
 Every A is scared....

The Linux Kernel Voltage and
Current Regulator Subsystem.

10/02/09 http://www.slimlogic.co.uk 2

Outline

● Introduction to Regulator Based Systems.

● Static & Dynamic System Power

● Regulator Basics & Power Domains

● PMP / Internet Tablet Example

● Kernel Regulator Framework

● Consumer Interface

● Regulator Driver Interface

● Machine Interface

● sysfs Interface (ABI)

● Real World Examples

● CPUfreq & CPU Idle

● LCD Backlight

● Audio

● NAND/NOR

● Resources & Status

● Thanks

● Q & A

10/02/09 http://www.slimlogic.co.uk 3

Introduction to Regulator Based Systems

10/02/09 http://www.slimlogic.co.uk 4

Static & Dynamic System Power

● Semiconductor power consumption has two components – static and
dynamic.

● Static power is leakage current.

● Smaller than dynamic power when system is active.

● Main power drain in system standby state.

● Dynamic power is active current.

● Signals switching. (e.g. clocks)

● Analog circuits changing state (e.g. audio playback).

● Regulators can be used to save static and dynamic power

Power
(Total)

 = P
(static)

 + P
(dynamic)

Power
(dynamic)

 = CV2F

10/02/09 http://www.slimlogic.co.uk 5

Regulator Basics

● Regulates the output power from input power.

– Voltage control – “input is 5V output is 1.8V”

– Current limiting – “limit output current to 20mA max”

– Simple switch – “switch output power on/off”

Regulator

Software
Control

Input Power
Battery
Line
USB
Regulator

Output Power
Device
Regulator

10/02/09 http://www.slimlogic.co.uk 6

Power Domains

● Power domain supplied power by the output of a

● regulator,

● switch

● or by another power domain.

● Has power constraints to protect hardware.

Regulator-1 Regulator-2

Consumer-D

Regulator-3 Consumer-E

Consumer-A

Consumer-B

Consumer-C

Domain 1 Domain 2 Domain 3

Regulator1 supplies Domain 1
Regulator2 supplies Domain 2
Regulator3 supplies Domain 3

10/02/09 http://www.slimlogic.co.uk 7

System Architecture (PMP,
Internet Tablet)

NOR / NAND CPU (DVFS) DDR

LCD

Backlight

HDD

TouchscreenCodec

FM-Tuner

USB

BT

WIFI

TV-Out

Regulator

Device
Dig Power Dyn

A/RF Power Dyn

Key

Dig Power Static

PMIC

A
u

di
o

C
om

m
un

ic
at

io
ns

D
is

pl
ay

S
to

ra
ge

System

Battery
Mains
USB

10/02/09 http://www.slimlogic.co.uk 8

System Architecture (PMP,
Internet Tablet)

NOR / NAND CPU (DVFS) DDR

LDO-1 DCDC-1 DCDC-2

LCD

Backlight

HDD

LDO-9

DCDC-4

DCDC-5

TouchscreenCodec

FM-Tuner

LDO-2

LDO-3

USB

BT

WIFI

LDO-4

LDO-12

LDO-6

DCDC-3

LDO-5

TV-Out LDO-11

LDO-7

LDO-8

Regulator

Device
Dig Power Dyn

A/RF Power Dyn

Key

Dig Power Static

PMIC

Battery
Mains
USB

A
u

di
o

C
om

m
un

ic
at

io
ns

D
is

p
la

y
S

to
ra

ge

System

10/02/09 http://www.slimlogic.co.uk 9

Kernel Regulator Framework

10/02/09 http://www.slimlogic.co.uk 10

Regulator Framework

● Designed to provide a standard kernel interface to control voltage and current
regulators.

● Allow systems to dynamically control regulator power output in order to save
power and prolong battery life.

● Applies to both

– voltage regulators (where voltage output is controllable)

– current sinks (where current limit is controllable)

● Divided into four separate interfaces.

– Consumer interface for device drivers

– Regulator drivers interface for regulator drivers

– Machine interface for board configuration

– sysfs interface for userspace

10/02/09 http://www.slimlogic.co.uk 11

Regulator Consumer Interface

● Consumers are client device drivers that use regulator(s) to control their
power supply.

● Consumers are constrained by the constraints of the power domain they are
on

● Consumers can't request power settings that may damage themselves, other consumers or
the system.

● Classified into two types

● Static (only need to enable/disable)

● Dynamic (need to change voltage/ current limit)

10/02/09 http://www.slimlogic.co.uk 12

Consumer Interface - Basics

● Access to regulator is by

regulator = regulator_get(dev, "Vcc");

regulator_put(regulator);

● Enable and disable

int regulator_enable(regulator);

int regulator_disable(regulator);

int regulator_force_disable(regulator);

● Status

int regulator_is_enabled(regulator);

10/02/09 http://www.slimlogic.co.uk 13

Consumer Interface - Voltage

● Consumers can request their supply voltage with

int regulator_set_voltage(struct regulator *regulator, int min_uV, int
max_uV);

● Constraints are checked before changing voltage.

regulator_set_voltage(regulator, 100000, 150000);

● Supply voltage can be found with

int regulator_get_voltage(struct regulator *regulator);

10/02/09 http://www.slimlogic.co.uk 14

Consumer Interface - Current

● Consumers can request their supply current limit with

int regulator_set_current_limit(struct regulator *regulator, int
min_uA, int max_uA);

● Constraints are checked before changing current limit.

regulator_set_current_limit(regulator, 1000, 2000);

● Supply current limit can be found with

int regulator_get_current_limit(struct regulator *regulator);

10/02/09 http://www.slimlogic.co.uk 15

Consumer Interface – Op Modes

● Regulators are not 100% efficient.

