
NVDIMM-Ns
Boosting Application Performance

with NVDIMM-Ns

White Paper M-WP004

Corporate Headquarters: 39870 Eureka Dr., Newark, CA 94560, USA • Tel: (510) 623-1231 • Fax: (510) 623-1434 • E-mail: info@smartm.com
Customer Service: Tel: (+1) 978-303-8500 • Email: customers@smartm.com
Latin America: Tel: (+55) 11 4417-7200 • Email: sac@smartm.com
Europe: Tel: (+44) 7825-084427 • Email: euro.sales@smartm.com
Asia/Pacific: Tel: (+65) 6232-2858 • Email: infoasia@smartm.com

2 | Page January 2016

M-WP004 – NVDIMM-N

Table of Contents

Overview .. 3
NVDIMM-Ns – How they work .. 4
NVDIMM-Ns - A growing industry standard .. 4
NVDIMM-Ns – Their advantages ... 4
NVDIMM-Ns - Access to persistent memory modules ... 5
NVDIMM-Ns – Use case .. 6
NVDIMM-Ns – The next step .. 7

3 | Page January 2016

M-WP004 – NVDIMM-N

Overview

Traditional server and storage systems have a two-level storage model: One level accesses volatile data in
memory (DRAM) with a load/store interface. The second level accesses persistent data in storage (flash)
with a file system interface. The problem is that the operating system (OS) and file system (FS) code and
buffering for storage lead to performance inefficiencies. Persistent memory is one solution now being
used to improve system performance and reduce bottlenecks in high-availability, high-reliability server
and storage applications. “Hot data” is stored within portions of high speed DRAM memory that is made
persistent by the use of non-volatile DIMMs known as NVDIMM-N. Hot data is data that needs to be
accessed frequently. It is typically critical information that needs to be accessed quickly and is often used
by a company that requires quick decision making. Also, other latency and performance-sensitive data
such as transaction logs and checkpoint images can be stored and accessed from the persistent sections
of main memory to dramatically improve application performance without the risk of data loss.

4 | Page January 2016

M-WP004 – NVDIMM-N

NVDIMM-Ns – How they work
NVDIMM-N modules combine DRAM and flash onto a standard
JEDEC registered DIMM whereby the data in the DRAMs is
protected by using flash memory. In the event of a system
power loss, a backup is triggered and the data is transferred
to the flash memory. Only the NVDIMM-N needs to be
powered until the data within the DRAM devices are written
to flash memory, not to the entire system. Once the transfer is
complete, the NVDIMM-N can be powered off.

When the system power is restored, the data is restored to
the DRAM from the flash memory. The flash memory on the
NVDIMM-N is not accessible by the system until another power
outage should occur.

Application Examples
Two application examples of how system performance is
dramatically improved with the use of NVDIMM-N include
transaction logging and check pointing. Transaction logging
records change to databases in a journal file-and-check,
pointing records to the state of the database at a given moment
in time. Instead of this data being stored into flash, such as an
SSD, and taking hundreds of microseconds to store and access
while going through layers of I/O, the data is now directly
mapped into main memory and is accessed in hundreds of
nanoseconds. The diagram below shows the concept of how
NVDIMM-Ns leverage the speed of DRAMs and the persistence
of nonvolatile memory to improve system performance.

NVDIMM-Ns – A growing industry standard
Many DDR4 NVDIMM-N-enabled server and storage systems
are available today from companies like Intel, Supermicro
and others. NVDIMM-N-enabled motherboards have the ADR
(Asynchronous DRAM Refresh) signal routed from an Intel

processor (Grantley, Purely, or Broadwell) to the DIMM sockets.
This is required to put DRAMs into self-refresh before a power
loss condition occurs. Other requirements are a BIOS and MRC
(Memory Reference Code) configured to recognize NVDIMM-N
modules when they are plugged in. The BIOS and MRC detect,
initialize, and boot the NVDIMM-N modules. They are then
mapped as a persistent section of memory within main
memory: Block vs. Load/store Access (Memory Mapped)

NVDIMM-Ns – Their advantages
NVDIMM-Ns can be accessed as block devices or as load/
store devices. Block-level storage presents the NVDIMM-N to
servers as a SSD that is installed in a DIMM socket. Load/store
architecture allows NVDIMM-Ns to be accessed by load and
store operations and all values for an operation need to be
loaded from memory and be present in registers. Following the
operation, the result needs to be stored back to memory. This
operation represents a direct, byte-addressable path to main
memory. The real benefits of NVDIMM-Ns are realized when
using load/store access architecture. NVDIMM-Ns are memory
mapped and made PM-aware and directly access DRAM
without any block drivers. Software in the data path is thus
eliminated. The table below illustrates performance benchmark
testing results using a new SDM (Software Defined Memory)
file system developed by Plexistor.

