_CLK) * 
(2**20) * COEF

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-20 Freescale Semiconductor

36.3.1.7 SPDIF Transmission Registers

SPDIF transmission registers include audio data transmission registers: EbuTxLeft and EbuTxRight, 
channel status transmission registers: EBU_TxCChannelCons_h, EBU_TxCChannelCons_l and 
EBU_TxCChannelProf, user bits transmission register: EBU_TxUChannel.

36.3.1.7.1 EbuTxLeft Register (STXL)

Offset 0x30Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W TxDataLeft

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W TxDataLeft 0 0 0 0 0 0 0 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-15. EbuTxLeft Register (STXL)

Table 36-17. STXL Field Descriptions

Field Description

TxDataLeft SPDIF transmit left channel data. It is write-only, and always returns zeros when read

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

Freescale Semiconductor 36-21

36.3.1.7.2 EbuTxRight Register (STXR)

Offset 0x34Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W TxDataRight

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W TxDataRight

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-16. EbuTxRight Register (STXR)

Table 36-18. STXR Field Descriptions

Field Description

TxDataRight SPDIF transmit right channel data. It is write-only, and always returns zeros when read.

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-22 Freescale Semiconductor

36.3.1.7.3 EBU_TxCChannelCons_h Register (STCSH)

Offset 0x38Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
TxCChannelCons_h

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TxCChannelCons_h

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-17. EBU_TxCChannelCons_h Register (STCSH)

Table 36-19. STCSH Field Descriptions

Field Description

TxCChannel
Cons_h

SPDIF transmit Cons. C channel data, contains next 24 bits without interpretion. When read, it returns the 
latest data written by the processor.

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

Freescale Semiconductor 36-23

36.3.1.7.4 EBU_TxCChannelCons_I Register (STCSL)

Offset 0x3cAccess: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
TxCChannelCons_I

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TxCChannelCons_I

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-18. EBU_TxCChannelCons_I Register (STCSL)

Table 36-20. STCSL Field Descriptions

Field Description

TxCChannel
Cons_I

SPDIF transmit Cons. C channel data, contains next 24 bits without interpretion. When read, it returns the 
latest data written by the processor.

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-24 Freescale Semiconductor

36.3.1.7.5 EBU_TxUChannel Register (STU)

Offset 0x48Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
TxUChannel

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TxUChannel

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-19. EBU_TxUChannel Register (STU)

Table 36-21. STU Field Descriptions

Field Description

TxUChannel SPDIF transmit U channel register, contains next 3 U channel bytes. When read, it returns the latest data 
written by the processor.

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

Freescale Semiconductor 36-25

36.3.1.8 Transmit Clock Control Register (STC)

This register includes the information of transmit clock selection and frequency division as follows.

The TxClk_Df field setting divides the TxClk by any integer between 1 and 16. The duty cycle is always 
1:1. The relation between the value of TxClk_Df field and divide factor is list as follow:

4’b0000 - divide by 1 (not be divided)

4’b0001 - divide by 2

4’b0010 - divide by 3

...

4’b1111- divide by 16

Offset 0x50Access: User read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TxClk_Sel

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0
TxClk_DF

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 36-20. Transmit Clock Control Register (STC)

Table 36-22. STC Field Descriptions

Field Description

TxClk_Sel 00: Select STClk
others: Reserved

TxClk_DF Divider factor (1-16)

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-26 Freescale Semiconductor

36.4 Functional Description

36.4.1 SPDIF Receiver

The SPDIF receiver extracts the audio data from each SPDIF frame and places the data in a 12 deep FIFO. 
The Channel Status and User Bits are also extracted from each frame and placed in corresponding 
registers. The SPDIF receiver also provides a bypass option for direct transfer of the SPDIF input signal 
to the SPDIF transmitter.

The SPDIF receiver handles the main data audio stream and recovers the bit clock from the SPDIF input 
signal. The sample rate can be determined from the frequency measuring block. Additionally, the receiver 
supports the SPDIF C and U channels. SPDIF C and U channel data is interfaced directly to 
memory-mapped registers. The input data is sent via a 12-deep FIFO to the memory-mapped data 
registers. All the data are controlled by the Interrupt Control Block and transferred to memory-mapped IP 
bus.

The following functions are performed by the SPDIF receiver.
• Audio Data Reception
• Channel Status bits Reception
• User Channel bits Reception 
• Validity Flag Reception 
• SPDIF Receiver Exception support 
• SPDIF Lock Detection 

36.4.1.1 Audio Data Reception

The SPDIF Receiver block extracts the audio data from the IEC958 stream, and outputs this via a 12-deep 
FIFO to the memory-mapped registers EbuRcvLeft and EbuRcvRight. Data from the SPDIF receiver is 
buffered in receive FIFO, and can be read by the processor from the memory-mapped registers.

The audio data is received as 24 bits, and the memory-mapped registers are 32 bits. When the audio data 
sent to the memory-mapped registers, MSB is aligned and the low 8 bits of EbuRcvLeft and EbuRcvRight 
are always read as zeros.

36.4.1.1.1 SPDIF Receiver Data Registers – Behavior on Overrun/Underrun

The SPDIF Data Receive registers (EbuRcvLeft and EbuRcvRight) have different FIFOs for left and right 
channel. As a result, there is always the possibility that left and right FIFOs may go out of sync due to 
FIFO underruns and FIFO overruns that affect only one part (left or right) of any FIFO. To prevent this 
from happening, hardware has been added on the device. Two mechanisms to prevent mismatch between 
the FIFOs are available. 

If a SPDIF Data Receive FIFO overrun occurs on e.g. the right half of the FIFO, the sample that caused 
the overrun is not written to the right half (due to overrun). Special hardware makes sure the next sample 
is not written to the left half of the FIFO. If the overrun occurs on the left half of the FIFO, next sample is 
not written to the right half of the FIFO.

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

Freescale Semiconductor 36-27

36.4.1.1.2 SPDIF Receiver Data Registers—Automatic Resynchronization of FIFOs

An automatic FIFO resynchronization feature is available. It can be enabled and disabled separately for 
every FIFO. If enabled, the hardware checks if the left and right FIFO are in sync. If not, it sets the filling 
pointer of the right FIFO to be equal to the filling pointer of the left FIFO.

Figure 36-21. FIFO Auto-Resync Controller State Machine

The operation can be explained from the state diagram in Figure 36-21. Every FIFO auto-resync controller 
has a state machine with three states: Off, StandBy and On. In the On state, the filling of the left FIFO is 
compared with the filling of right, and if they are not equal, right is made equal to left, and an interrupt is 
generated.

The controller stays in the off state when the feature is disabled. When not disabled, the state machine 
moves to off state on any processor read or write to the FIFO. It moves from On or Off to Standby on any 
left sample read from SPDIF Tx FIFOs, or on any left sample write to SPDIF Rcv FIFOs. The controller 
moves from Standby to On on any right sample read from SPDIF Tx FIFO , or on any right sample write 
to SPDIF Rcv FIFO. There is a control bit in the SPDIFConfig register to enable/disable the feature for the 
SPDIF Rcv FIFO and SPDIF Tx FIFO.

36.4.1.2 Application Note

The automatic FIFO resynchronization can be switched on and avoids all mismatches between left and 
right FIFOs, if the software obeys the following rules: 1. When the left data is read or written to the left 
FIFO, in the same place of the program, data must be read or written to the right FIFO. Maximum time 
difference between left and right is 1/2 sample clock. (E.g. if sample frequency is 44 Khz, approx 10 
micro-seconds. For 88 Khz, approx 5 micro-seconds.) 2. Write/read data to FIFO  s at least two samples 
at the time. If there is a mismatch Left-Right, the resync logic may go on only 1 sample clock after last 
data is read/written to the FIFO. Also acceptable is polling the FIFO, if at least part of the time two samples 
are read/written to it.

StandBy

Off On

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-28 Freescale Semiconductor

36.4.1.2.1 SPDIF Receiver—Additional Features

There are three exceptions associated with the SPDIF Receivers FIFOs.
• Full
• Under/Overrun
• Resync

When the full condition(which is set by RcvFIFOFull_Set field of the EBU_ConfigReg) is set for 
processor data input registers, the processor should read data from the FIFO, before overrun occurs. For 
example, when full condition is set while the FIFO contains 12 samples, it is acceptable for the software 
to read first 12 samples from the LEFT address, followed by 12 samples from the RIGHT address, or 12 
samples from the RIGHT address, followed by 12 samples from the LEFT address, or 1 sample LEFT, 
followed by 1 sample RIGHT repeated 12 times. There is no order specified. 

The implementation for SPDIFRcv is a double FIFO, one for left and one for right. Full is set when both 
FIFOs are full. Underrun and overrun are set when one of the FIFOs do underrun or do overrun. The resync 
interrupt means hardware took special action to resynchronize left and right FIFOs.

The FIFO level at which the full interrupt is generated, is programmable via the Full Select field in the 
EBU_ConfigReg register. 

36.4.1.2.2 Rcv FIFO On and Rcv FIFO Reset

Two additional control fields of the SPDIF Rcv FIFO are the on/off select and FIFO reset fields.

If on/off select is set to off, all-zero is read from the FIFO, irrespective of the data received over the SPDIF 
interface.

If FIFO reset is set, the FIFO is blocked at 1 sample in FIFO. In this, the full interrupt is on if FullSelect 
is set to 00. If FullSelect is set to any other value, interrupt is off. The other interrupts are always off.

36.4.1.3 Channel Status Reception

A total of 48 channel status bits are received in two registers. No interpretation is performed by the SPDIF 
receiver module. Channel Status Bits are ordered first bit left. CS-channel MSB bit 0 is located in bit 
position 0 in the memory-mapped register EBU_RxCChannel_h. CS-channel bit 23 is considered the LSB 
bit 23 in the register. C-channel bit 24 to 47 is seen as [0:23] bits of register EBU_RxCChannel_l. Because 
the two memory-mapped registers are 32 bits, 8 zeros are filled in bits field [24:31].

36.4.1.4 Channel Status interrupt

When the value of a new SPDIF CS channel status frame is loaded in the register, an interrupt is generated. 
The interrupt is cleared when the processor writes the corresponding bit in the InterruptStat register.

36.4.1.5 User Bit Reception

There are two modes for User Channel reception, CD and non-CD. As is decided by USyncMode (bit 22 
of CDText_Control register).

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

Freescale Semiconductor 36-29

36.4.1.5.1 Behavior of User Channel Receive Interface on Incoming CD User Channel 
Sub-code in SPDIF Receiver

This mode is selected if UsyncMode, bit 22 in register CD Text control is set to 1.

The CD subcode stream embedded into the SPDIF User channel consists of a sequence of packets. Every 
packet is made up 98 symbols. The first two symbols of every packet are sync symbols, the other 96 
symbols are data symbols.

Any sequence found in the SPDIF U-channel stream starting with a leading one, followed by 7 information 
bits, is recognized as a data symbol. Subsequent data symbols are separated by pauses. During the pause, 
zero bits are seen on the SPDIF U-channel.

Data symbols are coming in MSB first. The MSB is the leading one.

When a long pause is seen between two subsequent data symbols, the SPDIF receiver assumes the 
reception of one or more sync symbols.

The recognition of the number of sync symbols derives from the fact that the U-channel transmitter in the 
CD channel decoder transmits one symbol on average every 12 SPDIF channel bits. On this average rate, 
there is a tolerance of maximum 5 %.

The SPDIF receiver is tolerant on symbol error. Due to the physical nature of the transmission of the data 
over the CD disc, not more than one out of any 5 consecutive user channel symbols may be in error. The 
error may cause a change in data value, which is not treated by this interface, or it may cause a data symbol 
to be seen as a sync symbol, or a sync symbol to be seen as a data symbol. However, not more than one 
out of any 5 consecutive user channel symbols should be affected in this way.

The SPDIF User channel circuitry recognizes the 98-symbol packet structure, and sent the 96 symbol 
payload to the processor application. The 96 symbol payload is transmitted to the processor via 2 registers:

• The EBU_RxUChannel register. In this register, data is presented 3 symbols at the time to the 
processor. Every time 3 new valid symbols, received on the SPDIF U-Channel are present, the 
UChannelRcvFull interrupt is asserted. For one 98-symbol packet, 96 symbols are carried across 
EBU_RxUChannel. To transfer all this data, 32 UChannelRcvFull interrupts are generated.

• The QChannelReceive register. In this register, only the Q bit of the packet is 
accumulated.Operation is similar to UChannelReceive. Because only Q-bit is transferred, only 96 

Table 36-23. Sync Control Bits

Number of U Channel
Zero Bits

Corresponding Number
of Sync Symbols

0-1 Unpredictable, not allowed

2-10 0

11-22 1

23-34 2

35-46 3

>45 Unpredictable, not allowed

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-30 Freescale Semiconductor

Q-bits are transferred for any 98-symbol packet. To transfer this data, 4 QChannelRcvFull 
interrupts are generated. When QChannelRcvFull occurs, it is coincident with UChannelRcvFull. 
There is only one QChannelRcvFull for every 8 UChannelRcvFull. The convention is that most 
significant data is transmitted first, and is left-aligned in the registers.

• Timing regarding packet boundary is extracted by hardware. The last UChannelRcv-Full 
corresponding to a given packet should be coincident with the last QChannel-RcvFull. In this last 
U, Q channel interrupt, symbols 95-98 are received, Q-channel bits 67-98. The interrupts are 
coincident with UQSyncFound, flagging last symbols of the current frame.

• When the start of the new packet is found before the current packet is complete (less than 98 
symbols in the packet), the UQFrameError interrupt is set. The application software should read 
out UChannelReceive and QchannelReceive registers, discard the value, and assume the start of a 
new packet.

• As already said, packet sync extraction is tolerant for single-symbol errors. Packet sync detection 
is based on the recognition of the sequence data-sync-sync-data in the symbol stream, because this 
is the only syncing sequence that is not affected by single errors. If the sync symbols are not found 
98 symbols after the previous occurrence, it is assumed to be destroyed by channel error, and a new 
sync symbols is interpolated.

• Normally, only data bytes are passed to the application software. Every databyte has its most 
significant bit set. If sync symbols are passed to the application soft, they are seen as all-zero 
symbols. Sync symbols can only end up in the data stream due to channel error.

36.4.1.5.2 Behavior of User Channel Receive Interface on Incoming Non-CD Data

This mode is selected if UsyncMode, bit 22 in register CD Text control is set 0.

In non-CD mode, the SPDIF User channel stream is recognized as a sequence of data symbols. No packet 
recognition is done.

Any sequence found in the SPDIF U-channel stream starting with a leading one, followed by 7 information 
bits, is recognized as a data symbol. Subsequent data symbols are separated by pauses. During the pause, 
zero bits are seen on the SPDIF U-channel.

Three consecutive data symbols seen in the SPDIF U-Channel stream are grouped together into the 
EBU_RxUChannel register. First symbol is left, last symbol is right aligned. When EBU_RxUChannel 
contains 3 new data symbols, UChannelRcvFull is asserted.

In this mode, the operation of QchannelRcv and associated interrupt QchannelRcvFull is reserved, 
undefined. Also reserved, undefined is operation of UQFrameError and UQSyncFound.

The U-channel is extracted, and output by the SPDIF rcv block on SPDIFRcvUChannel-Stream.

When incoming SPDIF data parity error or bit error is detected, and if the next SPDIF word for that 
channel is error-free, the SPDIF word in error is replaced with the average of the previous word and next 
word. When incoming SPDIF data parity error or bit error is detected, and the next SPDIF word is in error, 
the previous SPDIF word is repeated.

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

Freescale Semiconductor 36-31

36.4.1.6 Validity Flag Reception

An interrupt is associated with the Validity flag. (interrupt 7 – SPDIFValNoGood). This interrupt is set 
every time a frame is seen on the SPDIF interface with the validity bit set to invalid.

36.4.1.7 SPDIF Receiver Interrupt Exception Definition

There are several SPDIF exceptions defined, that triggers an interrupt. 

These are:
• Control Status channel change. Set when SPDIFRcvCChannel1 register is updated. The register is 

updated for every new C-Channel received. The exception is reset on write to InterruptClear 
register.

• SPDIF Illegal Symbol. Set on reception of illegal symbol during SPDIF receive. Reset by writing 
register InterruptClear.SPDIF bit error. Set on reception of bit error. Parity bit does not match. 
Reset on write to InterruptClear register.

• Receive data FIFO full. Set when SPDIF receive data FIFO is full.
• Receive data FIFO underrun/overrun. Set when there is a underrun/overrun on the SPDIF receive 

data FIFO.
• Receive data FIFO resynchronization. Set when a resynchronization event occurs on the SPDIF 

receive data FIFO.
• Receive U Channel buffer full. Set when next 24 bits of U channel code are available.
• Receive Q Channel buffer overrun. Set when Q channel buffer overrun.
• Receive U Channel buffer overrun. Set on U channel buffer overrun. 
• Receive Q Channel buffer full. Set when next 24 bits of Q channel code are avail-able.
• Receive UQ sync found. Set when UQ channel sync found.
• Receive UQ frame error. Set when UQ frame error found.

36.4.1.8 Standards Compliancy

The SPDIF interface is compatible with the Tech 3250-E standard of the European Broadcasting Union, 
except clause 6.3.3 and the IEC958-3 Ed2 for relevant topics. Supported input frequency range is 12 Khz 
up to 96 Khz. (fully compliant) and 96 Khz up to 176 Khz (can interface with compliant SPDIF transmitter 
within same cabinet, making reasonable assumptions on jitter added due to interconnecting wire).

The SPDIF input is a biphase/mark modulated signal. The time between any two successive transitions of 
the SPDIF signal is always 1, 2 or 3 SPDIF symbol periods long. The SPDIF receiver parses the stream, 
and split it in so-called symbols. It recognizes s1, s2 and s3 symbols, depending on the length of the 
symbols. Not all sequences of these symbols are allowed. To give an example, a sequence s2-s1-s1-s1-s2 
cannot occur in a no-error SPDIF signal. If the receiver finds such an illegal sequence, the illegal symbol 
interrupt is set. No corrective action is undertaken. When the interrupt occurs, this means that the SPDIF 
signal is destroyed by noise and the SPDIF frequency changed.

Tolerated jitter on SPDIF input signals are 0.25 bit peak-peak for high frequencies. There is no jitter limit 
for low frequencies. The user channel extraction in CD mode is capable of coping with single-symbol 

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-32 Freescale Semiconductor

errors and retrieve U-channel frames on correct boundaries. This capability is required for reliable 
reception of CD-Text from some Philips CD channel decoders. This capability was deemed more 
important than compliance with the IEC958 annex A.3 standard, and for this reason user channel reception 
is not compliant with IEC958 annex A.3. However, the interface is capable to receive U channel inserted 
by a typical CD channel decoder. Also, in this case, it is more robust and tolerant for channel error than 
what is required by IEC958 annex A.3.

36.4.1.9 Measuring Frequency of SPDIF_RcvClk

The internal DPLL can extract the bit clock (advanced plus) from the input bitstream. It is necessary, 
however, to measure the frequency of the incoming signal in relationship with the clock BUS_CLK(In the 
SPDIF is IPG_CLK). The circuit is shown in Figure 36-22.

Figure 36-22. FreqMeas Circuit

All the D FlipFlop in the figure is clocked by BUS_CLK. The source clock to be measured is STCLK, 
which get through a synchronize logic and generate the FreqMeas_CLK. Associated with the measurement 
result, are 2 registers, PhaseConfig and FreqMeas. The circuit measures the frequency of the incoming 
clock as a function of the BUS_CLK. The circuit is a second-order filter. The output is a value represented 
by an unsigned number stored in the 24 bit FreqMeas register, giving the frequency of the source as a 
function of the BUS_CLK.

FreqMeas[23:0] = FreqMeas_CLK/BUS_CLK * 2**20 * COEF.

For example, if the COEF selection bits in PhaseConfig is written as 011, the COEF is now selected as 8, 
so the actual ‘FreqMeas_CLK/BUS_CLK’ is equal to ‘FreqMeas[23:0]/2**23’.

As the internal bus is 32-bit, and the MSB is aligned, so the lower 8 bits ([24:31]) of Register FreqMeas 
always return zeros when FreqMeas is read by the processor.

D

D

Sat

Sat

+

+

G 2-18+

+ -

2-18

FreqMeas[23:0]

BUS_CLK

+

+
-

10

SPDIF_RcvClk

D DSTCLK

FreqMeas_CLK

2-17

11

BUS_CLK

BUS_CLK

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

Freescale Semiconductor 36-33

36.4.2 SPDIF Transmitter

Audio data for the SPDIF transmitter is provided by the processor via EbuTxLeft and EbuTxRight 
registers. The channel status and user bits are also provided via corresponding registers. Clocking for the 
SPDIF transmitter is from input STCLKIN. The SPDIF transmitter clock source can be divided down as 
needed using TxClk_DF. The SPDIF transmitter output can be chosen from either the SPDIF transmitter 
block, directly from the SPDIF receiver via the output multiplexer or disabled.

The SPDIF transmitter generates a SPDIF output bitstream in IEC958 in the biphase mark format. It 
consists of audio data, channel status and user bits.

36.4.2.1 Audio Data Transmission

Audio data for the SPDIF transmitter is provided by the processor via EbuTxLeft and EbuTxRight 
registers. They send audio data to Tx FIFOs, left and right. The Tx FIFOs are also 12-deep and 24-width 
(equal to the audio data width). 

The audio data is transmitted as 24 bits, and the memory-mapped registers are 32 bits. When the audio data 
sent to the Tx FIFOs, MSB is aligned and the 24 MSBs ([0:23]) of EbuTxLeft and EbuTxRight are sent.

36.4.2.1.1 SPDIF Transmitter Data Registers—Behavior on Overrun, Underrun

The SPDIF Data Transmit registers (EbuTxLeft and EbuTxRight) have different FIFOs for left and right 
channel. As a result, there is always the possibility that left and right FIFOs may go out of sync due to 
FIFO underruns and FIFO overruns that affect only one part (left or right) of any FIFO. To prevent this 
from happening, hardware has been added on the device. Two mechanisms to prevent mismatch between 
the FIFOs are available.

If SPDIF Tx FIFO underruns on e.g. the right half of the FIFO, no sample leaves that FIFO. (because it 
was already empty.) Special hardware makes sure that the next sample read from the left FIFO does not 
leave the FIFO. (No read strobe is generated). If the underrun occurs on the left half of the FIFO, next read 
strobe to the right FIFO is blocked.

36.4.2.1.2 SPDIF Transmitter Data Registers—Automatic Resynchronization of FIFOs

See Section 36.4.1.1, “Audio Data Reception.”

36.4.2.1.3 EbuTxLeft, EbuTxRight Details

With SPDIF Tx FIFOs three exceptions are associated.
1. Empty
2. Under/overrun
3. Resync

When the empty condition (which is set by TxFIFOEmpty_Set field of the EBU_ConfigReg) is set for 
processor data output registers, the processor should write data to the FIFO, before underrun occurs. For 
example, when empty is set and 12 samples need to be written, it is acceptable for the software to write 
first 12 samples from the LEFT address, followed by 12 samples from the RIGHT address, or 1 sample 

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-34 Freescale Semiconductor

LEFT, followed by 1 sample RIGHT repeated 12 times. Left should be written before right. The 
implementation of all data out FIFOs is a double FIFO, one for left and one for right. Empty is set when 
both FIFOs are empty. Underrun, overrun are set when one of the FIFOs do underrun or do overrun. 
Resync is set when the hardware resynchronizes left and right FIFOs.

On receiving underrun, overrun interrupt, synchronization between Left and Right words in the FIFOs may 
be lost. Synchronization is not lost when the underrun or overrun comes from the IEC958 side of the FIFO. 
If the processor reads or writes more data from e.g. left than from right, synchronization is lost. If 
automatic resynchronization is enabled and the software obeys the rules to let this work, resynchronization 
is automatic.

36.4.2.2 Channel Status Transmission

A total of 48 Consumer channel status bits are transmitted from two registers. Channel Status Bits are 
ordered first bit left. CS-channel MSB bit 0 is located in bit position 0 in the memory-mapped register 
EBU_TxCChannelCons_h. CS-channel bit 23 is considered the LSB bit 23 in the register. C-channel bit 
24 to 47 is seen as [0:23] bits of register EBU_TxCChannelCons_l. Because the two memory-mapped 
registers are 32 bits, 8 zeros are filled in bits field [24:31]. 

36.4.2.3 User Channel Transmission

The user channel transmitter is intended to assemble the CD subcode stream, conform the IEC908 CD 
standard specification. The generation of the data needs to be done by a software routine, and loaded into 
hardware registers. The device has provisions to insert this CD subcode stream into the outgoing IEC958 
stream.

36.4.2.3.1 The CD-Text Format 

CD User channel subcode may be transmitted by the IEC958 transmitter. This user channel subcode is 
assembled by application software inside the processor.

The CD-Text subcode has a 98-symbol packet structure. Of these 98 packets, the first 2 symbols are sync 
symbols, followed by 96 8-bit data symbols.

The boundaries of the 98-symbol packets are determined by free-run counters. The first two symbol of any 
packet are transmitted with the special  sync  sequence. The first and second symbols are all-0 symbols. 
The other 96 symbols need to be uploaded by the application software in register EBU_TxUChannel.

Upload is done by application software handshaking to interrupt UChannelTxEmpty. If this interrupt is set, 
the application software uploads 3 symbols of the current user channel packets into register 
EBU_TxUChannel.

The interrupt UChannelTxNextFirstByte flags the start of a new U channel packet. It is always coincident 
with UChannelTxEmpty, and signals that the first 3 symbols of a new packet need to be loaded into 
EBU_TxUChannel.

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

Freescale Semiconductor 36-35

Pseudo-code to react on both interrupts. One interrupt handler can take care of both UchannelTxEmpty 
and UChannelTxNextFirstByte. This last interrupt is not enabled.

if(UChannelTxEmpty interrupt) then
if(UChannelTxNextFirstByt interrupt set also) then 

reset this interrupt
synchronize pointer to sent out new frame 

end if ; 
load UChannelTransmit with data from pointer
update pointer 
reset interrupt 
end if ;

36.4.2.3.2 Advanced Topic: 
Synchronization of the Free-Running Counter—Legacy Only

For legacy reasons, it is possible to control which symbol is transmitted first on the EBU U-channel 
subcode interface. 

To solve a legacy synchronization issue, the counter that determines the sync position is presettable via 
register CdTextControl.

36.4.2.3.3 Inserting CD User Channel Data into IEC958 Transmit Data

Source selection of data transmitted into the User Channel of IEC958 transmitter is selected by bits (22,23) 
of register EbuConfig.

• When selected source is  off , zero is inserted in the user channel.
• When selected source is IEC958 receiver, every user channel data byte received into the input 

IEC958 user channel, is inserted into the outgoing stream at approx. the same time it was found in 
the incoming stream.

• When selected source is CD-Text, every data byte transmitted over the CD-Text output is also 
inserted into the IEC958 out stream. The most significant bit of every byte is transmitted as a  1 . 
All sync symbols are transmitted as all-0.

• In case RCK clock is not present, it is possible to use the CD-Text interface to assemble the 
outgoing IEC958 User channel data. In this case, bit UChanTxTim in register CDText config must 
be set  1. It causes the timing to the CD-Text registers to be controlled by the IEC958 transmitter. 
One symbol (data or sync) is transmitted into the IEC958 output every 12 User Channel data bits.

36.4.2.4 Validity Flag Transmission

The validity bit setting is performed via bit 18 of the EBUConfig register.

MPC5121e Microcontroller Reference Manual, Rev. 2



Sony/Philips Digital Interface (SPDIF)

36-36 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 37-1

Chapter 37  
SRAM Memory (MEM)

37.1 Introduction 
This chapter describes the multi-port on-chip static RAM (SRAM). The MEM contains 128 Kbytes of 
SRAM, divided into 4 banks of 32 Kbytes . The MEM block interface contains 3 bus ports. The MEM 
block is implemented as a cross-bar switch; all SRAM banks may service requests simultaneously to any 
of the master buses. Bus arbitration only occurs when two master bus ports try to access the same SRAM 
bank. The MEM block arbitrates between the bus ports with a fixed priority for each bus as follows: bus(1) 
(highest priority), bus2 (2nd priority), and bus(3) (lowest priority). The higher priority bus retains access 
to the SRAM as long as the bus maintains it’s request.

For the MPC5121e, the MEM ports are configured as follows: 
• bus1 - connected to the CSB for PPC execution.
• bus2 - connected to the AXE.
• bus3 - connected to FEC, USB1, USB2, DMA2, SATA.

Figure 37-1 is a high-level block diagram of the memory block with its associated interfaces. 

Figure 37-1. MEM Block Simplified Block Diagram

Arbitration
Logic

bus 1

bus 2

bus 3

128 Kbytes
SRAM

MPC5121e Microcontroller Reference Manual, Rev. 2



SRAM Memory (MEM)

37-2 Freescale Semiconductor

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 38-1

Chapter 38  
Temperature Sensor

38.1 Introduction
The temperature sensor is an internal module to the MPC5121e that monitors the temperature of the chip, 
itself. There are two internal signals that the temperature sensor module asserts. The first signal is 
TEMP_105. The TEMP_105 signal asserts at one of eight programmable levels:  35ºC, 45ºC, 55ºC, 65ºC, 
75ºC, 85ºC, 95ºC, or 105ºC. When the TEMP_105 signal asserts, an interrupt is signaled, if enabled, to the 
CPU core. The second signal, TEMP_125, is set to assert when the chip temperature reaches or exceeds 
125°C. When the TEMP_125 signal asserts, a machine check exception is signaled to the CPU core. In 
either case, some type of machine check exception handler or interrupt service routine must be called that 
starts reducing the power consumption of the device, possibly by shutting down various modules or setting 
clocks to lower frequencies, etc.

The temperature measurement accuracy is limited to ±5°C.

38.1.1 Normal Operation Mode

From the release of HRESET, the temperature sensor module is enabled and running. The TEMP_105 and 
TEMP_125 signals are active. There are several registers that control the state and condition of the 
temperature sensor module. These registers are located in modules other than the temperature sensor 
module and are described in detail there.

The temperature sensor module can be enabled or powered down by use of the TEMPPD Bit in the 
Section 2.3.1.1.2, “System Priority Configuration Register (SPCR)”. Setting the TEMPPD bit to a logic 0 
enables the temperature sensor module. Setting TEMPPD bit to a logic 1 puts the temperature sensor 
module in a power down condition. Powering down the temperature sensor module prevents it from 
asserting either the TEMP_105 or TEMP_125 signals.

The TEMP_105 can be programmed to one of eight temperature trip levels. The trip temperature is 
programmed using the TEMPSEL Bits in the System Priority Configuration Register.

The TEMP_125 signal is programmed to assert when the chip temperature reaches or exceeds 125°C. This 
temperature cannot be changed. When the TEMP_125 signal asserts, the TEMP125C bit sets in the 
Section 20.2.1.15, “System Error Status Register (SERSR)”. If unmasked, the TEMP125C bit creates a 
machine check exception. The TEMP125C bit can be masked by the TEMP125C bit in the 
Section 20.2.1.16, “System Error Mask Register (SERMR)”. The default state of the TEMP125C bit in the 
Section 20.2.1.16, “System Error Mask Register (SERMR)” is a logic 0 meaning that the TEMP_125C 
signal does not create a machine check exception. Setting the TEMP125C bit in the SERMR to a logic 1 
allows the TEMP_125 signal to create a machine check exception.

MPC5121e Microcontroller Reference Manual, Rev. 2



Temperature Sensor

38-2 Freescale Semiconductor

The TEMP_105 signal is programmed to assert at one of eight programmable temperature levels. When 
the TEMP_105 signal asserts, the TEMP105C bit in the Section 20.2.1.3, “System Internal Interrupt 
Pending Registers (SIPNR_H and SIPNR_L)” asserts. If the TEMP105C bit in the SIPNR_L register 
asserts to a logic 1 and is not masked by the TEMP105C bit in the Section 20.2.1.8, “System Internal 
Interrupt Mask Register (SIMSR_H and SIMSR_L)” register, a normal interrupt is signaled to the CPU.

MPC5121e Microcontroller Reference Manual, Rev. 2



Freescale Semiconductor 39-1

Chapter 39  
Universal Serial Bus Interface with On-The-Go

39.1 Introduction
This chapter describes the universal serial bus (USB) interface of the MPC5121e. The USB interface 
implements many industry standards. However, it is beyond the scope of this document to document the 
intricacies of these standards. Instead, it is left to the reader to refer to the governing specifications.

The following documents are available from the USB Implementers Forum web page at: 
http://www.usb.org/developers/docs/

• Universal Serial Bus Specification, Rev. 2.0 
• On-The-Go Supplement to the USB 2.0 Specification, Rev. 1.0a 

The following documents are available from the Intel USB Specifications web page at: 
http://www.usb.org/developers/docs/

• Enhanced Host Controller Interface Specification for Universal Serial Bus, Rev. 1.0 
• USB 2.0 Transceiver Macrocell Interface (UTMI) Specification, Ver. 1.05 

The following documents are available from the ULPI web page at:
http://www.usb.org/developers/docs/

• UTMI+ Specification, Rev. 1.0 
• UTMI Low Pin-Count Interface (ULPI) Specification, Rev. 1.0 

39.1.1 Overview

The MPC5121e implements two USB modules, having a dual-role (DR) or On-The-Go (OTG) 
capabilities. The USB0 and USB1 can be connected to an external PHY using the ULPI protocol. In 
addition, the USB0 can be connected to an on-chip UTMI+ PHY. Collectively, the modules and external 
ports are called the USB interface. 

39.1.2 Features

The USB0 and USB1 modules supplies the following features:
• Supports USB device mode
• Supports USB On-The-Go mode including host capability
• Complies with USB specification Rev 2.0
• Supports high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbit/s) operations
• Supports external PHY with UTMI+ low pin count (ULPI) interface 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-2 Freescale Semiconductor

• Supports operation as a standalone USB device 
— Supports one upstream facing port 
— Supports four programmable, bidirectional USB endpoints

• Host Mode supports direct connect of LS/FS devices

In addition, the USB0 module supports an internal PHY with UTMI+ interface.

39.1.3 Modes of Operation

The USB0 /USB1 has three basic operating modes: Host, Device, and On-the-Go (OTG).

The USB0 module uses default on-chip PHY (UTMI+ interface). In addition to the on-chip PHY, the 
USB0 can use an external ULPI PHY.

The USB1 can work only with an external ULPI PHY.

39.2 Memory Map/Register Definitions
This section provides the memory map and detailed descriptions of all USB interface registers. Table 39-1 
shows the memory map of the USB interface. 

The USB1 has a base address of 0x00_3000; the USB0 has a base address of 0x00_4000.
Table 39-1. USB Interface Memory Map 

Offset Register Access Section/Page

USB0 /USB1 Controller Registers

0x000 ID—Identification register R 39.2.1.1/3939-7

0x004 HWGENERAL—General hardware parameters R 39.2.1.1/3939-8

0x008 HWHOST—Host hardware parameters R 39.2.1.1/3939-9

0x00C HWDEVICE—Device hardware parameters R 39.2.1.1/3939-10

0x010 HWTXBUF—TX buffer hardware parameters R 39.2.1.1/3939-11

0x014 HWRXBUF—RX buffer hardware parameters R 39.2.1.1/3939-12

0x080 GPTIMER0LD—General Purpose Timer load value R/W 39.2.1.3/3939-19

0x084 GPTIMER0CTRL—General Purpose Timer 0 Control R/W 39.2.1.3/3939-19

0x088 GPTIMER1LD—General Purpose Timer load value R/W 39.2.1.3/3939-19

0x08C GPTIMER1CTRL—General Purpose Timer 0 Control R/W 39.2.1.3/3939-19

0x090 SBUSCFG—System Bus Interface Control R/W 39.2.1.1/3939-12

0x100 CAPLENGTH—Capability register length R 39.2.1.2/3939-14

0x102 HCIVERSION—Host interface version number R 39.2.1.2/3939-14

0x104 HCSPARAMS—Host crtl. structural parameters R 39.2.1.2/3939-15

0x108 HCCPARAMS—Host crtl. capability parameters R 39.2.1.2/3939-16

0x120 DCIVERSION—Device interface version number R 39.2.1.2/3939-17

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-3

0x124 DCCPARAMS—Device controller parameters R 39.2.1.2/3939-18

0x140 USBCMD—USB command R/W 39.2.1.4/3939-21

0x144 USBSTS—USB status R/W 39.2.1.4/3939-24

0x148 USBINTR—USB interrupt enable R/W 39.2.1.4/3939-27

0x14C FRINDEX—USB frame index R/W 39.2.1.4/3939-29

0x154 PERIODICLISTBASE—Frame list base address R/W 39.2.1.4/3939-31

0x154 DEVICEADDR—USB device address R/W 39.2.1.4/3939-32

0x158 ASYNCLISTADDR—Next asynchronous list addr (host mode) R/W 39.2.1.4/3939-33

0x158 ENDPOINTLISTADDR—Address at endpoint list (device mode) R/W 39.2.1.4/3939-34

0x15C TTCTRL— TT status and control R/W 39.2.1.4/3939-35

0x160 BURSTSIZE—Programmable burst size R/W 39.2.1.4/3939-36

0x164 TX TTFILLTUNING—Host TT transmit pre-buffer packet tuning R/W 39.2.1.4/3939-37

0x170 ULPI Viewport R/W 39.2.1.4/3939-39

0x178 ENDPTNAK—End Point NAK R/W 39.2.1.4/3939-41

0x17C ENDPTNAKEN—End Point NAK Enable R/W 39.2.1.4/3939-42

0x180 CONFIGFLAG—Configured flag register R 39.2.1.4/3939-43

0x184 PORTSC1—Port status/control R/W 39.2.1.4/3939-43

0x1A4 OTGSC—On-the-Go status and control R/W 39.2.1.4/3939-48

0x1A8 USBMODE—USB device mode R/W 39.2.1.4/3939-51

0x1AC ENDPTSETUPSTAT—Endpoint setup status R/W 39.2.1.4/3939-54

0x1B0 ENDPTPRIME—Endpoint initialization R/W 39.2.1.4/3939-55

0x1B4 ENDPTFLUSH—Endpoint de-initialize R/W 39.2.1.4/3939-56

0x1B8 ENDPTSTATUS—Endpoint status R 39.2.1.4/3939-57

0x1BC ENDPTCOMPLETE—Endpoint complete R/W 39.2.1.4/3939-58

0x01C0 ENDPTCTRL0—Endpoint control 0 R/W 39.2.1.4/3939-59

0x1C4 ENDPTCTRL1—Endpoint control 1 R/W 39.2.1.4/3939-61

0x1C8 ENDPTCTRL2—Endpoint control 2 R/W 39.2.1.4/3939-61

0x1CC ENDPTCTRL3—Endpoint control 3 R/W 39.2.1.4/3939-61

0x200 USBGENCTRL — USB General Control R/W 39.2.1.4/3939-63

0x204 ISIPHYCTRL — On-Chip PHY Control R/W 39.2.1.4/3939-64

0x208–
0xFFF

Reserved — —

Table 39-1. USB Interface Memory Map  (continued)

Offset Register Access Section/Page

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-4 Freescale Semiconductor

The following sections provide details about the registers in the USB memory map. 

Power 
Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Addr Register

000 ID Reserved Revision 1 1 NID 0 0 ID

004 HWGENE
RAL

Reserved S
M

PHYM PHYW B
W
T

CLKC RT

008 HWHOST TTPER TTASY Reserved NPORT H
C

00C HWDEVIC
E

Reserved DEVEP D
C

010 HWTXBU
F

TX
CL
R

Reserved TXCHANADD TXADD TXBURST

014 HWRXBU
F

Reserved RXADD RXBURST

080 GPTIMER
0LD

GPTLD

084 GPTIMER
0CTRL

G
PT
RU
N

G
PT
RS
T

Reserved G
PT
M
O

DE

GPTCNT

088 GPTIMER
1LD

GPTLD

08C GPTIMER
1CTRL

G
PT
RU
N

G
PT
RS
T

Reserved G
PT
M
O

DE

GPTCNT

100 CAPLENG
TH

HCIVERSION Reserved CAPLENGTH

102 HCIVERSI
ON

HCIVERSION

104 HCSPARA
MS

Reserved N_TT N_PPT Reserved PI N_CC N_PPC Reserved PP
C

N_PORTS

108 HCCPARA
MS

Reserved EECP IST AS
P

PF
L

AD
C

120 DCIVERSI
ON

Reserved DCIVERSION

124 DCCPARA
MS

Reserved H
C

D
C

Reserv
ed

DEN

140 USBCMD Reserved ICT FS
2

AT
DT
W

SU
T
W

R AS
PE

ASP LR IA
A

AS
E

PS
E

FS RS
T

RS

144 USBSTS Reserved TI
1

TI
0

Reserved UP
I

UA
I

NA
KI

AS PS R
CL

H
C
H

UL
PII

SL
I

SR
I

U
RI

AA
I

SE
I

FR
I

PC
I

UE
I

UI

148 USBINTR Reserved TI
E1

TI
E0

Reserved UP
IA

UA
IE

NA
KE

Reserved UL
PI
E

SL
E

SR
E

U
RE

AA
E

SE
E

FR
E

PC
E

UE
E

UE

14C FRINDEX Reserved FRINDEX

154 PERIODIC
LISTBASE

PERBASE Reserved

Figure 39-1. Summary of Register Layout

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-5

154 DEVICEA
DDR

USBADR US
BA
D

RA

Reserved

158 ASYNCLI
STADDR

ASYBASE Reserved

158 ENDPOIN
TLISTADD

R

EPBASE Reserved

15C TTCTRL R TTHA Reserved

Power 
Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 39-1. Summary of Register Layout (continued)

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-6 Freescale Semiconductor

160 BURSTSI
ZE

Reserved TXPBURST RXPBURST

164 TXFILLTU
NING

Reserved TXFIFOTHRES Reserved TXSCHEALTH TXSCHOH

170 ULPI 
VIEWPOR

T

UL
PI
W
U

UL
PI
RU
N

UL
PI
R
W

R UL
PI
SS

ULPIPORT ULPIADDR ULPIDATARD ULPIDATAWR

178 ENDPTNA
K

EPTN EPRN

17C ENDPTNA
KEN

EPTNE EPRNE

180 CONFIGF
LAG

Reserved 1

184 PORTSC1 PTS ST
S

PT
W

PSPD PF
SC

PH
C
D

W
KO
C

W
KD
S

W
KC
N

PTC PIC P
O

PP LS HS
P

PR SU
SP

FP
R

O
C
C

O
CA

PE
C

PE CS
C

C
CS

1A4 OTGSC DP
IE

1m
sE

BS
EI
E

BS
VI
E

AS
VI
E

AV
VI
E

IDI
E

DP
IS

1m
ss

BS
EI
S

BS
VI
S

AS
VI
S

AV
VI
S

IDI
S

DP
S

1m
sT

BS
E

BS
V

AS
V

AV
V

ID HA
BA

HA
DP

ID
PU

DP OT HA
AR

VC VD

1A8 USBMOD
E

Reserved VP
BS

SD
IS

SL
O
M

ES CM

1AC ENDPTSE
TUPSTAT

Reserved ENDPTSETUPSTAT

1B0 ENDPTPR
IME

Reserved PETB Reserved PERB

1B4 ENDPTFL
USH

Reserved FETB Reserved FERB

1B8 ENDPTST
ATUS

Reserved ETBR Reserved ERBR

1BC ENDPTC
OMPLETE

Reserved ETCE Reserved ERCE

1C0 ENDPTCT
RL0

Reserved TX
E

Reserved TXT TX
S

Reserved RX
E

Reserved RXT RX
S

1C4 ENDPTCT
RL1

Reserved TX
E

TX
R

TX
I

TXT TX
D

TX
S

Reserved RX
E

RX
R

RX
I

RXT RX
D

RX
S

1C8 ENDPTCT
RL2

Reserved TX
E

TX
R

TX
I

TXT TX
D

TX
S

Reserved RX
E

RX
R

RX
I

RXT RX
D

RX
S

1CC ENDPTCT
RL3

Reserved TX
E

TX
R

TX
I

TXT TX
D

TX
S

Reserved RX
E

RX
R

RX
I

RXT RX
D

RX
S

200 USBGEN
CTRL

Reserved UL
PI
_S
EL

PP
P

PF
P

W
U_
UL
PI
_E
N

W
U_
IE

204 ISIPHYCT
RL

Reserved O
C
O

BS
EN
H

BS
EN

LS
FE

PX
E

Power 
Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 39-1. Summary of Register Layout (continued)

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-7

39.2.1 Register Descriptions

39.2.1.1 Module Identification Registers

The identification registers declare the slave interface presence and include hardware configuration 
parameters. These registers include the identification register, the general hardware parameters register, 
the host hardware parameters register, the device hardware parameters register, the Tx buffer hardware 
parameters register, and the Rx buffer hardware parameter register. These are not defined by the EHCI 
specification.

39.2.1.1.1 Identification (ID) Register (Non-EHCI)

The ID register provides a simple way to determine if the module is present in the system. The ID register 
identifies the module and its revision. 

Figure 39-2 shows the ID register. Table 39-2 provides bit descriptions for the ID register.

Offset: Base + 000h

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 REVISION

W

Reset 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 1 1 NID 0 0 ID

W

Reset 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1

= Unimplemented or Reserved

Figure 39-2. Identification (ID) Register

Table 39-2. ID Register Field Descriptions

Field Description

REVISION Revision number of the module.

NID Ones complement version of ID[5:0].

ID Configuration number. This number is set to 0x05.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-8 Freescale Semiconductor

39.2.1.1.2 General Hardware Parameters (HWGENERAL) Register (non-EHCI)

The HWGENERAL register contains parameters that define the particular implementation of the module. 
Figure 39-3 shows the HWGENERAL register. Table 39-3 provides bit descriptions for the 
HWGENERAL register.
Offset: Base + 004h, (USB0)

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 SM PHYM PHYW BWT CLKC RT

W

Reset 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1

Offset: Base + 004h, (USB1)

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 SM PHYM PHYW BWT CLKC RT

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1

= Unimplemented or Reserved

Figure 39-3. General Hardware Parameters (HWGENERAL) Register

Table 39-3. HWGENERAL Register Field Descriptions

Field Description

SM SERIAL_MODE. Always 0 indicating no serial interface engine is present.

PHYM PHY_MODE. 
For the USB0, these bits reads out 100, indicating the USB transceiver is under software control and resets 
to UTMI+. 
For the USB1, these bits reads out 010, indicating the USB transceiver can only work with the ULPI interface.

PHYW PHY Width. This field is only relevant for UTMI mode, therefore it is only relevant to the USB0 module in UTMI 
mode. For the USB0 module, PHYW always reads 11, indicating the UTMI interface width is programmable 
and defaults to 16-bits wide.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-9

39.2.1.1.3 Host Hardware Parameters (HWHOST) Register (non-EHCI)

The HWHOST register provides host hardware parameters for this implementation of the module. 
Figure 39-4 shows the HWHOST register. Table 39-4 provides bit descriptions for the HWHOST register.

BWT Reserved for manufacturing test. Reads as 0.

CLKC Reserved for manufacturing test. Indicates the system and PHY clock partitioning of the design. Default 10.

RT Reserved for manufacturing test. Always 1.

Offset: Base + 008h

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R TTPER TTASY

W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 NPORT HC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

= Unimplemented or Reserved

Figure 39-4. Host Hardware Parameters (HWHOST) Register

Table 39-4. HWHOST Register Field Descriptions

Field Description

TTPER Transaction translator periodic contexts. The number of supported transaction translator periodic contexts. 
This always reads 0x10 (d’16).

TTASY Transaction translator contexts. The number of transaction translator contexts.

NPORT Always 0, indicating the number of ports available (NPORT + 1) for this host implementation.

HC Always 1, indicating the module is host capable.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-10 Freescale Semiconductor

39.2.1.1.4 Device Hardware Parameters (HWDEVICE) Register (Non-EHCI)

This register is not defined in the EHCI specification. The HWDEVICE register provides device hardware 
parameters for this implementation of the OTG module. Figure 39-5 shows the HWDEVICE register. 
Table 39-5 provides bit descriptions for the HWDEVICE register.

Offset: Base + 00Ch 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 DEVEP DC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

= Unimplemented or Reserved

Figure 39-5. Device Hardware Parameters (HWDEVICE) Register

Table 39-5. HWDEVICE Register Field Descriptions

Field Description

DEVEP Device endpoints. The number of supported endpoints; always 0x4.

DC Always 1 indicating the OTG module is device capable.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-11

39.2.1.1.5 Transmit Buffer Hardware Parameters (HWTXBUF) Register (non-EHCI)

The HWTXBUF register provides the transmit buffer parameters for this implementation of the module. 
Figure 39-6 shows the HWTXBUF register. Table 39-6 provides bit descriptions for the HWTXBUF 
register.

Offset: Base + 010h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R TXLC
R

0 0 0 0 0 0 0 TXCHANADD

W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R TXADD TXBURST

W

Reset 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0

= Unimplemented or Reserved

Figure 39-6. Transmit Buffer Hardware Parameters (HWTXBUF) Register

Table 39-6. HWTXBUF Register Field Descriptions

Field Description

TXLCR Reserved. Always 1.

TXCHANADD Transmit channel address. The number of address bits required to address one channel’s worth of TX data. 
Always 0x7 (7).

TXADD Transmit address. The number of address bits for the entire TX buffer. Always 0x9 (9).

TXBURST Transmit burst. Indicates the number of data beats in a burst for transmit DMA data transfers. 
Always 0x8 (8).

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-12 Freescale Semiconductor

39.2.1.1.6 Receive Buffer Hardware Parameters (HWRXBUF) Register (non-EHCI)

The HWRXBUF register provides the receive buffer parameters for this implementation of the module. 
Figure 39-7 shows the HWRXBUF register. Table 39-7 provides bit descriptions for the HWRXBUF 
register.

39.2.1.1.7 System Bus Interface Configuration (SBUSCFG) (Non-EHCI)

The SBUSCFG register contains the control for the systembus interface. Figure 39-8 shows the 
SBUSCFG register. Table 39-8 provides bit descriptions for the SBUSCFG register.

S

Offset: Base + 014h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R RXADD RXBURST

W

Reset 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

= Unimplemented or Reserved

Figure 39-7. Receive Buffer Hardware Parameters (HWRXBUF) Register

Table 39-7. HWRXBUF Register Field Descriptions

Field Description

RXADD Receive address. The number of address bits for the entire RX buffer. Always 0x8 (8).

RXBURST Receive burst. Indicates the number of data beats in a burst for receive DMA data transfers. Always 0x8 (8).

Offset: Base + 090h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0
AHBBRST

W

Reset 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-13

= Unimplemented or Reserved

Figure 39-8. System Bus Interface Configuratation (SBUSCFG) Register

Table 39-8. SBUSCFG Register Field Descriptions

Field Description

AHBBRST Selects the following options for the m_nburst signal of the AMBA Master Interface
000: INCR burst of unspecified length
001: INCR4, non-multiple transfers of INCR4 is decomposed into singles
010: INCR8, non-multiple transfers of INCR8, is decomposed into INCR4 or singles
011: INCR16, non-multiple transfers of INCR16, is decomposed into INCR8, INCR4 or singles
100: This value is reserved and should not be used
101: INCR4, non-multiple transfers of INCR4 is decomposed into smaller unspecified length bursts
110: INCR8, non-multiple transfers of INCR8 is decomposed into smaller unspecified length bursts
111:INCR16, non-multiple transfers of INCR16 is decomposed into smaller unspecified length bursts
In all cases where the unspecified length burst is allowed, singles access may also occur, this is mostly true 
when the transaction is not 32-bit aligned.
Two consecutive single accesses should not happen.
When a INCRx burst size is selected and the transfer is not multiple of the INCRx burst, the burst is 
decomposed in the different ways. With AHBBRST[2] = 1, the smaller bursts is unspecified length. with 
AHBBRST[2] = 0, the smaller bursts are smaller INCRx or singles. For example, lets say that it's required at 
a given time, to transfer 22 words of information, for the following values of AHBBRST the master sequence 
are:
101: INCR4+ INCR4 +INCR4+ INCR4 +INCR4+ INCR unspec. length
110: INCR8+INCR8+INCR4+ INCR unspec. length
111: INCR16+INCR4+ INCR unspec. length
001: INCR4+ INCR4 +INCR4+ INCR4 +INCR4+SINGLE+SINGLE
010: INCR8+INCR8+INCR4+SINGLE+SINGLE
011: INCR16+INCR4+SINGLE+SINGLE
When this field is different from zero, the value of the fields TXBURST/RXBURST in register BURSTSIZE 
160h, is ignored by the controller.
Internally the BURSTSIZE is set to the value of the INCRx AMBA burst. Since this has a direct relation with 
the burst sizes you must be careful with AHB burst selected. Although the TXBURST/RXBURST are 
bypassed, this register can be written/read with no effect while the AHBBRST field is non-zero.
Note: Setting the AHBBRST value to 000 might cause bus allocation during BULK or ISO transfers.

Note: Changing this AHBBRST field while an AMBA AHB transaction is in progress yields undefined results! 
One possible way of ensuring that no undefined results occur is to set the runstop bit to zero in the 
USBCMD register, after the HCHALTED is detected in USBSTS.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-14 Freescale Semiconductor

39.2.1.2 Capability Registers

The capability registers specify the software limits, restrictions, and capabilities of the host/device 
controller implementation. The EHCI specification defines most of these registers. Registers not defined 
by the EHCI specification are noted in their descriptions.

39.2.1.2.1 Capability Registers Length (CAPLENGTH)

This register is an offset to add to the register base address to find the beginning of the operational register 
space, the location of the USBCMD register. Figure 39-9 shows the CAPLENGTH register. Table 39-9 
provides bit descriptions for the CAPLENGTH register.

39.2.1.2.2 Host Controller Interface Version (HCIVERSION)

This is a two-byte register containing a BCD encoding of the EHCI revision number supported by this host 
controller. The most-significant byte of the register represents a major revision and the least-significant 
byte is the minor revision. Figure 39-11 shows the HCIVERSION register. Table 39-10 provides bit 
descriptions for the HCIVERSION register.

Offset: Base + 100h 

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 CAPLENGTH

W

Reset 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-9. Capability Registers Length (CAPLENGTH)

Table 39-9. CAPLENGTH Register Field Descriptions

Field Description

CAPLENGTH Capability registers length. Value is 0x40.

Offset: Base + 102h 

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R HCIVERSION

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-10. Host Controller Interface Version (HCIVERSION) Register

Table 39-10. HCIVERSION Register Field Descriptions

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-15

39.2.1.2.3 Host Controller Structural Parameters (HCSPARAMS) (EHCI-Compliant)

This register contains structural parameters such as the number of downstream ports. Figure 39-11 shows 
the HCSPARAMS register. Table 39-11 provides bit descriptions for the HCSPARAMS register.

HCIVERSION EHCI revision number. Value is 0x0100 indicating version 1.0.

Offset: Base + 104h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 N_TT N_PTT 0 0 0 PI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R N_CC N_PCC 0 0 0 PPC N_PORTS

W
Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

= Unimplemented or Reserved

Figure 39-11. Host Controller Structural Parameters (HCSPARAMS) Register

Table 39-11. HCSPARAMS Register Field Descriptions

Field Description

N_TT Number of transaction translators. This field is always reads 0.
N_PTT Ports per transaction translator. This field is always reads 0.

PI Port indicators. This bit indicates whether the ports support port indicator control. Always 1.
1 The port status and control registers include a r/w field for controlling the state of the port indicator.

N_CC Number of Companion Controllers. This field indicates the number of companion controllers associated with 
the OTG controller. This field is always 0.

N_PCC Number of Ports per Companion Controller. This field is always 0.

PPC Power Port Control. This bit indicates whether the host controller supports port power control.
N_PORTS Number of Ports. This field indicates the number of physical downstream ports implemented for host 

applications. The value of this field determines how many port registers are addressable in the operational 
register. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-16 Freescale Semiconductor

39.2.1.2.4 Host Controller Capability Parameters (HCCPARAMS)

This register identifies multiple mode control (time-base bit functionality) addressing capability. 
Figure 39-12 shows the HCCPARAMS register. Table 39-12 provides bit descriptions for the 
HCCPARAMS register.

Offset: Base + 108h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R EECP IST 0 ASP PFL ADC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

= Unimplemented or Reserved

Figure 39-12. Host Controller Capability Parameters (HCCPARAMS)

Table 39-12. HCCPARAMS Register Field Descriptions

Field Description

EECP EHCI Extended Capabilities Pointer. This optional field indicates existence of a capabilities list. A value of 
0x00 indicates no extended capabilities are implemented. A non-zero value in this register indicates the offset 
in PCI configuration space of the first EHCI extended capability. The pointer value must be 0x40 or greater if 
implemented to maintain the consistency of the PCI header defined for this class of device. 

This field is always 0.

IST Isochronous Scheduling Threshold. This field indicates, relative to the current position of the executing host 
controller, where software can reliably update the isochronous schedule. When bit [7] is 0, the value of the 
least significant three bits indicates the number of microframes a host controller can hold a set of isochronous 
data structures (one or more) before flushing the state. When bit [7] is a 1, host software assumes the host 
controller may cache an isochronous data structure for an entire frame.

This field is always 0.

ASP Asynchronous Schedule Park Capability. This bit indicates if the host controller supports the park feature for 
high-speed queue heads in the asynchronous schedule. The feature can be disabled or enabled and set to 
a specific level by using the asynchronous schedule park mode enable and asynchronous schedule park 
mode count fields in the USBCMD register.

This field is always 1 (park feature supported).

PFL Programmable Frame List Flag. This bit indicates system software can specify and use a frame list length 
less that 1024 elements. Frame list size is configured via the USBCMD register frame list size field. The frame 
list must always be aligned on a 4K page boundary. This requirement ensures the frame list is always 
physically contiguous.

This field is always 1.

ADC 64-Bit Addressing Capability. This field is always 0; Only 32-bit addressing is supported.
0 Data structures use 32-bit address memory pointers.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-17

39.2.1.2.5 Device Controller Interface Version (DCIVERSION)—Non-EHCI

This register is not defined in the EHCI specification. DCIVERSION is a two-byte register containing a 
BCD encoding of the device controller interface. The most-significant byte of the register represents a 
major revision and the least-significant byte is the minor revision. Figure 39-13 shows the DCIVERSION 
register. Table 39-13 provides bit descriptions for the DCIVERSION register.

Offset: Base + 120h

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DCIVERSION

W

Reset * * * * * * * * * * * * * * * *

= Unimplemented or Reserved

Figure 39-13. Host Controller Interface Version (DCIVERSION) Register

Table 39-13. HCIVERSION Register Field Descriptions

Field Description

DCIVERSION Device interface revision number: * is implementation dependent.
The device controller interface conforms to the two-byte BCD encoding of the interface version number 
contained in this register.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-18 Freescale Semiconductor

39.2.1.2.6 Device Controller Capability Parameters (DCCPARAMS)—Non-EHCI

This register is not defined in the EHCI specification. This register describes the overall host/device 
capability of the OTG module. Figure 39-14 shows the DCCPARAMS register. Table 39-14 provides bit 
descriptions for the DCCPARAMS register.

Offset: Base + 124h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 HC DC 0 0 DEN

W

Reset 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0

= Unimplemented or Reserved

Figure 39-14. Device Controller Capability Parameters (DCCPARAMS)

Table 39-14. DCCPARAMS Register Field Descriptions

Field Description

HC Host Capable. Always 1 indicating the OTG controller can operate as an EHCI compatible USB 2.0 host

DC Device Capable. Always 1, indicating the OTG controller can operate as an USB 2.0 device.
0 No device capability (host only).
1 Device capability.

DEN Device Endpoint Number. This field indicates the number of endpoints built into the device controller. Always 
0x4.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-19

39.2.1.3 Device/Host Timer Registers (Non-EHCI)

The host/device Controller drivers can measure time related activities using these timer registers. These 
registers are not part of the standard EHCI controller. 

There are two timers available (GPTIMER0LD and GPTIMER1LD), each with its own control register 
(GPTIMER0CTRL and GPTIMER1CTRL).

Figure 39-15 shows the GPTIMERxLD register. Table 39-15 provides bit descriptions for the 
GPTIMERxLD register.

Figure 39-16 shows the GPTIMERxCTRL register. Table 39-16 provides bit descriptions for the 
GPTIMERxCTRL register

.

This register contains the control for each timer and a data field can be queried to determine the running 
count value. The timer has a granularity of 1 us and can be programmed to a little over 16 seconds. There 
are two modes supported by the timer; the first is a one-shot, and the second is a looped count described 
in Table 39-17. When the timer counter value transitions to 0, an interrupt can be generated through the 
use of the timer interrupts in the USBSTS and USBINTR registers.

Offset: 

GPTIMER0LD: Base + 80h
GPTIMER1LD: Base + 88h

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0
GPTLD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
GPTLD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-15. General Purpose Timer Load Register (GPTIMERxLD)

Table 39-15. GPTIMERxLD Register Field Descriptions

Field Description

GPTLD GPTLD--General Purpose Timer Load Value. This field is the value loaded into the GPTCNT countdown timer 
on a reset action. This value represents the time in microseconds minus 1 for the timer duration.
Note: The maximum value is 0xFFFFFF.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-20 Freescale Semiconductor

39.2.1.4 Operational Registers

The operational registers are comprised of dynamic control or status registers that may be read-only, 
read/write, or read/write-1-to-clear. The following sections define the operational registers. 

Offset: 
GPTIMER0CTRL: Base + 84h 

GPTIMER1CTRL: Base + 8Ch

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
GPT
RUN

0 0 0 0 0 GPT
MOD

E

GPTCNT

W GPT
RST

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R GPTCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-16. General Purpose Timer Control Register (GPTIMERxCTRL)

Table 39-16. GPTIMERxCTRL Register Field Descriptions

Field Description

GPTRUN GPTRUN – General Purpose Timer Run. This bit enables the general purpose timer to run. Setting or clearing 
this bit does not have an effect on the GPTCNT value.
0 Timer Stop;
1 Timer Run

GPTRST GPTRST – General Purpose Timer Reset. Writing a 1 to this bit reloads the GPTCNT with the value in 
GPTLD.
0  No action
1 Load counter

GPTMODE GPTMODE – General Purpose Timer Mode. This bit selects between a single timer countdown and a looped 
count down. In one-shot mode, the timer counts down to zero, generate an interrupt and stop until the counter 
is reset by software. In repeat mode, the timer counts down to zero, generate an interrupt, and automatically 
reload the counter to begin again.

GPTCNT GPTCNT – General Purpose Timer Counter. Contains the value of the running timer.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-21

39.2.1.4.1 USB Command Register (USBCMD)

The module executes the command indicated in this register.

Offset: Base + 140h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 ITC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
FS2

ATDT
W

SUTW
0 ASP

E

0
ASP

LR
IAA ASE PSE FS1 FS0 RST RS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-17. USB Command Register (USBCMD)

Table 39-17. USBCMD Register Field Descriptions

Field Description

ITC Interrupt Threshold Control. The system software uses this field to set the maximum rate at which the module 
issues interrupts. ITC contains the maximum interrupt interval measured in microframes. Valid values are 
shown below.
0x00  Immediate (no threshold)
0x01  1 microframe
0x02  2 microframes
0x04  4 microframes
0x08  8 microframes
0x10  16 microframes
0x20  32 microframes
0x40 40 microframes

FS2 See bit 3:2 below. This is a non-EHCI bit. 

ATDTW Add dTD TripWire. This is a non-EHCI bit is present on the OTG module only. This bit acts as a semaphore 
when a dTD is added to an active (primed) endpoint. This bit is set and cleared by software. This bit is also 
cleared by hardware when the state machine is in a hazard region where adding a dTD to a primed endpoint 
may go unrecognized. More information on the use of this bit is described in Section 39.8.10.1, “Device 
Operation,” of this manual.

SUTW Setup TripWire. This is a non-EHCI bit present on the OTG module only. This bit acts as a semaphore when 
the 8 bytes of setup data read extracted from a QH by the DCD. If the setup lockout mode is off (See 
USBMODE), a hazard exists when new setup data arrives and the DCD is copying setup from the QH for a 
previous setup packet. This bit is set and cleared by software or cleared by hardware. More information on 
the use of this bit is described in Section 39.8.10.1, “Device Operation,” of this manual.

ASPE Asynchronous Schedule Park Mode Enable. Software uses this bit to enable or disable Park mode.
1 Enabled.
0 Disabled.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-22 Freescale Semiconductor

ASP Asynchronous Schedule Park Mode Count. It contains a count of the number of successive transactions the 
host controller is allowed to execute from a high-speed queue head on the asynchronous schedule before 
continuing traversal of the asynchronous schedule. Valid values are 0x1 to 0x3. Software must not write a 0 
to this field when park mode enable is a 1 as this results in undefined behavior.

LR Light Host/Device Controller Reset (OPTIONAL). Not Implemented. Always 0.

IAA Interrupt on Async Advance Doorbell. Software uses this bit as a doorbell to tell the controller to issue an 
interrupt the next time it advances asynchronous schedule. Software must write a 1 to this bit to ring the 
doorbell.
When the controller has evicted all appropriate cached schedule states, it sets the interrupt on async advance 
status bit in the USBSTS register. If the interrupt on sync advance enable bit in the USBINTR register is 1, 
the host controller asserts an interrupt at the next interrupt threshold.
The controller sets this bit to 0 after it has set the interrupt on sync advance status bit in the USBSTS register 
to 1. Software should not write a 1 to this bit when the asynchronous schedule is inactive. Doing so yields 
undefined results.
This bit is only used in host mode. Writing a 1 to this bit when the OTG module is in device mode has 
undefined results.

ASE Asynchronous Schedule Enable. This bit controls whether the controller skips processing the asynchronous 
schedule. Only used in host mode.
1 Use the ASYNCLISTADDR register to access the asynchronous schedule.
0 Do not process the asynchronous schedule.