● Efficiency can vary depending on
load.

● Regulators can change op mode to
increase efficiency.

1 10 100 1000

Load (mA)

 0

20

40

60

80

100

90

70

50

30

10

E
ff

ic
ie

n
cy

 (
%

)

Idle Mode

Normal Mode

10/02/09 http://www.slimlogic.co.uk 16

Consumer Interface – Op Modes

Consumer with 10mA load:-

Saving ~2mA

1 10 100 1000

Load (mA)

 0

20

40

60

80

100

90

70

50

30

10

E
ff

ic
ie

n
cy

 (
%

)

Idle Mode

Normal Mode

We sum total load for regulators > 1 consumer before changing mode.

Optimum efficiency can be requested by calling

regulator_set_optimum_mode(regulator, 10000); // 10mA

70% @ Normal = ~13mA

90% @ Idle = ~11mA

10/02/09 http://www.slimlogic.co.uk 17

Consumer Interface - Events

● Regulator hardware can notify
software of certain events.

● Regulator failures.

● Over temperature.

● Consumers can then handle as
required.

● Failure to handle......

10/02/09 http://www.slimlogic.co.uk 18

Consumer Interface - Summary

● Consumer registration

regulator_get(), regulator_put()

● Regulator output power control and status.

regulator_enable(), regulator_disable(), regulator_force_disable(),
regulator_is_enabled()

● Regulator output voltage control and status

regulator_set_voltage(), regulator_get_voltage()

● Regulator output current limit control and status

regulator_set_current_limit(), regulator_get_current_limit()

● Regulator operating mode control and status

regulator_set_mode(), regulator_get_mode(), regulator_set_optimum_mode()

● Regulator events

regulator_register_notifier(), regulator_unregister_notifier()

10/02/09 http://www.slimlogic.co.uk 19

Driver Interface

● Regulator drivers must be registered with the framework before they can be
used by consumers.

struct regulator_dev *regulator_register(struct regulator_desc
*regulator_desc, struct device *dev, struct regulator_init_data
*init_data, void *driver_data);

void regulator_unregister(struct regulator_dev *rdev);

● Events can be propagated to consumers

int regulator_notifier_call_chain(struct regulator_dev *rdev, unsigned
long event, void *data);

10/02/09 http://www.slimlogic.co.uk 20

Driver Interface - Operations

struct regulator_ops {

/* get/set regulator voltage */
int (*set_voltage) (struct regulator_dev *, int min_uV, int max_uV);
int (*get_voltage) (struct regulator_dev *);

/* get/set regulator current */
int (*set_current_limit) (struct regulator_dev *, int min_uA, int max_uA);
int (*get_current_limit) (struct regulator_dev *);

/* enable/disable regulator */
int (*enable) (struct regulator_dev *);
int (*disable) (struct regulator_dev *);
int (*is_enabled) (struct regulator_dev *);

/* get/set regulator operating mode (defined in regulator.h) */
int (*set_mode) (struct regulator_dev *, unsigned int mode);
unsigned int (*get_mode) (struct regulator_dev *);

/* report regulator status ... most other accessors report
 * control inputs, this reports results of combining inputs

 * from Linux (and other sources) with the actual load.
 */
int (*get_status)(struct regulator_dev *);

/* get most efficient regulator operating mode for load */
unsigned int (*get_optimum_mode) (struct regulator_dev *, int input_uV, int output_uV, int load_uA);

/* the operations below are for configuration of regulator state when
 * its parent PMIC enters a global STANDBY/HIBERNATE state */

/* set regulator suspend voltage */
int (*set_suspend_voltage) (struct regulator_dev *, int uV);

/* enable/disable regulator in suspend state */
int (*set_suspend_enable) (struct regulator_dev *);
int (*set_suspend_disable) (struct regulator_dev *);

/* set regulator suspend operating mode (defined in regulator.h) */
int (*set_suspend_mode) (struct regulator_dev *, unsigned int mode);

};

10/02/09 http://www.slimlogic.co.uk 21

Driver Interface - Summary

● Regulator drivers can register their services with the core.
regulator_register(), regulator_unregister()

● Regulators can send events to the core and hence to all consumers.
regulator_notifier_call_chain()

● Regulator driver private data.
rdev_get_drvdata()

10/02/09 http://www.slimlogic.co.uk 22

Machine Interface

● Fabric driver that is machine specific and describes

● Power domains

“Regulator 1 supplies consumers x,y,z.”
● Power domain suppliers

“Regulator 1 is supplied by default (Line/Battery/USB).” OR

“Regulator 1 is supplied by regulator 2.”
● Power domain constraints

“Regulator 1 output must be >= 1.6V and <=1.8V”

10/02/09 http://www.slimlogic.co.uk 23

Machine Interface

LDO1Input Power
Output Power
NAND

Fabric that glues regulators to consumer devices
e.g. NAND is supplied by LDO1

This attaches LDO1 to supply power to the NAND “Vcc” supply pin(s).