Operation per second

NVMe
(ZFS)

NVMe
(XFS)

NVDIMM-N
(SDM)

SQL Database
SPEC SFS 2014 Database

- - -

Random 4KB write
Single threaded FIO benchmark 21,200 11,300 492,456 x 23

Random 4KB write
Multi threaded FIO benchmark

28,700 72,760 3,680,270 x 128

Random 128B write
Multi threaded FIO benchmark

21,200 105,830 6,848,541 x 913

MongoDB NoSQL
MongoDB v3.1 on WiredTiger.
Load scenario

11,610 18,090 41,000 x 4

Latency in μs

ES-2650 v3 CPU, 32GB DRAM, 32GB NVDIMM-N, NVMe

NVMe
(ZFS)

NVMe
(XFS)

NVDIMM-N
(SDM)

SQL Database
SPEC SFS 2014 Database

120 110 5 x 25

Random 4KB write
Single threaded FIO benchmark 840 88 2 x 420

Random 4KB write
Multi threaded FIO benchmark

623 246 4 x 156

Random 128B write
Multi threaded FIO benchmark

840 168 2 x 65

MongoDB NoSQL
MongoDB v3.1 on WiredTiger.
Load scenario

830 534 227 x 4

Figure 2 - Software-Defined Memory

Figure 1

 NVDIMM-N

(persistent variables)

Memory
Bus

DRAM

(volatile variables)

HDD

SSD

CPU

SW
Overhead

d

~100

~100

~10m

5 | Page January 2016

M-WP004 – NVDIMM-N

The table on the bottom right of the previous page compares
the performance between four 16GB DDR4 NVDIMMs and
one 400GB NVMe PCIe SSD. Based on the dramatic increase in
operations per second and the dramatic decrease in latency,
there is a clear end user benefit when adopting NVDIMMs.

In addition to the file system developed by Plexistor, changes
to the Linux operating system have been made to make it
‘NVDIMM-N-aware’. The 4.3.3 Linux Kernel has the built-in
drivers for the byte addressable access (pmem) and for the
block access (blk) to the NVDIMM-N modules. The block access
uses advanced mechanisms such as the Block Transfer Window
(BTW) that is provided by the NFIT (NVDIMM-N Firmware
Interface Table) protocol -- a new way of persistent memory
representation per the ACPI 6.0 specification. In addition, the
NFIT protocol provides many advanced methods of organizing
the byte addressable persistent memory as well.

The BIOS must be NFIT capable to make use of those advanced
features. For the legacy BIOS that provides the basic support
for the NVDIMM-N modules, the 4.3.3 Linux Kernel supports
the byte addressable by default, as well as a simple block mode
access through its pmem driver. The built-in pmem device driver
creates the device link, one device per CPU socket. That is, if
the mother board has two CPU sockets that are populated, all
the NVDIMM-N modules directly accessible from Socket-0 (QPI)
would be grouped under /dev/pmem0 and all the NVDIMM-N
modules directly accessible from Socket-1 (QPI) would be
grouped under /dev/pmem1, respectively. The individual
NVDIMM-N modules across the memory channels for a socket
are accessed according to the memory interleave rules. This
transfer might cause serious issues for the block mode access,
and hence, is discouraged as it does not have sophisticated
error recovery methods. NFIT BIOS is recommended for block
mode access.

NVDIMM-Ns - Access to Persistent Memory
Modules
BLOCK MODE

The pmem driver, by default provides the BLOCK mode access
for the underlying Persistent Memory modules. For example,
just like any other BLOCK device, /dev/pmem0 can be used as
follows:

dd if=/dev/zero of=/dev/pmem0

The EXT4 file system in the Linux 4.2 Kernel has a new feature
called the “Direct Access” support (DAX) that eliminates the file
system buffering of data. For our example, the recommended
usage is:

mkfs.ext4 /dev/pmem0

mount –o dax /dev/pmem0 /mount_point

Once mounted at the “mount_point” regular file systems

operations – such as copying and deleting the files -- could be
done. To unmount, use:

umount /mount_point

In the event of a power loss, the underlying Persistent
Memory Modules (when properly ARMed) must keep the data
persistent.

MEMORY MAPPED MODE

An application program in the user space could do a memory
map on the /dev/pmem0 and access them as a byte
addressable entity. The underlying pmem driver provides that
capability, too. This requires writing some application code in C/
C++. (In our tests, the usage of O_DIRECT seemed to indicate a
major improvement in IO performance.)