PSE Periodic Schedule Enable. This bit controls whether the controller skips processing the periodic schedule. 
Only used in host mode.
1 Use the PERIODICLISTBASE register to access the periodic schedule.
0 Do not process the periodic schedule.

FS[1:0] Frame List Size. With bit 15, these bits make the FS[2:0] field. This field is read/write only if programmable 
frame list flag in the HCCPARAMS registers is set to 1. This field specifies the size of the frame list that 
controls which bits in the frame index register should be used for the frame list current index. Used only in 
host mode. Values below 256 elements are not defined in the EHCI specification.

Table 39-17. USBCMD Register Field Descriptions (continued)

Field Description

FS2 FS1 FS0 Descriptions

0 0 0 1024 elements (4096 bytes)

0 0 1 512 elements (2048 bytes)

0 1 0 256 elements (1024 bytes)

0 1 1 128 elements (512 bytes)

1 0 0 64 elements (256 bytes)

1 0 1 32 elements (128 bytes)

1 1 0 16 elements (64 bytes)

1 1 1 8 elements (32 bytes)

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-23

RST Controller Reset. Software uses this bit to reset the controller. This bit is set to 0 by the controller when the 
reset process is complete. Software cannot terminate the reset process early by writing a 0 to this register.
Host Mode: 
When software writes a 1 to this bit, the Host Controller resets its internal pipelines, timers, counters, state 
machines, etc. to their initial value. Any transaction currently in progress on USB is immediately terminated. 
A USB reset is not driven on downstream ports. Software should not set this bit to a 1 when the HCHalted bit 
in the USBSTS register is a zero. Attempting to reset an actively running host controller results in undefined 
behavior.
Device Mode:
When software writes a 1 to this bit, the OTG controller resets its internal pipelines, timers, counters, state 
machines, etc. to their initial value. Any transaction currently in progress on USB is immediately terminated. 
Writing a 1 to this bit in device mode is not recommended.

RS Run/Stop. 
Host Mode:
When set to a 1, the controller proceeds with the execution of the schedule. The controller continues 
execution as long as this bit is set to 1. When this bit is set to 0, the host controller completes the current 
transaction on the USB and then halts. The HC halted bit in the status register indicates when the host 
controller has finished the transaction and has entered the stopped state. Software should not write a 1 to 
this field unless the controller is in the halted state (i.e. HCHalted in the USBSTS register is a 1).
Device Mode: 
Writing a 1 to this bit causes the OTG controller to enable a pull-up on D+ and initiate an attach event. This 
control bit is not directly connected to the pull-up enable, as the pull-up becomes disabled upon transitioning 
into high-speed mode. Software should use this bit to prevent an attach event before the OTG controller has 
been properly initialized. Writing a 0 to this causes a detach event.
1  Run.
0 Stop.

Table 39-17. USBCMD Register Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-24 Freescale Semiconductor

39.2.1.4.2 USB Status Register (USBSTS)

This register indicates various states of each module and any pending interrupts. This register does not 
indicate status resulting from a transaction on the serial bus. Software clears certain bits in this register by 
writing a 1 to them (indicated by a W1C in the bit’s W cell in the figure).

Offset: Base + 144h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 TI1 TI0 0 0 0 0 UPI UAI 0 NAKI

W
W1C W1C

W1
C

W1
C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R AS PS RCL HCH 0 ULPII 0 SLI SRI URI AAI SEI FRI PCI UEI UI

W
W1C W1C W1C W1C W1C

W1
C

W1
C

W1
C

W1C W1C

Reset 0 0 0 0 0 0 0 0 0* 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-18. USB Status Register (USBSTS)

Table 39-18. USBSTS Register Field Descriptions

Field Description

TI1 General Purpose Timer Interrupt 1 (GPTINT1). This bit is set when the counter in the GPTIMER1CTRL 
(Non-EHCI) register transitions to 0. Writing a 1 to this bit clears it.

TI0 General Purpose Timer Interrupt 0 (GPTINT0). This bit is set when the counter in the GPTIMER0CTRL 
(Non-EHCI) register transitions to 0. Writing a 1 to this bit clears it.

UPI USB Host Periodic Interrupt (USBHSTPERINT). This bit is set by the host controller when the cause of an 
interrupt is a completion of a USB transaction where the transfer descriptor (TD) has an interrupt on complete 
(IOC) bit set and the TD was from the periodic schedule.
This bit is also set by the host controller when a short packet is detected and the packet is on the periodic 
schedule. A short packet is when the actual number of bytes received was less than the expected number of 
bytes.
This bit is not used by the device controller and is always zero.

UAI USB Host Asynchronous Interrupt (USBHSTASYNCINT). This bit is set by the host controller when the cause 
of an interrupt is a completion of a USB transaction where the transfer descriptor (TD) has an interrupt on 
complete (IOC) bit set and the TD was from the asynchronous schedule.
This bit is also set by the Host when a short packet is detected and the packet is on the asynchronous 
schedule. A short packet is when the actual number of bytes received was less than the expected number of 
bytes.
The device controller does not use this bit and it is always zero.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-25

NAKI NAK Interrupt Bit. This bit is read-only. It is set by hardware when for a particular endpoint both the TX/RX 
endpoint NAK bit and the corresponding TX/RX endpoint NAK enable bit are set. This bit is automatically 
cleared by hardware when the all the enabled TX/RX endpoint NAK bits are cleared.

AS Asynchronous Schedule Status. This bit reports the current real status of the asynchronous schedule. The 
controller is not required to immediately disable or enable the asynchronous schedule when software 
transitions the asynchronous schedule enable bit in the USBCMD register. When this bit and the 
asynchronous schedule enable bit are the same value, the asynchronous schedule is enabled (1) or disabled 
(0). Used only in host mode.
1 Enabled.
0 Disabled.

PS Periodic Schedule Status. This bit reports the current real status of the periodic schedule. The controller is 
not required to immediately disable or enable the periodic schedule when software transitions the periodic 
schedule enable bit in the USBCMD register. When this bit and the periodic schedule enable bit are the same 
value, the periodic schedule is enabled (1) or disabled (0). Used only in host mode.
1 Enabled.
0 Disabled.

RCL Reclamation. This is a status bit that detects an empty asynchronous schedule. Used only by the host mode.
1 Empty asynchronous schedule.
0 Non-empty asynchronous schedule.

HCH HCHaIted. This is a zero bit when the run/stop bit is a 1. The controller sets this bit to 1 after it has stopped 
executing because of the run/stop bit being set to 0, by software or the host controller hardware (e.g. internal 
error). Used only in host mode.
1 Halted.
0 Running.

ULPII
ULPI Interrup. When the ULPI Viewport is present in the design, an event completion sets this interrupt.

SLI DCSuspend. This is a non-EHCI bit present on the OTG module only. When a device controller enters a 
suspend state from an active state, this bit is set. This bit is only cleared by software writing a 1 to it.. Only 
used by the device controller.
1 Suspended.
0 Active.

SRI Host mode:*
This is a non-EHCI status bit. In host mode, this bit is set every 125us, provided the PHY clock is present and 
running (e.g. the port is NOT suspended). Tthe host controller driver can use it as a time base. 
Device mode:
SOF Received. When the OTG controller detects a Start Of (micro) Frame, this bit is be set to a 1. When a 
SOF is extremely late, the OTG controller automatically sets this bit to indicate an SOF was expected. 
Therefore, this bit is set roughly every 1 msec in device FS mode and every 125 msec in HS mode and is 
synchronized to the actual SOF received. Since the OTG controller is initialized to FS before connect, this bit 
is set at an interval of 1 msec during the prelude to the connect and chirp.
Software writes a 1 to this bit to clear it.

URI USB Reset Received. This is a non-EHCI bit present on the OTG module only. When the OTG controller 
detects a USB Reset and enters the default state, this bit is set to a 1. Software can write a 1 to this bit to 
clear the USB Reset Received status bit. Only used by the device mode.
1 Reset received.
0 No reset received.

AAI Interrupt on Async Advance. System software can force the controller to issue an interrupt the next time the 
controller advances the asynchronous schedule by writing a 1 to the interrupt on async advance doorbell bit 
in the USBCMD register. This status bit indicates the assertion of that interrupt source. Only used by the host 
mode.
1 Async advance interrupt.
0 No async advance interrupt.

Table 39-18. USBSTS Register Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-26 Freescale Semiconductor

SEI System Error. This bit is set when an error is detected on the system bus. If the system error enable (SEE) 
bit in the USBINTR is set, an interrupt is generated. The interrupt and status bits remain asserted until cleared 
by writing a 1 to this bit. Additionally, when in host mode, the RUN/STOP (RS) bit of the USBCMD register is 
cleared, effectively disabling the controller. For the OTG controller in device mode, an interrupt is generated, 
but no other action is taken.
1 Error.
0 Normal operation.

FRI Frame List Rollover. The controller sets this bit to 1 when the frame list index rolls over from its maximum 
value to 0. The exact value at which the rollover occurs depends on the frame list size. For example, if the 
frame list size (as programmed in the frame list size field of the USBCMD register) is 1024, the frame index 
register rolls over every time FRINDEX [1 3] toggles. Similarly, if the size is 512, the controller sets this bit to 
a 1 every time FHINDEX [12] toggles. Used only by the host mode.

PCI Host mode:
Port Change Detect. The controller sets this bit to 1 when on any port a connect status occurs, a port 
enable/disable change occurs, or the force port resume bit is set as the result of a J-K transition on the 
suspended port.
Device mode:
The OTG controller sets this bit to 1 when it enters the full or high-speed operational state. When the USB 
exits full or high-speed operation states due to reset or suspend events, the notification mechanisms are the 
USB reset received bit and the DCSuspend bits respectively. The device controller detects resume signalling 
only..
This bit is not EHCI compatible.

UEI
(USBERRINT)

USB Error Interrupt (USBERRINT). When completion of a USB transaction results in an error condition, this 
bit is set by the controller. This bit is set along with the USBINT bit, if the TD on which the error interrupt 
occurred also had its interrupt on complete (IOC) bit set. See Table 39-99 in this chapter for more information 
on device error matrix. All others are ignored.
1 Error detected.
0 No error.

UI
(USBINT)

USB Interrupt (USBINT). This bit is set by the controller when the cause of an interrupt is a completion of a 
USB transaction where the Transfer Descriptor (TD) has an interrupt on complete (IOC) bit set. This bit is also 
set by the controller when a short packet is detected. A short packet is when the actual number of bytes 
received was less than the expected number of bytes.

Table 39-18. USBSTS Register Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-27

39.2.1.4.3 USB Interrupt Enable Register (USBINTR)

The interrupts to software are enabled with this register. An interrupt is generated when a bit is set and the 
corresponding interrupt is active. The USB Status register (USBSTS) continues to show interrupt sources 
even if the USBINTR register disables them, allowing polling of interrupt events by the software.

.

Offset: Base + 148h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
0 0 0 0 0 0

TIE1 TIE0
0 0 0 0

UPI
A

UAI
E

0 NAKE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 ULPI
E

0
SLE SRE URE AAE SEE

FR
E

PC
E

UEE UE
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-19. USB Interrupt Enable Register (USBINTR)

Table 39-19. USBINTR Register Field Descriptions

Field Description

TIE1 General Purpose Timer Interrupt Enable 1
When this bit is a 1 and the GPTINT1 bit in the USBSTS register is also a 1, the controller issues an interrupt. 
The interrupt is acknowledged by software clearing the GPTINT1 bit.

TIE0 General Purpose Timer Interrupt Enable 0
When this bit is a 1 and the GPTINT0 bit in the USBSTS register is also a 1, the controller issues an interrupt. 
The interrupt is acknowledged by software clearing the GPTINT0 bit. 

UPIA USB Host Periodic Interrupt Enable
When this bit is a 1 and the USBHSTPERINT bit in the USBSTS register is also a 1, the host controller issues 
an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the 
USBHSTPERINT bit.

UAIE USB Host Async. Interrupt Enable
When this bit is a 1 and the USBHSTASYNCINT bit in the USBSTS register is also a 1, the host controller 
issues an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the 
USBHSTASYNCINT bit.

NAKE NAK Interrupt Enable
Software sets this bit if it wants to enable the hardware interrupt for the NAK Interrupt bit. If this bit and the 
corresponding NAK Interrupt bit are set, a hardware interrupt is generated.

ULPIE ULPI Enable
When this bit is a 1 and the ULPI interrupt bit in the USBSTS register transitions, the controller issues an 
interrupt. The interrupt is acknowledged by software writing a 1 to the ULPI Interrupt bit.
Used by both host and device controller.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-28 Freescale Semiconductor

SLE Sleep Enable. This is a non-EHCI bit. When this bit is a 1 and the DCSuspend bit in the USBSTS register 
transitions, the OTG controller issues an interrupt. The interrupt is acknowledged by software writing a 1 to 
the DCSuspend bit. Used only in device mode.
1 Enable.
0 Disable.

SRE SOF Received Enable. This is a non-EHCI bit. When this bit is a 1 and the SOF Received bit in the USBSTS 
register is a 1, the controller issues an interrupt. The interrupt is acknowledged by software clearing the SOF 
received bit.
1 Enable.
0 Disable.

URE USB Reset Enable. This is a non-EHCI bit present on the OTG module only. When this bit is a 1 and the USB 
reset received bit in the USBSTS register is a 1, the device controller issues an interrupt. The interrupt is 
acknowledged by software clearing the USB reset received bit. Used only in device mode.
1 Enable.
0 Disable.

AAE Interrupt on Async Advance Enable. When this bit is a 1 and the interrupt on async advance bit in the 
USBSTS register is a 1, the controller issues an interrupt at the next interrupt threshold. The interrupt is 
acknowledged by software clearing the interrupt on async advance bit. Used only in host mode.
1 Enable.
0 Disable.

SEE System Error Enable. When this bit is a 1 and the system error bit in the USBSTS register is a 1, the controller 
issues an interrupt. The interrupt is acknowledged by software clearing the system error bit.
1 Enable.
0 Disable.

FRE Frame List Rollover Enable. When this bit is a 1 and the frame list rollover bit in the USBSTS register is a 1, 
the controller issues an interrupt. The interrupt is acknowledged by software clearing the frame list rollover 
bit. Used only by the host mode.
1 Enable.
0 Disable.

PCE Port Change Detect Enable. When this bit is a 1 and the port change detect bit in the USBSTS register is a 
1, the controller issues an interrupt. The interrupt is acknowledged by software clearing the port change 
detect bit.
1 Enable.
0 Disable.

UEE USB Error Interrupt Enable. When this bit is a 1 and the USBERRINT bit in the USBSTS register is a 1, the 
controller issues an interrupt at the next interrupt threshold. The interrupt is acknowledged by software 
clearing the USBERRINT bit in the USBSTS register.
1 Enable.
0 Disable.

UE USB Interrupt Enable. When this bit is a 1 and the USBINT bit in the USBSTS register is a 1, the OTG 
controller issues an interrupt at the next interrupt threshold. The interrupt is acknowledged by software 
clearing the USBINT bit.
1 Enable.
0 Disable.

Table 39-19. USBINTR Register Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-29

39.2.1.4.4 Frame Index Register (FRINDEX)

In host mode, the controller uses this register to index the periodic frame list. The register updates every 
125 microseconds (once each microframe). Bits [N–3] select a particular entry in the periodic frame list 
during periodic schedule execution. The number of bits used for the index depends on the size of the frame 
list as set by system software in the frame list size field in the USBCMD register.

This register must be written as a 32-bit word. Byte writes produce-undefined results. This register cannot 
be written unless the OTG controller is in the halted state as indicated by the HCHalted bit. A write to this 
register while the run/stop hit is set to a 1 produces undefined results. Writes to this register also affect the 
SOF value.

In device mode, this register is read-only, and the OTG controller updates the FRINDEX[13–3] register 
from the frame number indicated by the SOF marker. When a SOF is received by the USB bus, 
FRINDEX[13–3] is checked against the SOF marker. If FRINDEX[13–3] is different from the SOF 
marker, FRINDEX[13–3] is set to the SOF value and FRINDEX[2–0] is set to 0 (that is, SOF for 1 msec 
frame). If FRINDEX[13–3] is equal to the SOF value, FRINDEX[2–0] is incremented (that is, SOF for 
125 µsec microframe.)

Table 39-20 illustrates values of N based on the value of the frame list size in the USBCMD register when 
used in host mode.

Table 39-20. FRINDEX N Values 

USBCMD[FS] Frame List Size FRINDEX N Value

000 1024 elements (4096 bytes) 12

001 512 elements (2048 bytes) 11

010 256 elements (1024 bytes) 10

011 128 elements (512 bytes) 9

100 64 elements (256 bytes) 8

101 32 elements (128 bytes) 7

110 16 elements (64 bytes) 6

111 8 elements (32 bytes) 5

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-30 Freescale Semiconductor

Offset: Base + 14Ch 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0
FRINDEX

W

Reset 0 0 n n n n n n n n n n n n n n

= Unimplemented or Reserved

Figure 39-20. USB Frame Index Register (FRINDEX)

Table 39-21. FRINDEX Register Field Descriptions

Field Description

FRINDEX Frame index. The value in this register increments at the end of each time frame (for example, microframe). 
Bits [N– 3] are used for the frame list current index. This means that each location of the frame list is accessed 
8 times (frames or microframes) before moving to the next index.
The value is the current frame number of the last frame transmitted. It is not used as an index.
Bits 2–0 indicate the current microframe.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-31

39.2.1.4.5 Control Data Structure Segment Register (CTRLDSSEGMENT)

The CTRLDSSEGMENT register is not implemented on the MPC5121e.

39.2.1.4.6 Periodic Frame List Base Address Register (PERIODICLISTBASE)

This register contains the beginning address of the Periodic Frame List in the system memory. The host 
controller driver loads this register prior to starting the schedule execution by the controller. The memory 
structure referenced by this physical memory pointer is assumed to be 4-Kbyte aligned. The contents of 
this register are combined with the frame index register (FRINDEX) to enable the controller to step 
through the periodic frame list in sequence.

On the OTG module, this register is shared between the host and device mode functions. In host mode, it 
is the PERIODICLISTBASE register; in device mode, it is the DEVICEADDR register. See 
Section 39.2.1.4.7, “Device Address Register (DEVICEADDR)—Non-EHCI,” for more information.

Offset: Base + 154h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PERBASE

W

Reset 0 0 0 0 0 0 0 0n 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PERBASE (con’t)

0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-21. Periodic Frame List Base Address Register (PERIODICLISTBASE)

Table 39-22. PERIODICLISTBASE Register Field Descriptions

Field Description

PERBASE Base Address. These bits correspond to memory address signal [31:12]. Only used in the host mode.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-32 Freescale Semiconductor

39.2.1.4.7 Device Address Register (DEVICEADDR)—Non-EHCI

This register is not defined in the EHCI specification. For the OTG module in device mode, the upper 
seven bits of this register represent the device address. After any controller reset or a USB reset, the device 
address is set to the default address (0). The default address matches all incoming addresses. Software 
reprograms the address after receiving a SET_ADDRESS descriptor.

The USBADRA can accelerate the SET_ADDRESS sequence by allowing the DCD to preset the 
USBADR register before the status phase of the SET_ADDRESS descriptor.

On the OTG module, this register is shared between the host and device mode functions. In device mode, 
it is the DEVICEADDR register; in host mode, it is the PERIODICLISTBASE register. See 
Section 39.2.1.4.6, “Periodic Frame List Base Address Register (PERIODICLISTBASE),” for more 
information.

Offset: Base + 154h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
USBADR

USBA
DRA

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-22. Device Address Register (DEVICEADDR)

Table 39-23. DEVICEADDR Register Field Descriptions

Field Description

USBADR Device Address. This field corresponds to the USB device address.

USBADRA Device Address Advance. Default=0. When this bit is 0, any writes to USBADR are instantaneous. When this 
bit is written to a 1 at the same time or before USBADR is written, the write to the USBADR field is staged 
and held in a hidden register. After an IN occurs on endpoint 0 and is ACKed, USBADR is loaded from the 
holding register.
Hardware automatically clears this bit on the following conditions:
1)IN is ACKed to endpoint 0. (USBADR is updated from staging register).
2)OUT/SETUP occur to endpoint 0. (USBADR is not updated).
3)Device Reset occurs (USBADR is reset to 0).
Note: After the status phase of the SET_ADDRESS descriptor, the DCD has 2 ms to program the USBADR 

field. This mechanism ensures this specification is met when the DCD cannot write to the device 
address within 2ms from the SET_ADDRESS status phase. If the DCD writes the USBADR with 
USBADRA equaling 1 after the SET_ADDRESS data phase (before the prime of the status phase), 
the USBADR is programmed instantly at the correct time and meets the 2ms USB requirement.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-33

39.2.1.4.8 Current Asynchronous List Address Register (ASYNCLISTADDR)

This 32-bit register contains the address of the next asynchronous queue head to be executed by the host. 
Bits [4–0] of this register cannot be modified by the system software and always return zeros when read.

On the OTG module, this register is shared between the host and device mode functions. In host mode, it 
is the ASYNCLISTADDR register; in device mode, it is the ENDPOINTLISTADDR register. See 
Section 39.2.1.4.9, “Endpoint List Address Register (ENDPOINTLISTADDR)— Non-EHCI,” for more 
information.

Offset: Base + 158h

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ASYBASE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ASYBASE (con’t)

0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-23. Current Asynchronous List Address Register (ASYNCLISTADDR)

Table 39-24. ASYNCLISTADDR Register Field Descriptions

Field Description

ASYBASE Link Pointer Low (LPL). These bits correspond to memory address signal [31:5]. This field may only reference 
a queue head (QH). Only used by the host controller.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-34 Freescale Semiconductor

39.2.1.4.9 Endpoint List Address Register (ENDPOINTLISTADDR)— Non-EHCI

This register is not defined in the EHCI specification. For the OTG module in device mode, this register 
contains the address of the top of the endpoint list in system memory. Bits [10–0] of this register cannot 
be modified by the system software and always return zeros when read. The memory structure referenced 
by this physical memory pointer is assumed to be 64 bytes. The queue head is actually a 48-byte structure, 
but must be aligned on a 64-byte boundary. However, the ENDPOINTLISTADDR[EPBASE] has a 
granularity of 2 Kbytes, so in practice the queue head should be 2-Kbyte aligned.

On the OTG module, this register is shared between the host and device mode functions. In device mode, 
it is the ENDPOINTLISTADDR register; in host mode, it is the ASYNCLISTADDR register. See 
Section 39.2.1.4.8, “Current Asynchronous List Address Register (ASYNCLISTADDR),” for more 
information. 

Offset: Base + 158h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
EPBASE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EPBASE(con’t)

0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-24. Endpoint List Address Register (ENDPOINTLISTADDR)

Table 39-25. ENDPOINTLISTADDR Register Field Descriptions

Field Description

EPBASE Endpoint List Address. Address of the top of the endpoint list.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-35

39.2.1.4.10 Host Controller Embedded TT Asynchronous Buffer Status

This register contains parameters for internal TT operations. This register is not used in device controller 
operation

Offset: Base + 15Ch 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
R TTHA Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Reserved

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-25. Host Controller Embedded TT Asynchronous Buffer Status

Table 39-26. TTCTRL Register Field Descriptions

Field Description

TTHA Internal TT Hub Address Representation. Default is 0 (read/write). This field matches against the hub 
address field in QH and siTD to determine if the packet is routed to the internal TT for directly attached FS/LS 
devices. If the hub address in the QH or siTD does not match this address, the packet is broadcast on the 
high speed ports destined for a downstream high speed hub with the address in the QH/siTD.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-36 Freescale Semiconductor

39.2.1.4.11 Master Interface Data Burst Size Register (BURSTSIZE)—Non-EHCI

This register is not defined in the EHCI specification. This register controls and dynamically changes the 
burst size used during data movement on the initiator (master) interface.

Offset: Base + 160h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
TXPBURST RXPBURST

W

Reset 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

= Unimplemented or Reserved

Figure 39-26. Master Interface Data Burst Size Register (BURSTSIZE)

Table 39-27. BURSTSIZE Register Field Descriptions

Field Description

TXPBURST Programmable TX Burst Length. This register represents the maximum length of a burst in 32-bit words while 
moving data from system memory to the USB bus.
If field AHBBRST of register SBUSCFG(090h) is different from zero, this field TXPBRUST returns the value 
of the INCRx length.

RXPBURST Programmable RX Burst Length. This register represents the maximum length of a burst in 32-bit words while 
moving data from the USB bus to system memory.
If field AHBBRST of register SBUSCFG(090h) is different from zero, this field RXPBRUST returns the value 
of the INCRx length.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-37

39.2.1.4.12 Transmit FIFO Tuning Controls Register (TXFILLTUNING)—Non-EHCI

This register is not defined in the EHCI specification. This register controls and dynamically changes the 
burst size used during data movement on device DMA transfers. It is only used in host mode.

The fields in this register control performance tuning associated with how the module posts data to the TX 
latency FIFO before moving the data onto the USB bus. The specific areas of performance include how 
much data to post into the FIFO and an estimate for how long that operation should take in the target 
system. 

Definitions: 
T0 = Standard packet overhead 
T1 = Time to send data payload 
Ts = Total Packet Flight Time (send-only) packet (Ts = T0 + T1)
Tff = Time to fetch packet into TX FIFO up to specified level. 
Tp = Total Packet Time (fetch and send) packet (Tp = Tff + Ts)

Upon discovery of a transmit (OUT/SETUP) packet in the data structures, host controller checks to ensure 
Tp remains before end of the [micro]frame. If so it proceeds to pre-fill the TX FIFO. If at anytime during 
the pre-fill operation the time remaining in the [micro]frame is < Ts, packet attempt ceases and the packet 
is tried at a later time. Although this is not an error condition and the module eventually recovers, a mark 
is made in the scheduler health counter to show the occurrence of a back-off event. When a back-off event 
is detected, the partial packet fetched may need to be discarded from the latency buffer to make room for 
periodic traffic that begins after the next SOF. Too many back-off events can waste bandwidth and power 
on the system bus and should be minimized (not necessarily eliminated). Use of the TSCHHEALTH (Tff) 
parameter described below minimizes back-offs.

Offset: Base + 164h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0
TXFIFOTHRES

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 TXSCHHEALTH 0
TXSCHOH

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-27. Transmit FIFO Timing Controls (TXFILLTUNING) Register

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-38 Freescale Semiconductor

Table 39-28. TXFILLTUNING Register Field Descriptions

Field Description

TXFIFOTHRES FIFO Burst Threshold. This register controls the number of data bursts posted to the TX latency FIFO in host 
mode before the packet begins on to the bus. The minimum value is two and this value should be as low as 
possible to maximize USB performance. A higher value can be used in systems with unpredictable latency 
and/or insufficient bandwidth where the FIFO may underrun because the data transferred from the latency 
FIFO to USB occurs before it can be replenished from system memory. This value is ignored if the stream 
disable bit in USBMODE register is set.

TXSCHHEALTH Scheduler Health Counter. These bits increment when the OTG controller fails to fill the TX latency FIFO to 
the level programmed by TXFIFOTHRES before running out of time to send the packet before the next 
Start-Of-Frame.
This health counter measures the number of times this occurs to provide feedback to selecting a proper 
TXSCHOH. Writing to this register clears the counter, and this counter maxes at 31.

TXSCHOH Scheduler Overhead. These bits add an additional fixed offset to the schedule time estimator described 
above as Tff. As an approximation, the value chosen for this register should limit the number of back-off 
events captured in the TXSCHHEALTH to less than 10 per second in a highly utilized bus. Choosing a value 
too high for this register is not desired as it can needlessly reduce USB utilization.
The time unit represented in this register is 1.267μs when a device is connected in high-speed mode.
The time unit represented in this register is 6.333μs when a device is connected in low/full-speed mode.
For most applications, TXSCHOH can be set to 4 or less. A good value to begin with is: TXFIFOTHRES * 
(BURSTSIZE * 4 bytes-per-word)/(40 * TimeUnit), always rounded to the next higher integer. TimeUnit is 
either 1.267 or 6.333 as noted earlier in this description. For example, if TXFIFOTHRES is 5 and BURSTSIZE 
is 8, set TXSCHOH to 5*(8*4)/(40*1.267) = 4 for a high-speed link. If this value of TXSCHOH results in a 
TXSCHHEALTH count of 0 per second, try lowering the value by 1 if optimizing performance is desired. If 
TXSCHHEALTH exceeds 10 per second, try raising the value by 1.
If streaming mode is disabled via the USBMODE register, treat TXFIFOTHRES as the maximum value for 
purposes of the TXSCHOH calculation.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-39

39.2.1.4.13 ULPI Viewport Register (ULPIVIEWPORT)

This register provides indirect access to the ULPI PHY register set. Although the core performs access to 
the ULPI PHY register set, extraordinary circumstances may exist where software may need direct access.

CAUTION
Writes to the ULPI through the viewport can substantially harm standard 
USB operations. Read operation should have no harmful side-effects to 
standard USB operations.

Two operations, wake-up and read/write, can be performed with the ULPI Viewport. Wake-up operation 
puts the ULPI interface into normal operation mode and re-enables the clock if necessary. A wakeup 
operation is required before accessing the registers when ULPI interface is operating in low-power mode, 
serial mode, or carkit mode. The ULPI state can be determined by reading the sync. state bit (ULPISS). If 
this bit is a 1, ULPI interface is running in normal operation mode and can accept read/write operations. 
If the ULPISS indicates a 0, read/write operations are not able to execute. Undefined behavior results if 
ULPISS equals 0 and a read or write operation is performed. To execute a wakeup operation, write all 
32-bits of the ULPI Viewport where ULPIPORT is constructed appropriately and the ULPIWU bit is 1 and 
ULPIRUN bit is 0. Poll the ULPI viewport until ULPIWU is zero for the operation to complete.

To execute a read or write operation, write all 32-bits of the ULPI Viewport where ULPIDATWR, 
ULPIADDR, ULPIPORT, and ULPIRW are constructed appropriately and the ULPIRUN bit is 1. Poll the 
ULPI Viewport until ULPIRUN is zero for the operation to complete. After ULPIRUN is zero, 
ULPIDATRD is valid if the operation was a read.

The polling method above could also be replaced by an interrupt driven routine using the ULPI interrupt 
defined in the USBSTS and USBINTR registers. When a wakeup or read/write operation complete, the 
ULPI interrupt is set.

There are several optional features that system software may need to enable or disable as part of system 
configuration. These bits are contained in the interface and OTG control registers of the ULPI PHY 
register set. These registers also contain bits controlled by the link dynamically and therefore should only 
be modified by system software using the set/clear access method. Direct writes to these registers could 
have harmful side effects to the standard USB operations. The optional bits are as follows: bits 3 through 
7 in the interface control register and bits 6 and 7 in the OTG control register. Refer to the ULPI 
Specification Revision 1.1 for further information on the use of the optional features.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-40 Freescale Semiconductor

Offset: Base + 170h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
ULPI
WU

ULPI
RUN

ULPIR
W

R

ULPI
SS ULPIPORT ULPIADDR

W

Reset 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ULPIDARD
ULPIDATWR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-28. ULPI VIEWPORT Register (ULPIVIEWPORT)

Table 39-29. ULPIVIEWPORT Register Field Descriptions

Field Description

ULPIWU ULPI Wakeup. Writing the 1 to this bit begins the wakeup operation. The bit automatically transitions to 0 after 
the wakeup is complete. After this bit is set, the driver cannot set it back to 0.
Note: The driver must never execute a wake-up and a read/write operation at the same time.

ULPIRUN ULPI Read/Write Run. Writing the 1 to this bit begins the read/write operation. The bit automatically 
transitions to 0 after the read/write is complete. After this bit is set, the driver cannot set it back to 0.
Note: The driver must never execute a wake-up and a read/write operation at the same time.

ULPIRW ULPI Read/Write Control. This bit selects between running a read or a write operation
0> read
1> write

ULPISS ULPI Sync State. This bit represents the state of the ULPI interface. Before reading this bit, the ULPIPORT 
field should be set accordingly if used with the multi-port host. Otherwise, this field should always remain 0.
1> Normal sync state
0> In another state (e.g. carkit, low power)

ULPIPORT ULPI Port Number. For the wakeup or read/write operation to be executed, this value selects the port number 
the ULPI PHY is attached to in the multi-port host. The range is 0 to 7. This field should always be written as 
a 0 for the non-multi port products.

ULPIADDR ULPI Data Address—When a read or write operation is commanded, the address of the operation is written 
to this field.

ULPIDATRD ULPI Data Read Value—After a read operation completes, the result is placed in this field.

ULPIDATWR ULPI Data Write Value—When a write operation is commanded, the data to be sent is written to this field.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-41

39.2.1.4.14 Endpoint NAK (ENDPTNAK)

Offset: Base + 178h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R EPTN

W W1C

Reset 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R EPRN

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

= Unimplemented or Reserved

Figure 39-29. Endpoint NAK (ENDPTNAK)

Table 39-30. Endpoint NAK Register Field Descriptions

Field Description

EPTN TX Endpoint NAK—Each TX endpoint has 1 bit in this field. The bit is set when the device sends a NAK 
handshake on a received IN token for the corresponding endpoint.
EPTN[3] - Endpoint #3
EPTN[2] - Endpoint #2
EPTN[1] - Endpoint #1
EPTN[0] - Endpoint #0

EPRN RX Endpoint NAK—Each RX endpoint has 1 bit in this field. The bit is set when the device sends a NAK 
handshake on a received OUT or PING token for the corresponding endpoint.
EPRN[3] - Endpoint #3 
EPRN[2] - Endpoint #2
EPRN[1] - Endpoint #1
EPRN[0] - Endpoint #0

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-42 Freescale Semiconductor

39.2.1.4.15 Endpoint NAK Enable

Offset: Base + 17Ch 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R EPTNE

W W1C

Reset 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R EPRNE

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

= Unimplemented or Reserved

Figure 39-30. Endpoint NAK Enable Register (ENDPTNAKEN)

Table 39-31. Endpoint NAK Enable Register Field Descriptions

Field Description

EPTNE TX Endpoint NAK—Each bit is an enable bit for the corresponding TX Endpoint NAK bit. If this bit is set and 
the corresponding TX Endpoint NAK bit is set, the NAK Interrupt bit is set.
EPTNE[3] - Endpoint #3
EPTNE[2] - Endpoint #2
EPTNE[1] - Endpoint #1
EPTNE[0] - Endpoint #0

EPRNE RX Endpoint NAK—Each bit is an enable bit for the corresponding RX Endpoint NAK bit. If this bit is set and 
the corresponding RX Endpoint NAK bit is set, the NAK Interrupt bit is set.
EPRNE[3] - Endpoint #3
EPRNE[2] - Endpoint #2
EPRNE[1] - Endpoint #1
EPRNE[0] - Endpoint #0

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-43

39.2.1.4.16 Configure Flag Register (CONFIGFLAG)

This EHCI register is not used in this implementation. A read from this register returns a constant of 
0x0000_0001 to indicate all port routings default to this host controller.

39.2.1.4.17 Port Status and Control Registers (PORTSCn)

The OTG module has one port status and control register. The number of port registers implemented by a 
particular instantiation of a host controller is documented in the HCSPARAMs register. Software uses this 
information as an input parameter to determine how many ports need service. This register is only reset 
when power is initially applied or in response to a controller reset. The initial conditions of a port are:

• No device connected
• Port disabled

If the port has port power control, this state remains until software applies power to the port by setting port 
power bit to one.

For the OTG module in device mode, the OTG controller does not support power control. Port control in 
device mode is only for status port reset, suspend, and current connect status. It also initiates test mode or 
forces signaling and allows software to put the PHY into low-power suspend mode and disable the PHY 
clock.

Offset: Base + 180h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

= Unimplemented or Reserved

Figure 39-31. Configure Flag Register (CONFIGFLAG)

Table 39-32. CONFIGFLAG Register Field Descriptions

Field Description

— Reserved. (0x0000_0001, all port routings default to this host)

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-44 Freescale Semiconductor

Offset: Base + 184h + (4*(Port Number –1))

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
PTS

0
PTW

PSPD 0
PFSC PHCD WKOC WKDS

WKC
N

PTC
W

Reset 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

PIC PO PP

LS HSP

PR SUSP FPR

OCC OCA
PE
C

PE

CSC CCS

W
W1C

W1
C

W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

= Unimplemented or Reserved

Figure 39-32. Port Status and Control Register (PORTSCn)

Table 39-33. PORTSCn Register Field Descriptions

Field Description

PTS Port Transceiver Select. This register bit controls which parallel transceiver interface is selected.
00 UTMI parallel interface 
01 Reserved
10 ULPI parallel interface
11 FS/LS serial interface.

STS Reserved. Was STS Serial Transceiver Select (STS). There are no Serial Interface Engines in this 
implementation.

PTW Parallel Transceiver Width. This register bit controls the data bus width of the parallel transceiver interface. 
This bit defaults to 1 after reset.
0 8-bit interface—[60 MHz] UTMI interface.
1 16-bit interface—[30 MHz] UTMI interface.
PTW is only valid for UTMI mode (PTS = 00). 
This bit is not defined in the EHCI specification.

PSPD Port Speed. This read-only register field indicates the speed at which the port is operating. 
This bit is not defined in the EHCI specification.
00 Full-speed
01 Low-speed
10 High-speed
11 Undefined

PFSC Port Force Full-speed Connect. This bit disables the chirp sequence that allows the port to identify itself as 
an HS port. This is useful for testing FS configurations with an HS host, hub, or device.
0 Allow the port to identify itself as High Speed.
1 Force the port to only connect at Full-speed.
This bit is not defined in the EHCI specification.
This bit is for debugging purposes.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-45

PHCD PHY Low Power Suspend. This bit is not defined in the EHCI specification. 
In host mode, the PHY can be put into low power suspend when the downstream device has been put into 
suspend mode or when no downstream device is connected. Low-power suspend is completely under the 
control of software.
For the OTG module in device mode, the PHY can be put into low power suspend when the device is not 
running (USBCMD Run/Stop=0b) or suspend signaling is detected on the USB. Low-power suspend is 
cleared automatically when the resume signaling has been detected or when forcing port resume.
0 Normal PHY operation.
1 Signal the PHY to enter low power suspend mode
Reading this bit indicates the status of the PHY.

WKOC Wake On Over-Current Enable. Writing this bit to 1 enables the port to be sensitive to over-current conditions 
as wake-up events.
This field is zero if Port Power (PP) is zero.
This bit is (OTG/host mode only) for use by an external power control circuit.

WKDS Wake On Disconnect Enable. Writing this bit to 1 enables the port to be sensitive to device disconnects as 
wake-up events.
This field is zero if Port Power(PP) is zero or in device mode.
This bit is (OTG/host mode only) for use by an external power control circuit.

WKCN Wake On Connect Enable. Writing this bit to 1 enables the port to be sensitive to device connects as wake-up 
events.
This field is zero if Port Power(PP) is zero or in device mode.

PTC Port Test Control. Any value other than zero indicates the port is operating in test mode.
0000 Not Enabled.
0001 J_STATE.
0010 K_STATE.
0011 SE0_NAK.
0100 Packet.
0101 FORCE_ENABLE.
0110-1111 Reserved.
Refer to Chapter 7 of the USB Specification Revision 2.0 [3] for details on each test mode.

PIC Port Indicator Control. These bits control the link indicator signals. These signals are valid for host mode only.
00 Off.
01 Amber. 
10 Green.
11 Undefined.
Refer to the USB Specification Revision 2.0 [3] for a description on how these bits are to be used.
This field is output from the module on the USB port control signals for use by an external LED driving circuit.

PO Port Owner. This bit unconditionally goes to a 0 when the configured bit in the CONFIGFLAG register makes 
a 0 to 1 transition. This bit unconditionally goes to 1 when the configured bit is zero. System software uses 
this field to release ownership of the port to a selected module (in the event that the attached device is not a 
high-speed device). Software writes a 1 to this bit when the attached device is not a high-speed device. A 
one in this bit means an internal companion controller owns and controls the port.
Port owner hand-off is not implemented in this design, therefore this bit is always 0.

PP Port Power. This bit represents the current setting of the switch (0=off, 1=on). When power is not available on 
a port(i.e. PP equals a 0), the port is non-functional and does not report attaches, detaches, etc.
When an over-current condition is detected on a powered port, the PP bit in each affected port is transitioned 
by the host controller driver from a one to a zero (removing power from the port).
This feature is implemented in the host/OTG controller (PPC = 1).
For the OTG module in a device-only implementation, port power control is not necessary. Therefore, PPC 
and PP equal 0.

Table 39-33. PORTSCn Register Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-46 Freescale Semiconductor

LS Line Status. These bits reflect the current logical levels of the USB D+ (bit 11) and D– (bit 10) signal lines. 
The use of line status by the host controller driver is not necessary (unlike EHCI) because hardware manages 
the connection of FS and LS. 
00 SE0.
01 J-state.
10 K-state.
11 Undefined.

HSP High Speed Port.
This bit is redundant with the PORTSCn.PSPD bits.
1 Host/Device connected is operating in High Speed mode.
0 Host/Device connected is not operating in High Speed mode.
This field is zero if Port Power(PP) is zero.

PR Port Reset.
In host mode, when software writes a one to this bit the bus-reset sequence as defined in the USB 
specification revision 2.0 is started. This bit automatically changes to zero after the reset sequence is 
complete. This behavior is different from EHCI where the host controller driver is required to set this bit to a 
zero after the reset duration is timed in the driver.
For the DR module in device mode, this bit is a read-only status bit. Device reset from the USB bus is also 
indicated in the USBSTS register.
1 Port is in Reset.
0 Port is not in Reset.
This field is zero if Port Power(PP) is zero.

SUSP Suspend
In host mode: 
The port enabled bit (PE) and suspend (SUSP) bit define the port states as follows:
0x Disable.
10 Enable.
11 Suspend.
When in suspend state, downstream propagation of data is blocked on this port, except for port reset. The 
blocking occurs at the end of the current transaction if a transaction was in progress when this bit was written 
to 1. In the suspend state, the port is sensitive to resume detection. Bit status does not change until the port 
is suspended and there may be a delay in suspending a port if there is a transaction currently in progress on 
the USB.
The module unconditionally sets this bit to zero when software sets the force port resume bit to zero. The 
host controller ignores a write of zero to this bit. If host software sets this bit to a one when the port is not 
enabled (i.e. port enabled bit is a zero), results are undefined.
This field is zero if port power(PP) is zero in host mode.
For the OTG module in device mode: 
1 Port in suspend state.
0 Port not in suspend state. Default.
In device mode, this bit is a read only status bit.

Table 39-33. PORTSCn Register Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-47

FPR Force Port Resume. This bit is not-EHCI compatible.
1 Resume detected/driven on port. 
0 No resume (K-state) detected/driven on port.
In host mode: 
Software sets this bit to one to drive resume signaling. The controller sets this bit to one if a J-to-K transition 
is detected while the port is in the suspend state. When this bit transitions to a one, a J-to-K transition is 
detected, and the port change detect bit in the USBSTS register is also set to one. This bit automatically 
changes to zero after the resume sequence is complete. This behavior is different from EHCI where the host 
controller driver is required to set this bit to a zero after the resume duration is timed in the driver.
When the controller owns the port, the resume sequence follows the defined sequence documented in the 
USB Specification Revision 2.0. The resume signaling (full-speed K) is driven on the port as long as this bit 
remains a one. This bit remains a one until the port has switched to the high-speed idle. Writing a zero has 
no effect because the port controller times the resume operation to clear the bit the port control state switches 
to HS or FS idle.
This field is zero if port power(PP) is zero in host mode.
In Device mode: 
After the device has been in suspend state for 5 msec or more, software must set this bit to one to drive 
resume signaling before clearing. the OTG controller sets this bit to one if a J-to-K transition is detected while 
the port is in the suspend state. The bit is cleared when the device returns to normal operation. Also, when 
this bit transitions to a one because a J-to-K transition is detected, the port change detect bit in the USBSTS 
register is also set to one.

OCC Over-current Change. This bit gets set to one when there is a change to over-current active. Software clears 
this bit by writing a one to this bit position.
For host/OTG implementations, you can provide over-current detection to the USBn_PWRFAULT signal for 
this condition.
For device-only implementations, this bit must always be 0.
1 Over current detect.
0 No over current.

OCA Over-current Active. This bit automatically transitions from one to zero when the over current condition is 
removed.
For host/OTG implementations the user can provide over-current detection to the USBn_PWRFAULT signal 
for this condition.
For device-only implementations this bit must always be 0.
1 Port currently in over-current condition.
0 Port not in over-current condition.

PEC Port Enable/Disable Change.
For the root hub, this bit is set to a one only when a port is disabled due to disconnect on the port or due to 
the appropriate conditions existing at the EOF2 point (See Chapter 11 of the USB Specification). Software 
clears this by writing a one to it.
In Device mode, the device port is always enabled. (This bit is zero).
1 Port disabled.
0 No change.
This field is zero if port power(PP) is zero.

PE Port Enabled/Disabled.
In host mode, ports can only be enabled by the controller as a part of the reset and enable. Software cannot 
enable a port by writing a one to this field. Ports can be disabled by either a fault condition (disconnect event 
or other fault condition) or by the host software. The bit status does not change until the port state actually 
changes. There may be a delay in disabling or enabling a port due to other host and bus events.
When the port is disabled, (0) downstream propagation of data is blocked except for reset.
This field is zero if port power(PP) is zero in host mode.
In device mode (DR-only), the device port is always enabled. (This bit is one).

Table 39-33. PORTSCn Register Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-48 Freescale Semiconductor

39.2.1.4.18 On-The-Go Status and Control (OTGSC)—Non-EHCI

This register is not defined in the EHCI specification. Both OTG modules implement one On-The-Go 
(OTG) Status and Control register. For more information please refer to the On-The-Go Supplement to the 
USB 2.0 Specification.

The OTGSC register has four sections:
• OTG Interrupt enables (Read/Write)
• OTG Interrupt status (Read/Write to Clear)
• OTG Status inputs (Read Only)
• OTG Controls (Read/Write)

The status inputs are de-bounced using a 1 msec time constant. Values on the status inputs that do not 
persist for more than 1 msec do not cause an update of the status inputs or cause and OTG interrupt.

CSC Connect Change Status.
In host mode, this bit indicates a change has occurred in the port’s current connect status. The controller sets 
this bit for all changes to the port device connect status, even if system software has not cleared an existing 
connect status change. For example, the insertion status changes twice before system software has cleared 
the changed condition, and hub hardware is setting an already-set bit (the bit remains set). Software clears 
this bit by writing a one to it.
1  Connect Status has changed.
0 No change.
This field is zero if port power(PP) is zero.
In device mode, this bit is undefined.

CCS Current Connect Status. 
In host mode:
1 Device is present
0 No device present.
This field is zero if port power(PP) is zero in host mode.
In device mode:
1 Attached
0 Not attached.
A one indicates the device successfully attached and is operating in either high-speed or full-speed as 
indicated by the high speed port bit in this register. A zero indicates the device did not attach successfully or 
was forcibly disconnected by the software writing a zero to the run bit in the USBCMD register. It does not 
state the device being disconnected or suspended.

Table 39-33. PORTSCn Register Field Descriptions (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-49

Offset: Base + 1A4h

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
0

DPIE 1msE BSEIE
BSVI

E
ASVI

E
AVVIE IDIE

0 DPIS 1msS
BSEI

S
BSVI

S
ASVI

S
AVVI

S
IDIS

W W1C W1C W1C W1C W1C W1C W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 DPS 1msT BSE BSV ASV AVV ID
HABA

HAD
P

IDPU DP OT
HAA

R
VC VD

W

Reset 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-33. On-The-Go Status and Control Register (OTGSC)

Table 39-34. OTGSC Register Field Descriptions (Sheet 1 of 3)

Field Description

DPIE Data Pulse Interrupt Enable.
1 Enable.
0 Disable.

1msE 1 millisecond timer Interrupt Enable.
1 Enable.
0 Disable.

BSEIE B Session End Interrupt Enable.
1 Enable.
0 Disable.

BSVIE B Session Valid Interrupt Enable.
1 Enable.
0 Disable.

ASVIE A Session Valid Interrupt Enable.
1 Enable.
0 Disable.

AVVIE A VBus Valid Interrupt Enable.
1 Enable.
0 Disable.

IDIE USB ID Interrupt Enable.
1 Enable.
0 Disable.

DPIS Data Pulse Interrupt Status. This bit is set when data bus pulsing occurs on DP or DM. Data bus pulsing is 
only detected when USBMODE.CM equals Host (11) and PORTSC(0).PortPower equals Off (0).
Software must write a 1 to clear this bit.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-50 Freescale Semiconductor

1msS 1 millisecond timer Interrupt Status. This bit is set once every millisecond.
Software must write a 1 to clear this bit.

BSEIS B Session End Interrupt Status. This bit is set when VBus has fallen below the B session end threshold. 
Software must write a 1 to clear this bit.

BSVIS B Session Valid Interrupt Status. This bit is set when VBus has risen above or fallen below the B session valid 
threshold (0.8 VDC).
Software must write a 1 to clear this bit.

ASVIS A Session Valid Interrupt Status. This bit is set when VBus has risen above or fallen below the A session valid 
threshold (0.8 VDC).
Software must write a 1 to clear this bit.

AVVIS A VBus Valid Interrupt Status. This bit is set when VBus has risen above or fallen below the VBus valid 
threshold (4.4 VDC) on an A device.
Software must write a 1 to clear this bit.

IDIS USB ID Interrupt Status. This bit is set when a change on the ID input is detected.
Software must write a 1 to clear this bit.

DPS Data Bus Pulsing Status.
1 Pulsing detected on port.
0 No pulsing on port.

1msT 1 millisecond timer toggle. This bit toggles once per millisecond.

BSE B Session End. 
1 VBus is below the B session end threshold.
0 VBus is above the B session end threshold.

BSV B Session Valid.
1 VBus is above the B session valid threshold.
0 VBus is below the B session valid threshold.

ASV A Session Valid.
1 VBus is above the A session valid threshold.
0 VBus is below the A session valid threshold.

AVV A VBus Valid.
1 VBus is above the A VBus valid threshold.
0 VBus is below the A VBus valid threshold.

ID USB ID.
1 B device.
0 A device.

HABA Hardware Assist B-Disconnect to A-connect.
1 Enable automatic B-disconnect to A-connect sequence.
0 Disabled. 

HADP Hardware Assist Data-Pulse.
1 Start Data Pulse Sequence.

IDPU ID Pullup.
This bit provide control over the ID pull-up resister:
0 off, 
1 on 
When this bit is 0, the ID input is not sampled.

Table 39-34. OTGSC Register Field Descriptions (Sheet 2 of 3)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-51

39.2.1.4.19 USB Mode Register (USBMODE)—Non-EHCI

This register is not defined in the EHCI specification. This register controls the operating mode of the 
module.

DP Data Pulsing.
1 The pullup on DP is asserted for data pulsing during SRP.
0 The pullup on DP is not asserted.

OT OTG Termination. This bit must be set when the OTG device is in device mode.
1 Enable pulldown on DM.
0 Disable pulldown on DM.

HAAR Hardware Assist Auto-Reset.
0 Disabled.
1 Enable automatic reset after connect on host port.

VC VBUS Charge. Setting this bit causes the VBus line to be charged. This is for VBus pulsing during SRP.

VD VBUS discharge. Setting this bit causes VBus to discharge through a resistor.

Offset: Base + 1A8h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0
VBPS SDIS SLOM ES CM

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-34. USB Mode Register (USBMODE)

Table 39-35. USBMODE Register Field Descriptions (Sheet 1 of 3)

Field Description

VBPS Vbus Power Select (0 - Output is 0; 1 - Output is one)
This bit is connected to the vbus_pwr_select output and can be used for any generic control but is named to 
be used by logic that selects between an on-chip Vbus power source (charge pump) and an off-chip source 
in systems when both are available.

Table 39-34. OTGSC Register Field Descriptions (Sheet 3 of 3)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-52 Freescale Semiconductor

SDIS Stream Disable. 
In host mode, setting this bit to a 1 ensures that overruns/underruns of the latency FIFO are eliminated for 
low bandwidth systems where the RX and TX buffers are sufficient to contain the entire packet. Enabling 
stream disable also has the effect of ensuring the TX latency is filled to capacity before the packet is launched 
onto the USB. 
Time duration to pre-fill the FIFO becomes significant when stream disable is active. See TXFILLTUNING to 
characterize the adjustments needed for the scheduler when using this feature.
In systems with high system bus utilization, setting this bit ensures no overruns or underruns during operation 
at the expense of link utilization. For those who desire optimal link performance, SDIS can be left clear, and 
the rules used under the description of the TXFILLTUNING register to limit underruns/overruns.
1 Active.
0 Inactive.
In device mode, setting this bit to a 1 disables double priming on both RX and TX for low bandwidth systems. 
This mode ensures that when the RX and TX buffers are sufficient to contain an entire packet, the standard 
double buffering scheme is disabled to prevent overruns/underruns in bandwidth limited systems. 
In high speed mode, all packets received are responded to with a NYET handshake when stream disable is 
active.

SLOM Setup Lockout Mode. For the OTG module in device mode, this bit controls behavior of the setup lock 
mechanism. See Section 39.8.5.2, “Control Endpoint Operation Model.”
1 Setup Lockouts Off(DCD requires use of Setup Data Buffer Tripwire in USBCMD).
0 Setup Lockouts On.

ES Endian Select.
This bit can change the byte ordering of the transfer buffers to match the host microprocessor bus 
architecture. The bit fields in the microprocessor interface and the DMA data structures (including the setup 
buffer within the device QH) are unaffected by the value of this bit, because they are based upon 32-bit words.
0 Little Endian [Default]: first byte referenced in least significant byte of 32-bit word.
1 Big Endian - first byte referenced in most significant byte of 32-bit word.

Offset: Base + 1A8h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0
VBPS SDIS SLOM ES CM

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-34. USB Mode Register (USBMODE)

Table 39-35. USBMODE Register Field Descriptions (Sheet 2 of 3)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-53

CM Controller Mode. 
This register can only be written once after reset. If necessary to switch modes, software must reset the 
controller by writing to the RESET bit in the USBCMD register before reprogramming this register.
00 Idle (Default for combination host/device).
01 Reserved.
10 Device Controller (Default for device only controller).
11 Host Controller (Default for host only controller).
The OTG module defaults to the idle state and needs to be initialized to the desired operating mode after 
reset. 

Offset: Base + 1A8h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0
VBPS SDIS SLOM ES CM

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-34. USB Mode Register (USBMODE)

Table 39-35. USBMODE Register Field Descriptions (Sheet 3 of 3)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-54 Freescale Semiconductor

39.2.1.4.20 Endpoint Setup Status Register (ENDPTSETUPSTAT)—Non-EHCI

This register is not defined in the EHCI specification. This register contains the endpoint setup status. It is 
used only by the OTG module in device mode.

Offset: Base + 1ACh 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 ENDPTSETUPSTAT

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-35. Endpoint Setup Status Register (ENDPTSETUPSTAT)

Table 39-36. ENDPTSETUPSTAT Register Field Descriptions

Field Description

ENDPTSETUPS
TAT

Endpoint Setup Status. For every setup transaction received, a corresponding bit in this register is set to 1. 
Software must clear or acknowledge the setup transfer by writing a 1 to a respective bit after it has read the 
setup data from queue head. The response to a setup packet as in the order of operations and total response 
time is crucial to limit bus timeouts while the setup lock our mechanism is engaged. See Managing Endpoints 
in the Device Operational Model.
This register is used only in device mode.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-55

39.2.1.4.21 Endpoint Initialization Register (ENDPTPRIME)—Non-EHCI

This register is not defined in the EHCI specification. This register is used to initialize endpoints. It is used 
only by the OTG module in device mode.

Offset: Base + 1B0h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PETB

W W1S

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PERB

W W1S

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-36. Endpoint Initialization Register (ENDPTPRIME)

Table 39-37. ENDPTPRIME Register Field Descriptions

Field Description

PETB Prime Endpoint Transmit Buffer. For each endpoint, a corresponding bit requests a buffer to prepare for a 
transmit operation to respond to a USB IN/INTERRUPT transaction. Software should write a 1 to the 
corresponding bit when posting a new transfer descriptor to an endpoint. Hardware automatically uses this 
bit to begin parsing for a new transfer descriptor from the queue head and prepare a transmit buffer. Hardware 
clears this bit when the associated endpoint(s) is (are) successfully primed.
Note: Hardware momentarily sets these bits during hardware re-priming operations when a dTD is retired, 

and the dQH is updated.

PETB[3] - Endpoint #3
PETB[2] - Endpoint #2
PETB[1] - Endpoint #1
PETB[0] - Endpoint #0

PERB Prime Endpoint Receive Buffer. For each endpoint, a corresponding bit requests a buffer to prepare for a 
receive operation for when a USB host initiates a USB OUT transaction. Software should write a 1 to the 
corresponding bit when posting a new transfer descriptor to an endpoint. Hardware automatically uses this 
bit to begin parsing for a new transfer descriptor from the queue head and prepare a receive buffer. Hardware 
clears this bit when the associated endpoint(s) is (are) successfully primed.
Note: Hardware momentarily sets these bits during hardware re-priming operations when a dTD is retired, 

and the dQH is updated.
PERB[3] - Endpoint #3
PERB[2] - Endpoint #2
PERB[1] - Endpoint #1
PERB[0] - Endpoint #0

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-56 Freescale Semiconductor

39.2.1.4.22 Endpoint Flush Register (ENDPTFLUSH)—Non-EHCI

This register is not defined in the EHCI specification. This register is used only by the OTG module in 
device mode. 

Offset: Base + 1B0h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R FETB

W W1S

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R FERB

W W1S

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-37. Endpoint Flush Register (ENDPTFLUSH)

Table 39-38. ENDPTFLUSH Register Field Descriptions

Field Description

FETB Flush Endpoint Transmit Buffer. Writing a 1 to a bit(s) in this register causes the associated endpoint(s) to 
clear any primed buffers. If a packet is in progress for one of the associated endpoints, that transfer continues 
until completion. Hardware clears this register after the endpoint flush operation is successful.
FETB[3] - Endpoint #3
FETB[2] - Endpoint #2
FETB[1] - Endpoint #1
FETB[0] - Endpoint #0

FERB Flush Endpoint Receive Buffer. Writing a 1 to a bit(s) causes the associated endpoint(s) to clear any primed 
buffers. If a packet is in progress for one of the associated endpoints, that transfer continues until completion. 
Hardware clears this register after the endpoint flush operation is successful.
FERB[3] - Endpoint #3
FERB[2] - Endpoint #2
FERB[1] - Endpoint #1
FERB[0] - Endpoint #0

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-57

39.2.1.4.23 Endpoint Status Register (ENDPTSTATUS)—Non-EHCI

This register is not defined in the EHCI specification. This register is used only by the OTG module in 
device mode.

Offset: Base + 1B8h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ETBR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ERBR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-38. Endpoint Status Register (ENDPTSTATUS)

Table 39-39. ENDPTSTATUS Register Field Descriptions

Field Description

ETBR Endpoint Transmit Buffer Ready. One bit for each endpoint indicates status of the respective endpoint buffer. 
Hardware sets this bit as a response to receiving a command from a corresponding bit in the ENDPTPRIME 
register. There is always a delay between setting a bit in the ENDPTPRIME register and endpoint indicating 
ready. This delay time varies based upon the current USB traffic and the number of bits set in the 
ENDPTPRIME register. Buffer ready is cleared by USB reset, by the USB DMA system, or through the 
ENDPTFLUSH register.
Note: Hardware momentarily clears these bits during hardware endpoint re-priming operations when a dTD 

is retired, and the dQH is updated.

ETBR[3] - Endpoint #3
ETBR[2] - Endpoint #2
ETBR[1] - Endpoint #1
ETBR[0] - Endpoint #0

ERBR Endpoint Receive Buffer Ready. One bit for each endpoint indicates status of the respective endpoint buffer. 
Hardware sets this bit to a one by the hardware as a response to receiving a command from a corresponding 
bit in the ENDPTPRIME register. There is always a delay between setting a bit in the ENDPTPRIME register 
and endpoint indicating ready. This delay time varies based upon the current USB traffic and the number of 
bits set in the ENDPTPRIME register. Buffer ready is cleared by USB reset, by the USB DMA system, or 
through the ENDPTFLUSH register.
Note: Hardware momentarily clears these bits during hardware endpoint re-priming operations when a dTD 

is retired, and the dQH is updated.

ERBR[3] - Endpoint #3
ERBR[2] - Endpoint #2
ERBR[1] - Endpoint #1
ERBR[0] - Endpoint #0

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-58 Freescale Semiconductor

39.2.1.4.24 Endpoint Complete Register (ENDPTCOMPLETE)—Non-EHCI

This register is not defined in the EHCI specification. This register is used only by the OTG module in 
device mode.

Offset: Base + 1BCh 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R ETCE

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ERCE

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-39. Endpoint Complete Register (ENDPTCOMPLETE)

Table 39-40. ENDPTCOMPLETE Register Field Descriptions

Field Description

ETCE Endpoint Transmit Complete Event. Each bit indicates a transmit event (IN/INTERRUPT) occurred and 
software should read the corresponding endpoint queue to determine the endpoint status. If the 
corresponding IOC bit is set in the transfer descriptor, this bit is set simultaneously with the USBINT. Writing 
a 1 clears the corresponding bit in this register.
ETCE[3] - Endpoint #3
ETCE[2] - Endpoint #2
ETCE[1] - Endpoint #1
ETCE[0] - Endpoint #0

ERCE Endpoint Receive Complete Event. Each bit indicates a received event (OUT/SETUP) occurred and software 
should read the corresponding endpoint queue to determine the transfer status. If the corresponding IOC bit 
is set in the transfer descriptor, this bit is set simultaneously with the USBINT. Writing a 1 clears the 
corresponding bit in this register.
ERCE[3] - Endpoint #3
ERCE[2] - Endpoint #2
ERCE[1] - Endpoint #1
ERCE[0] - Endpoint #0

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-59

39.2.1.4.25 Endpoint Control Register 0 (ENDPTCTRL0)—Non-EHCI

This register is not defined in the EHCI specification. Every device implements endpoint 0 as a control 
endpoint.

Offset: Base + 1C0h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 TXE 0 0 0 TXT 0
TXS

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 RXE 0 0 0 RXT 0
RXS

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-40. Endpoint Control Register 0 (ENDPTCTRL0)

Table 39-41. ENDPTCTRL0 Register Field Descriptions (Sheet 1 of 2)

Field Description

TXE TX Endpoint Enable. Endpoint zero is always enabled.
1  Enable.

TXT TX Endpoint type. Endpoint zero is always a control endpoint (00).

TXS TX Endpoint Stall.
Software can write a 1 to this bit to force the endpoint to return a STALL handshake to the host. It continues 
returning STALL until the software clears this bit or it is automatically cleared upon receipt of a new SETUP 
request.
After receiving a SETUP request, this bit continues to be cleared by hardware until the associated 
ENDPTSETUPSTAT bit is cleared.
Note: There is a slight delay (50 clocks max.) between the ENDPTSETUPSTAT being cleared and hardware 

continuing to clear this bit. In most systems, it is unlikely the DCD software observes this delay. 
However, should the DCD observe that the stall bit is not set after writing a 1 to it, follow this procedure: 
continually write this stall bit until it is set or until a new setup has been received by checking the 
associated endptsetupstat bit.

1 Endpoint Stalled.
0 Endpoint OK.

RXE RX Endpoint Enable. Endpoint zero is always enabled.
1 Enabled.

RXT RX Endpoint type. Endpoint zero is always a control endpoint (00).

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-60 Freescale Semiconductor

RXS RX Endpoint Stall.
Software can write a 1 to this bit to force the endpoint to return a STALL handshake to the host. It continues 
returning STALL until software clears this bit or it is automatically cleared upon receipt of a new SETUP 
request.
After receiving a SETUP request, hardware continues to clear this bit until the associated 
ENDPTSETUPSTAT bit is cleared.
Note: There is a slight delay (50 clocks max.) between the ENDPTSETUPSTAT being cleared and hardware 

continuing to clear this bit. In most systems, it is unlikely the DCD software observes this delay. 
However, should the DCD observe that the stall bit is not set after writing a 1 to it, follow this procedure: 
continually write this stall bit until it is set or until a new setup has been received by checking the 
associated ENDPTSETUPSTAT bit.

1 Endpoint Stalled.
0 Endpoint OK.

Offset: Base + 1C0h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 TXE 0 0 0 TXT 0
TXS

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 RXE 0 0 0 RXT 0
RXS

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-40. Endpoint Control Register 0 (ENDPTCTRL0)

Table 39-41. ENDPTCTRL0 Register Field Descriptions (Sheet 2 of 2)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-61

39.2.1.4.26 Endpoint Control Register n (ENDPTCTRLn)—Non-EHCI

These registers are not defined in the EHCI specification. There is an ENDPTCTRLn register of each 
endpoint in a device.

Offset: Base + 1C0h + (4*(Endpoint Number))

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0
TXE TXR TXI

0
TXT TXD TXS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0
RXE RXR RXI

0
RXT RXD RXS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-41. Endpoint Control Register n (ENDPTCTRLn)

Table 39-42. ENDPTCTRLn Register Field Descriptions (Sheet 1 of 2)

Field Description

TXE TX Endpoint Enable. 
1 Enabled.
0 Disabled.

TXR TX Data Toggle Reset. When a configuration event is received for this endpoint, software must write a one to 
this bit to synchronize the data PIDs between the host and device.

TXI TX Data Toggle Inhibit. This bit is used only for test and should always be written as zero. Writing a one to 
this bit causes this endpoint to ignore the data toggle sequence and always transmit DATA0 for a data packet.
1 PID Sequencing Disabled.
0 PID Sequencing Enabled.

TXT TX Endpoint type. 
00 Control.
01 Isochronous.
10 Bulk.
11 Interrupt.