10/02/09 http://www.slimlogic.co.uk 24

Machine Interface - Constraints

● Defines safe operating limits for power domain.

● Prevents system damage through unsafe consumer requests.

– Voltage or current over the devices operating range.

– Voltage or current too low for safe operation.

10/02/09 http://www.slimlogic.co.uk 25

Machine Interface

● Some regulators are supplied power by other regulators.

● Ensure regulator 1 is enabled before trying to enable regulator 2.

Regulator-1 Regulator-2

Consumer-D

Consumer-A

Consumer-B

Consumer-C

Domain 1 Domain 2

10/02/09 http://www.slimlogic.co.uk 26

Machine Interface - Summary

/* CPU */
static struct regulator_consumer_supply sw1a_consumers[] = {
 {
 .supply = "cpu_vcc",
 }
};

static struct regulator_init_data sw1a_data = {
 .constraints = {
 .name = "SW1A",
 .min_uV = 1275000,
 .max_uV = 1600000,
 .valid_ops_mask = REGULATOR_CHANGE_VOLTAGE |
 REGULATOR_CHANGE_MODE,
 .valid_modes_mask = REGULATOR_MODE_NORMAL |
 REGULATOR_MODE_FAST,
 .state_mem = {
 .uV = 1400000,
 .mode = REGULATOR_MODE_NORMAL,
 .enabled = 1,
 },
 .initial_state = PM_SUSPEND_MEM,
 .always_on = 1,
 .boot_on = 1,
 },
 .num_consumer_supplies = ARRAY_SIZE(sw1a_consumers),
 .consumer_supplies = sw1a_consumers,
};

CPU supply and regulator initialisation data.

10/02/09 http://www.slimlogic.co.uk 27

ABI – Sysfs Interface

● Exports regulator and consumer information to user space

● Is read only

● Voltage

● Current limit

● State

● Operating Mode

● Constraints

● Could be used to provide more power usage info to powertop

10/02/09 http://www.slimlogic.co.uk 28

Real World Examples

10/02/09 http://www.slimlogic.co.uk 29

CPUfreq & CPUidle

● CPUfreq scales CPU frequency to meet processing demands

● Voltage can also be scaled with frequency.

● Increased with frequency to increase performance/stability.

● Decreased with frequency to save power.

regulator_set_voltage(regulator, 1600000, 1600000); //1.6V
● CPU Idle can place the CPU in numerous low power idle states.

● Idle states draw less power and may take advantage of regulator
efficiency by changing regulator operating mode.
regulator_set_optimum_mode(regulator, 10000); // 10mA

10/02/09 http://www.slimlogic.co.uk 30

LCD Backlight

● LCD back lighting is usually a significant drain of system power.

● Power can be saved by lowering brightness when it's possible to do
so.

● e.g. Some backlights are based on white LED's and can have
brightness changed by changing current.

regulator_set_current_limit(regulator, 10000, 10000);

10/02/09 http://www.slimlogic.co.uk 31

Audio

● Audio hardware consumes requires analog power when there is no
audio playback or capture.

● Power could be saved when idle by turning off analog supplies when
not in use.

● Power could additionally be saved by turning off components that are
not being used in the current use case

● FM-Tuner could be disabled when MP3's are played.

● Speaker Amp can be disabled when Headphones are used.
regulator_enable(regulator)

regulator_disable(regulator)

10/02/09 http://www.slimlogic.co.uk 32

FLASH Memories

● NAND & NOR devices consume more power during IO than idle.

● NAND/NOR consumer driver can change regulator operating mode to
gain efficiency savings when idle.

regulator_set_optimum_mode(regulator, 1000); // 1mA

State Max Load (mA)
Read/Write 35

Erase 40
Erase + rw 55

Idle 1

NAND / NOR chip max load (from datasheet)

10/02/09 http://www.slimlogic.co.uk 33

Status

● Subsystem in Mainline kernel since 2.6.27

● Support numerous PMIC devices – list is growing.

● Actively maintained by Liam Girdwood and Mark Brown.

● On the web

– http://www.slimlogic.co.uk/?p=48

– http://opensource.wolfsonmicro.com/node/15

● git://git.kernel.org/pub/scm/linux/kernel/git/lrg/voltage-2.6.git

http://www.slimlogic.co.uk/?p=48
http://opensource.wolfsonmicro.com/node/15

10/02/09 http://www.slimlogic.co.uk 34

Q&A

Thanks

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