Sample Code: (Use this for guidance only.)
uint64_t length, offset = 0;
char *mmapp = NULL;

uint8_t write_operation = 0;
uint32_t result;

if ((fd = open(“/dev/pmem0”, O_RDWR | O_DIRECT))
< 0) {
perror(“open failed.”);
exit(1);
}

// Get the length of the device.
if (ioctl(fd, BLKGETSIZE64, &length)) {
perror(“get size failed.”);
exit(1);
}

mmapp = mmap(
NULL,
length,
PROT_READ | PROT_WRITE,
MAP_FILE | MAP_SHARED,
fd,
offset
);

if (mmapp == MAP_FAILED) {
perror(“memory map failed.”);
exit(1);
}

if (write_operation)) {
result = do_write_test(mmapp, length);
} else {
result = do_readverify_test(mmapp, length);
}

if (munmap(mmapp, length) < 0) {
perror (“unmamp failed”);
exit(1);
}

close(fd);

exit(0);

6 | Page January 2016

M-WP004 – NVDIMM-N

NVDIMM-Ns – Use Case
All the modern file systems (EXT4, ZFS, etc.,) use a transaction
log based mechanism to record the changes to the file system
that are not yet committed to the persistent data storage. This
is to safeguard the file system against any failure from power
loss or other failure conditions. In event of any failures, the
file system would replay the transaction log and commit the
changes to the persistent data storage to bring the file system
to a consistent state.

The reason for this multi stage commit process used by the file
systems is due to the latencies involved with the conventional
persistent data storage media such as the hard drives, and the
SAN. By recording the transactions to a separate logging device,
the file system could respond to its clients much faster, and
increase the overall throughput.

It is to be noted that the storage for the transaction logs must
be persistent too. Otherwise, it would defeat its purpose of
existence. Previously, a second hard drive, a drive smaller
in capacity and with a high RPM, was used for keeping the
transaction logs, as the size requirement would not demand
large capacity media. Storage was typically factored by the file
system bandwidth requirements. Conventional wisdom to have
hard drives “short stroked” – limited to a very little capacity
-- by limiting the drive head moving across a limited number of
sectors on the drive platter.

Later, usage of solid state storage devices for keeping the
transaction logs gained prominence. This offered a variety
of advantages, as they not only had latencies that were of
magnitude lesser than the hard drives, but short stroking
was not needed at all. Still, a solid state storage device that is
constantly written for every file system transaction must adhere
to a very high life cycle expectancy to meet the demands of the
file system.

As seen, irrespective of a dedicated hard drive or a solid
state storage device, I/O for the transaction log had to share
the same backend storage sub system for the file system’s
persistent data storage. (Some configurations used a separate
host bus adapter (HBA) to mitigate this problem.) Typically, it
was a SAS, or a fiber channel, or a SATA back end connection.
This process added layers of protocol usage. Also, being used as
a block storage device, the transaction logs had to be written in
the block format. This called for data format conversions within
the file system software.

The arrival of NVDIMM-N removes many shortcomings for
usage as a device for transaction logs, as seen below:

1. It is a device on the memory bus. It does not have to share
or interfere with the file system’s I/O to its persistent data
storage [on the SAS, Fiber Channel, or SATA bus].

2. The latency of the device on the memory bus is of multiple
orders of magnitude less than any of the storage I/O bus.

3. The device could be accessed as a byte-addressable entity,
meaning no need to organize the data in block formats.

4. The data could be stored, as is, without any overlay of the
storage protocols such as SAS or fiber channel. This makes
it simple to administer.

5. The access to the persistent part of the device is used only
on power down or power failure conditions. This gives a
near-memory kind of performance and also a much longer
life expectancy for the underlying flash chips.

6. The biggest advantage is that the existing file systems
could use the NVDIMM-N devices without any changes
to its software modules. (Note: The NVDIMM-N devices
are always usable as a conventional block torage. In such
cases, the file systems would not need any changes.)

File System

Block Device Layer

Figure 3

File System

Block Device Layer

SAS/SATA/Fiber Channel Driver Layer

Transaction Log I/O Data I/O

SSD Data
Drive

Data
Drive

Data
Drive

Figure 4

7 | Page January 2016

M-WP004 – NVDIMM-N

©2016. All rights reserved. The stylized “S” and “SMART” as well as “SMART Modular Technologies” are trademarks of SMART Modular Technologies. All other trademarks and registered trademarks are the property of their respective companies.
MWP004/01.13.16/Rev.1

NVDIMM-Ns – The next step
In conclusion, NVDIMMs have been described as the next
logical step toward the adoption of Storage Class Memory
(SCM). NVDIMMs are driving the implementation of hardware,
software and I/O stack changes to make standard use of the
benefits of nonvolatile random access memory. While memory
solutions continue to evolve as they always have, NVDIMMs are
the current ideal solution to improve system performance and
reduce bottlenecks in high-availability, high-reliability server
and storage applications.

File System

Block Device Layer

SAS/SATA/Fiber Channel Driver Layer

Transaction Log I/O
(On DDR3/DDR4 Memory Bus) as a
Memory-Mapped Device.

Data I/O

Data
Drive

Data
Drive

Data
DriveNVDIMM-N

Figure 5

File System

Block Device Layer

SAS/SATA/Fiber Channel Driver LayerNVNVDIMM-N
Device Driver

Transaction Log I/O (On DDR3/DDR4
Memory Bus) as a BLOCK Device. Data I/O

Data
Drive

Data
Drive

Data
DriveNVDIMM-N

Figure 6 - NVDIMM-N device usage as a Block Device by the File System