TXD TX Endpoint Data Source. This bit should always be written as 0, which selects the Dual Port Memory/DMA 
Engine as the source.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-62 Freescale Semiconductor

TXS TX Endpoint Stall. This bit is set automatically upon receipt of a setup request if this endpoint is not configured 
as a control endpoint. It is cleared automatically upon receipt of a setup request if this endpoint is configured 
as a control endpoint.
Software can write a one to this bit to force the endpoint to return a stall handshake to the host. It continues 
returning stall until this bit is cleared by software or automatically cleared as above.
Software can write a one to this bit to force the endpoint to return a stall handshake to the Host. This control 
continues to stall until this bit is either cleared by software or automatically cleared as above for control 
endpoints.
Note: [control endpoint types only] There is a slight delay (50 clocks max.) between the ENDPTSETUPSTAT 

being cleared and hardware continuing to clear this bit. In most systems, it is unlikely the DCD software 
observes this delay. However, should the DCD observe that the stall bit is not set after writing a 1 to it, 
follow this procedure: continually write this stall bit until it is set or until a new setup has been received 
by checking the associated endptsetupstat bit.

1 Endpoint Stalled.
0 Endpoint OK.

RXE RX Endpoint Enable. 
1 Enabled.
0 Disabled.

RXR RX Data Toggle Reset. When a configuration event is received for this endpoint, software must write a one 
to this bit to synchronize the data PIDs between the host and device.

RXI RX Data Toggle Inhibit. This bit is used only for test and should always be written as zero. Writing a 1 to this 
bit causes this endpoint to ignore the data toggle sequence and always accepts data packets regardless of 
their data PID.
1 PID Sequencing Enabled.
0 PID Sequencing Disabled.

RXT RX Endpoint type. 
00 Control.
01 Isochronous.
10 Bulk.
11 Interrupt.

RXD RX Endpoint Data Sink. This bit should always be written as 0, which selects the dual port memory/DMA 
engine as the sink.

RXS RX Endpoint Stall. This bit is set automatically upon receipt of a SETUP request if this endpoint is not 
configured as a control endpoint. It is cleared automatically upon receipt of a SETUP request if this endpoint 
is configured as a control endpoint,
Software can write a 1 to this bit to force the endpoint to return a STALL handshake to the host. It continues 
returning STALL until this bit is cleared by software or automatically cleared as above.
Software can write a 1 to this bit to force the endpoint to return a STALL handshake to the host. This control 
continues to STALL until this bit is cleared by software or automatically cleared as above for control endpoints.
Note: [control endpoint types only] There is a slight delay (50 clocks max.) between the ENDPTSETUPSTAT 

being cleared and hardware continuing to clear this bit. In most systems, it is unlikely the DCD software 
observeS this delay. However, should the DCD observe that the stall bit is not set after writing a 1 to it, 
follow this procedure: continually write this stall bit until it is set or until a new setup has been received 
by checking the associated endptsetupstat bit.

1 Endpoint Stalled.
0 Endpoint OK.

Table 39-42. ENDPTCTRLn Register Field Descriptions (Sheet 2 of 2)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-63

39.2.1.4.27 USB General Control Register (USBGENCTRL)—Non-EHCI

This register is not defined in the EHCI specification. The general purpose control register is shown in 
Figure 39-42. This register uses big endian byte ordering.

Offset: Base + 200h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
0 0 0 0 0 0 0 0 0 0

WU_I
NT_C

LR
ULPI
_SEL

PPP PFP
WU_
ULPI
_EN

WU_I
E

W W1C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-42. USB General Control Register (USBGENCTRL)

Table 39-43. USBGENCTRL Register Field Descriptions

Field Description

WU_INT_CLR Wake-up Interrupt clear.
1 Clear the wake-up interrupt.
0 Default, no action.

ULPI_SEL USB0 ONLY.
ULPI I/F Select (default the UTMI I/F is selected). This bit must be programmed to 1 when the ULPI I/F should 
be used.
1 Select the ULPI I/F.
0 Select the UTMI I/F.

PPP USB0 ONLY.
PORT POWER POLARITY. This bit allow to program the polarity of the DRVVBUS signal.
1 Invert the DRVVBUS signal.
0 The DRVVBUS is not inverted.

PFP USB0 ONLY.
POWER FAULT POLARITY. This bit allow to program the polarity of the PWR_FAULT signal.
1 Invert the PWR_FAULT signal.
0 The PWR_FAULT is not inverted.

WU_ULPI_EN WAKEUP ON ULPI INTERRUPT EVENT. This bit is used to enable the wake up from the ULPI I/F.
1 Wake Up Interrupt Enabled.
0 Wake Up Interrupt Disabled.

WU_IE WAKEUP INTERRUPT ENABLE. This bit is used to enable the low power wakeup interrupt.
1 Low power wakeup interrupt enabled.
0 Low power wakeup interrupt disabled.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-64 Freescale Semiconductor

39.2.1.4.28 On-Chip PHY Control Register (ISIPHYCTRL)—Non-EHCI

This register is not defined in the EHCI specification. The On-Chip PHY Control register is used to control 
the settings of the On-Chip UTMI+ PHY. The on-chip PHY is only available for USB0. It’s contents is 
shown in Figure 39-43.

Offset: Base + 204h 

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0
OCO PHYE

BSEN
H

BSEN LSFE PXE
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 39-43. On-Chip PHY Control Register (ISIPHYCTRL)

Table 39-44. ISIPHYCTRL Register Field Descriptions

Field Description

OCO Oscillator Control Override
1 ISIPHYCTRL.PXE (bit [0]) controls the enable/disable signal of the USB PHY Oscillator.
0 The USB PHY controls the enable/disable signal of the USB PHY Oscillator (suspendM).

PHYE On-Chip UTMI PHY Enable
1 Enable On-Chip UTMI PHY 
0 Disable On-Chip UTMI PHY

BSENH Bit Stuff Enable High.
1 Enable bit stuffing on UTMI+ DATA bits [15:8].
0 Disable bit stuffing.

BSEN Bit Stuff Enable.
1 Enable bit stuffing on UTMI+ DATA bits [7:0].
0 Disable bit stuffing.

LSFE Line State Filter Enable. Enables filtering of LineState to account for skew between D-/D+ signals.
1 Line State Filter Enabled.
0 Line State Filter Disabled.

PXE PHY Oscillator Enable.
1 PHY Oscillator Enabled.
0 PHY Oscillator Disabled.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-65

39.3 Functional Description
Both modules, USB1/USB0, can be broken down into functional sub-blocks described below. 

39.3.1 System Interface

The system interface block contains all the control and status registers that allow the CPU core to interface 
to the module. These registers allow the processor to control the configuration of the module, ascertain the 
capabilities of each module and control the module’s operation.

39.3.2 DMA Engine

Both USB controllers contain local DMA engines. The DMA Engine interface is responsible for moving 
all of the data to transfer over the USB between the controller and buffers in system memory. Like the 
system interface block, the DMA engine block uses a simple synchronous bus signaling protocol.

The DMA controllers must access both control information and packet data from system memory. The 
control information is contained in link-list based queue structures. The DMA controllers have state 
machines able to parse data structures defined in the EHCI specification. In host mode, the data structures 
are EHCI compliant and represent queues of transfers performed by the host controller. In device mode, 
the data structures are similar to those in the EHCI specification and allow device responses to be queued 
for each of the active pipes in the device.

39.3.3 FIFO RAM Controller

The FIFO RAM controller is for context information and to control FIFOs between the protocol engine 
and the DMA controller. These FIFOs decouple the system processor/memory bus requests from the 
extremely tight timing required by USB. 

The use of the FIFO buffers differs between host and device mode operation. In host mode, a single data 
channel is maintained in each direction through the buffer memory. In device mode, multiple FIFO 
channels are maintained for each of the active endpoints in the system.

For both modules (USB0 and USB1), device operation uses a single 256-byte RX buffer and a 512-byte 
TX buffer for each endpoint. The 512-byte buffers allow the modules to buffer a complete HS bulk packet.

The USB1 and USB0 module interfaces to ULPI compatible PHY. The USB0 module interfaces to an 
additional internal PHY. The primary function of the port controller block is to isolate the rest of the 
module from the transceiver and to move all of the transceiver signaling into the primary clock domain of 
the module. This allows the module to run synchronously with the system processor and it's associated 
resources.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-66 Freescale Semiconductor

39.4 OTG Operations

39.4.1 Register Bits

In the previous section, the register interface has behaviors described for device and host mode. However, 
during OTG operations, it is necessary to perform tasks independent of the controller mode.

Figure 39-44. Controller Mode

Figure 39-44 also shows that the only way to transition the controller mode out of host or device mode is 
with the controller reset bit. Therefore, it is also necessary for the OTG tasks to be performed independent 
of a controller reset as well as independent of the controller mode. 

To this end, the following list contains the register bits used for OTG operations, which are independent 
of the controller mode and are also not affected by a write to the reset bit in the USBCMD register.

• All Identification Registers
• All Device/Host Capability Registers
• OTGSC: All bits
• PORTSC: 

— Physical Interface Select
— Physical Interface Serial Select
— Physical Interface Data Width
— Physical Interface Low Power
— Physical Interface Wake Signals
— Port Indicators
— Port Power

39.4.2 Hardware Assist

The hardware assist provides automated response and sequencing that may not be possible to software 
with significant interrupt latency response times. The use of this additional circuitry is optional and can be 
used to assist the three sequences below.

Idle (00)

Device (10) Host (11)

USBCMD.Reset=1

Write 11 to USBMODEWrite 10 to USBMODE 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-67

39.4.2.1 Auto-Reset

When the HAAR is set to one, the host automatically starts a reset after a connect event. This shortcuts the 
normal process where software is notified of the connect event and starts the reset. Software receives 
notification of the connect event, but should not write the reset bit when the HAAR is set. Software is 
notified again after the reset is complete via the enable change bit in the PORTSC register that causes a 
port change interrupt.

This assist ensures the OTG parameter TB_ACON_BSE0_MAX = 1ms is met.

39.4.2.2 Data-Pulse

Writing a one to HADP starts a data pulse of approximately 7ms in duration and then automatically cease 
the data pulsing. During the data pulse, the DP is set and then cleared. This automation relieves software 
from accurately controlling the data-pulse duration. During the data pulse, the HCD can poll to see that the 
HADP and DP bit have returned low to recognize the completion or simply launch the data pulse and wait 
to see if a VBUS Valid interrupt occurs when the A-side supplies bus power.

This assist ensures data pulsing meets the OTG requirement of > 5ms and < 10ms.

39.4.2.3 B-Disconnect to A-Connect

During HNP, the B-disconnect occurs from the OTG A_suspend state and within 3 ms, the A-device must 
enable the pullup on the DP leg in the A-peripheral state. When HABA is set, the Host Controller port is 
in suspend mode, and the device disconnects, then this hardware assist begins. 

4. Reset the OTG core.
5. Write the OTG core into device mode.
6. Write the device run bit to a ‘1’ and enable necessary interrupts including:

– USB Reset Enable (URE) ; enables interrupt on usb bus reset to device
– Sleep Enable (SLE) ; enables interrupt on device suspend
– Port Change Detect Enable (PCE) ; enables interrupt on device connect

When software has enabled this hardware assist, it must not interfere during the transition and should not 
write any register in the core until it gets an interrupt from the device controller signifying that a reset 
interrupt has occurred or at least first verify that the core has entered device mode. HCD/DCD must not 
activate the core soft reset at any time since this action is performed by hardware. During the transition, 
the software may see an interrupt from the disconnect and/or other spurious interrupts (i.e. SOF/etc.) that 
may or may not cascade and my be cleared by the soft reset depending on the software response time. 

After the core has entered device mode by the hardware assist, the DCD must ensure that the 
ENDPTLISTADDR is programmed properly before the host sends a setup packet. Since the end of the 
reset duration, which may be initiated quickly (a few microseconds) after connect, requires at a minimum 
50 ms, this is the time for which the DCD must be ready to accept setup packets after having received 
notification that the reset has been detected or simply that the OTG is in device mode which ever occurs 
first.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-68 Freescale Semiconductor

In the case where the A-peripheral fails to see a reset after the controller enters device mode and engages 
the DP-pullup, the device controller interrupt the DCD signifying that a suspend has occurred.

This assist ensures the parameter TA_BDIS_ACON_MAX = 3ms is met. 

39.5 Host Data Structures
This section defines the interface data structures used to communicate control, status, and data between 
HCD (software) and the enhanced host controller (hardware). The data structure definitions in this section 
support a 32-bit memory buffer address space. The interface consists of a periodic schedule, periodic frame 
list, asynchronous schedule, isochronous transaction descriptors, split-transaction isochronous transfer 
descriptors, queue heads, and queue element transfer descriptors.

The periodic frame list is the root of all periodic (isochronous and interrupt transfer type) support for the 
host controller interface. The asynchronous list is the root for all the bulk and control transfer type support. 
Isochronous data streams are managed using isochronous transaction descriptors. Isochronous 
split-transaction data streams are managed with split-transaction isochronous transfer descriptors. All 
interrupt, control, and bulk data streams are managed via queue heads and queue element transfer 
descriptors. These data structures are optimized to reduce the total memory footprint of the schedule and 
to reduce (on average) the number of memory accesses needed to execute a USB transaction.

Software must ensure that no interface data structure reachable by the EHCI host controller spans a 
4K-page boundary.

The data structures defined in this section are (from the host controller’s perspective) a mix of read-only 
and read/writable fields. The host controller must preserve the read-only fields on all data structure writes.

39.5.1 Periodic Frame List

Figure 39-45 shows the organization of the periodic schedule. This schedule is for all periodic transfers 
(isochronous and interrupt). The periodic schedule is referenced from the operational registers space using 
the PERIODICLISTBASE address register and the FRINDEX register. The periodic schedule is based on 
an array of pointers called the Periodic Frame List. The PERIODICLISTBASE address register is 
combined with the FRINDEX register to produce a memory pointer into the frame list. The periodic frame 
list implements a sliding window of work over time.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-69

Figure 39-45. Periodic Schedule Organization

Split transaction interrupt, bulk and control are also managed using queue heads and queue element 
transfer descriptors.

The periodic frame list is a 4K-page aligned array of frame list link pointers. The length of the frame list 
may be programmable. The programmability of the periodic frame list is exported to system software via 
the HCCPARAMS register. If non-programmable, the length is 1024 elements. If programmable, system 
software can select the length as one of 256, 512, or 1024 elements. An implementation must support all 
three sizes. Programming the size (that is, the number of elements) is accomplished by system software 
writing the appropriate value into frame list size field in the USBCMD register.

Frame list link pointers direct the host controller to the first work item in the frame’s periodic schedule for 
the current micro-frame. The link pointers are aligned on doubleword boundaries within the frame list. 
Figure 39-46 shows the format for the frame list link pointer.

Frame list link pointers always reference memory objects that are 32-byte aligned. The referenced object 
may be an isochronous transfer descriptor for high-speed devices, a split-transaction isochronous transfer 
descriptor (for full-speed isochronous endpoints), or a queue head (used to support high-, full- and 
low-speed interrupt). System software should not place non-periodic schedule items into the periodic 
schedule. The least significant bits in a frame list pointer key the host controller as to the type of object the 
pointer is referencing.

The least significant bit is the T-Bit (bit 0). When this bit is set, the host controller never uses the value of 
the frame list pointer as a physical memory pointer. The Typ field is used to indicate the exact type of data 
structure referenced by this pointer. The value encodings for the Typ field are given in Table 39-45.

31 5 4 3 2 1 0

Frame List Link Pointer 00 Typ T

Figure 39-46. Frame List Link Pointer Format

Last
Periodic has
End of
List Mark

FRINDEX

PeriodicListBase

Operational
Registers

Periodic Frame
List Element

Address

•
•
•

8

A

A

A

A

A

A

4

1

1024, 512, or 256
Elements

Interrupt Queue
Heads

Poll Rate: N ––>  1

Isochronous Transfer
Descriptor(s)

Periodic Frame List

•
•
•

•  •  •
A

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-70 Freescale Semiconductor

39.5.2 Asynchronous List Queue Head Pointer

The asynchronous transfer list (based at the ASYNCLISTADDR register) is where all the control and bulk 
transfers are managed. Host controllers only use this list when it reaches the end of the periodic list, the 
periodic list is disabled, or the periodic list is empty.

Figure 39-47. Asynchronous Schedule Organization

The asynchronous list is a simple circular list of queue heads. The ASYNCLISTADDR register is a pointer 
to the next queue head. This implements a pure round-robin service for all queue heads linked into the 
asynchronous list.

39.5.3 Isochronous (High-Speed) Transfer Descriptor (iTD)

The format of an isochronous transfer descriptor is illustrated in Figure 39-48. This structure is used only 
for high-speed isochronous endpoints. All other transfer types should use queue structures. Isochronous 
TDs must be aligned on a 32-byte boundary.

Table 39-45. Typ Field Encodings

Typ Description

00 Isochronous Transfer Descriptor

01 Queue Head 

10 Split Transaction Isochronous Transfer Descriptor 

11 Frame Span Traversal Node.

AsyncListAddr

Operational
Registers Bulk/Control Queue Heads

H

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-71

39.5.3.1 Next Link Pointer

The first doubleword of an iTD is a pointer to the next schedule data structure.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Next Link Pointer 00 Typ T 0x00

Status1

1 Host controller read/write; all others read-only.

Transaction 0 Length1 IOC PG2

2 These fields may be modified by the host controller if the I/O field indicates an OUT.

Transaction 0 Offset2 0x04

Status1 Transaction 1 Length1 IOC PG2 Transaction 1 Offset2 0x08

Status1 Transaction 2 Length1 IOC PG2 Transaction 2 Offset2 0x0C

Status1 Transaction 3 Length1 IOC PG2 Transaction 3 Offset2 0x10

Status1 Transaction 4 Length1 IOC PG2 Transaction 4 Offset2 0x14

Status1 Transaction 5 Length1 IOC PG2 Transaction 5 Offset2 0x18

Status1 Transaction 6 Length1 IOC PG2 Transaction 6 Offset2 0x1C

Status1 Transaction 7 Length1 IOC PG2 Transaction 7 Offset2 0x20

Buffer Pointer (Page 0) EndPt R Device Address 0x24

Buffer Pointer (Page 1) I/O Maximum Packet Size 0x28

Buffer Pointer (Page 2) Reserved Mult 0x2C

Buffer Pointer (Page 3) Reserved 0x30

Buffer Pointer (Page 4) Reserved 0x34

Buffer Pointer (Page 5) Reserved 0x38

Buffer Pointer (Page 6) Reserved 0x3C

Figure 39-48. Isochronous Transaction Descriptor (iTD)

Table 39-46. Next Schedule Element Pointer 

Field Description

31–5
Link 

Pointer

These bits correspond to memory address signals [31:5], respectively. This field points to another isochronous 
transaction descriptor (iTD/siTD) or queue head (QH).

4,3 Reserved. These bits are reserved and their value has no effect on operation. Software should initialize this field to 
0. 

2,1
Typ

 This field indicates to the host controller whether the item referenced is an iTD, siTD, or a QH. This allows the host 
controller to perform the proper type of processing on the item after it is fetched. Value encodings are:
00 iTD (isochronous transfer descriptor) 
01 QH (queue head) 
10 siTD (split transaction isochronous transfer descriptor 
11 FSTN (frame span traversal node)

0
T

Terminate
1 Link Pointer field is not valid.
0 Link Pointer field is valid.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-72 Freescale Semiconductor

39.5.3.2 iTD Transaction Status and Control List

doublewords one through eight are eight slots of transaction control and status. Each transaction 
description includes:

• Status results field
• Transaction length (bytes to send for OUT transactions and bytes received for IN transactions).
• Buffer offset. The PG and transaction n offset fields are used with the buffer pointer list to construct 

the starting buffer address for the transaction.

The host controller uses the information in each transaction description plus the endpoint information 
contained in the first three doublewords of the buffer page pointer list to execute a transaction on the USB.

39.5.3.3 iTD Buffer Page Pointer List (Plus)

doublewords 9-15 of an isochronous transaction descriptor are nominally page pointers (4K aligned) to the 
data buffer for this transfer descriptor. This data structure requires the associated data buffer to be 
contiguous (relative to virtual memory), but allows the physical memory pages to be non-contiguous. 
Seven page pointers are provided to support the expression of eight isochronous transfers. The seven 

Table 39-47. iTD Transaction Status and Control

Field Description

31–28
Status

This field records the status of the transaction executed by the host controller for this slot. This field is a bit vector 
with the following encoding: 
31 Active. Set by software to enable the execution of an isochronous transaction by the host controller. When the 

transaction associated with this descriptor is completed, the host controller sets this bit to 0 indicating that a 
transaction for this element should not be executed when it is next encountered in the schedule. 

30 Data Buffer Error. Set by the host controller during status update to indicate that the host controller is unable to 
keep up with the reception of incoming data (overrun) or is unable to supply data fast enough during transmission 
(underrun). If an overrun condition occurs, no action is necessary. 

29 Babble Detected. Set by the host controller during status update when babble is detected during the transaction 
generated by this descriptor.

28 Transaction Error (XactErr). Set by the host controller during status update in the case where the host did not 
receive a valid response from the device (Time-out, CRC, Bad PID, etc.). This bit may only be set for isochronous 
IN transactions. 

27–16
Transacti

on n 
Length

For an OUT, this field is the number of data bytes the host controller sends during the transaction. The host controller 
is not required to update this field to reflect the actual number of bytes transferred during the transfer. For an IN, the 
initial value of the endpoint to deliver. During the status update, the host controller writes back this field with the 
number of bytes the host expects to receive. The value in this register is the actual byte count (for example, 0 zero 
length data, 1 one byte, 2 two bytes, etc.). The maximum value this field may contain is 0xC00 (3072). 

15
IOC

Interrupt on complete. If this bit is set, it specifies that when this transaction completes, the host controller should 
issue an interrupt at the next interrupt threshold. 

14–12
PG

These bits are set by software to indicate which of the buffer page pointers the offset field in this slot should be 
concatenated to produce the starting memory address for this transaction. The valid range of values for this field is 
0 to 6. 

11–0
Transacti

on n 
Offset

This field is a value that is an offset, expressed in bytes, from the beginning of a buffer. This field is concatenated 
onto the buffer page pointer indicated in the adjacent PG field to produce the starting buffer address for this 
transaction.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-73

pointers allow for 3 (transactions) × 1024 (maximum packet size) × 8 (transaction records) = 24576 bytes 
to be moved with this data structure, regardless of the alignment offset of the first page.

Because each pointer is a 4K aligned page pointer, the least significant 12 bits in several of the page 
pointers are for other purposes.

Table 39-48. Buffer Pointer Page 0 (Plus) 

Field Description

 31:12
Buffer 
Pointer 

(Page 0)

This is a 4K aligned pointer to physical memory. Corresponds to memory address bits [31:12]. 

 11:8
EndPt

This 4-bit field selects the particular endpoint number on the device serving as the data source or sink. 

 7 Reserved. Reserved for future use and should be initialized by software to 0. 

 6:0
Device 

Address

This field selects the specific device serving as the data source or sink. 

Table 39-49. iTD Buffer Pointer Page 1 (Plus) 

Field Description 

31:12
Buffer 
Pointer 

(Page 1)

This is a 4K aligned pointer to physical memory. Corresponds to memory address bits [31:12]. 

11
I/O

Direction (I/O). This field encodes whether the high-speed transaction should use an IN or OUT PID. 
0 OUT
1 IN

10:0
Maximum 

Packet 
Size

This directly corresponds to the maximum packet size of the associated endpoint (wMaxPacketSize). This field is 
used for high-bandwidth endpoints where more than one transaction is issued per transaction description (.for 
example, per micro-frame). This field is used with the Multi field to support high-bandwidth pipes. This field is also 
used for all IN transfers to detect packet babble. Software should not set a value larger than 1024 (400h). Any larger 
value yields undefined results. 

Table 39-50. Buffer Pointer Page 2 (Plus) 

Field Description 

31:12
Buffer 
Pointer 

(Page 2)

This is a 4K aligned pointer to physical memory. Corresponds to memory address bits [31:12].

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-74 Freescale Semiconductor

39.5.4 Split Transaction Isochronous Transfer Descriptor (siTD)

All full-speed isochronous transfers through the internal transaction translator are managed using the siTD 
data structure. This data structure satisfies the operational requirements for managing the split transaction 
protocol.

11:2 Reserved. This bit reserved for future use and should be cleared. 

1:0
Mult

This field is used to indicate to the host controller the number of transactions that should be executed per transaction 
description (for example, per micro-frame). The valid values are: 
00 Reserved. A zero in this field yields undefined results.
01 One transaction to be issued for this endpoint per micro-frame 
10 Two transactions to be issued for this endpoint per micro-frame
11 Three transactions to be issued for this endpoint per micro-frame 

Table 39-51. Buffer Pointer Page 3-6 

Field Description 

31:12
Buffer 
Pointer

This is a 4K aligned pointer to physical memory. Corresponds to memory address bits [31:12]. 

11:2 Reserved. These bits reserved for future use and should be cleared. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Next Link Pointer 00 Typ T 0x00

I/O Port Number 0 Hub Address 0000 EndPt 0 Device Address 0x04

0000_0000_0000_00000 µFrame C-mask µFrame S-mask 0x08

IO
C

P1

1 Host controller read/write; all others read-only.

0000 Total Bytes to Transfer1 µFrame C-prog-mask1 Status1 0x0C

Buffer Pointer (Page 0) Current Offset1 0x10

Buffer Pointer (Page 1) 000_0000 TP1 T-count1 0x14

Back Pointer 0000 T 0x18

Figure 39-49. Split-Transaction Isochronous Transaction Descriptor (siTD)

Table 39-50. Buffer Pointer Page 2 (Plus)  (continued)

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-75

39.5.4.1 Next Link Pointer

Doubleword0 of a siTD is a pointer to the next schedule data structure.

39.5.4.2 siTD Endpoint Capabilities/Characteristics

doublewords 1 and 2 specify static information about the full-speed endpoint, the addressing of the parent 
companion controller, and micro-frame scheduling control.

Table 39-52. Next Link Pointer 

Bit Description 

31:5
Next Link 
Pointer

This field contains the address of the next data object to be processed in the periodic list and corresponds to 
memory address signals [31:5], respectively. 

4:3 Reserved. These bits must be written as zeros. 

2:1
Typ

This field indicates to the host controller whether the item referenced is an iTD/siTD or a QH. This allows the host 
controller to perform the proper type of processing on the item after it is fetched. Value encodings are:
00 iTD (isochronous transfer descriptor)
01 QH (queue head) 
10 siTD (split transaction isochronous transfer descriptor 
11 FSTN (frame span traversal node)

0
T

Terminate.
0 Link Pointer is valid.
1 Link Pointer field is not valid.

Table 39-53. Endpoint and Transaction Translator Characteristics 

Bit Description 

31
I/O

Direction (I/O). This field encodes whether the full-speed transaction should be an IN or OUT. 
0 OUT
1 IN 

30:24
Port 

Number

This field is the port number of the recipient transaction translator.

23 Reserved. Bit reserved and should be cleared.

22:16
Hub 

Address

This field holds the device address of the companion controllers’ hub. 

15:12 Reserved. Field reserved and should be cleared. 

11:8
EndPt

Endpoint Number. This 4-bit field selects the particular endpoint number on the device serving as the data source 
or sink.

7 Reserved. Bit is reserved for future use. It should be cleared. 

6:0
Device 

Address

This field selects the specific device serving as the data source or sink.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-76 Freescale Semiconductor

39.5.4.3 siTD Transfer State

Doublewords 3-6 are used to manage the state of the transfer.

Table 39-54. Micro-frame Schedule Control 

Bit Description 

31:16 Reserved. This field reserved for future use. It should be cleared. 

15:8
µFrame 
C-mask

Split Completion Mask. This field (along with the active and SplitX- state fields in the status byte) is used to 
determine during which micro-frames the host controller should execute complete-split transactions. When the 
criteria for using this field is met, an all zeros value has undefined behavior. The host controller uses the value of 
the three low-order bits of the FRINDEX register to index into this bit field. If the FRINDEX register value indexes to 
a position where the µFrame C-Mask field is a one, then this siTD is a candidate for transaction execution. There 
may be more than one bit in this mask set. 

7:0
µFrame 
S-mask

Split Start Mask. This field (along with the active and SplitX-state fields in the status byte) is used to determine 
during which micro-frames the host controller should execute start-split transactions. The host controller uses the 
value of the three low-order bits of the FRINDEX register to index into this bit field. If the FRINDEX register value 
indexes to a position where the µFrame S-mask field is a one, then this siTD is a candidate for transaction execution. 
An all zeros value in this field, in combination with existing periodic frame list has undefined results.

Table 39-55. siTD Transfer Status and Control 

Bit Description 

31
IOC

Interrupt On Complete
0 Do not interrupt when transaction is complete.
1 Do interrupt when transaction is complete. When the host controller determines that the split transaction has 

completed, it asserts a hardware interrupt at the next interrupt threshold. 

30
P

Page Select. Used to indicate which data page pointer should be concatenated with the CurrentOffset field to 
construct a data buffer pointer 
0 selects Page 0 pointer
1 selects Page 1 pointer
The host controller is not required to write this field back when the siTD is retired (Active bit transitioned from a 1 to 
a 0). 

29:26 Reserved. This field reserved for future use and should be cleared.

25:16
Total 

Bytes to 
Transfer

Software initializes this field to the total number of bytes expected in this transfer. Maximum value is 1023 (3FFh) 

15:8
µFrame 

C-prog-m
ask

Split complete progress mask. The host controller uses this field to record which split-completes have been 
executed. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-77

39.5.4.4 siTD Buffer Pointer List (Plus)

Doublewords 4 and 5 are the data buffer page pointers for the transfer. This structure supports one physical 
page cross. The most significant 20 bits of each doubleword in this section are the 4K (page) aligned buffer 
pointers. The least significant 12 bits of each doubleword is an additional transfer state.

7:0
Status

This field records the status of the transaction executed by the host controller for this slot. This field is a bit vector 
with the following encoding: 

Status Bit Definition 

7 Active. Set by software to enable the execution of an isochronous split transaction by the host 
controller.

6 ERR. Set by the host controller when an ERR response is received from the Companion 
Controller.

5 Data Buffer Error. Set by the host controller during status update to indicate the host controller is 
unable to keep up with the reception of incoming data (overrun) or is unable to supply data fast 
enough during transmission (under run). In the case of an under run, the host controller transmits 
an incorrect CRC (thus invalidating the data at the endpoint). If an overrun condition occurs, no 
action is necessary. 

4 Babble Detected. Set by the host controller during status update when babble is detected during 
the transaction generated by this descriptor. 

3 Transaction Error (XactErr). Set by the host controller during status update in the case where the 
host did not receive a valid response from the device (Time-out, CRC, Bad PID, etc.). This bit is 
only set for IN transactions.

2 Missed Micro-Frame. The host controller detected that a host-induced hold- off caused the host 
controller to miss a required complete-split transaction. 

1 Split Transaction State (SplitXstate). The bit encodings are:
0 Do Start Split. This value directs the host controller to issue a start split transaction to the 

endpoint when a match is encountered in the S-mask. 
1 Do Complete Split. This value directs the host controller to issue a complete split transaction to 

the endpoint when a match is encountered in the C-mask.

0 Reserved. Bit reserved for future use and should be cleared.

Table 39-56. siTD Buffer Pointer Page 0 (Plus) 

Bit Description 

31:12
Buffer 
Pointer 

(Page 0)

Bits [31:12] is a 4K page-aligned, physical memory address. These bits correspond to physical address bits [31:12] 
respectively. The field P specifies the current active pointer 

11:0
Current 
Offset

The 12 least significant bits of the Page 0 pointer is the current byte offset for the current page pointer (as selected 
with the page indicator bit (P field)). The host controller is not required to write this field back when the siTD is retired 
(Active bit transitioned from a one to a zero).

Table 39-55. siTD Transfer Status and Control  (continued)

Bit Description 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-78 Freescale Semiconductor

39.5.4.5 siTD Back Link Pointer

Doubleword 6 of a siTD is simply another schedule link pointer. This pointer is always zero or references 
an siTD. This pointer cannot reference any other schedule data structure.

39.5.5 Queue Element Transfer Descriptor (qTD)

This data structure is used only with a queue head. This data structure is for one or more USB transactions. 
This data structure transfers up to 20480 (5 × 4096) bytes. The structure contains two structure pointers 
used for queue advancement, a doubleword of transfer state, and a five-element array of data buffer 
pointers. This structure is 32 bytes (or one 32-byte cache line). This data structure must be physically 
contiguous.

The buffer associated with this transfer must be virtually contiguous. The buffer may start on any byte 
boundary. A separate buffer pointer list element must be used for each physical page in the buffer, 
regardless of whether the buffer is physically contiguous.

Host controller updates (host controller writes) to stand-alone qTDs only occur during transfer retirement. 
References in the following bit field definitions of updates to the qTD are to the qTD portion of a queue 
head.

Table 39-57. siTD Buffer Pointer Page 1 (Plus) 

Bit Description 

31:12
Buffer 
Pointer 

(Page 1)

Bits [31:12] is a 4K page-aligned, physical memory address. These bits correspond to physical address bits [31:12] 
respectively. The field P specifies the current active pointer 

11:5 Reserved.

4:3
TP

Transaction position. This field is used with T-count to determine whether to send all, first, middle, or last with each 
outbound transaction payload. System software must initialize this field with the appropriate starting value. The host 
controller must correctly manage this state during the lifetime of the transfer. The bit encodings are: 
00 All. The entire full-speed transaction data payload is in this transaction (that is, less than or equal to 188 bytes).
01 Begin. This is the first data payload for a full-speed transaction that is greater than 188 bytes.
10 Mid. This is the middle payload for a full-speed OUT transaction that is larger than 188 bytes. 
11 End. This is the last payload for a full-speed OUT transaction that was larger than 188 bytes. 

2:0
T-Count

Transaction count. Software initializes this field with the number of OUT start-splits this transfer requires. Any value 
larger than 6 is undefined.

Table 39-58. siTD Back Link Pointer 

Bit Description 

31:5
Back 

Pointer

This field is a physical memory pointer to a siTD. 

4:1 Reserved. This field is reserved for future use. It should be cleared. 

0
T

Terminate
0 siTD Back Pointer field is valid
1 siTD Back Pointer field is not valid

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-79

Queue element transfer descriptors must be aligned on 32-byte boundaries.

39.5.5.1 Next qTD Pointer

The first doubleword of an element transfer descriptor is a pointer to another transfer element descriptor.

39.5.5.2 Alternate Next qTD Pointer

The second doubleword of a queue element transfer descriptor supports hardware-only advance of the data 
stream to the next client buffer on short packet. To be more explicit, the host controller always uses this 
pointer when the current qTD is retired due to short packet.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Next qTD Pointer 0000 T 0x00

Alternate Next qTD Pointer 0000 T 0x04

dt1

1 Host controller read/write; all others read-only.

Total Bytes to Transfer1
IO
C

C_Page1 Cerr1
PID 

Code
Status1 0x08

Buffer Pointer (Page 0) Current Offset1 0x0C

Buffer Pointer (Page 1) 0000_0000_0000 0x10

Buffer Pointer (Page 2) 0000_0000_0000 0x14

Buffer Pointer (Page 3) 0000_0000_0000 0x18

Buffer Pointer (Page 4) 0000_0000_0000 0x1C

Figure 39-50. Queue Element Transfer Descriptor (qTD)

Table 39-59. qTD Next Element Transfer Pointer (doubleword 0) 

Bit Description 

31:5
Next qTD 
Pointer

This field contains the physical memory address of the next qTD to be processed. The field corresponds to memory 
address signals[31:5], respectively. 

4:1 Reserved. These bits are reserved and their value has no effect on operation. 

0
T

Terminate. This bit indicates to the Host Controller that there are no more valid entries in the queue.
0 Pointer is valid (points to a valid Transfer Element Descriptor).
1 Pointer is invalid. 

Table 39-60. qTD Alternate Next Element Transfer Pointer (Doubleword 1) 

Bit Description 

31:5
Alternate 
Next qTD 
Pointer

This field contains the physical memory address of the next qTD to be processed in the event that the current qTD 
execution encounters a short packet (for an IN transaction). The field corresponds to memory address signals [31:5], 
respectively. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-80 Freescale Semiconductor

39.5.5.3 qTD Token

The third doubleword of a queue element transfer descriptor contains most of the information the host 
controller requires to execute a USB transaction (the remaining endpoint-addressing information is 
specified in the queue head). Some of the field descriptions in Table 39-61 reference fields defined in the 
queue head. See Section 39.5.6, “Queue Head,” for more information on these fields.

4:1 Reserved. These bits are reserved and their value has no effect on operation. 

0
T

Terminate. This bit indicates to the Host Controller that there are no more valid entries in the queue.
0 Pointer is valid (points to a valid Transfer Element Descriptor).
1 Pointer is invalid. 

Table 39-61. qTD Token (doubleword 2) 

Bit Description 

31
Data 

Toggle

This is the data toggle sequence bit. The use of this bit depends on the setting of the data toggle control bit in the 
queue head. 

30:16
Total 

Bytes to 
Transfer

Total Bytes to Transfer. This field specifies the total number of bytes to be moved with this transfer descriptor. This 
field is decremented by the number of bytes actually moved during the transaction on the successful completion of 

the transaction. The maximum value software may store in this field is 5 × 4K (0x5000). This is the maximum 
number of bytes five page pointers can access. If the value of this field is 0 when the host controller fetches this 
transfer descriptor (and the active bit is set), the host controller executes a zero-length transaction and retires the 
transfer descriptor. It is not a requirement for OUT transfers that total bytes to transfer be an even multiple of QH 
[Maximum Packet Length]. If software builds such a transfer descriptor for an OUT transfer, the last transaction is 
always less than QH [Maximum Packet Length]. Although it is possible to create a transfer up to 20K this assumes 
the page is zero. When the offset cannot be predetermined, crossing past the fifth page can be guaranteed by 
limiting the total bytes to 16K. Therefore, the maximum recommended transfer is 16K(0x4000).

15
IOC

Interrupt On Complete. If this bit is set, it specifies that when this qTD is completed, the host controller should issue 
an interrupt at the next interrupt threshold.

14:12
C_Page

Current Page. This field is used as an index into the qTD buffer pointer list. Valid values are in the range 0x0 to 0x4. 
The host controller is not required to write this field back when the qTD is retired. 

Table 39-60. qTD Alternate Next Element Transfer Pointer (Doubleword 1)  (continued)

Bit Description 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-81

11:10
Cerr

Error Counter. This field is a 2-bit down counter that keeps track of the number of consecutive errors detected while 
executing this qTD. If this field is programmed with a non-zero value during set-up, the host controller decrements 
the count and writes it back to the qTD if the transaction fails. If the counter counts from one to zero, the host 
controller marks the qTD inactive, sets the halted bit to a one, and error status bit for the error that caused Cerr to 
decrement to zero. An interrupt is generated if the USB error interrupt enable bit in the USBINTR register is set. If 
the host controller driver (HCD) software programs this field to zero during set-up, the host controller does not count 
errors for this qTD and there is no limit on the retries of this qTD. Write-backs of intermediate execution state are to 
the queue head overlay area, not the qTD.

Error Decrement Counter 

Transaction Error Yes 

Data Buffer Error No. Data buffer errors are host problems. They don't count against the device's retries. 
Software must not program Cerr to a value of zero when the EPS field is programmed with 
a value indicating a full- or low-speed device. This combination could result in undefined 
behavior. 

Stalled No. Detection of babble or stall automatically halts the queue head. Count is not 
decremented

Babble Detected No. Detection of babble or stall automatically halts the queue head. Count is not 
decremented

No Error No. If the EPS field indicates a HS device or the queue head is in the asynchronous 
schedule (and PIDCode indicates an IN or OUT), a bus transaction completes, and the host 
controller does not detect a transaction error, the host controller should reset Cerr to extend 
the total number of errors for this transaction. For example, Cerr should be reset with 
maximum value (0b11) on each successful completion of a transaction. The host controller 
must never reset this field if the value at the start of the transaction is 0b00. 

9:8
PID Code

This field is an encoding of the token, which should be used for transactions associated with this transfer descriptor. 
Encodings are: 
00 OUT Token generates token (E1H)
01 IN Token generates token (69H) 
10 SETUP Token generates token (2DH) (undefined if endpoint is an Interrupt transfer type, for example. µFrame 

S-mask field in the queue head is non-zero.)
11 Reserved

Table 39-61. qTD Token (doubleword 2)  (continued)

Bit Description 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-82 Freescale Semiconductor

7:0
Status

The host controller uses this field to communicate individual command execution states back to the host controller 
driver (HCD) software. This field contains the status of the last transaction performed on this qTD. The bit encodings 
are:

Bit Status Field Description 

7 Active. Set by software to enable the execution of transactions by the host controller. 

6 Halted. Set by the host controller during status updates to indicate that a serious error has 
occurred at the device/endpoint addressed by this qTD. This can be caused by babble, the 
error counter counting down to zero, or reception of the STALL handshake from the device 
during a transaction. Any time a transaction results in the halted bit being set, the active bit 
is also cleared.

5 Data Buffer Error. Set by the host controller during status update to indicate the host 
controller is unable to keep up with the reception of incoming data (overrun) or is unable to 
supply data fast enough during transmission (under run). If an overrun condition occurs, the 
host controller forces a time-out condition on the USB, invalidating the transaction at the 
source. If the host controller sets this bit to a one, it remains a one for the duration of the 
transfer.

4 Babble Detected. Set by the host controller during status update when babble is detected 
during the transaction. In addition to setting this bit, the host controller also sets the halted 
bit to a one. Because babble is considered a fatal error for the transfer, setting the halted bit 
to a one ensures no more transactions occur because of this descriptor. 

3 Transaction Error (XactErr). Set by the host controller during status update in the case where 
the host did not receive a valid response from the device (time-out, CRC, bad PID). If the 
host controller sets this bit to a one, it remains a one for the duration of the transfer.

2 Missed Micro-Frame. This bit is ignored unless the QH[EPS] field indicates a full- or 
low-speed endpoint and the queue head is in the periodic list. This bit is set when the host 
controller detects a host-induced hold-off caused the host controller to miss a required 
complete-split transaction. If the host controller sets this bit to a one, it remains a one for the 
duration of the transfer. 

1 Split Transaction State (SplitXstate). This bit is ignored by the host controller unless the 
QH[EPS] field indicates a full- or low-speed endpoint. When configured as a full- or 
low-speed device, the host controller uses this bit to track the state of the split- transaction. 
The functional requirements of the host controller for managing this state bit and the split 
transaction protocol depends on whether the endpoint is in the periodic or asynchronous 
schedule. The bit encodings are:
0 Do Start Split. This value directs the host controller to issue a start split transaction to the 

endpoint. 
1 Do Complete Split. This value directs the host controller to issue a complete split 

transaction to the endpoint.

0 Ping State (P)/ERR. If the QH[EPS] field indicates a high-speed device and the PID Code 
indicates an OUT endpoint, this is the state bit for the ping protocol. The bit encodings are:
0 Do OUT. This value directs the host controller to issue an OUT PID to the endpoint. 
1 Do Ping. This value directs the host controller to issue a PING PID to the endpoint. 
If the QH[EPS] field does not indicate a high-speed device, this field is used as an error 
indicator bit. It is set by the host controller when a periodic split-transaction receives an ERR 
handshake.

Table 39-61. qTD Token (doubleword 2)  (continued)

Bit Description 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-83

39.5.5.4 qTD Buffer Page Pointer List

The last five doublewords of a queue element transfer descriptor is an array of physical memory address 
pointers. These pointers reference the individual pages of a data buffer. 

System software initializes Current Offset field to the starting offset into the current page, where current 
page is selected via the value in the C_Page field.

Table 39-62. qTD Buffer Pointer 

Bit Name Description 

31:12 Buffer Pointer 
(page n)

Each element in the list is a 4K page aligned physical memory address. The lower 12 bits in each 
pointer are reserved (except for the first one), as each memory pointer must reference the start of 
a 4K page. The field C_Page specifies the current active pointer. When the transfer element 
descriptor is fetched, the starting buffer address is selected using C_Page (similar to an array index 
to select an array element). If a transaction spans a 4K buffer boundary, the host controller must 
detect the page-span boundary in the data stream, increment C_Page and advance to the next 
buffer pointer in the list, and conclude the transaction via the new buffer pointer.

11:0 Current Offset 
(Page 0)/—
(Pages 1-4)

This field is reserved in all pointers except the first one (that is, Page 0). The host controller should 
ignore all reserved bits. For the page 0 current offset interpretation, this field is the byte offset into 
the current page (as selected by C_Page). The host controller is not required to write this field back 
when the qTD is retired. Software should ensure the reserved fields are initialized to zeros.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-84 Freescale Semiconductor

39.5.6 Queue Head

Figure 39-51 shows the queue head structure.

Figure 39-51. Queue Head Layout

39.5.6.1 Queue Head Horizontal Link Pointer

The first doubleword of a queue head contains a link pointer to the next data object to be processed after 
any required processing in this queue has been completed, as well as the control bits defined below.

This pointer may reference a queue head or one of the isochronous transfer descriptors. It must not 
reference a queue element transfer descriptor.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Queue Head Horizontal Link Pointer 00 Typ T 0x00

RL C Maximum Packet Length H dtc EPS EndPt I Device Address 0x041

1 Offsets 0x04 through 0x0B contain the static endpoint state.

Mult Port Number Hub Addr µFrame C-mask µFrame S-mask 0x081

Current qTD Pointer2

2 Host controller read/write; all others read-only.

00000 0x0C

Next qTD Pointer2 0000 T2 0x103

3 Offsets 0x10 through 0x2F contain the transfer overlay.

Alternate Next qTD Pointer2 NakCnt2 T2 0x143,4

4 Offsets 0x14 through 0x27 contain the transfer results.

dt1 Total Bytes to Transfer2
IOC

2 C_Page2 Cerr2
PID 

Code2 Status2 0x183,4

Buffer Pointer (Page 0)2 Current Offset2 0x1C3,4

Buffer Pointer (Page 1)2 0000 C-prog-mask2 0x203,4

Buffer Pointer (Page 2)2 S-bytes2 FrameTag2 0x243,4

Buffer Pointer (Page 3)2 0000_0000_0000 0x283

Buffer Pointer (Page 4)2 0000_0000_0000 0x2C3

Table 39-63. Queue Head doubleword 0 

Field Description 

31:5
QHLP

Queue Head Horizontal Link Pointer. This field contains the address of the next data object to be processed in the 
horizontal list and corresponds to memory address signals [31:5], respectively. 

4:3 Reserved. These bits must be written as zeros. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-85

39.5.6.2 Endpoint Capabilities/Characteristics

The second and third doublewords of a queue head specify static information about the endpoint. This 
information does not change over the lifetime of the endpoint. There are three types of information in this 
region:

• Endpoint Characteristics. These are the USB endpoint characteristics including addressing, 
maximum packet size, and endpoint speed.

• Endpoint Capabilities. These are adjustable parameters of the endpoint. They affect how the 
endpoint data stream is managed by the host controller.

• Split Transaction Characteristics. This data structure manages full- and low-speed data streams for 
bulk, control, and interrupt via split transactions to USB2.0 hub transaction translator. There are 
additional fields for addressing the hub and scheduling the protocol transactions (for periodic).

The host controller must not modify the bits in this region.

2:1
Typ

This field indicates to the hardware whether the item referenced by the link pointer is an iTD, siTD or a QH. This 
allows the host controller to perform the proper type of processing on the item after it is fetched. 
00 iTD (isochronous transfer descriptor)
01 QH (queue head)
10 siTD (split transaction isochronous transfer descriptor)
11 FSTN (frame span traversal node) 

0
T

Terminate.
1 Last QH (pointer is invalid).
0 Pointer is valid. 
If the queue head is in the context of the periodic list, a one bit in this field indicates to the host controller that this is 
the end of the periodic list. The host controller ignores this bit when the queue head is in the asynchronous schedule. 
Software must ensure that queue heads reachable by the host controller always have valid horizontal link pointers.

Table 39-64. Endpoint Characteristics: Queue Head doubleword 1 

Field Description 

31:28
RL

Nak Count Reload. This field contains a value used by the host controller to reload the Nak counter field. 

27
C

Control Endpoint Flag. If the QH[EPS] field indicates the endpoint is not a high-speed device and the endpoint is a 
control endpoint, software must set this bit to a one. Otherwise, it should always set this bit to a zero. 

26:16
Maximum 

Packet 
Length

This directly corresponds to the maximum packet size of the associated endpoint (wMaxPacketSize). The maximum 
value this field may contain is 0x400 (1024). 

15
H

Head of reclamation list flag. This bit is set by system software to mark a queue head as being the head of the 
reclamation list. 

Table 39-63. Queue Head doubleword 0  (continued)

Field Description 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-86 Freescale Semiconductor

14
DTC

Data Toggle Control (DTC). This bit specifies where the host controller should get the initial data toggle on an overlay 
transition.
0 Ignore DT bit from incoming qTD. Host controller preserves DT bit in the queue head. 
1 Initial data toggle comes from incoming qTD DT bit. Host controller replaces DT bit in the queue head from the 

DT bit in the qTD.

13:12
EPS

Endpoint Speed. This is the speed of the associated endpoint.
00 Full-Speed (12Mbs)
01 Low-Speed (1.5Mbs) 
10 High-Speed (480 Mb/s) 
11 Reserved This field must not be modified by the host controller. 

11:8
EndP

I

Endpoint Number. This 4-bit field selects the particular endpoint number on the device serving as the data source 
or sink. 

7 Inactivate on next transaction. This bit is used by system software to request the host controller set the active bit to 
zero. This field is only valid when the queue head is in the periodic schedule and the EPS field indicates a full or 
low-speed endpoint. Setting this bit to a one when the queue head is in the asynchronous schedule or the EPS field 
indicates a high-speed device yields undefined results. 

6:0
Device 

Address

This field selects the specific device serving as the data source or sink.

Table 39-65. Endpoint Capabilities: Queue Head doubleword 2 

Field Description

31:30
Mult

High-Bandwidth Pipe Multiplier. This field is a multiplier used to key the host controller to the number of successive 
packets the host controller may submit to the endpoint in the current execution. The host controller makes the 
simplifying assumption that software properly initializes this field (regardless of location of queue head in the 
schedules or other run time parameters).
00 Reserved. A zero in this field yields undefined results. 
01 One transaction to be issued for this endpoint per micro-frame
10 Two transactions to be issued for this endpoint per micro-frame 
11 Three transactions to be issued for this endpoint per micro-frame 

29:23
Port 

Number

This field is ignored by the host controller unless the EPS field indicates a full- or low-speed device. The value is the 
port number identifier on the USB 2.0 hub (for hub at device address Hub Addr below), below which the full- or 
low-speed device associated with this endpoint is attached. This information is used in the split-transaction protocol.

22:16
Hub Addr

This field is ignored by the host controller unless the EPS field indicates a full-or low-speed device. The value is the 
USB device address of the USB 2.0 hub below which the full- or low-speed device associated with this endpoint is 
attached. This field is used in the split-transaction protocol. 

Table 39-64. Endpoint Characteristics: Queue Head doubleword 1  (continued)

Field Description 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-87

39.5.6.3 Transfer Overlay

The nine doublewords in this area represent a transaction working space for the host controller. The general 
operational model is that the host controller can detect whether the overlay area contains a description of 
an active transfer. If it does not contain an active transfer, it follows the queue head horizontal link pointer 
to the next queue head. The host controller never follows the next transfer queue element or alternate queue 
element pointers unless it is actively attempting to advance the queue. For the duration of the transfer, the 
host controller keeps the incremental status of the transfer in the overlay area. When the transfer is 
complete, the results are written back to the original queue element.

The doubleword of a queue head contains a pointer to the source qTD currently associated with the 
overlay. The host controller uses this pointer to write back the overlay area into the source qTD after the 
transfer is complete.

The doublewords 4-11 of a queue head are the transaction overlay area. This area has the same base 
structure as a queue element transfer descriptor. The queue head utilizes the reserved fields of the page 
pointers to implement tracking the state of split transactions.

This area is characterized as an overlay because when the queue is advanced to the next queue element, 
the source queue element is merged onto this area. This area serves an execution cache for the transfer.

15:8
µFrame 
C-mask

This field is ignored by the host controller unless the EPS field indicates this device is a low- or full-speed device 
and this queue head is in the periodic list. This field (along with the active and SplitX-state fields) is used to 
determine during which micro-frames the host controller should execute a complete-split transaction. When the 
criteria for using this field are met, a zero value in this field has undefined behavior. This field is used by the host 
controller to match against the three low-order bits of the FRINDEX register. If the FRINDEX register bits decode to 
a position where the µFrame C- mask field is a one, this queue head is a candidate for transaction execution. There 
may be more than one bit in this mask set.

7:0
µFrame 
S-mask

Interrupt Schedule Mask. This field is used for all endpoint speeds. Software should set this field to a zero when the 
queue head is on the asynchronous schedule. A non-zero value in this field indicates an interrupt endpoint. The host 
controller uses the value of the three low-order bits of the FRINDEX register as an index into a bit position in this bit 
vector. If the µFrame S-mask field has a one at the indexed bit position, this queue head is a candidate for 
transaction execution. If the EPS field indicates the endpoint is a high-speed endpoint, the transaction executed is 
determined by the PID_Code field contained in the execution area. This field is also used to support split transaction 
types such as Interrupt (IN/OUT). This condition is true when this field is non-zero and the EPS field indicates this 
is either a full- or low-speed device. A zero value in this field, in combination with existing in the periodic frame list, 
has undefined results.

Table 39-66. Current qTD Link Pointer 

Field Description

31:5
Current 

qTD 
Pointer

Current Element Transaction Descriptor Link Pointer. This field contains the address Of the current transaction being 
processed in this queue and corresponds to memory address signals [31:5], respectively.

4:0 Reserved. These bits are ignored by the host controller when using the value as an address to write data. The actual 
value may vary depending on the usage.

Table 39-65. Endpoint Capabilities: Queue Head doubleword 2  (continued)

Field Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-88 Freescale Semiconductor

39.5.7 Periodic Frame Span Traversal Node (FSTN)

This data structure is only for managing full- and low-speed transactions that span a host-frame boundary. 
Software must not use an FSTN in the asynchronous schedule. An FSTN in the asynchronous schedule 
results in undefined behavior. Software must not use the FSTN feature with a host controller whose 
HCIVERSION register indicates a revision implementation below 0x0096. FSTNs were not defined for 
EHCI implementations before revision 0.96 of the EHCI specification and their use may yield undefined 
results.

39.5.7.1 FTSN Normal Path Pointer

The first doubleword of an FSTN contains a link pointer to the next schedule object. This object can be of 
any valid periodic schedule data type.

Table 39-67. Host-Controller Rules for Bits in Overlay (doublewords 5, 6, 8 and 9) 

doublew
ord 

QH 
Offset 

Bit Description 

5 0x14 4:1
NakCnt

Nak counter—RW. This field is a counter the host controller decrements when a transaction for 
the endpoint associated with this queue head results in a Nak or Nyet response. This counter is 
reloaded from RL before a transaction is executed during the first pass of the reclamation list 
(relative to an asynchronous list restart condition). It is also loaded from RL during an overlay. 

6 0x18 31
DT

The data toggle control controls whether the host controller preserves this bit when an overlay 
operation is performed. 

6 0x18 15
IOC

Interrupt on complete. The IOC control bit is always inherited from the source qTD when the 
overlay operation is performed. 

6 0x18 11:10
Cerr

Error counter. This two-bit field is copied from the qTD during the overlay and written back during 
queue advancement. 

6 0x18 0
Status

Ping state (P)/ERR. If the EPS field indicates a high-speed endpoint, then this field should be 
preserved during the overlay operation.

8 0x20 7:0
C-prog-
mask

Split-transaction complete-split progress. This field is initialized to zero during any overlay. This 
field is used to track the progress of an interrupt split-transaction. 

9 0x24 11:5
S-bytes

Software must ensure that the S-bytes field in a qTD is zero before activating the qTD. This field 
is used to keep track of the number of bytes sent or received during an IN or OUT split 
transaction.

9 0x24 4:0
FrameTa

g

Split-transaction frame tag. This field is initialized to zero during any overlay. This field is used to 
track the progress of an interrupt split-transaction. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Normal Path Link Pointer 00 Typ T 0x00

Back Path Link Pointer 00 Typ T 0x04

Figure 39-52. Frame Span Traversal Node Structure

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-89

39.5.7.2 FSTN Back Path Link Pointer

The second doubleword of an FTSN node contains a link pointer to a queue head. If the T-bit in this pointer 
is a zero, then this FSTN is a save-place indicator. Its Typ field must be set by software to indicate the target 
data structure is a queue head. If the T-bit in this pointer is set, this FSTN is the restore indicator. When 
the T-bit is a one, the host controller ignores the Typ field.

39.6 Host Operational Model
The general operational model is for the USB modules in host mode is defined by the enhanced host 
controller interface (EHCI) specification. The EHCI specification describes the register-level interface for 
a host controller for the USB Revision 2.0. It includes a description of the hardware/software interface 
between system software and host controller hardware. Information concerning the initialization of the 
USB modules is included in the following section; however, the full details of the EHCI specification are 
beyond the scope of this document.

Table 39-68. FTSN Normal Path Pointer 

Bit Description 

31:5
NPLP

Normal Path Link Pointer. This field contains the address of the next data object to be processed in the periodic list 
and corresponds to memory address signals [31:5], respectively. 

4:3 Reserved. These bits must be written as 0s. 

2:1
Typ

This field indicates to the host controller whether the item referenced is a iTD/siTD, a QH, or an FSTN. This allows 
the host controller to perform the proper type of processing on the item after it is fetched.
00 iTD (isochronous transfer descriptor)
01 QH (queue head)
10 siTD (split transaction isochronous transfer descriptor)
11 FSTN (Frame Span Traversal Node)

0
T

Terminate.
0 Link Pointer is valid.
1 Link Pointer field is not valid.

Table 39-69. FSTN Back Path Link Pointer 

Bit Description 

31:5
BPLP

Back Path Link Pointer. This field contains the address of a queue head. This field corresponds to memory address 
signals [31:5], respectively. 

4:3 Reserved. These bits must be written as 0s.

2:1
Typ

Software must ensure this field is set to indicate the target data structure is a queue head (01). Any other value in 
this field yields undefined results. 

0
T

Terminate.
0 Link Pointer is valid (that is, the host controller may use bits [31:5] [in combination with the CTRLDSSEGMENT 

register if applicable] as a valid memory address). This value also indicates that this FSTN is a save-place 
indicator.

1 Link Pointer field is not valid (that is, the host controller must not use bits [31:5] [in combination with the 
CTRLDSSEGMENT register if applicable] as a valid memory address). This value also indicates that this FSTN 
is a restore indicator. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-90 Freescale Semiconductor

39.6.1 Host Controller Initialization

After initial power-on or HCReset (hardware or via HCReset bit in the USBCMD register), all of the 
operational registers are at their default values, as illustrated in Table 39-70. After a hardware reset, only 
the operational registers not contained in the auxiliary power well is at their default values.

To initialize the host controller, software should perform the following steps:
1. Optionally set streaming disable in the USBMODE register.
2. Optionally modify the BURSTSIZE register.
3. Program the PTS field of the PORTSCx register if using a non-ULPI PHY.
4. Set the USB_EN bit in the CONTROL register.
5. Program the CTRLDSSEGMENT register with 4-Gigabyte segment where all of the interface data 

structures are allocated.
6. Write the appropriate value to the USBINTR register to enable the appropriate interrupts.
7. Write the base address of the periodic frame list to the PERIODICLIST BASE register. If there are 

no work items in the periodic schedule, all elements of the periodic frame list should have their 
T-Bits set.

8. Write the USBCMD register to set the desired interrupt threshold, frame list size (if applicable), 
and turn the controller by setting the run/stop bit.

At this point, the host controller is running and the port registers begin reporting device connects. System 
software can enumerate a port through the reset process (where the port is in the enabled state). At this 
point, the port is active with SOFs occurring down the enabled port enabled high-speed ports, but the 
schedules have not yet been enabled. The EHCI host controller does not transmit SOFs to enabled full- or 
low-speed ports. 

To communicate with devices via the asynchronous schedule, system software must write the 
ASYNDLISTADDR register with the address of a control or bulk queue head. Software must then enable 
the asynchronous schedule by writing a one to the asynchronous schedule enable bit in the USBCMD 

Table 39-70. Default Values of Operational Register Space 

Operational Register Default Value (after Reset) 

USBCMD  0x0008_0000 (0x0008_0B00 if Asynchronous 
Schedule Park Capability is set) 

USBSTS 0x0000_1000 

USBINTR 0x0000_0000

FRINDEX 0x0000_0000

CTRLDSSEGMENT 0x0000_0000 

PERIODICLISTBASE Undefined 

ASYNCLISTADDR Undefined

CONFIGFLAG 0x0000_0000 

PORTSC 0x0000_2000 (w/PPC set); 
0x0000_3000 (w/PPC cleared)

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-91

register. To communicate with devices via the periodic schedule, system software must enable the periodic 
schedule by writing a one to the periodic schedule enable bit in the USBCMD register. The schedules can 
be turned on before the first port is reset (and enabled).

Any time the USBCMD register is written, system software must ensure the appropriate bits are preserved, 
depending on the intended operation.

39.6.1.1 Port Powert

The port power control (PPC) bit in the HCSPARAMS register indicates whether the USB 2.0 host 
controller has port power control. When the PPC bit is a one, the host controller supports port power 
switches. Each available switch has an output enable. PPE is controlled based on the state of the 
combination bits PPC bit, EHCI configured (CF) bit, and individual port power (PP) bits.

39.6.1.2 Reporting Over-Current

Host ports by definition are power providers on USB. Whether the ports are considered high- or 
low-powered is a platform implementation issue. Each EHCI PORTSC register has an over-current status 
and over-current change bit. The functionality of these bits is specified in the USB Specification Revision 
2.0. 

39.6.2 Suspend/Resume

The host controller provides an equivalent suspend and resume model as that defined for individual ports 
in a USB 2.0 hub. Control mechanisms are provided to allow system software to suspend and resume 
individual ports. The mechanisms allow the individual ports to be resumed completely via software 
initiation. Other control mechanisms are provided to parameterize the host controller's response (or 
sensitivity) to external resume events. In this discussion, host-initiated or software-initiated resumes are 
called resume events/actions; bus-initiated resume events are called wake-up events. The classes of 
wakeup events are:

• Remote-wakeup enabled device asserts resume signaling. Similar to USB 2.0 hubs, when in host 
mode, the host controller responds to explicit device, resumes signaling, and wakes up the system 
(if necessary).

• Port connect and disconnect. Sensitivity to these events can be turned on or off by using the port 
control bits in the PORTSC register. An over-current event does not wake the USB core.

Selective suspend is a feature supported by the PORTSC register. It places specific ports into a suspend 
mode. This feature is a functional component for implementing the appropriate power management policy 
implemented in a particular operating system. When system software intends to suspend the bus, it should 
suspend the enabled port, then shut off the controller by setting the run/stop bit in the USBCMD register 
to a zero.

When a wake event occurs, the system resumes operation and system software must set the run/stop bit to 
a one and resume the suspended port.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-92 Freescale Semiconductor

39.6.2.1 Port Suspend/Resume

System software places the USB into suspend mode by writing a one into the appropriate PORTSC 
suspend bit. Software must only set the suspend bit when the port is in the enabled state (port enabled bit 
is a one).

The host controller may evaluate the suspend bit immediately or wait until a micro-frame or frame 
boundary occurs. If evaluated immediately, the port is not suspended until the current transaction (if one 
is executing) completes. Therefore, there may be several micro-frames of activity on the port until the host 
controller evaluates the suspend bit. The host controller must evaluate the suspend bit at least every frame 
boundary.

System software can initiate a resume on the suspended port by writing a one to the force port resume bit. 
Software should not attempt to resume a port unless the port reports that it is in the suspended state. If 
system software sets the force port resume bit when the port is not in the suspended state, the resulting 
behavior is undefined. To assure proper USB device operation, software must wait for at least 10 
milliseconds after a port indicates it is suspended (suspend bit is a one) before initiating a port resume via 
the force port resume bit. When force port resume bit is set, the host controller sends resume signaling 
down the port. System software times the duration of the resume (nominally 20 milliseconds), and then 
clears the force port resume bit. When the host controller receives the write to transition force port resume 
to zero, it completes the resume sequence as defined in the USB specification, and clears both the force 
port resume and suspend bits. Software-initiated port resumes do not affect the port change detect bit in 
the USBSTS register nor do they cause an interrupt if the port change interrupt enable bit in the USBINTR 
register is a one. When a wake event occurs on a suspended port, the resume signaling is detected by the 
port and the resume is reflected downstream within 100 µsec. The port's force port resume bit is set and 
the port change detect bit in the USBSTS register is set. If the port change interrupt enable bit in the 
USBINTR register is a one, the host controller issues a hardware interrupt.

System software observes the resume event on the port, delays a port resume time (nominally 20 
milliseconds), and then terminates the resume sequence by clearing the force port resume bit in the port. 
The host controller receives the write of zero to force port resume, terminates the resume sequence, and 
clears the force port resume and suspend port bits. Software can determine the port is enabled (not 
suspended) by sampling the PORTSC register and observing that the suspend and force port resume bits 
are zero. Software must ensure that the host controller is running (HCHalted bit in the USBSTS register is 
a zero), before terminating a resume by clearing the port's force port Resume bit. If HCHalted is a one 
when force port resume is cleared, SOFs does not occur down the enabled port and the device returns to 
suspend mode in a maximum of 10 milliseconds.

Table 39-71 summarizes the wake-up events. When a resume event is detected, the port change detect bit 
in the USBSTS register is set. If the port change interrupt enable bit is a one in the USBINTR register, the 
host controller also generates an interrupt on the resume event. Software acknowledges the resume event 
interrupt by clearing the port change detect status bit in the USBSTS register.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-93

39.6.3 Schedule Traversal Rules

The host controller executes transactions for devices using a simple, shared-memory schedule. The 
schedule is comprised of a few data structures, organized into two distinct lists. The data structures provide 
the maximum flexibility required by USB, minimize memory traffic, and hardware/software complexity.

System software maintains two schedules for the host controller: a periodic schedule and an asynchronous 
schedule. The root of the periodic schedule is the PERIODICLISTBASE register. See Section 39.2.1.4.6, 
“Periodic Frame List Base Address Register (PERIODICLISTBASE),” for more information. The 
PERIODICLISTBASE register is the physical memory base address of the periodic frame list. The 

Table 39-71. Behavior During Wake-up Events 

Port Status and Signaling 
Type 

Signaled Port Response 
Device State

D0 not D0 

Port disabled, resume K-State 
received 

No Effect N/A N/A 

Port suspended, Resume 
K-State received 

Resume reflected downstream on signaled 
port. Force port resume status bit in 
PORTSC register is set. Port change detect 
bit in USBSTS register is set. 

1, 2

1 Hardware interrupt issued if port change interrupt enable bit in the USBINTR register is set.
2 ME# asserted if enabled. PPME Status must always be set.

2

Port is enabled, disabled or 
suspended, and the port's 
WKDSCNNT_E bit is set. A 
disconnect is detected.

Depending in the initial port state, the 
PORTSC connect and enable status bits are 
cleared, and the connect change status bit is 
set. Port change detect bit in the USBSTS 
register is set. 

1, 2 2

Port is enabled, disabled or 
suspended, and the port's 
WKDSCNNT_E bit is cleared. 
A disconnect is detected. 

Depending on the initial port state, the 
portsc connect and enable status bits are 
cleared, and the connect change status bit is 
set. Port change detect bit in the USBSTS 
register is set. 

1, 3

3 PME# not asserted.

3

Port is not connected and the 
port's WKCNNT_E bit is a 
one. A connect is detected. 

PORTSC connect status and connect status 
change bits are set. Port change detect bit in 
the USBSTS register is set. 

1, 2 2

Port is not connected and the 
port's WKCNNT_E bit is a 
zero. A connect is detected. 

PORTSC connect status and connect status 
change bits are set. Port change detect bit in 
the USBSTS register is set. 

1, 3 3

Port is connected and the 
port's WKOC_E bit is a one. 
An over-current condition 
occurs. 

PORTSC over-current active, over-current 
change bits are set. If port enable/disable bit 
is a one, it is cleared. Port change detect bit 
in the USBSTS register is set 

1, 2 2

Port is connected and the 
port's WKOC_E bit is a zero. 
An over-current condition 
occurs. 

PORTSC over-current active, over-current 
change bits are set. If port enable/disable bit 
is a one, it is cleared. Port change detect bit 
in the USBSTS register is set. 

1, 3 3

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-94 Freescale Semiconductor

periodic frame list is an array of physical memory pointers. The objects referenced from the frame list must 
be valid schedule data structures as defined in Section 39.5, “Host Data Structures.” In each micro-frame, 
if the periodic schedule is enabled, then the host controller must execute from the periodic schedule before 
executing from the asynchronous schedule. It only executes from the asynchronous schedule after it 
encounters the end of the periodic schedule. The host controller traverses the periodic schedule by 
constructing an array offset references from the PERIODICLISTBASE and the FRINDEX registers (see 
Figure 39-53). It fetches the element and begins traversing the graph of linked schedule data structures.

The end of the periodic schedule is identified by a next link pointer of a schedule data structure having its 
T-bit set. When the host controller encounters a T-Bit set during a horizontal traversal of the periodic list, 
it interprets this as an End-Of-Periodic-List mark. This causes the host controller to cease working on the 
periodic schedule and transition immediately to traversing the asynchronous schedule. After this transition 
is made, the host controller executes from the asynchronous schedule until the end of the micro-frame.

Figure 39-53. Derivation of Pointer into Frame List Array

When the host controller determines it is time to execute from the asynchronous list, it uses the operational 
register ASYNCLISTADDR to access the asynchronous schedule, as shown in Figure 39-54.

Figure 39-54. General Format of Asynchronous Schedule List

The ASYNCLISTADDR register contains a physical memory pointer to the next queue head. When the 
host controller makes a transition to executing the asynchronous schedule, it begins by reading the queue 
head referenced by the ASYNCLISTADDR register. Software must set queue head horizontal pointer 
T-bits to a zero for queue heads in the asynchronous schedule. 

Periodic Frame
List

31 12 11 2 1 0

31 12 13 12 3 2 0

Doubleword-Aligned
Periodic Frame List Element

Address

Periodic Frame List Base
Address

Frame Index Register

•
•
•

USBSTS

Operational
Registers

USBCMD

AsyncListAddr

•
•
•

•
•
•

H

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-95

39.6.4 Periodic Schedule Frame Boundaries vs. Bus Frame Boundaries

The USB specification revision 2.0 requires that the frame boundaries (SOF frame number changes) of the 
high-speed bus and the full- and low-speed bus(es) below USB 2.0 hubs be strictly aligned. Super-imposed 
on this requirement is USB 2.0 hubs manage full- and low-speed transactions via a micro-frame pipeline 
(see start- (SS) and complete- (CS) splits illustrated in Figure 39-55). A simple, direct projection of the 
frame boundary model into the host controller interface schedule architecture creates tension (complexity 
for both hardware and software) between the frame boundaries and the scheduling mechanisms required 
to service the full- and low-speed transaction translator periodic pipelines.

Figure 39-55. Frame Boundary Relationship Between HS Bus and FS/LS Bus

The simple projection, as Figure 39-55 illustrates, introduces frame-boundary wrap conditions for 
scheduling on both the beginning and end of a frame. To reduce the complexity for hardware and software, 
the host controller is required to implement a one micro-frame phase shift for its view of frame boundaries. 
The phase shift eliminates the beginning of frame and frame-wrap scheduling boundary conditions.

The implementation of this phase shift requires the host controller use one register value for accessing the 
periodic frame list and another value for the frame number value included in the SOF token. These two 
values are separate, but tightly coupled. The periodic frame list is accessed via the frame list index register 
(FRINDEX). Bits FRINDEX[2:0], represent the micro-frame number. The SOF value is coupled to the 
value of FRINDEX[13:3]. FRINDEX[13:3] and the SOF value are incremented based on FRINDEX[2:0]. 
The SOF must value be delayed from the FRINDEX value by one micro-frame. The one micro-frame 
delay yields a host controller periodic schedule and bus frame boundary relationship as illustrated in 
Figure 39-56. This adjustment allows software to trivially schedule the periodic start and complete-split 
transactions for full-and low-speed periodic endpoints, using the natural alignment of the periodic 
schedule interface. 

Figure 39-56 illustrates how periodic schedule data structures relate to schedule frame boundaries and bus 
frame boundaries. To aid the presentation, two terms are defined. The host controller's view of the 
1-millisecond boundaries is called H-Frames. The high-speed bus's view of the 1-millisecond boundaries 
is called B-Frames.

FS/LS Bus

HS Bus SS

7

CSCSCSCSCSCSCSCS

076543210

Frame
Boundary

SS

Micro-Frame
Numbers 1

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-96 Freescale Semiconductor

Figure 39-56. Relationship of Periodic Schedule Frame Boundaries to Bus Frame Boundaries

H-Frame boundaries for the host controller correspond to increments of FRINDEX[13:3]. Micro-frame 
numbers for the H-Frame are tracked by FRINDEX[2:0]. B-Frame boundaries are visible on the 
high-speed bus via changes in the SOF token's frame number. Micro-frame numbers on the high-speed bus 
are only derived from the SOF token's frame number (the high-speed bus sees eight SOFs with the same 
frame number value). H-Frames and B-Frames have the fixed relationship (B-Frames lag H-Frames by one 
micro-frame time) illustrated in Figure 39-56. The host controller's periodic schedule is naturally aligned 
to H-Frames. Software schedules transactions for full- and low-speed periodic endpoints relative the 
H-Frames. The result is these transactions execute on the high-speed bus at exactly the right time for the 
USB 2.0 hub periodic pipeline. As described in Section 39.2.1.4.4, “Frame Index Register (FRINDEX),” 
the SOF value can be implemented as a shadow register (in this example, called SOFV), which lags the 
FRINDEX register bits [13:3] by one micro-frame count. Table 39-72 illustrates the required relationship 
between the value of FRINDEX and the value of SOFV. This lag behavior can be accomplished by 
incrementing FRINDEX[13:3] based on carry-out of the 7 to 0 increment of FRINDEX[2:0] and 
incrementing SOFV based on the transition of 0 to 1 of FRINDEX[2:0].

Software can write to FRINDEX. Section 39.2.1.4.4, “Frame Index Register (FRINDEX),” provides the 
requirements that software should adhere to when writing a new value in FRINDEX.

HS Bus

7

CSCSCSCSSS

076543210

HC Periodic Schedule
Frame Boundaries

HC Periodic
Schedule 1

CSCS

10765432 2

SS CS CS

Frames

Micro-Frames

Full/Low-Speed
Transaction

Full/Low-Speed
Transaction

B-Frame N B-Frame N+1

HS/FS/LS Bus
Frame Boundaries

H-Frame N
Interface Data Structure

H-Frame N+1
Interface Data Structure

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-97

39.6.5 Periodic Schedule

The periodic schedule traversal is enabled or disabled via the periodic schedule enable bit in the USBCMD 
register. If the periodic schedule enable bit is cleared, the host controller simply does not try to access the 
periodic frame list via the PERIODICLISTBASE register. Likewise, when the periodic schedule enable 
bit is a one, the host controller uses the PERIODICLISTBASE register to traverse the periodic schedule. 
The host controller does not react to modifications to the periodic schedule enable immediately. To 
eliminate conflicts with split transactions, the host controller evaluates the periodic schedule enable bit 
only when FRINDEX[2:0] is zero. System software must not disable the periodic schedule if the schedule 
contains an active split transaction work item that spans the 0b000 micro-frame. These work items must 
be removed from the schedule before the periodic schedule enable bit is cleared. The periodic schedule 
status bit in the USBSTS register indicates status of the periodic schedule. System software enables (or 
disables) the periodic schedule by setting (or clearing) the periodic schedule enable bit in the USBCMD 
register. Software then can poll the periodic schedule status bit to determine when the periodic schedule 
has made the desired transition. Software must not modify the periodic schedule enable bit unless the value 
of the periodic schedule enable bit equals that of the periodic schedule status bit.

The periodic schedule manages all isochronous and interrupt transfer streams. The base of the periodic 
schedule is the periodic frame list. Software links schedule data structures to the periodic frame list to 
produce a graph of scheduled data structures. The graph represents an appropriate sequence of transactions 
on the USB. Figure 39-57 illustrates isochronous transfers (using iTDs and siTDs) with a period of one are 
linked directly to the periodic frame list. Interrupt transfers (managed with queue heads) and isochronous 
streams with periods other than one are linked following the period-one iTD/siTDs. Interrupt queue heads 
are linked into the frame list ordered by poll rate. Longer poll rates are linked first (for example, closest to 
the periodic frame list), followed by shorter poll rates, with queue heads with a poll rate of one, on the end.

Table 39-72. Operation of FRINDEX and SOFV (SOF Value Register) 

Current Next

FRINDEX[13:3] SOFV FRINDEX[2:0] FRINDEX[13:3] SOFV FRINDEX[2:0]

N N 111 N+1 N 000

N+1 N 000 N+1 N+1 001

N+1 N+1 001 N+1 N+1 010

N+1 N+1 010 N+1 N+1 011

N+1 N+1 011 N+1 N+1 100

N+1 N+1 100 N+1 N+1 101

N+1 N+1 101 N+1 N+1 110

N+1 N+1 110 N+1 N+1 111

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-98 Freescale Semiconductor

Figure 39-57. Example Periodic Schedule

39.6.6 Managing Isochronous Transfers Using iTDs

The structure of an iTD is presented in Section 29.3.4.3 Isochronous (High-Speed) Transfer Descriptor 
(iTD). There are four distinct sections to an iTD:

• The first field is the next link pointer. This is for schedule linkage purposes only.
• Transaction description array. This area is an eight-element array. Each element represents control 

and status information for one micro-frame's worth of transactions for a single high-speed 
isochronous endpoint.

• The buffer page pointer array is a 7-element array of physical memory pointers to data buffers. 
These are 4K aligned pointers to physical memory.

• Endpoint capabilities. This area utilizes the unused low-order 12 bits of the buffer page pointer 
array. The fields in this area are used across all transactions executed for this iTD, including 
endpoint addressing, transfer direction, maximum packet size, and high-bandwidth multiplier.

39.6.6.1 Host Controller Operational Model for iTDs

The host controller uses FRINDEX register bits [12:3] to index into the periodic frame list. This means the 
host controller visits each frame list element eight consecutive times before incrementing to the next 
periodic frame list element. Each iTD contains eight transaction descriptions that map directly to 
FRINDEX register bits [2:0]. Each iTD can span eight micro-frames worth of transactions. When the host 
controller fetches an iTD, it uses FRINDEX register bits [2:0] to index into the transaction description 
array. If the active bit in the status field of the indexed transaction description is cleared, the host controller 
ignores the iTD and follows the next pointer to the next schedule data structure.

When the indexed active bit is a one, the host controller continues to parse the iTD. It stores the indexed 
transaction description and the general endpoint information (device address, endpoint number, maximum 

Last
Periodic has
End of
List Mark

•
•
•

8

A

A

A

A

A

A

4

1

1024, 512, or 256
Elements

Poll Rate: N ––>  1

Isochronous Transfer
Descriptor(s)

Periodic Frame List

•
•
•

•  •  •
A

Interrupt Queue
HeadsPoll Rate: 1

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-99

packet size, etc.). It also uses the page select (PG) field to index the buffer pointer array, storing the 
selected buffer pointer, and the next sequential buffer pointer. For example, if PG field is a 0, the host 
controller stores Page 0 and Page 1.

The host controller constructs a physical data buffer address by concatenating the current buffer pointer 
(as selected using the current transaction description's PG field) and the transaction description's 
transaction offset field. The host controller uses the endpoint addressing information and I/O-bit to execute 
a transaction to the appropriate endpoint. When the transaction is complete, the host controller clears the 
active bit and writes back any additional status information to the status field in the currently selected 
transaction description.

The data buffer associated with the iTD must be virtually contiguous memory. Seven page pointers are 
provided to support eight high-bandwidth transactions regardless of the starting packet’s offset alignment 
into the first page. A starting buffer pointer (physical memory address) is constructed by concatenating the 
page pointer (example: page 0 pointer) selected by the active transaction descriptions’ PG (example value: 
0b00) field with the transaction offset field. As the transaction moves data, the host controller must detect 
when an increment of the current buffer pointer crosses a page boundary. When this occurs, the host 
controller replaces the current buffer pointer’s page portion with the next page pointer (example: page 1 
pointer) and continues to move data. The size of each bus transaction is determined by the value in the 
maximum packet size field. An iTD supports high-bandwidth pipes via the mult (multiplier) field. When 
the mult field is 1, 2, or 3, the host controller executes the specified number of maximum packet sized bus 
transactions for the endpoint in the current micro-frame. In other words, the mult field represents a 
transaction count for the endpoint in the current micro-frame. If the mult field is zero, the operation of the 
host controller is undefined. The transfer description services all transactions indicated by the mult field.

For OUT transfers, the value of the transaction n length field represents the total bytes to be sent during 
the micro-frame. Software must set the mult field to be consistent with transaction n length and maximum 
packet size. The host controller sends the bytes in maximum packet sized portions. After each transaction, 
the host controller decrements its local copy of transaction n length by maximum packet size. The number 
of bytes the host controller sends is always maximum packet size or transaction n length, whichever is less. 
The host controller advances the transfer state in the transfer description, updates the appropriate record 
in the iTD, and moves to the next schedule data structure. The maximum sized transaction supported is 3 
× 1024 bytes.

For IN transfers, the host controller issues mult transactions. It is assumed that software has properly 
initialized the iTD to accommodate all of the possible data. During each IN transaction, the host controller 
must use maximum packet size to detect packet babble errors. The host controller keeps the sum of bytes 
received in the transaction n length field. After all transactions for the endpoint have completed for the 
micro-frame, transaction n length contains the total bytes received. If the final value of transaction n length 
is less than the value of maximum packet size, less data than was allowed for was received from the 
associated endpoint. This short packet condition does not set the USBINT bit in the USBSTS register. The 
host controller does not detect this condition. If the device sends more than transaction n length or 
maximum packet size bytes (whichever is less), the host controller sets the babble detected bit and clears 
the active bit. The host controller is not required to update the iTD field transaction n length in this error 
scenario. If the mult field is greater than one, the host controller automatically executes the value of mult 
transactions. The host controller does not execute all mult transactions if:

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-100 Freescale Semiconductor

• The endpoint is an OUT and Transaction n Length goes to zero before all the Mult transactions 
have executed (ran out of data), or

• The endpoint is an IN and the endpoint delivers a short packet, or an error occurs on a transaction 
before Mult transactions have been executed. The end of micro-frame may occur before all of the 
transaction opportunities have been executed. When this happens, the transfer state of the transfer 
description is advanced to reflect the progress that was made, the result written back to the iTD and 
the host controller proceeds to processing the next micro-frame. 

39.6.6.2 Software Operational Model for iTDs

A client buffer request to an isochronous endpoint may span 1 to N micro-frames. When N is larger than 
one, system software may have to use multiple iTDs to read or write data with the buffer (if N is larger 
than eight, it must use more than one iTD).

Figure 39-58 illustrates the simple model of how a client buffer is mapped by system software to the 
periodic schedule (the periodic frame list and a set of iTDs). On the right of Figure 39-58 is the client 
description of its request. The description includes a buffer base address plus additional annotations to 
identify which portions of the buffer should be used with each bus transaction. In the middle of 
Figure 39-58 are the iTD data structures used by the system software to service the client request. Each 
iTD can be initialized to service up to 24 transactions, organized into eight groups of up to three 
transactions each. Each group maps to one micro-frame's worth of transactions. The EHCI controller does 
not provide per-transaction results within a micro-frame. It treats the per-micro-frame transactions as a 
single logical transfer. On the left of Figure 39-58 is the host controller’s frame list. System software 
establishes references from the appropriate locations in the frame list to each of the appropriate iTDs. If 
the buffer is large, system software can use a small set of iTDs to service the entire buffer. System software 
can activate the transaction description records (contained in each iTD) in any pattern required for the 
particular data stream.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-101

Figure 39-58. Example Association of iTDs to Client Request Buffer

As noted earlier, the client request includes a pointer to the base of the buffer and offsets into the buffer to 
annotate which buffer sections are used on each bus transaction that occurs on this endpoint. System 
software must initialize each transaction description in an iTD to ensure it uses the correct portion of the 
client buffer. For example, for each transaction description, the PG field is set to index the correct physical 
buffer page pointer and the transaction offset field is set relative to the correct buffer pointer page (for 
example, the same one referenced by the PG field). When the host controller executes a transaction, it 
selects a transaction description record based on FRINDEX[2:0]. It then uses the current page buffer 
pointer (as selected by the PG field) and concatenates to the transaction offset field. The result is a starting 
buffer address for the transaction. As the host controller moves data for the transaction, it must watch for 
a page wrap condition and properly advance to the next available page buffer pointer. System software 
must not use the Page 6 buffer pointer in a transaction description where the length of the transfer wraps 
a page boundary. Doing so yields undefined behavior. The host controller hardware is not required to alias 
the page selector to page zero. USB 2.0 isochronous endpoints can specify a period greater than one. 
Software can achieve the appropriate scheduling by linking iTDs into the appropriate frames (relative to 
the frame list) and by setting appropriate transaction description elements active bits to a one.

39.6.6.2.1 Periodic Scheduling Threshold

The isochronous scheduling threshold field in the HCCPARAMS capability register is an indicator to 
system software as to how the host controller pre-fetches and effectively caches schedule data structures. 
System software uses it when adding isochronous work items to the periodic schedule. The value of this 
field indicates to system software the minimum distance it can update isochronous data (relative to the 
current location of the host controller execution in the periodic list) and continue to have the host controller 
process them.

Frame i+1

Frame List

Frame i

Frame i+2

•
•
•

Frame i+n

Client
Request

Client Buffer

USB
Transaction

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

iTD0

iTD1

iTDN

Information

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-102 Freescale Semiconductor

The iTD and siTD data structures each describe eight micro-frames worth of transactions. The host 
controller is allowed to cache one (or more) of these data structures to reduce memory traffic. There are 
three basic caching models that account for the fact the isochronous data structures span eight 
micro-frames. The three caching models are: no caching, micro-frame caching and frame caching.

When software is adding new isochronous transactions to the schedule, it always performs a read of the 
FRINDEX register to determine the current frame and micro-frame the host controller is currently 
executing. Of course, there is no information about where in the micro-frame the host controller is, so a 
constant uncertainty factor of one micro-frame has to be assumed. Combining the knowledge of where the 
host controller is executing with the knowledge of the caching model allows the definition of simple 
algorithms for how closely software can reliably work to the executing host controller.

No caching is indicated with a value of zero in the isochronous scheduling threshold field. The host 
controller may pre-fetch data structures during a periodic schedule traversal (per micro-frame), but always 
dumps any accumulated schedule state at the end of the micro-frame. At the appropriate time relative to 
the beginning of every micro-frame, the host controller always begins schedule traversal from the frame 
list. Software can use the value of the FRINDEX register (plus the constant 1 uncertainty-factor) to 
determine the approximate position of the executing host controller. When no caching is selected, software 
can add an isochronous transaction as near as two micro-frames in front of the current executing position 
of the host controller.

Frame caching is indicated with a non-zero value in bit [7] of the isochronous scheduling threshold field. 
In the frame-caching model, system software assumes the host controller caches one (or more) 
isochronous data structures for an entire frame (8 micro-frames). Software uses the value of the FRINDEX 
register (plus the constant 1 uncertainty) to determine the current micro-frame/frame (assume modulo 8 
arithmetic in adding the constant 1 to the micro-frame number). For any current frame N, if the current 
micro-frame is 0 to 6, software can safely add isochronous transactions to Frame N + 1. If the current 
micro-frame is 7, software can add isochronous transactions to Frame N + 2.

Micro-frame caching is indicated with a non-zero value in the least-significant three bits of the 
isochronous scheduling threshold field. System software assumes the host controller caches one or more 
periodic data structures for the number of micro-frames indicated in the isochronous scheduling threshold 
field. For example, if the count value were two, then the host controller keeps a window of two 
micro-frames worth of state (current micro-frame, plus the next) on-chip. On each micro-frame boundary, 
the host controller releases the current micro-frame state and begins accumulating the next micro-frame 
state.

39.6.7 Asynchronous Schedule

The asynchronous schedule traversal is enabled or disabled via the asynchronous schedule enable bit in 
the USBCMD register. If the asynchronous schedule enable bit is cleared, the host controller simply does 
not try to access the asynchronous schedule via the ASYNCLISTADDR register. Likewise, if the 
asynchronous schedule enable bit is set, the host controller does use the ASYNCLISTADDR register to 
traverse the asynchronous schedule. Modifications to the asynchronous schedule enable bit are not 
necessarily immediate. The new value of the bit is only taken into consideration the next time the host 
controller needs to use the value of the ASYNCLISTADDR register to get the next queue head.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-103

The asynchronous schedule status bit in the USBSTS register indicates status of the asynchronous 
schedule. System software enables (or disables) the asynchronous schedule by writing a one (or zero) to 
the asynchronous schedule enable bit in the USBCMD register. Software can then poll the asynchronous 
schedule status bit to determine when the asynchronous schedule has made the desired transition. Software 
must not modify the asynchronous schedule enable bit unless the value of the asynchronous schedule 
enable bit equals that of the asynchronous schedule status bit.

The asynchronous schedule manages all control and bulk transfers. Control and bulk transfers are managed 
using queue head data structures. The asynchronous schedule is based at the ASYNCLISTADDR register. 
The default value of the ASYNCLISTADDR register after reset is undefined and the schedule is disabled 
when the asynchronous schedule enable bit is cleared. 

Software may only write this register with defined results when the schedule is disabled. For example, 
asynchronous schedule enable bit in the USBCMD and the asynchronous schedule status bit in the 
USBSTS register are cleared. System software enables execution from the asynchronous schedule by 
writing a valid memory address (of a queue head) into this register. Then software enables the 
asynchronous schedule by setting the asynchronous schedule enable bit is set. The asynchronous schedule 
is actually enabled when the asynchronous schedule status bit is set.

When the host controller begins servicing the asynchronous schedule, it begins by using the value of the 
ASYNCLISTADDR register. It reads the first referenced data structure and begins executing transactions 
and traversing the linked list as appropriate. When the host controller completes processing the 
asynchronous schedule, it retains the value of the last accessed queue head's horizontal pointer in the 
ASYNCLISTADDR register. Next time the asynchronous schedule is accessed, this is the first data 
structure that is serviced. This provides round-robin fairness for processing the asynchronous schedule. 

A host controller completes processing the asynchronous schedule when:
• The end of a micro-frame occurs.
• The host controller detects an empty list condition 
• The schedule has been disabled via the Asynchronous Schedule Enable bit in the USBCMD 

register.

The queue heads in the asynchronous list are linked into a simple circular list as shown in Figure 39-54. 
Queue head data structures are the only valid data structures that may be linked into the asynchronous 
schedule. An isochronous transfer descriptor (iTD or siTD) in the asynchronous schedule yields undefined 
results.

The maximum packet size field in a queue head is sized to accommodate the use of this data structure for 
all non-isochronous transfer types. The USB Specification, Revision 2.0 specifies the maximum packet 
sizes for all transfer types and transfer speeds. System software should always parameterize the queue head 
data structures according to the core specification requirements.

39.6.7.1 Adding Queue Heads to Asynchronous Schedule

This is a software requirement section. There are two independent events for adding queue heads to the 
asynchronous schedule. The first is the initial activation of the asynchronous list. The second is inserting 
a new queue head into an activated asynchronous list.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-104 Freescale Semiconductor

Activation of the list is simple. System software writes the physical memory address of a queue head into 
the ASYNCLISTADDR register, then enables the list by setting the asynchronous schedule enable bit in 
the USBCMD register to a one.

When inserting a queue head into an active list, software must ensure the schedule is always coherent from 
the host controllers' point of view. This means the system software must ensure all queue head pointer 
fields are valid. For example, qTD pointers have T-Bits set or reference valid qTDs and the horizontal 
pointer references a valid queue head data structure. The following algorithm represents the functional 
requirements:

InsertQueueHead (pQHeadCurrent, pQueueHeadNew) 
--
-- Requirement: all inputs must be properly initialized.
--
-- pQHeadCurrent is a pointer to a queue head that is
-- already in the active list 
-- pQHeadNew is a pointer to the queue head to be added 
--
-- This algorithm links a new queue head into a existing
-- list 
--
pQueueHeadNew.HorizontalPointer = pQueueHeadCurrent.HorizontalPointer
pQueueHeadCurrent.HorizontalPointer = physicalAddressOf(pQueueHeadNew)

End InsertQueueHead

39.6.7.2 Removing Queue Heads from Asynchronous Schedule

This is a software requirement section. There are two independent events for removing queue heads from 
the asynchronous schedule. The first is shutting down (deactivating) the asynchronous list. The second is 
extracting a single queue head from an activated list. Software deactivates the asynchronous schedule by 
setting the asynchronous schedule enable bit in the USBCMD register to a zero. Software can determine 
when the list is idle when the asynchronous schedule status bit in the USBSTS register is cleared. The 
normal mode of operation is that software removes queue heads from the asynchronous schedule without 
shutting it down. Software must not remove an active queue head from the schedule. Software should first 
deactivate all active qTDs, wait for the queue head to go inactive, then remove the queue head from the 
asynchronous list. Software removes a queue head from the asynchronous list using the following 
algorithm. Software merely must ensure all of the link pointers reachable by the host controller are kept 
consistent.

UnlinkQueueHead (pQHeadPrevious, pQueueHeadToUnlink, pQHeadNext) 
--
-- Requirement: all inputs must be properly initialized.
--
-- pQHeadPrevious is a pointer to a queue head that
-- references the queue head to remove 
-- pQHeadToUnlink is a pointer to the queue head to be
-- removed
-- pQheadNext is a pointer to a queue head in the 
-- schedule. Software provides this pointer with the
-- following strict rules: 
-- if the host software is one queue head, then 
-- pQHeadNext must be the same as
-- QueueheadToUnlink.HorizontalPointer. If the host 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-105

-- software is unlinking a consecutive series of 
-- queue heads, QHeadNext must be set by software to 
-- the queue head remaining in the schedule.
--
-- This algorithm unlinks a queue head from a circular list 
--
pQueueHeadPrevious.HorizontalPointer = pQueueHeadToUnlink.HorizontalPointer 
pQueueHeadToUnlink.HorizontalPointer = pQHeadNext

End UnlinkQueueHead

If software removes the queue head with the H-bit set, it must select another queue head linked into the 
schedule and set its H-bit. This should be completed before removing the queue head. The requirement is 
that software keep one queue head in the asynchronous schedule, with its H-bit set. At the point software 
has removed one or more queue heads from the asynchronous schedule, it is unknown whether the host 
controller has a cached pointer to them. Similarly, it is unknown how long the host controller might retain 
the cached information, as it is implementation dependent and may be affected by the actual dynamics of 
the schedule load. Therefore, once software has removed a queue head from the asynchronous list, it must 
retain the coherency of the queue head (link pointers). It cannot disturb the removed queue heads until it 
knows that the host controller does not have a local copy of a pointer to any of the removed data structures. 

The method software uses to determine when it is safe to modify a removed queue head is to handshake 
with the host controller. The handshake mechanism allows software to remove items from the 
asynchronous schedule, then execute a simple, lightweight handshake used by software as a key that it can 
free (or reuse) the memory associated the data structures it has removed from the asynchronous schedule. 

The handshake is implemented with three bits in the host controller. The first bit is a command bit 
(interrupt on async advance doorbell bit in the USBCMD register) that allows software to inform the host 
controller that something has been removed from its asynchronous schedule. The second bit is a status bit 
(interrupt on async advance bit in the USBSTS register) that the host controller sets after it has released 
all on-chip state that may potentially reference one of the data structures recently removed. When the host 
controller sets this status bit, it also clears the command bit. The third bit is an interrupt enable (interrupt 
on async advance bit in the USBINTR register) that is matched with the status bit. If the status bit is set 
and the interrupt enable bit is set, the host controller asserts a hardware interrupt. 

Figure 39-59 illustrates a general example where consecutive queue heads (B and C) are unlinked from 
the schedule using the algorithm above. Before the unlink operation, the host controller has a copy of 
queue head A.

The unlink algorithm requires that as software unlinks each queue head, the unlinked queue head is loaded 
with the address of a queue head that remains in the asynchronous schedule. 

When the host controller observes that doorbell bit being set, it makes a note of the local reachable 
schedule information. In this example, the local reachable schedule information includes both queue heads 
(A & B). It is sufficient the host controller can set the status bit (and clear the doorbell bit) as soon as it has 
traversed beyond current reachable schedule information (traversed beyond queue head (B) in this 
example). 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-106 Freescale Semiconductor

Figure 39-59. Generic Queue Head Unlink Scenario

Alternatively, a host controller implementation is allowed to traverse the entire asynchronous schedule list 
(for example, observed the head of the queue twice) before setting the advance on async status bit.

Software may re-use the memory associated with the removed queue heads after it observes the interrupt 
on async advance status bit is set, following assertion of the doorbell. Software should acknowledge the 
interrupt on async advance status as indicated in the USBSTS register, before using the doorbell handshake 
again.

39.6.7.3 Empty Asynchronous Schedule Detection 

EHCI uses two bits to detect when the asynchronous schedule is empty. The queue head data structure (see 
Figure 39-51) defines an H-bit in the queue head that allows software to mark a queue head as being the 
head of the reclaim list. Host controller also keeps a 1-bit flag in the USBSTS register (reclamation) that 
is cleared when the host controller observes a queue head with the H-bit set. The reclamation flag in the 
status register is set when any USB transaction from the asynchronous schedule is executed or when the 
asynchronous schedule starts, see Section 39.6.7.5, “Asynchronous Schedule Traversal: Start Event.”

If the controller ever encounters an H-bit of one and a reclamation bit of zero, the controller simply stops 
traversal of the asynchronous schedule.

An example illustrating the H-bit in a schedule is shown in Figure 39-60.

Memory State

BA C D

A
USBCMD Interrupt on

Async-Advance Doorbell = 0

Before Unlink

HC State

Memory State

B

A D

A

USBCMD Interrupt on
Async-Advance Doorbell = 1

After Unlink (B, C) and at Doorbell

HC State

C

USBSTS Interrupt on Async-Advance = 0

Memory State

B

A D

D

USBCMD Interrupt on
Async-Advance Doorbell = 0

After Doorbell

HC State

C

USBSTS Interrupt on Async-Advance = 1

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-107

Figure 39-60. Asynchronous Schedule List with Annotation to Mark Head of List

39.6.7.4 Restarting Asynchronous Schedule Before EOF

There are many situations where the host controller detects an empty list before the end of the micro-frame. 
It is important to remember that under many circumstances the schedule traversal has stopped due to 
Nak/Nyet responses from all endpoints.

An example of particular interest is when a start-split for a bulk endpoint occurs early in the micro-frame. 
Given the EHCI simple traversal rules, the complete-split for that transaction may Nak/Nyet out quickly. 
If it is the only item in the schedule, then the host controller ceases traversal of the Asynchronous schedule 
early in the micro-frame. To provide reasonable service to this endpoint, the host controller should issue 
the complete-split before the end of the current micro-frame, instead of waiting until the next micro-frame. 
When the reason for host controller idling asynchronous schedule traversal is because of empty list 
detection, it is mandatory the host controller implement a 'waking' method to resume traversal of the 
asynchronous schedule. An example method is described below. 

39.6.7.4.1 Example Method for Restarting Asynchronous Schedule Traversal

The reason for idling the host controller when the list is empty is to keep the host controller from 
unnecessarily occupying too much memory bandwidth. How long should the host controller stay idle 
before restarting?

The answer in this example is based on deriving a manifest constant, which is the amount of time the host 
controller remains idle before restarting traversal. In this example, the manifest constant is called 
AsyncSchedSleepTime, and has a value of 10msec. The value is derived based on the analysis in 
Section 39.6.7.4.2, “Example Derivation for AsyncSchedSleepTime. The traversal algorithm is simple:

• Traverse the Asynchronous schedule until the either an End-Of-micro-Frame event occurs, or an 
empty list is detected. If the event is an End-of-micro-Frame, go attempt to traverse the Periodic 
schedule. If the event is an empty list, then set a sleep timer and go to a schedule sleep state. 

• When the sleep timer expires, set working context to the Asynchronous Schedule start condition 
and go to schedule active state. The start context allows the HC to reload Nakcnt fields, etc. so the 
HC has a chance to run for more than one iteration through the schedule.

USBSTS
Reclamation Flag

USBCMD

•
•
•

AsyncListAddr 01Horizontal Ptr 0

1

H

•
•
•

Operational
Registers

Operational
Area

Horizontal Ptr

0

H

Operational
Area

0

H

Operational
Area

Typ T

01 0

Typ T

01 0

Typ T

Horizontal Ptr

List Head

Asynchronous Schedule

1: Transaction Executed
0: Head of List Seen

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-108 Freescale Semiconductor

This process simply repeats itself each micro-frame. Figure 39-61 illustrates a sample state machine to 
manage the active and sleep states of the Asynchronous Schedule traversal policy. There are three states: 
Actively traversing the Asynchronous schedule, Sleeping, and Not Active. The last two are similar in 
terms of interaction with the Asynchronous schedule, but the Not Active state means that the host 
controller is busy with the Periodic schedule or the Asynchronous schedule is not enabled. The Sleeping 
state is a special state where the host controller is waiting for a period of time before resuming execution 
of the Asynchronous schedule. 

Figure 39-61. Example State Machine for Managing Asynchronous Schedule Traversal

Async Sched Not Active

This is the initial state of the traversal state machine after a host controller reset. The traversal state 
machine does not leave this state when the Asynchronous Schedule Enable bit in the USBCMD register is 
a zero. 

This state is entered from Async Sched Active or Async Sched Sleeping states when the 
end-of-micro-frame event is detected.

Async Sched Active 

This state is entered from the Async Sched Not Active state when the periodic schedule is not active. It is 
also entered from the Async Sched Sleeping states when the AsyncrhonousTraversalSleepTimer expires. 

Table 39-73. Asynchronous Schedule State Machine Transition Actions

Action Action Description Label

A On detection of the empty list, the host controller sets the AsynchronousTraversalSleepTimer to 
AsyncSchedSleepTime.

B When the AsynchronousTraversalSleepTimer expires, the host controller sets the Reclamation bit in the 
USBSTS register to a one and moves the Nak Counter reload state machine to WaitForListHead (see 
39.6.8, “Operational Model for NAK Counter).

C The host controller cancels the sleep timer (AsynchronousTraversalSleepTimer).

Sleep Timer Expires => B

Empty List => AActive Sched
Active

Async Sched
Sleeping

Active Sched
Non Active End Of micro-frame => C

End Of Microframe
(Periodic Schedule Complete

and
Async Schedule Enabled)

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-109

On every transition into this state, the host controller sets the Reclamation bit in the USBSTS register to a 
one.

While in this state, the host controller continually traverses the asynchronous schedule until either the end 
of micro-frame or an empty list condition is detected. 

Async Sched Sleeping 

The state is entered from the Async Sched Active state when a schedule empty condition is detected. On 
entry to this state, the host controller sets the AsynchronousTraversalSleepTimer to 
AsyncSchedSleepTime. 

39.6.7.4.2 Example Derivation for AsyncSchedSleepTime 

The derivation is based on analysis of what work the host controller could be doing next. It assumes the 
host controller does not keep any state about what work is possibly pending in the asynchronous schedule. 
The schedule could contain any mix of the possible combinations of high- full- or low-speed control and 
bulk requests. Table 39-74 summarizes some of the typical 'next transactions' that could be in the schedule, 
and the amount of time (e.g. footprint, or wall clock) the transaction takes to complete.

An AsyncSchedSleepTime value of 10 ms provides a reasonable relaxation of the system memory load 
and provides a good level of service for the various transfer types and payload sizes. For example, say you 
detect an empty list after issuing a start-split for a 64-byte full-speed bulk request. Assuming this is the 
only thing in the list, the host controller receives the results of the full-speed transaction from the hub 
during the fifth complete-split request. If the full-speed transaction was an IN and it nak'd, the 10ms sleep 
period would allow the host controller to get the NAK results on the first complete-split.

39.6.7.5 Asynchronous Schedule Traversal: Start Event

After the host controller has idled itself using the empty schedule detection, it naturally activates and 
begins processing from the periodic schedule at the beginning of each micro-frame. In addition, it may 
have idled itself early in a micro-frame. When this occurs (idles early in the micro-frame), the host 

Table 39-74. Typical Low-/Full Speed Transaction Times

Transaction 
Attributes

Footprint 
(time)

Description

Speed : HS
Size : 512

11.9 us Maximum foot print for a worst case, full sized buk data.

Speed : HS
Size : 512

9.45 us Maximum foot print for a best case, full sized buk data.

Speed : FS
Size : 64

Type : Bulk

Approx. 50 
us

Approximate, typical for full sized bulk data.

Speed : FS
Size : 8

Type : Cntrl

Approx. 12 
us

Approximate, typical for 8 byte bulk/control (i.e. setup)

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-110 Freescale Semiconductor

controller must occasionally reactivate during the micro-frame and traverse the asynchronous schedule to 
determine whether any progress can be made. Asynchronous schedule start events are defined to be:

• When the host controller transitions from the periodic schedule to the asynchronous schedule. If 
the periodic schedule is disabled and the asynchronous schedule is enabled, then the beginning of 
the micro-frame is equivalent to the transition from the periodic schedule, or

• The asynchronous schedule traversal restarts from a sleeping state.

39.6.7.6 Reclamation Status Bit (USBSTS Register)

The operation of the empty asynchronous schedule detection feature depends on the proper management 
of the Reclamation bit in the USBSTS register. The host controller tests for an empty schedule after it 
fetches a new queue head while traversing the asynchronous schedule. The host controller sets the 
Reclamation bit when an asynchronous schedule traversal start event occurs. The reclamation bit is also 
set when the host controller executes a transaction while traversing the asynchronous schedule. The host 
controller clears the reclamation bit when it finds a queue head with its H-bit set. Software should only set 
a queue head's H-bit if the queue head is in the asynchronous schedule. If software sets the H-bit in an 
interrupt queue head, the resulting behavior is undefined. The host controller may clear the reclamation bit 
when executing from the periodic schedule.

39.6.8 Operational Model for NAK Counter

This section describes the operational model for the NakCnt field defined in a queue head (see Section 
Queue Head). Software should not use this feature for interrupt queue heads. This rule is not required to 
be enforced by the host controller.

USB protocol has built-in flow control via the Nak response by a device. There are several scenarios, 
beyond the Ping feature, where an endpoint may naturally Nak or Nyet the majority of the time. An 
example is the host controller management of the split transaction protocol for control and bulk endpoints. 
All bulk endpoints (High- or Full-speed) are serviced via the same asynchronous schedule. The time 
between the Start-split transaction and the first Complete-split transaction could be short (i.e. like when 
the endpoint is the only one in the asynchronous schedule). The hub NYETs (effectively Naks) the 
Complete-split transaction until the classic transaction is complete. This could result in the host controller 
thrashing memory, repeatedly fetching the queue head and executing the transaction to the Hub, which 
does not complete until after the transaction on the classic bus

completes.

There are two component fields in a queue head to support the throttling feature: a counter field (NakCnt), 
and a counter reload field (RL). NakCnt is used by the host controller as one of the criteria to determine 
whether or not to execute a transaction to the endpoint. There are two operational modes associated with 
this counter:

• Not Used. This mode is set when the RL field is zero. The host controller ignores the NakCnt field 
for any execution of transactions through a queue head with an RL field of zero. Software must use 
this selection for interrupt endpoints.

• Nak Throttle Mode. This mode is selected when the RL field is non-zero. In this mode, the value 
in the NakCnt field represents the maximum number of Nak or Nyet responses the host controller 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-111

tolerates on each endpoint. In this mode, the HC decrements the NakCnt field based on the 
token/handshake criteria listed in Table 34. The host controller must reload NakCnt when the 
endpoint successfully moves data (e.g. policy to reward device for moving data).

In summary, system software enables the counter by setting the reload field (RL) to a non-zero value. The 
host controller may execute a transaction if NakCnt is non-zero. The host controller does not execute a 
transaction if NakCnt is zero. The reload mechanism is described in detail in Section Nak Count Reload 
Control.

When all queue heads in the Asynchronous Schedule either exhausts all transfers or all NakCnt's go to 
zero, then the host controller detects an empty Asynchronous Schedule and idle schedule traversal (see 
Section Empty Asynchronous Schedule Detection).

Any time the host controller begins a new traversal of the Asynchronous Schedule, a Start Event is 
assumed, see Section Asynchronous Schedule Traversal : Start Event. Every time a Start-Event occurs, the 
Nak Count reload procedure is enabled.

39.6.8.1 Nak Count Reload Control

When the host controller reaches the Execute Transaction state for a queue head (meaning that it has an 
active operational state), it checks to determine whether the NakCnt field should be reloaded from RL (see 
Section Execute Transaction). If the answer is yes, then RL is copied into NakCnt. After the reload or if 
the reload is not active, the host controller evaluates whether to execute the transaction.

The host controller must reload nak counters in queue heads (Figure 39-50)during the first pass through 
the reclamation list after an asynchronous schedule Start Event (see Section 39.6.7.5, “Asynchronous 
Schedule Traversal: Start Event” for the definition of the Start Event). The Asynchronous Schedule should 
have at most one queue head marked as the head (Figure 39-54). Figure 39-62 illustrates an example state 
machine that satisfies the operational requirements of the host controller detecting the first pass through 
the Asynchronous Schedule. This state machine is maintained internal to the host controller and is only 
used to gate reloading of the nak counter during the queue head traversal state: Execute Transaction 
(Figure 39-63). The host controller does not perform the nak counter reload operation if the RL field (see 
Figure 39-50) is set to zero.

Table 39-75. NAKCnt Field Adjustment Rules

Token Handshake NAK Handshake NYET

IN/PING Decrement NAKCnt N/A, Protocol Error

OUT Decrement NAKCnt No Action Start

Split Decrement NAKCnt N/A, Protocol Error

Complete Split No Action Decrement NAKCnt

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-112 Freescale Semiconductor

Figure 39-62. Example HC State Machine for Controlling Nak Counter Reloads

39.6.8.1.1 Wait for List Head

This is the initial state. The state machine enters this state from Wait for Start Event when a start event as 
defined in Section Asynchronous Schedule Traversal : Start Event occurs. The purpose of this state is to 
wait for the first observation of the head of the Asynchronous Schedule. This occurs when the host 
controller fetches a queue head whose H-bit is set to a one.

39.6.8.1.2 Do Reload

This state is entered from the Wait for List Head state when the host controller fetches a queue head with 
the H-bit set to a one. While in this state, the host controller performs nak counter reloads for every queue 
head visited that has a non-zero nak reload value (RL) field.

39.6.8.1.3 Wait for Start Event

This state is entered from the Do Reload state when a queue head with the H-bit set to a one is fetched. 
While in this state, the host controller does not perform nak counter reloads.

39.6.9 Managing Control/Bulk/Interrupt Transfers via Queue Heads

This section presents an overview of how the host controller interacts with queuing data structures.

Queue heads use the queue element transfer descriptor (qTD) structure defined in Section 39.5.5, “Queue 
Element Transfer Descriptor (qTD).”

One queue head is used to manage the data stream for one endpoint. The queue head structure contains 
static endpoint characteristics and capabilities. It also contains a working area from where individual bus 
transactions for an endpoint are executed. Each qTD represents one or more bus transactions defined in 
the context of the EHCI specification as a transfer. 

Do Reload

Wait for List
Head

Wait for 
Start Event

QH.H == 1
QH.H == 1

Start Event

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-113

The general processing model for the host controller's use of a queue head is simple:
• Read a queue head
• Execute a transaction from the overlay area
• Write back the results of the transaction to the overlay area
• Move to the next queue head

If the host controller encounters errors during a transaction, the host controller sets one of the error 
reporting bits in the queue head's status field. The status field accumulates all errors encountered during 
the execution of a qTD (error bits in the queue head status field are sticky until the transfer [qTD] has 
completed). This state is always written back to the source qTD when the transfer is complete. On transfer 
(for example, buffer or halt conditions) boundaries, the host controller must auto-advance (without 
software intervention) to the next qTD. Additionally, the hardware must be able to halt the queue so no 
additional bus transactions occur for the endpoint and the host controller does not advance the queue.

An example host controller operational state machine of a queue head traversal is illustrated in 
Figure 39-63. This state machine is a model for how a host controller should traverse a queue head. The 
host controller must be able to advance the queue from the Fetch QH state to avoid all hardware/software 
race conditions. This simple mechanism allows software to simply link qTDs to the queue head and 
activate them, then the host controller always finds them if/when they are reachable.

Figure 39-63. Host Controller Queue Head Traversel State Machine

Fetch QH

Execute
Transaction

Write Back
qTD

Follow QH
Horizontal

Pointer

Advance
Queue

Halted
or

!Active and I-bit

Start

!Active

!Active
and

!Halted

Active

Active and !Halted

Active

!Active

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-114 Freescale Semiconductor

This traversal state machine applies to all queue heads, regardless of transfer type or whether split 
transactions are required. The following sections describe each state. Each state description describes the 
entry criteria. The Execute Transaction state (Section Execute Transaction) describes the basic 
requirements for all endpoints. Sections Split Transactions for Asynchronous Transfers and Split 
Transaction Interrupt describe details of the required extensions to the Execute Transaction state for 
endpoints requiring split transactions.

NOTE
Prior to software placing a queue head into either the periodic or 
asynchronous list, software must ensure the queue head is properly 
initialized. Minimally, the queue head should be initialized to the following 
(see Section 39.5.6, “Queue Head” for layout of a queue head): 

• Valid static endpoint state 
• For the first use of a queue head, software may zero-out the queue head transfer overlay, then set 

the Next qTD Pointer field value to reference a valid qTD. 

39.6.9.1 Fetch Queue Head

A queue head can be referenced from the physical address stored in the ASYNCLISTADDR Register 
(Section 3.6.6.2). Additionally, it may be referenced from the Next Link Pointer field of an iTD, siTD, 
FSTN or another Queue Head. If the referencing link pointer has the Typ field set to indicate a queue head, 
it is assumed to reference a queue head structure as defined in Figure 39-51.

While in this state, the host controller performs operations to implement empty schedule detection (Section 
EmptyAsynchronous Schedule Detection) and Nak Counter reloads (Section Operational Model for Nak 
Counter). After the queue head has been fetched, the host controller conducts the following queries for 
empty schedule detection: 

• If queue head is not an interrupt queue head (i.e. S-mask is a zero), and 
• The H-bit is a one, and 
• The Reclamation bit in the USBSTS register is a zero.

When these criteria are met, the host controller stops traversing the asynchronous list (as described in 
Section Empty Asynchronous Schedule Detection). When the criteria are not met, the host controller 
continues schedule traversal. If the queue head is not an interrupt and the H-bit is a one and the 
Reclamation bit is a one, then the host controller sets the Reclamation bit in the USBSTS register to a zero 
before completing this state. The operations for reloading of the Nak Counter are described in detail in 
Section Operational Model for Nak Counter.

This state is complete when the queue head has been read on-chip.

39.6.9.2 Advance Queue

To advance the queue, the host controller must find the next qTD, adjust pointers, perform the overlay and 
write back the results to the queue head.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-115

This state is entered from the FetchQHD state if the overlay Active and Halt bits are set to zero. On entry 
to this state, the host controller determines which next pointer to use to fetch a qTD, fetches a qTD and 
determines whether or not to perform an overlay. If the I-bit is a one and the Active bit is a zero, the host 
controller immediately skips processing of this queue head, exits this state and uses the horizontal pointer 
to the next schedule data structure. If the field Bytes to Transfer is not zero and the T-bit in the Alternate 
Next qTD Pointer is set to zero, then the host controller uses the Alternate Next qTD Pointer. Otherwise, 
the host controller uses the Next qTD Pointer. If Next qTD Pointer’s T-bit is set to a one, then the host 
controller exits this state and uses the horizontal pointer to the next schedule data structure.

Using the selected pointer the host controller fetches the referenced qTD. If the fetched qTD has it’s Active 
bit set to a one, the host controller moves the pointer value used to reach the qTD (Next or Alternate Next) 
to the Current qTD Pointer field, then performs the overlay. If the fetched qTD has its Active bit set to a 
zero, the host controller aborts the queue advance and follows the queue head's horizontal pointer to the 
next schedule data structure. The host controller performs the overlay based on the following rules: 

• The value of the data toggle (dt) field in the overlay area depends on the value of the data toggle 
control (dtc) bit.

• If the EPS field indicates the endpoint is a high-speed endpoint, the Ping state field is preserved by 
the host controller. The value of this field is not changed as a result of the overlay. 

• C-prog-mask field is set to zero (field from incoming qTD is ignored, as is the current contents of 
the overlay area). 

• Frame Tag field is set to zero (field from incoming qTD is ignored, as is the current contents of the 
overlay area). 

• NakCnt field in the overlay area is loaded from the RL field in the queue head's Static Endpoint 
State. 

• All other areas of the overlay are set by the incoming qTD. 

The host controller exits this state when it has committed the write to the queue head.

39.6.9.3 Execute Transaction 

The host controller enters this state from the Fetch Queue Head state only if the Active bit in Status field 
of the queue head is set to a one.

On entry to this state, the host controller executes a few pre-operations, then checks some pre-condition 
criteria before committing to executing a transaction for the queue head.

The pre-operations performed and the pre-condition criteria depend on whether the queue head is an 
interrupt endpoint. The host controller can determine that a queue head is an interrupt queue head when 
the queue head’s S-mask field contains a non-zero value. It is the responsibility of software to ensure the 
S-mask field is appropriately initialized based on the transfer type. There are other criteria that must be 
met if the EPS field indicates that the endpoint is a low- or full-speed endpoint, see Section 39.6.11.1, 
“Split Transactions for Asynchronous Transfers” and Section 39.6.11.2, “Split Transaction Interrupt”. 

• Interrupt Transfer Pre-condition Criteria 
If the queue head is for an interrupt endpoint (e.g. non-zero S-mask field), then the FRINDEX[2:0] 
field must identify a bit in the S-mask field that has a one in it. For example, an S-mask value of 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-116 Freescale Semiconductor

00100000b would evaluate to true only when FRINDEX[2:0] is equal to 101b. If this condition is 
met then the host controller considers this queue head for a transaction. 

• Asynchronous Transfer Pre-operations and Pre-condition Criteria 
If the queue head is not for an interrupt endpoint (e.g. a zero S-mask field), then the host controller 
performs one pre-operation and then evaluates one pre-condition criteria: The pre-operation is: 
— Checks the Nak counter reload state. It may be necessary for the host controller to reload the 

Nak Counter field. The reload is performed at this time.
The pre-condition evaluated is: 
— Whether or not the NakCnt field has been reloaded, the host controller checks the value of the 

NakCnt field in the queue head. If NakCnt is non-zero, or if the Reload Nak Counter field is 
zero, then the host controller considers this queue head for a transaction.

• Transfer Type Independent Pre-operations
Regardless of the transfer type, the host controller always performs at least one pre-operation and 
evaluates one pre-condition. The pre-operation is: 
— A host controller internal transaction (down) counter qHTransactionCounter is loaded from the 

queue head’s Mult field. A host controller implementation is allowed to ignore this for queue 
heads on the asynchronous list. It is mandatory for interrupt queue heads. Software should 
ensure that the Mult field is set appropriately for the transfer type. 

The pre-conditions evaluated are: 
— The host controller determines whether there is enough time in the micro-frame to complete 

this transaction. If there is not enough time to complete the transaction, the host controller exits 
this state.

— If the value of qHTransactionCounter for an interrupt endpoint is zero, then the host controller 
exits this state. 

When the pre-operations are complete and pre-conditions are met, the host controller sets the Reclamation 
bit in the USBSTS register to a one and then begins executing one or more transactions using the endpoint 
information in the queue head. The host controller iterates qHTransactionCounter times in this state 
executing transactions. After each transaction is executed, qHTransactionCounter is decremented by one. 
The host controller exits this state when one of the following events occurs: 

• The qHTransactionCounter decrements to zero, or 
• The endpoint responds to the transaction with any handshake other than an ACK* , or
• The transaction experiences a transaction error, or 
• The Active bit in the queue head goes to a zero, or 
• There is not enough time in the micro-frame left to execute the next transaction (see Section 

Transaction Fit - ABest-Fit Approximation Algorithm for example method for implementing the 
frame boundary test). 

NOTE
For a high-bandwidth interrupt OUT endpoint, the host controller may 
optionally immediately retry the transaction if it fails. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-117

The results of each transaction is recorded in the on-chip overlay area. If data was successfully moved 
during the transaction, the transfer state in the overlay area is advanced. To advance queue head’s transfer 
state, the Total Bytes to Transfer field is decremented by the number of bytes moved in the transaction, the 
data toggle bit (dt) is toggled, the current page offset is advanced to the next appropriate value (e.g. 
advanced by the number of bytes successfully moved), and the C_Page field is updated to the appropriate 
value (if necessary). See Section 39.6.9.6, “Buffer Pointer List Use for Data Streaming with qTDs” . 

The total bytes to transfer field may be zero when all the other criteria for executing a transaction are met. 
When this occurs, the host controller executes a zero-length transaction to the endpoint. If the PID_Code 
field indicates an IN transaction and the device delivers data, the host controller detects a packet babble 
condition, set the babble and halted bits in the Status field, set the Active bit to a zero, write back the results 
to the source qTD, then exit this state. 

In the event an IN token receives a data PID mismatch response, the host controller must ignore the 
received data (e.g. not advance the transfer state for the bytes received). Additionally, if the endpoint is an 
interrupt IN, then the host controller must record that the transaction occurred (e.g. decrement 
qHTransactionCounter). It is

recommended (but not required) the host controller continue executing transactions for this endpoint if the 
resultant value of qHTransactionCounter is greater than one. 

If the response to the IN bus transaction is a Nak (or Nyet) and RL is non-zero, NakCnt is decremented by 
one. If RL is zero, then no write-back by the host controller is required (for a transaction receiving a Nak 
or Nyet response and the value of CErr did not change). Software should set the RL field to zero if the 
queue head is an interrupt endpoint. Host controller hardware is not required to enforce this rule or 
operation. 

After the transaction has finished and the host controller has completed the post processing of the results 
(advancing the transfer state and possibly NakCnt, the host controller writes back the results of the 
transaction to the queue head’s overlay area in main memory. 

The number of bytes moved during an IN transaction depends on how much data the device endpoint 
delivers. The maximum number of bytes a device can send is Maximum Packet Size. The number of bytes 
moved during an OUT transaction is either Maximum Packet Length bytes or Total Bytes to Transfer, 
whichever is less. 

If there was a transaction error during the transaction, the transfer state (as defined above) is not advanced 
by the host controller. The CErr field is decremented by one and the status field is updated to reflect the 
type of error observed. Transaction errors are summarized in Section Transaction Error. 

The following events causes the host controller to clear the Active bit in the queue head’s overlay status 
field. When the Active bit transitions from a one to a zero, the transfer in the overlay is considered 
complete. The reason for the transfer completion (clearing the Active bit) determines the next state. 

• CErr field decrements to zero. When this occurs the Halted bit is set to a one and Active is set to a 
zero. This results in the hardware not advancing the queue and the pipe halts. Software must 
intercede to recover. 

• The device responds to the transaction with a STALL PID. When this occurs, the Halted bit is set 
to a one and the Active bit is set to a zero. This results in the hardware not advancing the queue and 
the pipe halts. Software must intercede to recover. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-118 Freescale Semiconductor

• The Total Bytes to Transfer field is zero after the transaction completes. For a zero length 
transaction, it was zero before the transaction was started. When this condition occurs, the Active 
bit is set to zero.

• The PID code is an IN, and the number of bytes moved during the transaction is less than the 
Maximum Packet Length. When this occurs, the Active bit is set to zero and a short packet 
condition exists. The short-packet condition is detected during the Advance Queue state. Refer to 
Section 5.12 for additional rules for managing low- and full-speed transactions. 

• The PID Code field indicates an IN and the device sends more than the expected number of bytes 
(e.g. Maximum Packet Length or Total Bytes to Transfer bytes, whichever is less) (e.g. a packet 
babble). This results in the host controller setting the Halted bit to a one. 

With the exception of a NAK response (when RL field is zero), the host controller always writes the results 
of the transaction back to the overlay area in main memory. This includes when the transfer completes. For 
a high-speed endpoint, the queue head information written back includes minimally the following fields: 

• NakCnt, dt, Total Bytes to Transfer, C_Page, Status, CERR, and Current Offset 

For a low- or full-speed device the queue head information written back also includes the fields: 
• C-prog-mask, FrameTag and S-bytes. 

The duration of this state depends on the time it takes to complete the transaction(s) and the status write to 
the overlay is committed.

39.6.9.3.1 Halting a Queue Head 

A halted endpoint is defined only for the transfer types that are managed via queue heads (control, bulk 
and interrupt). The following events indicate that the endpoint has reached a condition where no more 
activity can occur without intervention from the driver: 

• An endpoint may return a STALL handshake during a transaction,
• A transaction had three consecutive error conditions, or
• A Packet Babble error occurs on the endpoint.

When any of these events occur (for a queue head) the Host Controller halts the queue head and set the 
USBERRINT status bit in the USBSTS register to a one. To halt the queue head, the Active bit is set to a 
zero and the Halted bit is set to a one. There may be other error status bits that are set when a queue is 
halted. The host controller always writes back the overlay area to the source qTD when the transfer is 
complete, regardless of the reason (normal completion, short packet or halt). The host controller does not 
advance the transfer state on a transaction that results in a Halt condition (e.g. no updates necessary for 
Total Bytes to Transfer, C_Page, Current Offset, and dt). The host controller must update CErr as 
appropriate. When a queue head is halted, the USB Error Interrupt bit in the USBSTS register is set to a 
one. If the USB Error Interrupt Enable bit in the USBINTR register is set to a one, a hardware interrupt is 
generated at the next interrupt threshold. 

39.6.9.3.2 Asynchronous Schedule Park Mode 

Asynchronous Schedule Park mode is a special execution mode that can be enabled by system software, 
where the host controller is permitted to execute more than one bus transaction from a high-speed queue 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-119

head in the Asynchronous schedule before continuing horizontal traversal of the Asynchronous schedule. 
This feature has no effect on queue heads or other data structures in the Periodic schedule. This feature is 
similar in intent as the Mult feature that is used in the Periodic schedule. Where-as the Mult feature is a 
characteristic that is tunable for each endpoint; park-mode is a policy that is applied to all high-speed queue 
heads in the asynchronous schedule. It is essentially the specification of an iterator for consecutive bus 
transactions to the same endpoint. All of the rules for managing bus transactions and the results of those 
as defined in Section Execute Transaction apply. This feature merely specifies how many consecutive 
times the host controller is permitted to execute from the same queue head before moving to the next queue 
head in the Asynchronous List. This feature should allow the host controller to attain better bus utilization 
for those devices that are capable of moving data at maximum rate, while at the same time providing a fair 
service to all endpoints. 

A host controller exports its capability to support this feature to system software by setting the 
Asynchronous Schedule Park Capability bit in the HCCPARAMs register to a one. This information keys 
system software that the Asynchronous Schedule Park Mode Enable and Asynchronous Schedule Park 
Mode Count fields in the USBCMD register are modifiable. System software enables the feature by 
writing a one to the Asynchronous Schedule Park Mode Enable bit.

When park-mode is not enabled (e.g. Asynchronous Schedule Park Mode Enable bit in the USBCMD 
register is a zero), the host controller must not execute more than one bus transaction per high-speed queue 
head, per traversal of the asynchronous schedule. When park-mode is enabled, the host controller must not 
apply the feature to a queue head whose EPS field indicates a Low/Full-speed device (i.e. only one bus 
transaction is allowed from each Low/Full-speed queue head per traversal of the asynchronous schedule). 
Park-mode may only be applied to queue heads in the Asynchronous schedule whose EPS field indicates 
that it is a high-speed device.

The host controller must apply park mode to queue heads whose EPS field indicates a high-speed endpoint. 
The maximum number of consecutive bus transactions a host controller may execute on a high-speed 
queue head is determined by the value in the Asynchronous Schedule Park Mode Count field in the 
USBCMD register. Software must not set Asynchronous Schedule Park Mode Enable bit to a one and also 
set Asynchronous Schedule Park Mode Count field to a zero. The resulting behavior is not defined. An 
example behavioral example describes the operational requirements for the host controller implementing 
park-mode. This feature does not affect how the host controller handles the bus transaction as defined in 
Section Execute Transaction. It only effects how many consecutive bus transactions for the current queue 
head can be executed. All boundary conditions, error detection and reporting applies as usual. This feature 
is similar in concept to the use of the Mult field for high-bandwidth Interrupt for queue heads in the 
Periodic Schedule.

The host controller effectively loads an internal down-counter PM-Count from Asynchronous Schedule 
Park Mode Count when Asynchronous Schedule Park Mode Enable bit is a one, and a high-speed queue 
head is first fetched and meets all the criteria for executing a bus transaction. After the bus transaction, 
PM-Count is decremented. The host controller may continue to execute bus transactions from the current 
queue head until PM-Count goes to zero, an error is detected, the buffer for the current transfer is exhausted 
or the endpoint responds with a flow-control or STALL handshake. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-120 Freescale Semiconductor

39.6.9.4 Write Back qTD 

This state is entered from the Execute Transaction state when the Active bit is set to a zero. The source data 
for the write-back is the transfer results area of the queue head overlay area (Section Figure 39-51., “Queue 
Head Layout”). The host controller uses the Current qTD Pointer field as the target address for the qTD. 
The queue head transfer result area is written back to the transfer result area of the target qTD. This state 
is also referred to as: qTD retirement. The fields that must be written back to the source qTD include Total 
Bytes to Transfer, Cerr, and Status.

The duration of this state depends on when the qTD write-back has been committed.

39.6.9.5 Follow Queue Head Horizontal Pointer 

The host controller must use the horizontal pointer in the queue head to the next schedule data structure 
when any of the following conditions exist: 

• If the Active bit is a one on exit from the Execute Transaction state, or 
• When the host controller exits the Write Back qTD state, or
• If the Advance Queue state fails to advance the queue because the target qTD is not active, or 
• If the Halted bit is a one on exit from the Fetch QH state. 

There is no functional requirement that the host controller wait until the current transaction is complete 
before using the horizontal pointer to read the next linked data structure. However, it must wait until the 
current transaction is complete before executing the next data structure. 

39.6.9.6 Buffer Pointer List Use for Data Streaming with qTDs 

A qTD has an array of buffer pointers used to reference the data buffer for a transfer. The EHCI 
specification requires the buffer associated with the transfer be virtually contiguous. If the buffer spans 
more than one physical page, it must obey the following rules: 

• The first portion of the buffer must begin at some offset in a page and extend through the end of 
the page. 

• The remaining buffer cannot be allocated in small chunks scattered around memory. For each 4K 
chunk beyond the first page, each buffer portion matches to a full 4K page. The final portion, which 
may only be large enough to occupy a portion of a page, must start at the top of the page and be 
contiguous within that page. 

Figure 39-64 illustrates these requirements.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-121

Figure 39-64. Example Mapping of qTD Buffer Pointers to Buffer Pages

The buffer pointer list in the qTD is long enough to support a maximum transfer size of 20K bytes. This 
case occurs when all five buffer pointers are used and the first offset is zero. A qTD manages a 16 Kbyte 
buffer with any starting buffer alignment.

The host controller uses the C_Page field as an index value to determine which buffer pointer in the list 
should be used to start the current transaction. The host controller uses a different buffer pointer for each 
physical page of the buffer. This is true even if the buffer is physically contiguous.

The host controller must detect when the current transaction spans a page boundary and automatically 
moves to the next available buffer pointer in the page pointer list. The next available pointer is reached by 
incrementing C_Page and pulling the next page pointer from the list. Software must ensure there are 
sufficient buffer pointers to move the amount of data specified in the bytes to transfer field.

Figure 39-64 illustrates a nominal example of how system software would initialize the buffer pointers list 
and the C_Page field for a transfer size of 16383 bytes. C_Page is cleared. The upper 20-bits of Page 0 
references the start of the physical page. Current offset (the lower 12-bits of queue head doubleword 7) 
holds the offset in the page for example, 2049 (for example, 4096-2047). The remaining page pointers are 
set to reference the beginning of each subsequent 4K page.

For the first transaction on the qTD (assuming a 512-byte transaction), the host controller uses the first 
buffer pointer (page 0 because C_Page is cleared) and concatenates the current offset field. The 512 bytes 
are moved during the transaction, and the current offset and total bytes to transfer are adjusted by 512 and 
written back to the queue head working area.

During the fourth transaction, the host controller needs 511 bytes in page 0 and one byte in page 1. The 
host controller increments C_Page (to 1) and uses the page 1 pointer to move the final byte of the 
transaction. After the fourth transaction, the active page pointer is the page 1 pointer and current offset has 
rolled to one, and both are written back to the overlay area. The transactions continue for the rest of the 
buffer, with the host controller automatically moving to the next page pointer (that is, C_Page) when 
necessary. There are three conditions for how the host controller manages C_Page.

Pointer (Page 1)

C_Page = 0

Pointer (Page 0)

Pointer (Page 2)

2047

4096

4096

Pointer (Page 3)

Pointer (Page 4)
4096

2048

Bytes to Transfer = 16383 bytes

Page 0 =   2047
Page 1 =   4096
Page 2 =   4096
Page 3 =   4096
Page 4 =   2048

Total: 16383

The physical pages in memory
may or may not be physically
contiguous.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-122 Freescale Semiconductor

• The current transaction does not span a page boundary. The value of C_Page is not adjusted by the 
host controller. 

• The current transaction does span a page boundary. The host controller must detect the page cross 
condition and advance to the next buffer while streaming data to/from the USB. 

• The current transaction completes on a page boundary (the last byte moved for the current 
transaction is the last byte in the page for the current page pointer). The host controller must 
increment C_Page before writing back status for the transaction. 

The only valid adjustment the host controller may make to C_Page is to increment by one. 

39.6.9.7 Adding Interrupt Queue Heads to the Periodic Schedule 

The link path(s) from the periodic frame list to a queue head establishes in which frames a transaction can 
be executed for the queue head. Queue heads are linked into the periodic schedule so they are polled at the 
appropriate rate. System software sets a bit in a queue head's S-Mask to indicate which micro-frame within 
a one millisecond period a transaction should be executed for the queue head. Software must ensure all 
queue heads in the periodic schedule have S-Mask set to a non-zero value. An S-mask with a zero value 
in the context of the periodic schedule yields undefined results.

If the desired poll rate is greater than one frame, system software can use a combination of queue head 
linking and S-Mask values to spread interrupts of equal poll rates through the schedule so that the periodic 
bandwidth is allocated and managed in the most efficient manner possible. Some examples are illustrated 
in Table 39-76.

Table 39-76. Example Periodic Reference Patterns for Interrupt Transfers

Frame 
Reference 
Sequence

Description

0, 2, 4, 6, 8,....
S-Mask = 0x01 

A queue head for the bInterval of two milliseconds (16 micro-frames) 
is linked into the periodic schedule so it is reachable from the periodic 
frame list locations indicated in the previous column. In addition, the 
S-Mask field in the queue head is set to 0x01, indicating that the 
transaction for the endpoint should be executed on the bus during 
micro-frame 0 of the frame.

0, 2, 4, 6, 8,...
S-Mask = 0x02 

Another example of a queue head with a bInterval of two milliseconds 
is linked into the periodic frame list at exactly the same interval as the 
previous example. However, the S-Mask is set to 0x02 indicating that 
the transaction for the endpoint should be executed on the bus during 
micro-frame 1 of the frame. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-123

39.6.9.8 Managing Transfer Complete Interrupts from Queue Heads 

The host controller sets an interrupt to be signaled at the next interrupt threshold when the completed 
transfer (qTD) has an interrupt on complete (IOC) bit set, or when a transfer (qTD) completes with a short 
packet. If system software needs multiple qTDs to complete a client request (like a control transfer) the 
intermediate qTDs do not require interrupts. System software may only need a single interrupt to notify it 
that the complete buffer has been transferred. System software may set IOCs to occur more frequently. A 
motivation for this may be that it wants early notification so interface data structures can be re-used in a 
timely manner.

39.6.10 Ping Control

USB 2.0 defines an addition to the protocol for high-speed devices called ping. Ping is required for all USB 
2.0 high-speed bulk and control endpoints. Ping is not allowed for a split-transaction stream. This 
extension to the protocol eliminates the bad side-effects of Naking OUT endpoints. The status field has a 
ping state bit that the host controller uses to determine the next actual PID it uses in the next transaction 
to the endpoint (see Table 39-61). The ping state bit is only managed by the host controller for queue heads 
that meet all of the following criteria: 

• The queue head is not an interrupt
• The EPS field equals High-Speed
• The PIDCode field equals OUT 

Table 39-77 illustrates the state transition table for the host controller's responsibility for maintaining the 
PING protocol. Refer to Chapter 8 in the USB Specification, Revision 2.0 for detailed description on the 
Ping protocol.

Table 39-77. Ping Control State Transition Table

Event

Current Host Device Next

Do Ping PING Nak Do Ping

Do Ping PING Ack Do OUT

Do Ping PING XactErr1

1 Transaction Error (XactErr) is any time the host misses the handshake.

Do Ping

Do Ping PING Stall N/C2

2 No transition change required for the ping state bit. The stall handshake 
results in the endpoint being halted (for example, active cleared and halt 
set). Software intervention is required to restart queue. 

Do OUT OUT Nak Do Ping

Do OUT OUT Nyet Do Ping3

3 A Nyet response to an OUT means that the device has accepted the data, 
but cannot receive any more at this time. Host must advance the transfer 
state and transition the ping state bit to do ping. 

Do OUT OUT Ack Do OUT

Do OUT OUT XactErr1 Do Ping

Do OUT OUT Stall N/C2

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-124 Freescale Semiconductor

The ping state bit is described in Table 39-61. The defined ping protocol allows the host to be imprecise 
on the initialization of the ping protocol (start in Do OUT when you don't know whether there is space on 
the device or not). The host controller manages the ping state bit. System software sets the initial value in 
the queue head when it initializes a queue head. The host controller preserves the ping state bit across all 
queue advancements. This means when a new qTD is written into the queue head overlay area, the 
previous value of the ping state bit is preserved.

39.6.11 Split Transactions

USB 2.0 defines extensions to the bus protocol for managing USB 1.x data streams through USB 2.0 hubs. 
This section describes how the host controller uses the interface data structures to manage data streams 
with full- and low-speed devices, connected below a USB 2.0 hub, utilizing the split transaction protocol. 
Refer to the USB 2.0 Specification for the complete definition of the split transaction protocol. Full- and 
low-speed devices are enumerated identically as high-speed devices, but the transactions to the full- and 
low-speed endpoints use the split-transaction protocol on the high-speed bus. The split transaction protocol 
is an encapsulation of (or wrapper around) the full- or low-speed transaction. The high-speed wrapper 
portion of the protocol is addressed to the USB 2.0 hub and transaction translator below that the full- or 
low-speed device is attached.

EHCI uses dedicated data structures for managing full-speed isochronous data streams. Control, bulk, and 
interrupt are managed using the queuing data structures. The interface data structures need to be 
programmed with the device address and the transaction translator number of the USB 2.0 hub operating 
as the low-/full-speed host controller for this link. The following sections describe how the host controller 
processes and manages the split transaction protocol.

39.6.11.1 Split Transactions for Asynchronous Transfers 

A queue head in the asynchronous schedule with an EPS field indicating a full-or low-speed device 
indicates to the host controller that it must use split transactions to stream data for this queue head. All 
full-speed bulk and full- and low-speed control are managed via queue heads in the asynchronous 
schedule. 

Software must initialize the queue head with the appropriate device address and port number for the 
transaction translator serving as the full-/low-speed host controller for the links connecting the endpoint. 
Software must also initialize the split transaction state bit (SplitXState) to Do-Start-Split. Finally, if the 
endpoint is a control endpoint, system software must set the control transfer type (C) bit in the queue head 
to a one. If this is not a control transfer type endpoint, the C bit must be initialized by software to be a zero. 
The host controller uses this information to properly set the endpoint type (ET) field in the split transaction 
bus token. When the C bit is a zero, the split transaction token's ET field is set to indicate a bulk endpoint. 
When the C bit is a one, the split transaction token's ET field is set to indicate a control endpoint. Refer to 
Chapter 8 of USB Specification, Revision 2.0 for details. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-125

Figure 39-65. Host Controller Asynchronous Schedule Split-Transaction State Machine

39.6.11.1.1 Asynchronous—Do-Start-Split

Do-Start-Split is the state that software must initialize a full- or low-speed asynchronous queue head. This 
state is entered from the Do-Complete-Split state only after a complete-split transaction receives a valid 
response from the transaction translator that is not a Nyet handshake.

For queue heads in this state, the host controller executes a start-split transaction to the transaction 
translator. If the bus transaction completes without an error and PID code indicates an IN or OUT 
transaction, then the host controller reloads the error counter (Cerr). If it is a successful bus transaction and 
the PID Code indicates a SETUP, the host controller does not reload the error counter. If the transaction 
translator responds with a NAK, the queue head is left in this state, and the host controller proceeds to the 
next queue head in the asynchronous schedule. 

If the host controller times out the transaction (no response, or bad response), the host controller 
decrements Cerr and proceeds to the next queue head in the asynchronous schedule.

39.6.11.1.2 Asynchronous - Do-Complete-Split 

This state is entered from the Do-Start-Split state only after a start-split transaction receives an ACK 
handshake from the transaction translator. 

For queue heads in this state, the host controller executes a complete-split transaction to the transaction 
translator. If the transaction translator responds with a Nyet handshake, the queue head is left in this state, 
the error counter is reset, and the host controller proceeds to the next queue head in the asynchronous 
schedule. When a Nyet handshake is received for a bus transaction where the queue head's PID code 
indicates an IN or OUT, the host controller reloads the error counter (Cerr). When a Nyet handshake is 
received for a complete-split bus transaction where the queue head's PID Code indicates a SETUP, the host 
controller must not adjust the value of Cerr. 

Independent of PID code, the following responses have the indicated effects: 
• Transaction Error (XactErr). Timeout/data CRC failure. The error counter (Cerr) is decremented 

by one and the complete split transaction is immediately retried (if possible). If there is not enough 
time in the micro-frame to execute the retry, the host controller ensures that the next time the host 

Do

AcK

Complete-
Split

Do
Start-
Split

!XactErr
.and.

!NYET
.and.
!Stall

Endpoint Halt

NyetNaK

XactErr

Endpoint Halt

Endpoint Active

Set XactErr Bit and
Decrement Error Count

(CERR)

XactErr

CERR goes
to Zero

Stall

Decrement
Error Count

(CERR)

CERR goes
to Zero

NaK
.and.

PidCode .eq. SETUP

Decrement
Error Count

(CERR)
and

Do Immediate Retry
of Complete-Split

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-126 Freescale Semiconductor

controller begins executing from the asynchronous schedule, it must begin executing from this 
queue head. If another start-split (for some other endpoint) is sent to the transaction translator 
before the complete-split is really completed, the transaction translator could dump the results 
(which were never delivered to the host). This is why the core specification states the retries must 
be immediate. When the host controller returns to the asynchronous schedule in the next 
micro-frame, the first transaction from the schedule is the retry for this endpoint. If Cerr went to 
zero, the host controller halts the queue. 

• NAK. The target endpoint Nak'd the full- or low-speed transaction. The state of the transfer is not 
advanced and the state is exited. If the PID Code is a SETUP, then the Nak response is a protocol 
error. The XactErr status bit is set and the Cerr field is decremented. 

• STALL. The target endpoint responded with a STALL handshake. The host controller sets the halt 
bit in the status byte and retires the qTD, but does not attempt to advance the queue.

If the PID code indicates an IN, then any of following responses are expected: 
• DATA0/1. On reception of data, the host controller ensures the PID matches the expected data 

toggle and checks CRC. If the packet is good, the host controller advances the state of the transfer 
(for example, moves the data pointer by the number of bytes received, decrements the 
BytesToTransfer field by the number of bytes received, and toggles the dt bit). The host controller 
then exits this state. The response and advancement of transfer may trigger other processing events, 
such as retirement of the qTD and advancement of the queue.
If the data sequence PID does not match the expected, the data is ignored, the transfer state is not 
advanced, and this state is exited. 

If the PID code indicates an OUT/SETUP, any of following responses are expected: 
• ACK. The target endpoint accepted the data, so the host controller must advance the state of the 

transfer. The current offset field is incremented by maximum packet length or bytes to transfer, 
whichever is less. The bytes to transfer field is decremented by the same amount and the data toggle 
bit (dt) is toggled. The host controller then exits this state.
Advancing the transfer state may cause other processing events such as retirement of the qTD and 
advancement of the queue.

39.6.11.2 Split Transaction Interrupt 

Split-transaction interrupt-IN/OUT endpoints are managed using the same data structures used for 
high-speed interrupt endpoints. They both co-exist in the periodic schedule. Queue heads/qTDs offer the 
set of features required for reliable data delivery, which is characteristic to interrupt transfer types. The 
split-transaction protocol is managed completely within this defined functional transfer framework. For 
example, the host controller visits a queue head, executes a high-speed transaction (if criteria are met), and 
advances the transfer state (or not) depending on the results of the entire transaction for a high-speed 
endpoint. For low- and full-speed endpoints, the details of the execution phase are different (that is, takes 
more than one bus transaction to complete), but the remainder of the operational framework is intact.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-127

39.6.11.2.1 Split Transaction Scheduling Mechanisms for Interrupt 

Full- and low-speed interrupt queue heads have an EPS field indicating full- or low-speed and have a 
non-zero S-mask field. The host controller can detect this combination of parameters and assume the 
endpoint is a periodic endpoint. Low- and full-speed interrupt queue heads require the use of the split 
transaction protocol. The host controller sets the endpoint type (ET) field in the split token to indicate the 
transaction is an interrupt. These transactions are managed through a transaction translator's periodic 
pipeline. Software should not set these fields to indicate the queue head is an interrupt unless the queue 
head is used in the periodic schedule. 

System software manages the per/transaction translator periodic pipeline by budgeting and scheduling 
exactly during which micro-frames the start-splits and complete-splits for each endpoint occur. The 
characteristics of the transaction translator are such that the high-speed transaction protocol must execute 
during explicit micro-frames or the data or response information in the pipeline is lost. Figure 39-66 
illustrates the general scheduling boundary conditions supported by the EHCI periodic schedule and queue 
head data structure. The S and Cn labels indicate micro-frames where software can schedule start-splits 
and complete splits (respectively).

Figure 39-66. Split Transaction and Interrupt Scheduling Boundary Conditions

The scheduling cases are: 
• Case 1: The normal scheduling case is where the entire split transaction is completely bounded by 

a frame (H-Frame in this case).

7

C2C1C0S

076543210
Periodic Schedule

Micro-Frame 1

Case 1:
Normal Case

C1C0S
Case 2a:

End of Frame

C2C1C0S

C2C1C0S

6 765432107
HS/FS/LS Bus

Micro-Frame 0

Case 2b:
End of Frame

Case 2c:
End of Frame

B-Frame N B-Frame N+1B-Frame N–1

H-Frame N

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-128 Freescale Semiconductor

• Case 2a through Case 2c: The USB 2.0 hub pipeline rules states clearly, when and how many 
complete-splits must be scheduled to account for earliest to latest execution on the full/low-speed 
link. The complete-splits may span the H-Frame boundary when the start-split is in micro-frame 4 
or later. When this occurs, the H-Frame to B-Frame alignment requires the queue head be reachable 
from consecutive periodic frame list locations. System software cannot build an efficient schedule 
that satisfies this requirement unless it uses FSTNs. Figure 39-67 illustrates the general layout of 
the periodic schedule.

Figure 39-67. General Structure of EHCI Periodic Schedule Utilizing Interrupt Spreading

The periodic frame list is effectively the leaf level a binary tree, which is always traversed leaf to root. 
Each level in the tree corresponds to a 2N poll rate. Software can efficiently manage periodic bandwidth 
on the USB by spreading interrupt queue heads that have the same poll rate requirement across all the 
available paths from the frame list. For example, system software can schedule eight poll rate eight queue 
heads and account for them once in the high-speed bus bandwidth allocation.

When an endpoint is allocated an execution footprint that spans a frame boundary, the queue head for the 
endpoint must be reachable from consecutive locations in the frame list. An example would be if 80b were 
such an endpoint. Without additional support on the interface, to get 80b reachable at the correct time, 
software would have to link 81 to 80b. It would then have to move 41 and everything linked after into the 
same path as 40. This upsets the integrity of the binary tree and disallows the use of the spreading 
technique.

FSTN data structures are used to preserve the integrity of the binary-tree structure and enable the use of 
the spreading technique. Section 39.5.7, “Periodic Frame Span Traversal Node (FSTN),” defines the 
hardware and software operational model requirements for using FSTNs. 

The following queue head fields are initialized by system software to instruct the host controller when to 
execute portions of the split-transaction protocol. 

• SplitXState. This is a single bit residing in the status field of a queue head (Table 39-61). This bit 
is used to track the current state of the split transaction. 

21

43

•
•
•

40

20

10

Periodic
Frame List

•  •  •

87

86

85

84

83

82

81

80
80b

42

41

Level 8 Level 4

Level 2

Level 1

Linkage repeats every 8 for
remainder of frame list

(Root)

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-129

• Frame S-mask. This is a bit-field where-in system software sets a bit corresponding to the 
micro-frame (within an H-Frame) that the host controller should execute a start-split transaction. 
This is always qualified by the value of the SplitXState bit in the status field of the queue head. For 
example, in case one of Figure 39-66, the S-mask would have a value of 0b0000_0001, indicating 
that if the queue head is traversed by the host controller, the SplitXState indicates Do_Start, and 
the current micro-frame as indicated by FRINDEX[2:0] is 0 executes a start-split transaction. 

• Frame C-mask. This is a bit-field where system software sets one or more bits corresponding to the 
micro-frames (within an H-Frame) that the host controller should execute complete-split 
transactions. The interpretation of this field is always qualified by the value of the SplitXState bit 
in the status field of the queue head. For example, in case one of Figure 39-66, the C-mask would 
have a value of 0b0001_1100, indicating that if the queue head is traversed by the host controller, 
and the SplitXState indicates Do_Complete, the current micro-frame as indicated by 
FRINDEX[2:0] is 2, 3, or 4 executes a complete-split transaction. It is software's responsibility to 
ensure that the translation between H-Frames and B-Frames is correctly performed when setting 
bits in S-mask and C-mask.

39.6.11.2.2 Host Controller Operational Model for FSTNs 

The FSTN data structure manages low/full-speed interrupt queue heads that need to be reached from 
consecutive frame list locations (boundary cases 2a through 2c). An FSTN is essentially a back pointer, 
similar in intent to the back pointer field in the siTD data structure.

This feature provides software a simple primitive to save a schedule position, redirect the host controller 
to traverse the necessary queue heads in the previous frame, and then restore the original schedule position 
and complete normal traversal.

There are four components to the use of FSTNs: 
• FSTN data structure, defined in Section 39.5.7, “Periodic Frame Span Traversal Node (FSTN).” 
• A save place indicator; this is always an FSTN with its back path link pointer [T] bit cleared.
• A restore indicator; this is always an FSTN with its back path link pointer [T] bit set.
• Host controller FSTN traversal rules. 

Host Controller Operational Model for FSTNs

When the host controller encounters an FSTN during micro-frames two through seven, it follows the 
node's normal path link pointer to access the next schedule data structure. The FSTN's normal path link 
pointer [T] bit may set, which the host controller must interpret as the end of periodic list mark.

When the host controller encounters a save-place FSTN in micro-frames 0 or 1, it saves the value of the 
normal path link pointer and sets an internal flag indicating it is executing in recovery path mode. 
Recovery path mode modifies the host controller's rules for how it traverses the schedule and limits which 
data structures are considered for execution of bus transactions. The host controller continues executing in 
recovery path mode until it encounters a restore FSTN or it determines it has reached the end of the 
micro-frame.

The rules for schedule traversal and limited execution while in recovery path mode are: 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-130 Freescale Semiconductor

• Always follow the normal path link pointer when it encounters an FSTN that is a save-place 
indicator. The host controller must not recursively follow save-place FSTNs. Therefore, while 
executing in recovery path mode, it must never follow an FSTN's back path link pointer.

• Do not process an siTD or iTD data structure; simply follow its next link pointer.
• Do not process a QH (Queue Head) whose EPS field indicates a high-speed device; follow its 

horizontal link pointer. 
• When a QH's EPS field indicates a full/low-speed device, the host controller only considers it for 

execution if its SplitXState is DoComplete (this applies whether the PID code indicates an IN or 
an OUT). Refer to the EHCI Specification for a complete list of additional conditions that must be 
met in general for the host controller to issue a bus transaction. The host controller must not execute 
a start-split transaction while executing in recovery path mode. Refer to the EHCI Specification for 
special handling when in recovery path mode.

• Stop traversing the recovery path when it encounters an FSTN that is a restore indicator. The host 
controller unconditionally uses the saved value of the save-place FSTN's normal path link pointer 
when returning to the normal path traversal. The host controller must clear the context of executing 
a recovery path when it restores schedule traversal to the save-place FSTN's normal path link 
pointer.
If the host controller determines there is not enough time left in the micro-frame to complete 
processing of the periodic schedule, it abandons traversal of the recovery path and clears the 
context of executing a recovery path. The result is the host controller starts traversal at the frame 
listat the start of the next consecutive micro-frame. 

An example traversal of a periodic schedule that includes FSTNs is illustrated in Figure 39-68.

Figure 39-68. Example Host Controller Traversal of Recovery Path via FSTNs

In frame N (micro-frames 0-7), for this example, the host controller traverses all of the schedule data 
structures utilizing the normal path link pointers in any FSTNs it encounters. This is because the host 
controller has not yet encountered a save-place FSTN so it is not executing in recovery path mode. When 

21
•  •  •

87

86

85

84Normal Traversal
for Frame N+1

Micro-Frames 0, 1

N+1 B-Ptr

N-Ptr

43

N

42

81

80

41

40

B-Ptr

N-Ptr

20

10

N+3

N+4

N+5

N–1

N–2

Normal Traversal
for Frame N

T-Int = 1

Save = N

T-Int = 0

Restore = N

Causes Restore
to Normal Path

Traversal

Frame Numbers

Recovery Path
Traversal

82.3

83.0 83.1 83.2

82.0 82.1 82.2

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-131

it encounters the restore FSTN, (Restore-N), during micro-frames 0 and 1, it uses Restore-N. Normal path 
link pointer to traverse to the next data structure (normal schedule traversal). This is because the host 
controller must use a restore FSTN's normal path link pointer when not executing in a recovery-path mode. 
The nodes traversed during frame N include: {82.0, 82.1, 82.2, 82.3, 42, 20, Restore-N, 10...}.

In frame N+1 (micro-frames 0 and 1), when the host controller encounters save-path FSTN (Save-N), it 
observes that Save-N.Back Path Link Pointer.T-bit is zero (definition of a Save-Path indicator). The host 
controller saves the value of Save-N. Normal path link pointer and follows Save-N.Back Path Link Pointer. 
At the same time, it sets an internal flag indicating that it is now in recovery path mode (the recovery path 
is annotated in Figure 39-68 with a large dashed line). The host controller continues traversing data 
structures on the recovery path and executing only those bus transactions as noted above, on the recovery 
path until it reaches restore FSTN (Restore-N). Restore-N.Back Path Link Pointer.T-bit is set (definition 
of a Restore indicator), so the host controller exits recovery path mode by clearing the internal recovery 
path mode flag and commences (restores) schedule traversal using the saved value of the save-place 
FSTN's normal path link pointer (for example, Save-N.Normal Path Link Pointer). The nodes traversed 
during these micro-frames include: {83.0, 83.1, 83.2, Save-A, 82.2, 82.3, 42, 20, Restore-N, 43, 21, Restore-N, 
10...}. 

In frame N+1 (micro-frames 2-7), when the host controller encounters save-path FSTN Save-N, it 
unconditionally follows Save-N.Normal Path Link Pointer. The nodes traversed during these micro-frames 
include: {83.0, 83.1, 83.2, Save-A, 43, 21, Restore-N, 10...}.

Software Operational Model for FSTNs

Software must create a consistent, coherent schedule for the host controller to traverse. When using 
FSTNs, system software must adhere to the following rules: 

• Each save-place indicator requires a matching restore indicator. 
The save-place indicator is an FSTN with a valid back path link pointer and T-bit equal to zero. 
The Back path link pointer [Typ] field must be set to indicate the referenced data structure is a 
queue head. The restore indicator is an FSTN with its back path link pointer [T] bit set.
A restore FSTN may be matched to one or more save-place FSTNs. For example, if the schedule 
includes a poll-rate 1 level, system software only needs to place a restore FSTN at the beginning 
of this list to match all possible save-place FSTNs.

• If the schedule does not have elements linked at a poll-rate level of one, and one or more save-place 
FSTNs are used, system software must ensure the restore FSTN's normal path link pointer's T-bit 
is set, as this marks the end of the periodic list. 

• When the schedule does have elements linked at a poll rate level of one, a restore FSTN must be 
the first data structure on the poll rate one list. All traversal paths from the frame list converge on 
the poll-rate one list. System software must ensure that recovery path mode is exited before the host 
controller is allowed to traverse the poll rate level one list. 

• A save-place FSTN's back path link pointer must reference a queue head data structure. The 
referenced queue head must be reachable from the previous frame list location. In other words, if 
the save-place FSTN is reachable from frame list offset N, then the FSTN's back path link pointer 
must reference a queue head that is reachable from frame list offset N-1.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-132 Freescale Semiconductor

Software should make the schedule as efficient as possible. What this means in this context is software 
should have no more than one save-place FSTN reachable in any single frame. Two (or more, depending 
on the implementation) could exist as full/low-speed footprints change with bandwidth adjustments. This 
could occur, for example, when a bandwidth rebalance causes system software to move the save-place 
FSTN from one poll rate level to another. During the transition, software must preserve the integrity of the 
previous schedule until the new schedule is in place. 

39.6.11.2.3 Tracking Split Transaction Progress for Interrupt Transfers 

To correctly maintain the data stream, the host controller must be able to detect and report errors where 
data is lost. For interrupt-IN transfers, data is lost when it makes it into the USB 2.0 hub, but the USB 2.0 
host system is unable to get it from the USB 2.0 hub and into the system before it expires from the 
transaction translator pipeline. When a lost data condition is detected, the queue is halted, thus signaling 
system software to recover from the error. A data-loss condition exists when a start-split is issued, 
accepted, and successfully executed by the USB 2.0 hub, but the complete-splits get unrecoverable errors 
on the high-speed link or the complete-splits do not occur at the correct times. One reason complete-splits 
might not occur at the right time would be due to host-induced system hold-offs that cause the host 
controller to miss bus transactions because it cannot get timely access to the schedule in system memory.

The same condition can occur for an interrupt-OUT, but the result is not an endpoint halt condition. 
Instead, it affects only the progress of the transfer. The queue head has the following fields to track the 
progress of each split transaction. These fields are used to keep incremental state about which (and when) 
portions have been executed.

• C-prog-mask. This is an eight-bit bit-vector where the host controller keeps track of which 
complete-splits have been executed. Due to the nature of the transaction translator periodic 
pipeline, the complete-splits need to be executed in-order. The host controller needs to detect when 
the complete-splits have not been executed in order. This can only occur due to system hold-offs 
where the host controller cannot get to the memory-based schedule. C-prog-mask is a simple 
bit-vector the host controller sets as one of the C-prog-mask bits for each complete-split executed. 
The bit position is determined by the micro-frame number in which the complete-split was 
executed. The host controller always checks C-prog-mask before executing a complete-split 
transaction. If the previous complete-splits have not been executed then it means one (or more) 
have been skipped and data has potentially been lost.

• FrameTag. The host controller uses his field during the complete-split portion of the split 
transaction to tag the queue head with the frame number (H-Frame number) when the next 
complete split must be executed.

• S-bytes. This field can be used to store the number of data payload bytes sent during the start-split 
(if the transaction was an OUT). The S-bytes field must be used to accumulate the data payload 
bytes received during the complete-splits (for an IN).

39.6.11.2.4 Split Transaction Execution State Machine for Interrupt 

In the following section, all references to micro-frame are in the context of a micro-frame within an 
H-Frame.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-133

As with asynchronous full- and low-speed endpoints, a split-transaction state machine manages the split 
transaction sequence. Aside from the fields defined in the queue head for scheduling and tracking the split 
transaction, the host controller calculates one internal mechanism that also manages the split transaction. 
The internal calculated mechanism is: 

• cMicroFrameBit. This is a single-bit encoding of the current micro-frame number. It is an eight-bit 
value calculated by the host controller at the beginning of every micro-frame. It is calculated from 
the three least significant bits of the FRINDEX register, which is cMicroFrameBit = 1 
shifted-left(FRINDEX[2:0]). The cMicroFrameBit has at most one bit asserted that always 
corresponds to the current micro-frame number. For example, if the current micro-frame is 0, then 
cMicroFrameBit equals 0b0000_0001.
The variable cMicroFrameBit is used to compare against the S-mask and C-mask fields to 
determine whether the queue head is marked for a start- or complete-split transaction for the 
current micro-frame.

Figure 39-69 illustrates how a complete interrupt-split transaction is managed. There are two phases to 
each split transaction. The first is a single start-split transaction that occurs when the SplitXState is at 
Do_Start and the single bit in cMicroFrameBit has a corresponding bit active in QH[S-mask]. The 
transaction translator does not acknowledge the receipt of the periodic start-split, so the host controller 
unconditionally transitions the state to Do_Complete. Due to the available jitter in the transaction 
translator pipeline, there is more than one complete-split transaction scheduled by software for the 
Do_Complete state. This translates simply to the fact that there are multiple bits set in the QH[C-mask] 
field. 

The host controller keeps the queue head in the Do_Complete state until the split transaction is complete 
(see definition below), or an error condition triggers the three-strikes-rule (for example, after the host tries 
the same transaction three times, and each encounters an error, the host controller stops retrying the bus 
transaction and halts the endpoint, therefore, requiring system software to detect the condition and perform 
system-dependent recovery).

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-134 Freescale Semiconductor

Figure 39-69. Split Transaction State Machine for Interrupt

Periodic Interrupt—Do-Start-Split 

This is the state software must initialize a full- or low-speed interrupt queue head StartXState bit. This state 
is entered from the Do_Complete Split state only after the split transaction is complete. This occurs when 
one of the following events occur: 

• NAK. A NAK response is a propagation of the full- or low-speed endpoint's NAK response.
• ACK. An ACK response is a propagation of the full- or low-speed endpoint's ACK response. Only 

occurs on an OUT endpoint. 
• DATA 0/1. Only occurs for INs. Indicates this is the last of the data from the endpoint for this split 

transaction. 
• ERR. The transaction on the low-/full-speed link below the transaction translator had a failure (for 

example, timeout, bad CRC, etc.). 
• NYET (and Last). The host controller issued the last complete-split and the transaction translator 

responded with a NYET handshake. This means the start-split was not correctly received by the 
transaction translator, so it never executed a transaction to the full- or low-speed endpoint, see 
Section 39.6.11.2, “Split Transaction Interrupt.” 

Each time the host controller visits a queue head in this state (within the execute transaction state), bit-wise 
ANDs QH[S-mask] with cMicroFrameBit to determine whether to execute a start-split. If the result is 
non-zero, the host controller issues a start-split transaction. If the PID Code field indicates an IN 
transaction, the host controller must zero-out the QH[S-bytes] field. After the split-transaction has been 
executed, the host controller sets up state in the queue head to track the progress of the complete-split phase 
of the split transaction. Specifically, it records the expected frame number into QH[FrameTag] field, sets 
C-prog-mask to zero (0x00), and exits this state. The host controller must not adjust the value of Cerr as a 
result of completion of a start-split transaction. 

Do
Complete-

Split

Do
Start-
Split

MDATA

Halt
Queue

!(QH.S-Mask &

Active
Queue
State

* Issue Start-Split Transaction
* Tag QH with Frame Number According

(QH.C-Mask & cMicroFrameBit)
.and.

State
cMicroFrameBit)

to the Frame Tag Rules **(1,3)
* QH.C-prog-mask = zero(0x00)

(QH.S-Mask &
cMicroFrameBit)

.or.
NYET

(FRINDEX[7:3] .eq. QH.FrameTag)
.and.

CheckPreviousBit(QH.C-prog-mask,
QH.C-Mask, cMicroFrameBit)

Data Loss
.or.

STALL
.or.

Babble
.or.

CERR ––>  0 Split
Transaction
Complete

* Issue Complete-Split Transaction
* Tag QH with Frame Number According

to the **Sframe Tag Rules
* C-prog-mask |= cMicroFrameBit

XactErr
Decrement Error Counter (CERR)

and Do Immediate Retry
of Complete-Split

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-135

Periodic Interrupt—Do-Complete-Split 

This state is entered unconditionally from the Do Start Split state after a start-split transaction is executed 
on the bus. Each time the host controller visits a queue head in this state (within the execute transaction 
state), it checks to determine whether a complete-split transaction should be executed now.

There are four tests to determine whether a complete-split transaction should be executed.
• Test A. cMicroFrameBit is bit-wise ANDed with QH[C-mask] field. A non-zero result indicates 

software scheduled a complete-split for this endpoint, during this micro-frame. 
• Test B. QH[FrameTag] is compared with the current contents of FRINDEX[7:3]. An equal 

indicates a match. 
• Test C. The complete-split progress bit vector is checked to determine whether the previous bit is 

set, indicating the previous complete-split was appropriately executed. An example algorithm for 
this test is provided below: 

Algorithm Boolean CheckPreviousBit(QH.C-prog-mask, QH.C-mask, cMicroFrameBit)
Begin
-- Return values:
-- TRUE - no error
-- FALSE - error
--
Boolean rvalue = TRUE;
previousBit = cMicroframeBit logical-rotate-right(1)
-- Bit-wise anding previousBit with C-mask indicates 
-- whether there was an intent
-- to send a complete split in the previous micro-frame. So, 
-- if the
-- 'previous bit' is set in C-mask, check C-prog-mask to 
-- make sure it
-- happened.
If (previousBit bitAND QH.C-mask)then

If not(previousBit bitAND QH.C-prog-mask) then
rvalue = FALSE;

End if
End If
-- If the C-prog-mask already has a one in this bit position, 
-- then an aliasing
-- error has occurred. It  probably get caught by the 
-- FrameTag Test, but
-- at any rate it is an error condition that as detectable here
-- should not allow
-- a transaction to be executed.
If (cMicroFrameBit bitAND QH.C-prog-mask) then
rvalue = FALSE;
End if
return (rvalue)
End Algorithm

• Test D. Check if a start-split should be executed in this micro-frame. This is the same test 
performed in the Do Start Split state. When it evaluates to TRUE and the controller is NOT 
processing in the context of a recovery path mode, it means a start-split should occur in this 
micro-frame. Test D and Test A evaluating to TRUE at the same time is a system software error. 
Behavior is undefined.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-136 Freescale Semiconductor

If test A is non-zero, Test B indicates a match event, Test C indicates the previous complete-split was 
appropriately executed and Test D evaluates to a NOT TRUE condition, the host controller executes a 
complete-split transaction. When the host controller commits to executing the complete-split transaction, 
it updates QH[C-prog-mask] by bit-ORing with cMicroFrameBit. On completion of the complete-split 
transaction, the host controller records the result of the transaction in the queue head and sets 
QH[FrameTag] to the expected H-Frame number. The effect to the state of the queue head and thus the 
state of the transfer depends on the response by the transaction translator to the complete-split transaction. 
The following responses have the effects (any responses that result in decrementing of the Cerr result in 
the queue head being halted by the host controller if the result of the decrement is zero): 

• NYET (and Last). On each NYET response, the host controller checks to determine whether this 
is the last complete-split for this split transaction. Last is defined in this context as the condition 
where all of the scheduled complete-splits have been executed. If it is the last complete-split (with 
a NYET response), the transfer state of the queue head is not advanced (never received any data) 
and this state exited. The transaction translator must have responded to all the complete-splits with 
NYETs, meaning the start-split issued by the host controller was not received. The start-split 
should be retried at the next poll period.

• The test for whether this is the last complete split can be performed by XOR QH[C-mask] with 
QH[C-prog-mask]. If the result is all zeros, all complete-splits have been executed. When this 
condition occurs, the XactErr status bit is set and the Cerr field is decremented.

• NYET (and not Last). See above description for testing for last. The complete-split transaction 
received a NYET response from the transaction translator. Do not update any transfer state (except 
for C-prog-mask and FrameTag) and stay in this state. The host controller must not adjust Cerr on 
this response. 

• Transaction Error (XactErr). Timeout, data CRC failure, etc. The Cerr field is decremented and the 
XactErr bit in the Status field is set. The complete split transaction is immediately retried (if Cerr 
is non-zero).If there is not enough time in the micro-frame to complete the retry and the endpoint 
is an IN or Cerr is decremented to a zero from a one, the queue is halted. If there is not enough time 
in the micro-frame to complete the retry and the endpoint is an OUT and Cerr is not zero, this state 
is exited (return to Do Start Split). This results in a retry of the entire OUT split transaction at the 
next poll period. Refer to Chapter 11 Hubs (specifically the section on full- and low-speed 
interrupts) in the USB Specification Revision 2.0 for detailed requirements on why these errors 
must be immediately retried.

• ACK. This can only occur if the target endpoint is an OUT. The target endpoint ACK'd the data 
and this response is a propagation of the endpoint ACK up to the host controller. The host controller 
must advance the state of the transfer. The current offset field is incremented by maximum packet 
length or bytes to transfer, whichever is less. The bytes to transfer field is decremented by the same 
amount, and the data toggle bit (dt) is toggled. The host controller then exits this state for this queue 
head. The host controller must reload Cerr with maximum value on this response. Advancing the 
transfer state may cause other process events such as retirement of the qTD and advancement of 
the queue. 

• MDATA. This response occurs only for an IN endpoint. The transaction translator responded with 
zero or more bytes of data and an MDATA PID. The incremental number of bytes received is 
accumulated in QH[S-bytes]. The host controller must not adjust Cerr on this response. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-137

• DATA0/1. This response may only occur for an IN endpoint. The number of bytes received is 
added to the accumulated byte count in QH[S-bytes]. The state of the transfer is advanced by the 
result and the host controller exits this state for this queue head. 

• Advancing the transfer state may cause other processing events such as retirement of the qTD and 
advancement of the queue.

• If the data sequence PID does not match the expected, the entirety of the data received in this split 
transaction is ignored, the transfer state is not advanced, and this state is exited. 

• NAK. The target endpoint Nak'd the full- or low-speed transaction. The state of the transfer is not 
advanced, and this state is exited. The host controller must reload Cerr with maximum value on 
this response. 

• ERR. There was an error during the full- or low-speed transaction. The ERR status bit is set, Cerr 
is decremented, the state of the transfer is not advanced, and this state is exited.

• STALL. The queue is halted (an exit condition of the Execute Transaction state). The status field 
bits: 
Active bit is cleared and the Halted bit is set and the qTD is retired. Responses not enumerated in 
the list or received out of sequence are illegal and may result in undefined host controller behavior. 
The other possible combinations of tests A, B, C, and D may indicate data or response was lost. 
Table 39-78 lists the possible combinations and the appropriate action.

Table 39-78. Interrupt IN/OUT Do Complete Split State Execution Criteria 

Condition Action Description

not(A)
not(D)

Ignore QHD Neither a start nor complete-split is scheduled for the current micro-frame. Host 
controller should continue walking the schedule.

A
not(C)

If PIDCode = IN
Halt QHDIf PIDCode = OUT
Retry start-split

Progress bit check failed. These means a complete-split has been missed. There is 
the possibility of lost data. If PID Code is an IN, the queue head must be halted. If 
PID code is an OUT, the transfer state is not advanced and the state exited (for 
example, start-split is retried). This is a host-induced error and does not effect Cerr. 
In either case, set the missed micro-frame bit in the status field to a one.

A
not(B)

C

If PIDCode = IN
Halt QHD
If PIDCode = OUT
Retry start-split

QH.FrameTag test failed. This means that exactly one or more H-Frames have been 
skipped. This means complete-splits and have missed. There is the possibility of lost 
data. If PID Code is an IN, then the Queue head must be halted.If PID Code is an 
OUT, the transfer state is not advanced and the state exited (for example, start-split 
is retried). This is a host-induced error and does not effect Cerr. In either case, set 
the missed micro-frame bit in the status field to a one.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-138 Freescale Semiconductor

Managing the QH[FrameTag] Field 

The QH[FrameTag] field in a queue head is completely managed by the host controller. The rules for 
setting QH[FrameTag] are simple: 

• Rule 1: If transitioning from Do Start Split to Do Complete Split and the current value of 
FRINDEX[2:0] is 6, QH[FrameTag] is set to FRINDEX[7:3] + 1. This accommodates split 
transactions whose start-split and complete-splits are in different H-Frames (case 2a, see 
Figure 39-66).

• Rule 2: If the current value of FRINDEX[2:0] is 7, QH[FrameTag] is set to FRINDEX[7:3] + 1. 
This accommodates staying in Do Complete Split for cases 2a, 2b, and 2c in Figure 39-66. 

• Rule 3: If transitioning from Do_Start Split to Do Complete Split and the current value of 
FRINDEX[2:0] is not 6, or currently in Do Complete Split and the current value of 
(FRINDEX[2:0]) is not 7, FrameTag is set to FRINDEX[7:3]. This accommodates all other cases 
in Figure 39-66. 

39.6.11.2.5 Rebalancing the Periodic Schedule 

System software must occasionally adjust a periodic queue head's S-mask and C-mask fields during 
operation. This need occurs when adjustments to the periodic schedule create a new bandwidth budget and 
one or more queue head's are assigned new execution footprints (new S-mask and C-mask values).

It is imperative that system software not update these masks to new values in the midst of a split 
transaction. To avoid any race conditions with the update, the host controller provides a simple assist to 
system software. System software sets the inactivate-on-next-transaction (I) bit to signal the host controller 
it intends to update the S-mask and C-mask on this queue head. System software then waits for the host 
controller to observe the I-bit is set and transitions the active bit to a zero. The rules for how and when the 
host controller clears the active bit are: 

• If the active bit is cleared, no action is taken. The host controller does not attempt to advance the 
queue when the I-bit is set. 

A
B
C

not(D)

Execute complete-split This is the non-error case where the host controller executes a complete-split 
transaction.

D If PIDCode = IN
Halt QHDIf PIDCode = OUT
Retry start-split

This is a degenerate case where the start-split was issued, but all of the 
complete-splits were skipped and all possible intervening opportunities to detect the 
missed data failed to fire. If PID Code is an IN, the queue head must be halted. If 
PID code is an OUT, then the transfer state is not advanced and the state exited (for 
example, start-split is retried). This is a host-induced error and does not affect Cerr. 
In either case, set the missed micro-frame bit in the status field to a one. When 
executing in the context of a recovery path mode, the host controller can process the 
queue head and take the actions indicated above or it may wait until the queue head 
is visited in the normal processing mode. Regardless, the host controller must not 
execute a start-split in the context of a executing in a recovery path mode.

Table 39-78. Interrupt IN/OUT Do Complete Split State Execution Criteria  (continued)

Condition Action Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-139

• If the active bit is set and the SplitXState is DoStart (regardless of the value of S-mask), the host 
controller simply clears the active bit. The host controller is not required to write the transfer state 
back to the current qTD. If the S-mask indicates that a start-split is scheduled for the current 
micro-frame, the host controller must not issue the start-split bus transaction; it must clear the 
active bit. 

System software must save transfer state before setting the I-bit. This is required so it can correctly 
determine what transfer progress (if any) occurred after the I-bit was set, and the host controller executed 
it's final bus-transaction and cleared the active bit. 

After system software has updated the S-mask and C-mask, it must reactivate the queue head. Because the 
active bit and the I-bit cannot be updated with the same write, system software needs to use the following 
algorithm to coherently re-activate a queue head that has been stopped using the I-bit.

1. Set the halted bit 
2. Clear the I-bit 
3. Set the active bit and clear the halted bit in the same write. 

Setting the halted bit inhibits the host controller from attempting to advance the queue between the time 
the I-bit is cleared and the active bit is set. 

39.6.11.3 Split Transaction Isochronous 

Full-speed isochronous transfers are managed using the split-transaction protocol through a USB 2.0 
transaction translator in a USB 2.0 hub. The host controller uses siTD data structure to support the special 
requirements of isochronous split-transactions. This data structure uses the scheduling model of 
isochronous TDs (see Section 39.6.6, “Managing Isochronous Transfers Using iTDs,” for the operational 
model of iTDs) with the contiguous data feature provided by queue heads. This simple arrangement allows 
a single isochronous scheduling model and adds the additional feature that all data received from the 
endpoint (per split transaction) must land into a contiguous buffer.

39.6.11.3.1 Split Transaction Scheduling Mechanisms for Isochronous 

Full-speed isochronous transactions are managed through a transaction translator's periodic pipeline. As 
with full- and low-speed interrupt, system software manages each transaction translator's periodic pipeline 
by budgeting and scheduling exactly during which micro-frames the start-splits and complete-splits for 
each full-speed isochronous endpoint occur. The requirements described in Section Split Transaction 
Scheduling Mechanisms for Interrupt apply. Figure 39-70 illustrates the general scheduling boundary 
conditions supported by the EHCI periodic schedule. The Sn and Cn labels indicate micro-frames where 
software can schedule start- and complete-splits (respectively). The H-Frame boundaries are marked with 
a large, solid bold vertical line. The B-Frame boundaries are marked with a large, bold, and dashed line. 
The bottom of the figure illustrates the relationship of an siTD to the H-Frame.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-140 Freescale Semiconductor

Figure 39-70. Split Transaction and Isochronous Scheduling Boundary Conditions

When the endpoint is an isochronous OUT, there are only start-splits and no complete-splits. When the 
endpoint is an isochronous IN, there is at most one start-split and one to N complete-splits. The scheduling 
boundary cases are: 

• Case 1: The entire split transaction is completely bounded by an H-Frame. For example, the 
start-splits and complete-splits are all scheduled to occur in the same H-Frame. 

• Case 2a: This boundary case is where one or more (at most two) complete-splits of a split 
transaction IN are scheduled across an H-Frame boundary. This can only occur when the split 
transaction has the possibility of moving data in B-Frame, micro-frames 6 or 7 (H-Frame 
micro-frame 7 or 0). When an H-Frame boundary wrap condition occurs, the scheduling of the split 
transaction spans more than one location in the periodic list (for example, it takes two siTDs in 
adjacent periodic frame list locations to fully describe the scheduling for the split transaction).

7

C2C1C0S

076543210
Periodic Schedule

Micro-Frame 1

Case 1:
Normal Case

C3C0SCase 2a:
Frame Wrap at

S0

C6C5C4S

6 765432107
HS/FS/LS Bus

Micro-Frame 0

Case 2b:
Start & Complete

B-Frame N B-Frame N+1B-Frame N–1

H-Frame N

S3S2S0

C3

S1

C6 S

C0 C1 C2 C3

C1 C2

S1 S2 S3

H-Frame N+1

siTDx siTDx+1

End of H-Frame

in H-Frame,
Micro-Frame 0

IN

OUT

IN

OUT

IN

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-141

Although the scheduling of the split transaction may take two data structures, all of the 
complete-splits for each full-speed IN isochronous transaction must use only one data pointer. For 
this reason, siTDs contain a back pointer.
Software must never schedule full-speed isochronous OUTs across an H-Frame boundary. 

• Case 2b: This case can only occur for a large isochronous IN. It is the only allowed scenario where 
a start-split and complete-split for the same endpoint can occur in the same micro-frame. Software 
must enforce this rule by scheduling the large transaction first. Large is defined to be anything 
larger than 579 byte maximum packet size. 

A subset of the same mechanisms employed by full- and low-speed interrupt queue heads are employed 
in siTDs to schedule and track the portions of isochronous split transactions. The following fields are 
initialized by system software to instruct the host controller when to execute portions of the split 
transaction protocol:

• SplitXState. This is a single bit residing in the status field of an siTD (see Table 39-55). This bit is 
used to track the current state of the split transaction. The rules for managing this bit are described 
in Section 39.6.11.3.3, “Split Transaction Execution State Machine for Isochronous.” 

• Frame S-mask. This is a bit-field wherein system software sets a bit corresponding to the 
micro-frame (within an H-Frame) that the host controller should execute a start-split transaction. 
This is always qualified by the value of the SplitXState bit. For example, referring to the IN 
example in case one of Figure 39-70, the S-mask would have a value of 0b0000_0001 indicating 
that if the siTD is traversed by the host controller, the SplitXState indicates Do Start Split, and the 
current micro-frame as indicated by FRINDEX[2:0] is 0, then execute a start-split transaction. 

• Frame C-mask. This is a bit-field where system software sets one or more bits corresponding to the 
micro-frames (within an H-Frame) that the host controller should execute complete-split 
transactions. The interpretation of this field is always qualified by the value of the SplitXState bit. 
For example, referring to the IN example in case one of Figure 39-70, the C-mask would have a 
value of 0b 0011_1100 indicating that if the siTD is traversed by the host controller, the SplitXState 
indicates Do Complete Split, and the current micro-frame as indicated by FRINDEX[2:0] is 2, 3, 
4, or 5, then execute a complete-split transaction. 

• Back Pointer. This field in a siTD is used to complete an IN split-transaction using the previous 
H-Frame's siTD. This is only used when the scheduling of the complete-splits span an H-Frame 
boundary.

There exists a one-to-one relationship between a high-speed isochronous split transaction (including all 
start- and complete-splits) and one full-speed isochronous transaction. An siTD contains (amongst other 
things) buffer state and split transaction scheduling information. An siTD's buffer state always maps to one 
full-speed isochronous data payload. This means that for any full-speed transaction payload, a single 
siTD's data buffer must be used. This rule applies to both IN an OUTs. An siTD's scheduling information 
usually also maps to one high-speed isochronous split transaction. The exception to this rule is the 
H-Frame boundary wrap cases mentioned above.

The siTD data structure describes at most, one frame's worth of high-speed transactions and that 
description is strictly bounded within a frame boundary. At the top of Figure 39-71 are examples of the 
full-speed transaction footprints for the boundary scheduling cases described above. In the middle are 
time-frame references for both the B-Frames (HS/FS/LS Bus) and the H-Frames. At the bottom is 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-142 Freescale Semiconductor

illustrated the relationship between the scope of an siTD description and the time references. Each 
H-Frame corresponds to a single location in the periodic frame list. The implication is that each siTD is 
reachable from a single periodic frame list location at a time.

Figure 39-71. siTD Scheduling Boundary Examples

Each case is described below: 
• Case 1: One siTD is sufficient to describe and complete the isochronous split transaction because 

the whole isochronous split transaction is tightly contained within a single H-Frame.
• Case 2a, 2b: Although both INs and OUTs can have these footprints, OUTs always take only one 

siTD to schedule. However, INs (for these boundary cases) require two siTDs to complete the 
scheduling of the isochronous split transaction. The siTDX is used to always issue the start-split 
and the first N complete-splits. The full-speed transaction (for these cases) can deliver data on the 
full-speed bus segment during micro-frame 7 of H-FrameY+1, or micro-frame 0 of H-FrameY+2. 
The complete splits are scheduled using siTDX+2 (not shown). The complete-splits to extract this 
data must use the buffer pointer from siTDX+1. The only way for the host controller to reach 
siTDX+1 from H-FrameY+2 is to use siTDX+2's back pointer.

Software must apply the following rules when calculating the schedule and linking the schedule data 
structures into the periodic schedule: 

• Software must ensure that an isochronous split-transaction is started so it completes before the end 
of the B-Frame.

• Software must ensure that for a single full-speed isochronous endpoint, there is never a start-split 
and complete-split in H-Frame, micro-frame 1. This is mandated as a rule so that case 2a and case 
2b can be discriminated. According to the core USB specification, the long isochronous transaction 
illustrated in Case 2b could be scheduled so the start-split was in micro-frame 1 of H-Frame N and 
the last complete-split would need to occur in micro-frame 1 of H-Frame N+1. However, it is 
impossible to discriminate between cases 2a and 2b, which has significant impact on the 
complexity of the host controller.

076543210 07654321 217654

B-Frame Y B-Frame Y+1 B-Frame Y+2B-Frame Y–1

076543210 07654321 21765

H-Frame Y H-Frame Y+1

3

H-Frame Y+2H-Frame Y–1

Case 1 Case 2a Case 2b

siTDX siTDX+1

Back Pointer

Full-Speed Transaction

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-143

39.6.11.3.2 Tracking Split Transaction Progress for Isochronous Transfers 

Isochronous endpoints do not employ the concept of a halt on error; however, the host controller does 
identify and report per-packet errors observed in the data stream. This includes schedule traversal 
problems (skipped micro-frames), timeouts, and corrupted data received.

In similar kind to interrupt split-transactions, the portions of the split transaction protocol must execute in 
the micro-frames they are scheduled. The queue head data structure that manages full- and low-speed 
interrupt has several mechanisms for tracking when portions of a transaction have occurred. Isochronous 
transfers use siTDs for their transfers and the data structures are only reachable using the schedule in the 
exact micro-frame in which they are required (so all the mechanism employed for tracking in queue heads 
is not required for siTDs). Software has the option of reusing siTD several times in the complete periodic 
schedule. However, it must ensure that the results of split transaction N are consumed and the siTD 
re-initialized (activated) before the host controller gets back to the siTD (in a future micro-frame).

Split-transaction isochronous OUTs utilize a low-level protocol to indicate which portions of the split 
transaction data have arrived. Control over the low-level protocol is exposed in an siTD using the fields 
transaction position (TP) and transaction count (T-count). If the entire data payload for the OUT split 
transaction is larger than 188 bytes, there is more than one start-split transaction, each of which requires 
proper annotation. If host hold-offs occur, the sequence of annotations received from the host is not 
complete, which is detected and managed by the transaction translator. See Section 39.6.11.3.1, “Split 
Transaction Scheduling Mechanisms for Isochronous,” for a description on how these fields are used 
during a sequence of start-split transactions.

The fields siTD[T-Count] and siTD[TP] are used by the host controller to drive and sequence the 
transaction position annotations. It is the responsibility of system software to properly initialize these 
fields in each siTD. After the budget for a split-transaction isochronous endpoint is established, S-mask, 
T-Count, and TP initialization values for all the siTD associated with the endpoint are constant. They 
remain constant until the budget for the endpoint is recalculated by software and the periodic schedule 
adjusted.

For IN-endpoints, the transaction translator simply annotates the response data packets with enough 
information to allow the host controller to identify the last data. As with split-transaction interrupt, it is the 
host controller's responsibility to detect when it has missed an opportunity to execute a complete-split. The 
following field in the siTD is used to track and detect errors in the execution of a split transaction for an 
IN isochronous endpoint. 

• C-prog-mask. This is an eight-bit bit-vector where the host controller keeps track of which 
complete-splits have been executed. Due to the nature of the transaction translator periodic 
pipeline, the complete-splits need to be executed in-order. The host controller needs to detect when 
the complete-splits have not been executed in order. This can only occur due to system hold-offs 
where the host controller cannot get to the memory-based schedule. C-prog-mask is a simple 
bit-vector that the host controller sets a bit for each complete-split executed. The bit position is 
determined by the micro-frame (FRINDEX[2:0]) number in which the complete-split was 
executed. The host controller always checks C-prog-mask before executing a complete-split 
transaction. If the previous complete-splits have not been executed, it means one (or more) have 
been skipped and data has potentially been lost. System software is required to initialize this field 
to zero before setting an siTD's active bit to a one. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-144 Freescale Semiconductor

If a transaction translator returns with the final data before all of the complete-splits have been executed, 
the state of the transfer is advanced so the remaining complete-splits are not executed. An IN siTD is 
retired based solely on the responses from the transaction translator to the complete-split transactions. This 
means, for example, it is possible for a transaction translator to respond to a complete-split with an 
MDATA PID. The number of bytes in the MDATA's data payload could cause the siTD [total bytes to 
transfer] field to decrement to zero. This response can occur, before all of the scheduled complete-splits 
have been executed. In another interface such as data structures (for example, high-speed data streams 
through queue heads), the transition of total bytes to transfer to zero signals the end of the transfer and 
results in clearing the active bit. However, in this case, the result has not been delivered by the transaction 
translator and the host must continue with the next complete-split transaction to extract the residual 
transaction state. This scenario occurs because of the pipeline rules for a transaction translator. In 
summary, the periodic pipeline rules require that on a micro-frame boundary, the transaction translator 
holds the final two bytes received (if it has not seen an end of packet [EOP]) in the full-speed bus pipe 
stage and gives the remaining bytes to the high-speed pipeline stage. At the micro-frame boundary, the 
transaction translator could have received the entire packet (including both CRC bytes), but not received 
the packet EOP. In the next micro-frame, the transaction translator responds with an MDATA and sends 
all of the data bytes (with the two CRC bytes held in the full-speed pipeline stage). This could cause the 
siTD to decrement it's total bytes to transfer field to zero, indicating it has received all expected data. The 
host must continue to execute one more (scheduled) complete-split transactions to extract the results of the 
full-speed transaction from the transaction translator (for example, the transaction translator may have 
detected a CRC failure, and this result must be forwarded to the host). 

If the host experiences hold-offs that cause the host controller to skip one or more (but not all) scheduled 
split transactions for an isochronous OUT, the protocol to the transaction translator is not consistent and 
the transaction translator detects and reacts to the problem. Likewise, for host hold-offs that cause the host 
controller to skip one or more (but not all) scheduled split transactions for an isochronous IN, the 
C-prog-mask is used by the host controller to detect errors. However, if the host experiences a hold-off that 
causes it to skip all of an siTD, or an siTD expires during a host hold off (for example, a hold-off occurs 
and the siTD is no longer reachable by the host controller for it to report the hold-off event), system 
software must detect the siTDs have not been processed by the host controller (for example, state not 
advanced) and report the appropriate error to the client driver. 

39.6.11.3.3 Split Transaction Execution State Machine for Isochronous 

In this section, all references to micro-frame are in the context of a micro-frame within an H-Frame.

If the active bit in the status byte is a zero, the host controller ignores the siTD and continues traversing 
the periodic schedule. Otherwise, the host controller processes the siTD as specified below. A split 
transaction state machine manages the split-transaction protocol sequence. The host controller uses the 
fields defined in Section 39.6.11.3.2, “Tracking Split Transaction Progress for Isochronous Transfers,” 
plus the variable cMicroFrameBit defined in Section 39.6.11.2.4, “Split Transaction Execution State 
Machine for Interrupt,” to track the progress of an isochronous split transaction. Figure 39-72 illustrates 
the state machine for managing an siTD through an isochronous split transaction. Bold, dotted circles 
denote the state of the Active bit in the Status field of a siTD. The Bold, dotted arcs denote the transitions 
between these states. Solid circles denote the states of the split transaction state machine and the solid arcs 
denote the transitions between these states. Dotted arcs and boxes reference actions that take place either 
as a result of a transition or from being in a state. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-145

Figure 39-72. Split Transaction State Machine for Isochronous

Periodic Isochronous—Do-Start-Split 

Isochronous split transaction OUTs use only this state. An siTD for a split-transaction isochronous IN is 
initialized to this state, the siTD transitions to this state from Do Complete Split when a case 2a (IN), or 
2b scheduling boundary isochronous split-transaction completes.

Each time the host controller reaches an active siTD in this state, it checks the siTD [S-mask] against 
cMicroFrameBit. If there is a one in the appropriate position, the siTD executes a start-split transaction. 
By definition, the host controller cannot reach an siTD at the wrong time. If the I/O field indicates an IN, 
the start-split transaction includes only the extended token plus the full-speed token. Software must 
initialize the siTD [Total Bytes To Transfer] field to the number of bytes expected. This is usually the 
maximum packet size for the full-speed endpoint. The host controller exits this state when the start-split 
transaction is complete.

The remainder of this section is specific to an isochronous OUT endpoint (the I/O field indicates an OUT). 
When the host controller executes a start-split transaction for an isochronous OUT it includes a data 
payload in the start-split transaction. The memory buffer address for the data payload is constructed by 
concatenating siTD [Current Offset] with the page pointer indicated by the page select field (siTD [P]). A 
zero in this field selects Page 0 and a one selects Page 1. During the start-split for an OUT, if the data 
transfer crosses a page boundary during the transaction, the host controller must detect the page cross, 
update the siTD [P] bit from a zero to a one, and begin using the siTD Page 1 with siTD [Current Offset] 
as the memory address pointer. The field siTD [TP] is used to annotate each start-split transaction with the 
indication of which part of the split-transaction data the current payload represents (ALL, BEGIN, MID, 

Do
Complete-

Split

Do
Start-
Split

Active
Case 2(a,b)

siTD x–1
Complete

NYET
.and.

Not LastMDATA

Not
Active

Active = 0

OUT Split
Transaction
Complete

IN Split
Transaction
Complete

Advance Data

Active = 0

Issue Start-Split
Transaction

siTD.S-Mask & cMicroFrameBit
.and.

Direction .eq. OUT

siTD.S-Mask & cMicroFrameBit
.and.

Direction .eq. IN

Issue Complete-Split
Transaction

CheckPreviousBit(C-prog-mask,
C-Mask, cMicroFrameBit)

Buffer State

Active = 1

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-146 Freescale Semiconductor

END). In all cases, the host controller simply uses the value in siTD [TP] to mark the start-split with the 
correct transaction position code.

T-Count is always initialized to the number of start-splits for the current frame. TP is always initialized to 
the first required transaction position identifier. The scheduling boundary case (see Figure 39-71) 
determines the initial value of TP. The initial cases are summarized in Table 39-79.

After each start-split transaction is complete, the host controller updates T-Count and TP appropriately so 
that the next start-split is correctly annotated. Table 39-80 illustrates all of the TP and T-count transitions, 
which must be accomplished by the host controller.

The start-split transactions do not receive a handshake from the transaction translator, so the host controller 
always advances the transfer state in the siTD after the bus transaction is complete. To advance the transfer 
state, the following operations take place:

• The siTD [Total Bytes To Transfer] and the siTD [Current Offset] fields are adjusted to reflect the 
number of bytes transferred. 

• The siTD [P] (page select) bit is updated appropriately. 
• The siTD [TP] and siTD [T-count] fields are updated appropriately as defined in Table 39-80. 

These fields are then written back to the memory based siTD. The S-mask is fixed for the life of the current 
budget. As mentioned above, TP and T-count are set specifically in each siTD to reflect the data sent from 
this siTD. Therefore, regardless of the value of S-mask, the actual number of start-split transactions 
depends on T-count (or equivalently, total bytes to transfer). The host controller must clear the active bit 

Table 39-79. Initial Conditions for OUT siTD's TP and T-count Fields 

Case T-count TP Description

1, 2a =1 ALL When the OUT data payload is less than (or equal to) 188 bytes, only one 
start-split is required to move the data. The one start-split must be marked 
with an ALL.

1, 2a !=1 BEGIN When the OUT data payload is greater than 188 bytes more than one 
start-split must be used to move the data. The initial start-split must be 
marked with a BEGIN. 

Table 39-80. Transaction Position (TP)/Transaction Count (T-Count) Transition Table 

TP
T-count 

next
TP next Description

ALL 0 N/A Transition from ALL, to done.

BEGIN 1 END Transition from BEGIN to END. Occurs when T-count starts at 2.

BEGIN !=1 MID Transition from BEGIN to MID. Occurs when T-count starts at greater 
than 2.

MID !=1 MID TP stays at MID while T-count is not equal to 1 (for example, greater 
than 1). This case can occur for any of the scheduling boundary 
cases where the T-count starts greater than 3. 

MID 1 END Transition from MID to END. This case can occur for any of the 
scheduling boundary cases where the T-count starts greater than 2. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-147

when it detects all of the schedule data has been sent to the bus. The preferred method is to detect when 
T-Count decrements to zero as a result of a start-split bus transaction. Equivalently, the host controller can 
detect when total bytes to transfer decrements to zero. Either implementation must ensure that if the initial 
condition is total bytes to transfer equals zero and T-count equals one, the host controller issues a single 
start-split, with a zero-length data payload. Software must ensure that TP, T-count and total bytes to 
transfer are set to deliver the appropriate number of bus transactions from each siTD. An inconsistent 
combination yields undefined behavior. 

If the host experiences hold-offs that cause the host controller to skip start-split transactions for an OUT 
transfer, the state of the transfer does not progress appropriately. The transaction translator observes 
protocol violations in the arrival of the start-splits for the OUT endpoint (the transaction position 
annotation is incorrect as received by the transaction translator).

Example scenarios are described in Section 39.6.11.3.4, “Split Transaction for Isochronous - Processing 
Examples.” 

The host controller can optionally track the progress of an OUT split transaction by setting appropriate bits 
in the siTD [C-prog-mask] as it executes each scheduled start-split. The checkPreviousBit algorithm 
defined in Section , “Periodic Isochronous - Do Complete Split,” can be used prior to executing each 
start-split to determine if start-splits were skipped. The host controller can use this mechanism to detect 
missed micro-frames. It can then clear the siTD's active bit and stop execution of this siTD. This saves on 
both memory and high-speed bus bandwidth. 

Periodic Isochronous - Do Complete Split 

This state is only used by a split-transaction isochronous IN endpoint. This state is entered unconditionally 
from the Do Start State after a start-split transaction is executed for an IN endpoint. Each time the host 
controller visits an siTD in this state, it conducts a number of tests to determine whether it should execute 
a complete-split transaction. The individual tests are listed below. The sequence they are applied to 
depends on which micro-frame the host controller is currently executing, which means the tests might not 
be applied until after the siTD referenced from the back pointer has been fetched. 

• Test A. cMicroFrameBit is bit-wise ANDed with the siTD [C-mask] field. A non-zero result 
indicates that software scheduled a complete-split for this endpoint, during this micro-frame. This 
test is always applied to a newly fetched siTD in this state. 

• Test B. The siTD [C-prog-mask] bit vector is checked to determine whether the previous complete 
splits have been executed. An example algorithm is given below (this is slightly different than the 
algorithm used in Section , “Periodic Interrupt—Do-Complete-Split”). The sequence in which this 
test is applied depends on the current value of FRINDEX[2:0]. If FRINDEX[2:0] is 0 or 1, it is not 
applied until the back pointer has been used. Otherwise, it is applied immediately. 

Algorithm Boolean CheckPreviousBit(siTD.C-prog-mask, siTD.C-mask, cMicroFrameBit)
Begin

Boolean rvalue = TRUE;
previousBit = cMicroFrameBit rotate-right(1)
-- Bit-wise anding previousBit with C-mask indicates whether there
-- was an intent to send a complete split in the previous micro-
-- frame. So, if the 'previous bit' is set in C-mask, check 
-- C-prog-mask to make sure it happened.
if previousBit bitAND siTD.C-mask then

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-148 Freescale Semiconductor

if not (previousBit bitAND siTD.C-prog-mask) then
rvalue = FALSE

End if
End if
Return rvalue

End Algorithm

If Test A is true and FRINDEX[2:0] is zero or one, this is a case 2a or 2b scheduling boundary (see 
Figure 39-70). See Section , “Complete-Split for Scheduling Boundary Cases 2a, 2b,” for details in 
managing this condition. 

If Test A and Test B evaluate to true, the host controller executes a complete-split transaction using the 
transfer state of the current siTD. When the host controller commits to executing the complete-split 
transaction, it updates QH[C-prog-mask] by bit-ORing with cMicroFrameBit. The transfer state is 
advanced based on the completion status of the complete-split transaction. To advance the transfer state of 
an IN siTD, the host controller must: 

• Decrement the number of bytes received from siTD [Total Bytes To Transfer] 
• Adjust siTD [Current Offset] by the number of bytes received
• Adjust the siTD [P] (page select) field if the transfer caused the host controller to use the next page 

pointer 
• Set any appropriate bits in the siTD [Status] field, depending on the results of the transaction. 

If the host controller encounters a condition where siTD [total bytes to transfer] is zero and it receives more 
data, the host controller must not write the additional data to memory. The siTD [Status-Active] bit must 
be cleared and the siTD [Status-Babble Detected] bit must be set. The fields siTD [Total Bytes To 
Transfer], siTD [Current Offset], and siTD [P] are not required to be updated as a result of this transaction 
attempt. 

The host controller accepts (assuming good data packet CRC and sufficient room in the buffer as indicated 
by the value of siTD [Total Bytes To Transfer]) MDATA and DATA0/1 data payloads up to and including 
192 bytes. The host controller may optionally clear siTD [Status-Active] and set siTD [Status-Babble 
Detected] when it receives MDATA or DATA0/1 with a data payload of more than 192 bytes. The 
following responses have the noted effects: 

• ERR. The full-speed transaction completed with a time-out or bad CRC and this is a reflection of 
that error to the host. The host controller sets the ERR bit in the siTD [Status] field and clears the 
active bit. 

• Transaction Error (XactErr). The complete-split transaction encounters a timeout, CRC16 failure, 
etc. The siTD [Status] field XactErr field is set and the complete-split transaction must be retried 
immediately. The host controller must use an internal error counter to count the number of retries 
as a counter field is not provided in the siTD data structure. The host controller does not retry more 
than two times. If the host controller exhausts the retries or the end of the micro-frame occurs, the 
active bit is cleared. 

• DATAx (0 or 1). This response signals the final data for the split transaction has arrived. The 
transfer state of the siTD is advanced and the active bit is cleared. If the bytes to transfer field has 
not decremented to zero (including the reception of the data payload in the DATAx response), less 
data than was expected, or allowed for was actually received. This short packet event does not set 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-149

the USBINT status bit in the USBSTS register to a one. The host controller does not detect this 
condition. 

• NYET (and Last). On each NYET response, the host controller also checks to determine whether 
this is the last complete-split for this split transaction. Last was defined in section periodic interrupt 
- Do Complete Split. If it is the last complete-split (with a NYET response), the transfer state of 
the siTD is not advanced (never received any data) and the Active bit is cleared. No bits are set in 
the status field because this is essentially a skipped transaction. The transaction translator must 
have responded to all the scheduled complete-splits with NYETs, meaning the start-split issued by 
the host controller was not received. This result should be interpreted by system software as if the 
transaction was completely skipped. The test for whether this is the last complete split can be 
performed by XORing C-mask with C-prog-mask. A zero result indicates that all complete-splits 
have been executed.

• MDATA (and Last). See above description for testing for Last. This can only occur when there is 
an error condition. There has been a babble condition on the full-speed link, which delayed the 
completion of the full-speed transaction or software set up the S-mask and/or C-masks incorrectly. 
The host controller must set the XactErr bit and clear the active bit.

• NYET (and not Last). See above description for testing for Last. The complete-split transaction 
received a NYET response from the transaction translator. Do not update any transfer state (except 
for C-prog-mask) and stay in this state. 

• MDATA (and not Last). The transaction translator responds with an MDATA when it has partial 
data for the split transaction. For example, the full-speed transaction data payload spans from 
micro-frame X to X+1 and during micro-frame X, the transaction translator responds with an 
MDATA and the data accumulated up to the end of micro-frame X. The host controller advances 
the transfer state to reflect the number of bytes received. 

If Test A succeeds, but Test B fails, it means one or more of the complete-splits have been skipped. The 
host controller sets the missed micro-frame status bit and clears the active bit. 

Complete-Split for Scheduling Boundary Cases 2a, 2b 

Boundary cases 2a and 2b (INs only) (see Figure 39-70) require the host controller use the transaction state 
context of the previous siTD to finish the split transaction. Table 39-81 enumerates the transaction state 
fields.

NOTE
TP and T-count are only for host to device (OUT) endpoints. 

Table 39-81. Summary siTD Split Transaction State 

Buffer State Status Execution Progress

Total Bytes To Transfer 
P (page select) 
Current Offset 
TP (transaction position)
T-count (transaction count) 

All bits in the status field C-prog-mask 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-150 Freescale Semiconductor

If software has budgeted the schedule of this data stream with a frame wrap case, it must initialize the siTD 
[Back Pointer] field to reference a valid siTD and have the T bit in the siTD [Back Pointer] field cleared. 
Otherwise, software must set the T bit in siTD [Back Pointer]. The host controller's rules for interpreting 
when to use the siTD [Back Pointer] field are listed below. These rules apply only when the siTD's active 
bit is a one and the SplitXState is Do Complete Split.

• When cMicroFrameBit is a 0x1 and the siTDX[Back Pointer] T-bit is zero, or
• If cMicroFrameBit is a 0x2 and siTDX[S-mask[0]] is zero

When either of these conditions apply, the host controller must use the transaction state from siTDX-1. 

To access siTDX-1, the host controller reads on-chip the siTD referenced from siTDX [Back Pointer]. 

The host controller must save the entire state from siTDX while processing siTDX-1. This is to 
accommodate for case 2b processing. The host controller must not recursively walk the list of siTD [Back 
Pointers]. 

If siTDX-1 is active (Active bit is set and SplitXStat is Do Complete Split), Test A and Test B are applied 
as described above. If these criteria to execute a complete-split are met, the host controller executes the 
complete split and evaluates the results as described above. The transaction state (see Table 39-81) of 
siTDX-1 is appropriately advanced based on the results and written back to memory. If the resultant state 
of siTDX-1's active bit is a one, the host controller returns to the context of siTDX and follows its next 
pointer to the next schedule item. No updates to siTDX are necessary. 

If siTDX-1 is active (Active bit is set and SplitXStat is Do Start Split), the host controller must clear the 
active bit and set the missed micro-frame status bit and the resultant status is written back to memory. 

If siTDX-1's Active bit is cleared, (because it was cleared when the host controller first visited siTDX-1 via 
siTDX's back pointer, it transitioned to zero as a result of a detected error, or the results of siTDX-1's 
complete-split transaction cleared it), the host controller returns to the context of siTDX and transitions its 
SplitXState to Do Start Split. The host controller then determines whether the case 2b start split boundary 
condition exists (that is, if cMicroframeBit is 1 and siTDX[S-mask[0]] is 1). If this criterion is met, the host 
controller immediately executes a start-split transaction and appropriately advances the transaction state 
of siTDX, then follows siTDX[Next Pointer] to the next schedule item. If the criterion is not met, the host 
controller simply follows siTDX[Next Pointer] to the next schedule item. In the case of a 2b boundary case, 
the split-transaction of siTDX-1 has its active bit cleared when the host controller returns to the context of 
siTDX. Software should not initialize an siTD with C-mask bits 0 and 1 set and an S-mask with bit 0 set. 
This scheduling combination is not supported and the behavior of the host controller is undefined. 

39.6.11.3.4 Split Transaction for Isochronous - Processing Examples 

There is an important difference between how the hardware/software manages the isochronous split 
transaction state machine and how it manages the asynchronous and interrupt split transaction state 
machines. The asynchronous and interrupt split transaction state machines are encapsulated within a single 
queue head. The progress of the data stream depends on the progress of each split transaction. In some 
respects, the split-transaction state machine is sequenced using the execute transaction queue head 
traversal state machine.

Isochronous is a pure time-oriented transaction/data stream. The interface data structures are optimized to 
efficiently describe transactions that need to occur at specific times. The isochronous split-transaction state 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-151

machine must be managed across these time-oriented data structures. This means that system software 
must correctly describe the scheduling of split-transactions across more than one data structure.

The host controller must make the appropriate state transitions at the appropriate times, in the correct data 
structures.

For example, Table 39-82 illustrates a few frames worth of scheduling required to schedule a case 2a 
full-speed isochronous data stream.

This example shows the first three siTDs for the transaction stream. Because this is the case-2a frame-wrap 
case, S-masks of all siTDs for this endpoint have a value of 0x10 (a one bit in micro-frame 4) and C-mask 
value of 0xC3 (one-bits in micro-frames 0,1, 6 and 7). Additionally, software ensures that the back pointer 
field of each siTD references the appropriate siTD data structure (and the Back Pointer T-bits are cleared).

The initial SplitXState of the first siTD is Do Start Split. The host controller visits the first siTD eight times 
during frame X. The C-mask bits in micro-frames 0 and 1 are ignored because the state is Do Start Split. 
During micro-frame 4, the host controller determines it can run a start-split (and does) and changes 
SplitXState to Do Complete Split. During micro-frames 6 and 7, the host controller executes 
complete-splits. The siTD for frame X+1 has it's SplitXState initialized to Do Complete Split. As the host 
controller continues to traverse the schedule during H-Frame X+1, it visits the second siTD eight times. 
During micro-frames 0 and 1, it detects that it must execute complete-splits. 

During H-Frame X+1, micro-frame 0, the host controller detects that siTDX+1's back pointer [T] bit is a 
zero, saves the state of siTDX+1, and fetches siTDX. It executes the complete split transaction using the 
transaction state of siTDX. If the siTDX split transaction is complete, siTD's active bit is cleared and results 
written back to siTDX. The host controller retains the fact that siTDX is retired and transitions the 
SplitXState in siTDX+1 to Do Start Split. At this point, the host controller is prepared to execute the 
start-split for siTDX+1 when it reaches micro-frame 4. If the split-transaction completes early 
(transaction-complete is defined in Section , “Periodic Isochronous - Do Complete Split”), before all the 
scheduled complete-splits have been executed, the host controller changes siTDX[SplitXState] to Do Start 
Split early and naturally skips the remaining scheduled complete-split transactions. For this example, 
siTDX+1 does not receive a DATA0 response until H-Frame X+2, micro-frame 1. 

Table 39-82. Example Case 2a - Software Scheduling siTDs for an IN Endpoint

siTDX Micro-Frames InitialSplitXState

# Masks 0 1 2 3 4 5 6 7

X S-Mask 1 Do Start Split 

C-Mask 1 1 1 1

X+1 S-Mask 1 Do Complete Split

C-Mask 1 1 1 1

 X+2 S-Mask 1 Do Complete Split 

C-Mask 1 1 1 1

X+3 S-Mask Repeats previous pattern Do Complete Split 

C-Mask 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-152 Freescale Semiconductor

During H-Frame X+2, micro-frame 0, the host controller detects that siTDX+2's back pointer [T] bit is zero, 
saves the state of siTDX+2 and fetches siTDX+1. As described above, it executes another split transaction, 
receives an MDATA response, updates the transfer state, but does not modify the active bit. The host 
controller returns to the context of siTDX+2, and traverses it's next pointer without any state change updates 
to siTDX+2. 

During H-Frame X+2, micro-frame 1, the host controller detects siTDX+2's S-mask[0] bit is zero, saves 
the state of siTDX+2 and fetches siTDX+1. It executes another complete-split transaction, receives a 
DATA0 response, updates the transfer state and clears the Active bit. It returns to the state of siTDX+2 and 
changes its SplitXState to Do Start Split. At this point, the host controller is prepared to execute start-splits 
for siTDX+2 when it reaches micro-frame 4.

39.6.12 Host Controller Pause

When the host controller's HCHalted bit in the USBSTS register is a zero, the host controller is sending 
SOF (Start OF Frame) packets down all enabled ports. When the schedules are enabled, the EHCI host 
controller accesses the schedules in main memory each micro-frame. This constant pinging of main 
memory is known to create CPU power management problems for mobile systems. Specifically, mobile 
systems aggressively manage the state of the CPU, based on recent history usage. In the more aggressive 
power saving modes, the CPU can disable its caches. Current PC architectures assume that bus-master 
accesses to main memory must be cache-coherent. So, when bus masters are busy touching memory, the 
CPU power management software can detect this activity over time and inhibit the transition of the CPU 
into its lowest power savings mode. USB controllers are bus-masters and the frequency at which they 
access their memory-based schedules keeps the CPU power management software from placing the CPU 
into its lowest power savings state.

USB Host controllers don't access main memory when they are suspended. However, there are a variety 
of reasons why placing the USB controllers into suspend won't work, but they are beyond the scope of this 
document. The base requirement is that the USB controller needs to be kept out of main memory, while at 
the same time, the USB bus is kept from going into suspend.

EHCI controllers provide a large-grained mechanism that can be manipulated by system software to 
change the memory access pattern of the host controller. System software can manipulate the schedule 
enable bits in the USBCMD register to turn on/off the scheduling traversal. A software heuristic can be 
applied to implement an on/off duty cycle that allows the USB to make reasonable progress and allow the 
CPU power management to get the CPU into its lowest power state. This method is not intended to be 
applied at all times to throttle USB, but should only be applied in specific configurations and usage loads. 
For example, when only a keyboard or mouse is attached to the USB, the heuristic could detect times when 
the USB is attempting to move data only infrequently and can adjust the duty cycle to allow the CPU to 
reach it's low power state for longer periods of time. Similarly, it could detect increases in the USB load 
and adjust the duty cycle appropriately, even to the point where the schedules are never disabled. The 
assumption here is that the USB is moving data and the CPU is required to process the data streams.

To provide a complete solution for the system, the companion host controllers should also provide a similar 
method to allow system software to inhibit the companion host controller from accessing it's shared 
memory based data structures (schedule lists or otherwise).

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-153

39.6.13 Port Test Modes

EHCI host controllers implement the port test modes Test J_State, Test K_State, Test_Packet, Test 
Force_Enable, and Test SE0_NAK as described in the USB Specification Revision 2.0. The required, port 
test sequence is (assuming the CF-bit in the CONFIGFLAG register is set): 

• Disable the periodic and asynchronous schedules by clearing the asynchronous schedule enable 
and periodic schedule enable bits in the USBCMD register. 

• Place all enabled root ports into the suspended state by setting the suspend bit in each appropriate 
PORTSC register. 

• Clear the run/stop bit in the USBCMD register and wait for the HCHalted bit in the USBSTS 
register, to transition to a one. An EHCI host controller implementation may optionally allow port 
testing with the run/stop bit set. However, all host controllers must support port testing with 
run/stop cleared and HCHalted set. 

• Set the port test control field in the port under test PORTSC register to the value corresponding to 
the desired test mode. If the selected test is Test_Force_Enable, the run/stop bit in the USBCMD 
register must be transitioned back to one to enable transmission of SOFs out of the port under test. 

• When the test is complete, system software must ensure the host controller is halted (HCHalted bit 
is a one), it terminates and exits test mode by setting HCReset. 

39.6.14 Interrupts

The EHCI host controller hardware provides interrupt capability based on a number of sources. There are 
several general groups of interrupt sources: 

• Interrupts as a result of executing transactions from the schedule (success and error conditions), 
• Host controller events (Port change events, etc.), and 
• Host controller error events 

All transaction-based sources are maskable through the host controller's interrupt enable register 
(USBINTR). Additionally, individual transfer descriptors can be marked to generate an interrupt on 
completion. This section describes each interrupt source and the processing that occurs in response to the 
interrupt.

During normal operation, interrupts may be immediate or deferred until the next interrupt threshold occurs. 
The interrupt threshold is a tunable parameter via the interrupt threshold control field in the USBCMD 
register. The value of this register controls when the host controller generates an interrupt on behalf of 
normal transaction execution. When a transaction completes during an interrupt interval period, the 
interrupt signaling the completion of the transfer does not occur until the interrupt threshold occurs. For 
example, the default value is eight micro-frames. This means that the host controller does not generate 
interrupts any more frequently than once every eight micro-frames.

Section 39.6.14.2.4, “Host System Error” details effects of a host system error.

If an interrupt is scheduled to be generated for the current interrupt threshold interval, the interrupt is not 
signaled until after the status for the last complete transaction in the interval has been written back to 
system memory. This may result in the interrupt not being signaled until the next interrupt threshold.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-154 Freescale Semiconductor

Initial interrupt processing is the same, regardless of the reason for the interrupt. When an interrupt is 
signaled by the hardware, CPU control is transferred to host controller's USB interrupt handler. The precise 
mechanism to accomplish the transfer is OS specific. For this discussion, it is assumed control is received. 
When the interrupt handler receives control, its first action is to read the USBSTS. It then acknowledges 
the interrupt by clearing all of the interrupt status bits by writing ones to these bit positions. The handler 
then determines whether the interrupt is due to schedule processing or some other event. After 
acknowledging the interrupt, the handler (via an OS-specific mechanism) schedules a deferred procedure 
call (DPC) that executes later. The DPC routine processes the results of the schedule execution. The 
precise mechanisms used are beyond the scope of this document. 

NOTE
The only method software should use for acknowledging an interrupt is by 
transitioning the appropriate status bits in the USBSTS register from a one 
to a zero. 

39.6.14.1 Transfer/Transaction Based Interrupts 

These interrupt sources are associated with transfer and transaction progress. They are all dependent on 
the next interrupt threshold. 

39.6.14.1.1 Transaction Error 

A transaction error is any error that caused the host controller to think the transfer did not complete 
successfully. Table 39-83 lists the events/responses the host can observe as a result of a transaction. The 
effects of the error counter and interrupt status are summarized in the following paragraphs. Most of these 
errors set the XactErr status bit in the appropriate interface data structure.

There is a small set of protocol errors that relate only when executing a queue head and fit under the 
umbrella of a WRONG PID error that are significant to explicitly identify. When these errors occur, the 
XactErr status bit in the queue head is set and the Cerr field is decremented. When the PID Code indicates 
a SETUP, the following responses are protocol errors and result in XactErr bit being set and the Cerr field 
being decremented. 

Table 39-83. Summary of Transaction Errors

Event/ 
Result

Queue Head/qTD/iTD/siTD Side Effects
USBSTS[USBERRINT]

Cerr Status Field

CRC -1 XactErr set 11

1 If occurs in a queue head, USBERRINT is asserted only when Cerr counts down from a one to a zero. 
In addition, the queue is halted.

Timeout -1 XactErr set 11

Bad PID2

2 The host controller received a response from the device, but it could not recognize the PID as a valid PID. 

-1 XactErr set 11

Babble N/A See Section , “Serial Bus Babble” 1

Buffer Error N/A See Section , “Data Buffer Error”

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-155

• EPS field indicates a high-speed device and it returns a Nak handshake to a SETUP.
• EPS field indicates a high-speed device and it returns a Nyet handshake to a SETUP. 
• EPS field indicates a low- or full-speed device and the complete-split receives a Nak handshake.

Serial Bus Babble

When a device transmits more data on the USB than the host controller is expecting for this transaction, it 
is defined to be babbling. In general, this is called a packet babble. When a device sends more data than 
the maximum length number of bytes, the host controller sets the babble detected bit to a one and halts the 
endpoint if it is using a queue head. Maximum length is defined as the minimum of total bytes to transfer 
and maximum packet size. The Cerr field is not decremented for a packet babble condition (only applies 
to queue heads). A babble condition also exists if IN transaction is in progress at high-speed EOF2 point. 
This is called a frame babble. A frame babble condition is recorded into the appropriate schedule data 
structure. In addition, the host controller must disable the port to which the frame babble is detected. 

The USBERRINT bit in the USBSTS register is set. If the USB error interrupt enable bit in the USBINTR 
register is set, a hardware interrupt is signaled to the system at the next interrupt threshold. The host 
controller must never start an OUT transaction that babbles across a micro-frame EOF.

When a host controller detects a data PID mismatch, it must disable the packet babble checking for the 
duration of the bus transaction or do packet babble checking based solely on maximum packet size. The 
USB core specification defines the requirements on a data receiver when it receives a data PID mismatch 
(for example, expects a DATA0 and gets a DATA1 or visa-versa). In summary, it must ignore the received 
data and respond with an ACK handshake to advance the transmitter's data sequence.The EHCI interface 
allows system software to provide buffers for a control, bulk, or interrupt IN endpoint that are not an even 
multiple of the maximum packet size specified by the device. When a device misses an ACK for an IN 
endpoint, the host and device are out of synchronization with respect to the progress of the data transfer. 
The host controller may have advanced the transfer to a buffer that is less than maximum packet size. The 
device re-sends its maximum packet size data packet, with the original data PID, in response to the next 
IN token. To properly manage the bus protocol, the host controller must disable the packet babble check 
when it observes the data PID mismatch. 

Data Buffer Error 

This event indicates an overrun of incoming data or a underrun of outgoing data has occurred for this 
transaction. This would generally be caused by the host controller not being able to access required data 
buffers in memory within necessary latency requirements. These conditions are not considered transaction 
errors and do not effect the error count in the queue head. When these errors do occur, the host controller 
records the fact the error occurred by setting the data buffer error bit in the queue head, iTD or siTD.

If the data buffer error occurs on a non-isochronous IN, the host controller does not issue a handshake to 
the endpoint. This forces the endpoint to resend the same data (and data toggle) in response to the next IN 
to the endpoint.

If the data buffer error occurs on an OUT, the host controller must corrupt the end of the packet so that it 
cannot be interpreted by the device as a good data packet. Simply truncating the packet is not considered 
acceptable. An acceptable implementation option is to one's complement the CRC bytes and send them. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-156 Freescale Semiconductor

There are other options suggested in the Transaction Translator section of the USB Specification Revision 
2.0. 

39.6.14.1.2 USB Interrupt (Interrupt on Completion (IOC)) 

Transfer descriptors (iTDs, siTDs, and queue heads (qTDs)) contain a bit that can cause an interrupt on 
their completion. The completion of the transfer associated with that schedule item causes the USB 
Interrupt (USBINT) bit in the USBSTS register to be set. In addition, if a short packet is encountered on 
an IN transaction associated with a queue head, this event also causes USBINT to be set. If the USB 
interrupt enable bit in the USBINTR register is set, a hardware interrupt is signaled to the system at the 
next interrupt threshold. If the completion is because of errors, the USBERRINT bit in the USBSTS 
register is also set.

39.6.14.1.3 Short Packet

Reception of a data packet less than the endpoint's max packet size during control, bulk, or interrupt 
transfers signals the completion of the transfer. When a short packet completion occurs during a queue 
head execution, the USBINT bit in the USBSTS register is set. If the USB interrupt enable bit is set in the 
USBINTR register, a hardware interrupt is signaled to the system at the next interrupt threshold. 

39.6.14.2 Host Controller Event Interrupts

These interrupt sources are independent of the interrupt threshold, with the one exception being the 
interrupt on async advance.

39.6.14.2.1 Port Change Events

Port registers contain status and status change bits. When the status change bits are set, the host controller 
sets the port change detect bit in the USBSTS register. If the port change interrupt enable bit in the 
USBINTR register is set, the host controller issues a hardware interrupt. The port status change bits are: 

• Connect Status Change 
• Port Enable/Disable Change 
• Over-current Change 
• Force Port Resume 

39.6.14.2.2 Frame List Rollover 

This event indicates the host controller has wrapped the frame list. The current programmed size of the 
frame list effects how often this interrupt occurs. (If the frame list size is 1024, the interrupt occurs every 
1024 milliseconds. If it is 512, it occurs every 512 milliseconds, etc.) When a frame list rollover is 
detected, the host controller sets the frame list rollover bit in the USBSTS register. If the frame list rollover 
enable bit in the USBINTR register is set, the host controller issues a hardware interrupt. This interrupt is 
not delayed to the next interrupt threshold. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-157

39.6.14.2.3 Interrupt on Async Advance 

This event is used for deterministic removal of queue heads from the asynchronous schedule. When the 
host controller advances the on-chip context of the asynchronous schedule, it evaluates the value of the 
interrupt on async advance doorbell bit in the USBCMD register. If it is set, it sets the interrupt on async 
advance bit in the USBSTS register. If the interrupt on async advance enable bit in the USBINTR register 
is set, the host controller issues a hardware interrupt at the next interrupt threshold. A detailed explanation 
of this feature is described in Section 39.6.7.2, “Removing Queue Heads from Asynchronous Schedule.” 

39.6.14.2.4 Host System Error 

The host controller is a bus master and any interaction between the host controller and the system may 
experience errors. The type of host error may be catastrophic to the host controller making it impossible 
for the host controller to continue in a coherent fashion. Behavior for these types of errors is to halt the 
host controller. Host-based error must result in the following actions: 

• The run/stop bit in the USBCMD register is cleared. 
• The host system error and HCHalted bits in the USBSTS register are set. 
• If the host system error enable bit in the USBINTR register is set, the host controller issues a 

hardware interrupt. This interrupt is not delayed to the next interrupt threshold.

Table 39-84 summarizes the required actions taken on the various host errors. 

NOTE
After a host system error, software must reset the host controller using 
HCReset in the USBCMD register before re-initializing and restarting the 
host controller. 

Table 39-84. Summary Behavior on Host System Errors 

Cycle Type Master Abort Target Abort 
Data Phase 

Parity 

Frame list pointer fetch 
(read) 

Fatal Fatal Fatal 

siTD fetch (read) Fatal Fatal Fatal 

siTD status write-back 
(write) 

Fatal Fatal Fatal 

iTD fetch (read) Fatal Fatal Fatal 

iTD status write-back 
(write) 

Fatal Fatal Fatal 

qTD fetch (read) Fatal Fatal Fatal 

qHD status write-back 
(write) 

Fatal Fatal Fatal 

Data write Fatal Fatal Fatal 

Data read Fatal Fatal Fatal 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-158 Freescale Semiconductor

39.7 Device Data Structures
This section defines the interface data structures that communicate control, status, and data between device 
controller driver (DCD) software and the device controller. Data structure definitions in this chapter 
support a 32-bit memory buffer address space. The interface consists of device queue heads and transfer 
descriptors.

NOTE
Software must ensure no interface data structure reachable by the device 
controller spans a 4K-page boundary.

The data structures defined in this section are (from the device controller's perspective) a mix of read-only 
and read/writable fields. The device controller must preserve the read-only fields on all data structure 
writes.

The USB core includes DCD software called the USB 2.0 device API. The device API provides an easy 
to use application program interface for developing device (peripheral) applications. The device API 
incorporates and abstracts for the application developer all of the elements of the program interface. 

Figure 39-73. End Point Queue Head Organization

39.7.1 Endpoint Queue Head

The device Endpoint Queue Head (dQH) is where all transfers are managed. The dQH is a 48-byte data 
structure, but must be aligned on 64-byte boundaries. During priming of an endpoint, the dTD (device 
transfer descriptor) is copied into the overlay area of the dQH, which starts at the next TD pointer 32-bit 
word and continues through the end of the buffer pointers 32-bit words. After a transfer is complete, the 

 
Up to 
32 elements 

Endpoint QH 0 – In 

ENDPOINTLISTADDR 

Endpoint QH 1 – Out

Endpoint 
Transfer 
Descriptor

Endpoint Queue Heads

Transfer Buffer Pointer 
Transfer 
Buffer 

Transfer 
Buffer

Transfer 
Buffer 

Transfer 
Buffer

Transfer Buffer Pointer 

Transfer Buffer 
Pointer 

Transfer 
Buffer 
Pointer

Endpoint QH 0 – Out

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-159

dTD status 32-bit word is updated in the dTD pointed to by the current TD pointer. While a packet is in 
progress, the overlay area of the dQH is a staging area for the dTD so the device controller can access 
needed information with little minimal latency.

Figure 39-74. Endpoint Queue Head

39.7.1.1 Endpoint Capabilities/Characteristics

This 32-bit word specifies static information about the endpoint; in other words, this information does not 
change over the lifetime of the endpoint. Device controller software should not attempt to modify this 
information while the corresponding endpoint is enabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  

Mult zlt 0 Maximum Packet Length ios 0  

Current dTD Pointer  0  

Next dTD Pointer 0 T  

Total Bytes ioc 0 MultO 0 Status  

Buffer Pointer (Page 0) Current Offset  

Buffer Pointer (Page 1) Reserved  

Buffer Pointer (Page 2) Reserved  

Buffer Pointer (Page 3) Reserved  

Buffer Pointer (Page 4) Reserved  

Reserved  

Set-up Buffer Bytes 3…0  

Set-up Buffer Bytes 7…4  
 

 Device Controller Read/Write  Device Controller Read Only.  

 Transfer Overlay

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-160 Freescale Semiconductor

39.7.1.2 Transfer Overlay

The seven 32-bit words in the overlay area represent a transaction working space for the device controller. 
The general operational model is that the device controller can detect whether the overlay area contains a 
description of an active transfer. If it does not contain an active transfer, it does not read the associated 
endpoint.

After an endpoint is readied, the dTD is copied into this queue head overlay area by the device controller. 
Until a transfer is expired, software must not write the queue head overlay area or the associated transfer 
descriptor. When the transfer is complete, the device controller writes the results back to the original 
transfer descriptor and advances the queue.

See dTD for a description of the overlay fields.

39.7.1.3 Current dTD Pointer

The device controller uses the current dTD pointer to locate the transfer in progress. This word is for USB1 
/USB0 (hardware) use only, and DCD software should not modified it.

Table 39-85. Endpoint Capabilities/Characteristics 

Bit Description

31:30 Mult. This field indicates the number of packets executed per transaction description as given by the following:
00 Execute n transactions as demonstrated by the USB variable length packet protocol where n is computed using 

the maximum packet length (dQH) and the total bytes field (dTD)
01 Execute 1 Transaction
10 Execute 2 Transactions
11 Execute 3 Transactions
Note: Non-ISO endpoints must set Mult equal to 00.

Note: ISO endpoints must set Mult equal to 01, 10, or 11 as needed.

29 Zero Length Termination Select. This bit indicates when a zero length packet terminates transfers where total 
transfer length is a multiple. This bit is not relevant for isochronous transfers.
0 Enable zero length packet to terminate transfers equal to a multiple of the maximum packet length. (default).
1 Disable the zero length packet on transfers equal in length to a multiple maximum packet length.

28:27 Reserved. These bit reserved for future use and should be set to 0.

26:16 Maximum Packet Length. This directly corresponds to the maximum packet size of the associated endpoint 
(wMaxPacketSize). The maximum value this field may contain is 0x400 (1024).

15 Interrupt On Setup (IOS). This bit is used on control type endpoints to indicate if USBINT is set in response to a 
setup being received.

14:0 Reserved. Bits reserved for future use and should be set to 0.

Table 39-86. Current dTD Pointer 

Bit Description

31:5 Current dTD. This field is a pointer to the dTD that is represented in the transfer overlay area. This field is modified 
by the device controller to the next dTD pointer during endpoint priming or queue advance.

4:0 Reserved. Bit reserved for future use and should be set to zero.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-161

39.7.1.4 Set-up Buffer

The set-up buffer is dedicated storage for the 8-byte data that follows a set-up PID. 

NOTE
Each endpoint has a TX and an RX dQH associated with it, and only the RX 
queue head is for receiving setup data packets.

39.7.2 Endpoint Transfer Descriptor (dTD)

The dTD describes to the device controller the location and quantity of data sent/received for given 
transfer. The DCD should not attempt to modify any field in an active dTD except the next link pointer, 
which should only be modified as described in Section 39.8.7, “Managing Transfers with Transfer 
Descriptors.”

Figure 39-75. Endpoint Transfer Descriptor (dTD)

Table 39-87. Multiple Mode Control 

32-bit 
word

Bits Description

1 31:0 Setup Buffer 0. This buffer contains bytes 3 to 0 of an incoming setup buffer packet and the device 
controller writes it for software to read.

2 31:0 Setup Buffer 1. This buffer contains bytes 7 to 4 of an incoming setup buffer packet and the device 
controller writes it for software to read.

Table 39-88. Next dTD Pointer 

Bit Description

31:5 Next Transfer Element Pointer. This field contains the physical memory address of the next dTD to be processed. 
The field corresponds to memory address signals [31:5], respectively.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  

Next Link Pointer 0 T  

0 Total Bytes ioc 0 MultO 0 Status  

Buffer Pointer (Page 0) Current Offset  

Buffer Pointer (Page 1) 0 Frame Number  

Buffer Pointer (Page 2) Reserved  

Buffer Pointer (Page 3) Reserved  

Buffer Pointer (Page 4) Reserved  

 
 Device Controller Read/Write  Device Controller Read Only.  

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-162 Freescale Semiconductor

4:1 Reserved. Bits reserved for future use and should be set to 0.

0 Terminate (T). 1=pointer is invalid. 0=Pointer is valid (points to a valid Transfer Element Descriptor). This bit indicates 
to the device controller that no more valid entries exist in the queue.

Table 39-89. dTD Token 

Bit Description

31 Reserved. Bit reserved for future use and should be set to 0.

30:16 Total Bytes. This field specifies the total number of bytes to be moved with this transfer descriptor. This field is 
decremented by the number of bytes actually moved during the transaction and only on the successful completion 
of the transaction.

The maximum value software may store in the field is 5*4K(5000H). This is the maximum number of bytes 5 page 
pointers can access. Although it is possible to create a transfer up to 20K this assumes the first offset into the first 
page is 0. When the offset cannot be predetermined, crossing passed the fifth page can be guaranteed by limiting 
the total bytes to 16K. Therefore, the maximum recommended transfer is 16K(4000H).

If the value of the field is 0 when the host controller fetches this transfer descriptor (and the active bit is set), the 
device controller executes a zero-length transaction and retires the transfer descriptor.

It is not a requirement for IN transfers that total bytes to transfer be an even multiple of maximum packet length. If 
software builds such a transfer descriptor for an IN transfer, the last transaction is always less that maximum packet 
length.

15 Interrupt On Complete (IOC). This bit indicates if USBINT is to be set in response to device controller being finished 
with this dTD.

14:12 Reserved. Bits reserved for future use and should be set to 0.

11:10 Multiplier Override (MultO). This field can be used for transmit ISO's (i.e. ISO-IN) to override the multiplier in the QH. 
This field must be zero for all packet types that are not transmit-ISO.

Example:

if QH.multiplier = 3; Maximum packet size = 8; Total Bytes = 15; MultiO = 0 [default]

Three packets are sent: {Data2(8); Data1(7); Data0(0)}

if QH.multiplier = 3; Maximum packet size = 8; Total Bytes = 15; MultiO = 2

Two packets are sent: {Data1(8); Data0(7)}

For maximal efficiency, software should compute MultO = greatest integer of (Total Bytes/Max. Packet Size) except 
for the case when Total Bytes = 0; then MultO should be 1.

Note: Non-ISO and Non-TX endpoints must set MultO=00.

9:8 Reserved. Bits reserved for future use and should be set to zero.

7:0 Status. This field is used by the Device Controller to communicate individual command execution states back to the 
Device Controller software. This field contains the status of the last transaction performed on this qTD. The bit 
encodings are:
Bit Status Field Description
7 Active.
6 Halted.
5 Data Buffer Error.
3 Transaction Error.
4,2,0Reserved.

Table 39-88. Next dTD Pointer  (continued)

Bit Description

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-163

39.8 Device Operational Model
The device operation transfers a request in the memory image to and from the Universal Serial Bus. Using 
a set of linked list transfer descriptors, pointed to by a queue head, the device controller performs the data 
transfers. The following sections explain the use of the device controller from the device controller driver 
(DCD) point-of-view and further describe how specific USB bus events relate to status changes in the 
device controller programmer's interface.

39.8.1 Device Controller Initialization

After hardware reset, the USB1 /USB0 is disabled until the run/stop bit is set to 1. In the disabled state, the 
pull-up on the USB D+ is not active, which prevents an attach event from occurring. At a minimum, it is 
necessary to have the queue heads setup for endpoint zero before the device attach occurs. Shortly after 
the device is enabled, a USB reset occurs followed by setup packet arriving at endpoint 0. A queue head 
must be prepared so the device controller can store the incoming setup packet.

To initialize a device, software must perform these steps:
1. Set controller mode to device mode. Optionally set streaming disable in the USBMODE register.

NOTE
Transitioning from host mode to device mode requires a device controller 
reset before modifying USBMODE.

2. Optionally modify the BURSTSIZE register.
3. Program the PTS field of the PORTSCn register if using a non-ULPI PHY.
4. Set iodis_b bit in the CONTROL register to enable PHY interface.
5. Allocate and Initialize device queue heads in system memory Minimum: Initialize device queue 

heads 0 Tx and 0 Rx.

NOTE
All device queue heads must be initialized for control endpoints before the 
endpoint is enabled. Device queue heads for non-control endpoints must be 
initialized before the endpoint can be used. 

For information on device queue heads, refer to Section 39.7, “Device Data Structures.”
6. Configure ENDPOINTLISTADDR Pointer.

For additional information on ENDPOINTLISTADDR, refer to the register table. 

Table 39-90. Buffer Page Pointer List 

Bit Description

31:12 Buffer Pointer. Selects the page offset in memory for the packet buffer. Non-virtual memory systems typically set the 
buffer pointers to a series of incrementing integers.

0;11:0 Current Offset. Offset into the 4kb buffer where the packet is to begin.

1;10:0 Frame Number. Written by the device controller to indicate the frame number in which a packet finishes. This is 
typically used to correlate relative completion times of packets on an ISO endpoint.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-164 Freescale Semiconductor

7. Enable the microprocessor interrupt associated with the USB1 /USB0 and optionally change 
setting of ITC field in USBCMD register.
Recommended: Enable all device interrupts including: USBINT, USBERRINT, port change 
detect, USB reset received, and DCSuspend.
For a list of available interrupts, refer to the USBINTR and the USBSTS register tables.

8. Set run/stop bit to run mode.
After the run bit is set, a device reset occurs. The DCD must monitor the reset event and set the 
DEVICEADDR register, set the ENDPTCTRLx registers, and adjust the software state as 
described in the bus reset section of the following port state and control section below.

NOTE
Endpoint 0 is a control endpoint only and does not need to be configured 
using ENDPTCTRL0 register. 

It is also not necessary to initially prime Endpoint 0 because the first packet received is always a setup 
packet. The contents of the first setup packet requires a response in accordance with USB device 
framework command set.

39.8.2 Port State and Control

From a chip or system reset, the USB1 /USB0 enters the powered state. A transition from the powered state 
to the attach state occurs when the run/stop bit is set to 1. After receiving a reset on the bus, the port enters 
the defaultFS or defaultHS state in accordance with the protocol reset described in Appendix C.2 of the 
USB Specification Rev. 2.0. The following state diagram (Figure 39-76) depicts the state of a USB 2.0 
device.

States powered, attach, defaultFS/HS, and suspendFS/HS are implemented in the USB1 /USB0 and are 
communicated to the DCD using these bits:

It is the responsibility of the DCD to maintain a state variable to differentiate between the defaultfs/HS 
state and the address/configured states. Change of state from default to address and the configured states 
is part of the enumeration process described in the device framework section of the USB 2.0 Specification.

As a result of entering the address state, the DCD must program the device address register 
(DEVICEADDR).

Entry into the Configured indicates all endpoints are used in the operation of the device have been properly 
initialized by programming the ENDPTCTRLn registers and initializing the associated queue heads.

Table 39-91. Device Controller State Information Bits 

Bit Register

DCSuspend USBSTS

USB Reset Received USBSTS

Port Change Detect USBSTS

High-Speed Port PORTSC

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-165

Figure 39-76. USB 2.0 Device States

Device 
Configured 

Address 
Assigned 

Reset 

When the host 
resets the device 

returns to the 
default state. 

Power 
Interruption 

Bus Activity 

Bus Activity 

Bus Activity 

Bus Inactive 

Bus Inactive 

Bus Inactive 

Attach 

Default 
FS/HS 

 

Configured
FS/HS 

Address
FS/HS 

Suspend 
FS/HS 

Suspend 
FS/HS 

Suspend 
FS/HS 

Device 
Deconfigured 

Software Only State 

Powered

Active State Inactive State 

Set Run/Stop 
bit to Run 
Mode 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-166 Freescale Semiconductor

39.8.3 Bus Reset

The host uses a bus reset to initialize downstream devices. When a bus reset is detected, the USB1 /USB0 
controller renegotiates its attachment speed, resets the device address to 0, and notifies the DCD by 
interrupt (assuming the USB reset interrupt enable is set). After a reset is received, all endpoints (except 
endpoint 0) are disabled and the device controller cancels any primed transactions. The concept of priming 
is clarified below, but the DCD must perform the following tasks when a reset is received:

• Clear all setup token semaphores by reading the ENDPTSETUPSTAT register and writing the same 
value back to the ENDPTSETUPSTAT register.

• Clear all the endpoint complete status bits by reading the ENDPTCOMPLETE register and writing 
the same value back to the ENDPTCOMPLETE register.

• Cancel all primed status by waiting until all bits in the ENDPTPRIME are 0 and then writing 
0xFFFF_FFFF to ENDPTFLUSH.

Read the reset bit in the PORTSCn register and make sure that remains active. A USB reset occurs for a 
minimum of three ms and the DCD must reach this point in the reset cleanup before end of the reset occurs; 
otherwise, a hardware reset of the device controller is recommended (rare.) 

Writing a one to the USB1 /USB0 reset bit in the USBCMD reset can perform a hardware reset. 

NOTE
A hardware reset causes the device to detach from the bus by clearing the 
run/stop bit. Therefore, the DCD must completely re-initialize the USB1 
/USB0 after a hardware reset.

Free all allocated dTDs because they are no longer executed by the device controller. If this is the first time 
the DCD is processing a USB reset event, it is likely that no dTDs have been allocated.

At this time, the DCD may release control back to the OS because no further changes to the device 
controller are permitted until a port change detect is indicated. 

After a port change detect, the device has reached the default state and the DCD can read the PORTSCn 
to determine if the device is operating in FS or HS mode. At this time, the device controller has reached 
normal operating mode and DCD can begin enumeration according to the USB Chapter 9 - Device 
Framework.

NOTE
The device DCD may use the FS/HS mode information to determine the 
bandwidth mode of the device.

In some applications, it may not be possible to enable one or more pipes while in FS mode. Beyond the 
data rate issue, there is no difference in DCD operation between FS and HS modes.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-167

39.8.3.1 Suspend/Resume

39.8.3.1.1 Suspend Description

To conserve power, USB1 /USB0 automatically enters the suspended state when no bus traffic has been 
observed for a specified period. When suspended, the USB1 (/USB0 maintains any internal status, 
including its address and configuration. In device mode, the attached devices must be prepared to suspend 
at any time they are powered, regardless if they have been assigned a non-default address, are configured, 
or neither. Bus activity may cease due to the host entering a suspend mode of its own. In addition, a USB 
device shall also enter the suspended state when the hub port it is attached to is disabled. 

The USB1 /USB0 exits suspend mode when there is bus activity. It may also request the host to exit 
suspend mode or selective suspend by using electrical signaling to indicate remote wake-up. The ability 
of a device to signal remote wake-up is optional. The USB1 /USB0 is capable of remote wake-up 
signaling. When the USB1 /USB0 is reset, remote wake-up signaling must be disabled.

39.8.3.1.2 Suspend Operational Model 

The USB1 /USB0 moves into the suspend state when suspend signaling is detected or activity is missing 
on the upstream port for more than a specific period. After the device controller enters the suspend state, 
DCD is notified by an interrupt (assuming DC suspend interrupt is enabled). When the DCSuspend bit in 
the PORTSCn is set to a 1, the device controller is suspended.

DCD response when the device controller is suspended is application specific and may involve switching 
to low-power operation.

Find information on the bus power limits in suspend state in USB 2.0 specification.

39.8.3.1.3 Resume

If the USB1 /USB0 is suspended, its operation is resumed when any non-idle signaling is received on its 
upstream facing port. In addition, the USB1 /USB0 can signal the system to resume operation by forcing 
resume signaling to the upstream port. Resume signaling is sent upstream by writing a '1' to the Resume 
bit in the in the PORTSCn while the device is in suspend state. Sending resume signal to an upstream port 
should cause the host to issue resume signaling and bring the suspended bus segment (one more devices) 
back to the active condition. 

NOTE
Before resume signaling can be used, the host must enable it by using the set 
feature command defined in device framework (chapter 9) of the USB 2.0 
specification.

39.8.4 Managing Endpoints

The USB 2.0 specification defines an endpoint, also called a device endpoint or an address endpoint as a 
uniquely addressable portion of a USB device that can source or sink data in a communications channel 
between the host and the device. The endpoint address is specified by the combination of the endpoint 
number and the endpoint direction.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-168 Freescale Semiconductor

The channel between the host and an endpoint at a specific device represents a data pipe. Endpoint 0 for a 
device is always a control type data channel used for device discovery and enumeration. Other types of 
endpoints supported by USB include bulk, interrupt, and isochronous. Each endpoint type has specific 
behavior related to packet response and error handling. More detail on endpoint operation can be found in 
the USB 2.0 specification.

Both USB1 and USB0 support up to four (4) bidirectional endpoints, including the control endpoint. The 
DCD can enable, disable, and configure each endpoint.

Each endpoint direction is essentially independent and can be configured with differing behavior in each 
direction. For example, the DCD can configure endpoint 1-IN to be a bulk endpoint and endpoint 1-OUT 
to be an isochronous endpoint. This helps to conserve the total number of endpoints required for device 
operation. The only exception is that control endpoints must use both directions on a single endpoint 
number to function as a control endpoint. Endpoint 0 is, for example, is always a control endpoint and uses 
the pair of directions.

Each endpoint direction requires a queue head allocated in memory. If the maximum of four endpoint 
numbers, one for each endpoint direction the device controller uses, eight queue heads are required. The 
operation of an endpoint and use of queue heads are described later in this document.

39.8.4.1 Endpoint Initialization

After hardware reset, all endpoints except endpoint zero are uninitialized and disabled. The DCD must 
configure and enable each endpoint by writing to configuration bit in the ENDPTCTRLn register. Each 
32-bit ENDPTCTRLn is split into an upper and lower half. The lower half of ENDPTCTRLn configures 
the receive or OUT endpoint and the upper half also configures the corresponding transmit or IN endpoint. 
Control endpoints must be configured the same in both the upper and lower half of the ENDPTCTRLn 
register otherwise the behavior is undefined. The following table shows how to construct a configuration 
word for endpoint initialization.

39.8.4.2 Stalling

There are two occasions where the USB1 /USB0 may need to return to the host a STALL condition

The first occasion is the functional stall, which is a condition set by the DCD as described in the USB 2.0 
device framework (chapter 9). A functional stall is used only on non-control endpoints and can be enabled 
in the device controller by setting the endpoint stall bit in the ENDPTCTRLn register associated with the 
given endpoint and the given direction. In a functional stall condition, the device controller continues to 

Table 39-92. Device Controller Endpoint Initialization 

Field Value

Data Toggle Reset 1

Data Toggle Inhibit 0

Endpoint Type 00 — Control
01 — Isochronous
10 — Bulk
11 — Interrupt

Endpoint Stall 0

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-169

return STALL responses to all transactions occurring on the respective endpoint and direction until the 
endpoint stall bit is cleared by the DCD.

A protocol stall, unlike a function stall, used on control endpoints is automatically cleared by the device 
controller at the start of a new control transaction (setup phase). When enabling a protocol stall, the DCD 
should enable the stall bits (both directions) as a pair. A single write to the ENDPTCTRLn register can 
ensure both stall bits are set at the same instant. 

NOTE
Any write to the ENDPTCTRLn register during operational mode must 
preserve the endpoint type field (i.e., perform a read-modify-write).

39.8.4.3 Data Toggle 

Data toggle is a mechanism to maintain data coherency between host and device for any given data pipe. 
For more information on data toggle, refer to the USB 2.0 specification.

The DCD may reset the data toggle state bit and cause the data toggle sequence to reset in the device 
controller by writing a '1' to the data toggle reset bit in the ENDPTCTRLn register. This should only be 
necessary when configuring/initializing an endpoint or returning from a STALL condition.

Data Toggle Inhibit is for test purposes only and should never be used during normal device controller 
operation.

Setting the data toggle inhibit bit active (1) causes the USB1 /USB0 to ignore the data toggle pattern 
normally sent and accept all incoming data packets regardless of the data toggle state. 

In normal operation, the USB1 /USB0  checks the DATA0/DATA1 bit against the data toggle to determine 
if the packet is valid. If data PID does not match the data toggle state bit maintained by the device 
controller for that endpoint, the data toggle is considered not valid. If the data toggle is not valid, the device 
controller assumes the packet was already received and discards the packet (not reporting it to the DCD). 
To prevent the USB1 /USB0 from re-sending the same packet, the device controller responds to the error 
packet by acknowledging it with either an ACK or NYET response.

Table 39-93. Device Controller Stall Response Matrix 

USB Packet
Endpoint 
Stall Bit.

Effect on 
STALL bit.

USB Response

SETUP packet received by a non-control endpoint. N/A None. STALL

IN/OUT/PING packet received by a non-control endpoint. 1 None. STALL

IN/OUT/PING packet received by a non-control endpoint. 0 None. ACK/NAK/NYET

SETUP packet received by a control endpoint. N/A Cleared ACK

IN/OUT/PING packet received by a control endpoint 1 None STALL

IN/OUT/PING packet received by a control endpoint. 0 None. ACK/NAK/NYET

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-170 Freescale Semiconductor

39.8.5 Device Operational Model For Packet Transfers

All transactions on the USB bus are initiated by the host and the device must respond to any request from 
the host within the turnaround time stated in the USB 2.0 Specification. 

A USB host sends requests to the device controller (USB1 /USB0 in an order that cannot be precisely 
predicted as a single pipeline, so it is not possible to prepare a single packet for the device controller to 
execute. However, the order of packet requests is predictable when the endpoint number and direction is 
considered. For example, if endpoint 3 (transmit direction) is configured as a bulk pipe, you can expect the 
host to send IN requests to that endpoint. The device controller prepares packets for each 
endpoint/direction in anticipation of the host request. The process of preparing the device controller to 
send or receive data in response to host initiated transaction on the bus is referred to as priming the 
endpoint. This term appears throughout the following documentation to describe the device controller 
(USB1 /USB0) operation so the DCD can be architected properly use priming. Further, the term flushing 
describes the action of clearing a packet queued for execution.

Priming a transmit endpoint causes the device controller to fetch the device transfer descriptor (dTD) for 
the transaction pointed to by the device queue head (dQH). After the dTD is fetched, it is stored in the dQH 
until the device controller completes the transfer described by the dTD. Storing the dTD in the dQH allows 
the device controller to fetch the operating context needed to manage a request from the host without the 
need to follow the linked list, starting at the dQH when the host request is received.

After the device has loaded the dTD, the leading data in the packet is stored in a FIFO in the device 
controller.

After a priming request is complete, an endpoint state of primed is indicated in the ENDPTSTATUS 
register. For a primed transmit endpoint, the device controller can respond to an IN request from the host 
and meet the stringent bus turnaround time of High Speed USB. 

Because only the leading data is stored in the device controller FIFO, it is necessary for the device 
controller to begin filling in behind leading data after the transaction starts. The FIFO must be sized to 
account for the maximum latency that can be incurred by the system memory bus.

Priming receive endpoints are identical to priming of transmit endpoints from the point of view of the 
DCD. At the device controller, the major difference in the operational model is no data movement of the 
leading packet data simply because the data is to be received from the host.

As part of the architecture, the FIFO for the receive endpoints is not partitioned into multiple channels like 
the transmit FIFO. Therefore, the size of the RX FIFO does not scale with the number of endpoints. 

39.8.5.1 Interrupt/Bulk Endpoint Operational Model

The behaviors of the device controller for interrupt and bulk endpoints are identical. All valid IN and OUT 
transactions to bulk pipes handshake with a NAK unless the endpoint had been primed. After the endpoint 
has been primed, data delivery commences.

A dTD is retired by the device controller when the packets described in the transfer descriptor have been 
completed. Each dTD describes n packets to be transferred according to the USB variable length transfer 
protocol. The formula and table on the following page describes how the device controller computes the 

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-171

number and length of the packets to be sent/received by the USB vary according to the total number of 
bytes and maximum packet length.

With Zero Length Termination (ZLT) = 0
N = INT(Number Of Bytes/Max. Packet Length) + 1

With Zero Length Termination (ZLT) = 1
N = MAXINT(Number Of Bytes/Max. Packet Length)

NOTE
The MULT field in the dQH must be set to 00 for bulk, interrupt, and control 
endpoints.

The ZLT bit in the dTD operates as following on BULK and control transfers:

ZLT = 0, the default value, means that the zero length termination is active. With the ZLT option enabled, 
when the device is transmitting, the hardware automatically appends a zero packet length when the 
following conditions are true:

• The packet transmitted equals maximum packet length.
• The dTD has exhausted the field Total Bytes

After this the dTD is retired. When the device is receiving, if the last packet length received equal 
maximum packet length and the total bytes is zero, it waits for a zero length packet from the host to retire 
the current dTD.

ZLT = 1, means the zero length termination is inactive. With the ZLT option disabled, when the device is 
transmitting, the hardware does not append any zero length packet. When receiving, it does not require a 
zero length packet to retire a dTD whose last packet was equal to the maximum packet length packet.

The dTD is retired as soon as Total Bytes field goes to zero, or a short packet is received.

Table 39-94. Variable Length Transfer Protocol Example (ZLT=0) 

Bytes (dTD)
Max. Packet

Length (dQH)
N P1 P2 P3

511 256 2 256 255

512 256 3 256 256 0

512 512 2 512 0

Table 39-95. Variable Length Transfer Protocol Example (ZLT=1) 

Bytes (dTD)
Max. Packet

Length (dQH)
N P1 P2 P3

511 256 2 256 255

512 256 2 256 256

512 512 1 512

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-172 Freescale Semiconductor

Each transfer is defined by one dTD, so the zero length termination is for each dTD.

In some software application cases, the logic transfer does not fit into one dTD, so it does not make sense 
to add a Zero Length Termination packet each time a dTD is consumed. On those cases, it is recommended 
to turn off this ZLT feature and use software to generate the zero length termination.

TX-dTD is complete when: 
• All packets described dTD were successfully transmitted. Total bytes in dTD equal zero when this 

occurs.

RX-dTD is complete when:
• All packets described in dTD were successfully received. Total bytes in dTD equal zero when this 

occurs.
• A short packet (number of bytes < maximum packet length) was received. This is a successful 

transfer completion; DCD must check total bytes in dTD to determine the number of bytes that are 
remaining. From the total bytes remaining in the dTD, the DCD can compute the actual bytes 
received.

• A long packet was received (number of bytes > maximum packet size) or (total bytes received > 
total bytes specified). This is an error condition. The device controller discards the remaining 
packet, and set the buffer error bit in the dTD. In addition, the endpoint is flushed and the USBERR 
interrupt becomes active.

On the successful completion of the packet(s) described by the dTD, the active bit in the dTD is cleared 
and the next pointer is followed when the terminate bit is clear. When the terminate bit is set, the USB1 
/USB0 flushes the endpoint/direction and ceases operations for that endpoint/direction.

On the unsuccessful completion of a packet (see long packet above), the dQH is left pointing to the dTD 
that was in error. To recover from this error condition, the DCD must properly re-initialize the dQH by 
clearing the active bit and update the nextTD pointer before attempting to re-prime the endpoint.

NOTE
All packet level errors, such as a missing handshake or CRC error, are 
retried automatically by the device controller.

There is no required interaction with the DCD for managing such errors.
Table 39-96. Interrupt/Bulk Endpoint Bus Response Matrix 

Stall Not Primed Primed Underflow Overflow

Setup Ignore Ignore Ignore N/A N/A

In STALL NAK Transmit BS Error1

1 Force Bit Stuff Error

N/A

Out STALL NAK Receive + NYET/ACK2 N/A NAK

Ping STALL NAK ACK N/A N/A

Invalid Ignore Ignore Ignore Ignore Ignore

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-173

39.8.5.2 Control Endpoint Operation Model

All requests to a control endpoint begin with a setup phase followed by an optional data phase and a 
required status phase. The USB1 /USB0 always accepts the setup phase unless the setup lockout is 
engaged.

The setup lockout engages so future setup packets are ignored. Lockout of setup packets ensures that while 
software is reading the setup packet stored in the queue head, data is not written as it is being read 
potentially causing an invalid setup packet.

The setup lockout mechanism can be disabled and a tripwire type semaphore ensures the setup packet 
payload is extracted from the queue head without being corrupted by an incoming setup packet. This is 
preferred behavior because ignoring repeated setup packets due to long software interrupt latency would 
be a compliance issue.

Setup Packet Handling:
• Disable setup lockout by writing 1 to setup lockout mode (SLOM) in USBMODE. (once at 

initialization). Setup lockout is not necessary when using the tripwire as described below.

NOTE
Leaving the setup lockout mode as 0 results in a potential compliance issue.

• After receiving an interrupt and inspecting ENDPTSETUPSTAT to determine that a setup packet 
was received on a particular pipe:
— Write 1 to clear corresponding bit ENDPTSETUPSTAT.
— Write 1 to setup TripWire (SUTW) in USBCMD register.
— Duplicate contents of dQH.SetupBuffer into local software byte array.
— Read setup TripWire (SUTW) in USBCMD register. (if set - continue; if cleared - goto 2)
— Write 0 to clear setup Tripwire (SUTW) in USBCMD register.
— Process setup packet using local software byte array copy and execute status/handshake phases.

NOTE
After receiving a new setup packet, the status and/or handshake phases may 
be pending from a previous control sequence. These should be flushed and 
de-allocated before linking a new status and/or handshake dTD for the most 
recent setup packet.

Following the setup phase, the DCD must create a device transfer descriptor for the data phase and prime 
the transfer.

2 NYET/ACK — NYET unless the transfer descriptor has packets remaining according to the USB variable 
length protocol then ACK.

NOTE
System error should never occur when the latency FIFOs are 
correctly sized and the DCD is responsive.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-174 Freescale Semiconductor

After priming the packet, the DCD must verify a new setup packet has not been received by reading the 
ENDPTSETUPSTAT register immediately verifying that the prime had completed. A prime completes 
when the associated bit in the ENDPTPRIME register is 0 and the associated bit in the ENDPTSTATUS 
register is 1. If a prime fails, i.e. the ENDPTPRIME bit goes to zero and the ENDPTSTATUS bit is not set, 
then the prime has failed. This can only be due to improper setup of the dQH, dTD or a setup arriving 
during the prime operation. If a new setup packet is indicated after the ENDPTPRIME bit is cleared, the 
transfer descriptor can be freed and the DCD must reinterpret the setup packet.

Should a setup arrive after the data stage is primed, the device controller automatically clears the prime 
status (ENDPTSTATUS) to enforce data coherency with the setup packet.

NOTE
The MULT field in the dQH must be set to 00 for bulk, interrupt, and control 
endpoints.

NOTE
Error handling of data phase packets is the same as bulk packets described 
previously.

Similar to the data phase, DCD must create a transfer descriptor (with byte length equal zero) and prime 
the endpoint for the status phase. The DCD must also perform the same checks of the ENDPTSETUPSTAT 
as described above in the data phase.

NOTE
The MULT field in the dQH must be set to 00 for bulk, interrupt, and control 
endpoints.

NOTE
Error handling of data phase packets is the same as bulk packets described 
previously.

Table 39-97 shows the device controller response to packets on a control endpoint according to the device 
controller state.

Table 39-97. Control Endpoint Bus Response Matrix 

Token Type

Endpoint State

Setup Lockout
Stall Not Primed Primed Underflow Overflow

Not 
Enabled

Setup ACK ACK ACK N/A SYSERR1

1 SYSERR — System error should never occur when the latency FIFOs are correctly sized and the DCD is responsive.

BTO —

In STALL NAK Transmit BS Error2

2 Force Bit Stuff Error

N/A BTO N/A

Out STALL NAK Receive + NYET/ACK3 N/A NAK BTO N/A

Ping STALL NAK ACK N/A N/A BTO N/A

Invalid Ignore Ignore Ignore Ignore Ignore BTO Ignore

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-175

39.8.5.3 Isochronous Endpoint Operational Model

Isochronous endpoints are used for real-time scheduled delivery of data and their operational model is 
significantly different than the host throttled bulk, interrupt, and control data pipes. Real time delivery by 
the USB1 /USB0 is accomplished by:

• Exactly MULT Packets per (micro) Frame are transmitted/received. 

NOTE
MULT is a two-bit field in the device Queue Head. The variable length 
packet protocol is not used on isochronous endpoints.

• NAK responses are not used. Instead, zero length packets are sent in response to an IN request to 
an unprimed endpoint. For unprimed RX endpoints, the response to an OUT transaction is to ignore 
the packet within the device controller.

• Prime requests always schedule the transfer described in the dTD for the next (micro)frame. If the 
ISO-dTD remains active after that frame, the ISO-dTD is held ready until executed or canceled by 
the DCD.

The USB1 /USB0 in host mode uses the periodic frame list to schedule data exchanges to isochronous 
endpoints. The operational model for device mode does not use such a data structure. Instead, the same 
dTD used for control/bulk/interrupt endpoints is also for isochronous endpoints. The difference is in the 
handling of the dTD.

The first difference between bulk and ISO-endpoints is priming an ISO-endpoint is a delayed operation 
such that an endpoint becomes primed only after a SOF is received. After the DCD writes the prime bit, 
the prime bit is cleared as usual to indicate to software the device controller completed a priming the dTD 
for transfer. Internal to the design, the device controller hardware masks that prime start until the next 
frame boundary. This behavior is hidden from the DCD, but occurs so the device controller can match the 
dTD to a specific (micro)frame. 

Another difference with isochronous endpoints is the transaction must wholly complete in a (micro)frame. 
After an ISO transaction is started in a (micro)frame, it retires the corresponding dTD when MULT 
transactions occur or the device controller finds a fulfillment condition.

The transaction error bit set in the status field indicates a fulfillment error condition. When a fulfillment 
error occurs, the frame after the transfer failed to complete wholly, the device controller forces retirement 
of the ISO-dTD and move to the next ISO-dTD. 

Fulfillment errors are only caused due to partially completed packets. If no activity occurs to a primed 
ISO-dTD, the transaction stays primed indefinitely. This means it is up to software to discard transmit 
ISO-dTDs that pile up from a failure of the host to move the data.

The last difference with ISO packets is in the data level error handling. When a CRC error occurs on a 
received packet, the packet is not retried similar to bulk and control endpoints. Instead, the CRC is noted 
by setting the transaction error bit and the data is stored as usual for the application software to sort out.

• TX Packet Retired

3 NYET/ACK — NYET unless the transfer descriptor has packets remaining according to the USB variable length protocol 
then ACK.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-176 Freescale Semiconductor

— MULT counter reaches zero.
— Fulfillment Error [Transaction Error bit is set]
— #Packets Occurred > 0 AND # Packets Occurred < MULT

NOTE
For TX-ISO, MULT counter can be loaded with a lesser value in the dTD 
multiplier override field. If the multiplier override is zero, the MULT 
counter is initialized to the Multiplier in the QH.

• RX Packet Retired:
— MULT counter reaches zero.
— Non-MDATA Data PID is received
— Overflow Error:
— Packet received is > maximum packet length. [Buffer Error bit is set]
— Packet received exceeds total bytes allocated in dTD. [Buffer Error bit is set]
— Fulfillment Error [Transaction Error bit is set]
— # Packets Occurred > 0 AND # Packets Occurred < MULT
— CRC Error [Transaction Error bit is set]

NOTE
For ISO, when a dTD is retired, the next dTD is primed for the next frame. 
For continuous (micro)frame-to-(micro)frame operation, DCD should 
ensure the dTD linked-list is out ahead of the device controller by at least 
two (micro)frames.

39.8.5.3.1 Isochronous Pipe Synchronization

When necessary to synchronize an isochronous data pipe to the host, the (micro)frame number (FRINDEX 
register) can act as a marker. To cause a packet transfer to occur at a specific (micro)frame number [N], 
DCD should interrupt on SOF during frame N-1. When the FRINDEX equals N-1, the DCD must write 
the prime bit. The USB1/USB0 primes the isochronous endpoint in (micro)frame N-1 so that the device 
controller executes delivery during (micro)frame N. 

CAUTION
Priming an endpoint towards the end of (micro)frame N-1 does not 
guarantee delivery in (micro)frame N. The delivery may actually occur in 
(micro)frame N+1 if device controller does not have enough time to 
complete the prime before the SOF for packet N is received.

Table 39-98. Isochronous Endpoint Bus Response Matrix 

Stall Not Primed Primed Underflow Overflow

Setup STALL STALL STALL N/A N/A

In NULL1 Packet NULL Packet Transmit BS Error2 N/A

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-177

39.8.6 Managing Queue Heads

Figure 39-77. Endpoint Queue Head Diagram

The device queue head (dQH) points to the linked list of transfer tasks, each depicted by the device transfer 
descriptor (dTD). An area of memory pointed to by ENDPOINTLISTADDR contains a group of all dQH's 
in a sequential list as shown in Figure 39-77. The even elements in the list of dQH's are receive endpoints 
(OUT/SETUP) and the odd elements are for transmit endpoints (IN/INTERRUPT). Device transfer 
descriptors are linked head to tail starting at the queue head and ending at a terminate bit. After the dTD 
has been retired, it is no longer part of the linked list from the queue head. Therefore, software is required 
to track all transfer descriptors because pointers no longer exist within the queue head once the dTD is 
retired (see section Software Link Pointers).

In addition to the current and next pointers and the dTD overlay examined in the section on operational 
model for packet transfers, dQH also contains the following parameters for the associated endpoint: 
multiplier, maximum packet length, interrupt on setup. The complete initialization of the dQH including 
these fields is demonstrated in the next section.

Out Ignore Ignore Receive N/A Drop Packet

Ping Ignore Ignore Ignore Ignore Ignore

Invalid Ignore Ignore Ignore Ignore Ignore

1 Zero Length Packet
2 Force Bit Stuff Error

Table 39-98. Isochronous Endpoint Bus Response Matrix  (continued)

Stall Not Primed Primed Underflow Overflow

Endpoint QH1 - Out

Endpoint QH0 - In

Endpoint QH0 - Out

ENDPOINTLISTADDR

Endpoint Queue Heads
(up to 32 elements)

Transfer
Buffer

Transfer Buffer
Pointer

Transfer
Buffer

Transfer
Buffer

Transfer
Buffer

Transfer Buffer
Pointer

Endpoint
Transfer

Descriptors

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-178 Freescale Semiconductor

39.8.6.1 Queue Head Initialization

One pair of device queue heads must be initialized for each active endpoint. To initialize a device queue 
head:

• Write the wMaxPacketSize field as required by the USB Chapter 9 or application specific protocol.
• Write the multiplier field to 0 for control, bulk, and interrupt endpoints. For ISO endpoints, set the 

multiplier to 1,2, or 3 as required bandwidth with the USB Chapter 9 protocol. 

NOTE
In FS mode, the multiplier field can only be 1 for ISO endpoints.

• Write the next dTD Terminate bit field to 1.
• Write the active bit in the status field to 0.
• Write the halt bit in the status field to 0.

NOTE
The DCD must only modify dQH if the associated endpoint is not primed 
and there are no outstanding dTD's.

39.8.6.2 Operational Model For Setup Transfers

As discussed in Section 39.8.5.2, “Control Endpoint Operation Model,” setup transfer requires special 
treatment by the DCD. A setup transfer does not use a dTD, but stores the incoming data from a setup 
packet in an 8-byte buffer within the dQH instead.

Upon receiving notification of the setup packet, DCD should manage setup transfer as demonstrated here:
1. Copy setup buffer contents from dQH - RX to software buffer.
2. Acknowledge setup backup by writing a 1 to the corresponding bit in ENDPTSETUPSTAT.

NOTE
The acknowledge must occur before continuing to process the setup packet.

NOTE
After the acknowledge has occurred, the DCD must not attempt to access 
the setup buffer in the dQH - RX. Only the local software copy should be 
examined.

3. Check for pending data or status dTDs from previous control transfers and flush if any exist as 
discussed in section flushing/de-priming an endpoint.

NOTE
It is possible for the device controller to receive setup packets before 
previous control transfers complete. Existing control packets in progress 
must be flushed and the new control packet completed.

4. Decode setup packet and prepare data phase [optional] and status phase transfer as required by the 
USB Chapter 9 or application specific protocol.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-179

39.8.7 Managing Transfers with Transfer Descriptors

39.8.7.0.1 Software Link Pointers

It is necessary for the DCD software to maintain head and tail pointers for the linked list of dTDs for each 
respective queue head. This is necessary because the dQH only maintains pointers to the current working 
dTD and the next dTD to be executed. The operations described in the next section for managing dTD 
assumes the DCD can use reference for the head and tail of the dTD linked list.

NOTE
To conserve memory, reserved fields at the end of the dQH can store the 
head and tail pointers, but it remains the responsibility of the DCD to 
maintain the pointers.

Figure 39-78. Software Link Pointers

39.8.7.1 Building a Transfer Descriptor

Before a transfer can be executed from the linked list, a dTD must be built to describe the transfer. Use the 
following procedure for building dTDs.

Allocate 8 32-bit word dTD block of memory aligned to 8 32-bit word boundaries. Example: bit address 
4:0 would be equal to 00000.

Write the following fields:
1. Initialize first 7 32-bit words to 0.
2. Set the terminate bit to 1.
3. Fill in total bytes with transfer size.
4. Set the interrupt on complete if desired.
5. Initialize the status field with the active bit set to 1 and all remaining status bits set to 0.
6. Fill in buffer pointer page 0 and the current offset to point to the start of the data buffer. 
7. Initialize buffer pointer page 1 through page 4 to be one greater than each of the previous buffer 

pointer.

Endpoint QH current

next
Tail PointerHead Pointer

Queued dTDsCompleted dTDs

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-180 Freescale Semiconductor

39.8.7.2 Executing A Transfer Descriptor

To safely add a dTD, DCD must follow this procedure which manages the event where the device 
controller reaches the end of the dTD list at the same time a new dTD is added to the end of the list.

Determine whether the link list is empty: 
Check DCD driver to see if pipe is empty (internal representation of linked-list should indicate if 
any packets are outstanding)

Case 1: Link list is empty
8. Write dQH next pointer AND dQH terminate bit to 0 as a single 32-bit word operation.
9. Clear active and halt bit in dQH (in case set from a previous error).
10. Prime endpoint by writing 1 to correct bit position in ENDPTPRIME.

Case 2: Link list is not empty
1. Add dTD to end of linked list.
2. Read correct prime bit in ENDPTPRIME - if 1 DONE.
3. Set ATDTW bit in USBCMD register to 1.
4. Read correct status bit in ENDPTSTATUS. (store in tmp. variable for later)
5. Read ATDTW bit in USBCMD register.

If 0, goto 3.
If 1, continue to 6.

6. Write ATDTW bit in USBCMD register to '0'.
7. If status bit read in (3) is '1' DONE.
8. If status bit read in (3) is '0' then Goto Case 1: Step 1.

39.8.7.3 Transfer Completion

After a dTD has been initialized and the associated endpoint primed, the device controller executes the 
transfer upon the host-initiated request. The DCD is notified with a USB interrupt if the interrupt on 
complete bit was set or alternately, the DCD can poll the endpoint complete register to find when the dTD 
had been executed. After a dTD has been executed, DCD can check the status bits to determine success or 
failure. 

CAUTION
Multiple dTD can be completed in a single endpoint complete notification. 
After clearing the notification, DCD must search the dTD linked list and 
retire all dTDs have finished (active bit cleared).

By reading the status fields of the completed dTDs, DCD can determine if the transfers completed 
successfully. Success is determined with this combination of status bits:

• Active = 0
• Halted = 0
• Transaction Error = 0

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-181

• Data Buffer Error = 0

Should any combination other than the one shown above exist, DCD must take proper action. Transfer 
failure mechanisms are indicated in the device error matrix.

In addition to checking the status bit, DCD must read the transfer bytes field to determine the actual bytes 
transferred. When a transfer is complete, the total bytes transferred is decremented by the actual bytes 
transferred. For transmit packets, a packet is only complete after the actual bytes reaches zero, but for 
receive packets, the host may send fewer bytes in the transfer according to the USB variable length packet 
protocol.

39.8.7.4 Flushing/De-priming an Endpoint

It is necessary for the DCD to flush to de-prime one more endpoints on a USB device reset or during a 
broken control transfer. There may also be application specific requirements to stop transfers in progress. 
The DCD can use the following procedure to stop a transfer in progress:

1. Write a 1 to the corresponding bit(s) in ENDPTFLUSH.
2. Wait until all bits in ENDPTFLUSH are 0. 

NOTE
This operation may take a large amount of time depending on the USB bus 
activity. It is not desirable to have this wait loop within an interrupt service 
routine.

3. Read ENDPTSTATUS to ensure all endpoints commanded to be flushed are now 0. If the 
corresponding bits are 1 after the second step has finished, flush has failed as described here:
In rare cases, a packet is in progress to the particular endpoint is commanded to flush using 
ENDPTFLUSH. A safeguard is in place to refuse the flush to ensure the packet in progress 
completes successfully. The DCD may need to repeatedly flush any endpoints that fail to flush by 
repeating steps one through three until each endpoint is successfully flushed.

39.8.8 Device Error Matrix

The following table summarizes packet errors that are not automatically managed by the USB1 /USB0.

The device controller manages all errors on bulk/control/interrupt endpoints except for a data buffer 
overflow. However, for ISO endpoints, errors packets are not retried and errors are tagged as indicated.

Table 39-99. Device Error Matrix 

Error Direction Packet Type
Data Buffer 

Error Bit
Transaction

Error Bit

Overflow1

1 This error also set the halt bit in the dQH and if there are dTDs remaining in the linked list for the endpoint, those are not 
executed.

RX Any 1 0

ISO Packet Error RX ISO 0 1

ISO Fulfillment Error Both ISO 0 1

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-182 Freescale Semiconductor

39.8.9 Servicing Interrupts

The interrupt service routine must consider there are high-frequency, low-frequency, and error operations 
to order accordingly. 

39.8.9.1 High-Frequency Interrupts

High frequency interrupts in particular should be managed in the order below. The most important of these 
is listed first because the DCD must acknowledge a setup buffer in the timeliest manner possible.

39.8.9.2 Low-Frequency Interrupts

The low-frequency events include the following interrupts. These interrupts can be managed in any order 
because they don't occur often in comparison to the high-frequency interrupts.

39.8.9.3 Error Interrupts

Error interrupts are least frequent and should be placed last in the interrupt service routine.

Table 39-100. Error Descriptions 

Overflow Number of bytes received exceeded max. packet size or total buffer length.

ISO Packet Error CRC Error on received ISO packet. Contents not guaranteed to be correct.

ISO Fulfillment Error Host failed to complete the number of packets defined in the dQH mult field within the given 
(micro)frame. For scheduled data delivery, DCD may need to readjust the data queue because a 
fulfillment error causes device controller to cease data transfers on the pipe for one (micro)frame. 
During dead (micro)frame, device controller reports error on the pipe and primes for the next frame.

Table 39-101. Interrupt Handling Order 

Execution 
Order

Interrupt Action

1a USB Interrupt1

ENDPTSETUPSTATUS

1 It is likely that multiple interrupts to stack up on any call to the interrupt service routine and during the interrupt service routine.

Copy contents of setup buffer and acknowledge setup packet (as indicated in 
section Managing Queue Heads). Process setup packet according to USB 2.0 
Chapter 9 or application specific protocol. 

1b USB Interrupt
ENDPTCOMPLETE

Manages completion of dTD as indicated in section Managing Queue Heads.

2 SOF Interrupt Action as deemed necessary by application. This interrupt may not have a use in 
all applications.

Table 39-102. Low Frequency Interrupt Events 

Interrupt Action

Port Change Change software state information.

Sleep Enable (Suspend) Change software state information. Low power handling as necessary.

Reset Received Change software state information. Abort pending transfers.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-183

39.8.10 Deviations from the EHCI Specifications

The host mode operation of the modules is nearly EHCI-compatible with few minor differences. For the 
most part, the modules conform to the data structures and operations described in Section 3, “Data 
Structures,” and Section 4, “Operational Model,” in the EHCI specification. The particulars of the 
deviations occur in these areas:

• Device operation (OTG module only)—In host mode, the device operational registers are generally 
disabled and device mode is mostly transparent when in host mode. However, there are exceptions 
documented in the following sections.

• Embedded design interface—The modules do not have a PCI interface and therefore the PCI 
configuration registers described in the EHCI specification are not applicable.

For the purposes of the USB1 /USB0 implementing dual-role host/device controller with support for OTG 
applications, it is necessary to deviate from the EHCI specification. Device operation and OTG operation 
are not specified in the EHCI, and implementation supported in the OTG module is proprietary. 

39.8.10.1 Device Operation

The co-existence of a device operational controller within the OTG module has little effect on EHCI 
compatibility for host operation. However, because the OTG controller is initialized in neither host nor 
device mode, the USBMODE register must be programmed for host operation before the EHCI host 
controller driver can begin EHCI host operations.

39.8.10.2 Non-Zero Fields in the Register File

Some of the reserved fields and reserved addresses in the capability registers and operational registers have 
meaning in device mode; therefore, the following must be adhered to:

• Write operations to all EHCI reserved fields (some of which are device fields in the OTG module) 
in the operation registers should always be written to zero. This is an EHCI requirement of the 
device controller driver that must be adhered to.

• Read operations by the module must properly mask EHCI reserved fields (some of which are 
device fields in the OTG module registers).

39.8.10.3 SOF Interrupt

The SOF interrupt is a free running 125 µsec interrupt for host mode. EHCI does not specify this interrupt, 
but it has been added for convenience and as a potential software time base. The free running interrupt is 
shared with the OTG-only device-mode start-of-frame interrupt. See Section 39.2.1.4.2, “USB Status 

Table 39-103. Error Interrupt Events 

Interrupt Action

USB Error Interrupt. This error is redundant because it combines USB Interrupt and an error status in the dTD. The DCD 
more aptly manages packet-level errors by checking dTD status field upon receipt of USB Interrupt 
(w/ ENDPTCOMPLETE).

System Error Unrecoverable error. Immediate Reset of core; free transfers buffers in progress and restart the DCD.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-184 Freescale Semiconductor

Register (USBSTS),” and Section 39.2.1.4.3, “USB Interrupt Enable Register (USBINTR),” for more 
information. 

39.8.10.4 Embedded Design

This is an embedded USB host controller as defined by the EHCI specification and does not implement 
the PCI configuration registers.

39.8.10.4.1 Frame Adjust Register

Because the optional PCI configuration registers are not included in this implementation, there is no 
corresponding bit level timing adjustments like those provided by the frame adjust register in the PCI 
configuration registers. Starts of microframes are timed precisely to 125 µsec using the transceiver clock 
as a reference clock. In other words, 60 MHz transceiver clock is used for 8-bit physical interfaces and 
full-speed serial interfaces or 30 a MHz transceiver clock is used for 16-bit physical interfaces.

39.8.10.5 Miscellaneous Variations from EHCI

39.8.10.5.1 Programmable Physical Interface Behavior

The modules support multiple physical interfaces which can operate in different modes when the module 
is configured with the software programmable physical interface modes. The control bits for selecting the 
PHY operating mode have been added to the PORTSCn register providing a capability defined by EHCI 
specification.

39.8.10.5.2 Discovery

The port connect methods specified by EHCI require setting the port reset bit in the register for a duration 
of 10 msec. Due to the complexity required to support the attachment of devices that are not high speed, 
counters are already present in the design that can count the 10 msec reset pulse to alleviate the 
requirement of the software to measure this duration. Therefore, the basic connection is then summarized 
as the following:

• [Port Change Interrupt] Port connect change occurs to notify the host controller driver that a device 
has attached.

• Software shall write a 1 to the reset bit of the device.
• Software shall write a 0 to the reset bit of the device after 10 msec.

— This step (necessary in a standard EHCI design) may be omitted with this implementation. 
Should the EHCI host controller driver attempt to write a 0 to the reset bit while a reset is in 
progress, the write is ignored and the reset continues until completion.

• [Port Change Interrupt] Port enable change occurs to notify the host controller the device is now 
operational, and at this point, the port speed has been determined.

After the port change interrupt indicates a port is enabled, EHCI stack should determine the port speed. 
Unlike EHCI implementation, which re-assigns the port owner for any device that does not connect at 
high-speed, this host controller supports direct attach of non-HS devices. Therefore, the following 
differences are important regarding port speed detection:

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

Freescale Semiconductor 39-185

• Port owner is read-only and always reads 0.
• A 2-bit port speed indicator has been added to PORTSC to provide the current operating speed of 

the port to the host controller driver.
• A 1-bit high speed indicator has been added to PORTSC to signify that the port is in HS vs. FS/LS 

– This information is redundant with the 2-bit port speed indicator above.

39.9 USB 2.0 PHY with On-The-Go

39.9.1 Introduction 

The USB2 PHY is a fully integrated PHY core with High Speed(HS), Full Speed(FS) and Low Speed(LS) 
transceivers compliant with the USB 2.0 and USB 1.1 specifications. The front end of the USB2 PHY is 
the cable. The back end of the USB2 PHY is the serial/parallel interface engine that manages packet 
recognition, transaction sequencing, serialization/deserialization, bit stuffing/unstuffing and other relevant 
functionality needed by USB 2.0 specification. The USB2 transceiver’s main responsibility is to transmit 
data onto the line, receive data, and to recover clock correctly from the received data.

39.9.1.1 Features

• USB2 PHY
— HS Driver: Generates 400mV(approx.) logic levels on DP/DM at 480 MHz.
— LS/FS Driver: It is used for low/full-speed data transmission at 12 MHz.
— HS Receiver: This HS receiver receives the high-speed (480 Mb/s) NRZI differential data 

signal from the USB port and converts it to single ended signal.
— LS/FS Receiver: The low/full-speed receiver receives the full speed (12 Mb/s) or 

low-speed(1.5 Mb/s) NRZI differential data signal from the USB port and convert it to single 
ended signal.

— Transmission envelope detector: Monitors the differential amplitude of the data signal and 
alerts the controller if the differential signal goes below the specifications.

— Disconnection Envelope Detector: Monitors the amplitude of the high-speed differential data 
signal and alerts the controller if the amplitude exceeds the specifications.

— PLL: PLL requires a 24 MHz crystal clock as a reference and produces 480 MHz clock for the 
HS DLL and HS TX. 

— Single Ended Receiver: Monitors the amplitude of the FS/LS data signal at each DP and DM 
and alerts the controller if the single-ended amplitude is less than specifications.

— Termination Resistor Calibration: During high-speed transfers, data line resistor terminations 
are required to be within 45 ohms +/- 10%. To achieve this accuracy, these termination resistors 
are calibrated to the precise off chip resistance.

— Xtal Osc: Provides the 24 MHz low jitter clock to the USB 480 MHz PLL.
• On-The-Go (in addition to the above blocks)

— VBUS Comparator: Monitors the VBUS and generates output corresponding to VBUS valid 
and session valid during SRP and HNP.

MPC5121e Microcontroller Reference Manual, Rev. 2



Universal Serial Bus Interface with On-The-Go

39-186 Freescale Semiconductor

— Switches and Resistors: To act as a dual role device, RPU and RPD need to be switched 
depending on whether a host or device. In OTG mode, certain bus resistances need to be 
switched to meet the requirements for SRP and HNP.

— ID Detector: Depending upon the status of the ID pin, this block determines the allocated 
default status whether OTG host/device.

For more description on the above blocks refer to USB Rev2.0 Specification and On-The-Go Supplement 
to the USB 2.0 Specification rev1.0a.

39.9.1.2 Modes of Operation

• Low Speed/Full speed TX/RX: In this mode, data is transmitted/received serially at 
1.5 Mbps/12 Mbps. For more details, refer to USB rev2.0 Specification document.

• High Speed TX/RX: In this mode, data is transmitted/received serially at 480 Mbps. For more 
details, refer to USB Rev2.0 Specification document.

• USB On-The-Go: This mode adds the capability of communication between one battery powered 
device to another via USB interface. For more details, refer to On-The-Go Supplement to the USB 
2.0 Specification rev1.0a.

39.9.1.3 System Requirements

• External VBUS Generator: The USB PHY with OTG does not have an on-chip charge pump; 
therefore, it requires the use of an off-chip VBUS generator to source up to 500mA at 5V. The 
MAX1838 or a comparable part should be sufficient.

• External Resistor Divider: The VBUS pin for monitoring VBUS requires the voltage be stepped 
down from 5V to TBDV. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

Freescale Semiconductor 40-1

Chapter 40  
Video-In (VIU)

40.1 Introduction

Figure 40-1. Video In Block Diagram

A block diagram of the VIDEO_IN is given in Figure 40-1. There are two main components in it: VIU 
core and register. 

VIU core accepts an ITU656 compatible video stream on its parallel interface. Internal synchronizer block 
latches data from pixel clock domain to internal working clock domain, then the synchronization 
extraction block extracts video timing signals such as hsync and vsync. Depending on timing signals, VIU 
can implement the following processing functions. The first processing function is converting the 422 
stream to a 444 stream by providing interpolation on the chroma components, but it keeps YCbCr format. 
The second processing function is converting YCbCr stream to RGB888/RGB565 format.

Block 5 functions as FIFO controller and DMA engine. It puts the RGB pixel data into a FIFO and writes 
them to memory finally by the embeded DMA.

Register component acts as VIU core controller. CPU can totally control VIU core via configuring 
registers in register block.

VIU_DATA[9:0]

VIU_PIX_CLK
Sync

Extraction

Y, Cr, and Cb
generation
and
interpolation

yuv2rgb

Registers

interrupt

Data bus

Register access

FIFO (256 x 64 bit)

32 41 5

FIFO controller

and
DMA engine

synch
ronizer

VIU core

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

40-2 Freescale Semiconductor

40.1.1 Features
• Support from QVGA to XVGA 8-bit/10-bit ITU656 video input
• YUV to RGB888/565 conversion
• De-interlace for interlacing video image by setting DMA_INCREMENT register
• Internal DMA engine for data transfering from FIFO to memory

40.2 External Signal Description

40.3 Memory Map and Register Definition

40.3.1 Memory Map

40.3.2 Register Summary

Table 17-5 shows the VIDEO_IN register summary table.

Table 40-1. External Signal Properties

Name Port Function I/O

VIU_PIX_CLK ITU656 video stream clock I

VIU_DATA[9:0] ITU656 video stream data I

Table 40-2. VIDEO_IN Memory Map

Offset or 
Address

Register Access Section/Page

0x00 Status and Configuration Register RW 40.3.3.1/40-5

0x04 Luminance Coefficients For Red, Green and Blue Matrix RW 40.3.3.2/40-7

0x08 Chroma Coefficients For Red Matrix RW 40.3.3.3/40-8

0x0C Chroma Coefficients For Green Matrix RW 40.3.3.4/40-8

0x10 Chroma Coefficients For Blue Matrix RW 40.3.3.5/40-9

0x14 Base Address Of Every Field Of Picture In Memory RW 40.3.3.6/40-10

0x18 Horizontal Dma Increment RW 40.3.3.7/40-10

0x1C Max Pixel and Line Count RW 40.3.3.8/40-11

0x20 High Priority Transfer Request Alarm RW 40.3.3.9/40-12

0x24 Programable Alpha Value RW 40.3.3.10/40-12

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

Freescale Semiconductor 40-3

Table 40-3. VIDEO_IN Register Summary

Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0X00
STATUS_CONFIG

R MOD
E_32
BIT

ROU
ND_
ON

DITH
ER_
ON

FIEL
D_N

O

DMA
_AC

T

ERR
OR_I
RQ

DMA
_EN
D_IR

Q

VST
ART
_IRQ

HSY
NC_I
RQ

VSY
NC_I
RQ

FIEL
D_IR

Q
W

R
ECC
_EN

ERR
OR_
EN

DMA
_EN
D_E

N

VST
ART
_EN

HSY
NC_
EN

VSY
NC_
EN

FIEL
D_E

N

ERROR_CODE SOF
T_R
ESE

T
W

OX04
LUMINANCE_COE

FFICIENTS

R
Y_RED[9:0] Y_GREEN[9:5]

W

R
Y_GREEN[4:0] Y_BLUE[9:0]

W

OX08
RED_CHROMA_C

OEFFICIENTS

R
CR_RED[10:0]

W

R
CB_RED[11:0]

W

OX0C
GREEN_CHROMA
_COEFFICIENTS

R
CR_GREEN[10:0]

W

R
CB_GREEN[11:0]

W

OX10
BLUE_CHROMA_
COEFFICIENTS

R
CR_BLUE[10:0]

W

R
CB_BLUE[11:0]

W

0X14
DMA_ADDRESS

R
DMA_ADDRESS[31:16]

W

R
DMA_ADDRESS[15:3]

W

0X18
DMA_INCREMEN

T

R

W

R
DMA_INCREMENT[15:3]

W

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

40-4 Freescale Semiconductor

0X1C
PICTURE_COUNT

R
LINE_COUNT[15:0]

W

R
PIXEL_COUNT[15:0]

W

0X20
HI_PRIO_ALARM

R

W

R
HI_PRIO_ALARM[15:0]

W

0X24
ALPHA

R

W

R
ALPHA[7:0]

W

Table 40-3. VIDEO_IN Register Summary (continued)

Name
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

Freescale Semiconductor 40-5

40.3.3 Register Descriptions

40.3.3.1 STATUS_CONFIG

Offset 0x00 Access: User read/write

Power

Architecture
0 1 2 3 4 5 6 7

conventional 31 30 29 28 27 26 25 24

R MODE_32BI
T

ROUND_ON DITHER_ON
FIELD_NO

DMA_ACT
W

Reset 0 0 0 0 0 0 0 0

Power

Architecture
8 9 10 11 12 13 14 15

conventional 23 22 21 20 19 18 17 16

R
ERROR_IRQ

DMA_END_I
RQ

VSTART_IR
Q

HSYNC_IRQ VSYNC_IRQ FIELD_IRQ
W

Reset 0 0 0 0 0 0 0 0

Power

Architecture
16 17 18 19 20 21 22 23

conventional 15 14 13 12 11 10 9 8

R
ECC_EN ERROR_EN

DMA_END_
EN

VSTART_EN HSYNC_EN VSYNC_EN FIELD_EN
W

Reset 0 0 0 0 0 0 0 0

Power

Architecture
24 25 26 27 28 29 30 31

conventional 7 6 5 4 3 2 1 0

R ERROR_CODE
SOFT_RESET

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 40-4. STATUS_CONFIG Register

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

40-6 Freescale Semiconductor

T

Table 40-5. STATUS_CONFIG Fields

Field Description

SOFT_RESET Writing 1 to this bit generates an internal reset to all components except registers in VIDEO_IN block. This 
bit should be set by software when core receives an error interrupt.

ERROR_CODE Error code. Signals error that triggered error IRQ.
0000 : No error
0001 : DMA arm command given during vertical active, DMA_ACT does not accept the value on IPS bus.
0010 : DMA arm command given during vertical blanking when DMA_ACT is set.
0100 : Line too long
0101 : Too many lines in field
0110: Line too short
0111: Not enough lines in field
1000: FIFO overflow
1001 : FIFO underflow
1010: One bit ECC error
1011: Two or more bits ECC error

FIELD_EN Interrupt enablt bit for FIELD_IRQ.

VSYNC_EN Interrupt enable bit for VSYNC_IRQ.

HSYNC_EN Interrupt enable bit for HSYNC_IRQ.

VSTART_EN Interrupt enable bit for VSTART_IRQ.

DMA_END_EN Interrupt enable bit for DMA_END_IRQ.

ERROR_EN Interrupt enable bit for ERROR_IRQ.

ECC_EN Enable bit for ECC.

FIELD_IRQ Interrupt status bit. Set when field number is changed. Write 1 to clear FIELD_IRQ.

VSYNC_IRQ Interrupt status bit. Set when one active field is over on ITU interface. Write 1 to clear VSYNC_IRQ.

HSYNC_IRQ Interrupt status bit. Set when one active line is over on ITU interface. Write 1 to clear HSYNC_IRQ.

VSTART_IRQ Interrupt status bit. Set when one active field starts on ITU interface. Write 1 to clear VSTART_IRQ.

DMA_END_IRQ Interrupt status bit. Set when one active field data transfer is done. Write 1 to clear DMA_END_IRQ.

ERROR_IRQ Interrupt status bit. Set when any error event occurs. Write 1 to clear ERROR_IRQ.

DMA ACT Enable DMA transfer or DMA transfer of current frame is busy when it is set. Write by software, cleared at 
end of transfer. When DMA_ACT is cleared, input video data is ignored and not put into FIFO.

FIELD_NO Field number, extracted from ITU-656 stream.

DITHER_ON Dithering is on. Used when video data is stored in buffer as RGB565 format and ROUND_ON is not set.

ROUND_ON Round is on. Used when video data is stored in buffer as RGB565 format.

MODE_32BIT If this bit is set, data is written to memory in RGBa888 format. DITHER_ON and ROUND_ON is ignored.
If this bit is clear, data is written to memory in RGB565 format.

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

Freescale Semiconductor 40-7

40.3.3.2 LUMINANCE_COEFFICIENTS

The RGB pixel value is computed using following formulae:

The multiplications with Y_red, Y_green, and Y_blue are unsigned multiplications. The multiplications 
with Cr_red, Cb_red, Cr_green, Cb_green, Cr_blue, and Cb_blue are signed multiplications. The addition 
is saturated to prevent overflow.

offset 0x04 read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
Y_RED[9:0] Y_GREEN[9:5]

W

Reset 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Y_GREEN[4:0] Y_BLUE[9:0]

W

Reset 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0

= Unimplemented or Reserved

Figure 40-2. LUMINANCE_COEFFICIENTS Register

Table 40-6. LUMINANCE_COEFFICIENTS Fields

Field Description

Y_RED[9:0] Luminance coefficient for red matrix.

Y_GREEN[9:0] Luminance coefficient for green matrix.

Y_BLUE[9:0] Luminance coefficient for blue matrix.

Red Y 16–( ) yred⋅
512

------------------------------------- Cr 128–( )Crred
512

----------------------------------------- Cb 128–( )Cbred
512

-------------------------------------------+ +=

Green Y 16–( ) Ygreen⋅
512

--------------------------------------------- Cr 128–( )Crgreen
512

------------------------------------------------ Cb 128–( )Cbgreen
512

--------------------------------------------------+ +=

Blue Y 16–( ) yblue⋅
512

---------------------------------------- Cr 128–( )Crblue
512

-------------------------------------------- Cb 128–( )Cbblue
512

----------------------------------------------+ +=

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

40-8 Freescale Semiconductor

40.3.3.3 RED_CHROMA_COEFFICIENTS

40.3.3.4 GREEN_CHROMA_COEFFICIENTS

offset 0x08 read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CR_RED[10:0]
W

Reset 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CB_RED[11:0]
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 40-3. RED_CHROMA_COEFFICIENTS Register

Table 40-7. RED_CHROMA_COEFFICIENTS Fields

Field Description

CR_RED[10:0] Cr coefficient for red matrix.

CB_RED[11:0] Cb coefficient for red matrix.

offset 0x0C read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CR_GREEN[10:0]
W

Reset 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CB_GREEN[11:0]
W

Reset 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0

= Unimplemented or Reserved

Figure 40-4. GREEN_CHROMA_COEFFICIENTS Register

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

Freescale Semiconductor 40-9

40.3.3.5 BLUE_CHROMA_COEFFICIENTS

Table 40-8. GREEN_CHROMA_COEFFICIENTS Fields

Field Description

CR_GREEN[10:0] Cr coefficient for green matrix.

CB_GREEN[11:0] Cb coefficient for green matrix.

offset 0x10 read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CR_BLUE[10:0]
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CB_BLUE[11:0]
W

Reset 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1

= Unimplemented or Reserved

Figure 40-5. BLUE_CHROMA_COEFFICIENTS Register

Table 40-9. BLUE_CHROMA_COEFFICIENTS Fields

Field Description

CR_BLUE[10:0] Cr coefficient for blue matrix.

CB_BLUE[11:0] Cb coefficient for blue matrix.

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

40-10 Freescale Semiconductor

40.3.3.6 DMA_ADDRESS

T

40.3.3.7 DMA_INCREMENT

offset 0x14 read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
DMA_ADDRESS[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DMA_ADDRESS[15:3]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 40-6. DMA_ADDRESS Register

Table 40-10. DMA_ADDRESS Fields

Field Description

DMA_ADDRESS[31:3] Base address of every field of picture in memory used by DMA.
Rewrite only after receiving DMA end interrupt and before arming DMA. The lowest 3 bits of 
DMA_ADDRESS cannot be set. It is always 3’b0.
See section 40.5.2/40-17 for more details.

offset 0x18 read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DMA_INCREMENT[15:3]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 40-7. DMA_INCREMENT Register

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

Freescale Semiconductor 40-11

T

40.3.3.8 PICTURE_COUNT

T

Table 40-11. DMA_INCREMENT Fields

Field Description

DMA_INCREMENT
[15:3]

Value of this field should be zero or memory size that one active line occupies in memory. It is added to 
the memory mapped rounded address at the end of every line. See section 40.4.3/40-15.
Memory size of one active line depends on line pixel number(See section 40.3.3.8/40-11). It is 
 • PIXEL_COUNT[15:2] + |PIXEL_COUNT[1:0] when MODE_32BIT=0;
 • PIXEL_COUNT[15:1] + PIXEL_COUNT[0] when MODE_32BIT=1;
It is only configured when DMA is non-active, during vertical blanking.
See section 40.5.2/40-17 for more details.

Offset 0x1C read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R
LINE_COUNT[15:0]

W

Reset 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
PIXEL_COUNT[15:0]

W

Reset 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0

= Unimplemented or Reserved

Figure 40-8. PICTURE_COUNT Register

Table 40-12. PICTURE_COUNT Fields

Field Description

LINE_COUNT[15:
0]

Expected number of active lines in each field. It is only configured when DMA is non-active, during 
vertical blanking. See section 40.5.2/40-17 for more details.
If more lines are found during data receive part, a too many lines error interrupt is generated when 
ERROR_IRQ is set. Redundant lines are discarded.
If less lines are found during data receive part, a not enough lines error interrupt is generated when 
ERROR_IRQ is set.

PIXEL_COUNT[1
5:0]

Expected number of active pixels in each line. It is only configured when DMA is non-active, during 
vertical blanking. See section 40.5.2/40-17 for more details.
If more pixels are found during data receive part, a line too long error interrupt is generated when 
ERROR_IRQ isset. Redundant pixels are discarded.
If less pixels are found during data receive part, a line too short error interrupt is generated when 
ERROR_IRQ is set. 

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

40-12 Freescale Semiconductor

40.3.3.9 HI_PRIO_ALARM

T

40.3.3.10 ALPHA

offset 0x20 read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
HI_PRIO_ALARM[15:0]

W

Reset 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

= Unimplemented or Reserved

Figure 40-9. HI_PRIO_ALARM Register

Table 40-13. HI_PRIO_ALARM Fields

Field Description

HI_PRIO_ALARM[1
5:0]

High priority alarm threshold. When FIFO_FILL is higher than this value, high priority bus request is 
asserted.

offset 0x24 read/write

Power

Architecture

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Conventional 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Power

Architecture

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Conventional 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ALPHA[7:0]

W

Reset 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

= Unimplemented or Reserved

Figure 40-10. ALPHA Register

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

Freescale Semiconductor 40-13

T

40.4 Functional Description
The VIDEO_IN block accepts an ITU-R BT.656-4 compatible video stream, extracts active pixel data and 
converts it to RGBa888/RGB565, then writes the RGB stream to memory. Ancillary data during blanking 
is discarded.

40.4.1 ITU656

The Recommendation ITU-R BT.656-4 describes the means of interconnecting digital television 
equipment operating on the 525-line or 625-line standards and complies with the 4:2:2 encoding 
parameters as defined in Recommendation ITU-R BT.601.

The data stream structure on ITU-R BT.656-4 interface is shown in Figure 40-11. There are two timing 
reference signals, one at the beginning of each video data block (start of active video, SAV) and one at the 
end of each video data block (end of active video, EAV).

Figure 40-11. Interface Data Stream of ITU-R BT.656-4

Each timing reference signal consists of a four word sequence in the following format: FF 00 00 XY. 
Values are expressed in hexadecimal notation. FF 00 values are reserved for use in timing reference 
signals.

The first three words are a fixed preamble. The fourth word contains information defining field 2 
identification, the state of field blanking, and the state of line blanking. The assignment of bits within the 
timing reference signal is shown in Table 40-15..

Table 40-14. ALPHA Fields

Field Description

ALPHA[7:0] Alpha value used for picture blending. This register is configured during vertical blanking and used 
from the next video field. 

Table 40-15. Video Timing Reference Codes

Data Bit Number
First Word

(FF)
Second Word

(00)
Third Word

(00)
Fourth Word

(XY)

9(MSB) 1 0 0 1

8 1 0 0 F(0: field 1, 1: field 2)

7 1 0 0 V(0: elsewhere, 1: field blanking)

6 1 0 0 H(0: in SAV, 1: in EAV)

5 1 0 0 P3

C
b3

59

Y
71

8

C
r3

59

Y
71

9

EAV SAV C
b0 Y
0

C
r0 Y
1

Timing Reference Signals

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

40-14 Freescale Semiconductor

In above table, bits P0, P1, P2, P3 have states dependent on the states of the bits F, V and H. At the receiver 
this arrangement permits one-bit errors to be corrected and two-bit errors to be detected.

Refer to Recommendation ITU-R BT.656-4 for more details.

40.4.2 Round and Dither

VIDEO_IN block extracts active pixel data from ITU656 data stream depending on the timing reference 
signals in SAV and EAV, convert it from YCrCb to RGB888 format, and place it to an internal buffer. 

Pixel data can be stored in buffer as two RGB formats: RGB888 and RGB565. When RGB888 format is 
selected, pixel data directly enters buffer from format converter. Otherwise, pixel data should be converted 
from RGB888 to RGB565.Thus the image is anamorphic more or less. 

VIDEO_IN block provides two simple compensatory algorithms, round and dither, to recover the 
anamorphic image.

40.4.2.1 Round

When RGB888 data is converted to RGB565, the two or three LSBs are discarded and the image 
information carried by them is lost. To keep as much information as possible, VIDEO_IN rounds in 1 to 
LSB if the decimal fraction is bigger than 0.5 and ignore the smaller fraction when ROUND_ON is set in 
status and configuration register.

40.4.2.2 Dither

Dither is a little more complex but better than round for recovering image. It’s a statistical compensation 
algorithm. It doesn’t render all pixels with the same grey or color level, but some with the lower one, and 
some with a color level of 1 LSB more. The selection of adding one LSB or not depends on the position 
of the pixel on the screen. 

Figure 41-11 shows the implementation of dither in VIDEO_IN block.

4 1 0 0 P2

3 1 0 0 P1

2 1 0 0 P0

1 1 0 0 0

0 1 0 0 0

Table 40-15. Video Timing Reference Codes

Data Bit Number
First Word

(FF)
Second Word

(00)
Third Word

(00)
Fourth Word

(XY)

9(MSB) 1 0 0 1

8 1 0 0 F(0: field 1, 1: field 2)

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

Freescale Semiconductor 40-15

Figure 40-12. Dither Implementation

The number above pixel position in the diagram is compensation value for this pixel. When pixels have a 
value of 0.25, they are rendered 0 in 75% of the pixels and 1 in 25% of pixels. This averages to 0.25. 
Similarly, pixel values of 0.5, 0.75, and 1.0 are rendered 50%, 75% and 100% of the pixels as 1. For human 
eyes, this rendering result of dither makes the holistc image smoother and closer to the original one.

40.4.3 DMA and De-interlacing

VIDEO_IN block has an embeded DMA master. When video data is converted to RGB format and enters 
an internal buffer, it waits for conveying to memory by this internal DMA.

After doing some necessary register configuration, such as coefficients, PICTURE_COUNT and 
DMA_ADDRESS, user can activate DMA by setting the DMA_ACT of the status and configuration 
register. The DMA_ACT can be configured only during vertical blanking since VIDEO_IN block won’t 
transfer a fragment of video field to memory. If it’s configured during field active time, DMA transfer can 
not be started and an error interrupt is asserted.

VIDEO_IN also provides a simple way to de-interlace for interlaced video image. It is implemented by 
setting DMA_ADDRESS and DMA_INCREMENT registers.

Figure 40-13 shows the implementation of de-interlace. Value of DMA_INCREMENT is added to 
rounded address at the end of every active line. So, when DMA_INCREMENT is zero, pixel data is stored 
in memory line by line, meaning de-interlace is off, as shown in Figure 40-1 and Figure 40-2; otherwise, 
when DMA_INCREMENT equal one-line memory mapped pixel size, and DMA_ADDRESS(2) = 
DMA_ADDRESS(1) + DMA_INCREMENT, odd field and even field is merged into one frame in 
memory, as shown in Figure 40-3.

Here DMA_ADDRESS(1) means base address of field 1, and DMA_ADDRESS(2) means base address 
of field 2. Memory mapped line size means memory size that occupied by one active line pixels. It depends 
on pixel number of one line and video data format(RGBa888 or RGB565). See register description in 
section 40.3.3.7/40-10.

0

0.25

0.5

0.75

0 0.5

0.25 0.75

0 0.5 0 0.5

0.25 0.75 0.25 0.75

line0

line1

line2

line3

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

40-16 Freescale Semiconductor

Figure 40-13. Implementation of De-interlace

40.4.4 Error Case

Normally, user should provide a standard and totally ITU-compatible video stream to VIDEO_IN block. 
However, it’s difficult to avoid unexpected errors all the time. VIDEO_IN can manage error cases like 
ECC error, line too long, line too short, too many lines, or not enough line in a field, even FIFO overflow.

• ECC error: ITU stream provides 4-bit error correcting code P[3:0] in its SAV and EAV. It is 
decoded in VIDEO_IN to use correct field number, horizonal sync and vertical sync bits. It can 
correct one bit error and find two bits error. When ECC error is found, an interrupt is asserted.

• Line too long error: When pixels of active line is longer than PIXEL_COUNT, a line too long error 
interrupt is asserted and redundant pixels are discarded.

• Too many lines error: When active lines of a field are bigger than LINE_COUNT, a too many lines 
error interrupt is asserted and redundant lines is discarded.

• Line too short error: When pixels of active line is less than PIXEL_COUNT, a line too short error 
interrupt is asserted.

• Not enough line error: When active lines of a field is less than LINE_COUNT, a not enough line 
error interrupt is asserted.

• FIFO overflow error: If system bus is blocked for a long time, video data is stored in FIFO and 
makes FIFO overflow. When FIFO is overflow, an interrupt is asserted, and the coming data is 
discarded until FIFO works normally again. Current field is jumbled. However, VIDEO_IN 
recovers to work at the next field if bus is unblocked at that time. 

• FIFO underflow: When FIFO is read when it’s empty, a FIFO underflow error interrupt is asserted. 
Normally, this error shouldn’t occur.

VIDEO_IN can manage above error cases to a certain extent. However, when it doesn’t recover to work, 
user should write the SOFT_RESET bit of the status and configuration register to reset VIDEO_IN block.

DMA_ADDRESS(1) DMA_ADDRESS(2)
Field 1 Field 2

(1) (2)

line 1

line 2

line 3

line n

line 1

line 2

line 3

line n

DMA_ADDRESS(1)

(3)

line 1

line 2

line 3

line n

field 1

field 1

field 1

field 1

field 2

field 2

field 2

line 1

line 2

line n

DMA_ADDRESS(2)

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

Freescale Semiconductor 40-17

40.5 Initialization/Application Information

40.5.1 Initialization Information

When VIDEO_IN block comes out of reset, core should implement the following steps to start this block:
1. Write VSYNC_EN and FIELD_EN bits in status register to enable field interrupt. Meanwhile, 

disable error interrupt.
2. When core receives vsync interrupt and field interrupt, read FIELD_NO bit of status register.
3. According to FIELD_NO bit, write DMA_ADDRESS register.
4. Configure DMA_INCREMENT and PICTURE_COUNT registers according to the video input 

format.
5. Clear error status first if necessary
6. Configure other required registers
7. Write DMA_ACT bit of status register to startup FIFO and DMA transfer.

40.5.2 Application Information

Normally, user should not change the register value of coefficients, PICTURE_COUNT, 
DMA_INCREMENT, alpha, ROUND_ON, DITHER_ON, and MODE_32BIT after VIDEO_IN is started 
up. When video input source is changed, user should reset VIDEO_IN and re-configure related registers.

40.5.2.1 Register Configuration Timing Window

As mentioned above, dynamic configuration on registers is not recommended because it maybe cause error 
if it’s not configured in a certain timing window, especially for PICTURE_COUNT and 
DMA_INCREMENT. 

Register configuration timing window is shown in below diagram. Here F is field identification signal, V 
is vertical sync signal and H is horizonal sync signal. DMA_END indicates if DMA transfer is done.

All registers, except SOFT_RESET bit, are recommended to be configured during vertical blanking, after 
DMA transfer is done and field identification bit is changed(field interrupt is asserted).

Normally, this window is long enough for user to complete register configuration. While in the worst case, 
internal buffer is full at the end of active field and it takes much time for DMA to be done, the shortest 
configuration window can be calculated as the following:

• RGBa888 format: Tw = Tblanking - 512/Fpixel
• RGB565 format: Tw = Tblanking - 1024/Fpixel

Here Tw is length of configuration window, and Tblanking is length of vertical blanking. Fpixel is pixel 
clock frequency.

For example, when pixel clock on ITU interface is 6.75MHz, Tblanking is 1.47ms, configuration window 
is 1.47ms - 1024/6.75/1000 = 1.32ms.

MPC5121e Microcontroller Reference Manual, Rev. 2



Video-In (VIU)

40-18 Freescale Semiconductor

Figure 40-14. Register Configuration Timing Window

Configuration Timing Window

F

V

H

DMA_END

MPC5121e Microcontroller Reference Manual, Rev. 2


	Chapter 1 Overview
	1.1 Introduction
	1.1.1 Features
	1.1.1.1 Chip-Level Features
	1.1.1.2 Module Features



	Chapter 2 System Configuration and Memory Map (XLBMEN + Mem Map)
	2.1 Introduction
	2.2 Memory Map and Register Definition
	2.2.1 Local Memory Map Overview and Example
	2.2.2 Address Translation and Mapping
	2.2.3 Window into Configuration Space
	2.2.4 Local Access Windows
	2.2.5 Local Access Register Memory Map
	2.2.5.1 Local Access Register Description
	2.2.5.1.1 Internal Memory Map Registers Base Address Register (IMMRBAR)
	2.2.5.1.2 Updating IMMRBAR
	2.2.5.1.3 LocalPlus Boot/CS0-7 Access Window Registers (LPBAW/LPCSxAW)
	2.2.5.1.4 LPBAW[START_ADDR] and LPBAW[STOP_ADDR] Reset Value
	2.2.5.1.5 PCI Local Access Window n Base Address Registers (PCILAWBAR0 - PCILAWBAR2)
	2.2.5.1.6 PCI Local Access Window n Attributes Registers (PCILAWAR0 - PCILAWAR2)
	2.2.5.1.7 DDR Local Access Window Base Address Register (DDRLAWBAR)
	2.2.5.1.8 DDR Local Access Window Attributes Register (DDRLAWAR)
	2.2.5.1.9 MBX Base Address Register (MBXBAR)
	2.2.5.1.10 SRAM Base Address Register (SRAMBAR)
	2.2.5.1.11 NFC Base Address Register (NFCBAR)
	2.2.5.1.12 NFCBAR[BASE_ADDR] Reset Value


	2.2.6 Precedence of Local Access Windows
	2.2.7 Configuring Local Access Windows
	2.2.8 Distinguishing Local Access Windows from Other Mapping Functions
	2.2.9 Outbound Address Translation and Mapping Windows
	2.2.10 Inbound Address Translation and Mapping Windows
	2.2.11 PCI Inbound Windows
	2.2.12 Accessing Internal Memory from External Masters

	2.3 System Configuration
	2.3.1 System Configuration Register Memory Map
	2.3.1.1 System Configuration Registers
	2.3.1.1.1 System Part and Revision ID Register (SPRIDR)
	2.3.1.1.2 System Priority Configuration Register (SPCR)




	Chapter 3 Signal Descriptions
	3.1 Introduction
	3.1.1 Signals Overview

	3.2 Output Signal States During Reset

	Chapter 4 Reset
	4.1 Introduction
	4.2 HRESET Flow
	4.2.1 Sources
	4.2.2 Impacts

	4.3 SRESET Flow
	4.3.1 Sources
	4.3.2 Impacts

	4.4 (PORESET) Power-On Initialization
	4.5 Reset of Internal Peripherals
	4.6 Reset Configuration Word (RST_CONF)
	4.6.1 BMS Operation
	4.6.2 RTC at Reset
	4.6.3 JTAG Reset
	4.6.4 Boot Vector Selection
	4.6.5 Boot Memory Interface Selection
	4.6.6 LPC Initialization Sequence
	4.6.7 NFC Initialization Sequence

	4.7 Memory Map
	4.7.1 Reset Configuration Word Low Register (RCWLR)
	4.7.2 Reset Configuration Word High Register (RCWHR)
	4.7.3 Reset Status Register (RSR)
	4.7.4 Reset Mode Register (RMR)
	4.7.5 Reset Protection Register (RPR)
	4.7.6 Reset Control Register (RCR)
	4.7.7 Reset Control Enable Register (RCER)

	4.8 IO During Reset Assertion

	Chapter 5 Clocks and Low-Power Modes
	5.1 Introduction
	5.2 System Clock Generation
	5.2.1 Peripheral Clock Domains
	5.2.2 Clock Frequency Measurement (CFM) Clock Selection
	5.2.3 System Oscillator Disable
	5.2.4 PSC Clock Generation
	5.2.5 MSCAN Clock Generation
	5.2.6 RTC Clock Generation
	5.2.7 SATA Clock Generation
	5.2.8 USB Clock Generation
	5.2.9 System PLL and e300 PLL
	5.2.9.1 System PLL
	5.2.9.1.1 System PLL Multiplication Factor

	5.2.9.2 e300 PLL Programming Model


	5.3 Clock Control Module
	5.3.1 Memory Map/Register Definition
	5.3.1.1 System PLL Mode Register (SPMR)
	5.3.1.2 System Clock Control Register 1 (SCCR1)
	5.3.1.3 System Clock Control Register 2 (SCCR2)
	5.3.1.4 System Clock Frequency Register 1 (SCFR1)
	5.3.1.5 System Clock Frequency Register 2 (SCFR2)
	5.3.1.6 Shadow of System Clock Frequency Register 2 (SCFR2S)
	5.3.1.7 Bread Crumb Register (BCR)
	5.3.1.8 PSC0 Clock Control Register (P0CCR)
	5.3.1.9 PSC1 Clock Control Register (P1CCR)
	5.3.1.10 PSC2 Clock Control Register (P2CCR)
	5.3.1.11 PSC3 Clock Control Register (P3CCR)
	5.3.1.12 PSC4 Clock Control Register (P4CCR)
	5.3.1.13 PSC5 Clock Control Register (P5CCR)
	5.3.1.14 PSC6 Clock Control Register (P6CCR)
	5.3.1.15 PSC7 Clock Control Register (P7CCR)
	5.3.1.16 PSC8 Clock Control Register (P8CCR)
	5.3.1.17 PSC9 Clock Control Register (P9CCR)
	5.3.1.18 PSC10 Clock Control Register (P10CCR)
	5.3.1.19 PSC11 Clock Control Register (P11CCR)
	5.3.1.20 SPDIF Clock Control Register (SCCR)
	5.3.1.21 CFM Clock Control Register (CCCR)
	5.3.1.22 DIU Clock Config Register (DCCR)
	5.3.1.23 MSCAN1Clock Control Register (M1CCR)
	5.3.1.24 MSCAN2 Clock Control Register (M2CCR)
	5.3.1.25 MSCAN3 Clock Control Register (M3CCR)
	5.3.1.26 MSCAN4 Clock Control Register (M4CCR)



	Chapter 6 AXE System
	6.1 Introduction
	6.1.1 Features

	6.2 Memory Map and Register Definition
	6.2.1 Data Memory Map
	6.2.2 Instruction Memory Map
	6.2.3 Register Summary
	6.2.4 Register Descriptions
	6.2.4.1 DMA Operation
	6.2.4.1.1 DMA Address Register
	6.2.4.1.2 DMA MEM Address Register
	6.2.4.1.3 DMA Attributes Register

	6.2.4.2 Instruction Cache and SRAM Operation
	6.2.4.2.1 Instruction Cache and SRAM Attributes Register

	6.2.4.3 Interrupt Controller
	6.2.4.3.1 INTPRI0 Interrupt Priority Register
	6.2.4.3.2 INTPRI1 Interrupt Priority Register
	6.2.4.3.3 INTPRI2 Interrupt Priority Register
	6.2.4.3.4 INTPRI3 Interrupt Priority Register
	6.2.4.3.5 INTPRI4 Interrupt Priority Register
	6.2.4.3.6 INTPRI5 Interrupt Priority Register
	6.2.4.3.7 INTPRI6 Interrupt Priority Register
	6.2.4.3.8 INTPRI7 Interrupt Priority Register

	6.2.4.4 Instruction SRAM Indirect Access
	6.2.4.4.1 Instruction SRAM Address Register
	6.2.4.4.2 Instruction SRAM Data Register

	6.2.4.5 Inter Processor Communication FIFOs
	6.2.4.5.1 FIFO1 Write Data Register
	6.2.4.5.2 FIFO1 Read Data Register
	6.2.4.5.3 FIFO2 Write Data Register
	6.2.4.5.4 FIFO2 Read Data Register
	6.2.4.5.5 FIFO Level Register

	6.2.4.6 SNE Interrupt Enable Register
	6.2.4.7 Power Architecture Interrupt Enable Register
	6.2.4.8 Interrupt Clear/Set Register
	6.2.4.9 Interrupt Pending Register
	6.2.4.10 Instruction Cache Indirect Access
	6.2.4.10.1 Instruction Cache Address Register
	6.2.4.10.2 Instruction Cache Data Register
	6.2.4.10.3 Instruction Cache Tag Register



	6.3 Functional Description
	6.3.1 AXE Reset
	6.3.2 AXE System
	6.3.2.1 AXE System Overview
	6.3.2.2 Instruction Access Controller
	6.3.2.2.1 Instruction SRAM

	6.3.2.3 Instruction Cache
	6.3.2.4 Instruction Accesses Mapped to the On-Chip SRAM

	6.3.3 Data Access Controller
	6.3.3.1 Data Accesses Mapped to the On-Chip SRAM
	6.3.3.2 Data Accesses Mapped to the AXE IP Bus
	6.3.3.3 Data Accesses Mapped to the DDR Interface
	6.3.3.4 Data Accesses Mapped to the IP Bus

	6.3.4 DMA
	6.3.4.1 DMA_ADDR[31:2] Register (Address 0x0000)
	6.3.4.2 DMA_MEM_ADDR[19:2] Register (Address 0x0004)
	6.3.4.3 DMA attributes Register (Address 0x0008)
	6.3.4.4 Functional Description

	6.3.5 Interrupt Controller
	6.3.6 FIFOs for Inter-Processor Communication
	6.3.7 Interrupt Enable/Pending and Clear/Set Registers for FIFO1, FIFO2, and Soft Interrupts
	6.3.7.1 Setting and Clearing Soft Interrupts
	6.3.7.2 Interrupt Enable Registers
	6.3.7.3 Interrupt Connections



	Chapter 7 Byte Data Link Controller (BDLC)
	7.1 Introduction
	7.1.1 Features

	7.2 External Signal Description
	7.3 Memory Map and Register Definition
	7.3.1 Memory Map
	7.3.2 Register Summary
	7.3.2.1 BDLC Control Register 1 (DLCBCR1)
	7.3.2.2 BDLC State Vector Register (DLCBSVR)
	7.3.2.3 BDLC Control Register 2 (DLCBCR2)
	7.3.2.4 Transmit Multiple Bytes IFR with CRC (TMIFR1)
	7.3.2.5 BDLC Data Register (DLCBDR)
	7.3.2.6 BDLC Analog Round Trip Delay Register (DLCBARD)
	7.3.2.7 BDLC Rate Select Register (DLCBRSR)
	7.3.2.8 BDLC Control Register (DLCSCR)
	7.3.2.9 BDLC Status Register (DLCBSTAT)


	7.4 Functional Description
	7.4.1 J1850 Frame Format
	7.4.1.1 Start of Frame Symbol (SOF)
	7.4.1.2 In Message Data Bytes (Data)
	7.4.1.3 Cyclical Redundancy Check Byte (CRC)
	7.4.1.4 End-of-Data Symbol (EOD)
	7.4.1.5 In-Frame Response Bytes (IFR)
	7.4.1.6 End-of-Frame Symbol (EOF)
	7.4.1.7 Inter-Frame Separation Symbol (IFS)
	7.4.1.8 Break
	7.4.1.9 Idle Bus

	7.4.2 J1850 VPW Symbols
	7.4.2.1 Logic 0
	7.4.2.2 Logic 1
	7.4.2.3 Normalization Bit (NB)
	7.4.2.4 Start of Frame Symbol (SOF)
	7.4.2.5 End of Data Symbol (EOD)
	7.4.2.6 End of Frame Symbol (EOF)
	7.4.2.7 Inter-Frame Separation Symbol (IFS)
	7.4.2.8 Break Signal (BREAK)
	7.4.2.9 IDLE
	7.4.2.10 J1850 VPW Valid/Invalid Bits and Symbols
	7.4.2.10.1 Transmit and Receive Symbol Timing Specifications
	7.4.2.10.2 Message Arbitration

	7.4.2.11 J1850 Bus Errors
	7.4.2.11.1 Transmission Error
	7.4.2.11.2 CRC Error
	7.4.2.11.3 Symbol Error
	7.4.2.11.4 Framing Error
	7.4.2.11.5 Bus Fault
	7.4.2.11.6 Break

	7.4.2.12 Bus Error Summary

	7.4.3 MUX Interface
	7.4.3.1 Mux Interface - Rx Digital Filter
	7.4.3.2 Operation
	7.4.3.3 Performance

	7.4.4 Protocol Handler
	7.4.4.1 Protocol Architecture
	7.4.4.1.1 Rx and Tx Shift Registers
	7.4.4.1.2 Rx and Tx Shadow Registers
	7.4.4.1.3 Digital Loopback Multiplexer
	7.4.4.1.4 State Machine
	7.4.4.1.5 4X Mode
	7.4.4.1.6 Receiving a Message in Block Mode
	7.4.4.1.7 Transmitting a Message in Block Mode


	7.4.5 Transmitting A Message
	7.4.5.1 BDLC Transmission Control Bits
	7.4.5.1.1 BDLC Data Register
	7.4.5.1.2 Transmitting a Message with the BDLC

	7.4.5.2 Transmitting Exceptions
	7.4.5.2.1 Loss of Arbitration
	7.4.5.2.2 Error Detection
	7.4.5.2.3 Transmitter Underrun
	7.4.5.2.4 In-Frame Response to a Transmitted Message

	7.4.5.3 Aborting a Transmission

	7.4.6 Receiving A Message
	7.4.6.1 BDLC Reception Control Bits
	7.4.6.2 Receiving a Message with the BDLC Module
	7.4.6.3 Filtering Received Messages
	7.4.6.4 Receiving Exceptions
	7.4.6.4.1 Receiver Overrun
	7.4.6.4.2 CRC Error
	7.4.6.4.3 Invalid or Out of Range Symbol
	7.4.6.4.4 In-Frame Response to a Received Message


	7.4.7 Transmitting an In-Frame Response (IFR)
	7.4.7.1 IFR Types Supported by the BDLC Module
	7.4.7.1.1 IFR Type 0: No Response
	7.4.7.1.2 IFR Type 1: Single Byte from a Single Responder
	7.4.7.1.3 IFR Type 2: Single Byte from Multiple Responders
	7.4.7.1.4 IFR Type 3: Multiple Bytes from a Single Responder

	7.4.7.2 BDLC IFR Transmit Control Bits
	7.4.7.3 Transmit Single Byte IFR
	7.4.7.4 Transmit Multi-Byte IFR 1
	7.4.7.5 Transmit Multi-Byte IFR 0
	7.4.7.6 Transmitting An IFR with the BDLC module
	7.4.7.6.1 Transmitting a Type 1 IFR
	7.4.7.6.2 Transmitting a Type 2 IFR
	7.4.7.6.3 Transmitting a Type 3 IFR

	7.4.7.7 Transmitting IFR Exceptions

	7.4.8 Receiving An In-Frame Response (IFR)
	7.4.8.1 Receiving an IFR with the BDLC Module
	7.4.8.2 Receiving IFR Exceptions

	7.4.9 Special BDLC Module Operations
	7.4.9.1 Transmitting Or Receiving A Block Mode Message
	7.4.9.2 Transmitting Or Receiving A Message In 4X Mode


	7.5 Initialization Information
	7.5.1 Initializing the Configuration Bits
	7.5.2 Exiting Loopback Mode and Enabling the BDLC Module
	7.5.3 Enabling BDLC Interrupts


	Chapter 8 Clock Frequency Measurement (CFM)
	8.1 Introduction
	8.1.1 Overview
	8.1.2 Features

	8.2 Memory Map and Register Definition
	8.2.1 Memory Map
	8.2.2 Register Descriptions
	8.2.2.1 PhaseConfig Register
	8.2.2.2 FreqMeas Register


	8.3 Functional Description
	8.4 Application Example

	Chapter 9 CPU e300 Core Power Architecture
	9.1 Introduction
	9.2 e300c4lp Processor Core Functional Overview
	9.3 e300c4lp Core Reference Manual
	9.4 Unsupported e300c4lp Core Features
	9.4.1 Instructions
	9.4.2 CSB Parity
	9.4.3 Performance Monitor Event


	Chapter 10 CSB Arbiter and Bus Monitor
	10.1 Introduction
	10.1.1 Features
	10.1.1.1 Coherent System Bus Overview


	10.2 Memory Map/Register Definition
	10.2.1 Register Descriptions
	10.2.1.1 Arbiter Configuration Register (ACR)
	10.2.1.2 Arbiter Timers Register (ATR)
	10.2.1.3 Arbiter Transfer Error Register (ATER)
	10.2.1.4 Arbiter Event Register (AER)
	10.2.1.5 Arbiter Interrupt Definition Register (AIDR)
	10.2.1.6 Arbiter Mask Register (AMR)
	10.2.1.7 Arbiter Event Attributes Register (AEATR)
	10.2.1.8 Arbiter Event Address Register (AEADR)
	10.2.1.9 Arbiter Event Response Register (AERR)


	10.3 Functional Description
	10.3.1 Arbitration Policy
	10.3.1.1 Address Bus Arbitration With PRIORITY[0:1]
	10.3.1.2 Address Bus Arbitration With REPEAT
	10.3.1.3 Address Bus Arbitration After ARTRY
	10.3.1.4 Address Bus Parking
	10.3.1.5 Data Bus Arbitration

	10.3.2 Bus Error Detection
	10.3.2.1 Address Time Out
	10.3.2.2 Data Time Out
	10.3.2.3 Transfer errorExternal TEA
	10.3.2.4 Address Only Transaction Type
	10.3.2.5 Reserved Transaction Type
	10.3.2.6 Illegal (ECIWX/ECOWX) Transaction Type


	10.4 Initialization/Applications Information
	10.4.1 Initialization Sequence
	10.4.2 Error Handling Sequence


	Chapter 11 Direct Memory Access (DMA)
	11.1 Introduction
	11.1.1 Features

	11.2 Memory Map and Register Definition
	11.2.1 Register Descriptions
	11.2.1.1 DMA Control Register (DMACR)
	11.2.1.2 DMA Error Status (DMAES)
	11.2.1.3 DMA Enable Request (DMAERQH, DMAERQL)
	11.2.1.4 DMA Enable Error Interrupt (DMAEEIH, DMAEEIL)
	11.2.1.5 DMA Set Enable Request (DMASERQ)
	11.2.1.6 DMA Clear Enable Request (DMACERQ)
	11.2.1.7 DMA Set Enable Error Interrupt (DMASEEI)
	11.2.1.8 DMA Clear Enable Error Interrupt (DMACEEI)
	11.2.1.9 DMA Clear Interrupt Request (DMACINT)
	11.2.1.10 DMA Clear Error (DMACERR)
	11.2.1.11 DMA Set START Bit (DMASSRT)
	11.2.1.12 DMA Clear DONE Status (DMACDNE)
	11.2.1.13 DMA Interrupt Request (DMAINTH, DMAINTL)
	11.2.1.14 DMA Error (DMAERRH, DMAERRL)
	11.2.1.15 DMA Hardware Request Status (DMAHRSH, DMAHRSL)
	11.2.1.16 DMA Interrupt Select AXE (DMAIHSA, DMAILSA)
	11.2.1.17 DMA Channel n Priority (DCHPRIn), n = 0,..., {15,31,63}
	11.2.1.18 Transfer Control Descriptor (TCD)


	11.3 Initialization/Application Information
	11.3.1 DMA Initialization
	11.3.2 DMA Programming Errors
	11.3.3 DMA Arbitration Mode Considerations
	11.3.3.1 Fixed Group Arbitration, Fixed Channel Arbitration
	11.3.3.2 Round Robin Group Arbitration, Fixed Channel Arbitration
	11.3.3.3 Round Robin Group Arbitration, Round Robin Channel Arbitration
	11.3.3.4 Fixed Group Arbitration, Round Robin Channel Arbitration

	11.3.4 DMA Transfer
	11.3.4.1 Single Request
	11.3.4.2 Multiple Requests

	11.3.5 TCD Status
	11.3.5.1 Minor Loop Complete
	11.3.5.2 Active Channel TCD Reads
	11.3.5.3 Preemption Status

	11.3.6 Channel Linking
	11.3.7 Dynamic Programming
	11.3.7.1 Dynamic Priority Changing
	11.3.7.2 Dynamic Channel Linking and Dynamic Scatter/Gather



	Chapter 12 Display Interface Unit (DIU)
	12.1 Introduction
	12.1.1 Features
	12.1.2 Modes of Operation

	12.2 External Signal Description
	12.3 Memory Map and Register Definition
	12.3.1 Memory Map
	12.3.2 Register Summary
	12.3.3 Register Descriptions
	12.3.3.1 DESC_1 Register
	12.3.3.2 DESC_2 Register
	12.3.3.3 DESC_3 Register
	12.3.3.4 GAMMA Register
	12.3.3.5 PALETTE Register
	12.3.3.6 CURSOR Register
	12.3.3.7 CURS_POS Register
	12.3.3.8 DIU_MODE Register
	12.3.3.9 BGND Register
	12.3.3.10 BGND_WB Register
	12.3.3.11 DISP_SIZE Register
	12.3.3.12 WB_SIZE Register
	12.3.3.13 WB_MEM_ADDR Register
	12.3.3.14 HSYN_PARA Register
	12.3.3.15 VSYN_PARA Register
	12.3.3.16 SYN_POL Register
	12.3.3.17 THRESHOLDS Register
	12.3.3.18 INT_STATUS Register
	12.3.3.19 INT_MASK Register
	12.3.3.20 COLBAR Registers
	12.3.3.20.1 COLBAR_1 Register
	12.3.3.20.2 COLBAR_2 Register
	12.3.3.20.3 COLBAR_3 Register
	12.3.3.20.4 COLBAR_4 Register
	12.3.3.20.5 COLBAR_5 Register
	12.3.3.20.6 COLBAR_6 Register
	12.3.3.20.7 COLBAR_7 Register
	12.3.3.20.8 COLBAR_8 Register

	12.3.3.21 FILLING Register
	12.3.3.22 PLUT Register


	12.4 Functional Description
	12.4.1 Area Descriptor
	12.4.2 Area Descriptor Format
	12.4.2.1 Area Descriptor Word 0 - Pixel Format
	12.4.2.2 Area Descriptor Word 1 - Bitmap Address
	12.4.2.3 Area Descriptor Word 2 - Source Size/Global Alpha
	12.4.2.4 Area Descriptor Word 3 - AOI Size
	12.4.2.5 Area Descriptor Word 4 - AOI Offset
	12.4.2.6 Area Descriptor Word 5 - Display Offset
	12.4.2.7 Area Descriptor Word 6 - Chroma Key Max
	12.4.2.8 Area Descriptor Word 7 - Chroma Key Min
	12.4.2.9 Area Descriptor Word 8 - Next AD

	12.4.3 Pixel Structure
	12.4.4 Pixel Format Conversion
	12.4.4.1 Palette Mode

	12.4.5 Alpha Blending
	12.4.6 Chroma Keying
	12.4.7 Gamma Correction
	12.4.8 Cursor
	12.4.9 Write Back Operation
	12.4.10 Color Bar Generation
	12.4.11 Interrupt Generation
	12.4.12 Dynamic Priority Generation
	12.4.13 Display Signal Timing
	12.4.13.1 Refresh Rate


	12.5 Initialization/Application Information
	12.5.1 DIU Initialization
	12.5.2 Controlling DIU Planes after the DIU is Enabled
	12.5.3 Synchronize With the Host
	12.5.4 Recover From Parameter Error
	12.5.5 Recover From Underrun Error


	Chapter 13 DRAM Controller
	13.1 Introduction
	13.1.1 Overview

	13.2 Features
	13.3 Memory Map and Register Definition
	13.3.1 Memory Map
	13.3.2 Register Descriptions
	13.3.2.1 DDR System Configuration Register
	13.3.2.2 Timing Configuration
	13.3.2.3 Command Register
	13.3.2.4 Compact Command Register
	13.3.2.5 Enter/Exit Self-Refresh Registers
	13.3.2.6 DQS Config Offset Count and DQS Config Offset Time
	13.3.2.7 DQS Delay Status


	13.4 Functional Description
	13.4.1 Interfacing with the DRAM
	13.4.1.1 Connecting the DRAM

	13.4.2 Programming DRAM Device Internal Configuration Register
	13.4.3 DRAM Command Engine
	13.4.4 Write Buffer
	13.4.5 Timing Manager
	13.4.6 DRAM Read Block and DRAM Write Block
	13.4.7 Bus Interface


	Chapter 14 DRAM Controller Priority Manager
	14.1 Introduction
	14.1.1 Features

	14.2 Bus Connections
	14.3 Memory Map and Register Definition
	14.3.1 Memory Map
	14.3.2 Register Descriptions
	14.3.2.1 PRIOMAN_CONFIG1, PRIOMAN_CONFIG2
	14.3.2.2 HIPRIO_CONFIG
	14.3.2.3 LUT0 - LUT4 Main Upper
	14.3.2.4 LUT0 - LUT4 Main Lower
	14.3.2.5 LUT0 - LUT4 Alternate Upper
	14.3.2.6 LUT0 - LUT4 Alternate Lower
	14.3.2.7 PERMON_CONFIG
	14.3.2.8 Event Time Counter
	14.3.2.9 Event Time Preset
	14.3.2.10 Performance Monitor 1 and 2 Address Registers
	14.3.2.11 Performance Monitor Counters
	14.3.2.12 Granted Ack Counters
	14.3.2.13 Cumulative Wait Counters
	14.3.2.14 Summed Priority Counters
	14.3.2.15 Counter Register Descriptions and Values


	14.4 Functional Description
	14.4.1 Description of Operation - Overview
	14.4.2 Block Diagram
	14.4.3 Congestion Detector


	Chapter 15 External Memory Bus (EMB)
	15.1 Introduction
	15.1.1 Overview
	15.1.2 Features

	15.2 Functional Description
	15.2.1 EMB Mux


	Chapter 16 Fast Ethernet Controller (FEC)
	16.1 Introduction
	16.1.1 FEC Top Level
	16.1.2 Features
	16.1.3 Modes of Operation

	16.2 External Signal Description (Off Chip)
	16.2.1 I/O Signal Overview
	16.2.2 Detailed Signal Descriptions
	16.2.2.1 Ethernet MAC-PHY Interface
	16.2.2.1.1 Seven-Wire Ethernet MAC-PHY Interface
	16.2.2.1.2 MII Ethernet MAC-PHY Interface

	16.2.2.2 Signal Description
	16.2.2.2.1 MII Data Frame
	16.2.2.2.2 MII Management Frame Structure



	16.3 Memory Map and Register Definition
	16.3.1 Overview
	16.3.2 Top-Level Module Memory Map
	16.3.3 Detailed Memory Map - Control/Status Registers
	16.3.4 MIB Block Counters Memory Map
	16.3.5 Register Descriptions
	16.3.5.1 FEC ID Register (FEC_ID)
	16.3.5.2 Interrupt Event Register (IEVENT)
	16.3.5.3 Interrupt Mask Register (IMASK)
	16.3.5.4 CSR Receive Descriptor Active Register (R_DES_ACTIVE)
	16.3.5.5 CSR Transmit Descriptor Active Register (X_DES_ACTIVE)
	16.3.5.6 Ethernet Control Register (ECNTRL)
	16.3.5.7 MII Management Frame Register (MII_DATA)
	16.3.5.8 MII Speed Control Register (MII_SPEED)
	16.3.5.9 MIB Control Register (MIB_CONTROL)
	16.3.5.10 Receive Control Register (R_CNTRL)
	16.3.5.11 R_HASH Register
	16.3.5.12 Transmit Control Register (X_CNTRL)
	16.3.5.13 Physical Address Low (PADDR1)
	16.3.5.14 Physical Address High (PADDR2)
	16.3.5.15 Opcode/Pause Duration Register (OP_PAUSE)
	16.3.5.16 Descriptor Individual Address 1 (IADDR1)
	16.3.5.17 Descriptor Individual Address 2 (IADDR2)
	16.3.5.18 Descriptor Group Address 1 (GADDR1)
	16.3.5.19 Descriptor Group Address 2 (GADDR2)
	16.3.5.20 FIFO Transmit FIFO Watermark (X_WMRK)
	16.3.5.21 FIFO Receive Bound Register (R_BOUND)
	16.3.5.22 FIFO Receive Start Register (R_FSTART)
	16.3.5.23 Beginning of Receive Descriptor Ring (R_DES_START)
	16.3.5.24 Beginning of Transmit Descriptor Ring (X_DES_START)
	16.3.5.25 Receive Buffer Size Register (R_BUFF_SIZE)
	16.3.5.26 DMA Function Control Register (DMA_CONTROL)


	16.4 Initialization Information
	16.4.1 Initialization (Prior to Asserting ETHER_EN)
	16.4.1.1 Descriptor Controller Initialization
	16.4.1.2 Initialization (After Asserting ETHER_EN)


	16.5 Buffer Descriptors
	16.5.1 Driver/DMA Operation with Buffer Descriptors
	16.5.1.1 Driver/DMA Operation with Transmit BDs
	16.5.1.2 Driver/DMA Operation with Receive BDs

	16.5.2 Ethernet Receive Buffer Descriptor (RxBD)
	16.5.3 Ethernet Transmit Buffer Descriptor

	16.6 Network Interface Options
	16.6.1 FEC Frame Transmission
	16.6.1.1 Duplicate Frame Transmission

	16.6.2 FEC Frame Reception
	16.6.3 Ethernet Address Recognition
	16.6.4 Full-Duplex Flow Control
	16.6.5 Inter-Packet Gap Time
	16.6.6 Collision Handling
	16.6.7 Internal and External Loopback
	16.6.8 Ethernet Error-Handling Procedure
	16.6.9 Transmission Errors
	16.6.10 Reception Errors


	Chapter 17 General Purpose Timers (GPT)
	17.1 Introduction
	17.1.1 Modes of Operation
	17.1.2 Detailed Signal Descriptions

	17.2 Memory Map and Register Definition
	17.2.1 Memory Map
	17.2.2 Register Descriptions
	17.2.2.1 GPT0 - GPT7 Enable and Mode Select Registers
	17.2.2.2 GPT0 - GPT7 Input and Up/Down Counter Output Register
	17.2.2.3 GPT0 - GPT7 PWM Configuration Register
	17.2.2.4 GPT0 - GPT7 Status Register


	17.3 Functional Description
	17.3.1 Input Capture Mode
	17.3.1.1 Normal Input Capture Mode (IC MODE)
	17.3.1.2 UP Submodule
	17.3.1.3 UP DOWN Mode
	17.3.1.4 Rotary Mode

	17.3.2 Changing Sub-Modes
	17.3.3 Output Compare
	17.3.4 Force Output Low Immediately
	17.3.5 Output Pulse High
	17.3.6 Output Pulse Low
	17.3.7 Output Toggle
	17.3.8 Pulse Width Modulation
	17.3.9 Simple GPIO
	17.3.9.1 CPU Timer



	Chapter 18 General Purpose I/O (GPIO)
	18.1 Introduction
	18.2 Features
	18.3 Memory Map/Register Definition
	18.3.1 Register Descriptions
	18.3.1.1 GPIO Direction Register (GPDIR)
	18.3.1.2 GPIO Open Drain Register (GPODR)
	18.3.1.3 GPIO Data Register (GPDAT)
	18.3.1.4 GPIO Interrupt Event Register (GPIER)
	18.3.1.5 GPIO Interrupt Mask Register (GPIMR)
	18.3.1.6 GPIO Interrupt Control Register 1 and 2 (GPICR1 and GPICR2)


	18.4 Functional Description

	Chapter 19 IIM/Fusebox
	19.1 Introduction
	19.2 Overview
	19.2.1 Features
	19.2.2 Modes of Operation

	19.3 Memory Map and Register Definition
	19.3.1 Memory Map
	19.3.2 Register Descriptions
	19.3.2.1 Status Register (STAT)
	19.3.2.2 Status IRQ Mask (STATM)
	19.3.2.3 Module Errors Register (ERR)
	19.3.2.4 Error IRQ Mask Register (EMASK)
	19.3.2.5 Fuse Control Register (FCTL)
	19.3.2.6 Upper Address Register (UA)
	19.3.2.7 Lower Address Register (LA)
	19.3.2.8 Explicit Sense Data Register (SDAT)
	19.3.2.9 Program Protection Register (PRG_P)
	19.3.2.10 Divide Factor Register (DIVIDE)
	19.3.2.11 Fuse Bank 1 Protection Register (FBAC1)
	19.3.2.12 Fuse Bank 1 Data Register (FB1W1)


	19.4 Functional Description
	19.4.1 Fuse Bank 0
	19.4.2 Fuse Bank 1


	Chapter 20 Integrated Programmable Interrupt Controller (IPIC)
	20.1 Introduction
	20.1.1 Overview
	20.1.2 Features

	20.2 Memory Map/Register Definition
	20.2.1 Register Summary
	20.2.1.1 System Global Interrupt Configuration Register (SICFR)
	20.2.1.2 System Global Interrupt Vector Register (SIVCR)
	20.2.1.3 System Internal Interrupt Pending Registers (SIPNR_H and SIPNR_L)
	20.2.1.4 System Internal Interrupt Group A Priority Register (SIPRR_A)
	20.2.1.5 System Internal Interrupt Group B Priority Register (SIPRR_B)
	20.2.1.6 System Internal Interrupt Group C Priority Register (SIPRR_C)
	20.2.1.7 System Internal Interrupt Group D Priority Register (SIPRR_D)
	20.2.1.8 System Internal Interrupt Mask Register (SIMSR_H and SIMSR_L)
	20.2.1.9 System Internal Interrupt Control Register (SICNR)
	20.2.1.10 System External Interrupt Pending Register (SEPNR)
	20.2.1.11 System Mixed Interrupt Group A Priority Register (SMPRR_A)
	20.2.1.12 System Mixed Interrupt Group B Priority Register (SMPRR_B)
	20.2.1.13 System External Interrupt Mask Register (SEMSR)
	20.2.1.14 System External Interrupt Control Register (SECNR)
	20.2.1.15 System Error Status Register (SERSR)
	20.2.1.16 System Error Mask Register (SERMR)
	20.2.1.17 System Internal Interrupt Force Register (SIFCR_H and SIFCR_L)
	20.2.1.18 System External Interrupt Force Register (SEFCR)
	20.2.1.19 System Error Force Register (SERFR)
	20.2.1.20 System Critical Interrupt Vector Register (SCVCR)
	20.2.1.21 System Management Interrupt Vector Register (SMVCR)


	20.3 Functional Description
	20.3.1 Interrupt Types
	20.3.2 Interrupt Configuration
	20.3.3 Internal Interrupts Group Relative Priority
	20.3.4 Mixed Interrupts Group Relative Priority
	20.3.5 Highest Priority Interrupt
	20.3.6 Interrupt Source Priorities
	20.3.7 Masking Interrupt Sources
	20.3.8 Interrupt Vector Generation and Calculation
	20.3.9 Machine Check Interrupts


	Chapter 21 Inter-Integrated Circuit (I2C)
	21.1 Introduction
	21.1.1 Overview
	21.1.2 Features
	21.1.3 I2C Controller
	21.1.4 START Signal
	21.1.5 STOP Signal
	21.1.5.1 Slave Address Transmission
	21.1.5.2 Data Transfer

	21.1.6 Acknowledge
	21.1.6.1 Repeated Start
	21.1.6.2 Clock Synchronization

	21.1.7 Arbitration

	21.2 External Signal Description
	21.3 Memory Map and Register Definition
	21.3.1 Register Descriptions
	21.3.1.1 I2C Address Register (MADR)
	21.3.1.2 I2C Frequency Divider Register (MFDR)
	21.3.1.3 I2C Control Register (MCR)
	21.3.1.4 I2C Status Register (MSR)
	21.3.1.5 I2C Data I / O Register (MDR)
	21.3.1.6 I2C Interrupt Control Register (ICR)
	21.3.1.7 I2C Filter Register (MIFR)


	21.4 Initialization Sequence
	21.5 Transfer Initiation and Interrupt
	21.5.1 Post-Transfer Software Response
	21.5.2 Slave Mode
	21.5.3 Special Note on AKF


	Chapter 22 IO Control
	22.1 Introduction
	22.1.1 Overview
	22.1.2 Features

	22.2 Memory Map and Register Definition
	22.2.1 Memory Map
	22.2.2 Register Descriptions
	22.2.2.1 IO_CONTROL_MEM Register
	22.2.2.2 IO_CONTROL_GP Register
	22.2.2.3 IO_CONTROL_PAD Registers Descriptions
	22.2.2.3.1 Standard (STD)
	22.2.2.3.2 Standard with Pull-up/down Resistors (STD_PU)
	22.2.2.3.3 Standard with Schmitt-Trigger Input (STD_ST)
	22.2.2.3.4 Standard with Pull-up/down Resistors and Schmitt-Trigger Input (STD_PU_ST)
	22.2.2.3.5 PCI (PCI)
	22.2.2.3.6 PCI with Schmitt-Trigger input (PCI_ST)
	22.2.2.3.7 Pad IO Control Register




	Chapter 23 LocalPlus Bus (LPC)
	23.1 Introduction
	23.1.1 Features

	23.2 Memory Map and Register Definition
	23.2.1 Register Descriptions
	23.2.1.1 Chip Select / LPC Registers-0x0000
	23.2.1.1.1 Chip Select 0/Boot Configuration Register
	23.2.1.1.2 Chip Select[1:7] Configuration Registers
	23.2.1.1.3 Chip Select Control Register
	23.2.1.1.4 Chip Select Status Register
	23.2.1.1.5 Chip Select Burst Control Register
	23.2.1.1.6 Chip Select Deadcycle Control Register
	23.2.1.1.7 Chip Select Holdcycle Control Register
	23.2.1.1.8 Address Latch Timing Register

	23.2.1.2 SCLPC Registers-0x0100
	23.2.1.2.1 SCLPC Packet Size Register
	23.2.1.2.2 SCLPC Start Address Register
	23.2.1.2.3 SCLPC Control Register
	23.2.1.2.4 SCLPC Enable Register
	23.2.1.2.5 SCLPC Status Register
	23.2.1.2.6 SCLPC Bytes Done Register
	23.2.1.2.7 EMB Share and Wait Count Register
	23.2.1.2.8 EMB Pause Control Register

	23.2.1.3 LPC RX/TX FIFO Registers
	23.2.1.3.1 LPC RX / TX FIFO Data Word Register
	23.2.1.3.2 LPC RX / TX FIFO Status Register
	23.2.1.3.3 LPC RX / TX FIFO Control Register
	23.2.1.3.4 LPC RX / TX FIFO Alarm Register



	23.3 Functional Description
	23.3.1 Non-Muxed Mode
	23.3.2 Muxed Mode
	23.3.2.1 Address Tenure
	23.3.2.2 Data Tenure
	23.3.2.3 Boot Configuration
	23.3.2.4 Chip Selects Configuration

	23.3.3 SCLPC Interface
	23.3.3.1 SCLPC Programming

	23.3.4 Programmer’s Model


	Chapter 24 MBX Graphics Controller
	24.1 Introduction
	24.1.1 Overview
	24.1.1.1 MBXLITE Core

	24.1.2 Features

	24.2 DMA operation
	24.3 Clocking Architecture of the MBXLITE Core

	Chapter 25 MSCAN
	25.1 Introduction
	25.1.1 Features

	25.2 External Signal Description
	25.2.1 CAN Receiver Input Pins
	25.2.2 CAN Transmitter Output Pins
	25.2.3 CAN System

	25.3 Memory Map and Register Definition
	25.3.1 Register Summary
	25.3.2 Register Descriptions
	25.3.2.1 MSCAN Control 0 Register (CANCTL0)
	25.3.2.2 MSCAN Control 1 Register (CANCTL1)
	25.3.2.3 MSCAN Bus Timing Register 0 (CANBTR0)
	25.3.2.4 MSCAN Bus Timing Register 1 (CANBTR1)
	25.3.2.5 MSCAN Receiver Flag Register (CANRFLG)
	25.3.2.6 MSCAN Receiver Interrupt Enable Register (CANRIER)
	25.3.2.7 MSCAN Transmitter Flag Register (CANTFLG)
	25.3.2.8 MSCAN Transmitter Interrupt Enable Register (CANTIER)
	25.3.2.9 MSCAN Transmitter Message Abort Request (CANTARQ)
	25.3.2.10 MSCAN Transmitter Message Abort Acknowledge (CANTAAK)
	25.3.2.11 MSCAN Transmitter Buffer Selection (CANTBSEL)
	25.3.2.12 MSCAN Identifier Acceptance Control Register (CANIDAC)
	25.3.2.13 MSCAN MISC Register (CANMISC)
	25.3.2.14 MSCAN Receive Error Counter Register (CANRXERR)
	25.3.2.15 MSCAN Transmit Error Counter Register (CANTXERR)
	25.3.2.16 MSCAN Identifier Acceptance Register (CANIDAR0-CANIDAR7)
	25.3.2.17 MSCAN Identifier Mask Register (CANIDMR0-CANIDMR7)

	25.3.3 Programmer’s Model of Message Storage
	25.3.3.1 Identifier Registers (IDR0-IDR3)
	25.3.3.1.1 IDR0-IDR3 for Extended Identifier Mapping
	25.3.3.1.2 IDR0-IDR3 for Standard Identifier Mapping

	25.3.3.2 Data Segment Registers (DSR0-7)
	25.3.3.3 Data Length Register (DLR)
	25.3.3.4 Transmit Buffer Priority Register (TBPR)
	25.3.3.5 Time Stamp Register (TSRH-TSRL)


	25.4 Functional Description
	25.4.1 General
	25.4.2 Message Storage
	25.4.2.1 Message Transmit Background
	25.4.2.2 Transmit Structures
	25.4.2.3 Receive Structures

	25.4.3 Identifier Acceptance Filter
	25.4.4 Protocol Violation Protection
	25.4.5 Clock System
	25.4.6 Timer Link
	25.4.7 Modes of Operation
	25.4.7.1 Normal Mode
	25.4.7.2 Initialization Mode
	25.4.7.3 Sleep mode
	25.4.7.4 Power down mode
	25.4.7.5 Listen-Only Mode

	25.4.8 Low Power Options
	25.4.8.1 MSCAN Sleep Mode
	25.4.8.2 MSCAN Initialization Mode
	25.4.8.3 MSCAN Power Down Mode
	25.4.8.4 Programmable Wake-Up Function

	25.4.9 Reset Initialization
	25.4.10 Interrupts
	25.4.11 Description of Interrupt Operation
	25.4.11.1 Transmit Interrupt
	25.4.11.2 Receive Interrupt
	25.4.11.3 Wake-Up Interrupt
	25.4.11.4 Error Interrupt

	25.4.12 Interrupt Acknowledge
	25.4.13 Recovery from Deep Sleep Mode
	25.4.14 MSCAN Initialization
	25.4.15 Bus-Off Recovery


	Chapter 26 NAND Flash Controller (NFC)
	26.1 Introduction
	26.2 Overview
	26.3 Features
	26.4 External Signal Description
	26.5 Memory Map and Register Definition
	26.5.1 Internal RAM
	26.5.2 Spare Area Buffer
	26.5.3 Register Summary
	26.5.4 Register Descriptions
	26.5.4.1 Buffer Number for Page Data Transfer(RAM_BUF_ADDR)
	26.5.4.2 NAND Flash Address Register (FLASH_ADDR)
	26.5.4.3 NAND Flash Command Register (FLASH_CMD)
	26.5.4.4 NAND Flash Controller Internal Buffer Lock Control(NFC_CFG)
	26.5.4.5 Controller Status and the Result of Flash Operation (ECC_STATUS1)
	26.5.4.6 Controller Status and the Result of Flash Operation (ECC_STATUS2)
	26.5.4.7 SPare Area Size(SPAS)
	26.5.4.8 Nand Flash Write Protection (NF_WR_PROT)
	26.5.4.9 NAND Flash Write Protection Status (Flash_WP_ST)
	26.5.4.10 NAND Flash Operation Configuration (NF_CFG1)
	26.5.4.11 NAND Flash Operation Configuration (NF_CFG2)
	26.5.4.12 Start Block Address to Unlock in Write Protection Mode (NFC_USBA0)
	26.5.4.13 End Block Address to Unlock in Write Protection Mode (NFC_UEBA0)
	26.5.4.14 Start Block Address to Unlock in Write Protection Mode (NFC_USBA1)
	26.5.4.15 End Block Address to Unlock in Write Protection Mode (NFC_UEBA1)
	26.5.4.16 Start Block Address to Unlock in Write Protection Mode (NFC_USBA2)
	26.5.4.17 End Block Address to Unlock in Write Protection Mode (NFC_UEBA2)
	26.5.4.18 Start Block Address to Unlock in Write Protection Mode (NFC_USBA3)
	26.5.4.19 End Block Address to Unlock in Write Protection Mode (NFC_UEBA3)


	26.6 Functional Description
	26.6.1 Modes of Operation
	26.6.2 Booting From a NAND Flash Device
	26.6.3 NAND Flash Control
	26.6.4 NAND Flash Control
	26.6.5 Flash Clock Diagrams
	26.6.6 NFC Boot Load Sequence
	26.6.7 DMA Request Operation
	26.6.8 RS ECC
	26.6.9 Address Control
	26.6.10 RAM Buffer (SRAM)
	26.6.11 Read and Write Control
	26.6.12 Endian
	26.6.13 I/O Pins Sharing

	26.7 Initialization Information
	26.7.1 Normal Operation
	26.7.1.1 Fundamental Building Block Operations
	26.7.1.1.1 Preset Operation
	26.7.1.1.2 NAND Flash Command Input Operation
	26.7.1.1.3 NAND Flash Address Input Operation
	26.7.1.1.4 NAND Flash Data Input (Program) Operation
	26.7.1.1.5 NAND Flash Data Output Operation (Read)

	26.7.1.2 Normal Operation
	26.7.1.2.1 Read NAND Flash ID Read Operation
	26.7.1.2.2 NAND Flash Status Read Operation
	26.7.1.2.3 Read NAND Flash Data Operation
	26.7.1.2.4 Program NAND Flash Data Operation
	26.7.1.2.5 Erase NAND Flash Data Operation
	26.7.1.2.6 HOT Reset (Controller and NAND Flash Reset)

	26.7.1.3 ECC Operation
	26.7.1.3.1 ECC Normal Operation

	26.7.1.4 ECC Bypass operation
	26.7.1.4.1 ECC Operation Guidance


	26.7.2 Symmetric Mode - One Flash Clock Cycle Per Input or Output Data Cycle
	26.7.2.1 Write Protection
	26.7.2.1.1 WRITE Protection for RAMbuffer (LSB 2KB)
	26.7.2.1.2 Write Protection Modes
	26.7.2.1.3 Write Protection Commands
	26.7.2.1.4 Write Protection Status
	26.7.2.1.5 Lock Sequence
	26.7.2.1.6 Unlock Sequence


	26.7.3 Memory Configuration Examples


	Chapter 27 Parallel Advanced Technology Attachment (PATA)
	27.1 Introduction
	27.1.1 Features
	27.1.2 Modes of Operation

	27.2 External Signal Description
	27.2.1 Overview
	27.2.2 Meeting Timing on the ATA Bus
	27.2.2.1 Timing Parameters
	27.2.2.2 PIO Mode Timing
	27.2.2.3 Timing in Multiword DMA Mode
	27.2.2.4 UDMA In Timing Diagrams
	27.2.2.5 UDMA Out Timing Diagrams


	27.3 Memory Map and Register Definition
	27.3.1 Memory Map
	27.3.2 Register Descriptions
	27.3.2.1 Timing Register 1
	27.3.2.2 Timing Register 2
	27.3.2.3 Timing Register 3
	27.3.2.4 Timing Register 4
	27.3.2.5 Timing Register 5
	27.3.2.6 Timing Register 6
	27.3.2.7 FIFO Data 32 Register
	27.3.2.8 FIFO Data 16 Register
	27.3.2.9 FIFO Fill Register
	27.3.2.10 ATA_CONTROL Register
	27.3.2.11 Interrupt Pending Register
	27.3.2.12 Interrupt Enable Register
	27.3.2.13 Interrupt Clear Register
	27.3.2.14 FIFO Alarm Register
	27.3.2.15 Registers Present in the Drive Connected to the ATA Bus


	27.4 Functional Description
	27.4.1 Reset
	27.4.2 Programming ATA Bus Timing and IORDY_EN
	27.4.3 Access to ATA Bus in PIO Mode
	27.4.4 Using DMA Mode to Receive Data from the ATA Bus
	27.4.5 Using DMA Mode to Transmit Data to the ATA Bus


	Chapter 28 PCI Controller (PCI)
	28.1 Introduction
	28.1.1 Features

	28.2 External Signal Description
	28.2.1 Detailed Signal Descriptions

	28.3 Memory Map and Register Definition
	28.3.1 Register Descriptions
	28.3.1.1 Control and Status Registers
	28.3.1.1.1 PCI Error Status Register (PCI_ESR)
	28.3.1.1.2 PCI Error Capture Disable Register (PCI_ECDR)
	28.3.1.1.3 PCI Error Enable Register (PCI_EER)
	28.3.1.1.4 PCI Error Attributes Capture Register (PCI_EATCR)
	28.3.1.1.5 PCI Error Address Capture Register (PCI_EACR)
	28.3.1.1.6 PCI Error Extended Address Capture Register (PCI_EEACR)
	28.3.1.1.7 PCI Error Data Capture Register (PCI_EDLCR)
	28.3.1.1.8 PCI General Control Register (PCI_GCR)
	28.3.1.1.9 PCI Error Control Register (PCI_ECR)
	28.3.1.1.10 PCI General Status Register (PCI_GSR)
	28.3.1.1.11 PCI Inbound Translation Address Registers (PITARn)
	28.3.1.1.12 PCI Inbound Base Address Registers (PIBARn)
	28.3.1.1.13 PCI Inbound Extended Base Address Registers (PIEBARn)
	28.3.1.1.14 PCI Inbound Window Attribute Registers (PIWARn)

	28.3.1.2 PCI Configuration Space Registers
	28.3.1.2.1 Vendor ID Configuration Register
	28.3.1.2.2 Device ID Configuration Register
	28.3.1.2.3 PCI Command Configuration Register
	28.3.1.2.4 PCI Status Configuration Register
	28.3.1.2.5 Revision ID Configuration Register
	28.3.1.2.6 Standard Programming Interface Configuration Register
	28.3.1.2.7 Subclass Code Configuration Register
	28.3.1.2.8 Base Class Code Configuration Register
	28.3.1.2.9 Cache Line Size Configuration Register
	28.3.1.2.10 Latency Timer Configuration Register
	28.3.1.2.11 Header Type Configuration Register
	28.3.1.2.12 BIST Control Configuration Register
	28.3.1.2.13 PIMMR Base Address Configuration Register
	28.3.1.2.14 GPL Base Address Register 0
	28.3.1.2.15 GPL Base Address Registers 1,2
	28.3.1.2.16 Sub-System Vendor ID Configuration Register
	28.3.1.2.17 Sub-System Device ID Configuration Register
	28.3.1.2.18 Capabilities Pointer Configuration Register
	28.3.1.2.19 Interrupt Line Configuration Register
	28.3.1.2.20 Interrupt Pin Configuration Register
	28.3.1.2.21 MIN GNT Configuration Register
	28.3.1.2.22 MAX LAT Configuration Register
	28.3.1.2.23 PCI Function Configuration Register
	28.3.1.2.24 PCI Arbiter Control Configuration Register

	28.3.1.3 Software Configuration Registers
	28.3.1.3.1 CONFIG_ADDRESS
	28.3.1.3.2 CONFIG_DATA
	28.3.1.3.3 PCI Interrupt Acknowledge Register (PCI_INT_ACK)

	28.3.1.4 PCI Bus Arbitration
	28.3.1.4.1 Bus Parking
	28.3.1.4.2 Arbitration Algorithm
	28.3.1.4.3 Broken Master Lock-Out
	28.3.1.4.4 Master Latency Timer



	28.4 PCI Interface Functional Description
	28.4.1 Bus Commands
	28.4.1.1 PCI Protocol Fundamentals
	28.4.1.1.1 Basic Transfer Control
	28.4.1.1.2 Addressing
	28.4.1.1.3 Device Selection
	28.4.1.1.4 Byte Enable Signals
	28.4.1.1.5 Bus Driving and Turnaround
	28.4.1.1.6 Bus Transactions
	28.4.1.1.7 Read and Write Transactions
	28.4.1.1.8 Transaction Termination

	28.4.1.2 Other Bus Operations
	28.4.1.2.1 Fast Back-to-Back Transactions
	28.4.1.2.2 Dual Address Cycles
	28.4.1.2.3 Data Streaming
	28.4.1.2.4 Host Mode Configuration Access
	28.4.1.2.5 Special Cycle Command
	28.4.1.2.6 Interrupt Acknowledge
	28.4.1.2.7 Error Functions
	28.4.1.2.8 Parity
	28.4.1.2.9 Error Reporting

	28.4.1.3 PCI Inbound Address Translation


	28.5 I/O Sequencer for PCI Subsystem (PCI)
	28.6 Introduction
	28.6.1 Features

	28.7 PCI_IOS Memory Map and Register Definition
	28.7.1 Register Descriptions
	28.7.1.1 PCI Outbound Translation Address Registers (POTARn)_
	28.7.1.2 PCI Outbound Base Address Registers (POBARn)
	28.7.1.3 PCI Outbound Comparison Mask Registers (POCMRn)
	28.7.1.4 Power Management Control Register (PMCR)
	28.7.1.5 Discard Timer Control Register (DTCR)


	28.8 Functional Description
	28.8.1 Transaction Forwarding
	28.8.1.1 Transactions from the Local Port
	28.8.1.2 Transactions from the PCI Port
	28.8.1.3 Transactions from the DMA Port

	28.8.2 PCI Outbound Address Translation
	28.8.3 Transaction Ordering

	28.9 DMA for PCI Subsystem (PCI)
	28.9.1 Features
	28.9.2 Modes of Operation

	28.10 External Signal Description
	28.10.1 Detailed Signal Descriptions

	28.11 Memory Map and Register Definition
	28.11.1 Register Descriptions
	28.11.1.1 Outbound Message Interrupt Registers
	28.11.1.1.1 Outbound Message Interrupt Status Register (OMISR)
	28.11.1.1.2 Outbound Message Interrupt Mask Register (OMIMR)

	28.11.1.2 Message Registers
	28.11.1.2.1 Inbound Message Registers (IMR0, IMR1)
	28.11.1.2.2 Outbound Message Registers (OMR0, OMR1)

	28.11.1.3 Doorbell Registers
	28.11.1.3.1 Outbound Doorbell Register (ODR)
	28.11.1.3.2 Inbound Doorbell Register (IDR)

	28.11.1.4 Inbound Message Interrupt Registers
	28.11.1.4.1 Inbound Message Interrupt Status Register (IMISR)
	28.11.1.4.2 Inbound Message Interrupt Mask Register (IMIMR)

	28.11.1.5 DMA Registers
	28.11.1.5.1 DMA Mode Register (DMAMRx)

	28.11.1.6 DMA Status Register (DMASRn)
	28.11.1.6.1 DMA Current Descriptor Address Register (DMACDARn)
	28.11.1.6.2 DMA Source Address Register (DMASARn)
	28.11.1.6.3 DMA Destination Address Register (DMADARn)
	28.11.1.6.4 DMA Byte Count Register (DMABCRn)
	28.11.1.6.5 DMA Next Descriptor Address Register (DMANDARn)
	28.11.1.6.6 DMA General Status Register (DMAGSR)



	28.12 Functional Description
	28.12.1 Message Unit
	28.12.1.1 Message Passing
	28.12.1.2 Doorbells

	28.12.2 DMA Controller
	28.12.2.1 DMA Operation
	28.12.2.1.1 DMA Direct Mode
	28.12.2.1.2 DMA Chaining Mode
	28.12.2.1.3 External Control
	28.12.2.1.4 DMA Coherency
	28.12.2.1.5 Halt and Error Conditions

	28.12.2.2 DMA Segment Descriptors
	28.12.2.2.1 Descriptor in Big Endian Mode
	28.12.2.2.2 Descriptor in Little Endian Mode




	Chapter 29 Power Management Control Module (PMC)
	29.1 Introduction
	29.1.1 Features

	29.2 Memory Map and Register Definition
	29.2.0.1 PMC Configuration Register (PMCCR)
	29.2.0.2 PMC Event Register (PMCER)
	29.2.0.3 PMC Mask Register (PMCMR)
	29.2.0.4 PMC Shadow Register (PMCSR)
	29.2.1 Functional description
	29.2.1.1 Full-Power Mode
	29.2.1.2 Doze Mode
	29.2.1.3 Nap Mode
	29.2.1.4 Sleep Mode
	29.2.1.5 Deep Sleep Mode

	29.2.2 Core PLL Change Mode
	29.2.3 PRE_DIV Copy Enable Mode
	29.2.4 Low-Power Configurations


	Chapter 30 Programmable Serial Controller (PSC)
	30.1 Introduction
	30.2 Memory Map
	30.2.1 Register Descriptions
	30.2.1.1 Mode Register 1 (MR1)
	30.2.1.2 Mode Register 2 (MR2)
	30.2.1.3 Status Register (SR)
	30.2.1.4 Clock Select Register (CSR)
	30.2.1.5 Command Register (CR)
	30.2.1.6 Rx Buffer Register (RB)
	30.2.1.7 Tx Buffer Register (TB)
	30.2.1.8 Input Port Change Register (IPCR)
	30.2.1.9 Auxiliary Control Register (ACR)
	30.2.1.10 Interrupt Status Register (ISR)
	30.2.1.11 Interrupt Mask Register (IMR)
	30.2.1.12 Counter Timer Upper Register (CTUR)
	30.2.1.13 Counter Timer Lower Register (CTLR)
	30.2.1.14 Codec Clock Register (CCR)
	30.2.1.15 AC97 Slots Register (AC97Slots)
	30.2.1.16 AC97 Command Register (AC97CMD)
	30.2.1.17 AC97 Status Data Register (AC97Data)
	30.2.1.18 Input Port Register (IP)
	30.2.1.19 Output Port 1 Bit Set (OP1)
	30.2.1.20 Output Port 0 Bit Set (OP0)
	30.2.1.21 Serial Interface Control Register (SICR)


	30.3 PSC Functions Overview
	30.4 Features
	30.5 Modes of Operation
	30.5.1 PSC in UART Mode
	30.5.1.1 Block Diagram and Signal Definition for UART Mode
	30.5.1.2 UART Clock Generation
	30.5.1.3 Transmitting in UART Mode
	30.5.1.4 Receiving in UART Mode
	30.5.1.5 TimeOut Counter Behavior
	30.5.1.6 Configuration Sequence for UART Mode
	30.5.1.7 UART Multidrop Mode

	30.5.2 PSC in Codec Mode
	30.5.2.1 Block Diagram and Signal Definition for Codec Mode
	30.5.2.2 Codec Clock and FrameSync Generation
	30.5.2.3 Transmitting and Receiving in Soft Modem Codec Mode
	30.5.2.4 Transmitting and Receiving in ESAI Mode (Enhanced Serial Audio Interface)
	30.5.2.5 Transmitting and Receiving in I2S Master Mode
	30.5.2.6 Transmitting and Receiving in SPI Mode

	30.5.3 PSC in AC97 Mode
	30.5.3.1 Block Diagram and Signal Definition for AC97 Mode
	30.5.3.2 Generate a Reset Condition for the External AC97 Codec Device
	30.5.3.2.1 Cold AC97 Reset
	30.5.3.2.2 Warm AC97 Reset
	30.5.3.2.3 Register AC97 Reset

	30.5.3.3 External AC97 Codec Test Mode
	30.5.3.4 AC97 Low-Power Mode
	30.5.3.5 Transmitting and Receiving in AC97 Mode

	30.5.4 Local Loop-Back Mode
	30.5.5 Remote Loop-Back Mode


	Chapter 31 PSC Centralized FIFO Controller (FIFOC)
	31.1 Introduction
	31.1.1 Features
	31.1.2 Modes of Operation
	31.1.3 Register Descriptions
	31.1.3.1 Command Register (CMD)
	31.1.3.2 Alarm Level (ALARM)
	31.1.3.3 Status Register (SR)
	31.1.3.4 Interrupt Status Register (ISR)
	31.1.3.5 Interrupt Mask Register (IMR)
	31.1.3.6 Count Register (Count)
	31.1.3.7 Pointer Register (PTR)
	31.1.3.8 FIFO Size Register (Size)
	31.1.3.9 Data Register (Data)
	31.1.3.10 FIFOC Command Register (FIFOC_CMD)
	31.1.3.11 FIFOC Interrupt Register (FIFOC_INT)
	31.1.3.12 FIFOC DMA Request Register (FIFOC_DMA)
	31.1.3.13 FIFOC AXE Request Register (FIFOC_AXE)
	31.1.3.14 FIFOC Debug Register (FIFOC_DEBUG)


	31.2 Functional Description

	Chapter 32 Real Time Clock (RTC)
	32.1 Introduction
	32.1.1 Features

	32.2 External Signal Descriptions
	32.3 Memory Map and Register Definition
	32.3.1 Memory Map
	32.3.2 Register Descriptions
	32.3.2.1 RTC Time Set Register
	32.3.2.2 RTC Date Set Register
	32.3.2.3 RTC New Year and Stopwatch Register
	32.3.2.4 RTC Alarm and Interrupt Enable Register
	32.3.2.5 RTC Current Time Register
	32.3.2.6 RTC Current Date Register
	32.3.2.7 RTC Alarm and Stopwatch Interrupt Register
	32.3.2.8 RTC Periodic Interrupt and Bus Error Register
	32.3.2.9 RTC Target Time Register
	32.3.2.10 RTC Actual Time Counter
	32.3.2.11 RTC Keep Alive Register


	32.4 Functional Description
	32.4.1 Behavior at Power On
	32.4.2 Behavior of Wakeup Sources
	32.4.3 Behavior During Power Off (Hibernation Mode)
	32.4.4 RTC Response to Target Time Register/Actual Time Count Register and External Wakeup Sources
	32.4.5 RTC Response to External Wakeup Sources
	32.4.5.1 Behavior of the RTC keep alive register WU_SRC_x bits when the WU_SRC_MODE is disabled
	32.4.5.2 Behavior of the RTC keep alive register WU_SRC_x bits when the WU_SRC_MODE is enabled



	Chapter 33 SATA Controller (SATA)
	33.1 Introduction
	33.1.1 Features
	33.1.2 Modes of Operation

	33.2 External Signal Description
	33.3 Memory Map and Register Definition
	33.3.1 Register Descriptions
	33.3.1.1 ATA Taskfile and Control Registers
	33.3.1.2 SATA Status and Control Registers
	33.3.1.2.1 SStatus Register
	33.3.1.2.2 SError Register
	33.3.1.2.3 SControl Register

	33.3.1.3 Special Registers
	33.3.1.3.1 Trans_cfg Register
	33.3.1.3.2 Trans_status0 Register
	33.3.1.3.3 Link_cfg0 Register
	33.3.1.3.4 Link_cfg1 Register
	33.3.1.3.5 Link_cfg2 Register
	33.3.1.3.6 Link_status0 Register
	33.3.1.3.7 Link_status1 Register
	33.3.1.3.8 Phy_cfg Register
	33.3.1.3.9 Trans_status1 Register
	33.3.1.3.10 Tx_bist_dat0 Register
	33.3.1.3.11 Bist_dat0_sel Register
	33.3.1.3.12 Tx_bist_dat1 Register
	33.3.1.3.13 Bist_dat1_sel Register
	33.3.1.3.14 Tx_bist_mode Register
	33.3.1.3.15 Bist_written Register
	33.3.1.3.16 Bist_status Register
	33.3.1.3.17 Tx_send_dmat Register
	33.3.1.3.18 Atapi_en Register

	33.3.1.4 Additional Registers
	33.3.1.4.1 PMCtrl Register
	33.3.1.4.2 PMStat Register

	33.3.1.5 DMA Registers
	33.3.1.5.1 DmaEndian Register
	33.3.1.5.2 Dma_stat_ctrl Register
	33.3.1.5.3 Dma_max_cnt Register
	33.3.1.5.4 Dma_start Register



	33.4 Functional Description
	33.4.1 Clock
	33.4.2 Interrupt
	33.4.3 ATAPI Support
	33.4.3.1 ATAPI Transfers

	33.4.4 PIO Transfers
	33.4.4.1 PIO Read
	33.4.4.2 PIO Write

	33.4.5 DMA Transfers
	33.4.5.1 DMA Read
	33.4.5.2 DMA Write

	33.4.6 Power Management
	33.4.7 DMA Controller
	33.4.7.0.1 DMA Transfers
	33.4.7.1 DMA Interrupt Generation
	33.4.7.2 Register Block
	33.4.7.3 PIO Transfers
	33.4.7.4 Interrupt Generation

	33.4.8 Physical Coding Sublayer (PCS)
	33.4.9 Serial ATA Physical Layer Macro (SATA PHY)
	33.4.9.1 Introduction


	33.5 Initialization Information

	Chapter 34 Secure Digital Host Controller (SDHC)
	34.1 Introduction
	34.1.1 Features

	34.2 External Signal Description
	34.2.1 Detailed Signal Descriptions
	34.2.1.1 Overview


	34.3 Memory Map and Register Definition
	34.3.1 Memory Map
	34.3.2 Register Descriptions
	34.3.2.1 SDHC Clock Control Register (STR_STP_CLK)
	34.3.2.2 SDHC Status Register (STATUS)
	34.3.2.3 SDHC Clock Rate Register (CLK_RATE)
	34.3.2.4 SDHC Command and Data Control Register (CMD_DAT_CONT)
	34.3.2.5 SDHC Response Time Out Register (RES_TO)
	34.3.2.6 SDHC Read Time Out Register (READ_TO)
	34.3.2.7 SDHC Block Length Register (BLK_LEN)
	34.3.2.8 SDHC Number of Blocks Register (NOB)
	34.3.2.9 SDHC Revision Number Register (REV_NO)
	34.3.2.10 SDHC Interrupt Control Register (INT_CNTR)
	34.3.2.11 SDHC Command Number Register (CMD)
	34.3.2.12 SDHC CMD Argument Register (ARG)
	34.3.2.13 SDHC Response FIFO Access Register (RES_FIFO)
	34.3.2.14 SDHC Data Buffer Access Register (DBA)


	34.4 Functional Description
	34.4.1 Data Buffers
	34.4.1.1 Data Buffer Access
	34.4.1.2 Write Operation Sequence
	34.4.1.3 Read Operation Sequence
	34.4.1.4 Data Buffer Size
	34.4.1.5 Dividing Large Data Transfer

	34.4.2 DMA Interface
	34.4.2.1 DMA Request

	34.4.3 Memory Controller
	34.4.4 SDIO Card Interrupt
	34.4.4.1 Interrupts in 1-Bit Mode
	34.4.4.2 Interrupt in 4-Bit Mode
	34.4.4.3 Card Interrupt Handling

	34.4.5 Card Insertion and Removal Detection
	34.4.6 Power Management
	34.4.7 System Clock Controller

	34.5 Initialization Information
	34.5.1 MMC_SD_CLK Control
	34.5.2 Command Submit - Response Receive Basic Operation
	34.5.3 Card Identification Mode
	34.5.3.1 Card Detect
	34.5.3.2 Reset
	34.5.3.3 Voltage Validation
	34.5.3.4 Card Registry

	34.5.4 Card Access
	34.5.4.1 Block Access - Block Write & Block Read
	34.5.4.1.1 Block Write
	34.5.4.1.2 Block Read


	34.5.5 Switch Card Mode


	Chapter 35 Software Watchdog Timer (WDT)
	35.1 Introduction
	35.1.1 Features
	35.1.2 Modes of Operation

	35.2 Memory Map/Register Definition
	35.2.1 Memory Map
	35.2.2 Register Descriptions
	35.2.2.1 Software Watchdog Control Register (SWCRR)
	35.2.2.2 Software Watchdog Count Register (SWCNR)
	35.2.2.3 Software Watchdog Service Register (SWSRR)


	35.3 Functional Description
	35.3.1 Software Watchdog Timer Unit
	35.3.2 Modes of Operation
	35.3.2.1 WDT Enable/Disable Mode
	35.3.2.2 WDT Reset/Interrupt Output Mode
	35.3.2.3 WDT Prescaled/Non-Prescaled Clock Mode



	Chapter 36 Sony/Philips Digital Interface (SPDIF)
	36.1 Introduction
	36.1.1 Features

	36.2 External Signal Description
	36.2.1 Pin Signal Descriptions
	36.2.2 Detailed Signal Descriptions

	36.3 Memory Map and Register Definition
	36.3.1 Register Descriptions
	36.3.1.1 SPDIF Configuration Register
	36.3.1.2 CDText Control Register
	36.3.1.3 PhaseConfig Register (SRPC)
	36.3.1.4 Interrupt Registers
	36.3.1.4.1 InterruptEn Register (SIE)
	36.3.1.4.2 InterruptStat Register (SIS)
	36.3.1.4.3 InterruptClear Register (SIC)

	36.3.1.5 SPDIF Reception Registers
	36.3.1.5.1 EbuRcvLeft Register (SRXL)
	36.3.1.5.2 EbuRcvRight Register (SRXR)
	36.3.1.5.3 EBU_RxCChannel_h Register (SRCSH)
	36.3.1.5.4 EBU_RxCChannel_I Register (SRCSL)
	36.3.1.5.5 EBU_RxUChannel Register (SRU)
	36.3.1.5.6 EBU_RxQChannel (SRQ)

	36.3.1.6 FreqMeas Register (SRFM)
	36.3.1.7 SPDIF Transmission Registers
	36.3.1.7.1 EbuTxLeft Register (STXL)
	36.3.1.7.2 EbuTxRight Register (STXR)
	36.3.1.7.3 EBU_TxCChannelCons_h Register (STCSH)
	36.3.1.7.4 EBU_TxCChannelCons_I Register (STCSL)
	36.3.1.7.5 EBU_TxUChannel Register (STU)

	36.3.1.8 Transmit Clock Control Register (STC)


	36.4 Functional Description
	36.4.1 SPDIF Receiver
	36.4.1.1 Audio Data Reception
	36.4.1.1.1 SPDIF Receiver Data Registers - Behavior on Overrun/Underrun
	36.4.1.1.2 SPDIF Receiver Data Registers-Automatic Resynchronization of FIFOs

	36.4.1.2 Application Note
	36.4.1.2.1 SPDIF Receiver-Additional Features
	36.4.1.2.2 Rcv FIFO On and Rcv FIFO Reset

	36.4.1.3 Channel Status Reception
	36.4.1.4 Channel Status interrupt
	36.4.1.5 User Bit Reception
	36.4.1.5.1 Behavior of User Channel Receive Interface on Incoming CD User Channel Sub-code in SPDIF Receiver
	36.4.1.5.2 Behavior of User Channel Receive Interface on Incoming Non-CD Data

	36.4.1.6 Validity Flag Reception
	36.4.1.7 SPDIF Receiver Interrupt Exception Definition
	36.4.1.8 Standards Compliancy
	36.4.1.9 Measuring Frequency of SPDIF_RcvClk

	36.4.2 SPDIF Transmitter
	36.4.2.1 Audio Data Transmission
	36.4.2.1.1 SPDIF Transmitter Data Registers-Behavior on Overrun, Underrun
	36.4.2.1.2 SPDIF Transmitter Data Registers-Automatic Resynchronization of FIFOs
	36.4.2.1.3 EbuTxLeft, EbuTxRight Details

	36.4.2.2 Channel Status Transmission
	36.4.2.3 User Channel Transmission
	36.4.2.3.1 The CD-Text Format
	36.4.2.3.2 Advanced Topic: Synchronization of the Free-Running Counter-Legacy Only
	36.4.2.3.3 Inserting CD User Channel Data into IEC958 Transmit Data

	36.4.2.4 Validity Flag Transmission



	Chapter 37 SRAM Memory (MEM)
	37.1 Introduction

	Chapter 38 Temperature Sensor
	38.1 Introduction
	38.1.1 Normal Operation Mode


	Chapter 39 Universal Serial Bus Interface with On-The-Go
	39.1 Introduction
	39.1.1 Overview
	39.1.2 Features
	39.1.3 Modes of Operation

	39.2 Memory Map/Register Definitions
	39.2.1 Register Descriptions
	39.2.1.1 Module Identification Registers
	39.2.1.1.1 Identification (ID) Register (Non-EHCI)
	39.2.1.1.2 General Hardware Parameters (HWGENERAL) Register (non-EHCI)
	39.2.1.1.3 Host Hardware Parameters (HWHOST) Register (non-EHCI)
	39.2.1.1.4 Device Hardware Parameters (HWDEVICE) Register (Non-EHCI)
	39.2.1.1.5 Transmit Buffer Hardware Parameters (HWTXBUF) Register (non-EHCI)
	39.2.1.1.6 Receive Buffer Hardware Parameters (HWRXBUF) Register (non-EHCI)
	39.2.1.1.7 System Bus Interface Configuration (SBUSCFG) (Non-EHCI)

	39.2.1.2 Capability Registers
	39.2.1.2.1 Capability Registers Length (CAPLENGTH)
	39.2.1.2.2 Host Controller Interface Version (HCIVERSION)
	39.2.1.2.3 Host Controller Structural Parameters (HCSPARAMS) (EHCI-Compliant)
	39.2.1.2.4 Host Controller Capability Parameters (HCCPARAMS)
	39.2.1.2.5 Device Controller Interface Version (DCIVERSION)-Non-EHCI
	39.2.1.2.6 Device Controller Capability Parameters (DCCPARAMS)-Non-EHCI

	39.2.1.3 Device/Host Timer Registers (Non-EHCI)
	39.2.1.4 Operational Registers
	39.2.1.4.1 USB Command Register (USBCMD)
	39.2.1.4.2 USB Status Register (USBSTS)
	39.2.1.4.3 USB Interrupt Enable Register (USBINTR)
	39.2.1.4.4 Frame Index Register (FRINDEX)
	39.2.1.4.5 Control Data Structure Segment Register (CTRLDSSEGMENT)
	39.2.1.4.6 Periodic Frame List Base Address Register (PERIODICLISTBASE)
	39.2.1.4.7 Device Address Register (DEVICEADDR)-Non-EHCI
	39.2.1.4.8 Current Asynchronous List Address Register (ASYNCLISTADDR)
	39.2.1.4.9 Endpoint List Address Register (ENDPOINTLISTADDR)- Non-EHCI
	39.2.1.4.10 Host Controller Embedded TT Asynchronous Buffer Status
	39.2.1.4.11 Master Interface Data Burst Size Register (BURSTSIZE)-Non-EHCI
	39.2.1.4.12 Transmit FIFO Tuning Controls Register (TXFILLTUNING)-Non-EHCI
	39.2.1.4.13 ULPI Viewport Register (ULPIVIEWPORT)
	39.2.1.4.14 Endpoint NAK (ENDPTNAK)
	39.2.1.4.15 Endpoint NAK Enable
	39.2.1.4.16 Configure Flag Register (CONFIGFLAG)
	39.2.1.4.17 Port Status and Control Registers (PORTSCn)
	39.2.1.4.18 On-The-Go Status and Control (OTGSC)-Non-EHCI
	39.2.1.4.19 USB Mode Register (USBMODE)-Non-EHCI
	39.2.1.4.20 Endpoint Setup Status Register (ENDPTSETUPSTAT)-Non-EHCI
	39.2.1.4.21 Endpoint Initialization Register (ENDPTPRIME)-Non-EHCI
	39.2.1.4.22 Endpoint Flush Register (ENDPTFLUSH)-Non-EHCI
	39.2.1.4.23 Endpoint Status Register (ENDPTSTATUS)-Non-EHCI
	39.2.1.4.24 Endpoint Complete Register (ENDPTCOMPLETE)-Non-EHCI
	39.2.1.4.25 Endpoint Control Register 0 (ENDPTCTRL0)-Non-EHCI
	39.2.1.4.26 Endpoint Control Register n (ENDPTCTRLn)-Non-EHCI
	39.2.1.4.27 USB General Control Register (USBGENCTRL)-Non-EHCI
	39.2.1.4.28 On-Chip PHY Control Register (ISIPHYCTRL)-Non-EHCI



	39.3 Functional Description
	39.3.1 System Interface
	39.3.2 DMA Engine
	39.3.3 FIFO RAM Controller

	39.4 OTG Operations
	39.4.1 Register Bits
	39.4.2 Hardware Assist
	39.4.2.1 Auto-Reset
	39.4.2.2 Data-Pulse
	39.4.2.3 B-Disconnect to A-Connect


	39.5 Host Data Structures
	39.5.1 Periodic Frame List
	39.5.2 Asynchronous List Queue Head Pointer
	39.5.3 Isochronous (High-Speed) Transfer Descriptor (iTD)
	39.5.3.1 Next Link Pointer
	39.5.3.2 iTD Transaction Status and Control List
	39.5.3.3 iTD Buffer Page Pointer List (Plus)

	39.5.4 Split Transaction Isochronous Transfer Descriptor (siTD)
	39.5.4.1 Next Link Pointer
	39.5.4.2 siTD Endpoint Capabilities/Characteristics
	39.5.4.3 siTD Transfer State
	39.5.4.4 siTD Buffer Pointer List (Plus)
	39.5.4.5 siTD Back Link Pointer

	39.5.5 Queue Element Transfer Descriptor (qTD)
	39.5.5.1 Next qTD Pointer
	39.5.5.2 Alternate Next qTD Pointer
	39.5.5.3 qTD Token
	39.5.5.4 qTD Buffer Page Pointer List

	39.5.6 Queue Head
	39.5.6.1 Queue Head Horizontal Link Pointer
	39.5.6.2 Endpoint Capabilities/Characteristics
	39.5.6.3 Transfer Overlay

	39.5.7 Periodic Frame Span Traversal Node (FSTN)
	39.5.7.1 FTSN Normal Path Pointer
	39.5.7.2 FSTN Back Path Link Pointer


	39.6 Host Operational Model
	39.6.1 Host Controller Initialization
	39.6.1.1 Port Powert
	39.6.1.2 Reporting Over-Current

	39.6.2 Suspend/Resume
	39.6.2.1 Port Suspend/Resume

	39.6.3 Schedule Traversal Rules
	39.6.4 Periodic Schedule Frame Boundaries vs. Bus Frame Boundaries
	39.6.5 Periodic Schedule
	39.6.6 Managing Isochronous Transfers Using iTDs
	39.6.6.1 Host Controller Operational Model for iTDs
	39.6.6.2 Software Operational Model for iTDs
	39.6.6.2.1 Periodic Scheduling Threshold


	39.6.7 Asynchronous Schedule
	39.6.7.1 Adding Queue Heads to Asynchronous Schedule
	39.6.7.2 Removing Queue Heads from Asynchronous Schedule
	39.6.7.3 Empty Asynchronous Schedule Detection
	39.6.7.4 Restarting Asynchronous Schedule Before EOF
	39.6.7.4.1 Example Method for Restarting Asynchronous Schedule Traversal
	39.6.7.4.2 Example Derivation for AsyncSchedSleepTime

	39.6.7.5 Asynchronous Schedule Traversal: Start Event
	39.6.7.6 Reclamation Status Bit (USBSTS Register)

	39.6.8 Operational Model for NAK Counter
	39.6.8.1 Nak Count Reload Control
	39.6.8.1.1 Wait for List Head
	39.6.8.1.2 Do Reload
	39.6.8.1.3 Wait for Start Event


	39.6.9 Managing Control/Bulk/Interrupt Transfers via Queue Heads
	39.6.9.1 Fetch Queue Head
	39.6.9.2 Advance Queue
	39.6.9.3 Execute Transaction
	39.6.9.3.1 Halting a Queue Head
	39.6.9.3.2 Asynchronous Schedule Park Mode

	39.6.9.4 Write Back qTD
	39.6.9.5 Follow Queue Head Horizontal Pointer
	39.6.9.6 Buffer Pointer List Use for Data Streaming with qTDs
	39.6.9.7 Adding Interrupt Queue Heads to the Periodic Schedule
	39.6.9.8 Managing Transfer Complete Interrupts from Queue Heads

	39.6.10 Ping Control
	39.6.11 Split Transactions
	39.6.11.1 Split Transactions for Asynchronous Transfers
	39.6.11.1.1 Asynchronous-Do-Start-Split
	39.6.11.1.2 Asynchronous - Do-Complete-Split

	39.6.11.2 Split Transaction Interrupt
	39.6.11.2.1 Split Transaction Scheduling Mechanisms for Interrupt
	39.6.11.2.2 Host Controller Operational Model for FSTNs
	39.6.11.2.3 Tracking Split Transaction Progress for Interrupt Transfers
	39.6.11.2.4 Split Transaction Execution State Machine for Interrupt
	39.6.11.2.5 Rebalancing the Periodic Schedule

	39.6.11.3 Split Transaction Isochronous
	39.6.11.3.1 Split Transaction Scheduling Mechanisms for Isochronous
	39.6.11.3.2 Tracking Split Transaction Progress for Isochronous Transfers
	39.6.11.3.3 Split Transaction Execution State Machine for Isochronous
	39.6.11.3.4 Split Transaction for Isochronous - Processing Examples


	39.6.12 Host Controller Pause
	39.6.13 Port Test Modes
	39.6.14 Interrupts
	39.6.14.1 Transfer/Transaction Based Interrupts
	39.6.14.1.1 Transaction Error
	39.6.14.1.2 USB Interrupt (Interrupt on Completion (IOC))
	39.6.14.1.3 Short Packet

	39.6.14.2 Host Controller Event Interrupts
	39.6.14.2.1 Port Change Events
	39.6.14.2.2 Frame List Rollover
	39.6.14.2.3 Interrupt on Async Advance
	39.6.14.2.4 Host System Error



	39.7 Device Data Structures
	39.7.1 Endpoint Queue Head
	39.7.1.1 Endpoint Capabilities/Characteristics
	39.7.1.2 Transfer Overlay
	39.7.1.3 Current dTD Pointer
	39.7.1.4 Set-up Buffer

	39.7.2 Endpoint Transfer Descriptor (dTD)

	39.8 Device Operational Model
	39.8.1 Device Controller Initialization
	39.8.2 Port State and Control
	39.8.3 Bus Reset
	39.8.3.1 Suspend/Resume
	39.8.3.1.1 Suspend Description
	39.8.3.1.2 Suspend Operational Model
	39.8.3.1.3 Resume


	39.8.4 Managing Endpoints
	39.8.4.1 Endpoint Initialization
	39.8.4.2 Stalling
	39.8.4.3 Data Toggle

	39.8.5 Device Operational Model For Packet Transfers
	39.8.5.1 Interrupt/Bulk Endpoint Operational Model
	39.8.5.2 Control Endpoint Operation Model
	39.8.5.3 Isochronous Endpoint Operational Model
	39.8.5.3.1 Isochronous Pipe Synchronization


	39.8.6 Managing Queue Heads
	39.8.6.1 Queue Head Initialization
	39.8.6.2 Operational Model For Setup Transfers

	39.8.7 Managing Transfers with Transfer Descriptors
	39.8.7.0.1 Software Link Pointers
	39.8.7.1 Building a Transfer Descriptor
	39.8.7.2 Executing A Transfer Descriptor
	39.8.7.3 Transfer Completion
	39.8.7.4 Flushing/De-priming an Endpoint

	39.8.8 Device Error Matrix
	39.8.9 Servicing Interrupts
	39.8.9.1 High-Frequency Interrupts
	39.8.9.2 Low-Frequency Interrupts
	39.8.9.3 Error Interrupts

	39.8.10 Deviations from the EHCI Specifications
	39.8.10.1 Device Operation
	39.8.10.2 Non-Zero Fields in the Register File
	39.8.10.3 SOF Interrupt
	39.8.10.4 Embedded Design
	39.8.10.4.1 Frame Adjust Register

	39.8.10.5 Miscellaneous Variations from EHCI
	39.8.10.5.1 Programmable Physical Interface Behavior
	39.8.10.5.2 Discovery



	39.9 USB 2.0 PHY with On-The-Go
	39.9.1 Introduction
	39.9.1.1 Features
	39.9.1.2 Modes of Operation
	39.9.1.3 System Requirements



	Chapter 40 Video-In (VIU)
	40.1 Introduction
	40.1.1 Features

	40.2 External Signal Description
	40.3 Memory Map and Register Definition
	40.3.1 Memory Map
	40.3.2 Register Summary
	40.3.3 Register Descriptions
	40.3.3.1 STATUS_CONFIG
	40.3.3.2 LUMINANCE_COEFFICIENTS
	40.3.3.3 RED_CHROMA_COEFFICIENTS
	40.3.3.4 GREEN_CHROMA_COEFFICIENTS
	40.3.3.5 BLUE_CHROMA_COEFFICIENTS
	40.3.3.6 DMA_ADDRESS
	40.3.3.7 DMA_INCREMENT
	40.3.3.8 PICTURE_COUNT
	40.3.3.9 HI_PRIO_ALARM
	40.3.3.10 ALPHA


	40.4 Functional Description
	40.4.1 ITU656
	40.4.2 Round and Dither
	40.4.2.1 Round
	40.4.2.2 Dither

	40.4.3 DMA and De-interlacing
	40.4.4 Error Case

	40.5 Initialization/Application Information
	40.5.1 Initialization Information
	40.5.2 Application Information
	40.5.2.1 Register Configuration Timing Window






